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1 Introduction

One of the big philosophical questions in life is whether there is free will or everything is

predetermined. In either perspective, randomness seems to be non-existent. The outcome of

a coin toss is determined by the precise manner in which the coin is tossed. Whether this

manner is freely chosen or the result of a series of chemical and physical reactions in your

brain, there is no randomness involved. Even so, it is hard to predict the outcome of the coin

toss simply because we are unable to take into account every little detail that has an effect on

the outcome. One can imagine that the effects of processes underlying events more involved

than a simple coin toss are nearly impossible to incorporate. In a world where no event can

be predicted with perfect accuracy, the mathematical theory behind randomness, probability

theory, serves as an incredibly useful alternative.

Simple random events (such as a coin toss) can be represented by random variables : variables

that have multiple possible outcomes according to given probabilities (for a coin toss: heads

and tails each with probability 1

2
). The set of all outcomes together with their probabilities is

called the distribution of the random variable.

Rather than singular events, phenomena in practice often evolve over time (weather, traffic,

stock values, download speed etc.). Where isolated events are modeled by random variables,

these time-dependent phenomena can be modeled by stochastic processes. The idea is that at

each point in time the process has a certain value, which is determined by the outcome of a

random experiment. One could think of a gambler’s profit after each spin of the roulette wheel,

the number of cars in front of a given traffic light throughout the day, or the evolution of the

temperature at a fixed location. Each of these examples comes with its own questions. What is

the gambler’s average profit or loss per spin? How likely is it that a car arriving at the traffic

light finds more than five cars already present? What will be the temperature ten days from

now? Mathematical analysis of stochastic processes is required to answer these questions.

Mathematical analysis is a very broad concept, as there exist numerous approaches to analyze

a mathematical problem. On the one hand, we have exact approaches leading to provably

correct mathematical formulas. Although their perfect accuracy makes them preferable to other

approaches, exact solutions are often beyond reach and thus they are not always available for

any given problem. On the other hand, we have approximate approaches including simulation

and the exact study of simplified models. These approaches are more often available, but come

at the cost of inaccuracy.

In this thesis, we focus on a set of approaches that can be both exact and approximate:

asymptotics. While a proper description of this word’s meaning is given in Section 1.2, a short

definition could be that asymptotics are mathematical characterizations of limiting behavior.

As an example, say that the value of a function g(x) becomes arbitrarily close to the value of

f(x) when x is large enough, as in Figure 1.1, where g(x) =
√
x2 − 2x + 4 and f(x) = x − 1.

1



2 Introduction

Figure 1.1: The asymptotic behavior of g(x) as x grows large.

We say that g(x) is asymptotically equal to f(x) as x grows large.

This thesis describes a selection of problems and their solutions, where for each problem

an asymptotic approach is used to obtain theoretical results on a certain stochastic process.

Section 1.1 serves as a general introduction to stochastic processes, and describes two stochastic

process “building blocks” that form the basis of the processes considered in this thesis. Then, an

extensive introduction to asymptotics is given in Section 1.2, in which asymptotic approaches

are divided into two types. Three unique combinations of asymptotic approach type and

stochastic process building block separate the thesis into Parts I, II and III. A summary of

each part is presented in Section 1.3, and Section 1.4 discusses some common notation.

1.1 Stochastic processes

Stochastic processes range from fairly simple to very involved. They can be subdivided into

four classes, corresponding to the time component and value component being either discrete

or continuous. We now describe the most fundamental examples of each of the classifications.

Named after the Russian mathematician Andrey Markov sr. in the early 20-th century, the

discrete-time Markov chain [81] is the classic discrete-time discrete-valued stochastic process.

In this model, time and value are indexed by the natural numbers (although any countable set

suffices), and the value (or state) of the process at a given time step is assumed to be dependent

only on the value at the previous time step. One can translate this model to continuous time

by moving from unit time steps, to time steps that are exponentially distributed with rate

depending on the current value. The resulting stochastic process is called a continuous-time

Markov chain. We refer to [94] for extensive theory on both discrete-time and continuous-time

Markov chains.

An important continuous-valued process in discrete time is the (continuous-valued) random

walk. Such a process starts at some given initial value and at each time step adds an independent

sample of the continuous random variable X to the current value of the process. This way, a
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Figure 1.2: Examples of a discrete-time Markov chain (filled circles), continuous-time Markov chain

(dashed line), random walk (empty circles) and Brownian motion (solid line).

discrete-time process with independent and identically distributed increments is formed. As an

example of the final classification (continuous in both time and value) we have the Brownian

motion (history and important results in [91]), which can be seen as a continuous-time analogue

of a random walk. This process with continuous erratic movements up and down forms the

basis of stock value models. The increments of a Brownian motion are still independent and

identically distributed (normally distributed in fact), but the process is defined at any point

in time, rather than only at time steps.

Figure 1.2 shows a sample path of all four stochastic processes described above. Note that

discrete-time processes only have values on the vertical lines, and that discrete-valued processes

only have values on the horizontal lines.

In the remainder of this section, we introduce two stochastic system “building blocks”, queues

and Lévy processes, in which stochastic processes are studied (in fact, the Lévy process is itself

a stochastic process). We also point out how the more advanced models considered in this

thesis are based on these building blocks.

1.1.1 First building block: queues

Being a stochastic research area with a very large variety of applications, queueing theory

(an accessible introduction can be found in [57]) comprises the study of congestion caused

by multiple entities requiring the same service. The words “entities” and “service” here are

deliberately unspecific. Examples of their respective interpretations include customers and

checking out at the cash register, cars and crossing an intersection, unfinished products and

processing, data packets and downloading, and so on. Without thinking about it, we encounter

dozens of queues every day.

With so many applications the need to study queues is clear. Whether we would like to obtain



4 Introduction

Figure 1.3: Graphical representation of a queue with one server.

information on waiting times or queue length, maximize the customer throughput, or reduce

the cost caused by delay, mathematical results on a broad range of queueing models are

valuable.

Queueing theory has its origin in a call center. In order to determine how many telephone

operators were needed to handle incoming calls, the Danish mathematician Agner Erlang

constructed a probabilistic framework to model call center systems [44]. Many mathematical

objects are named after Erlang, including a class of probability distributions, various queueing

models and a programming language.

The most standard model of a queue, however, is not Erlang’s call center model, but the

so-called M/M/1 FCFS queue. This system is defined by an arrival process, the service times

and the service condition as follows:

• the times between consecutive arrivals are independent and exponentially distributed

(first M),

• the service times of customers are exponentially distributed (second M), independent of

each other and of the arrival process, and

• there is one server (1) that always serves customers in first-come, first-served (FCFS)

order.

See Figure 1.3 for a graphical representation of the M/M/1 FCFS queue. Due to the fact

that times between events (arrivals and service completions) are exponentially distributed,

the number of customers in this queue can be modeled by a continuous-time Markov chain.

Therefore, mathematical results on Markov chains can be used to reveal valuable information

about the queue.

Much is known about the M/M/1 FCFS queue since the theory on continuous-time Markov

chains is well developed. However, extensions of this basic model in various different directions

can be considered. One could think for instance about a generalization of the times between

arrivals and/or service times, a variable number of servers, or impatient customers.

Two other types of extensions are important in this thesis. In Part I, we consider different

prioritization rules (scheduling policies) for the order in which to serve the available customers.

Examples are policies where the priority goes to the customer that arrived last rather than

first (last-come, first-served), or where the capacity of the server is shared equally among all

customers (processor-sharing). Evaluating the performance of different scheduling policies

is crucial, since the optimal policy strongly depends on the model and on the performance

metric (average waiting time, making deadlines, etc.). We focus in Part I on an asymptotic

performance metric, in that we study the probability that the waiting time exceeds t in the

limit where t grows large.
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Rather than considering a queue in isolation, we study in Part II a network of queues. The

key feature of such models is that customers do not necessarily leave the system when their

service is completed, but instead can be assigned a (possibly random) next queue to join [71].

Queueing networks frequently arise in computer systems and manufacturing, which motivated

much research in this area. Particularly noteworthy is the pioneering work of R. Jackson

[63] and J. Jackson [62], in which it was established that the lengths of the different queues

behave essentially independently when the network has external arrivals and departures. If

this condition does not hold, the dependence between the different queues of the network

poses a challenge for mathematical analysis, especially if the network consists of many queues.

In turns out in Part II that elegant results can be obtained by using an asymptotic alteration

of the model in which the throughput of all queues grows large.

The core of Part III’s topic lies (seemingly) outside of queueing theory. In the next subsection,

we introduce a second stochastic system building block for that part of the thesis, and we

briefly comment on its relation with queueing.

1.1.2 Second building block: Lévy processes

The Lévy process is among the most fundamental stochastic processes, named after the French

mathematician Paul Lévy. Essentially, Lévy processes comprise all continuous-time stochastic

processes that develop independently of time and of their past [77]. Because of this property,

the Lévy process can be seen as the continuous-time counterpart of the random walk. See

Figure 1.4 for an example.

