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calculations using three simple case studies
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Abstract

In this work, we have prepared and analyzed three case stud-
ies comparing CPU and GPGPU calculations. After briefly in-
troducing the topic of parallel programming by means of contem-
porary CPU and GPGPU technologies, we provide an overview
of selected existing works closely related to the topic of the pa-
per. For each of the case studies, a set of programs has been
implemented using the following technologies: pure CPU, CPU
SIMD, CPU multi-threaded, CPU multi-threaded with SIMD in-
structions, and GPU - Cuda. We also illustrate the basic idea of
the operation of selected algorithms using code snippets. Subse-
quently, the particular implementations are compared, and ob-
tained results are evaluated and discussed.
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1 Introduction

In today’s world, we strive to integrate modern computer systems into
our lives. This is done simply because of the general desire for mod-
ernization, to increase comfort, to speed up various processes, or for
automation. All these processes need ever-increasing computing power.
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When faced with such new tasks, people may not know which technolo-
gies to use, which ones will be the easiest to use, which ones will be
the most appropriate, and which ones they should avoid [1].

Moore’s Law tells us that the number of transistors in an integrated
circuit doubles every 2 years.

Huang’s law, as observed by Jensen Huang, CEO of Nvidia, says
that graphics card performance more than doubles every 2 years. With
the ever-increasing performance of graphics cards, people often ask
about CPU usage cases, SIMD CPU cases, or multi-core calculations
versus GPU calculations.

A common practice, we can observe presently quite often, is using
the GPU implementations for increasing the effectiveness of solutions
to a wide range of computational problems [2]–[4]. However, contem-
porary CPUs also offer solid options for efficient execution of parallel
programs [5], [6]. In this work, we would like to explore several practi-
cal problems in order to find if parallel CPU implementation could be
more efficient than the GPU implementation.

2 Parallel programming
Parallel computing is a type of calculation in which many calculations
or processes are performed at the same time. Large problems can often
be divided into smaller ones, which can then be solved simultaneously
[7].

The main point of parallel programming is the use of concurrency.
Concurrency exists in a computational problem if the problem can
be decomposed into subproblems that can be safely run at the same
time. In order to take advantage of concurrency, it must be possible
to structure the code itself so that the problems run at the same time.
Most of the major computational problems involve usable concurrency.
Parallel programming presents unique challenges:

• Often, concurrent subproblems can contain various dependencies
that will need to be identified and managed properly.

• The order of execution of subproblems can change the results of
calculations in non-deterministic ways.
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• It is necessary that the cost of concurrency control does not ex-
ceed the cost of running the program itself.

• Balancing the work between computing units may not be easy.

• Parallel algorithm that is very efficient on one platform may not
be as effective on other platforms [8].

Parallel programming on the CPU can leverage the following meth-
ods.

2.1 SIMD Parallelism

Single instruction multiple data (SIMD) allows a single instruction to
operate on multiple data – perform multiple calculations at once [6].
The most widely known form of SIMD parallelism is vector instruc-
tions1.

2.2 Simultaneous Multithreading

Simultaneous Multithreading (SMT) allows an operating system to see
a single processor core as a set of logical processors. The operating
system can then schedule threads on these logical processors which will
every cycle compete for the functional units of a processor core [6].

2.3 Multicore Processors

Multicore processors integrate multiple execution units into a single
processor chip. The operating system can see multiple logical proces-
sors, all of which have their own execution units [6].

3 General purpose computing on graphics pro-
cessing units

General purpose computing on graphics processing units (GPGPU)
is a method for performing large-scale calculations using a graphics

1https://cvw.cac.cornell.edu/vector/overview_simd
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processor. Nowadays, we can also use GPGPU to perform, in addition
to generic calculations, training of various machine learning models,
image / video manipulation, cryptography, and even emulation [9]. For
a program to be suitable for GPGPU it needs to meet the following
criteria:

• parallelism – the ability to process multiple data at once

• throughput – the ability to process large amounts of data [10].

In order to utilize GPGPU, we need to use a GPGPU programming
framework. The most popular GPGPU programming framework is
Cuda.

Cuda is a platform developed by NVIDIA for utilizing graphics
cards for non-graphic computations. Cuda C++ is a variant of C++
language that allows users to create and execute code on the GPU23.

4 Related work

In this section, we summarize the results of some of the already exist-
ing comparisons. These comparison works also had an impact on the
selection of problems we decided to use in our work.

