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Mapping fermionic operators to qubit operators is an essential step for simulating
fermionic systems on a quantum computer. We investigate how the choice of such
a mapping interacts with the underlying qubit connectivity of the quantum processor
to enable (or impede) parallelization of the resulting Hamiltonian-simulation algorithm.
It is shown that this problem can be mapped to a path coloring problem on a graph con-
structed from the particular choice of encoding fermions onto qubits and the fermionic
interactions onto paths. The basic version of this problem is called the weak coloring
problem. Taking into account the fine-grained details of the mapping yields what is
called the strong coloring problem, which leads to improved parallelization performance.
A variety of illustrative analytical and numerical examples are presented to demonstrate
the amount of improvement for both weak and strong coloring-based parallelizations.
Our results are particularly important for implementation on near-term quantum pro-
cessors where minimizing circuit depth is necessary for algorithmic feasibility. Preprint

Report No. UMD-PP-022-06

1 Introduction
The ability to simulate complex fermionic systems is an important area of promise for quantum
computers with applications ranging from quantum chemistry and condensed matter physics to nu-
clear and high-energy physics [1–4]. Before performing such a simulation, however, one must map
from the fermionic operators to operators acting on the Hilbert space of the qubits of the quantum
computer. A common approach to performing such a mapping is to use the Jordan-Wigner trans-
formation [5, 6], which encodes local fermionic operators on N fermionic modes as non-local qubit
operators on N qubits. This non-locality, which manifests as strings of Pauli-Z operators, is the
price of obtaining the correct fermionic anti-commutation relations when using qubit operators.
Unfortunately, even for physically-local fermionic interactions in higher than 1+1 dimensions, the
length of these Pauli-Z strings can scale with the system size. This results in costly fermionic sim-
ulations [7, 8] on near-term quantum devices where the two-qubit entangling-gate (e.g., CNOT)
count of an algorithm is expected to be the limiting factor. In particular, the Pauli weight of an
operator G (the number of qubits on which it acts non-trivially) is directly related to the number of
two-qubit entangling gates needed to implement the unitary U = exp(−iG) [9]. Nonetheless, recent
progress has resulted in improvement in both entangling-gate count and in circuit depth when simu-
lating given Jordan-Wigner-transformed fermionic Hamiltonians using product formulas, resorting
to e.g., suitable term ordering and nesting strategies [10] or fermionic SWAP networks [11–13].

A number of other mappings from fermions to qubits have been proposed in the literature [14–
25]. Many of these proposals aim to map local fermionic operators to local qubit operators, forming
a class that is called local encodings in this paper. Local encodings trade operator non-locality
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for state non-locality as a vehicle for encoding fermionic anti-commutation relations in qubits.
In particular, one finds that to preserve the appropriate anti-commutation relations via a local
encoding, one must: a) increase the number of qubits, and b) restrict the state of the system to lie
within some subspace of the Hilbert space—typically the logical codespace a (modified) toric code.
At the price of these complications, one generally obtains lower gate counts required for simulation.
The comparative analyses of various encodings given the Hamiltonian under study, the quantum
resources to be optimized, and the architecture connectivity constitute an active area of research,
see e.g., Refs. [13, 23, 26–28].

In this work, we explore the potential for parallelization (that is the ability to simultaneously
simulate several Hamiltonian terms) in local encodings, hence reducing the circuit depth of the
simulation. In this context, product formula-based Hamiltonian-simulation algorithms based on
Trotter-Suzuki decomposition of the time-evolution operator [29–31] are best suited for this analy-
sis, nonetheless, other simulation algorithms [32–39] can also benefit from the parallelization strat-
egy explored here. We consider the parallelization problem in connection to (a slightly abstracted
version of) the underlying qubit architecture of the quantum computer, and emphasize, both an-
alytically and numerically, connections between qubit architectures, fermionic-encoding locality,
and parallelization. It is found that the problem of parallelization is equivalent to path coloring
on a graph that represents the particular fermion-to-qubit mapping under consideration and the
physical interactions among the fermionic modes. Consequently, heuristic classical algorithms can
be used to inform efficient implementations of fermionic simulations on quantum hardware.

The particular graph-theoretic approach of this work is enabled by the strategy undertaken
in Ref. [22], in which a general framework for local fermionic encodings of the sort described
above is developed. In particular, it was demonstrated how to disconnect the interaction graph
of the fermionic modes being simulated and the so-called system graph, which determines the
fermionic encoding in a flexible and qubit-architecture-aware manner. This separation enables the
construction of the so-called custom fermionic codes, which are a generalization of the Bravyi and
Kiteav superfast encoding [14, 19]. The Jordan-Wigner transformation is a limiting case of such
custom codes. The degree of non-locality can be reduced upon introducing further qubits and local
connectivity on the system graph at will, and such choices amount to a range of custom encodings.
The input to our parallelization problem is such a system graph, which fixes the encoding chosen
to implement the interactions in the original fermionic Hamiltonian. The question investigated in
this paper is to what extent the Hamiltonian simulation can be parallelized, and whether certain
system graphs are best suited for maximal parallelizability.

The structure of this paper is as follows. Custom fermionic codes of Ref. [22] is reviewed
in Sec. 2. In Sec. 3, we demonstrate how the problem of parallelizing product formula-based
Hamiltonian-simulation algorithms maps to path coloring on the system graph, and is, therefore,
a NP-hard problem. This is named the weak coloring problem. By considering the fine-grained
details of the fermion-to-qubit mapping below the abstraction level of the system graph, another
path coloring problem is defined. This is called the strong coloring problem. Analytic results on
the weak and strong coloring problems for a few illustrative systems are presented in Sec. 4. A
numerical approach to heuristically solving the weak and strong coloring problems is presented
Sec. 5. The numerical and analytic results are then compared for these system graphs, exhibiting
consistency. We further numerically investigate the weak and strong coloring problems for a few
realistic system graphs designed for current qubit architectures. It is found that by solving (or
finding heuristics for) the more detailed strong coloring problem, one can often obtain significant
gains in parallelizability compared to the more abstracted weak coloring problem. For most system
graphs, these improvements are a constant factor—for instance, in the case of a star system graph or
complete system graph, strong coloring asymptotically provides up to a factor of two improvement
over weak coloring. However, we also construct an example for which the advantage gained grows
linearly in the system size, which is the maximal possible gain from considering strong coloring.
Both weak and strong coloring approaches provide large reductions in circuit depth compared to
a naive sequential approach. Finally, the performance gains of strong coloring depend heavily on
the choice of enumerating qubits in the encoding—a feature that is also taken advantage of in
Ref. [25] to provide optimal fermion-qubit mappings. Sec. 6 includes a summary of the results
and a discussion of possible directions for future study. The code generating the colored graph
from the system graph and the corresponding physical interactions is provided as supplemental
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material [40].

2 Custom Fermion-to-Qubit Mappings
2.1 Setup
Consider a system of N fermionic modes. A general fermionic Hamiltonian may be written in the
second quantization as

H =
∑
uv

κuva
†
uav +

∑
uvwx

κuvwxa
†
ua
†
vawax + · · · , (1)

where a†u and au are the fermionic creation and annihilation operators on site u, respectively,
satisfying the standard fermionic anticommutation relations

{au, a†v} = δuv, {au, av} = {a†u, a†v} = 0, (2)

and κuv, κuvwx are some coefficients consistent with the Hermiticity of the Hamiltonian. It is
convenient to consider a Majorana basis γ, γ′ for the fermionic operators as

γu = a†u + au,

γ′u = i(a†u − au), (3)

that clearly satisfy

{γu, γv} = 2δuv, {γ′u, γ′v} = 2δuv, {γu, γ′v} = 0. (4)

To simulate a fermionic Hamiltonian on a quantum computer, one must first map from fermions to
qubits while preserving these anti-commutation relations. The standard approach is the Jordan-
Wigner mapping from N fermionic modes to N qubits,

au →
∏
v<u

Zv(Xu + iYu),

a†u →
∏
v<u

Zv(Xu − iYu), (5)

where Xu, Yu, and Zu are Pauli operators on the u-th qubit. The Jordan-Wigner transforma-
tion requires non-local qubit operations whose weight scales with the system size. These high
Pauli-weight operators directly translate to increased gate counts for quantum simulation, and has
stimulated various strategies to alleviate the simulation cost when resorting to a Jordan-Wigner
mapping [10–13].

2.2 Local Fermion-to-Qubit Mappings
There are many other approaches to mapping from fermions to qubits which aim to address the
shortcomings of the Jordan-Wigner transformation. For instance, the Bravyi-Kitaev transforma-
tion encodes both occupation information (like the Jordan-Wigner transformation) and parity
information in such a way that single fermionic operators act non-trivially on at most O(log2N)
qubits [14]. This is in contrast to the linear scaling of the Pauli weight of qubit operators in
system size for the Jordan-Wigner transformation. A simpler ternary-tree-based mapping from N
fermionic modes to N qubits performs even better, leading to provably minimal Pauli weights in
the average case. In this case, a single fermionic operator acts on dlog3(2N + 1)e qubits [41]. One
can think of such a mapping as a generalization of the Jordan-Wigner transformation from a 1D
chain to tree graphs [42].