Remark 1.1.1. Formally, a continuous-time and continuous-valued process is a Lévy process if

(i) the behavior of the process after any time t is independent of the values of the process

before time t,

(ii) the increments of the process during equally sized time intervals have the same probability

distribution, and

(iii) the process is continuous from the right and limits from the left exist.

This final condition is quite technical, and serves, informally stated, to exclude the possibility

of infinitely many jumps of non-negligible size in any finite time interval. For a detailed account

of Lévy processes we refer to [73]. ⋄

A Lévy process can be seen as a generalization of the Brownian motion that we described

at the start of Section 1.1. Because of its versatility, the Lévy process is frequently seen in,

e.g., finance models, for instance as a representation of some stock value over time. In order

to make profit, it is of key importance to learn about the underlying stochastic process. The

ability to model stock values is one of the reasons why the study of the Lévy process is popular

in mathematics.

Applications are not limited to finance, though. For instance, risk processes in insurance

models are often represented by a Lévy process. Additionally, there exist intriguing relations



6 Introduction

Figure 1.4: Sample path of a Lévy process.

between Lévy processes and queues, such as the maximum of a Lévy process having the same

probability distribution as the workload of an associated queue.

In more advanced practical settings however, conditions (i) and (ii) are often not met. This is

typically caused by the frequently occuring phenomenon that the dynamics of the Lévy process

are influenced by external factors. As a consequence, Markov additive processes (MAPs) have

received considerable attention [7, Ch. XI]. In a MAP, the external factors are modeled by a

continuous-time Markov chain, and it behaves as a Lévy process with parameters depending on

the current state of the Markov chain. In Part III of this thesis, we investigate the probability

that the MAP exceeds a given threshold value. Among other things, we perform an asymptotic

study of how this probability decreases when the threshold value grows large.

1.2 Asymptotics

The focus of this thesis lies on asymptotics of stochastic processes [126]. In this section,

we introduce the term asymptotics through an example, explore advantages of asymptotic

approaches and make a distinction between two types of asymptotics.

1.2.1 Motivating example

Suppose that we are interested in the value of a random walk at time step 5. Note that

this value is equivalent to the sum of five independent samples of the same random variable.

Computing the exact distribution of this sum is a tedious task because each possible outcome

can be generated by many combinations of the individual random variables. With 50 random

variables (time step 50 for a random walk), the possibilities are nearly countless and in most

cases impossible to calculate even for a computer.

The better option is to make use of a famous mathematical result (to which Lévy made

significant contributions): the central limit theorem [46]. It states that a sum of independent

and identically distributed random variables behaves, after appropriate normalization, as a

random variable with a normal distribution as the number of variables in the sum approaches

infinity. This might seem a bit hypothetical, since in practice who ever considers an infinite
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sum of random variables? The great property of the central limit theorem is that it gives

remarkably accurate approximations for relatively small sums.

To demonstrate this property, consider an experiment where we toss a fair coin 50 times

and count the number of heads. This number can be theoretically described as a sum of 50

independent random variables, each being either 0 or 1 with equal probability. When we use

the central limit theorem for calculating, say, the probability of at least 30 heads, we get the

approximate probability of 0.1015. For comparison, the actual probability (which can still be

computed for this simple example) of 0.1013 is very close.

The central limit theorem is an example of an asymptotic result. Asymptotics are mathematical

characterizations of limiting behavior, in all imaginable forms. One could think of one or more

parameters approaching some boundary value. Or of analyzing how unlikely it becomes for a

certain random variable to take larger and larger values. What kind of limit is taken varies,

depending on the model and in what kind of results one is interested.

1.2.2 Advantages of asymptotic approaches

We now describe a number or reasons why asymptotics are highly relevant. First, the number of

states of a stochastic system generally grows rapidly in its size, thus eliminating the possibility

of exact numerical computations. If one can derive asymptotic results, these can be suitable

as an approximation of the solution to the problem in practice. We already described this

concept for sums of random variables: in case the number of variables in the sum is too large

for exact computations, the central limit theorem can be used as an approximation.

Secondly, in order to avoid oversimplification of real-world problems, more complicated models

generally involving many inter-dependencies must be considered. The dynamics of such models

are hard to quantify in general, but they often exhibit surprisingly easy-to-interpret limiting

behavior under the right asymptotic perspective. These types of asymptotic results can lead to

a better understanding of models that seem extremely complicated. As an example, consider a

production facility with a collection of machines is that subject to breakdown and one repairer,

such that a queue is formed if multiple machines are broken at the same time. Moreover, items

continuously arrive at the production facility requiring processing by the (working) machines.

We thus have a layered queueing network [41], in which the machines are simultaneously

customers and servers. Even though the additional layer significantly complicates exact analysis,

the model shows interesting behavior when increasing the breakdown and repair rate. As these

rates become arbitrarily large, the breakdown-repair layer vanishes (thus leaving a much simpler

model) and is replaced by a reduced processing rate of the machines. The above-described

asymptotic method, where events in one part of the model (breakdowns/repairs) follow up on

each other much quicker than in the other part (items arriving/departing), is called separation

of time scales.

Thirdly, asymptotics can help in situations where real-world data is insufficient. For instance,

the long-term effect of an exotic plant on an ecosystem is hard to predict because it takes years

before a new balance has settled. Another example is the difficulty in studying the frequency
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of large-scale power blackouts, due to their rare occurrence. In these cases, data would be

either of little help or too rare to obtain accurate predictions. With proper mathematical

modeling however, concrete theoretical results can be realized by asymptotic analysis.

Finally, many key performance measures of stochastic systems describe some kind of limiting

behavior, and are thus inherently asymptotic. In Markov chains the concept of stationarity

plays an important role, which is essentially the state of the process as time approaches infinity.

As a result, the effect of the initial state has been worn out. Another example is the so-called

asymptotic drift of a Lévy process, which is the average increase (or decrease) of the process

per time unit.

1.2.3 Types of asymptotics

Each of the stochastic systems in this thesis comes with its own challenge. In the scheduling

setting of Part I, how do we avoid very large waiting times? In the queueing network setting

of Part II, how do we keep track of the rapidly growing number of states? And in the MAPs

of Part III, how do we estimate extremely unlikely events? All of these are questions in which

asymptotics play a large role. In this subsection, we describe a number of asymptotic approaches

sub-categorized in two types of asymptotics, and highlight their use in the stochastic systems

we consider.

First type of asymptotics: threshold asymptotics

For every well-behaving random variable X, the probability that it exceeds some threshold

value x approaches zero when x grows large. However, the speed at which this probability

approaches zero is highly variable, and is of great importance when we are interested in events

where X is much larger than its mean (average). Threshold asymptotics concern the precise

way in which the tail probability P(X > x) (read: the probability that X is greater than x)

converges to 0 as x goes to infinity.

Threshold asymptotics are particularly useful in the study of rare events. With rare we do not

mean a probability of 10% or 1%, but rather of the order 0.001% or (way) smaller. Even though

such probabilities would be negligible in most real-world scenarios, they become worthwhile

considering when the corresponding event has large consequences. Think about stock market

crashes, natural disasters, power blackouts, or epidemic breakouts.

The main challenge of rare events, as mentioned in Section 1.2.2, is the limited availability

of historical data, thus making it difficult to properly estimate the probability. Even when a

realistic model can be formulated, numerical estimations have large errors when the target

event has low probability. To avoid these errors, probabilists have developed a technique

where a new probability measure is defined under which the target event has a much larger

probability. This change-of-measure approach [9, Chapter V] allows for exact results, but also

enables a more efficient way for numerical estimation of the probability of the rare event. In

Part III this technique plays a large role in understanding the probability that a MAP exceeds

a given value.
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In this thesis we also use an asymptotic technique related to rare events, namely large

deviation theory [39]. This approach is focused on the tail probability of a sequence of

probability distributions. To see why this can be challenging, consider that we are interested

in the probability that a sample average of independent and identically distributed random

variables is much larger than expected. The central limit theorem estimate is very accurate for

values close to the mean, but as we go further along the tail, the error of this estimate typically

increases. It is clear that a different approach is required to identify the tail probability, and

it depends on the model which approach is most effective. In the queueing setting of Part

I, we study the probability that a customer waits longer than t time units, as t grows large.

We eventually characterize this probability in two steps. First, we work with a worst-case

approach by arguing that the waiting time can not be larger than the length of a certain busy

period. Then, bounds on such busy periods are derived.

Second type of asymptotics: scaling asymptotics

Rather than examining the tail behavior of a single random variable, sometimes it is useful to

consider asymptotics of the stochastic system as a whole. This is typically modeled by letting

multiple parameters depend on an artificial number n, and subsequently letting n approach

infinity. We thus have a sequence of stochastic systems indexed by n, and we are interested in

the behavior of the limiting model. The central question here is how to let each parameter

depend on n in order to obtain meaningful results. Asymptotics of this kind are called scaling

asymptotics, see also [126].

