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Triple negative breast cancer is distinguished by its high malignancy, aggressive
invasion, rapid progression, easy recurrence, and distant metastases. Additionally,
it has a poor prognosis, a high mortality, and is unresponsive to conventional
endocrine and targeted therapy, making it a challenging problem for breast cancer
treatment and a hotspot for scientific research. Recent research has revealed that
certain miRNA can directly or indirectly affect the occurrence, progress and
recurrence of TNBC. Their expression levels have a significant impact on TNBC
diagnosis, treatment and prognosis. Some miRNAs can serve as biomarkers for
TNBC diagnosis and prognosis. This article summarizes the progress of miRNA
research in TNBC, discusses their roles in the occurrence, invasion, metastasis,
prognosis, and chemotherapy of TNBC, and proposes a treatment strategy for
TNBC by interfering with miRNA expression levels.
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1 Introduction

The International Agency for Research on Cancer (IARC) of theWorld Health Organization
has released its latest global cancer data for 2020, revealing that breast cancer has surpassed lung
cancer as the most common cancer in the world for the first time. The survival rate of breast
cancer patients has significantly increased due to continuous advancements in early
identification, individualized treatment, and chemotherapy approaches. However, it remains
the leading cause of cancer-related deaths among women worldwide. Compared with other
BC(Breast cancer) subtypes, TNBC(Triple negative breast cancer) has a worse prognosis and a
higher early recurrence rate, typically with distant metastasis, owing to the absence of ER
(Estrogen receptor),PR (Progesterone receptor) and Her-2(Human epidermal growth factor
receptor 2) (Amorim et al., 2016; Volovat et al., 2020). TNBC makes for 10%–20% of all breast
cancer cases, and the patients tend to be increasingly young (Shen et al., 2015; Araujo et al., 2022).
Patients with metastatic TNBC have a median overall survival of about 18 months, and it is
significantly less than patients with PR, ER positive, andHER2 enriched diseases, whomay have a
survival time of more than 5 years (Vagia et al., 2020). In order to improve the survival rate, it is
necessary to identify its predictive biomarkers to assess metastatic rate, therapeutic effect, and
even to create novel therapeutic approaches. MicroRNAs (miRNAs) are one of the promising
molecular targets.

MiRNAs can be involved in regulating various pathophysiological processes, including
proliferation, stress response, cell adhesion, inflammation, as well as cell survival, aging and
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apoptosis, all of which are closely related to the development of
tumors (Xu et al., 2020; Rupaimoole and Slack, 2017). Multiple
investigations have demonstrated that miRNA can target certain
mRNAs to regulate a number of genes at the pre- and post-
transcriptional levels (Du et al., 2020), hence promoting tumor
growth, migration, invasion, angiogenesis, immune evasion and
chemotherapy resistance (Miyoshi et al., 2017; Qu et al., 2017).
(Figure 1) As a consequence, the abnormal expression of miRNA is
closely associated with the occurrence and progression of BC. Some
miRNAs have been identified to correlate with breast cancer
subtypes and can be serve as the potential therapeutic application
for BC. In perticular, miR-29a, miR-181a, miR-652 are related to
Luminal A subtype (McDermott et al., 2014), miR-342 Luminal B
subtype (Lowery et al., 2009), and miR-10b, miR-21 are related with
HER-2 positive subtype (Anfossi et al., 2014). Furthermore, miRNA
dysregulation contributes significantly to the activation or
repression of TNBC-related gene expression. In recent years,
numerous studies have discovered that the expression of miRNA
in tumor tissue or blood of TNBC patients differs significantly from
that of normal people, implying that miRNAmay be closely relevant
to the formation and progression of TNBC. High-throughput
sequencing techniques have been established and developed,
which has sped up and improved the accuracy of miRNA
identification and expression detection (Thomas et al., 2019). In
addition to traditional Northern blot method and fluorescent
quantitative PCR technology, the second-generation sequencing
(NGS) and microarray technology are being used to detect
miRNA expression level (Hamam et al., 2017). Many oncology

researchers use TCGA, GEO and other databases to analyze the
relationship between miRNA imbalance and tumor occurrence and
development (Urabe et al., 2019). This cutting-edge technique for
bioinformatics analysis is crucial for the creation of miRNA
biomarkers. In this paper, we reviewed recent research findings
on miRNA in the diagnosis and prognosis of TNBC, and evaluated
the prospects and viability of this field.

2 MiRNA with diagnostic and
prognostic function

TNBC lacks specific diagnostic and prognostic markers due to
tumor heterogeneity (Vargas and Harris, 2016). Currently, the
diagnosis of TNBC is primarily based on the pathological
detection and immunohistochemical detection, which is time-
consuming and costly. It will greatly improve the diagnosis and
treatment efficiency of TNBC, if one or several miRNAs can be
identified to guide the clinical diagnosis and prognosis of TNBC.
The prognosis can be early assessed using TNBC prognostic
markers, and improved with early intervention.