4.1 Performance comparison of FPGA, GPU and CPU
in image processing

In 2009, S. Asano, T. Maruyama, and Y. Yamaguchi compared the
performance of FPGA, GPU, and CPU in various image processing
tasks, specifically two-dimensional filters, stereo-vision, and k-means
clustering. In their work, they found that GPU can match the perfor-
mance of FPGA, however only when naive computation methods are
used, otherwise the GPU may even be slower than CPU. In their tests,
the CPU was reaching 1/12 – 1/7 the performance of FPGA [11].

2https://developer.nvidia.com/cuda-zone
3https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
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4.2 Comparative performance of GPU, SIMD and
OpenMP systems for raw template matching in com-
puter vision

In 2011, J. Méndez, J. Lorenzo-Navarro, and M. Castrillón Santana
compared the performance of CPU and GPU in raw template matching.
In their research, they found the CPU to achieve better performance
compared to the GPU. They, however, also note that newer GPU ar-
chitectures could outperform the CPU computations given bigger mask
sizes [12].

4.3 Comparing CPU and GPU Implementations of a
Simple Matrix Multiplication Algorithm

In 2017, T. Dobravec and P. Bulić compared the performance between
CPU and GPU in matrix multiplication. In their testing, the GPU
outperformed CPU in all cases. It needs to be noted, however, that
their testing hardware utilized integrated GPU with shared memory,
and, as a result of that data transfer between the GPU and CPU, had
minimal to no impact on performance [13].

4.4 Implementation of Sobel filter using CUDA

In 2021, A. Akasapu, V. Sailaja, and G. Prasad implemented the sobel
filter using Cuda GPGPU programming framework. They found that,
for smaller images, the CPU gives faster results, and, for larger scale
and high-resolution data sets, it is better to use the GPU [4].

5 Testing environment
The testing system used was a gaming laptop Lenovo Legion 5 (2021),
with the following configuration:

• Processor: Ryzen 7 5800H

• RAM: 64GB 3200Mhz CL20 Dual-Channel Dual Rank

• GPU: NVIDIA GeForce RTX 3070 Laptop 8GB VRAM
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The testing system was using the following software:

• Operating system: Windows 10 Education

• Development environment: Visual studio 2019

• GPGPU programming framework: CUDA Toolkit 11.6

6 Selected problems for comparisons

6.1 Matrix multiplication

Matrix multiplication is one of the most important matrix operations.
It is often used in network theory, solving linear equation systems,
coordinate system transformations, and population modeling. When
multiplying matrices, the number of rows in the first matrix must be
the same as the number of columns in the second matrix. When calcu-
lating a certain number of the resulting matrix, we calculate the scalar
product from the row of the first matrix and the columns of the second
matrix in which the given number is located [14].

6.2 Raw template matching

Template matching is a method of finding and locating a template
image in a larger image. Raw template matching is the simplest form
of template matching in which we try to find an exact match of template
in the larger image.

6.3 Edge detection

Edge detection is a common step in multiple image processing algo-
rithms. In this work, we will be using the sobel operator4 for edge
detection.

4https://homepages.inf.ed.ac.uk/rbf/HIPR2/sobel.htm
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7 Implementation
For each of algorithms chosen for comparison, a set of programs has
been implemented:

• basic example on CPU

• CPU + SIMD

• multiple threads CPU

• multiple threads CPU + SIMD

• GPU - cuda

7.1 Matrix multiplication

For matrix multiplication, we have chosen a simplified algorithm that
has hardcoded matrix sizes and matrix width and height of the same
size.

In the actual implementation, we first swap columns of the second
matrix with its rows and then we calculate dot product of the two
matrixes. We verified the calculated results from our implementations
against simple reference implementation.

void CPU_matrix_mult ( f loat ∗ h_a , f loat ∗ h_b ,
f loat ∗ h_result ) {

for ( int i = 0 ; i < MATRIX_SIZE; ++i )
{

for ( int j = 0 ; j < MATRIX_SIZE; ++j )
{

f loat tmp = 0.0 f ;
for ( int h = 0 ; h < MATRIX_SIZE; ++h)
{

tmp += h_a [ i ∗ MATRIX_SIZE + h ] ∗
h_b [ h ∗ MATRIX_SIZE + j ] ;