An example of a scaling asymptotic is the heavy-traffic regime in queueing systems [72]. In

this limit the arrival rate of customers approaches the service rate of the system, resulting in

a longer and longer average queue length. In fact, the average queue length grows arbitrarily

large in the limit, so a normalization is applied to obtain non-trivial results.

A second model where scaling can be applied is the Erlang loss queue, often used to represent

a call center (as described in Section 1.1.1). Here, calls (customers) arrive at an average rate

of λ per time unit, and each has a mean service time of 1 time unit. The number of staff

members (servers) is denoted by s, and when an arriving call finds all staff members occupied,

the call is lost and removed from the system. Designers of call centers will try to balance the

cost of lost calls and staff wages.

To understand the dynamics of large call centers, we scale the arrival rate to λn for a large

number n, the question being how many staff members to hire. It turns out the cost is

minimized if s equals λn+ c
√
n (rounded up or down) for some c > 0, which is generally called

the square root staffing rule. Elegant asymptotic results can be obtained when n approaches

infinity [21]. A very similar scaling approach, generalized to queueing networks, is proposed in

Part II to obtain the limiting distribution for the queue lengths.
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Building block Type of asymptotic Topic

Part I Queues Threshold
Scheduling in the

M/G/1 queue

Part II Queues Scaling

Queue lengths in

closed product-form

queueing networks

Part

III
Lévy processes Threshold

Maximum of Markov

additive processes

Table 1.1: An overview of the thesis’s contents.

1.3 Outline of the thesis

This thesis consists of three parts, distinguished by stochastic system building block and type

of asymptotic. For models based on queues we consider both threshold (Part I) and scaling

(Part II) asymptotics, while for a model based on Lévy processes we consider only asymptotics

of threshold type (Part III). A concise schematic overview of each part’s contents is shown in

Table 1.1. The topic of each part, summarized in the last column of Table 1.1, will be described

in more detail below. We notify the reader that the text of this section is more in-depth than

that of the first part of the introduction.

1.3.1 Part I

In the first part of the thesis, we consider the so-called M/G/1 queue. This model differs from

the M/M/1 in that the service times are not necessarily exponentially distributed, but may

have any distribution (G stands for General). An important (random) quantity of interest is

the response time: the time that a customer spends in the system. Finding the best order

in which to serve customers, as to minimize the response time, is a central problem in the

M/G/1 queue.

A straightforward objective would be to minimize the mean response time, since this also

minimizes the average total delay per time unit. If information on exact service times is

available, it is known that this objective is reached by always serving the customer with the

shortest remaining service time. In case only the distribution of the service times is available,

the unique scheduling policy minimizing mean response time is the Gittins policy [53]. This

policy gives each customer a rank based on the distribution of the remaining service time. A

formal definition of the Gittins policy is given in Part I, but intuitively it prioritizes customers

that have a large probability of a short remaining service time.

Besides the minimization of the mean response time, some applications require the avoidance

of very large response times. To this end, we investigate in Part I the rate at which the response

time tail probability decays to zero.
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Figure 1.5: Tail probability of the random variable X in case P(X > x) = (1+ x/3)−2 (dashed line,

heavy tail) or P(X > x) = e
−x

(solid line, light tail).

In this setting, it is known that the performance of different scheduling policies depends on

the rate at which the service time tail decays to zero. The terms heavy-tailed and light-tailed

quantify this rate. A random variable is called heavy-tailed if its tail decays at a slow, say

polynomial, rate, and light-tailed if its tail decays at a fast, say exponential, rate (precise

formulations depend on the context; ours will be formally defined in Part I). The difference of

the two categories is visualized in Figure 1.5: the polynomial tail decays to zero slower than

the exponential tail.

In order to measure the performance of scheduling policies on the response time tail, a

distinction is made between heavy-tailed and light-tailed service times because the queue

is significantly more sensitive to congestion in the former case. Under heavy-tailed service

times, we say that a policy is optimal when the response time tail is of the same polynomial

order as the service time tail. For the light-tailed case, the optimality criterion entails that

the exponential decay rate of the response time tail must be maximized. For a mathematical

formulation of these optimality criteria see Sections 2.2 and 3.3.

Relevant literature

Initially, the focus of scheduling literature has been on light-tailed service times [120]. It

became clear from several applications, however, that heavy tails [88] occur often in practice

and therefore should not be neglected. In both scenarios, analysis of the response time tail has

been carried out for most well-known policies, see the surveys [20, 29]. For example, it is known

that under light-tailed service times, first-come first-served is an optimal policy, whereas in

the heavy-tailed setting, processor-sharing (which divides the capacity of the server equally

among all present customers) is optimal. At the same time, these two policies perform poorly

in the opposite scenario. It was shown in fact, that when exact service times are not available,

there exists no policy that is simultaneously optimal under heavy-tailed and light-tailed service

times (unless one makes certain unconventional assumptions) [127].

This dichotomy has led to the asymptotic tail performance study of many individual policies.

However, the literature on asymptotic tail performance has been missing out on the Gittins

policy. In addition, very few works have considered large classes of policies. Among those,

Núñez-Queija [95] formulated analytic conditions under which a policy is optimal in the

heavy-tailed setting. In Chapter 2, a pivotal role is played by these conditions. A second study
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considering a class of policies is the work of Nuyens et al. [97], in which it is assumed that the

exact service times are known to the scheduler.

Our work in Part I forms a significant addition to the scarce literature described above. In the

heavy-tailed setting, we consider a large class of policies without assuming that exact service

times are known, while at the same time deriving optimality conditions that are easily verified.

Particular attention is given to the Gittins policy, for which we characterize when it is optimal

in the case of light-tailed or heavy-tailed service times.

Contributions

In Chapter 2 (based on [115]) we consider the recently introduced SOAP framework [113]: an

analyzing tool for a class of policies in which customers are prioritized based on their age: the

time they received service so far. Specifically, a SOAP policy prioritizes according to the value

of a function of age. We use the framework to derive sufficient conditions on this function, that

ensure the policy is optimal in the case of heavy-tailed service times. These conditions are

general and lead to new results for important policies that have previously resisted analysis.

We focus on the Gittins policy in Chapter 3 (based on [116]). Characterizing Gittins’s

asymptotic tail behavior is important because if the Gittins policy has optimal tail asymptotics,

then it simultaneously provides optimal mean response time and good tail performance. For

heavy-tailed service times, we find that the Gittins policy always has asymptotically optimal

tail performance. The situation is less clear-cut under light-tailed service times: Gittins’s tail

can be optimal, pessimal (i.e., minimal response time tail decay rate), or in between. To

remedy this, we show that a modification of the Gittins policy avoids pessimal tail behavior

while achieving near-optimal mean response time.

1.3.2 Part II

Motivated by applications in e.g. manufacturing, computer systems, communication networks

and vehicle sharing, we consider in Part II a class of queueing networks with three features.

1. There are no external arrivals and departures (i.e. the network is closed), so the network

has a fixed number of customers.

2. All queues of the network have either one server or an infinite number of servers. The

single-server queue was described in Section 1.1.1. An infinite-server queue arises when

there is always a server available, for example if there is self-service. Note that because

of this there is no waiting in an infinite-server queue.

3. All single-server queues have at least one of the following characteristics:

• exponential service times,

• the processor-sharing scheduling policy, or

• the preemptive resume last-come, first-served scheduling policy (in which services

are interrupted by arriving customers and later resumed).
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For a queueing network with these features, we are interested in the proportion of time that

the customers are distributed over the queues in any way. We refer to the corresponding

probability distribution as the joint stationary queue-length distribution. A powerful property

of the type of network we consider is that it has a product form. This entails that the

joint stationary queue-length distribution factorizes into one term for each queue (and a

normalization constant).

From a probabilistic perspective, if a joint distribution allows such a factorization, the random

variables involved are typically independent. There is, however, one additional condition that

creates dependence: the fact that the sum of all queue lengths must equal the fixed total number

of customers. This condition, which is specific to closed networks, significantly complicates

exact analysis. Moreover, the potentially large number of ways in which the customers can be

distributed over the queues forms a computational problem. To illustrate the complexity by

an example: there are 2.5 billion ways in which customers can be distributed over a network

of 50 customers and 10 queues. Many applications involve networks larger than this, and thus

one cannot resort to exact computations in these cases.

Relevant literature

The first general classes of queueing networks for which product form was established are the

class of Jackson networks [62], BCMP-networks [14] and Kelly networks [71]. A large account

of work on (product-form) networks since then is presented in [25]. This book includes more

general conditions under which product form holds as well as theoretical results for a variety

of queueing network models.

