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In the control of plant diseases, biocontrol has the advantages of being efficient 
and safe for human health and the environment. The filamentous fungus 
Trichoderma harzianum and its closely related species can inhibit the growth of 
many phytopathogenic fungi, and have been developed as commercial biocontrol 
agents for decades. In this review, we summarize studies on T. harzianum species 
complex from the perspective of strain improvement. To elevate the biocontrol 
ability, the production of extracellular proteins and compounds with antimicrobial 
or plant immunity-eliciting activities need to be enhanced. In addition, resistance 
to various environmental stressors should be strengthened. Engineering the gene 
regulatory system has the potential to modulate a variety of biological processes 
related to biocontrol. With the rapidly developing technologies for fungal genetic 
engineering, T. harzianum strains with increased biocontrol activities are expected 
to be constructed to promote the sustainable development of agriculture.
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1. Introduction

Biotic stresses in plants are caused by diverse organisms such as fungi, bacteria, viruses, 
weeds, and insects (Redondo-Gómez, 2013). A recent study reassessed the figures for five staple 
crop losses associated with biotic stresses, showing that global crop loss estimates per crop were 
21.5, 30.0, 22.6, 17.2, and 21.4% for wheat, rice, maize, potato, and soybean, respectively (Savary 
et al., 2019). Consequently, chemical pesticides are commonly used in agricultural systems. 
However, the excessive and irrational use of chemical pesticides can lead to non-target effects, 
potential environmental and public health risks, and the generation of resistance among pests 
(Jasuja, 2015; Goswami et al., 2018). In comparison, biocontrol methods employing the natural 
enemies of pests have the advantage of being safe with lower risks of pest resistance, resulting 
in them being widely used in agricultural production.

Trichoderma are well-known beneficial microorganisms in agriculture because of their ability to 
kill pathogenic fungi and promote plant growth (Verma et al., 2007). As biofungicides, Trichoderma 
species can inhibit the growth of many phytopathogenic fungi and oomycetes, e.g., Fusarium solani, 
Sclerotinia sclerotiorum, Botrytis cinerea, Macrophomina phaseolina, Cordana musae, Rhizoctonia 
solani, and Pythium ultimum (Anees et al., 2010; Samuelian, 2016; Zhang et al., 2016; Hewedy et al., 
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2020; Erazo et al., 2021). Inhibition is believed to involve three main 
mechanisms (Figure  1): (1) competition for nutrients (e.g., carbon, 
nitrogen, and iron) or infection spots with pathogenic fungi (Sivan, 1989; 
Güçlü and Özer, 2022); (2) mycoparasitism (Mukherjee et al., 2022); and 
(3) antibiosis through the synthesis of secondary metabolites with 
inhibitory or lethal effects on pathogenic fungi (El-Debaiky, 2017; 
Mironenka et al., 2021). In addition, Trichoderma species can indirectly 
prevent pathogen infection by inducing plant resistance responses 
(Harman et al., 2004; Woo et al., 2022).

Trichoderma harzianum is one of the most frequently used 
Trichoderma species in the management of plant diseases (Meher 
et al., 2020; Rush et al., 2021). It has been used for the production of 
more than twenty commercial biocontrol agents all over the world 
(Woo et al., 2014), of which eight are listed in Table 1. T. harzianum 
not only has mycoparasitic properties but also the ability to promote 
plant growth by adjusting the balance of hormones and acting as a 
biofertilizer to promote the uptake of mineral ions and carbon dioxide 
(Stewart and Hill, 2014; Marra et al., 2021). In the comparison of 27 
Trichoderma species, T. harzianum/T. afroharzianum was found to 
produce the highest number of known biopesticides and plant growth-
promoting compounds (Rush et  al., 2021). Classical random 
mutagenesis (Szekeres et al., 2007; Marzano et al., 2013) and protoplast 
fusion (Prabavathy et al., 2006) have been successfully used to generate 
T. harzianum strains with improved performance. Along with a 
deeper understanding of the molecular mechanisms of biocontrol 
(Daguerre et al., 2014; Sood et al., 2020; Abbas et al., 2022; Chen et al., 
2022), rational genetic engineering has become a feasible strategy for 
improving the strains of T. harzianum (Chen et al., 2021). Nevertheless, 

most of the commercial strains are reported to be wild-type isolates 
and no information on genetic improvement was reported. This 
phenomenon can be related to the restrictions and public concerns 
about genetically modified organisms (GMOs) (Chen et al., 2022).

In this article, we review studies on the development of T. harzianum 
strains with enhanced biocontrol activity in laboratory level. These 
include the strengthening of protein and chemical effectors for 
biocontrol, enhancing the robustness of strains, and modulation of the 
gene regulatory system controlling these processes. It should be noted 
that with the development of systematic taxonomy in the fungal 
community, many previously described “T. harzianum” strains have been 
identified as other Trichoderma species (Mach et al., 1999; Chaverri et al., 
2015; Fanelli et al., 2018; Cai and Druzhinina, 2021). For example, the 
strain T22, widely used as commercial biocontrol agents, was 
re-identified to be  T. afroharzianum belonging to the T. harzianum 
species complex (Chaverri et al., 2015; Kubicek et al., 2019). Therefore, 
the review covers the research progresses in the T. harzianum complex 
(Figure  2), considering that many mechanisms for biocontrol are 
conserved among the members in this species complex.

2. Increasing the production of 
extracellular protein effectors

2.1. Fungal cell wall-degrading enzymes

Cell wall-degrading enzymes (mainly chitinases, glucanases, and 
proteases) play an important role in the antagonistic effect of 

FIGURE 1

Biological processes involved in the biocontrol capacity of Trichoderma harzianum. Members in the T. harzianum species complex inhibit the growth 
of plant pathogenic fungi through competition, mycoparasitism and antibiosis. Meanwhile, T. harzianum activates defensive reactions in plants, which 
include induced systemic resistance and systemic acquired resistance. A set of secret proteins and secondary metabolites produced by T. harzianum 
play important roles in the above processes. In addition, T. harzianum is subjected to a combination of different biotic and abiotic stresses in the field. 
Signaling pathways and the downstream transcriptional regulation system are responsible for the regulation of responses to fungal pathogens and 
environmental stresses. With the genetic engineering toolbox, the biocontrol capacity of T. harzianum can be significantly improved. JA, jasmonic acid; 
ET, ethylene; SA, salicylic acid.
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Trichoderma species toward fungal pathogens. The fungal inhibitory 
activity of Trichoderma isolates was reported to be positively correlated 
with the production of extracellular lytic enzymes (Rai et al., 2016). 
As summarized below, increasing the expression of fungal cell wall-
degrading enzymes is an effective strategy for enhancing the 
biocontrol capacity of T. harzianum (Table  2). Additionally, the 
expression of these enzymes in transgenic plants resulted in increased 
resistance to fungal pathogens (Distefano et  al., 2008; Mercado 
et al., 2015).