}
h_resu lt [ i ∗ MATRIX_SIZE + j ] = tmp ;

}
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}
}

At first, in our implementation, we used C++ std :: vector to store
the matrixes; however, because of performance and no native CUDA
support, we changed to C-style arrays. Auto-vectorization worked with
our compiler (MSVC) and used a similar approach to our initial SIMD
implementation:

f loat dotProduct ( f loat ∗ arr1 , f loat ∗ arr2 ) {
f loat r e t ;
__m256 sum = _mm256_setzero_ps ( ) ;
for ( int i = 0 ; i < MATRIX_SIZE; i += 8) {

__m256 vec_arr1 = _mm256_loadu_ps(&arr1 [ i ] ) ;
__m256 vec_arr2 = _mm256_loadu_ps(&arr2 [ i ] ) ;
sum = _mm256_add_ps(sum ,

_mm256_mul_ps( vec_arr1 , vec_arr2 )
) ;

}
f loat bu f f e r [ 8 ] ;
_mm256_storeu_ps ( bu f f e r , sum ) ;
r e t = bu f f e r [ 0 ] + . . . + bu f f e r [ 7 ] ;
return r e t ;

}

We further optimized this implementation by computing two sets of
vectors instead of one.

In our GPU program, we used tiling for efficient matrix multiplica-
tion on GPU5.

As we can see in the graph (Fig. 1), with high matrix sizes – starting
at 2048*2048 – our GPU program is faster. On the other hand, in lower
matrix sizes, our CPU program is faster; in fact, at matrix sizes lower
than 1024*1024, even the pure CPU program is faster than the GPU
program.

5https://penny-xu.github.io/blog/tiled-matrix-multiplication
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Figure 1. Graph of speedups achieved by our implementations of matrix
multiplication.

7.2 Raw template matching

In our program, we load two images – the template and the image to
search for the template. We loaded the images using bitmap library6

and we also use that library to convert input images to grayscale.
In the implementation, we first iterate through every group of pixels

that the template can fit in and then we compare the pixels in the given
group with pixels from the template:

int compareTemplate ( Image img , Image templ ,
int posx , int posy ) {

for ( int j = 0 ; j < templ . he ight ; j++) {
for ( int i = 0 ; i < templ . width ; i++) {

i f ( img . data [ ( posy+j )∗ img . width+posx+i ] !=
templ . data [ j ∗ templ . width + i ] ) {

return 0 ;
}

}

6https://github.com/wernsey/bitmap
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}
return 1 ;

}

Our compiler (MSVC) could not auto-vectorize this algorithm. In
our SIMD implementation, we created a function to compare two vec-
tors, and we used this function to compare multiple pixels at once:

bool vec_equal (__m256i a , __m256i b) {
__m256i pcmp = _mm256_cmpeq_epi32(a , b ) ;
unsigned bitmask = _mm256_movemask_epi8(pcmp ) ;
return ( bitmask == 0 x f f f f f f f f U ) ;

}

Figure 2. Graph of speedups achieved by our implementations of raw
template matching.

From the graph in Fig. 2, we can make multiple observations:

• multi-threaded program is providing stable 6-7 times speedup
compared to a single core;

• SIMD speedup is dependent on mask size: on 32*32 mask, there
is 7-8 times speedup, on 128*128 and 256*256 – there is 16-18
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times speedup;

• multithreaded program with SIMD is achieving up to 124 times
speedup;

• GPU program, even though it is faster than CPU only, is reach-
ing only slightly better performance and starts to be faster than
SIMD only program at image size of 10000*10000.

7.3 Edge detection

Our program loads either one image in bmp format or a set of images
in gif format using the bitmap library. The Sobel operator works by
sliding two 3*3 convolution kernels over the input image and calculating
gradients. Parts of the convolution kernels involve calculation which
multiplies by zero, so we decided to unroll the calculations and skip
the mentioned multiplies by zero:

sumX−=img [ frame ] . data [ x−1+(y−1)∗img [ frame ] . width ] ;
sumX−=2∗img [ frame ] . data [ x−1+(y )∗ img [ frame ] . width ] ;
sumX−=img [ frame ] . data [ x−1+(y+1)∗img [ frame ] . width ] ;
sumX+=img [ frame ] . data [ x+1+(y−1)∗img [ frame ] . width ] ;
sumX+=2∗img [ frame ] . data [ x+1 +(y )∗ img [ frame ] . width ] ;
sumX+=img [ frame ] . data [ x+1 +(y+1)∗img [ frame ] . width ] ;