One way to overcome the analytical and computational complications described above is

to consider scaling asymptotics. Birman and Kogan [19] use integral representations for the

generating function of the stationary distribution, leading to accurate approximations of the

unknown constant in the stationary distribution. A popular scaling approach restricted to

a single queue is the one of Halfin and Whitt [56], resulting in a relatively simple limiting

distribution. This scaling approach forms the basis of important work on large call centers [21].

In Part II of the thesis, we obtain results by applying a similar scaling for queueing networks

rather than for a single queue.

Contributions

In Chapter 4 (based on [123]), we analyze the queueing network with the three mentioned

features in a Halfin–Whitt inspired scaling regime, where we jointly amplify the throughput of

all queues and the number of customers in the network. In the limit, this leads to a simple

stationary distribution for the scaled lengths of the queues. The simplicity of the limit result

with respect to the original system provides intuition on the impact of the dependence between

the queues on the network’s behavior. We show how the scaling parameters can be chosen to

obtain accurate approximations. In addition, we assess the practical applicability of our results

through a series of numerical experiments, which illustrate the difference between pre-limit

and limit behavior.
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1.3.3 Part III

Lévy processes and the more general MAPs are the main tools to model capital in credit risk

applications. Here, risk refers to the possibility of the capital of a firm dropping below zero

at any point in time, given some initial capital reserve. To analyze this possibility, a MAP is

defined such that the event of its maximum exceeding a given value directly corresponds to

the capital dropping below zero (see Section 6.1 for the specific definition). For this reason,

the maximum of a MAP is an important object of study. More specifically, we study the

distribution of the maximum, since this process is random.

Relevant literature

Because of its general characterization, the Lévy process [16, 73] has been extensively studied.

Particularly much attention has been given to risk models [8]. A prominent example is the

Cramér-Lundberg model [28] for insurance companies, in which their capital increases at a

constant rate through premium paid by customers, but decreases through occasional claims of

variable size. The probability that the company ever goes bankrupt (ruin probability) is the

most important object of study, which was asymptotically characterized by e.g. [17].

After the first considerations of MAPs [33, 92], researchers have worked on duplicating known

results for Lévy processes to this more general model. The distribution of the MAP’s maximum,

which directly translates to the ruin probability, forms no exception. Although significant work

has been done on specific MAPs such as the Markov-modulated compound Poisson process

(see for instance [85]) or Brownian motion, much less is known about the maximum of the

MAP in its full generality. Notable exceptions are [59] and [11], where results were obtained

through respectively considering a first passage process and a martingale method. In Part III,

we make contributions in two directions to the study of the MAP’s maximum. In the first

place, we lift the common assumption that the background Markov chain has a property called

irreducibility. This property means that it is always possible to re-enter each state. Secondly,

we characterize the tail probability of the maximum.

Contributions

In Chapter 5 (based on [124]) we consider a MAP that is spectrally positive (only upward

jumps) or spectrally negative (only downward jumps), and allow for the finite-state background

chain to be non-irreducible. In both the spectrally positive and negative cases, we derive a

system of linear equations of which the solution characterizes the distribution of the maximum

of the process. The general nature of our results allows for applicability in many specific

models. Particularly, we develop a procedure for calculating the maximum of a spectrally

positive or negative Lévy process over the class of phase-type distributed time intervals. This

result for Lévy processes follows from letting the background chain of the MAP model the

phase-type distribution.

We concentrate on the asymptotics of the ruin probability as the initial reserve grows large

(Cramér-Lundberg asymptotics) in Chapter 6 (based on [125]). We work in the setting that

the MAP is spectrally-positive and light-tailed, indicating that all jumps are positive and have
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light-tailed distributions. By applying a change-of-measure argument, we express the exact

asymptotics of the ruin probability in terms of the input parameters. The same argument also

allows us to construct an algorithm that estimates the ruin probability through the alternative

probability measure. Unlike direct simulation algorithms, for which the running times are

inversely proportional to the (very small) ruin probability, the running time of our algorithm

is independent of this probability. Numerical results show that our algorithm indeed leads to

significantly lower running times, especially for small ruin probabilities.

1.4 Notation

Throughout the manuscript, we often need to asymptotically compare two functions as their

argument approaches infinity (or zero). Suppose h(x) ∶= f(x)/g(x). Assuming x → ∞ (or

x ↓ 0), we denote

• f(x) = o(g(x)) if h(x) → 0,

• f(x) = O(g(x)) if there exists c ≥ 0 such that h(x) → c,

• f(x) = Θ(g(x)) if there exists c > 0 such that h(x) → c,

• f(x) = Ω(g(x)) if there exists c ≥ 0 such that 1/h(x) → c,

• f(x) = ω(g(x)) if 1/h(x) → 0.





Part I

The asymptotic response time tail in the

M/G/1 queue

Introduction

The scheduling of jobs in single-server queues has been an important topic of study over

the past decades. On one hand, much attention has been devoted to identifying scheduling

policies that minimize the mean response time (commonly referred to as sojourn time) in

a variety of settings. For example, in preemptive settings it is widely known that Shortest

Remaining Processing Time (SRPT) minimizes the mean response time [106] regardless of

the job size (service time) distribution when job sizes are known to the scheduler. When sizes

are unknown to the scheduler but the job size distribution is known, the optimal scheduling

policy is the Gittins policy [2], which, intuitively put, prioritizes the job that is most likely to

finish soon (formal definition in Section 2.3.2 or Definition 3.1.1). If the job size distribution

is also unknown, then the Randomized Multi-Level Feedback (RMLF) policy minimizes the

competitive ratio for mean response time (largest possible ratio between RMLF and SRPT

under any arrival and job size sequence) [69].

On the other hand, in many applications it is more important to avoid large response times

rather than just minimizing the mean response time. Thus, a significant amount of research

has been devoted to analyzing the distribution of response times under a large variety of

scheduling policies, ranging from classical policies such as First-Come First-Served (FCFS) and

SRPT, to newer ones such as Processor Sharing (PS) and its many generalizations [1, 6, 96].

In some simple settings it is possible to precisely characterize the response time distribution,

but in general research focuses on characterizing the tail of the response time distribution.

This characterization marks the asymptotic rate at which that tail decreases.

The task of characterizing the response time tail is more complex than that of optimizing

the mean response time. Initially, response time tail asymptotics were studied in the case of

light-tailed job size distributions, e.g., [29, 96, 120] and the references therein. Light-tailed

job sizes are essentially those with exponential decay rate (for our definition of light-tailed

see Section 3.3), and scheduling under these job size distributions aims to minimize the

(exponential) decay rate of the response time tail. In this context, it has been shown that

FCFS maintains the optimal (lightest) response time tail [120], whereas under SRPT it is the

heaviest possible. This is a stark contrast to the optimality of SRPT for the mean response

time.

While the focus of response time tail asymptotics was initially on light-tailed settings, a

shift occurred in the late 1990s when it was observed that heavy-tailed distributions occur
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frequently in computer and communications systems, e.g., in file sizes in the web [36], in I/O

patterns [100], the length of network sessions [98], and more. These observations triggered

much research into the impact of heavy-tailed phenomena on the design and performance

of computer and communications systems. The resulting literature has demonstrated that

heavy-tailed traffic characteristics have a dramatic effect on the waiting times and response

times experienced by users and that scheduling and priority mechanisms need to be designed

with heavy-tailed phenomena in mind.

A key observation from the research that followed is that scheduling policies that perform well

under light-tailed settings may not perform well under heavy-tailed settings, and vice versa. A

prime example is FCFS, which has the optimal response time tail under light-tailed job sizes,

but has a response time tail as bad as possible under heavy-tailed job sizes. More precisely,

assume that the job size X is regularly varying with index −α (that is, P(X > x) = L(x)x−α,
where the function L(⋅) is slowly varying, i.e., L(ax)/L(x) → 1 for any a > 0) and denote this

with RV(−α). Then, the response time in a GI/GI/1 FCFS queue is known to be RV(1 − α)
[35]. A worse index is not possible (as long as the server is always working when there is at

least one job), since the residual busy period of such a queue is RV(1− α). The response time

in a GI/GI/1 SRPT queue, on the other hand, has the same index as the job size (−α) in

this setting. Since the response time of a job can never be smaller than its size, the response

time index −α is optimal. So, SRPT is optimal in this heavy-tailed setting, whereas FCFS

performs the worst in terms of response time tail index – the exact opposite of the light-tailed

scenario.

Observations like the one described above have led to much research on the impact of the

service discipline on delay asymptotics; cf. the surveys [20, 29]. In these works, the tail decay

of several well-known scheduling policies is analyzed, under both light-tailed and heavy-tailed

job sizes. The aim of Part I is to analyze the tail performance not only for individual policies,

but rather for the broad class of SOAP [113] policies (to be introduced in the next section).

A key concept is the notion of tail optimality, which is satisfied by a scheduling policy if it

guarantees an asymptotically optimal response time tail (precise criteria for tail optimality to

be specified in Definitions 2.2.2 and 3.3.3.