2.1.1. Chitinases
Chitin is a major component of the cell wall in most fungi (Brown 

et al., 2020). The chitinolytic system of Trichoderma species includes 
several chitinases and β-1,4-N-acetylglucosaminidases (Ghasemi 
et al., 2020). The most frequently studied chitinases in T. harzianum 
are Chit42/Ech42 (García et al., 1994; Carsolio et al., 1999; Woo et al., 
1999), Chit33 (Limón et al., 1999; de las Mercedes Dana et al., 2001), 
and Chit46 (Deng et al., 2019), which are named by their molecular 
mass. Purified or heterologously expressed chitinases effectively 

TABLE 1 Selected Trichoderma harzianum species complex strains used for the manufacture of biocontrol products.a

Strain name Product name Product type Manufacturer Effectiveness

T. afroharzianum T-22 

(T22)b

Trianum-P, Trianum-G Granules containing viable 

spores

Koppert (Netherlands) Inhibits the growth of Pythium, Rhizoctonia, Fusarium, 

Botrytis or other soil and foliar pathogenic fungi or 

oomycetes; promotes plant growth and uniformity

Rootshield Wettable powder or granules 

containing viable spores

BioWorks (USA) Controls soilborne Pythium, Fusarium, Rhizoctonia, 

Cylindrocladium, and Thielaviopsis; delivers faster and 

stronger root development

T. afroharzianum G.J.S. 

08–137

AkTRIvator Powder or granules CANNA (Netherlands) Protects plants against soil diseases and stimulates the 

growth of roots and root hairs

T. harzianum RSTH 

2222

Ecosom-TH Wettable or soluble powder 

containing conidiospores

AgriLife (India) Supression of various diseases caused by fungal 

pathogens; especially effective against fruit rot caused 

by Botrytis and Rhizome rot

T. harzianum ESALQ 

1306

Trichodermil Liquid containing viable 

spores

Koppert (Netherlands)c Inhibits the growth of Rhizoctonia solani, Sclerotinia 

sclerotiorum and other fungal pathogens

T. harzianum T-39 Trichodex Powder containing conidia 

and mycelium fragments

Makheshim-Agan (Israel) Inhibits the growth of Botrytis, Sclerotinia and other 

pathogenic fungi

T. guizhouense CBS 

134707

Promot Powder or liquid containing 

viable spores

JH Biotech (USA) Promotes beneficial microorganism populations in the 

root zone; stimulates root growth and promotes strong 

root system; induces resistance of plants

aData were collected from the Bio-Pesticides DataBase (http://sitem.herts.ac.uk/aeru/bpdb/atoz.htm), Woo et al. (2014), Chaverri et al. (2015), and Meher et al. (2020). bOriginally derived 
from the fusion of strains T-95 and T-12. cThe product was registered in Brazil.

A B

FIGURE 2

Trichoderma harzianum species complex for biocontrol. (A) Phylogenetic relationship of three species in T. harzianum complex and other Trichoderma 
species. The chronogram was adapted from Kubicek et al. (2019). The numbers represent chronological ages of the nodes in Mya. The NCBI GenBank 
accession numbers of the genomes are: T. afroharzianum T6776, JOKZ00000000; T. guizhouense NJAU 4742, LVVK00000000; T. harzianum CBS 
226.95 (type culture, indicated withT), MBGI00000000; T. harzianum TR274, NQLC00000000; T. virens Gv29-8, ABDF00000000; T. parareesei CBS 
125925, LFMI00000000; T. reesei QM6a, AAIL00000000; T. longibrachiatum ATCC 18648, MBDJ00000000; T. citrinoviride TUCIM 6016, 
MBDI00000000; T. gamsii T6085, JPDN00000000; T. atroviride IMI 206040, ABDG00000000; T. hamatum GD12, ANCB00000000; T. asperellum 
CBS 433.97, MBGH00000000; Escovopsis weberi CC031208-10, LGSR00000000. Some other species in the T. harzianum complex, such as T. 
atrobrunneum and T. simmonsii, also show good biocontrol potentials. (B) Overgrowth of T. afroharzianum T22 against plant pathogen B. cinerea on 
agar plate.
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inhibit the growth of phytopathogenic fungi (Wu et  al., 2013). 
Correspondingly, introduction of the chit42 gene to plants increased 
their resistances to fungal pathogens (Lorito et al., 1998).

Interspecific and intraspecific protoplasmic fusions were reported 
to enhance chitinase activity and antagonistic activity in T. harzianum 
(Balasubramanian et al., 2012; Hassan, 2014). On the other hand, 
rational genetic engineering has also been used to improve the 
chitinase activity of T. harzianum strains. Both overexpression and 
enzyme engineering strategies were applied to this end. 
Overexpression of the chit33 gene using a constitutive promoter 
resulted in an approximately 200-fold increase in extracellular 
chitinase activity, and the inhibitory ability against R. solani was 
effectively improved (Limón et  al., 1999). Moreover, the main 
chitinases produced by T. harzianum lack a specific chitin-binding 
domain (ChBD), which affects their affinity for insoluble chitin in the 
fungal cell wall. The transformants with the overexpression of a 
chimeric chitinase carrying ChBD from a T. atroviride chitinase 
showed higher chitinase activities and stronger inhibition against 
R. solani, compared with those without ChBD (Kowsari et al., 2014; 
Eslahi et al., 2021). Similarly, the addition of cellulose binding domains 
(CBDs) with binding ability to the chitin surface to chitinases led to 
not only increased chitinase activity but also more effective inhibition 
against R. solani, B. cinerea, and Phytophthora citrophthora than the 
wild-type strain (Limón et al., 2004).