Fully local encodings—in the sense that local fermionic operators map to local qubit operators—
are possible with the addition of ancilla qubits. An important example is the Bravyi and Kitaev
superfast encoding [14] and its generalizations [19, 22]. A multitude of other local mappings have
also been developed, often aimed at minimizing the qubits required, while still maintaining local,
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low Pauli-weight qubit operators [16–18, 20, 21, 23, 24, 43, 44]. These local mappings can generally
be understood as generalizations of the toric code [45]. In particular, all known local fermionic
encodings are equivalent to the toric code on some lattice up to deformations by a constant-depth
circuit of local Cliffords [22, 23]. Fermionic-pair excitations in the local encoding arise as freely
deformable strings of Pauli operators on the lattice, and the fermionic anti-commutation relations
are enforced via restriction to a particular code subspace of the ancilla-extended Hilbert space.
Equivalently, one could view the ancilla qubits as being used to couple to an auxillary gauge
field [21, 46]. A given local mapping, therefore, corresponds to a particular “gauge theory” and
restricting the simulation to a particular subspace is equivalent to the choice of Gauss’s law sector
in the corresponding gauge theory. In either view, observe that local fermionic encodings of this
sort require the preparation of a toric-code state. Therefore, local fermion-to-qubit mappings
trade non-locality in the operators for extra qubits and non-locality in the states. To ensure
the simulation proceeds in the allowed subspace of the Hilbert space—that is, that the local and
non-local constraints are satisfied— strategies similar to preserving (gauge) symmetries in lattice-
gauge-theory simulations [47–54] can be explored.

2.3 Custom Fermionic Codes
This work focuses on a particular class of fermion-to-qubit encodings—the so-called custom fermionic
encodings—developed by Chien and Whitfield [22] as a generalization of the construction by Se-
tia et al. [55]. These mappings are, in turn, a generalization of the Bravyi and Kitaev superfast
encoding [14]. For our purposes, the essential feature of custom fermionic codes is that they al-
low for a variety of different encodings ranging from local to quasi-local to highly non-local ones.
This flexibility permits trading resources like the number of qubits, qubit connectivity, and Pauli
weight of simulated operators in an architecture-aware manner. In this paper, we will add the
parallelizability of the resulting Hamiltonian-simulation algorithm to this list.

Let us briefly review how to construct a custom fermionic code. One can introduce edge
operators Auv and vertex operators Bu which are defined as

Auv = −iγuγv, (6)
Bu = −iγuγ′u, . (7)

These operators suffice to generate all parity-preserving fermionic operators in a Hamiltonian of
the form Eq. (1). Therefore, the Hamiltonian with N fermionic modes

HK =
∑
uv

κuva
†
uav, (8)

for some symmetric, real constants κuv = κvu, can be expressed as

HK = − i2
∑
u<v

κuv(AuvBv +BuAuv)−
1
2
∑
u

κuuBu (9)

= − i2
∑
u<v

κuvAuv(Bv −Bu)− 1
2
∑
u

κuuBu, (10)

up to constant terms that can be ignored.
The interaction set T can now be defined as the set of all terms with non-zero coefficients in

the re-expressed Hamiltonian. Furthermore, an interaction graph Γ = {VΓ, EΓ} can be defined
with vertices corresponding to each fermionic mode and an edge joining any pair of vertices (u, v)
such that the edge operator AuvBv belongs to T . For instance, for the Hamiltonian in Eq. (9)
with κuv 6= 0, the interaction set is

T = {AuvBv}u 6=v ∪ {Bu}u∈{1,···N}, (11)

and the corresponding interaction graph is a complete graph KN on N vertices. In what follows,
it is assumed without loss of generality that Γ is connected, as if Γ is disconnected, one is dealing
with two physically independent systems, and can consider the connected case on each system
separately.
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From Eq. (3) and Eqs. (6) and (7), one can show that the edge and vertex operators obey the
following relations

B†u = Bu, A†uv = Auv,

B2
u = A2

uv = 1, [Bu, Bv] = 0,
Auv = −Avu, AuvBw = (−1)δuw+δvwBwAuv,

AuvAwx = (−1)δuw+δux+δvw+δvxAwxAuv,

i|C|
|C|∏
ν=1

Acνcν+1 = I, (12)

where in the final equality C is any cycle in Γ specified via an ordered list of vertices C =
{c1, c2, ..., c|C|, c1 ≡ c|C|+1} for cν ∈ VΓ with only the final vertex repeated, and, therefore, the
product is over all edge operators in the cycle.

Next, a second graph can be introduced, the so-called system graph Σ = {VΣ, EΣ}. A valid
system graph is any undirected, connected graph with vertex set VΣ = Vphys ∪ Vvirt equipped
with a bijective mapping M : VΓ → Vphys—that is, |VΓ| = |Vphys|. The subscripts are shorthand
for physical vertices and virtual vertices. The physical vertices correspond to physical fermionic
modes in the interaction graph and the virtual vertices (if they exist) correspond to additional
auxillary fermionic modes that can be freely introduced. One can envision constructing the system
graph from the interaction graph by adding an arbitrary number of virtual vertices and adding
or removing any edges so long as the final graph is connected. Note that the condition that the
graph is connected implies that any two vertices that were connected before are still connected via
physical or auxillary vertices. This connectivity condition is sufficient for one to implement any
interaction terms in the Hamiltonian, see e.g., Eq. (20) below. Consequently, the edge set of the
system graph can be completely different from that of the interaction graph.

An encoding of a fermionic system on such a graph Σ consists of associating with each vertex
v ∈ VΣ a set of

nv := dd(v)/2e (13)

qubits, where d(v) is the degree of vertex v. A set of 2nv Pauli operators {γ̃1
v , γ̃

2
v , · · · , γ̃2nv

v } can
then be defined on these qubits. In the following, these operators are referred to as local Majoranas.
Note that we have introduced the convention of using subscripts {u, v, w, · · · } to index vertices of Σ
and superscripts {i, j, k, · · · } to index local quantities such as enumerations of the local Majoranas
or indices of internal qubits. Furthermore, subscripts {ν, µ, · · · } are used in various places for
indexing generic sets.

The local Majoranas can be any choice of operators that satisfy the following conditions:

1. They obey the Majorana-operator1 properties including anti-commutation relations with
other local Majoranas defined on the vertex. Furthermore, they must commute with the
local Majoranas on other vertices. That is,

γ̃k†v = γ̃kv , {γ̃jv, γ̃kv} = 2δjk, [γ̃ju, γ̃kv ] = 0 for u 6= v. (14)

2. They generate the full Pauli group on the nv qubits associated with v ∈ VΣ.

Any explicit choice for the local Majoranas can be mapped to any other via a Clifford circuit
acting on the qubits associated with that vertex [22]. Most simply, one could consider encoding
the local Majoranas via a Jordan-Wigner transformation. That is, given some enumeration of the
qubits in a vertex v, one has

{γ̃1
v , γ̃

2
v , γ̃

3
v , γ̃

4
v , γ̃

5
v , γ̃

6
v , · · · } −→ {X1

v , Y
1
v , Z

1
vX

2
v , Z

1
vY

2
v , Z

1
vZ

2
vX

3
v , Z

1
vZ

2
vY

3
v , · · · }. (15)

It is straightforward to verify that this choice satisfies the conditions above. One could also use
other encodings—for instance, Fenwick trees [16, 55] or ternary trees [41]. This work concerns

1Note that these correspond to both types of γ and γ′ operators defined in Eq. (3).
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only the case of a Jordan-Wigner encoding of the local Majoranas. Note, however, that the same
techniques and many of the qualitative results will apply similarly to these other choices.

Once the local Majoranas are specified, each local Majorana can be associated with an edge
of that same vertex. That is, both the local Majoranas associated with a vertex and the edges
connecting the vertex to its neighbors are enumerated in Σ. The j-th local Majorana corresponding
to a vertex is then associated with the edge connecting it to its j-th neighbor. Therefore, each edge
e ∈ EΣ has two associated local Majoranas—one at each endpoint. Given such a choice, encoded
edge operators acting on qubits can be defined as

Ãuv = εuvγ̃
ξu(v)
u γ̃ξv(u)

v , (16)

where v is the ξu(v)-th neighbor of u, u is the ξv(u)-th neighbor of v, and the Levi-Civita tensor
εuv is defined with respect to an arbitrary choice of orientation for each edge in Σ. In particular,
we let εuv = 1 if u is the head of the oriented edge (u, v) and εuv = −1 if u is the tail. This choice
of enumerating the edges of each vertex u, as specified by picking ξu(v) for each neighbor v of u,
will become important later in Sec. 4.3 when discussing the strong-coloring problem.

Furthermore, the vertex operator on qubits can be encoded as

B̃u = (−i)nu
2nu∏
j=1

γ̃ju. (17)

One can verify that the choices of encodings in Eqs. (16) and (17) satisfy all but the final loop
condition in Eq. (12). To satisfy the loop condition, it is necessary to restrict the simulation to
the subspace of the total Hilbert space that does satisfy this condition. In the context of quantum
error correction, this space is the codespace stabilized by the loop operators L̃ around cycles C on
Γ, defined by

L̃(C) = i|C|
|C|∏
j=1

Ãcjcj+1 . (18)

As the encoded edge and vertex operators commute with the loop operators, once a state is
initialized in the code subspace, the simulation remains in that subspace assuming no algorithmic
or experimental errors. For considerations regarding boundary conditions and fermionic parity, see
Refs. [19, 22]. Here, we consider only open boundary conditions for simplicity, but other boundary
conditions can be analyzed within the framework of this work as well.