Model and contributions

We consider in Part I the M/G/1 queue: a single-server queue with a Poisson arrival process

and general job size distribution. The specific range in which the (heavy-tailed and light-tailed)

job size distribution falls will be specified in Definitions 2.2.1 and 3.3.2.

The scheduling policies we study in this part are SOAP (Schedule Ordered by Age-based

Priority) policies, a broad class of policies introduced by Scully et al. [113]. At each point in

time, a SOAP policy assigns to each job in the system a rank (priority). The rank of a job

is based on a single variable called age: the amount of time the job has been served so far.

Particularly, a SOAP policy is defined as follows:

Definition I.1. A SOAP policy is a policy π specified by a piecewise monotonic and piecewise

differentiable rank function r ∶ R+ → R, mapping a job’s age to its rank. At every moment in
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time, a SOAP policy serves the job of minimum rank, breaking ties in FCFS order.

Two observations are in place. Firstly, note that a rank function uniquely specifies a SOAP

policy, but not vice versa. For example, any linear operation on a rank function yields the

same policy. Secondly, since the ranks of the jobs may change, SOAP policies are typically

preemptive. Throughout Part I we assume a preemptive-resume model with no preemption

overhead. That is, preemption does not cost any time and preempted jobs do not lose their

service progress.

We give two examples of rank functions corresponding to known service policies. First, consider

the rank function r(a) = a, in which the rank of each job is equal to its age. Since we serve

the job of minimum rank, the SOAP policy corresponding to this rank function serves the job

that has received the least service. This is exactly the prioritization rule of the Foreground-

Background policy. Secondly, with X denoting the job size, consider the SOAP policy with

rank function r(a) = E(X−a∣X > a). Note that the right hand side is the expected remaining

processing time of a job with age a. Therefore, this rank function corresponds to the Shortest

Expected Remaining Processing Time first policy.

The main benefit of the SOAP framework is the possibility to obtain results on scheduling

policies by analyzing their rank function. Most notably, in their original paper [113], Scully et

al. use two intuitive insights to identify how a tagged job is delayed by other jobs, given the

rank function. Firstly, they simplify the analysis by arguing that the smallest non-increasing

upper bound on the tagged job’s rank function does not affect its response time. Secondly, it

is shown that delay due to jobs already in the system upon arrival can be translated to the

waiting time in a queueing system with server vacations. With these two insights, Scully et

al. succeed in identifying the Laplace-Stieltjes transform (LST) of the response time under

arbitrary SOAP policies.

Unfortunately, the expression for the above LST cannot be applied to characterize the

asymptotic response time tail. The reason for this is that the accuracy of numerically inverted

LSTs decreases further along the tail. However, instead of using transforms, we can still use

the concept of analyzing rank functions to find asymptotic results for classes of SOAP policies.

We do so in Chapters 2 and 3, where the asymptotic response time tail of SOAP policies is

characterized based on the properties of the corresponding rank function.

More specifically, our contributions are as follows. In Chapter 2, we establish an easily verifiable

condition for a SOAP policy to be tail optimal in case of heavy-tailed job sizes. We show that

this condition is met by a few important scheduling policies for which tail optimality has not

been shown before. In Chapter 3, we widen the established condition for heavy-tailed job

sizes, and derive a second tail-optimality condition for light-tailed job sizes. This allows us in

particular to characterize the tail behavior of the acclaimed Gittins policy.
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2.1 Introduction

Given the prominence of heavy-tailed phenomena in computer and communications systems,

scheduling in the M/G/1 queue has often been directed towards heavy-tailed job sizes. A

driving question in this context is to characterize which policies have the optimal response

time tail asymptotics, i.e., which policies have a response time tail that is of the same order

as the tail of the job size distribution under regularly varying job sizes. This notion of “tail

equivalence” (which we refer to as tail optimality) has driven research for decades and there is

a variety of common policies that have been shown to be tail-optimal, including Processor

Sharing (PS) [130], Foreground-Background (FB) [95], and Preemptive Shortest Job First

(PSJF) [95].

However, despite significant progress, there are still many important policies for which we do

not know if they are tail-optimal or not. Examples are the Gittins policy and Randomized

Multi-Level Feedback (RMLF). Further, no precise characterization of which properties a

scheduling policy must have in order to be tail-optimal is known.

The first attempt to obtain a general set of conditions that ensure tail optimality was by

Núñez-Queija [95], who provided analytic conditions that can be used to simplify the analysis of

scheduling policies when studying the response time tail. It was these analytic conditions that

enabled the first analysis of policies such as SRPT, PSJF, and FB. However, the conditions are

not directly defined in terms of the prioritization rules of a policy, and so they do not provide

insight into which policies are tail-optimal. For that, the most general result to this point is

by Nuyens et al. [97], who introduce a set of properties based on job sizes that are sufficient

conditions for tail optimality. These properties ensure that the scheduler always prioritizes

jobs with small sizes and are satisfied by both SRPT and PSJF, but not by policies that do

not make use of job sizes, such as Gittins, RMLF, FB, etc. Thus, there is a considerable gap

between the sufficient conditions outlined by [97] and a general characterization of tail-optimal

scheduling policies.

Contributions

In this chapter, we provide sufficient conditions that ensure optimality of the tail of the

response time distribution for scheduling policies in M/G/1 queues with job size distributions

that are intermediately regularly varying. Our results provide guidelines on how scheduling

policies can perform prioritization in order to ensure tail optimality without having access to

job sizes, and are thus complementary to the conditions in [97], which focus on prioritization

based on job size. The conditions are general and are satisfied by important policies such as

21
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the Shortest Expected Remaining Processing Time first (SERPT) and RMLF policies, for

which no previous analysis of the response time tail is known. Additionally, the sufficient

conditions are satisfied by policies that use limited preemption, for the first time highlighting

the preemption frequency needed to achieve tail optimality.

The key building block underlying the sufficient conditions we develop is the SOAP framework,

recently introduced in [113]. Using this framework, our sufficient conditions for tail optimality

are defined in terms of the rank function of a policy. The formal conditions can be found in

Section 2.3, but intuitively the conditions ensure that old jobs do not receive priority over other

jobs for too long. Specifically, for a job J , part one of the condition bounds the consecutive

time that other jobs outrank J , and part two bounds the first age at which jobs will never in

the future outrank J .

In general, there are three typical approaches for proving tail optimality, see [20] for a survey.

The first relies on a relationship between the tail behavior of a random variable Y and the

behavior of its Laplace-Stieltjes transform (LST) E(e−sY ) for s ↓ 0 ([18], p. 333). An expression

for the response time LST of the single-server queue under SOAP is indeed available (see [113]);

however, it depends in such an intricate way on the rank function that this approach proved

unsuitable for determining the tail behavior of the response time. Another common approach

is to perform a sample path analysis of the policies, as was pursued by [97]. However, again,

the form of dependence in the rank function makes this difficult. Hence, in proving our main

result, Theorem 2.3.2, we have adapted the probabilistic method developed by Núñez-Queija

[95], which exploits a Markov-type inequality. While the method of [95] does not apply directly

off-the-shelf, we are able to extend it to apply to the analysis of our sufficient conditions. This

extension requires technical effort and, in particular, relies on a new analysis of the fractional

moments of busy periods that is of independent interest (see Theorem 2.5.1).

To conclude, we summarize the contributions of the chapter below:

• We provide a set of sufficient conditions for tail optimality of the response time tail, when

job sizes are intermediately regularly varying, for policies that do not have access to job

size information. These conditions highlight that tail optimality depends on imposing a

bound on the amount of consecutive time that a job has priority over others.

• Our sufficient conditions provide a proof of tail optimality for a number of well-known

scheduling policies, including the Gittins policy, RMLF, and the Shortest Expected

Remaining Processing Time first policy. Tail optimality of these policies is a long-standing

open question given their optimality among policies that do not use precise job size

information.

• Our sufficient conditions provide the first insight into how much preemption is needed in

order to maintain tail optimality. We specifically state which preemption frequencies

guarantee tail optimality.

• Our proof of sufficiency includes an interesting foundational result for M/G/1 queues: a

bound on the fractional moments of theM/G/1 busy period. Previously, only expressions

for its integer moments were known.
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2.2 Preliminaries

We consider an M/G/1 queue with arrival rate λ and job size X. We write F (x) = P(X ⩽ x)
and F (x) = 1 − F (x) for the distribution function and tail of X, respectively. The system

load is denoted by ρ ∶= λE(X) < 1. We write T for response time and Tx for size-conditional

response time, that is, the response time for jobs of size x. Our focus is on the case where

X has a heavy tail. Roughly speaking, the heavy-tailed job size distributions we study are

those which are asymptotically Pareto. The specific class we study, described below, is slightly

more general in that it also includes distributions whose tails oscillate between Pareto tails of

different shape parameters. In this context, the maximal and minimal shape parameters are

respectively called the upper and lower Matuszewska indices [18, Section 2.1] of the job size

distribution function.