2.1 miRNA assisting in diagnosis of TNBC

The existence of tumor markers in serum may result from the
death of tumor cells, which are released into the blood after splitting,
or it is believed to result from the spontaneous secretion of tumor

FIGURE 1
miRNA targets mRNA, mediating its degradation, which enhance cell proliferation, tumor invasion, migration, angiogenesis, immune evasion and
chemotherapy resistance.
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cells. However, the mechanism underlying these two possibilities
needs further investigation. Changes in the biological origin of
microRNA, epigenetic regulation, transcription factors, and
mutant proteins all contribute to altered microRNA expression
patterns in breast cancer. It is reported that miRNA-9, miRNA-
10b and miRNA-17-5p are abnormally upregulated in TNBC and
have the potential to serve as diagnostic markers (Malla et al., 2019).
Kahraman et al. used microarrays and Real Time Quantitative
PCR(RT-qPCR)to assess the miRNA levels in the blood of
healthy women and TNBC patients. They discovered that
individuals with TNBC had considerably higher serum
concentrations of miR-144-3p, miR-144-5p, miR-126-5p, and let-
7d-5p than healthy women. Therefore, by identifying the presence of
the aforementioned four miRNAs in patients’ blood, it may be
possible to early diagnose TNBC (Kahraman et al., 2018). Using the
rank aggregation method to conduct meta-analysis and integrating
the miRNA expression profile data set of TNBC, Naorem et al.
discovered six kinds of seriously dysregulated miRNAs (miR-135b-
5p, miR-18a-5p, miR-9-5p, miR522-3p expression upregulated,
miR-190b and miR-449a downregulated) with high prediction
accuracy (Naorem et al., 2019). These six miRNAs may be a
promising candidate for TNBC diagnostic biomarkers. Yang et al.
demonstrated that the level of miR-195-5p in TNBC tissues is lower
than that in healthy tissues using TCGA RNA sequence data
analysis. Additionally, they measured the levels of miR-195-5p in
40 pairs of TNBC tissues and adjacent non-cancerous tissues,
showing that it was considerably downregulated in TNBC tissues
compared to paracancerous tissue (Yang et al., 2019). The above
miRNAs are expressed differently in TNBC and normal tissues, and
it is anticipated that they will function as biomarkers for the
diagnosis of TNBC.

As a result of the differentiating expression of several miRNAs
between TNBC and other types of BC, TNBC is predicted to be
identifiable in many BC patients and these miRNAs will likely serve
as biomarkers for differentiating between the various types of BC.
Braicu et al. discovered that the miR-17-92 clusters (miR-17, miR-
20a, miR-20b, and miR-93), miR-130, miR-22, and miR-29a/c can
distinguish TNBC and DPBC (double positive breakthrough
cancer, DPBC: ER+, PR+, Her-2) (Braicu et al., 2018).
According to Pascull et al., TNBC subgroups had the highest
levels of miR-155 expression relative to Luminal A and Luminal
B, and HER2 amplification subgroups (Pasculli et al., 2020).
Niedwiecki et al. examined the serum miR-200c levels in
patients with two different BC subtypes and observed that
TNBC patients had lower miRNA-200c levels than the ER/PR
positive group as a whole (Niedzwiecki et al., 2018). In addition,
there were statistically significant variations of miR-205 expression
levels in the BC patients with different ER/PR states. Both the PR
positive group and the ER positive group had higher levels of miR-
205 than the PR negative group and the ER negative group,
respectively. And the expression of miR-205 was found to be
considerably higher in the ER+/PR + group compared to the ER
-/PR - (i.e., TNBC) group. As a result, miR-205s low expression has
an indication for TNBC (Petrovic et al., 2022). (Table 1)

Some biomedical companies and universities have developed
specific miRNA detection kits for BC diagnosis in recent years, but
there has been no report on targeted miRNA detection kits for
TNBC diagnosis. We believe that it will be available soon.

2.2 miRNA assisting in determining
prognosis

It will be absolutely crucial for the treatment of TNBC if we
can predict the relationship between the up/downregulation of
particular miRNAs and the prognosis of TNBC in order to
determine the overall survival (OS), disease-free survival
(DFS), and distant metastasis free survival (DMFS) of TNBC
patients. We speculate that miRNA can be used as an effective
therapeutic strategy and prognostic marker for TNBC. Weng
et al. considered that the expression of the oncogene Multiple
Copies in T-cell Malignancy 1 (MCT-1/MCTS1), which
functions through MCT-1/miR-34a/IL-6/IL-6R, is a novel poor
prognostic sign for patients with TNBC. By preventing the
expression of IL-6R, which is supported by MCT-1, MiR-34a
can enhance the prognosis of TNBC (Tsiakou et al., 2019; Weng
et al., 2019). As a result, boosting miR-34a expression aids in
improving TNBC’s prognosis. MiR-374a-5p can target arrestin
beta 1 (ARRB1) and reduce its expression. Additionally, the
expression of ARRB1 is positively connected with the survival
rate of TNBC patients and negatively correlated with the
histological grade of breast cancer (Son et al., 2019). Tormo
et al. revealed that miR-449a high expression was noticeably
associated with favourable prognosis, whereas miR-449b/c was
unrelated to prognosis, based on their analysis of the GEO
database (Tormo et al., 2019). Using tissue microarray (TMA),
Yao et al. investigated the expression of miR-493 in breast cancer
samples and found that patients with high miR-493 expression
had improved DFS (Zhao et al., 2016a; Yao et al., 2018). Through
bioinformatics analysis, Qiu et al. noticed that miR-3163 was
connected to the poor OS of androgen receptor (AR) positive
TNBCs. These results indicate that miR-3163 may be promising
prognostic markers and therapeutic targets for AR positive
TNBCs (Qiu et al., 2021). Through meta-analysis, Qattan et al.
demonstrated an association of upregulated miR-93 and miR-210
with poor OS outcomes in TNBC patients (Li et al., 2017a; Du
et al., 2020; Qattan et al., 2021). Hsiao Chin Hong et al. mined
TCGA and GEO databases by logistic regression analysis and
Gaussian mixture model, and then used the Kaplan-Meier
method to conduct a comprehensive survival analysis,
revealing that miR-455-3p was significantly related to OS,
while miR-139-5p was significantly related to DFS, indicating
that them were related to the recurrence of TNBC (Li et al.,
2017b; Hong et al., 2020). All of the above investigations
demonstrated that some particular miRNAs were associated
with patient survival, prognosis, and recurrence and were
therefore considered to be potential prognostic markers of
TNBC (Table 2).