Once in the code subspace, the mapping from fermionic edge and vertex operators can be
performed to qubit edge and vertex operators, Auv → Ãuv and Bu → B̃u. This completes the
mapping from a fermionic Hamiltonian H to a qubit Hamiltonian H̃,

M : H =
∑
ν

κνhν −→ H̃ =
∑
ν

κν h̃ν , (19)

where κν are constants related to the original coupling coefficients and the hν and h̃ν are products
of edge and vertex operators on fermionic Majorana modes and qubits, respectively.

This mappingM is not unique—the exact form of each h̃ν depends not only on the particular
system graph Σ that determines the mapping, but also on the paths through the system graph
chosen to simulate each corresponding h̃ν , as well as the choice of encoding of the local Majoranas.
In particular, one does not necessarily need to have a direct edge (u, v) ∈ EΣ to implement Ãuv.
An edge operator between two modes u and v not directly connected is given by a product of edge
operators along any path Puv = {p1 = u, p2, · · · , p|Puv| = v} connecting the two modes. That is,2

Ãuv =
|Puv|−1∏
ν=1

Ãpνpν+1 . (20)

2Observe that Eq. (20) slightly overloads the notation Ãuv , as strictly speaking, the Ãuv operators on the left-
and right-hand sides of the equation have a slightly different meaning. In particular, one should distinguish between
Ãuv that, given the system graph, can be directly implemented as in Eq. (16), and those that cannot and must be
implemented via a product of such operators as in Eq. (20). The meaning should be clear from the context. Note
that tilde operators always denote those acting on qubits and not on fermionic modes.
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Therefore, given the assumption that Σ is connected, all edge operators in the qubit Hamiltonian
H̃ can be implemented by choosing any path between the relevant vertices. Again, these path
choices are not unique. While the precise details depend on these choices, it is always true that
each h̃ν is a string of Pauli operators on qubits. That is h̃ν = {X,Y, Z, I}⊗n, where n is the
number of qubits h̃ν acts on. Importantly, whether an operator Ãuv can be implemented directly
or must be implemented via a path of such operators through the system graph, it obeys all the
same relations given in Eq. (12).

These choices do matter, however. In particular, recall virtual vertices are allowed in the
system graph which, at the cost of more qubits, enable more choices of paths between different
physical vertices. This tradeoff between more qubits and more direct (and correspondingly, more
local) paths for implementing the required Pauli operators is the essential tension in regards to
optimizing a Hamiltonian-simulation algorithm for a fermionic system in this construction.

2.4 Prior Work on Optimizing System Graphs
Some of the tradeoffs implied by the custom fermionic encoding have already been explored. In
particular, Ref. [21] discusses how the flexible framework of custom fermionic codes allows for
designing fermionic encodings suited to particular qubit architectures by balancing the number of
qubits required for an encoding with the Pauli weight of the resulting operators. In one limit, where
the system graph is a line graph, one recovers the Jordan-Wigner transformation. By adding qubits
and connectivity in the system graph, one can reduce the Pauli weight of the resulting operators,
obtaining local or quasi-local encodings. This exact tradeoff was explored in detail for a variety
of different system graphs in Ref. [22] for the 2-body SYK model, which has all-to-all coupled
fermions.

Observe that the tradeoff between Pauli weight of operators and numbers of qubits and qubit
connectivity is directly related to the properties of the system graph Σ. For instance, the number
of qubits Q(Σ) is directly determined by the degree of the vertices in Σ as

Q(Σ) =
∑
v∈VΣ

nv =
∑
v∈VΣ

dd(v)/2e. (21)

As is shown in the following, this tight connection between graph-theoretic properties and re-
source counts holds even for more complicated properties of the fermion-to-qubit encoding and the
resulting Hamiltonian simulation.

3 Parallelization and Path Coloring
3.1 Notions of Parallelization
In this work, a new possibility for optimization afforded by the flexibility of the custom fermionic
codes is considered: parallelization. We use the term parallelization instead of the related concept of
circuit depth because our analysis concerns a slightly higher level of abstraction than the particular
circuit-level implementation of a Hamiltonian-simulation algorithm. It is assumed that provided
two Pauli strings h̃ and h̃′ act non-trivially on disjoint sets of qubits, they may be implemented
simultaneously in a quantum-simulation algorithm. Therefore, the goal is to minimize the number
of steps required to implement the full set of Pauli operators in the interaction set T̃ = {h̃ν}. If
one can choose paths on the system graph for the implementation of the required Pauli strings
that minimizes collisions between those paths and orders the implementation of these operators in
an optimal way, one can minimize the circuit depth for implementing the relevant operators. See
Fig. 1b for an example. This formulation is especially relevant to quantum simulation via product
formulas, in which these Pauli operators are directly implemented for each Trotter step.

It is important to note that our approach focuses solely on grouping the Pauli strings so as to
minimize the number of steps to implement the full interaction set. It is well established that the
choice of ordering terms can impact the Trotter error, which in turn changes the overall circuit
depth of the Hamiltonian-simulation algorithm required to achieve a certain error tolerance [10, 27,
54, 56, 57]. While such effects are not considered in this work, when applying the parallelization
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techniques here to a particular problem of interest, one should view parallelization of the sort
considered here as one piece of a many-faceted optimization.

3.2 Graph Coloring
The parallelization problem defined above can be formalized using the notion of path coloring
on a graph. This problem also arises in other similar networking and scheduling problems [58].
We begin by reviewing the ideas of colorings on graphs and then describe how the parallelization
problem may be formulated in these terms.

Consider a graph G = {V,E}. A vertex coloring on G is a mapping C : V → C where C is a
set of so-called colors or wavelengths. A valid coloring C is one such that no adjacent vertices in
G are assigned the same color. The smallest number of colors required to (vertex) color a graph is
called its chromatic number, χ(G). For a general graph, finding χ(G) is NP-hard [59]. However,
both bounds and effective heuristic algorithms exist. A simple and useful upper bound is

χ(G) ≤ max
v∈V

d(v) + 1, (22)

where d(v) is the degree of vertex v [60]. A coloring satisfying this bound can be obtained in
polynomial time in the number of vertices using the greedy coloring algorithm presented below.

Algorithm 1 Greedy Coloring
1: function GreedyColor(G = {V,E}, C)
2: for each v ∈ V do
3: Assign v the first color c ∈ C not used by any of its neighbors

If G is a simple, connected graph, but is neither a complete graph nor an odd cycle, then this
bound is improved to

χ(G) ≤ max
v∈V

d(v), (23)

and the greedy coloring algorithm will still satisfy this bound [60] .
The bound on χ(G) can be still lowered by the clique number ω(G) of the graph—that is, the

size of the largest clique in G, where a clique is a complete induced subgraph of G. Therefore, the
size of any clique W (G) is also a valid lower bound. This gives

χ(G) ≥ ω(G) ≥ |W (G)|. (24)

A related problem to the vertex-coloring problem is the path-coloring problem. As previously
described, this will be our graph-theoretic problem of interest when formalizing the problem of
optimally parallelizing the implementation of the Pauli strings that result from a custom fermionic
code. In this problem, given a set of paths P in the graph G, one seeks to color the paths such
that no two paths which share a vertex in G receive the same color and that a minimum number
of colors is used to color all the paths.3

The path coloring problem can be mapped to a vertex coloring problem on a different graph
called the conflict graph Π(P) of the set of paths P. The conflict graph has a vertex set VΠ(P) = P
and edge set EΠ(P) = {(q, p) | q, p ∈ P, q ∩ p 6= ∅}. Therefore, the path coloring problem is also
NP-hard.

3.3 Conflict Graphs for Parallelizability
Having defined the path coloring, the connection to parallelizability becomes clear. Given a system
graph Σ, one seeks to efficiently implement the interactions in the interaction graph Γ as specified
by the interaction set T̃ . For any interaction τ ∈ T̃ , one requires a choice of path p through Σ
joining the relevant vertices for the interaction τ . Choosing a particular path for each interaction

3Note that typically in the literature, this problem is defined such that no paths can share an edge instead of a
vertex. Our alternative definition is due to the particular context in which path coloring is applied.
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gives a path set P = {pτ}τ∈T̃ with |P| = |T̃ |. Given a choice of P, one then seeks to determine
the degree of parallelization via a coloring of a conflict graph Π(P). We construct two different
versions of the conflict graph, corresponding to what we dub the weak coloring problem and the
strong coloring problem. The latter considers the internal qubit structure of the vertices of the
system graph as specified by the custom fermionic encoding; the former does not. These problems
can be formally specified as follows:

Definition 3.1 (The weak coloring problem). Given a system graph Σ and a path set P on Σ
specifying the implementation of a set of interactions T̃ , construct a conflict graph Π(P), whose
vertex set is P and whose edge set is EΠ(P) = {(q, p) | q, p ∈ P, q ∩ p 6= ∅}. The weak coloring
problem is to optimally color Π(P).

The chromatic number χ resulting from the weak coloring problem corresponds to the minimum
number of steps required to implement all the interactions τ ∈ T̃ , where it is assumed that
interactions that require disjoint sets of vertices of the system graph may be implemented in
parallel.

Definition 3.2 (The strong coloring problem). Given a system graph Σ and a path set P on Σ
specifying the implementation of a set of interactions T̃ , construct a conflict graph Π(P), whose
vertex set is P and whose edge set is EΠ(P) = {(q, p) | q, p ∈ P, Q(q)∩Q(p) 6= ∅}, where Q(p) gives
the set of internal qubits required to implement to the path p ∈ P. The strong coloring problem is
to optimally color Π(P).