Definition 2.2.1. We say that a job size distribution is HT if xmax = ∞ and both of the

following hold:

(i) The tail F (⋅) is of intermediate regular variation [34], meaning

lim inf
ε↓0

lim inf
x→∞

F ((1 + ε)x)
F (x)

= 1.

(ii) There exist β > α > 1 such that the upper and lower Matuszewska indices of F (⋅) are

in (−β,−α).

The class of intermediately regularly varying functions contains the class of regularly varying

functions [48], which in turn contains Pareto distributions and power law distributions, among

others. Roughly speaking, one can think of Definition 2.2.1 as saying that F (⋅) is bounded

between two power law distributions, as the following Potter bound formalizes.

Lemma 2.2.1 ([18, Proposition 2.2.1]). If the job size distribution is HT, then there exist

constants C, x0 > 0 such that for all x2 ⩾ x1 ⩾ x0,

1

C
(x2x1)

−β
⩽
F (x2)
F (x1)

⩽ C(x2x1)
−α
.

We mentioned in the introduction that tail optimality holds if the response time tail is of the

same order as the job size tail. The following criterion formalizes this.

Definition 2.2.2 (Tail Optimality). Consider an M/G/1 queue with an HT job size distri-

bution. We call a scheduling policy tail-optimal among preemptive work-conserving policies

if

lim
x→∞

P(T/(1 − ρ) > x)
F (x)

= 1.

Here, the term work-conserving entails that the server is always serving a job as long as there

is at least one. Definition 2.2.2 states that tail optimality holds if large jobs have a response

time of approximately 1/(1 − ρ) times their size, which is the best possible asymptotic tail

decay in the heavy-tailed case [29, 127].
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yx x zx ux

wx

0 age a
0

rank r(a)

Figure 2.1: Illustration of wx, yx, zx, and ux.

2.3 Overview of results

Our main result, Theorem 2.3.2, gives sufficient conditions for tail optimality in terms of

properties of the rank function. Thus, it characterizes properties of the prioritization of SOAP

policies that guarantee optimal tail behavior. We first state a version of our main theorem,

proven below Theorem 2.3.2, in which the condition for tail optimality is slightly simplified. It

states that a policy is tail-optimal if its rank function is bounded between two power functions

in a specific way.

Theorem 2.3.1 (Simplified Result). Consider an M/G/1 queue whose job size distribution

is HT using a SOAP scheduling policy whose rank function obeys

r(a) ∈ Ω(aγ) ∩O(aδ)

for some δ > γ > 0. If
δ
γ −

γ

δ
<
α − 1

β
,

then the policy is tail-optimal.

The condition of Theorem 2.3.1 is easy to interpret and is suitable for tail-optimality proofs

for many of the policies presented in Section 2.3. However, the result holds under more general

conditions. To state these conditions formally, we need some notation. Let

• wx be the worst rank attained by a job of size x,

• yx ⩽ x be the earliest age with rank wx,

• zx ⩾ x be the earliest age after x with rank ⩾ wx, and

• ux ⩾ zx be the latest age with rank ⩽ wx.

Figure 2.1 illustrates these quantities and they are defined formally in Definitions 2.A.1, 2.A.7,

and 2.A.9.

Our sufficient conditions on the rank function are defined in terms of two quantities: zx − yx
and ux.

Assumption 2.3.1.

(i) There exists ζ ∈ [0,∞] such that zx − yx = O(xζ).
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(ii) There exists η ∈ [max{1, ζ},∞] such that ux = O(xη).

Intuitively, ζ and η have the following interpretations. The smaller ζ is, the more quickly

the system can preempt jobs. The smaller η is, the more each job is shielded from getting

stuck behind larger jobs. Note that any rank function trivially satisfies Assumption 2.3.1 with

ζ = η = ∞, but, as suggested by the intuitive interpretations, we would like ζ and η to be

small. Our main result states just how small ζ and η need to be to ensure tail optimality.

Theorem 2.3.2 (Main Theorem). Consider an M/G/1 queue whose job size distribution is

HT and a SOAP scheduling policy whose rank function obeys Assumption 2.3.1. If

ζ −
1
η <

α − 1

β
, (2.1)

then the policy is tail-optimal.

As we prove now, Theorem 2.3.2 immediately implies its simplified version, Theorem 2.3.1.

Proof of Theorem 2.3.1. Precomposing any strictly increasing function with the rank func-

tion r yields an equivalent rank function that encodes the same SOAP policy, so we may

assume without loss of generality that

r(a) ∈ Ω(aγ/δ) ∩O(a).
This implies wx = O(x) and thus ux = Ω(xδ/γ). Therefore, Assumption 2.3.1 holds with

ζ = η = δ/γ, so tail optimality follows from Theorem 2.3.2.

The proof of Theorem 2.3.2 makes up the bulk of the remainder of the chapter. However, a

key component of our proof that we would like to highlight here is an analysis of the fractional

moments of a busy period. The bounds we obtain are potentially of interest beyond the study

of the tail of response time. In particular, let BU be the length of a busy period with initial

work U . Thus, a standard busy period would be BX . We develop the following representation

of the nth moment of a busy period for n ∈ Z+:

E(Bn
U) =

I

∑
i=1

di
E(U bi)
(1 − ρ)ai

Ji

∏
j=1

λE(Xcij),

where I, Ji, ai, bi, cij, di ∈ Z+ are constants that depend on n (see Lemma 2.5.2 and Corol-

lary 2.5.1). Moreover, we show that this representation extends in a natural way to fractional

moments of order p = n − q > 0, where q ∈ (0, 1). Instead of equality, we obtain an upper

bound in the case of fractional moments. We defer the full statement, which requires heavy

notation, to Theorem 2.5.1.

Applications of Theorems 2.3.1 and 2.3.2

To illustrate the generality of the sufficient conditions in Theorems 2.3.1 and 2.3.2 it is

interesting to consider how they can be applied to understand the response time tail of

common policies. In this section, we illustrate the application of the theorems to understand

tail optimality of policies for which no analysis is known. We focus on four examples: FB with

limited preemption, Gittins, SERPT, and RMLF.
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Figure 2.2: Rank function (as in (2.2)) of FB with limited preemption.

2.3.1 FB with limited preemption

Our first example focuses on a policy that is known to be tail-optimal (FB) but limits the

amount of preemption it may use. We consider FB here, but the same analysis can be performed

for other policies that satisfy the conditions of Theorem 2.3.2. FB is particularly interesting

because it is the optimal policy for job size distributions with a decreasing failure rate when

no job size information is known. FB works by always serving the job of least age, sharing

the processor equally in the case of ties. That is, FB is the SOAP policy with rank function

r(a) = a. As a result, it preempts jobs frequently and rarely works on a single job without

interruption. In situations where there is a cost to preemption this is a signficant drawback.

Thus, it is important to understand the performance of FB when preemption is limited.

To this end, we study a variation of FB with limited preemption (FB-LP) where preempting a

job is only allowed when its age is one of a limited set of checkpoints A ⊆ R+. Specifically,

FB-LP is the SOAP policy with rank function

r(a) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

a + 2 if a ∈ A,

1 otherwise.
(2.2)

Figure 2.2 illustrates an example of FB-LP where A is a sequence a0 = 0, a1, a2, . . ..

The design of the FB-LP policy amounts to choosing the set of checkpoints A. In the extreme

where A = R+, FB-LP is the same as using ordinary FB, which is tail-optimal but has frequent

preemption and processor sharing. In the other extreme, setting A = ∅ is the same as using

FCFS, which never preempts jobs but has the worst possible response time tail behavior [35].

We therefore ask:

How frequently must checkpoints occur in order to ensure tail optimality?

We can answer this question using Theorem 2.3.2.

Consider a sequence of checkpoints A = {0, a1, a2, . . .}. When x ∈ (ai, ai+1], we have yx = ai
and zx = ai+1, as shown in Figure 2.2. This means if ai+1 − ai = O(aζi ), then Assumption 2.3.1

holds with the same value of ζ and η = ∞. By Theorem 2.3.2, tail optimality holds if

ζ < (α − 1)/β, implying the following result.
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Corollary 2.3.1. Consider an M/G/1 queue whose job size distribution is HT. The FB-LP

policy with checkpoints a0 = 0, a1, a2, . . . is tail-optimal if

ai+1 − ai = O(aζi )

for some ζ < (α − 1)/β.

2.3.2 The Gittins policy

Our next example application of Theorem 2.3.2 is the Gittins policy, which is the policy that

minimizes mean response time of the M/G/1 queue when the job size distribution is known

but individual job sizes are unknown. Gittins can be viewed as a SOAP policy whose rank

function depends on the job size distribution [113, Example 3.6]. Its rank function is given by

r(a) = inf
b>a

∫ b
a
F (t) dt

F (a) − F (b)
. (2.3)

While Gittins is known to be optimal for the mean response time, the response time tail

behavior of Gittins has resisted analysis. In this section we show that, under an HT job size

distribution and an additional technical condition (the latter is removed in Chapter 3, see

Remark 2.3.1), the Gittins policy is tail-optimal.