2.1.2. Glucanases
β- and α-linked glucans are also major components of the scaffold 

and matrix of the fungal cell wall (Kang et  al., 2018). β-1,3-
exoglucanase, β-1,3-endoglucanase, and β-1,6-endoglucanase have 
been reported to be associated with the biological control ability of 
T. harzianum (de la Cruz et al., 1996; Cohen-Kupiec et al., 1999; de la 
Cruz and Llobell, 1999; Donzelli et  al., 2001). After contact with 
F. solani, the expression level of β-1,3-endoglucanase in T. harzianum 
was significantly upregulated compared with that before contact 
(Vieira et  al., 2013). Furthermore, endo-β-1,3-glucanase, cellulase 
(β-1,4-glucanase), and α-1,3-glucanase purified from T. harzianum 
were shown to inhibit the growth of several pathogenic fungi (Thrane 
et al., 1997; Ait-Lahsen et al., 2001). Although gene knockout has been 

used to study the function of β-1,3-endoglucanase in biocontrol 
(Suriani Ribeiro et al., 2019), overexpression of glucanase-encoding 
genes for enhanced biocontrol performance has rarely been reported. 
An endo-β-1,6-glucanase BGN16.2 was successfully overexpressed 
using the T. reesei pki promoter; however, its effect on biocontrol 
ability remains to be studied (Delgado-Jarana et al., 2000).

2.1.3. Proteases
In addition to chitinases and glucanases, proteases play an 

important role in the degradation of fungal cell walls. A proteomic 
study found that an aspartic protease was highly expressed in 
T. harzianum in the presence of the cell walls of P. ultimum and 
B. cinerea (Suárez et al., 2005). Multiple proteases from T. harzianum, 
such as serine proteases (Yan and Qian, 2009; Liu and Yang, 2013; Fan 
et al., 2014) and aspartic proteases (Delgado-Jarana et al., 2002; Liu 
and Yang, 2007; Deng et  al., 2018), showed significant inhibitory 
activities against pathogenic fungi. After ultraviolet light (UV) 
irradiation, the extracellular protease activities of some T. harzianum 
mutants were 6 to 12.5 times higher than that of the wild-type strain, 
and certain mutants were proven to be more effective against fungal 
pathogens during in vitro plate antagonism experiments (Szekeres 
et al., 2004). Overexpression of the serine protease-encoding gene 
prb1 was reported to increase protease production and enhance 
antagonistic activity against R. solani (Flores et al., 1997).

2.2. Other extracellular proteins

In addition to fungal cell wall-degrading enzymes, T. harzianum 
produces other proteins, such as plant cell wall-degrading enzymes, 
L-amino acid oxidase, cerato-platanins and hydrophobins, to inhibit 
pathogens and/or induce plant resistances.

Trichoderma spp. can secrete plant cell wall-degrading enzymes 
as elicitors to induce plant resistance to pathogens. For example, 
cellulases and xylanases from Trichoderma have been reported to 
induce plant defense responses via the ethylene/H2O2/calcium/
jasmonic acid signaling pathways (Saravanakumar et al., 2016; Guo 
et al., 2021). By constructing a gene-silenced mutant and investigating 

TABLE 2 Studies on improving the biocontrol ability of T. harzianum strains by overexpressing fungal cell wall-degrading enzymes.

Enzymea Parental strain Engineering strategy Effect on inhibitory activity Reference

ChiV (496454) Not reported Overexpression using CaMV35S 

promoter

Increase of inhibition rate against R. solani by 

19.58%

Yang L. et al. (2011)

Chit33 (459582) CECT 2413b Overexpression using T. reesei pki 

promoter

Colony diameter of R. solani was about 37–67% of 

the control treatment

Limón et al. (1999)

Chit33 (459582) CECT 2413b Overexpression of chimeric enzyme 

with CBD using T. reesei pki promoter

Colony diameter of R. solani was 53–67% of the 

control treatment

Limón et al. (2004)

Chit42 (6140) CECT 2413b Overexpression of chimeric enzyme 

with CBD using T. reesei pki promoter

Colony diameter of R. solani about 65–70% of the 

control treatment

Limón et al. (2004)

Chit42 (6140) ABRIICC T8-7MK Overexpression of chimeric enzyme 

with ChBD using T. reesei pki 

promoter

85 and 92% reduction in R. solani radial growth Kowsari et al. (2014)

Chit36 (501286) TMc Overexpression using T. reesei pki 

promoter

Stronger inhibition of Fusarium and Sclerotium 

rolfsii than wild type

Viterbo et al. (2001)

aThe corresponding protein IDs in T. afroharzianum T-22 (https://mycocosm.jgi.doe.gov/TriharT22_1/TriharT22_1.home.html) are shown in parentheses. bAlso designated as ATCC 48131/
CBS 354.33, originally isolated from soil. cOriginally isolated from Mexican soil.
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its effect on the transcriptome of Arabidopsis, Thpg1 (encoding an 
endopolygalacturonase) was found to be  required for active root 
colonization and plant defense induction by T. harzianum T34 
(Morán-Diez et al., 2009). Finally, a swollenin from T. guizhouense can 
promote the growth of cucumber by altering the root cell wall 
architecture (Meng et  al., 2019). According to the evolutionary 
analysis of genes, 41% of plant cell wall-degrading enzymes and 
auxiliary proteins in Trichoderma were obtained via lateral gene 
transfer from other classes of Ascomycota (Druzhinina et al., 2018).

Proteomic analysis revealed that the expression of L-amino acid 
oxidase (LAAO) was induced in media containing deactivated 
B. cinerea mycelia as the sole carbon source (Yang et al., 2009). LAAO 
has inhibitory effects on pathogenic bacteria and fungi. For the 
inhibition of R. solani, T. harzianum LAAO physically interacts with 
the cell wall proteins of the pathogen and triggers the mitochondria-
mediated apoptosis pathway, including cytochrome c release and the 
activation of apoptosis factors, caspases 3 and 9 (Yang C. A. et al., 
2011; Yang et al., 2012).