In conclusion, miRNA imbalance may become a potentially
important tool for identifying key biomarkers in patients with
TNBC. The above indicators can be detected by the patient’s
blood or tumor tissue, with high sensitivity and specificity. In
this case, miRNA not only can be employed as a potential
marker to distinguish TNBC from other breast cancer, but also
can be used as a biomarker, participating in canceration, predicting
prognosis and evaluating treatment response. It is anticipated to be
used in conjunction with conventional invasive biopsy to diagnose
TNBC and predict its prognosis.
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3 MiRNAs promoting tumor formation
and progression

Tumor academia has come to terms with the notion that miRNA
has a role in the initiation and progression of breast cancer, particularly
TNBC, a heterogeneous subtype of the disease. Breast cancer
progression is directly correlated with tumor growth, invasion,
migration, and angiogenesis. Currently, it has been proven that a
number of miRNAs participate in the aforementioned physiological
processes of TNBC tumor cells, which can encourage the formation and
progression of tumors. As a result, miRNA-based research is crucial for
the early diagnosis and management of TNBC.

miR-20a-5p promotes TNBC cell proliferation by targeting Run
related transcription factor 3 (RUNX3) and its immediate

downstream targets Bim and p21 (Bai et al., 2018). miR-135b is a
highly expressed miRNA in TNBC that targets the 3′-UTR of APC,
which helps tumor cells proliferate and metastasize (Lv et al., 2019).
A study in 2021 found that MDA-MB-231 cells (TNBC cells)
expressed more miR-301a-3p than MCF-10A cells (human breast
epithelial cells) did. Furthermore, miR-301a-3p overexpression can
suppress mesenchymal homeobox 2 (MEOX2) expression,
increasing the viability, migration and invasion of MDA - MB -
231 cells (Liu and Wang, 2021). In addition to targeting the
appropriate genes to control the development of TNBC, some
miRNAs can promote tumor progression by controlling the cell
cycle and thwarting tumor cell apoptosis. And miR-502 could
directly target H4K20 methyltransferase SET8, which is involved
in cell proliferation and cycle, to encourage the transition of the cell

TABLE 1 Diagnosis related MicroRNAs.

microRNA Type of deregulation in TNBC Samples type References

Differentially expressed miRNAs between TNBC and Non-TNBC

miRNA-9,miRNA-10b,miRNA-17-5p Upregulated Tumor Tissues Malla et al. (2019)

miR-144-3p, miR-144-5p, miR-126-5p and let-7d-5p Upregulated Serum Kahraman et al. (2018)

miR-135b-5p,miR-18a-5p, miR-9-5p, miR-522-3p Upregulated Tumor Tissues Naorem et al. (2019)

miR-190b,miR-449a Downregulated Tumor Tissues Naorem et al. (2019)

miR-195-5p Downregulated Tumor Tissues Yang et al. (2019)

Differentially Expressed miRNAs Between TNBC and other breast cancer (BC) Subtypes

miR-17–92 (miR-17,miR-20a,miR-20b and miR93)and miR-
130,miR-22, miR-29a/c

Upregulated Tumor Tissues Braicu et al. (2018)

miR-155-5p Upregulated Tumor Tissues Pasculli et al. (2020)

miR-200c Downregulated Tumor Tissues Niedzwiecki et al. (2018)

miR-205 Downregulated Tumor Tissues Petrovic et al. (2022)

TABLE 2 Abnormal expression of MicroRNAs that can judge prognosis.

MicroRNA Type of DeregulationIn
TNBC

Mechanism Biological
function

Referance

miR-34a Upregulated MCT-1/miR-34a/IL-6/IL-6R Poor OS Weng et al., (2019), Tsiakou
et al., (2019)

miR-374a-5p Upregulated Targeting ARRB1 Good OS and DMFS Son et al. (2019)

miR-449a Upregulated Sensitized cells to the treatment and reduced theresistance
to doxorubicin

Good OS Tormo et al. (2019)

miR-493 Upregulated Targeting of fucosyltransfer-ase IV Good DFS Yao et al., 2018, Zhao et al.,
(2016a)

miR-3163 Downregulated Targeting CCNB1 Poor OS Qiu et al. (2021)

miR-93 Upregulated SFPR1/Wnt/β-catenin Poor OS Qattan et al., (2021), Li et al.,
(2017a)

miR-210 Upregulated Targeting GPD1L to maintainHIF-1α stabilization and
CYGB to suppress p53