Note that Q(p) in the definition of the strong coloring problem depends on the local Majorana
encoding (i.e., Jordan-Wigner, Fenwick trees, etc.) in the system-graph vertices. This work only
considers the Jordan-Wigner encoding of local Majoranas. The following section will provide an
explicit description of Q(p) in this setting. Here, the resulting chromatic number χ corresponds
to the minimum number of steps required to implement all the interactions τ ∈ T̃ , where it is
assumed that interactions that require disjoint sets of qubits may be implemented in parallel.

Compared to the weak coloring problem, the definition of parallelizability in the strong coloring
problem is connected more directly to the qubit architecture and to the circuit depth of the
Hamiltonian-simulation algorithm; the weak coloring problem has the advantage of being somewhat
more abstracted and easier to work with. Both schemes are considered in this work. Observe also
that the definitions of the weak and strong coloring problems take in both the system graph and a
particular choice of path for each interaction in the interaction set. This choice of paths, as specified
by the set P, is not unique, of course, and to truly maximize the amount of parallelization, one
must both pick the optimal path set P and optimally color the resulting conflict graph. Naturally,
this is a very difficult problem. In particular, the following result can be stated:

Fact 3.1. Optimally parallelizing the implementation of an interaction set T̃—in either the weak
or strong coloring sense—is NP-hard.
Proof. Suppose there exists an oracle that, given an interaction list and a system graph, returns
the solution set of paths P that will enable the creation of a conflict graph Π(P) with the minimum
chromatic number. Given P via this oracle, one is left with a graph coloring problem on Π(P),
which is known to be NP-hard [59].

The oracle invoked in the proof above is quite powerful in its own right. Therefore, outside some
analytically accessible examples, one need to turn to heuristic algorithms to address the selection
of the path set P and the solving of the resulting weak and strong coloring problems. The full
procedure of defining and solving the weak and strong coloring problems starting from the qubit
architecture is shown in Fig. 1 for a simple example. Each step of this process will be described in
detail in the following sections.

4 Analytic Results
4.1 The Hamiltonian
For the purposes of exploring the weak and strong coloring problems for a variety of system
graphs both analytically and numerically, we shall make use of an explicit choice of a fermionic

Accepted in Quantum 2023-03-27, click title to verify. Published under CC-BY 4.0. 9



Figure 1: (a) An overview of the full procedure of defining and solving the weak and strong coloring problems
for parallelizing a Hamiltonian simulation of fermions. There are many stages for optimization: the choice of
system graph, the choice of physical fermionic modes, the choice of paths linking those modes, and the coloring
algorithm. While these choices are straightforward in this small example, for general problems, the design space
is extremely large. This work focuses on the last two steps, which is an NP-hard optimization problem. Here,
the conflict-graph vertices are labeled by the physical vertices of the system graph involved in the interaction.
That is, ÃuvB̃v is labeled by uv and B̃v is labeled by v for all u, v. Note that the difference between the weak
and strong coloring problems in this example is in the ability of the strong coloring scheme to route through
the virtual vertex e to implement the ad (and da) path simultaneously with bc (and cb) without any conflict,
hence a lower chromatic number compared with the weak coloring scheme. This corresponds to enumerating
the edges of vertex e as {ea, ed, eb, ec} 7→ {1, 2, 3, 4}. (b) Corresponding circuit diagrams for ordering the Pauli
strings according to the sequential strategy and via the weak and strong coloring problems. Here eL and eR
label the left and right internal qubits of vertex e of the system graph, respectively. Colors match those in the
corresponding conflict graphs and gates of the same color are implemented simultaneously.

Hamiltonian as a minimal example. In particular, let us consider an all-to-all Hamiltonian with
two-mode interactions given by Eq. (8). This Hamiltonian can be expressed in terms of edge and
vertex operators as in Eq. (9). Assuming all coefficients are non-zero, the interaction graph Γ for
this problem will be the complete graph on N vertices, KN , and the interaction set T is given by
Eq. (11). Note that |T | = N2.

4.1.1 Extensions to Other Models

The Hamiltonian in Eq. (8) is closely related to long-range fermionic systems, such as the SYK
model [61, 62]. To get exact results for specific Hamiltonians of interest (with or without long-
range interactions), one can use the algorithm presented here to heuristically solve the weak and
strong coloring problems for the relevant system graph. Another example of a minimal fermionic
Hamiltonian is that with only nearest-neighbor hopping on a square lattice. This case will be
studied later in Sec. 5.4.

A generalization of our results worthy of particular emphasis is the case of Hamiltonians with
k-body interactions for k > 2. For instance, terms such as a†ua†vawax yield, amongst other things,
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terms of the form ÃuvÃwx when expressed as edge and vertex operators. Quite clearly, implement-
ing such a term in terms of Pauli operators requires two simultaneous paths through Σ: one from
u to v and one from w to x. The path set P can now be viewed as a multiset of paths, with each
element of P (now potentially a set of paths) mapping to a vertex of the conflict graph. From
there, construction of the conflict graph proceeds as usual.

4.2 Rules for Strong Coloring
In this section, the rules for constructing the conflict graph for the strong coloring problem given
the interactions in Eq. (11) will be developed, under the assumption that local Majoranas are
encoded via a Jordan-Wigner transformation on the internal qubits of each vertex of the system
graph. This allows to abstract the problem of determining conflicts between paths to one about
the properties of the system graph under consideration.

To begin, recall that each vertex u ∈ VΣ contains nu = dd(u)/2e qubits. Under a Jordan-
Wigner encoding, one can imagine expanding each vertex of the system graph into a line graph of
nu vertices, where each new vertex is associated with two edges of the original vertex as depicted
in Fig. 2.4 Any local Majorana operator on the vertex u will induce a Jordan-Wigner string on
some subset of these internal vertices. The first task is to identify what precisely these strings are
for the four possible (types of) operators acting on the vertex u: B̃u, Ãxu, ÃxuÃuy, and ÃxuB̃u
where x, y ∈ VΣ are arbitrary neighbors of u in Σ. Observe that determining the qubits needed
within vertex u to implement the operator ÃxuB̃u is equivalent to ÃuxB̃u since Ãux = −Ãxu.

Figure 2: The central gray vertex is u and black vertices are its neighbors. This is just notation and no formal
coloring has been performed yet. When constructing the conflict graph for strong coloring under a Jordan-
Wigner encoding of the local Majoranas, it is useful to think of each vertex u ∈ VΣ as being expanded to a line
graph of nu = dd(u)/2e internal vertices, each connected to two of the original edges of u, where d(u) is the
degree of u. Different interaction types on vertex u induce different Jordan-Wigner strings on these internal
vertices as summarized in Tab. 1 and depicted in Fig. 3.

First consider a vertex operator B̃u. Given a Jordan-Wigner encoding of the local Majoranas,
one has immediately from Eqs. (15) and (17) that in terms of Pauli operators

B̃u =
nu⊗
j=1

Zju, (25)

where Zju is the Pauli-Z operator acting on qubit j of vertex u. Therefore, a vertex operator uses all
qubits on that vertex (see Fig.3-a), affording no possibility for improved parallelization via strong
coloring when implementing these terms.

On the other hand, operators of the form Ãux acting on vertex u do not use all the qubits. Such
operators appear when vertex u is a physical vertex and one is seeking to implement an interaction
of the form ÃuvB̃v between vertex u and some other vertex v via a path through Σ that starts
with the edge from u to x ∈ VΣ. It will be useful to introduce one more piece of notation. In

4Note when d(u) is odd, one of these internal vertices has only one external edge.
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Figure 3: Examples of the internal qubits of vertex u (enumerated top to bottom as u1, u2, u3) that are required
to implement the operators (a) B̃u, (b) Ãux, (c) ÃxuÃuy, and (d) ÃxuB̃u. Active qubits and input/output
system-graph vertices are marked with red. The dashed lines denote internal edges. Again, the coloring is the
notation and no formal graph coloring is assumed here. The choice of edge enumeration is marked.

.

Term Active qubits in vertex u
B̃u All nu qubits
Ãux Qubits 1 to au(x)

ÃxuÃuy Qubits min{au(x), au(y)} to max{au(x), au(y)}
ÃxuB̃u Qubits au(x) to nu

Table 1: Rules for determining internal qubits used by the various terms that arise in simulating the Hamiltonian
in Eq. (9) using a Jordan-Wigner encoding of the local Majoranas. Recall au(v) := d ξu(v)

2 e is the number of
“active” qubits when implementing γ̃ξu(v)

u , and v is the ξu(v)-th neighbor of u.

particular, define

au(x) :=
⌈
ξu(x)

2

⌉
, (26)

so that it can be compactly stated that the first au(x) qubits of vertex u are “active” when im-
plementing the local Majorana operator γ̃ξu(x)

u . This follows immediately from the Jordan-Wigner
encoding of these local Majoranas, where one should recall that the custom fermionic code requires
an enumeration of both the internal vertices of u and of its edges. Given a fixed choice of enumer-
ation, x is the ξu(x)-th neighbor of u. Therefore, from Eq. (16), one immediately finds that the
operator Ãux makes use of the first au(x) qubits of vertex u (as well as the first ax(u) qubits of
vertex x), see Fig. 3-b.