Cerato-platanins are small, secreted cysteine-rich proteins that act 
as effectors and elicitors in fungus-plant interactions. Although the 
cerato-platanin family protein Epl1 is not necessary for the biocontrol 
ability of T. harzianum, the absence of epl1 was found to affect the 
expression level of mycoparasitic genes (Gomes et al., 2015; Gao et al., 
2020). Furthermore, removal of epl1 from T. harzianum not only 
reduced the jasmonic acid-mediated defense response in tomato, but 
also lost its ability to downregulate the expression of B. cinerea 
virulence genes (Gomes et al., 2017; Gao et al., 2020). Another type of 
surface-active small protein, hydrophobin, is also involved in 
interactions between Trichoderma and plants (Viterbo and Chet, 
2006). Thhdy1, a class II hydrophobin from T. harzianum, acts as an 
elicitor to activate the expression of jasmonic acid/ethylene defense-
related and brassinosteroid-associated genes that are involved in plant 
systemic resistance (Yu et al., 2020). Therefore, the construction of 
Thhdy1-overexpressing T. harzianum strains is expected to enhance 
their biocontrol activity.

Reactive oxygen species (ROS) act as signals to regulate diverse 
biological processes. The production of ROS has been suggested to 
be one of the mechanisms of induced systemic resistance in plants by 
T. harzianum (Lara-Ortíz et al., 2003; Zhang et al., 2017). NADPH 
oxidases, although not extracellular proteins, are involved in the 
formation of ROS and are therefore indirectly associated with the 
biocontrol ability of T. harzianum. Transformants overexpressing the 
NADPH oxidase-encoding gene nox1 showed higher inhibitory 
activity against P. ultimum than the wild-type. According to the result 
of transcriptomic analysis, the nox1-overexpressing transformant had 
upregulated expression of genes linked to protease, cellulase, and 
chitinase activities in the interaction with P. ultimum compared to the 
wild-type strain (Montero-Barrientos et al., 2011).

3. Engineering the biosynthesis of 
secondary metabolites

3.1. Bioactive compounds produced by 
Trichoderma harzianum

The antibiosis activity of T. harzianum is generally mediated by 
the production of low-molecular-weight compounds, which can 

directly or indirectly inhibit the growth of pathogens. These include a 
variety of classes of compounds, such as peptides (McMullin et al., 
2017; Kai et al., 2018; van Bohemen et al., 2021), polyketides (Zhao 
et  al., 2020), and terpenes (Song et  al., 2018; Figure  3). Various 
methods have been developed for the discovery of new metabolites 
with antimicrobial activity in T. harzianum. First, the one strain-many 
compounds (OSMAC) method was used to activate secondary 
metabolic gene clusters, which in turn altered their metabolic 
pathways to synthesize new metabolites (Yu et al., 2021). Using this 
method, eleven compounds were obtained from a T. harzianum strain, 
of which triharzianin B, triharzianin C, trichoharin A, triharzin C, 
5-hydroxy-3-hydroxymethyl-2-methyl-7-methoxychromone, 
trichoacorenol B and harzianone exhibited antifungal activity against 
Aspergillus fumigatus and Trichoderma sp. (Wang X.-Y. et al., 2021). 
Second, the mutant strains of T. harzianum may produce new 
compounds. For example, several mutants obtained by UV 
mutagenesis exhibited increased Fusarium-inhibiting activity and 
produced two new compounds, including an isonitrile compound 
with broad antibiotic activity against fungi and bacteria (Graeme-
Cook and Faull, 1991; Faull et al., 1994). Third, mining of new isolates 
of T. harzianum from soil, plant root systems, and rhizomes allowed 
for the identification of new chemical derivatives with inhibitory 
activities, such as α-pyrone and decalin derivatives (Nuansri et al., 
2022), pentadecaibins (van Bohemen et al., 2021), azaphilone D and 
E (Zhang et  al., 2020), harzianopyridone (Ahluwalia et  al., 2015), 
tandyukisin (Yamada et  al., 2014), trichosordarin A (Liang et  al., 
2020), trichoharzianol (Jeerapong et al., 2015), harzianic acid (Vinale 
et al., 2009), and nafuredin C (Zhao et al., 2020).

3.2. Elucidation and modification of the 
biosynthetic pathways of compounds

Understanding of the synthetic pathway is important for 
improving the production level and modifying the structures of 
natural products, which help to improve the inhibitory ability of 
T. harzianum against pathogens. Despite the extensive reports on 
bioactive compounds from T. harzianum, the biosynthetic pathways 
of most of these molecules remain unresolved so far.

3.2.1. Lactones
Lactone compounds such as butenolides (e.g., harzianolide) and 

pyrones are commonly isolated from T. harzianum. Harzianolide 
could significantly promote tomato seedling growth and activate plant 
systemic resistance (Cai et al., 2013), and its biosynthesis pathway was 
shown to involve the rearrangements and decarboxylation of a 
heptaketide (Avent et al., 1992).

6-Pentyl-2H-pyran-2-one (6-PP) is an unsaturated volatile lactone 
with a coconut aroma, and is commonly detected in the secondary 
metabolites produced by T. harzianum and other Trichoderma species 
(Keswani et al., 2014; Vinale et al., 2014). 6-PP can inhibit the growth 
of a broad spectrum of fungal pathogens such as Fusarium moniliforme 
and R. solani (Scarselletti and Faull, 1994; El-Hasan et  al., 2007). 
Furthermore, it can promote plant growth and induce plant defenses 
against pathogenic fungi (Garnica-Vergara et  al., 2016; Lazazzara 
et  al., 2021). Deciphering the 6-PP biosynthetic pathway is yet to 
be accomplished, and most of the clues from T. atroviride isotopic 
labeling experiments have suggested that the oxidation of linoleic acid 
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by lipoxygenase might be a major step in the biosynthesis of 6-PP by 
Trichoderma (Serrano-Carreon et al., 1993). However, a gene deletion 
study showed that the single lipoxygenase-encoding gene lox1 is 
dispensable for the production of 6-PP and for the antagonistic 
capacity of T. atroviride against the plant pathogen B. cinerea 
(Speckbacher et al., 2020). The authors proposed that the synthesis of 
6-PP may involve the action of polyketide synthase. In addition, 6-PP 
can be  degraded or converted into the intracellular microsomal 
fraction of T. atroviride, which decreases its concentration in culture 
(Flores et al., 2019).