Poor OS Qattan et al., (2021), Du et al.,
2020

miR-445-3p Upregulated Targeting EI24 Poor OS Hong et al., 2020, Li et al., 2017b

miR-139-5p Downregulated Targeting ARF6 Poor DFS Hong et al. (2020)
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cycle from the G phase to the M phase (Liu et al., 2016; Cantini et al.,
2019). In TNBC tumor tissue, miR-301b was shown to be
upregulated, and Song et al. discovered that it directly bound to
the 3′-UTR of the CYLD lysine 63 diquinase mRNA to activate NF-
kB p65 and prevent 5-FU from inducing tumor cell apoptosis (Song
et al., 2018). Carcinogenic miRNA is linked to promoting the growth
and invasion of TNBC tumor cells as well as tumor metastasis.
Recently, Darbeheshti et al. discovered that miR-182-5p was
considerably upregulated in TNBC tumor tissues compared to
adjacent normal tissues, and that high miR-182-5p expression
has a strong correlation with larger tumors, higher tumor grades,
and positive lymph nodes. Moreover, miR-182-5p overexpression
accelerates TNBC development and lymph node metastasis by
downregulating the genes CHEK2 and RAD51 (Darbeheshti
et al., 2022). In some way, the progress of TNBC is maintained
by recruiting powerful tumor microenvironments (TMEs), which
are mainly composed of cancer related fibroblasts (CAFs) that can
recognize tumor markers. Scognamiglio et al. dicovered that the
synergistic action of miR-185-5p, miR-652-5p and miR-1246
promoting fibroblast migration, and specific cancer-associated
fibroblasts towards a pro-migratory functional state, finally
boosting TNBC progression and migration (Scognamiglio et al.,
2022). Wang et al. revealed that miR-1976 knockdown could
enhance EMT and CSCs in vitro by targeting PIK3CG
(Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit
gamma) (Wang et al., 2020). (Figure 2)

The abnormal expression of the above-mentioned miRNAs
in TNBC promotes tumor cell formation, proliferation,
invasion, and metastasis by targeting specific genes,
regulating the cell cycle, inhibiting tumor cell apoptosis,
and other mechanisms. These mechanisms also provide us
with new therapeutic strategies. Whether we can use inhibitors
of these molecules or block relevant signal pathways to control
TNBC tumor cell proliferation and invasion speed, or even
cause them to die due to a lack of relevant growth factors. A
significant number of miRNAs that are abnormally expressed
in TNBC are also listed in the TCGA and other tumor datasets
in addition to the miRNAs mentioned above. These miRNAs
can be employed as cancer-causing genes to take part in EMT,
CSCs maintenance, epigenetic alterations, and other
processes. Experiments are necessary to further our
demonstration.

4 MiRNA inhibiting tumor formation
and progression

Despite prior research on the role of miRNA in the initiation and
progression of cancers, the role of miRNA in TNBC is not limited to
this. It has been reported that some miRNAs can inhibit tumor
formation, proliferation, invasion andmigration, thereby preventing
TNBC progression.

FIGURE 2
Schematic presentation of miRNAs involvement in promotion of triple-negative breast cancer and relationship between miRNAs and epithelial-to
mesenchymal transition (EMT) and Cancer stem cells-like properties (CSC). Downregulated miR-502 enhance SET8 expression, which promotes EMT.
miR-1976 knockdown could enhance EMT and CSCs by blocking PIK3CG. Upregulation of miR-20a-5p suppresses RUNX3, which suppresses Bim and
p21. miR-301b is upregulated and represses CYLD, which block NF-KB p65. And high expression of miR-182-2p suppresses CHEK2 and RAD51.
Upregulated miR-135b, miR-301a-3p and miR-185-5p block APC, MEOX2 and TPD52, respectively.
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4.1 miRNA inhibiting tumor formation,
proliferation and invasion

MiRNA-29c prevents preneoplastic TNBC cells from
proliferating and populating the body by directly interacting with
and regulating TGFB-induced factor homeobox 2 (TGIF2), CAMP-
responsive element binding protein 5 (CREB5), and V-Akt murine
thymoma viral oncogene homolog 3 (AKT3). As a result, miRNA-
29c exerts significant influence during the early, preneoplastic
phases of TNBC development (Bhardwaj et al., 2017). Wu et al.
found that the downregulation of miR182-5p inhibits the
production of inflammatory factors and the activation of
inflammatory signals in TNBC cells by targeting FBXW7, thereby
inhibiting the proliferation and invasion of TNBC and promoting
apoptosis (Wu et al., 2020). Highly expressed in human TNBC
tissues and cell lines, miR-125b inhibits proliferation and metastasis
by binding 3′- UTR of APC, and preventing Wnt/β-catenin
signaling pathway and EMT in cells (Nie et al., 2019). Lee et al.
discovered that miR-496, which targets Del-1, prevents TNBC
cancer cells from proliferating (Lee et al., 2021). MiR-890
negatively regulates the target gene CD147 in TNBC cells, which
suppresses cell proliferation and invasion and induces apoptosis
(Wang et al., 2019a). By interacting with the 3′-UTR of
EZH2 mRNA, miR-1301 inhibits the proliferation, migration,
and colony formation of TNBC cells after overexpression both in
vivo and in vitro (Wu et al., 2018).

The above miRNAs inhibit the proliferation and invasion of
TNBC by targeting specific genes. It is hoped that more mechanisms
can be found in the future to inhibit the progress of TNBC.