Next consider an operator of the form ÃxuÃuy acting on vertex u. Such operators occur when
vertex u is an intermediate vertex along a path implementing an interaction between two physical
fermionic modes. Just like Ãux, these operators also do not require the use of all qubits in u.
Individually, Ãxu and Ãuy make use of the first au(x) and the first au(y) qubits in u, respectively.
However, there are cancellations since the operators both act with Pauli-Z operators on the first
au(x) − 1 and au(y) − 1 qubits, respectively. Such cancellations of Jordan-Wigner strings are
reminiscent of the cancellations of such strings in sequential Trotter-Suzuki steps [10]. The net
result is that only the qubits between min{au(x), au(y)} and max{au(x), au(y)} are used, see
Fig. 3-c.

Finally, consider an operator of the form ÃxuB̃u acting on vertex u. These operators arise
at the starting and ending vertices of a path. Once again, there are cancellations in the Pauli-Z
operators required to implement the two sub-operators. In particular, ÃxuB̃u acts on the last
nu − au(x) + 1 qubits of vertex u, see Fig. 3-d. Tab. 1 summarizes the results in this section.

4.3 Limits of Weak and Strong Coloring
In this section, two simple system graphs will be studied: a star graph SN with N physical vertices
all joined to a central virtual vertex, and a complete graph KN consisting of N physical vertices.
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These examples are limiting cases for both the weak and strong coloring problems. In addition,
they allow for straightforward analytic calculations and enable an understanding of the essential
conceptual features of the two types of coloring problems. This understanding will be leveraged
to determine what properties of a system graph allow for the greatest possible improvement from
using strong coloring as opposed to weak coloring. An example with such an extreme separation
will be constructed at the end of the section.

4.3.1 Star Graph

The star graph Σ = SN of N physical vertices all coupled to a central virtual vertex is the worst-
case limit for parallelization as there is a single bottleneck vertex through which all paths for
the N(N − 1) two-mode interactions must pass. It helps to refer back to Fig. 1 to visualize the
procedure for the minimal case of Σ = S4. As seen in that figure, the corresponding conflict
graph for the weak coloring problem has a complete subgraph KN(N−1) consisting of all vertices
that correspond to two-mode interactions, which sets a lower bound on the chromatic number of
the conflict graph. No additional colors are needed to color the one-mode interaction vertices as
the vertex operators {B̃w}w/∈{u,v} can be implemented simultaneously with the ÃuvB̃v operators.
Therefore, the chromatic number for weak coloring is

χweak(Π(SN )) = N(N − 1). (27)

For strong coloring, it turns out that the even and odd N cases must be addressed separately.
First, consider N even. Expanding all vertices of the system graph as in Fig. 2, the physical vertices
remain unexpanded, whereas the central virtual vertex u expands to a line graph of nu = N/2
vertices {u1, · · ·unu}, where each uj ∈ u has two edges that each connect to one neighbor of u
in Σ. The two-mode interactions involving vertex u induce eight Jordan-Wigner strings between
each pair of these neighbors—two for each of the four choices of pairs of physical-neighbor vertices
connected to a given pair (uµ, uν), µ 6= ν. They also induce single-vertex “strings” for each uν for
the two-mode interactions between physical vertices that are both neighbors of that vertex.

Minimizing the number of steps to avoid overlaps of these strings is straightforward: starting
with u1, implement all interactions that induce Jordan-Wigner strings originating from u1 while
simultaneously implementing the interaction that induces the longest non-overlapping Jordan-
Wigner string originating from unu . This takes 8nu = 4N steps. At this point, all interactions
involving u1 and unu have been implemented. Therefore, ignore those vertices and repeat the same
procedure on the remaining nu − 2 internal vertices. Keep repeating this procedure until all two-
mode interactions have been implemented. For N > 2, implementing the single-mode interactions
requires no extra steps as most physical vertices are unused for any given step, giving many
opportunities to implement these interactions simultaneously with a given two-mode interaction.
The net result (for N > 2, even) is

χstrong(Π(SN ), N even) =


8
∑nu/2
µ=1 (2µ)− 6 = N2

2 + 2N − 6, N
2 even,

8
∑(nu+1)/2
µ=1 (2µ− 1)− 6 = N2

2 + 2N − 4, N
2 odd.

(28)

Note that number six is subtracted from the sum to correct for over-counting in the final step
which only involves two-mode interactions between physical vertices that share an internal vertex.
See Fig. 4 for an example of this construction for N = 8.

Now consider N odd. Expanding the vertices of the system graph, the result is identical to the
even-N case except unu has only one edge joining it to a physical vertex. This implies that the
two-mode interactions involving unu induce only four Jordan-Wigner strings between the internal
vertices of u instead of four. One can implement these interactions first while simultaneously
implementing four of the eight interactions that induce the longest possible non-overlapping Jordan-
Wigner strings starting from u1. This takes 4nu = 2(N + 1) steps. At this point, all interactions
that involve unu are implemented, but four interactions are yet to be implemented for each induced
Jordan-Wigner string involving u1. These can be implemneted while simultaneously implementing
four of the eight interactions that induce the longest possible non-overlapping Jordan-Wigner
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Figure 4: Examples of the optimal procedure to parallelize two-mode interactions via strong coloring for the
star graph for (a) N = 8 and (b) N = 7. In the top of the figure, the internal vertices of the central virtual
vertex u are shown. Edges between internal vertices are represented by dashed lines. Red (gray) vertices are
active (inactive) with red (gray) lines indicating induced (no) Jordan-Wigner strings. Terms are grouped as
they appear in the respective sums over µ in Eqs. (28)-(29). Observe in the case of N odd, this means that
the Jordan-Wigner strings of a given type are split in the different groupings (the locations of such splits are
marked by one, two, or three stars). The step counts underneath each group give the number of steps to
implement all interactions that induce that set of Jordan-Wigner strings. This gives a total of 42 and 34 steps
for N = 8 and N = 7, respectively. The counts associated with each individual Jordan-Wigner string give the
number of interactions corresponding to that Jordan-Wigner string. This gives a total of 8× (8− 1) = 56 and
7 × (7 − 1) = 42 interactions for N = 8 and N = 7, respectively. Representative examples of the types of
interactions between physical vertices that induce the different Jordan-Wigner strings are shown in the bottom
of the figure. Observe in (b) that for N odd, the last internal vertex has only one physical vertex as a neighbor.
This is responsible for the different procedure for optimal parallelization.

strings starting from unu−1. This takes 4(nu−1) steps. This staggered approach can be continued—
implementing four of the eight interactions that induce a particular Jordan-Wigner string starting
from a given internal vertex in each stage of the procedure—until all interactions are implemented.
This gives

χstrong(Π(SN ), N odd) = 4
nu−1∑
µ=1

(µ+ 1)− 2 = N2

2 + 2N − 9
2 , (29)

where number two is subtracted from the sum to correct for over-counting in the final step of this
procedure. See Fig. 4 for an example of this construction for N = 7.

The constructions yielding Eqs. (28) and (29) are optimal. In particular, observe that in
each step of these constructions, a path is implemented that passes through the central internal
vertex udnu/2e of the central vertex u. The set of paths that go through this vertex form a
complete induced subgraph of the conflict graph Πstrong(SN ) of maximum size. That is, the
induced subgraph of this set of vertices in the conflict graph form the largest-size clique. Since
one of these paths is implemented in every step of the construction, the corresponding coloring
of Πstrong(SN ) saturates the clique-number lower bound on the chromatic number from Eq. (24).
Therefore, the constructions are optimal.
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4.3.2 Complete Graph

The complete graph Σ = KN of N all-to-all connected physical vertices is the opposite limit of
the star graph. There are no bottlenecks in implementing paths between any pair of vertices as
all two-body interactions are directly implementable. Obviously, these direct connections are the
optimal paths.

For the weak coloring problem, one can simultaneously implement bN/2c of the N(N −1) two-
mode interactions. Consequently, all two-mode interactions can be implemented inN(N−1)/bN/2c
steps. In addition, there are N one-mode terms to implement. For even N , these can all be
implemented in one step after doing the two-mode interactions. For odd N , there is always an
unused vertex for any step where two-mode interactions are implemented, and therefore the one-
mode interactions can be done while doing the two-mode interactions. Therefore, the number of
steps required for each case is

χweak(Π(KN )) =
{

2N − 1, N even,
2N, N odd.

(30)

To gain some intuition about the conflict graph, we can also arrive at Eq. (30) by observing
that the conflict graph Πweak(KN ) consists of N pairwise-overlapping complete subgraphs K2N−1,
as depicted in Fig. 5 for the case of N = 4. This structure arises because for any v ∈ VΣ, there
are 2N − 1 interactions involving this vertex which all mutually conflict. Pairwise overlaps occur
between these complete subgraphs because each vertex in Πweak(KN ) corresponding to a two-mode
interaction between u, v ∈ VΣ is in the complete subgraph corresponding to both u and v.

Let each of the N complete subgraphs be the vertices of a new (complete) graph G with two
edges between each v ∈ G. One can then map the problem of coloring the two-mode-interaction
vertices to one of edge coloring G so that no edges sharing a vertex share a color. In particular,
one may color the two-mode interaction vertices of Πweak(KN ) with the color of the corresponding
edge of G. Edge coloring KN takes N−1 colors for N even and N colors for N odd [63]. Due to the
double edges between each (u, v) ∈ VG, twice this number is required. Finally, one must consider
coloring the one-mode interaction vertices in the original problem. For even N , this requires an
additional color because all 2(N − 1) colors are used in each complete subgraph. For odd N , each
complete subgraph has two unused colors, and therefore, one can use one of these colors for the
single-mode vertex. This recovers Eq. (30) for the number of steps required for weak coloring.