Our compiler (MSVC) could not auto-vectorize this algorithm. In
our SIMD implementation, we at first load 16 uint8_t numbers into
__m128i vector, zero extend that vector to 256 bits, add/subtract the
numbers, and then we used saturation to convert int16_t numbers to
uint8_t. Example code of loading and adding/subtracting a vector of
numbers:

vec_sumX=_mm256_sub_epi16(
vec_sumX , _mm256_cvtepu8_epi16 (

_mm_loadu_epi8(
&img [ frame ] . data [ x−1 +(y−1)∗width ]

)
)

) ;
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Figure 3. Graph of speedups achieved by our implementations of sobel
algorithm.

In the graph in Fig. 3, we can see that our multithreaded program
with SIMD instructions is always achieving greater speedup compared
to our GPU program. Another result we can observe is that with single
images the GPU program is slower than CPU program and only starts
to achieve better performance when processing multiple images.

8 Evaluation

If we compare our matrix multiplication results with the results from
T. Dobravec and P. Bulić [13], we can observe that in their case the
calculation on the GPU was always faster. However, this comparison is
not entirely appropriate, as they performed calculations on the NVIDIA
GeForce 9400M graphics card that uses shared memory, so data transfer
between CPU and GPU was virtually instantaneous. Furthermore, we
can compare the results of work from K. Fatahalian, J. Sugerman, and
P. Hanrahan [15], where they achieved results in which it was always
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more appropriate to use a CPU when multiplying matrices. However,
this work is relatively old (2004), and since then there have been many
significant architectural changes in graphics cards.

We can observe that our template matching results agree with the
conclusions of the work by J. Méndez, J. Lorenzo-Navarro, and M. Cas-
trillón Santana [12] that the CPU achieves better results with small
template dimensions, and only with large template/input dimensions
will the GPU achieve better results. These results could be in part
caused by the need to use synchronization in our GPU implementa-
tion, which causes performance penalty. Another factor could be using
uint8_t data format for storing pixel values, which is not the preferred
workload for GPUs.

Our edge detection results are consistent with the conclusions of
work by A. Akasapu, V. Sailaja, and G. Prasad [4], where they claim
that small images are achieving better performance on CPU, and for
large images in large data sets it is better to use GPU. In this case, even
though we did not use synchronization in our GPU implementation, we
still used uint8_t data format for storing pixel values, which made this
algorithm not perform as well on GPU as it did on CPU.

9 Conclusion

In this work, we briefly introduced the topic of parallel programming by
means of contemporary CPU and GPGPU technologies. After this brief
introduction we explored some of the existing works comparing CPU
and GPU calculations. Based on our findings, we prepared three case
studies and created programs for each type of parallelism. From the
results obtained, we found that even in the cases that should be perfect
for the GPU, like matrix multiplication, with small enough matrix sizes,
calculations on the CPU could be more suitable. On the other hand,
we found that for some image processing tasks, like edge detection and
template matching, our GPU programs could not achieve better results
than our CPU multithreaded programs with SIMD instructions despite
both programs processing a relatively large number of pixels.

So we can conclude, that currently there certainly is a class of prob-
lems for which a parallel CPU implementation would be more efficient
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than the GPU implementation. According to the results achieved in
this work, we can formulate the following recommendations:

• Matrix multiplication: for matrices with dimensions up to 1024
x 1024, parallel CPU implementations were faster. However,
for matrices of higher sizes, the GPU implementation is recom-
mended, as it can achieve great speedup improvements over the
CPU implementations.

• Raw template matching: SIMD multithreaded CPU implemen-
tation is recommended, as it achieved the best performance in all
tested scenarios.

• Edge detection: SIMD multithreaded CPU implementation is
recommended, as it achieved the best performance in all tested
scenarios.

As we only performed our comparisons using three simple case stud-
ies, in the future it would be beneficial to include more diverse algo-
rithms and create comparisons using bigger datasets. It would be also
interesting to study the impact of the operating system and the com-
piler used on such comparisons. The additional research could help to
better describe the class of problems for which CPU parallel implemen-
tation would be a better option. Another possibility to explore may be
a combination of CPU and GPU parallel techniques in order to gain
further efficiency improvements [16].
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