3.2.2. Sterols and terpenoids
Ergosterol, a component of the fungal cell membrane, can 

upregulate the expression of plant defense-related genes and elicit 
responses through induction of the oxidative burst by inhibition of 
H+-ATPase activity on the plasma membrane (Rossard et al., 2010; 
Khoza et al., 2019). Hydroxy-methylglutaryl-CoA reductase (encoded 
by hmgR) is a rate-limiting enzyme involved in the synthesis of 
farnesyl diphosphate (FPP), an important intermediate in sterol 
synthesis (Figure 4). Partial silencing of the hmgR gene in T. harzianum 
led to a reduction in antifungal activity against the plant pathogens 
R. solani and Fusarium oxysporum and a 15.8-fold increase in the 
expression of erg7 in the sterol pathway (Cardoza et al., 2007).

Silencing of the squalene epoxidase-encoding gene erg1 led to 
lower ergosterol production and increased erg7 expression (Cardoza 
et al., 2006b). In addition, silencing erg1 was found to increase the 
production of squalene, which can induce the expression of tomato 

defense-related genes in a concentration-dependent manner. The 
ability of T. harzianum to colonize tomato roots has also been 
enhanced (Malmierca et al., 2015b). However, overexpression of erg1, 
although it did not show any effect on ergosterol levels, led to a 
substantial decrease in the amount of squalene and also reduced the 
priming ability of some defense-related genes in the salicylic acid and 
jasmonic acid pathways (Cardoza et al., 2014).

The synthesis of sesquiterpene compounds, including trichothecenes 
in fungi, also uses FPP as a precursor (McCormick et al., 2011). Many 
trichothecenes are fungal toxins with some showing good antifungal 
activity. Harzianum A, a non-phytotoxic trichothecene produced by 
Trichoderma arundinaceum, was found to have antagonistic activity 
against fungal pathogens and induce plant defense response genes 
(Malmierca et al., 2012). In trichothecene biosynthesis, the first step is to 
cyclize FPP to form trichodiene (TD) using trichodiene synthase encoded 
by tri5 (Fekete et al., 1997). Although a tri5 homologous gene has been 
isolated from T. harzianum ATCC 90237 (Gallo et al., 2004), this strain 
was later identified as T. arundinaceum (Degenkolb et al., 2008). Currently, 
T. harzianum is thought to be unable to synthesize trichothecenes. When 
T. harzianum was transformed with tri5 from T. arundinaceum, the 
production of TD resulted in the upregulation of plant defense-related 
genes in tomatoes (Malmierca et al., 2015a). This TD-producing strain 
showed enhanced biocontrol activity against F. graminearum and reduced 
mycotoxin deoxynivalenol contamination (Taylor et al., 2022). Transgenic 
T. harzianum with both tri5 and tri4 produced 12,13-epoxytrichothec-
9-ene and downregulated tomato genes involved in fungal root 
colonization and pathogen defense (Cardoza et al., 2015). These findings 

FIGURE 3

Chemical structures of selected bioactive compounds produced by T. harzianum species complex strains. MIC, minimum inhibitory concentration; LC, 
lethal concentration; ZOI, zone of inhibition.
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highlight the intricate interactions between host plants, fungal pathogens, 
and antagonists mediated by trichothecene compounds.

3.2.3. Polyketides
Azaphilones as a family of polyketide-based secondary 

metabolites were isolated from the T. harzianum species complex. 
These compounds were shown to have antifungal, antiviral or radical 
scavenging activities (Vinale et al., 2006; Pang et al., 2020; Xie et al., 
2022). The gene cluster for the biosynthesis of trigazaphilones in 
T. guizhouense has been identified (Pang et al., 2020). Another gene 
cluster hac is responsible for the biosynthesis of harzianic acid in 
T. afroharzianum and T. guizhouense, with two transcriptional 
activators identified to be involved in its regulation (Xie et al., 2021; 
Pang et al., 2022).

The products of many gene clusters containing polyketide synthase 
(PKS)-encoding genes in T. harzianum remain unknown. In vitro plate 
confrontation experiments against S. sclerotiorum, R. solani, and 
F. oxysporum revealed that the PKS-encoding genes pksT-1 and pksT-2 
are differentially regulated in T. harzianum in response to fungal 
pathogens. The pksT-2 knockout mutant showed a significant change 
in the color of the conidia, but the biocontrol activity of the mutant was 
not tested (Yao et al., 2016). Additionally, heterologous expression of a 
polyketide synthase-nonribosomal peptide synthetase gene cluster 
from T. harzianum in Aspergillus nidulans has led to the discovery of 
new tetronate compounds with potential antimicrobial activities (Zhu 
et al., 2021).

4. Enhancing the robustness of strains

In addition to the production of the biocontrol effectors 
mentioned above, it is also important to improve the resistance of 
T. harzianum to various stresses in practical applications. The survival 

characteristics of these strains may be  significantly influenced by 
physical and chemical environmental factors such as pH, temperature, 
and fungicides in the soil (Lo et al., 1998). Therefore, the ecology of 
T. harzianum should be better understood to deploy biocontrol agents 
for disease control.

The synergistic application of fungicide and T. harzianum can 
reduce the amount of fungicide used while ensuring the same 
inhibition rate (Wang et al., 2019; Becker et al., 2021); however, this is 
based on a situation where T. harzianum shows resistance to 
fungicides. After exposure to UV light, mutant strains obtained by 
screening on specific plates supplemented with fungicides showed 
cross-resistance to prochloraz and bromuconazole (Figueras-Roca 
et al., 1996) or to benomyl and thiabendazole (Hatvani et al., 2006). 
Thmfs1, a major facilitator superfamily transporter gene, is partially 
responsible for trichodermin secretion in T. harzianum. A strain 
overexpressing Thmfs1 displayed increased resistance to a wide range 
of antimicrobial compounds (Liu et al., 2012; Table 3). In addition to 
chemical fungicides, the tolerance to metabolites secreted by 
pathogenic fungi should be taken into the consideration. For example, 
the metabolite fusaric acid produced by F. oxysporum inhibits the 
growth of T. harzianum. A UV-C mutant was not only more tolerant 
to fusaric acid but also more effective against Fusarium wilt in 
tomatoes than the wild-type (Marzano et al., 2013).