Consider strong coloring for this problem. As all interactions can be directly implemented along
a single edge of the system graph, one is limited by the capacity of the physical vertices to have
multiple inputs and outputs. In particular, referring to Tab. 1, it is clear that multiple “ingoing”
(ÃxuB̃u) or “outgoing” (Ãux) interactions cannot be implemented simultaneously on a given vertex
u. However, one can simultaneously have one “ingoing” and one “outgoing” interaction for a given
vertex—that is, a term of the form Ãux and a term of the form ÃyuB̃u can be simultaneously
implemented on vertex u provided that au(x) < au(y).

A lower bound on the chromatic number of Πstrong(KN ) can be obtained in terms of the clique
number of the graph (see Eq. (24)). In particular, one finds that

χstrong(Π(KN )) ≥ N + 2. (31)

This bound is derived as follows: Given any vertex u ∈ VΣ, the set of all N − 1 interactions
ÃuvB̃v for all u 6= v, the interaction B̃u, and two of the ÃvuB̃u interactions all require the use
of the first internal qubit u1. These interactions form the largest complete subgraph KN+2 of
Πstrong(KN ). Coloring this complete subgraph requires N + 2 colors, yielding Eq. (31). Therefore
at best, asymptotically (in N) one obtains χweak(Π(KN ))/χstrong(Π(KN )) ∼ 2.

An upper bound on the chromatic number of Πstrong(KN ) can be found by explicit construction.
For any Hamiltonian cycle5 on KN , the edges in the cycle can be enumerated in such a way that
all N interactions along these edges can be implemented simultaneously via strong coloring. See
Fig. 6 for an example of this for K4. The number of edge-disjoint Hamiltonian cycles on a complete
graph is (N−1)/2 for odd N and (N−2)/2 for even N [64, 65]. One can independently enumerate

5A Hamiltonian cycle on a graph is a cycle (closed loop) through the graph that visits each vertex exactly once.
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Figure 5: An illustration of the conflict graph for the weak-coloring problem with a system graph KN with
N = 4. The vertices of the system graph are labeled as {a, b, c, d} (e.g., as in Fig. 6), and the vertices of
the resulting conflict graph are labeled by the corresponding interaction. The conflict graph consists of N = 4
interlocking complete subgraphs each associated with one of the system-graph vertices, as described in the main
text. One such complete subgraph is shown.

these edge-disjoint Hamiltonian cycles such that all interactions within each of these cycles can
be implemented simultaneously. Each of these disjoint Hamiltonian cycles are then sequentially
implemented. Assuming no other improvements from strong coloring over weak coloring gives an
obtainable upper bound, as described below.

Let us consider odd N first. Once the interactions contained in all (N − 1)/2 edge-disjoint
Hamiltonian cycles ofKN are implemented, exactly half of the two-mode interactions are completed
in (N −1)/2 steps and each edge is traversed exactly once. Considering the rest of the interactions
in terms of weak coloring, the problem can be reduced to edge coloring a complete graph as
described above. The only difference is that one no longer has parallel edges to consider since one
of the two interactions along every edge e ∈ EΣ is already implemented. This gives

χstrong(KN , N odd) ≤ 3N − 1
2 . (32)

For even N , once the interactions contained in all (N − 2)/2 edge-disjoint Hamiltonian cycles
of KN are implemented, one is still left with some parallel edges in the edge-coloring formulation
of the weak coloring problem. The extra parallel edges form a perfect matching6 [64, 65] and
therefore these “extra” interactions can be colored with a single additional color. The problem now
reduces to the no-parallel edges version of the edge coloring problem on a complete graph, yielding
a final upper bound of

χstrong(KN , N odd) ≤ 3N
2 . (33)

Given this explicit construction, the combined asymptotic bounds on the improvement from
strong coloring over weak coloring is

3
2 .

χweak(KN )
χstrong(KN ) . 2. (34)

6A perfect matching is a set of pairwise non-adjacent edges that cover every vertex of the graph
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Figure 6: A minimal example of K4 that shows a complete system graph can have its edges enumerated such
that a Hamiltonian cycle of two-mode interactions can be implemented simultaneously via strong coloring. The
dashed lines denote internal edges, red denotes active qubits, and red arrows from u to v for u, v ∈ VΣ denote
the implementation of an interaction of the type ÃuvB̃v.

4.3.3 Separating Weak and Strong Coloring

For the star-graph and the complete-graph examples, it was observed that asymptotically (in N)
χweak
χstrong

. 2.
As it will be seen numerically in Sec. 5, such constant-factor improvements are typical for system

graphs that arise from realistic qubit architectures. In the near term, eliminating such constant
overheads in circuit depth is important and serves as one of the practical motivations for this work,
but a more significant separation in parallelization performance between weak and strong coloring
can be demonstrated. This example, while contrived, serves to show that polynomial separations
are possible and, perhaps more importantly, highlights a key feature of system graphs which allow
for a large separation between weak and strong coloring.

In particular, a necessary condition for a large improvement due to strong coloring is that the
edge bottleneck(s) of the system graph for routing paths in T̃ are significantly larger than the
vertex bottleneck(s). The reason for this is clear: vertex bottlenecks are the limiting factor on
parallelization for the weak coloring problem, whereas edge bottlenecks are the limiting factor for
strong coloring. That is, the more vertices (edges) to route paths through in the weak (strong)
coloring problems, the more room there is for parallelization. When there is a large separation
between the size of the edge and vertex bottlenecks, strong coloring necessarily provides more of an
advantage. The star graph is a simple example of such a large separation between edge and vertex
bottlenecks. The vertex bottleneck is a single vertex, but many edges enter this vertex, suggesting
a large potential improvement via strong coloring. We know analytically that this improvement is
asymptotically a factor of two. Despite the large separation between edge and vertex bottlenecks,
most interactions passing through the central vertex still require many of the internal qubits, hence
limiting a greater potential for strong coloring. The counterexample constructed below aims to
avoid this limitation.

For simplicity, let us consider N = 4m for some positive integer m. Divide the physical vertices
of Σ corresponding to these N fermionic modes into two disjoint sets T1, T2, each of size N/2.
Consider adding edges to the system graph such that both T1 and T2 induce disjoint complete
subgraphs. Now, consider adding N/2 virtual vertices to each of these complete subgraphs. Add
an edge from each of these virtual vertices to all physical vertices in the subgraph, forming two
bipartite subgraphs. Finally, add a single additional virtual vertex and join it to all other virtual
vertices. See Fig. 7 for an example of the construction for N = 8.

Call this system graph Σbottleneck. Σbottleneck has a single vertex bottleneck between its two
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Figure 7: An example of the system graph Σbottleneck that allows for a linear-in-N scaling of the ratio of the
chromatic numbers of the conflict graphs with weak and strong coloring. The physical vertices are divided into
two complete subgraphs KN/2 separated by a single vertex bottleneck, which allows only one interaction at a
time between the two subgraphs in the weak coloring problem. For visual clarity, the edges between vertices
of the complete subgraphs are not shown. For strong coloring, the extra layer of virtual vertices between each
subgraph and the central bottleneck vertex allows any disjoint set of N2 interactions between the two subgraphs
to be implemented in a single step.

.

symmetric halves. The weak coloring chromatic number can computed to be

χweak(Π(Σbottleneck)) = 2
(
N

2

)2

︸ ︷︷ ︸
paths between

T1, T2

+ N − 1.︸ ︷︷ ︸
paths within

T1, T2

(35)

Now consider enumerating the edges of the central virtual vertex so that all edges going to one
half of the graph are even integers and all edges going to the other half are odd integers. With this
labeling, for any choice of N/2 interactions from one half of the graph to the other, one can route
all N/2 interactions through the central vertex simultaneously using strong coloring. Applying
only weak coloring to implement interactions within each complete subgraphs then gives

χstrong(Π(Σbottleneck)) ≤ N︸︷︷︸
paths between

T1, T2

+ N − 1︸ ︷︷ ︸
paths within

T1, T2

= 2N − 1, (36)

which yields χweak(Π(Σbottleneck))
χstrong(Π(Σbottleneck)) & N

4 . Such linear-in-N improvement from strong coloring is the
best possible scaling for this ratio as the separation between sequential implementation of all
interaction terms and the best possible parallel scheme is ∼ N .

One should be cautious in interpreting this large separation. In practical settings, intelligent
design of system graphs from the underlying qubit architecture will rule out such large separations.
In practice, more modest, but important, constant-factor improvements between strong and weak
coloring should be expected. In particular, there is no reason why the qubits in the central
virtual vertex of this example should all be grouped into one system-graph vertex—there are
no interactions that require more than a single qubit operator within this vertex. Therefore, a
more intelligent system graph built on the same underlying qubit structure would afford the weak
coloring problem access to the same performance as the strong coloring problem in our contrived
example, by splitting the central virtual vertex into N/2 vertices.

Consequently, this example also raises the issue of intelligent system-graph design as a prereq-
uisite to using our algorithms to greatest effect. In Sec. 5, we give some more examples of how
system graphs may be constructed from the underlying qubit architectures.
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5 Numerical Results
5.1 Description of the Algorithm
For more complicated examples, it is necessary to turn to heuristic algorithms to find good solutions
to the parallelization problem in either the weak or strong coloring schemes. Any such algorithm
must perform the following steps: First, it must identify a set P of paths between interacting
vertices. Then, given P, it must construct the corresponding conflict graph, which—in the case
of strong coloring—requires a choice of enumerating the edges of the system graph. It is known
from our analytic results that this choice of enumeration can have a significant impact. Finally,
the algorithm must perform a vertex coloring on the resulting conflict graph, which is well-known
to be an NP-hard problem in its own right.