Given Theorem 2.3.1, it suffices to bound the Gittins rank function. Because b = ∞ is a

possibility for the infimum in (2.3), by Lemma 2.2.1,

r(a) ⩽ ∫
∞

a

F (t)
F (a)

dt ⩽ O(1)∫
∞

a

( ta)
−α

dt = O(a).

By Theorem 2.3.1, Gittins is tail-optimal if its rank function satisfies r(a) = Ω(aγ), where
1

γ
− γ <

α−1
β
. However, this is not the case for all HT job size distributions. For example, if the

job size distribution has positive mass at some value x, then Gittins has r(x−) = 0.

Fortunately, under a mild additional condition, we can prove a lower bound on the Gittins

rank function. Suppose that for sufficiently large x, the job size distribution has a well defined

density f(x) = − d

dx
F (x) and hazard rate h(x) = f(x)/F (x). Then for sufficiently large ages a,

r(a) = inf
b>a

∫ b
a
F (t) dt

F (a) − F (b)
= inf

b>a

∫ b
a
F (t) dt

∫ b
a
h(t)F (t) dt

⩾ inf
b>a

∫ b
a
F (t) dt

(supc∈(a,b) h(c)) ∫ ba F (t) dt
= inf

b>a

1

h(b) .

This means that if h(a) = O(a−γ) for γ > 0, then r(a) = Ω(aγ), so Theorem 2.3.1 yields the

following result.

Corollary 2.3.2. Consider an M/G/1 queue whose job size distribution is HT. The Gittins

policy is tail-optimal if the job size distribution has hazard rate h(x) = O(x−γ) for some γ > 0

satisfying
1
γ − γ <

α − 1

β
.
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In particular, h(x) = O(x−min{1,β/(α−1)}) is sufficient for the Gittins policy to be tail-optimal.

Remark 2.3.1. The above condition on the hazard rate turns out not to be necessary. Specifically,

in Chapter 3 we weaken Assumption 2.3.1 and show that tail-optimality still holds under the

new assumption. We also show that the Gittins policy always satisfies the new assumption,

and is thus tail-optimal without any additional condition. However, the argumentation in this

subsection is still valuable as it will be used to determine the tail performance of Gittins when

the job sizes are light-tailed. ⋄

2.3.3 Shortest Expected Remaining Processing Time

Shortest Expected Remaining Processing Time (SERPT) is a variation of SRPT for settings

when the precise remaining sizes of jobs are not known, but the expected remaining size can be

computed given knowledge of the job size distribution. As the name implies, SERPT always

serves whichever job has the least expected remaining size. Like Gittins, SERPT is a SOAP

policy whose rank function depends on the job size distribution [113, Example 3.5]:

r(a) = E(X − a ∣ X > a) =
∫∞

a
F (t) dt
F (a)

.

We show that SERPT is always tail-optimal. By Lemma 2.2.1 and with the notation of

Section 1.4, the rank function is bounded by

Ω(a) = O(1)∫
∞

a

( ta)
−β

dt ⩽ r(a) ⩽ O(1)∫
∞

a

( ta)
−α

dt = O(a),

so Theorem 2.3.1 implies tail optimality.

The Monotonic SERPT (M-SERPT) policy is a variant of SERPT introduced by Scully et al.

[114]. Its rank function is the increasing envelope of SERPT’s:

r(a) = max
0⩽b⩽a

E(X − b ∣ X > b).

As with SERPT, Lemma 2.2.1 implies r(a) ∈ Ω(a) ∩ O(a) for M-SERPT, so M-SERPT is

also tail-optimal.

Corollary 2.3.3. In an M/G/1 queue whose job size distribution obeys is HT, SERPT and

M-SERPT are both tail-optimal.

The tail optimality of M-SERPT is particularly significant because M-SERPT has mean

response time within a factor of 5 of Gittins’s [114]. Thus, for all HT distributions, M-SERPT

is within a constant factor of optimal for both the mean response time and the tail of the

response time.

2.3.4 Randomized Multi-Level Feedback

The Randomized Multi-Level Feedback (RMLF) policy, to be introduced below, is designed to

have low mean response time when neither individual job sizes nor the job size distribution
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is known. Originally introduced in the worst-case scheduling literature [15, 69], RMLF was

studied in the stochastic GI/GI/1 setting by Bansal et al. [13], who showed that RMLF is

O(log 1

1−ρ
)-competitive with SRPT for mean response time. However, no previous results exist

for the tail of the response time under RMLF.

Here, we seek to apply our sufficient condition for tail optimality to RMLF. Unfortunately,

RMLF does not fit into the SOAP framework as stated so far because not every job follows

the same rank function: each job chooses a random parameter v ∈ [0, 1] and then follows rank

function

rv(a) = min{2n ∣ n ∈ N, 2
n+v

> a}.
Nevertheless, we still have a/2 ⩽ rv(a) ⩽ 2a for all ages a ⩾ 1 and parameters v ∈ [0, 1], so it

seems that some adaptation of Theorem 2.3.1 ought to imply tail optimality of RMLF. This is

indeed the case, but stating the adaptation requires some new terminology.

While RMLF is not a SOAP policy, it is what [110] calls a SOAP Bubble policy. The SOAP

Bubble class of policies is a superset of the SOAP class. Much like SOAP, under a SOAP

Bubble policy, every job’s rank is a function of its age, and the system always serves the job

of minimal rank, but different jobs can have different rank functions. Specifically, a SOAP

Bubble policy is characterized by lower and upper rank functions r
−
, r

+ ∶ R+ → R, and the

rank function rj of each job j can be any function obeying r
−(a) ⩽ rj(a) ⩽ r

+(a). Therefore,
RMLF is a SOAP Bubble policy with lower and upper rank functions

r
−(a) = min{2n ∣ n ∈ N, 2

n+1
> a},

r
+(a) = min{2n ∣ n ∈ N, 2

n
> a}.

In Appendix 2.E, we formulate adaptations of Theorems 2.3.1 and 2.3.2 that apply to

SOAP Bubble policies. For example, Theorem 2.E.2 is the same as Theorem 2.3.1, except its

precondition is r
−(a) = Ω(aγ) and r

+(a) = O(aδ). Applying Theorem 2.E.2 to RMLF with

γ = δ = 1 implies that RMLF is tail-optimal.

Corollary 2.3.4. In an M/G/1 queue whose job size distribution is HT, RMLF is tail-optimal.

2.4 Tail optimality of SOAP policies

In the remainder of the chapter we present a proof of our main result Theorem 2.3.2, namely that

a SOAP policy is tail-optimal under certain conditions on the rank function. The foundation

of the proof is an adaptation of a result by Núñez-Queija [95], which gives sufficient conditions

for tail optimality. Hence, proving Theorem 2.3.2 amounts to verifying these conditions when

Assumption (2.1) holds. The six steps of which this verification consists are presented in

this section. Some of these steps rely on technical lemmas that require more background

information. These lemmas are extensively introduced in Section 2.5, Section 2.6 and Appendix

2.A, and proven in Appendices 2.B–2.D.

We now present a slight reformulation of the conditions in Núñez-Queija [95], relating to the

conditional response time of a policy.
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Condition 2.4.1. Tx is stochastically increasing in x (that is, P(Tx > t) ⩽ P(Ty > t) for

all t ⩾ 0 and all 0 ⩽ x ⩽ y).

Condition 2.4.2. We have limx→∞E(Tx)/x = 1/(1 − ρ).

Condition 2.4.3.

(i) For all ε > 0,

lim
x→∞

P(TX <
(1 − ε)x
1 − ρ

»»»»»»»»
X > x) = 0.

(ii) For all ε > 0,

lim
x→∞

1

F (x)
P(TX >

(1 + ε)x
1 − ρ

»»»»»»»»
X ⩽ x) = 0.

Based on these conditions, Núñez-Queija [95] deduces the following tail-optimality result.

Proposition 2.4.1. If the job size distribution is HT and Conditions 2.4.1–2.4.3 hold, then

lim
x→∞

1

F (x)
P(T >

x

1 − ρ
) = 1.

Remark 2.4.1. Proposition 2.4.1 differs from Núñez-Queija [95, Theorem 2.3] in that, instead

of assuming Condition 2.4.3 directly, Núñez-Queija [95, Lemmas 2.1 and 2.2] proves it starting

from a stronger condition. This adapted version is more appropriate for our analysis. ⋄

Since Proposition 2.4.1 immediately implies Theorem 2.3.2, what remains is to prove that

Conditions 2.4.1–2.4.3 hold if the rank function parameters ζ, η satisfy ζ − 1

η
<

α−1
β
. We break

down this proof in the following six steps.

Step 1: Express the tails of Condition 2.4.3 in terms of moments of Tx.

Step 2: Bound the moments obtained in Step 1. These bounds are used in Steps 4-6.