4.2 miRNA inhibiting tumor metastasis

The capacity of primary breast cancers to metastasize is a
essential aspect when grading and staging tumors and
determining therapeutic approaches based on their clinical
characteristics. Tumor suppressor miRNAs are vital for
preventing the invasion, metastasis, and migration of tumor cells.
Ismael et al. believed that overexpression of miR-149 in MDA-MB-
231 cells inhibited THP-1 macrophage recruitment. By targeting
CSF1, miR-149 inhibits CSF1 dependent communication between
TNBC cells and THP-1 macrophages, thereby blocking the
paracrine interactions between MDA-MB-231 cells and THP-1
cells and inhibiting breast cancer metastasis (Sanchez-Gonzalez
et al., 2020). By MTT, colony formation, Transwell,
xenotransplantation models in naked mice, Zhang et al. revealed
that miR-574-5p levels were decreased in breast cancer tissues and
cells, inhibited the proliferation, migration, and EMT of TNBC cells,
and decreased the size and metastasis rate of tumors in vivo (Zhang
et al., 2020). Additionally, some miRNAs target the corresponding
targets to prevent local lymph node metastasis and/or distant
metastasis of TNBC. Examples include miR-33b targeting
HMGA2, SALL4, and Twist1 (Lin et al., 2015), miR-124 targeting
ZEB2 (Ji et al., 2019), miR-126-3p targeting regulator of G protein
signal 3 (RGS3) (Hong et al., 2019), miR-130a targeting FOSL1 and
zona occludens 1 (zonula clusters 1, ZO-1 or called TJP1) (Chen
et al., 2018), miR-145 targeting ARF6 (ADP-ribosylation factor 6)
(Eades et al., 2015).

Some miRNAs can prevent TNBC from progressing by blocking
the proliferation and peripheral infiltration of tumor cells as well as
local and distant metastasis. The first discovered epigenetic
regulated miRNA, miR-127, has been shown to target the gene
BL6 (Saito et al., 2006) and suppress its expression in breast cancer
(Chen et al., 2013; Wang et al., 2014). Garcia et al. confirmed that
miR-127PD drastically decreased the activity of TNBC cells. And
they observed a reduction in lung metastasis in mice treated with the
miR-127PD system (Umeh-Garcia et al., 2020). miR-127PD also
significantly reduced the spherulation capacity of four TNBC cells
(MDA MB-231, MDA MB-157, MDA MB-468, HCC 1937), which
was more effective than miR-34a (Raver-Shapira et al., 2007; Zhao
et al., 2015; Adams et al., 2016; Zhao et al., 2016b). While miR-
127PD is the precursor of miR-127-3p, which accumulates in cells
after being processed and matured. Therefore, it makes sense to
assume that miR-127-3p can prevent TNBC tumor cells from
proliferating. They further used the tumorsphere assays, a widely
accepted stem cell function test, and confirmed that miR-127
inhibited CSC, which has been of great significance in preventing
the metastasis of TNBC and disease recurrence (Umeh-Garcia et al.,
2020). (Table 3)

Metastasis is the most serious complication and leading cause of
death in cancer patients. At present, breast cancer patients with
distant metastasis essentially no longer have access to surgical
treatment, and the median survival time is measured in months.
TNBC has a greater capacity for invasion and metastasis than other
BC types. If the key miRNAs that can promote the invasion and
metastasis of TNBC are identified and blocked, the local metastasis
of tumor cells, the ability of distant metastasis, and the mortality can
be reduced, as well as the chance of radical surgery and the survival
period can be increased. TNBC patients can benefit significantly
from this.

5 Relationship between MicroRNA and
chemotherapy resistance of tumor

Chemotherapy resistance is a major hindrance to neoadjuvant
therapy. Unfortunately, treatment resistance is highly common, and
this is one of the leading factors contributing to TNBC patients’ poor
prognosis. MiRNA expression disorders, such as the upregulation of
carcinogenic miRNA and the downregulation of tumor suppressor
miRNA, are frequently seen in chemotherapy-resistant cancer cells.
The uncontrolled expression of miRNA can be extrapolated into a
direct connection to TNBC’s treatment resistance. It is now widely
acknowledged that doxorubicin and platinum resistance are related
to aberrant miRNA expression. Other chemoresistance research
with miRNA are increasingly conducted as well.

5.1 miRNAs associated with doxorubicin and
platinum chemoresistance

It is reported that the downregulation of miR-129-5p makes it
resistant to doxorubicin (DOX or adriamycin) by promoting the
apoptosis resistance induced by Sex-Determining Region Y-Box 2
(SOX2) (Zeng et al., 2018). By downregulating the multidrug
resistance gene 1 (MDR1) and decreasing DOX efflux, increasing
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miR-145 expression can boost the sensitivity of MDA-MB-231 cells
to DOX both in vitro and in vivo (Wang et al., 2021). While miR-154
promotes nicotinamide phosphoribosyltransferase (NAMPT),
which further increases DOX chemical resistance, to prevent cell
death (Bolandghamat Pour et al., 2019). Adenosine triphosphate
binding cassette (ABC) transporter overexpression is the primary
mechanism of acquired drug-resistance in multidrug-resistant
cancer (Robey et al., 2018). While the increase of ABCC3(ATP
binding cassette transporter family class C3) is related to the
reduction of miR-181b-2-3p in MDA-MB-231/DOX (MDA-MB-
231 cells resistant to DOX), decreasing the sensitivity of TNBC cells
to DOX (Zeng et al., 2020). Furthermore, some miRNAs, such as
miR-26a-5p, miR-142-3p, miR-200, and miRNA-5195-3p, are
correlated with PTX resistance. Upregulation of miR-26a-5p
promoted cellular cytotoxicity of PTX in vitro and in vivo (Li
et al., 2021a). Higher miR-142-3p expression increased sensitivity
to PTX treatment (Shi et al., 2023). MiRNA-200 inhibited PTX
resistance (Li et al., 2018). PTX-resistant TNBC cells responded
better to PTX therapy when miR-5195-3p was upregulated (Liu
et al., 2019).