Our algorithmic approach to these problems is largely a straightforward one. The most essential
and novel aspect of the algorithm relates to choosing the enumeration of edges in an intelligent
way to amplify the improvement from strong coloring over weak coloring as much as possible.
This is important because it is this step that allows one to parallelize simulation of fermionic
Hamiltonians in a way that is aware of the fermion-to-qubit mapping chosen. An understanding
of the advantages afforded by taking this information into account is one of the primary goals of
this paper. An overview of the salient features of the algorithm is provided here, and the reader is
referred to the github repository for access to the full code [40].

In either the weak or strong coloring case, to find a path set P, one can begin by weighting
the edges of Σ to penalize edges that connect to physical vertices since physical vertices are used
in physical interactions and may need to be saved for the implementation of other terms that
involve them. The exact amount of this penalty is a free parameter of the algorithm. The larger
the penalty, the more the algorithm will prioritize potential for parallelization over minimizing the
Pauli weight of operators. This is because the use of physical vertices may provide shorter paths
and, hence, shorter Pauli strings but those are penalized by the algorithm.

Next the algorithm needs to choose a random ordering of the interaction set T̃ . Given this
ordering, for each interaction τ ∈ T̃ , the algorithm identifies a path as the shortest distance,
weighted path through Σ connecting the relevant vertices. This can be done efficiently in time
Θ
(
(|VΣ| + |EΣ|) log |VΣ|

)
via Dijkstra’s algorithm [66]. Next, the weight of all edges used in this

path are increased and the algorithm proceeds to finding the shortest path for the next τ ∈ T̃
on the reweighted graph. The increase in the weight of the used vertices penalizes paths that do
not find “new” routes through Σ—this is advantageous since paths that traverse the same edge
in Σ are guaranteed to conflict. The exact choice for this penalty is, again, a free parameter of
the algorithm. Due to the sequential nature of this algorithm and the penalties for traversing
previously used edges, different orderings of T̃ will produce different path sets P. Consequently,
one needs to run the algorithm many times to sample a variety of different path sets.

Once P is generated, the algorithm go on to construct the corresponding conflict graph Π(P).
For weak coloring, this is straightforward—if two paths p, q ∈ P share any vertices, the correspond-
ing vertices in Π(P) share an edge. For strong coloring, whether or not p, q ∈ P conflict depends
on the choice of edge enumeration for the vertices in the paths. This choice of enumeration is
arbitrary, so a wise choice is an enumeration that attempts to minimize conflicts. In particular,
whenever the algorithms finds a path p ∈ P, it loops through the vertices u ∈ p and enumerates
any previously unenumerated edges according to the following rules: If v is the first vertex in the
path and therefore acted on by an operator of type Ãux, it enumerates the outgoing edge with the
smallest available index. If u is an interior vertex along the path and therefore acted on by an
operator of type ÃxuÃuy, the algorithm enumerates the incoming vertex as the smallest available
index and the outgoing edge as the next smallest available index. Finally, if u is the final vertex in
the path and therefore acted on by an operator of type ÃxuB̃u, the algorithm enumerates the in-
coming edge with the largest available index. This method of constructing a choice of enumeration
follows directly from Tab. 1 and minimizes conflicts between paths in a greedy manner. Like the
determination of the paths, the outcome of this greedy approach depends on the initial ordering
of the interaction set, so, again, it is advantageous to run the algorithm many times.

With Π(P) in hand, the algorithm must vertex color it to solve the weak or strong coloring
problem, that is to determine the number of steps required to implement the interactions in T̃ . In
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particular, one can make use of a greedy coloring algorithm as shown in Algorithm 1. The greedy
coloring algorithm is guaranteed to satisfy the bound in Eq. (22), but its performance can be
much better depending on the ordering of vertices. We take a standard approach of a largest-first
ordering, where the vertices are ordered from the largest to the smallest degree [67]. For vertices
of the same degree, the ordering is random as determined by the order of the initial randomized
interaction list. This largest-first approach often works well in practice, but it is only one option
among many [68].

5.2 Analytically Solved Examples Revisited
We now revisit the analytically solved examples of Sec. 4. Using the star graph and complete
graph as examples, the algorithm described above is tested for a variety of N ranging from 3 to 35.
1000 different random orderings of the interaction list for each N are considered. As the algorithm
is deterministic once a choice of such an ordering is made, this corresponds to 1000 runs of the
algorithm. The results are shown in Fig. 8.

For the star graph, the algorithm numerically obtains the true chromatic number for both the
weak and strong coloring problem for every ordering of the interaction list. For the weak coloring
problem, this is because the conflict graph is well-colored 7. In particular, the conflict graph is
a co-graph—a class whose members are known to be well-colored [69]. To demonstrate that a
graph is a co-graph, it is sufficient to show that it has no length-4 paths as induced subgraphs.
Such subgraphs do not exist for Πweak(SN ). Every vertex u ∈ VΠweak is either a member of
a complete subgraph KN(N−1)/2 consisting of all vertices whose interactions correspond to two-
mode interactions or its only neighbors are all contained in such a complete subgraph. Therefore,
there exists no set of four vertices whose induced subgraph is a path. While the strong coloring
conflict graph is no longer well-colored, the largest-first vertex ordering ensures successful greedy
coloring for all interaction-list orderings.

On the other hand, for the complete graph, the algorithm fails to always produce colorings
that fully achieve the analytic results. This is because the greedy coloring of the resulting conflict
graphs depends heavily on the vertex ordering. Achieving the optimal coloring requires a highly
fine-tuned construction. Therefore, the generic randomized greedy coloring algorithm is unlikely to
obtain such a coloring as N grows large. Despite these challenges, the coloring algorithm provides
almost optimal results for the complete graph for the graph sizes considered.

Fortunately for this algorithm, many realistic architectures are expected to result in system
graphs that are limited by vertex bottlenecks, given practical limitations on the high qubit con-
nectivity required for producing input/output-limited system graphs like the complete graph.8 In
the next section, the weak and strong coloring problems will be investigated on two system graphs
designed from such realistic architectures.

5.3 Current Architectures
The algorithm developed in this section can be applied to system graphs designed on examples
of realistic superconducting-qubit architectures. Quantum processors built from superconducting
qubits have limited connectivity and thus stand the most to gain from optimized parallelizations.
The first example to be studied is a heavy-hexagon qubit architecture as used by many of IBM’s
quantum processors [70]. This architecture has been shown to be favorable for reducing cross-talk
and frequency collisions, while allowing for error correction via a hybrid surface and Bacon-Shor
code [71]. The second example is a square-lattice qubit architecture similar to that used by Google’s
Sycamore chip [72].

Importantly, qubit architectures are distinct from the system graphs one creates on them. While
the qubit architecture places constraints on the design of a system graph, one is free to create many
different system graphs on a given quantum processor. In practice, this design problem can be
viewed as one of optimizing the limited resources of a particular quantum processor—number of

7Well-colored graphs are those such that all vertex orderings produce the same number of colors for a greedy
coloring.

8Trapped-ion systems are an exception as they provide all-to-all interactions among pairs of qubits.
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Figure 8: Numerical results for the chromatic number from the weak (blue circles) and strong coloring (red
diamonds) problems for (a) star and (b) complete system graphs with N physical fermionic modes. For the
non-asymptotic analytic results, see Eqs. (27)-(29) and Eq. (30), respectively. For the complete graph, the
numerical algorithm fails to achieve the analytically determined bounds as obtaining these results requires a
highly fine-tuned vertex ordering for the greedy coloring algorithm on the corresponding conflict graph.

qubits, qubit connectivity, circuit depth—to extract a quality simulation of the largest possible
system of fermions. Observe that at the cost of a large circuit depth and high Pauli weight
operators, a simple Jordan-Wigner transformation (in the form of a system graph which is a line
graph) allows one to simulate the most fermions, as no ancilla qubits are needed.

One approach to reduce circuit depths and high Pauli-weight operators is to consider more
general system graphs. Here, qubit connectivity is a key limitation on designing efficient system
graphs if one wants to avoid the need for SWAP operations in the circuit decomposition of the
Hamiltonian-simulation algorithm. In particular, it is desirable to design a system graph so that
1) any qubits that make up a system-graph vertex have linear connectivity for the Jordan-Wigner
encoding of the local Majoranas, and 2) if a pair of vertices are adjacent in the system graph, the
internal qubits associated with that edge are adjacent in the architecture graph.

To apply the algorithm, let us limit ourselves to a single example of a system graph for each qubit
architecture under consideration. In particular, in each case, a system with a total of 49 fermionic
modes will be considered. For the heavy hexagon architecture, the system graph considered is
constructed from 65 qubits and mirrors the structure of the underlying qubits. This is identical
to an example considered in Ref. [22]. For the square lattice, the system graph considered is
a triangular tiling of the Euclidean plane and requires 147 qubits. The precise mappings from
architecture graphs to system graphs for each of these cases are shown in Fig. 9.

Given these system graphs, N of the 49 vertices are randomly selected to be physical vertices
for various N between 5 and 35. For each N , 50 random choices of physical vertices are considered
and on each instance, the algorithm is run for 1000 different random orderings of the interaction
set for both the weak and strong coloring problems. The best solution from these 1000 different
random orderings is then taken. These results, along with quadratic fits are shown in Fig. 10.