Besides the resistance to antifungal chemicals, the tolerance to 
other abiotic stresses needs to be taken into account when applying 
T. harzianum in specific environments. The response to heat stress is 
a highly conserved system by inducing the synthesis of heat-shock 
proteins (Lindquist and Craig, 1988). When T. harzianum conidia 
were heat-shocked at 45°C for 2 h, the hsp70-overexpressed strains 
showed better growth than the wild-type under various oxidative, 
osmotic, and salt stresses (Montero-Barrientos et  al., 2008). 
Transformants with the superoxide dismutase (SOD)-encoding gene 
showed a significantly higher resistance to heat and salt stress. 

FIGURE 4

Biosynthetic pathways of sterol and trichothecenes. Solid arrows show direct chemical reactions, while dashed arrows represent a series of chemical 
reactions.
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Although the wild-type strain could not grow at 40°C or in the 
presence of 2 mol/l NaCl, the sod transformant maintained its 
inhibitory activity against S. sclerotiorum under these conditions 
(Yang et al., 2010). In addition, hydrophobins play important roles in 
the resistance of Trichoderma spores to several kinds of abiotic stresses 
(e.g., UV radiation), and the perturbation of hydrophobin-encoding 
genes can result in species-specific changes of phenotypes (Cai 
et al., 2020).

Mycoviruses are widely observed among fungal species, some of 
which are harmful to their hosts. Recently, T. harzianum hypovirus 1 
(ThHV1) was identified in a T. harzianum isolate, and strains carrying 
both ThHV1 and its defective RNA were found to have a decreased 
mycoparasitism ability (You et al., 2019). Therefore, the viruses in 
T. harzianum may also be related to their stable performance.

5. Modulation of the gene regulatory 
system

The synthesis of protein and chemical effectors, as well as the 
responses to environmental stresses, are tightly regulated in 
Trichoderma species for biocontrol. In eukaryotes, gene 
regulatory systems respond to external signals and typically 
undergo multiple signal transitions to regulate downstream gene 
expression. Modification of the gene regulatory system can often 
alter the expression levels of multiple genes simultaneously, 
making it an efficient strategy for strain engineering (Pang 
et al., 2022).

5.1. Signaling pathways

The sensing of pathogenic fungi and the consequent responses in 
Trichoderma involve the combinatorial action of different signaling 
pathways (Howell, 2003; Zeilinger and Omann, 2007). Several classical 
signal transduction pathways in fungi have been linked to their ability 
to combat phytopathogens in Trichoderma spp., including G protein 
signaling, mitogen-activated protein kinase (MAPK) cascades, and 
cAMP pathways (Mendoza-Mendoza et  al., 2003; Omann and 
Zeilinger, 2010).

Heterotrimeric G-protein complexes consist of α, β, and γ 
subunits, and most filamentous fungi have three Gα subunits: Gα1, 
Gα2, and Gα3. Knockout of the Thga1 gene, which encodes the GαI 
protein, led to reduced growth rate, decreased 6-PP and chitinase 
production, and complete loss of the capacity to overgrow and lyse 
R. solani, B. cinerea, and S. sclerotiorum during in vitro plate 
confrontation (Sun et al., 2016). Knockout of another Gα-encoding 
gene, Thga3, results in an 80% reduction in hydrophobin expression 
and a 23% reduction in chitinase activity (Ding et al., 2018, 2020). 
Despite the demonstrated role of G proteins, the function of G 
protein-coupled receptors (GPCRs) has not yet been studied in 
T. harzianum. In T. atroviride, silencing of Gpr1, a cAMP-receptor-like 
family GPCR, results in the loss of capacity to activate the expression 
of chitinase and protease genes and to attach to host hyphae (Omann 
et al., 2012).

Highly conserved MAPK cascades play a crucial role in the 
transmission of extracellular and intracellular signals in fungi by 
controlling transcription factors through a phosphorylation cascade 
(Martínez-Soto and Ruiz-Herrera, 2017). hog1 is a homolog of the 
MAPK-encoding gene HOG1, controlling the hyperosmotic stress 
response in Saccharomyces cerevisiae. A mutant strain containing 
hyperactive point-mutated hog1 and another with hog1 silencing was 
constructed in T. harzianum. Both mutant strains showed strongly 
reduced antagonistic activity against the plant pathogens Phoma betae 
and Colletotrichum acutatum (Delgado-Jarana et al., 2006).

5.2. Transcriptional regulatory system

The significant changes in the transcriptome of T. harzianum 
during interactions with fungal pathogens involve the action of a set 
of transcription factors (Figure  5). CRE1, a conserved carbon 
catabolite repressor in fungi, is the first demonstrated transcription 
factor in the biocontrol with T. harzianum. Before contact with the 
plant pathogen, CRE1 can bind to two single sites in the promoter of 
chitinase gene chit42 to inactivate its expression. Confrontation with 
B. cinerea relieved the binding of Cre1 to the chit42 promoter (Lorito 
et al., 1996). In contrast, the expression of chit42 is triggered by soluble 
chitooligosaccharides which can be  produced by constitutive 
chitinolytic enzymes (Zeilinger et al., 1999). In addition, a BrlA-like 

TABLE 3 Examples of T. harzianum strain improvement for higher resistance to fungicides.