Platinum based first-line treatment are typically effective against
breast cancer, and they can increase patients’ DFS, PFS, and ORR in
both the early and late stages of TNBC. However, many patients with
TNBC experience recurrence due to drug resistance, which lessens
the therapeutic impact of cisplatin (DDP) on TNBC.MiR-105/93-3p
is overexpressed in TBNC, which activate Wnt/β-catenin transmits
signals by downregulation of SFRP1, thus endowing TNBC cells
with cisplatin resistance (Li et al., 2017a). MiR-145-5p inMDA-MB-

231 cells induces apoptosis and increases sensitivity to cisplatin
therapy by downregulating transforming growth factor TGFβR2,
albeit the precise regulatory mechanism is still unknown (Garcia-
Garcia et al., 2019). And, the upregulation of miR-423-5p
contributed to the drug resistance of MDA-MB-231 cells and had
a substantial impact on the DDP resistance (Wang et al., 2019b).

Through pertinent pathways, these miRNAs contribute to
doxorubicin and platinum resistance in TNBC. It is hoped that
drug resistance can be overcome in the future to maximize the anti-
tumor efficacy of doxorubicin and platinum.

5.2 MiRNAs that cause chemoresistance
through other mechanisms

MiRNAs can directly target associated proteins or further
regulate related signal pathways to regulate chemotherapy
resistance. According to Cheng et al., chemotherapy-resistant
cells have significantly higher levels of FSTL1, which was
necessary for DDP and DOX chemoresistance in breast cancer
cell lines. And there was a miR-137/FSTL1/integrinβ3/Wnt/β-
Catenin signal axis maintaining stemness and enhancing
chemoresistance in breast cancer cells (Cheng et al., 2019). Saatci
et al. believed that inhibiting lysyl oxidase (LOX) can decrease
collagen cross-linking and fibronectin assembly, boost drug
absorption, and downregulate the expression of ITGA5/FN1,
which inhibits FAK/Src signal transduction, induces apoptosis,
and boosts chemotherapy sensitivity. Upregulation of miR-142-3p

TABLE 3 MicroRNAs inhibit TNBC.

MicroRNA Change in
TNBC

Mechanism Biological function References

Inhibit proliferation and invasion

miRNA-29c Downregulated Targeting TGIF2, CREB5 and AKT3 Inhibit proliferation Bhardwaj et al. (2017)

miR-182-5p Downregulated Targeting FBXW7 to regulate TLR4/
NF-κB pathway

Inhibit proliferation and invasion Wu et al. (2020)

miR-125b Upregulated Targeting APC to regulate Wnt/β-
cateninpathway

Inhibit proliferation and invasion Nie et al. (2019)

miR-496 Downregulated Targeting Del-1 Inhibit proliferation and invasion Lee et al. (2021)

miR-890 Downregulated Targeting CD147 Inhibit proliferation and invasion Induces apoptosis Wang et al. (2019a)

miR-1301 Upregulated Targeting EZH2 Inhibit proliferation, invasion and colony formation Wu et al. (2018)

inhibit migration

miR-149 Upregulated Targeting CSF1 Inhibit metastasis Sanchez-Gonzalez et al.
(2020)

miR-574-5p Downregulated Targeting SOX2 and BCL11A Inhibit proliferation, invasion and EMT Zhang et al. (2020)

miR-33b Downregulated Targeting HMGA2, SALL4 and Twist1 Inhibit metastasis and CSC Lin et al. (2015)

miR-124 Downregulated Targeting ZEB2 Inhibit EMT and metastasis Ji et al. (2019)

miR-126-3p Downregulated Targeting RGS3 Inhibit proliferation, migration, invasion, colony formation
capacity and angiogenesis

Hong et al. (2019)

miR-130a Upregulated Targeting FOSL1 and ZO-1 Inhibit metastasis and invasion Chen et al. (2018)

miR-145 Downregulated Targeting ARF6 Inhibit metastasis and invasion Eades et al. (2015)
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expression can target HIF-1α/The LOX/ITGA5/FN1 axis further
inhibits the chemoresistance of TNBC (Saatci et al., 2020). As a
tumor inhibitor, miR-17 inhibits the resistance of TNBC to DDP by
promoting the expression of cell cycle inhibitor p27 and apoptosis.
Therefore, miR-17, as a tumor chemotherapy sensitizer, may be an
effective biological target to combat TNBC resistance (Wang et al.,
2019c).