As is seen from the plots, the improvement from strong coloring over weak coloring in the case
of the heavy-hexagon graph is minimal compared to the improvement in the triangular lattice.
This is consistent with the conclusions of Sect. 4: strong coloring provides the higher performance
benefit when the size of the edge bottlenecks to routing the paths induced by interactions are much
larger than the size of vertex bottlenecks. The triangular lattice has many more edges per vertex
(and correspondingly more qubits) which enable greater parallelization via strong coloring.

Figure 11 shows tradeoffs between the number of qubits and the degree of parallelization for the
various examples considered in this work: the complete graph, the star graph, the heavy-hexagon
graph, and the triangular lattice. While the best balancing of these various tradeoffs depends on
many variables, the triangular lattice serves as a particularly nice example of how a system graph
on a realistic architecture can be subject to significant reductions in circuit depth via paralleliza-
tion. While weak coloring alone offers significant performance gains over a sequential approach,
considering the precise details of this mapping via the strong coloring problem is important for
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Figure 9: Mappings from architecture graphs to system graphs. On the architecture graph, qubits are represented
by black dots and are grouped into system-graph vertices as denoted by the gray shading. On the system graphs,
square vertices denote virtual vertices and red circular vertices denote physical vertices. For the numerics, N
physical vertices are chosen randomly from the 49 total fermionic modes.

.

Figure 10: Numerical results for the chromatic number of the conflict graph as a function of the number of
qubits N for (a) the heavy-hexagon system graph and (b) the triangular-lattice system graph compared with
the scaling of the sequential implementation of the Hamiltonian terms.

.
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Figure 11: Numerical results on the amount of parallelization for various system graphs. (a) shows the improve-
ment in the number of steps for strong coloring versus weak coloring. (b) shows the improvement for strong
coloring over a sequential implementation of the interactions in the interaction list. (c) and (d) show the same
as (a) and (b), respectively, but weighted by the number of qubits in the system graph. When comparing the
different system graphs, recall the size of the complete graph and star graph scale with the number of physical
vertices N whereas the heavy hexagon and triangular lattice do not.

minimizing the circuit depth.

5.4 Local Interactions
A more common fermionic interaction term is nearest-neighbor hopping on a lattice. The paral-
lelization of this work within the framework of custom fermionic codes can be applied to optimize
simulating this model as well. Consider an interaction graph in the form of a two-dimensional
square lattice of physical fermionic modes with nearest-neighbor hopping and open boundary con-
ditions,

H =
∑
〈u,v〉

κuva
†
uav +

∑
u

κuua
†
uau, (37)

for real κuv = κvu, where the sum is over neighbors on the square lattice. Minimizing the Pauli
weight and maximizing the parallelization of such nearest-neighbor hopping terms is the limiting
algorithmic factor for a variety of models of interest, such as the spinless Fermi-Hubbard model on
the square lattice. This problem is well-understood analytically for a variety of specific fermion-
to-qubit mappings [15, 18, 23]. While such analytic approaches to specific problems are valuable
when tractable, the techniques of this work allow for an automated optimization for arbitrary
Hamiltonians and arbitrary system graphs.

We consider this problem for three different system graphs. The first case is a system graph
identical to the interaction graph—a two-dimensional square lattice with all physical fermionic
modes. This case can be directly compared with previous work on this problem. The other two
cases involve placing the physical fermionic modes in the heavy-hexagon and triangular-lattice
system graphs considered above (see Fig. 9). The physical modes are embedded such that nearest
neighbors on the square-lattice interaction graph are as close as possible on the system graph,
enabling low-weight Pauli strings. The precise details of this mapping are included with the source
code as supplemental material [40].

The results for weak and strong coloring on each of these system graphs for a range of
interaction-graph lattice sizes are shown in Fig. 12. For each lattice size L×L for L ∈ {4, 9, 16, 25, 36},
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Figure 12: Numerical results for the chromatic number of the conflict graph of the system graphs noted
corresponding to a square lattice with nearest-neighbor hopping for weak and strong coloring problems.

1000 random orders for the interaction list are considered for both weak and strong coloring. Ob-
serve that compared to non-local models, the advantage over weak coloring due to strong coloring
is minimal, independent of system graph. This is expected since all path lengths are short in this
model and, similar to the complete-graph example, parallelization is limited by the input/output
capacity of the physical vertices. However, parallelization provides significant gains over a naive
sequential strategy which scales as ∼ 4N .

In agreement with previous work, an O(1) circuit depth is obtained with increasing lattice
size for the square-lattice interaction graph, and the local fermionic interactions are mapped to
local qubit interactions. The triangular lattice performs similarly although it allows for slightly
improved performance, especially when small numbers of physical fermions are embedded in the
system graph. This is because the triangular lattice offers more paths for implementing interactions
than the square lattice. The spike in chromatic number for N = 36 in the triangular lattice is
because a 6 × 6 square lattice cannot quite fit in the triangular-lattice system graph considered.
Therefore, some interactions that are local in the interaction graph become non-local in the system
graph. This effect is even more pronounced for the heavy-hexagon system graph which has lower
connectivity than the interaction graph, and therefore cannot perform as well as the other system
graphs even for small system sizes.

6 Conclusion and Outlook
The amount of parallelization afforded by a system graph is an important target for optimization in
the quantum simulation of fermionic Hamiltonians on near-term quantum processors where circuit
depth is expected to be an important limiting factor. In this work, this problem is mapped to a
graph coloring problem and the relationship between parallelization and the system-graph structure
for a variety of representative examples are explored both analytically and numerically. It is found
that by considering the details of the fermion-to-qubit mapping, that is to seek strong coloring, one
can often find constant-factor improvements in parallelizability relative to performing only weak
coloring which is a more high-level approach. Both approaches enable significant reductions in
circuit depth relative to a naive sequential approach. The amount of improvement of both coloring
schemes compared with the sequential approach, and the strong versus weak coloring is a function
of system-graph characteristics—for instance, the number of and the severity of system graph’s
vertex and edge bottlenecks—as well as on the choice of enumerating edges in the system graph.

A full account of the algorithmic costs for a Hamiltonian of interest would incorporate the
algorithms for parallelization presented here to design a fermion-to-qubit mapping that respects
hardware-specific constraints, such as qubit connectivity, noise tolerance, and implementable cir-
cuit depths. This work considers only one approach to parallelizability offered at the level of
the number of steps needed to implement the Pauli strings that result from a custom fermionic
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code. When attempting to fully optimize a simulation algorithm in an architecture-aware man-
ner, our approach may further be combined with other parallelization schemes, e.g., those based
on fermionic SWAP networks [11–13] or approaches that concern fine-grained details of the cir-
cuit decomposition when the Pauli strings are compiled to basic two-qubit entangling gates [10].
The strong-coloring problem, in particular, depends heavily on the choice of encoding of the local
Majoranas. While this work only considers Jordan-Wigner encoding of the local Majoranas, it
is known that other choices (e.g. Fenwick-tree encoding [7, 14, 19]) lead to lower Pauli weights
for the local operators—potentially at the cost of reducing the possibility of parallelization via
strong coloring. In fact, local Majoranas could be encoded differently on different sites to perform
a full optimization at the circuit level. The problem of detailing the strong coloring rules for other
(possibly mixed) choices of encoding the local Majoranas is left to for future studies.

The custom fermionic codes considered in this work, and the generalizations described above,
encompass a broad range of mappings. Nonetheless, these do not exhaust the possibilities for
mapping fermions to qubits. Consequently, one can imagine profitably mapping parallelization
tasks to graph coloring for other encodings as well. For instance, while weak coloring allows one
to parallelize a Jordan-Wigner encoding (contained in the class of encodings of this work as a
system graph consisting of a line of vertices), another ancilla-free mapping, the Bravyi-Kitaev
encoding [14], does not allow for this sort of improvement. This is because the structure of the
Bravyi-Kitaev encoding is given by a Fenwick tree [7], where the root qubit of the tree is non-
trivially acted on for every operation, preventing parallelization of the sort we consider here.

We anticipate that applying our tool-set for analyzing parallelizability for Hamiltonian simula-
tion in conjunction with architectural considerations will be useful for obtaining detailed simulation
costs for other fermionic Hamiltonians not studied in this work. For example, local and non-local
interactions involving four fermionic operators (e.g., Coulomb interactions in quantum chemistry
and two-nucleon interactions in nuclear physics) and interactions involving more fermions (such as
three- and higher-body interactions in nuclear physics [73]) can be incorporated in the paralleliza-
tion scheme of this work, and lead to improved simulations in the near and far term. In another
interesting direction, one may consider applying the strategy of this work in designing parallelized
simulation steps in connection to system graph and hardware connectivity to interacting systems
of fermions and bosons, such as those of relevance to lattice gauge theories [74–79]. For exam-
ple, it would be interesting to thoroughly examine the simulation cost, considering parallelization
potential, of fully fermionic formulations (that can be achieved only in 1+1 dimensions [80]) and
fully bosonic formulations (that can be achieved for certain gauge theories [81]) of a lattice gauge
theory [82]. Finally, in designing system graphs, one may need to take into consideration the
entanglement structure (see e.g., Ref. [83] for a discussion in the context of quantum fields) of the
resulting subgraphs and the associated computational complexity of various simulation steps, such
as state preparation, that is closely tied to entanglement properties.
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