Fungicide Method of strain development Increase in resistancea Reference

Bromuconazole Exposure to UV radiation MIC from 25 to >125 μg/ml Figueras-Roca et al. (1996)

Prochloraz Exposure to UV light and then selecting by colony 

morphology on prochloraz amended media

MIC from 1 to >12.5 μg/ml Figueras-Roca et al. (1996)

Methyl benzimidazole-2-

yl carbamate (MBC)

Exposure to UV-A light and then selecting on MBC amended 

media

Increased tolerance from 0.4 to 100 μg/ml Hatvani et al. (2006)

Phosetyl aluminum Exposure to UV light EC50 = 1,043.20 μg/ml, a 13.76-fold increase 

over the parental strain

Besoain et al. (2007), 

Herrera et al. (2012)

Potassium phosphite Treatment with N-methyl-N-nitro-N-nitrosoguanidine and 

then selecting on amended media

EC50 = 12,503.10 μg/ml, a 288.09-fold 

increase over the parental strain

Perez et al. (2007), Herrera 

et al. (2012)

Tebuconazole and the 

other eight compounds

Overexpression of Thmfs1 using CaMV35S promoter 4- to 12-fold increase of MIC Liu et al. (2012)

aEC, effective concentration; MIC, minimal inhibitory concentration.
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binding motif in the chit42 promoter was found to be related to the 
regulation of its expression in T. atroviride (Brunner et al., 2003).

The zinc cluster family transcription factor Thc6 is involved in the 
induction of systemic plant resistance by T. harzianum. Overexpression 
mutants of Thc6 could activate the expression of the jasmonic acid 
pathway genes and reduce the disease index of maize treated with 
Curvularia lunata (Fan et al., 2015). As a homolog of the cellulase 
transactivator ACE2 in T. reesei, Thc6 can bind to the promoters of 
cellulase genes Thph1 and Thph2. Knockout mutants of these two 
genes resulted in the loss of the ability to activate the expression of 
immune defense-related genes in plants (Saravanakumar et  al., 
2016, 2018).

Another zinc cluster transcription factor, ThCTF1, is involved in 
regulating the synthesis of 6-PP in T. harzianum. The Thctf1 deletion 
mutant did not produce two secondary metabolites derived from 6-PP 
and showed reduced antimicrobial capacity (Rubio et  al., 2009). 
Through suppression subtractive hybridization between the wild-type 
strain T34 and a Thctf1-null mutant, a helix-turn-helix family 
regulator, ThMBF1, was identified to be  differentially expressed. 
Overexpression of Thmbf1 exacerbated the incidence of fungal 
diseases in tomato plants, suggesting that this gene has a negative role 
in the biocontrol process (Rubio et al., 2017).

The transcription factor PacC/Rim101 plays an important role in 
adaptation to ambient pH in fungi (Denison, 2000; Franco-Frías et al., 
2014). Pac1/ThPacC (homologous to PacC/Rim101) regulates many 
genes involved in T. harzianum antagonism, such as chit42 and 
protease papA. The silencing of pac1 seems to promote the production 

of certain metabolites that inhibit some plant pathogenic fungi, but it 
negatively affects the parasitic capacity of T. harzianum (Moreno-
Mateos et al., 2007). Another study revealed that the ThpacC knockout 
strain did not produce the antifungal molecules homodimericin A and 
8-epi-homodimericin A and showed reduced inhibition against 
S. sclerotiorum (Wu et  al., 2021). However, neither constitutive 
activation nor overexpression of Pac1/ThPacC increased biocontrol 
ability in the above two studies.

6. Future perspectives

6.1. Further discovery and characterization 
of the molecules related to biocontrol

The biocontrol capacity of T. harzianum involves complex 
interactions between the pathogens and plants. To date, the molecular 
mechanisms underlying the action of many effector proteins and 
compounds against phytopathogens have not been fully elucidated. 
The activities of these effector molecules and their combinatorial 
effects on different types of pathogens need to be investigated in detail 
to guide strain engineering. In particular, attention should be paid to 
the effects of the molecules or strains on the defense response and 
growth of plants, in addition to the results of traditional plate 
confrontation experiments.

The sequencing and annotation of the T. hazianum genome 
enabled the discovery of effector proteins and metabolites connected 

FIGURE 5

The transcriptional regulatory system of biocontrol-related genes in T. harzianum species complex. The transcription factors respond to upstream 
signals and regulate the expression of target genes involved in biocontrol. The corresponding protein IDs in T. afroharzianum T-22 (https://mycocosm.
jgi.doe.gov/TriharT22_1/TriharT22_1.home.html) are: CRE1, 298,239; PacC, 516,100; Thc6, 503,211; Xyr1, 455,911; ThCTF1, 348,498; ThMBF1, 493,750; 
HacI, 207,786; chit42, 6,140; papA, 315,275; Thph1, 627,343; Thph2, 555,537. VOCs, Volatile organic compounds; HAs, harzianic acids. Transcription 
factors reported to be engineering targets for strain improvement are marked with asterisks.
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to biocontrol activity on a large scale (Rush et al., 2021). According to 
annotations from the JGI MycoCosm portal,1 there are approximately 
60 secondary metabolic gene clusters in most sequenced strains in the 
T. harzianum species complex. For silent biosynthetic gene clusters, 
their products are expected to be  identified and increased for 
production using molecular biology tools, such as promoter exchange, 
overexpression of pathway-specific transcription factors, and 
heterologous expression (Brakhage and Schroeckh, 2011). The 
genome-driven approach has been used to mine bioactive natural 
products from T. harzianum, which resulted in the discovery of several 
unique compounds and widened the knowledge of their biosynthetic 
pathways (Chen et al., 2019; Zhu et al., 2021).

Transcriptomic and secretomic analyses have suggested that 
hundreds of genes in T. harzianum are significantly differentially 
expressed during interaction with fungal pathogens (Vieira et  al., 
2013; Steindorff et  al., 2014; Ramada et  al., 2016). Systematic 
investigation of the functions of these genes can provide more targets 
for engineering strains with enhanced biocontrol capacities. For 
example, aquaglyceroporin, which facilitates the transport of water 
and solutes across the membrane, was found to be  significantly 
upregulated in T. harzianum during its interaction with F. solani. A 
transformant overexpressing its encoding gene was capable of 
significantly reducing Fusarium sp. growth compared to the wild-type 
(Vieira et al., 2018).

Additionally, although the defective RNA of ThHV1 decreases the 
pathogen-inhibitory ability of T. harzianum, some other viruses 
enhance mycoparasitic ability by regulating the activity of cell wall-
degrading enzymes. Compared to ThPV1-cured strains, β-1,3-
glucanase activity and the ability to combat P. ostreatus and R. solani 
were increased in ThPV1-containing strains (Chun et al., 2018). In the 
future, dsRNA in T. harzianum strains can be  mined from their 
genomes to identify beneficial viruses for improving their biocontrol 
abilities. Nevertheless, the effects of virus-infected T. harzianum 
strains on the physiological characteristics of plants and the plant root 
microbiome need to be studied.