Additionally, a variety of mechanisms, including altered cell
cycle and DNA damage regulation, decreased drug absorption,
increased drug excretion, and others, might affect cancer drug
resistance (Najminejad et al., 2019; Si et al., 2019). MiRNAs, as
tissue specific regulators of the entire gene network related to drug
resistance, have become research frontiers. Qattan et al. found that
with had significantly aberrant expression of miR-19a/b-3p, miR-
25-3p, miR-22-3p, miR-210-3p, miR-93-5p, and miR-199a-3p in
TNBC patients is relavent to chemotherapy resistance. These
miRNAs control the PAM (PI3K/Akt/mTOR), HIF-1, TNF,
FoxO, Wnt and JAK/STAT, PD-1/PD-L1 pathway and EGFR
tyrosine kinase inhibitor resistance (TKI) respectively (Qattan
et al., 2021). In addition to miRNAs involved in chemotherapy
resistance through the above mechanisms, some miRNAs can
function as oncogenes. Their upregulation promotes
chemotherapy resistance by inhibiting TNBC cell apoptosis, such
as miR200a (Yu et al., 2018), miR-221/222 (Li et al., 2019), and
miR1207-5p (Hou et al., 2019).

These indicators are especially well suited for addressing the
treatment resistance issue of this clinically challenging subtype of
breast cancer due to the mounting evidence of miRNA imbalance in
TNBC. There is increasing number of studies on miRNA in
chemotherapy resistance. We can consider using appropriate
miRNA inhibitors or mimics to reverse the resistance to
conventional chemotherapy drugs and enhance the effect of
chemotherapy drugs. At present, this article focuses on the
relationship between miRNA abnormal expression and DOX and
platinum resistant TNBC. The connection between miRNA and
chemoresistance to drugs like paclitaxel, cyclophosphamide, and
capecitabine will then receive additional focus (Mini et al., 2006; Saif,
2009; Li et al., 2018; Zeng et al., 2018; Bolandghamat Pour et al.,
2019; Iqubal et al., 2019; Liu et al., 2019; Martins-Teixeira and
Carvalho, 2020; Zeng et al., 2020; Li et al., 2021a; Wang et al., 2021;
Shi et al., 2023). In conclusion, many miRNAs’ drug resistance
mechanisms have not yet been completely grasped, necessitating
more research (Table 4).

6 miRNA and precision oncology

Precision oncology seeks to identify individual differences based
on the personal genetic information of cancer patients, comprehend
the phenotypes of disease, and direct personalized treatment (Yu
and Snyder, 2016). Genomics provides valuable information on
driving mutations and risk loci, while transcriptomics describes
multiple expression patterns of mRNA and non-coding RNA
(ncRNA), which can aid in deciphering genomic codes (Ma
et al., 2018). The abnormal expression of miRNA in TNBC is
also within the scope of precision oncology study because it is an
indispensable component of ncRNA in the genome. By analyzing
data from The Cancer Genome Atlas (TCGA), numerous scholars

have currently examined the imbalance of miRNA in TNBC (Yang
et al., 2019; Hong et al., 2020). Thanks to advancements in RNA
sequencing, microarray technology, and high-throughput
sequencing technology, more miRNA anomalies in TNBC have
also been revealed.

In the previous section, we have described the abnormal
expression of many miRNAs in TNBC. Upregulated oncogenic
miRNAs may act as tumor promoters to increase the
proliferation and/or invasion of TNBC cells, whereas
downregulated tumor suppressor miRNAs may serve as tumor
inhibitors to inhibit cancer cell growth, induce apoptosis, and
enhance metastasis. Antisense oligonucleotides, miR mimics, and
chemical modification of miRs are examples of current miRANA-
based treatments (Nagini, 2017). Through the aforementioned
techniques, it might be feasible to downregulate the expression of
oncogenic miRNAs and upregulate the expression of tumor
suppressor miRNAs, to inhibit the proliferation and invasion of
TNBC. Many investigtions have demonstrated that miRNA can
target related genes and obstruct their protein translation (Bai et al.,
2018; Cantini et al., 2019; Lv et al., 2019; Son et al., 2019) (Wang
et al., 2019a; Wu et al., 2020; Lee et al., 2021), which is connected to
regulating tumor progression, chemotherapy resistance, and tumor
immune surveillance. In the event that modifying the levels of
miRNA prove to be challenging, we propose a hypothesis that
corresponding antibodies can be created to attach to carcinogenic
proteins and render them inactive, thereby slowing tumor
progression. Furthermore, based on the abundance and pattern
of miRNAs expression, BC subtypes could be reclassified, and the
principal roles of relatedmiRNAs were used to determine the precise
biological functions of malignancies. Especially TNBC, the tumor is
extremely heterogeneous, with ambiguous characteristics, and at this
time there is no targeted medication. Therefore, precise target
research orientig miRNA to provide individualized treatment for
patients will be a blessing for all patients with TNBC.

7 Discussion

Breast cancer, the most frequent malignant tumor in women,
has put women’s lives in danger worldwide. TNBC, lacking ER, PR
and HER-2 expression, has a poor prognosis and is more prone to
relapse due to the inability to use endocrine and monoclonal
antibody targeted therapy. Epigenetic control, transcription
factors, and/or mutant protein control alterations all contribute
to altered miRNA expression patterns in breast cancer. Therefore,
persistent aberrant miRNA expression may result in the
development of tumors. This paper focuses on the role of
particular miRNAs in the occurrence, development, and
recurrence of TNBC. It also aims to identify some biomarkers
that may reliably diagnose TNBC and assess the prognosis from
a large pool of miRNAs in the future, so as to improve the prognosis
of patients.