6.2. Deeper understanding of the gene 
regulatory system

Overexpression, mutagenesis, and domain-swapping strategies 
have been successfully used to engineer regulatory proteins in 
filamentous fungi (e.g., T. reesei) to improve the production of plant 
biomass-degrading enzymes (Liu and Qu, 2021; Zhao et al., 2022). 
However, understanding of the roles of regulatory proteins in 
biocontrol is still limited. Through the construction of gene disruption 
mutants, MAPKs, adenylate cyclase, protein kinase A, and GTPase 
activators have been linked to the inhibition of pathogens and 
production of secondary metabolites in Trichoderma species 
(Mukherjee et al., 2003; Hinterdobler et al., 2019; Segreto et al., 2021). 
These signaling proteins might have similar functions in T. harzianum 
and need to be  studied and tested as potential targets for strain 
engineering in the future.

1 https://mycocosm.jgi.doe.gov/mycocosm/home

Despite the studies summarized in Figure 5, knowledge of the 
transcriptional regulation of biocontrol-related genes in T. harzianum 
is fragmented. Transcriptional activator(s) binding to the promoters 
of chitinase-encoding genes have yet to be identified (Lorito et al., 
1996). Overexpression or improvement in the activity of such 
activators is expected to increase the expression of a set of fungal cell 
wall-degrading enzymes. In T. atroviride, the xylanase transcriptional 
regulator XYR1 positively regulates the expression of lignocellulolytic 
enzyme genes and activation of plant defense responses (Reithner 
et al., 2014). Overexpression of xyr1 has been shown to increase the 
production of cellulases and xylanases in T. harzianum (da Silva 
Delabona et al., 2017), but its effect on biocontrol ability needs to 
be studied.

In addition to transcriptional factors, proteins that regulate 
chromatin structure can significantly affect the expression levels of 
targeted genes. The lae1 (encoding putative methyltransferase) and 
tgf-1 (encoding histone acetyltransferase) genes were proven to 
be related to mycoparasitism in T. atroviride (Karimi Aghcheh et al., 
2013; Gómez-Rodríguez et  al., 2018). Overexpression of lae1 in 
T. harzianum results in a significant increase in cellulolytic gene 
expression (Delabona et  al., 2020), and its function in secondary 
metabolite synthesis and biocontrol is worth investigating.

6.3. Strain engineering and design in the 
synthetic biology era

Based on the understanding of the molecular mechanisms for 
biocontrol, systems metabolic engineering strategies could 
be  employed to construct T. harzianum strains with increased 
pathogen-inhibiting capacity and enhanced robustness (Ko et  al., 
2020). For the identified effector proteins and compounds, cutting-
edge technologies for protein engineering and combinatorial 
biosynthesis are expected to be used to modify their structures for 
higher activities toward pathogens (Staunton and Wilkinson, 2001). 
The introduction of heterologous genes related to biocontrol is 
another approach to improve the ability of T. harzianum to combat 
pathogens. An insect-specific neurotoxin gene from the scorpion 
Androctonus australis was heterologously expressed in Metarhizium 
anisopliae, which significantly increased its ability to kill pest insects 
(Wang and St Leger, 2007). Similarly, heterologous genes (e.g., 
peptaibol synthetic gene clusters from other Trichoderma species) may 
be introduced into T. harzianum to expand the range of its action. The 
safety of the engineered strains, however, should be  carefully 
evaluated, and the transfer of transgenic genes should be  well 
controlled (Stirling and Silver, 2020).

The multiplex genetic engineering of strains requires the 
development of highly efficient gene manipulation tools. Traditionally, 
polyethylene glycol-mediated and Agrobacterium-mediated 
transformation methods have been used to construct mutants in 
T. harzianum (Cai et al., 2021), which allowed gene overexpression and 
targeted genetic recombination (e.g., gene knock-out). New methods 
for strain engineering, for example, CRISPR/Cas9-based genome 
editing, have offered straightforward platforms to carry out multiplex 
genetic modifications in filamentous fungi (Kun et al., 2019; Wang 
Q. et al., 2021). The first application of CRISPR/Cas9-based genome 
editing in Trichoderma was reported in T. reesei (Liu et  al., 2015). 
Through recycling of selection marker genes, consecutive rounds of 
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gene deletion were achieved in T. reesei (Chai et al., 2022). Recently, 
this technique was used in T. harzianum to inactivate the pyr4 gene to 
construct an uracil-deficient strain (Vieira et al., 2021). The genome 
editing methods also have the advantage of being easy to achieve 
genetic modifications without introduce foreign DNA, which can 
overcome some restrictions on the use of GMOs. For heterologous 
expression of biosynthetic gene clusters, the assembly of large DNA 
fragments has been reported based on homologous recombination in 
yeast or directly in filamentous fungus (Chiang et al., 2021). These 
methods are expected to aid in the systematic genetic modification of 
T. harzianum for the development of next-generation biocontrol agents.

To be used under field conditions, the strains in biocontrol agents 
are required to be genetically stable and eco-friendly. Exogenous DNA 
is usually integrated to the chromosome to ensure stability in strain 
engineering of Trichoderma (Cardoza et  al., 2006a; Yang L. et  al., 
2011). So far, the only element reported for autonomous replication 
of plasmids in Trichoderma is AMA1 from A. nidulans (Kubodera 
et al., 2002). Such plasmids are easy to lose and not suitable for the 
construction of improved strains for practical application. On the 
other hand, the use of antibiotic-resistance genes as selectable markers 
in strain engineering could pose a threat to environment and public 
health. Therefore, it is better to use selection markers other than 
antibiotic-resistant genes (e.g., auxotrophic markers) or to remove 
antibiotic-resistance genes in the final strains (Zhao et al., 2016). With 
the use of advanced genetic manipulation technologies and well-
implemented risk assessments, engineered biocontrol strains have the 
potential to step out of laboratories to increase agricultural production 
in the near future.
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