Despite numerous research on miRNA, there are currently a few
precise, repeatable biological targets for the treatment of TNBC.
Some studies have confirmed that miRNA is involved in regulating
various metabolic pathways in cells. From the perspective of
metabonomics, we can investigate whether miRNAs in TNBC
modulate particular metabolic pathways of TNBC in the future,
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and then discover novel targeted biomarkers. The therapeutic
scheme targeting miRNA may bring hope for the treatment of
TNBC. A certain miRNA’s up- or downregulation, however, may
affect the epigenetics of other tissues and cells, or potentially cause
malignant changes, as many miRNAs do not exclusively target
breast cells. As a result, there may be some application concerns
with miRNA-targeted therapy for TNBC. It is worth considering
whether changing the expression of miRNA will cause secondary
tumors and damage other parts of the human body, and we must
tread cautiously.

Along with miRNA, ohter RNAs, including LncRNA and
CircRNA in ncRNA, have also been dicovered to be variably
expressed in TNBC. And mounting evidence indicates that they
may develop into potential biomarkers for diagnosis and
prognosis, therapeutic targets, and improve the clinical
outcomes for TNBC patients. For example, elevated expression
of lncRNA H19 can be used to predict the efficacy of neoadjuvant
chemotherapy (NAC) (Ozgur et al., 2020). NRAD1 is enriched in
TNBC populations and is associated with a poor survival rate
(Vidovic et al., 2020). And CircSEPT9 (Zheng et al., 2020),
CircCD44 (Li et al., 2021b), etc., can be used as indicators of
TNBC. It is interesting to note that lncRNA and circRNA can
associate with miRNA, which affects how TNBC occurs and
develops. The competitive endogenous RNA (ceRNA) theory
(Salmena et al., 2011) postulates that lncRNA may function as
a “sponge” for miRNA, competing with miRNA-targeted mRNA

and influencing miRNA-mediated gene regulation (Poliseno
et al., 2010; Cesana et al., 2011). CircRNAs can also regulate
the proliferation, invasion and tumorigenesis of TNBC positively
or negatively through the circRNA-miRNA-mRNA axis (Tian
et al., 2021). This provides a theoretical foundation for our
upcoming research on non-coding RNA medications used in
combination to treat TNBC.

With a thorough study of TNBC, it is discovered that TNBC can be
classified into various subtypes based on different traits and analytical
techniques. In the future, we can further study the relationship between
miRNAs and different TNBC subtypes, clarify that specific miRNAs
play a role in promoting or inhibiting tumor progression in TNBC
subtypes, and carry out precise individualized treatment to improve the
efficacy. Although the impact of abnormally expressed miRNAs on the
development of TNBC has been extensively investigated and the
mechanism of some miRNAs has also been revealed. However,
therapeutic application of exogenous miRNAs for the treatment of
TNBC is rare due to their instability and low specificity in vivo.
Consequently, it is vital to find solutions to the challenges of
miRNA medication stability optimization and miRNA delivery
improvement. The addition of miRNA degradation inhibitors can
reduce miRNA decomposition and improve the drug stability of
miRNA, thereby improving the efficacy. Secondly, medication
delivery effects can be maximized and gene targets can be more
precisely combined with the aid of nanotechnology or the
employment of more than two carriers in a synergistic manner. This

TABLE 4 Common chemotherapeutic drugs for TNBC.

Chemotherapy
drugs

Mechanism Common
drugs

MiRNAs associated with
drug resistance

References

Anthracyclines Acting via DNA insertion, oxidative stress
production, and topoisomerase II
poisoning

Doxorubicin miR-129-5p,miR-145 Zeng et al., 2018, Wang et al., 2021,
Bolandghamat Pour et al., (2019),
Robey et al., 2018, Zeng et al., 2020,
Martins-Teixeira and Carvalho, (2020)

Epidoxorubicin miR-154,miR-181b-2-3p

Paclitaxel Promoting intracellular tubulin
polymerization and stabilizes abnormal
microtubule structures against
depolymerization

Docetaxel miR-26a-5p, miR-142-3p,miR-
200,miRNA-5195-3p

Li et al., 2021a, Shi et al., 2023, Li et al.,
2018, Liu et al., (2019)

Nab-paclitaxel

Platinum Cross-linking with bases on the DNA
chain, damaging the structure and
function of DNA

Carboplatin miR-105/93-3p,miR-145-5p,miR-
423-5p

Li et al., 2017a, Garcia-Garcia et al.,
(2019), Wang et al., 2019b

Cisplatin

Oxaliplatin

Cyclophosphamide Undergoing hepatic metabolism and
producting aldophosphamide, which
decomposes into phosphoramide mustard
and acrolein in tumor cells to act cytotoxic
effects

Iqubal et al. (2019)

Capecitabine Entering the body and converting into 5-
FU, which is incorporated into RNA in a
competitive inhibition manner to
interfere with protein synthesis

Saif (2009)

Gemcitabine Its main metabolite incorporated into
DNA within the cell and mainly acting on
the G1/S phase, and inhibiting nucleotide
reductase, leading to a decrease in
intracellular deoxyribonucleotide
triphosphate, and inhibiting
deoxycytidine deaminase to reduce the
degradation of intracellular metabolites

Mini et al. (2006)
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review’s key goals are to advance effective, less invasive treatment
options, raise awareness of the role of miRNA in the emergence of
TNBC, and enhance the prognosis for TNBC as much as feasible.
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