Step 3: Verify Condition 2.4.1.

Step 4: Verify Condition 2.4.2.

Step 5: Verify Condition 2.4.3(i).

Step 6: Verify Condition 2.4.3(ii).

In the remainder of this section we go through each step individually and refer to later sections

for more technical details.

Step 1: From tails to moments.

To relate the tails of Condition 2.4.3 to moments of Tx, we need the following lemma, which

does not rely on any specifics of the M/G/1 model or SOAP.

Let

g
p
x(t) ∶= t

p
− E(Tx)p − pE(Tx)p−1(t − E(Tx)). (2.4)

We can think of g
p
x(t) as t

p
minus the first two terms of the Taylor series of t

p
about t = E(Tx).
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Lemma 2.4.1. For all p, t > 0,

P(Tx > t) ⩽ E(T
p
x ) − E(Tx)p

g
p
x(t)

if t > E(Tx),

P(Tx < t) ⩽ E(T
p
x ) − E(Tx)p

g
p
x(t)

if t < E(Tx).

Proof. Note that g
p
x(t) is decreasing in t for t < E(Tx) and increasing for t > E(Tx). Therefore,

if t < E(Tx), then

P(Tx < t) = P(Tx < t and g
p
x(Tx) > g

p
x(t)) ⩽ P(gpx(Tx) > g

p
x(t)),

and if t > E(Tx), then

P(Tx > t) = P(Tx > t and g
p
x(Tx) > g

p
x(t)) ⩽ P(gpx(Tx) > g

p
x(t)).

In both cases, Markov’s inequality implies the desired bound.

Step 2: Moment bounds.

The bounds presented in this step will be used to verify Conditions 2.4.2 and 2.4.3 (Steps

4-6). First, we split a job’s response time Tx into two independent non-negative components,

waiting time Q[wx] and residence time Rx [113]:

Tx =d Q[wx] +Rx, (2.5)

where =d denotes equality in distribution. We bound E(Q[wx]) and E(Rx) in Lemmas 2.4.2

and 2.4.3 below, subject to the precondition of Theorem 2.3.2. For more details we refer to

Section 2.6.

In the sequel we use the following notation. We write f(x) = ǒ(g(x)) if there exists δ > 0 such

that f(x) = o(x−δg(x)).

Lemma 2.4.2. If (2.1) holds, then there exists β
′
> β such that for all p ∈ (0, β ′),

E(Q[wx]p) ⩽ ǒ(xp),

E(Rp
x) ⩽ ( x

1 − ρ
)
p

+ ǒ(xp).

Lemma 2.4.3. If (2.1) holds, then

E(Rx) ⩾
x

1 − ρ
− ǒ(x).

The proofs of Lemmas 2.4.2 and 2.4.3, presented in Section 2.6, require additional analysis of

M/G/1 busy periods and SOAP policies, which is the purpose of Section 2.5 and Appendix

2.A. Specifically, Section 2.5 derives a general bound for fractional busy period moments, and

Appendix 2.A describes how to express waiting and residence times in terms of busy periods.

We now use the moment bounds of Lemmas 2.4.2 and 2.4.3 for Q[wx] and Rx to obtain

moment bounds for Tx.
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Lemma 2.4.4. If (2.1) holds, then

E(T px ) ⩽ ( x

1 − ρ
)
p

+ ǒ(xp) for all p ∈ [1, β ′),

E(Tx)p ⩾ E(Rx)p ⩾ ( x

1 − ρ
)
p

− ǒ(xp) for all p > 0.

Proof. Note that

(x ± ǒ(x))p = x
p
± ǒ(xp). (2.6)

The lower bound on E(Tx)p follows directly from (2.5), (2.6), and Lemma 2.4.3. For the upper

bound on E(T px ), we use Minkowski’s inequality to compute

E(T px ) ⩽ (E(Q[wx]p)1/p + E(Rp)1/p)
p

[by (2.5), Minkowski]

⩽ (ǒ(x) + (( x

1 − ρ
)
p

+ ǒ(xp))
1/p

)
p

[by Lemma 2.4.2]

= ( x

1 − ρ
)
p

+ ǒ(xp). [by (2.6)]

Recall that the response time moments of Lemma 2.4.1 are of the form E(T px ) − E(Tx)p. We

provide an upper bound for this quantity in the following lemma, which is a direct consequence

of Lemma 2.4.4.

Lemma 2.4.5. If (2.1) holds, then there exists p > β such that E(T px ) − E(Tx)p = ǒ(xp) in

the x→ ∞ limit.

Proof. Choose p ∈ (β, β ′) in Lemma 2.4.4.

Remark 2.4.2. Núñez-Queija [95] uses a slightly different version of Lemma 2.4.5, showing that

Condition 2.4.3 holds if there exists p > β such that E(∣Tx −E(Tx)∣p) = ǒ(xp). Unfortunately,
working with the absolute central moment is difficult unless p is an even integer, which suffices

for the simple policies considered by Núñez-Queija [95] but not for the broad class of SOAP

policies we consider. Our Lemma 2.4.5 is easier to work with for odd and fractional p and, as

shown below, still allows us to verify Condition 2.4.3. ⋄

Step 3: Verification of Condition 2.4.1.

Condition 2.4.1 is immediate for all SOAP policies (see Lemma 2.A.3).

Step 4: Verification of Condition 2.4.2.

Condition 2.4.2 follows from choosing p = 1 in Lemma 2.4.4.

Step 5: Verification of Condition 2.4.3(i).

Let p > β be as in Lemma 2.4.5. We compute
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lim
x→∞

1

xp
g
p
x(

(1 ± ε)x
1 − ρ

)

= lim
x→∞

1

xp
(((1 ± ε)x

1 − ρ
)
p

− E(Tx)p − pE(Tx)p−1(
(1 ± ε)x
1 − ρ

− E(Tx))) [by (2.4)]

=
(1 ± ε)p − 1 − p(1 ± ε − 1)

(1 − ρ)p [by Condition 2.4.2]

=
(1 ± ε)p − (1 ± εp)

(1 − ρ)p > 0,

and therefore

g
p
x(

(1 ± ε)x
1 − ρ

) = Ω(xp). (2.7)

Combining this with Condition 2.4.1 and Lemma 2.4.1 implies Condition 2.4.3(i):

lim
x→∞

P(TX <
(1 − ε)x
1 − ρ

»»»»»»»»
X > x) ⩽ lim

x→∞
P(Tx <

(1 − ε)x
1 − ρ

) [by Condition 2.4.1]

⩽ lim
x→∞

E(T βx ) − E(Tx)β

g
β
Tx
( (1−ε)x

1−ρ
)

[by Lemma 2.4.1]

= lim
x→∞

ǒ(xβ)
Ω(xβ) [by (2.7) and Lemma 2.4.5]

= 0.

Step 6: Verification of Condition 2.4.3(ii).

We begin by applying Lemma 2.4.1:

P(TX >
(1 + ε)x
1 − ρ

and X ⩽ x) = ∫
x

0

P(Tt >
(1 + ε)x
1 − ρ

) dF (t)

⩽ ∫
x

0

E(T pt ) − E(Tt)p

g
p
t ( (1+ε)x

1−ρ
)

dF (t). (2.8)

We would like to apply (2.7) to the denominator, but the variables in the subscript and function

argument do not match. To make them match, observe in (2.4) that g
p
x(t) is decreasing in

E(Tx) as long as E(Tx) < t. By Conditions 2.4.1 and 2.4.2, for all sufficiently large x and all

t ∈ (0, x),
E(Tt) ⩽ E(Tx) <

(1 + ε)x
1 − ρ

,

so for sufficiently large x, we may replace t with x in the subscript in the denominator in (2.8).

Using this along with Lemma 2.4.5 and (2.7) gives us

P(TX >
(1 + ε)x
1 − ρ

and X ⩽ x) ⩽ ∫
x

0

E(T pt ) − E(Tt)p

g
p
x( (1+ε)x

1−ρ
)

dF (t)

⩽
1

Ω(xp) ∫
x

0

(( t

1 − ρ
)
p

+ ǒ(tp) − ( t

1 − ρ
− ǒ(t))

p

) dF (t)

⩽ O(x−p)∫
x

0

ǒ(tp) dF (t).
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We continue the computation by integrating by parts. We also apply Lemma 2.2.1, in which

the constants x0, C > 0 are associated to X:

P(TX >
(1 + ε)x
1 − ρ

and X ⩽ x) ⩽ O(x−p) −O(x−p)∫
x

x0

ǒ(tp) dF (t)

= O(x−p) −O(x−p)(ǒ(xp)F (x) −O(1) − ∫
x

x0

ǒ(tp−1)F (t) dt)

⩽ O(x−p) +O(x−p)∫
x

x0

ǒ(tp−1) ⋅ CF (x)( tx)
−β

dt

= O(x−p) +O(x−(p−β))F (x)∫
x

x0

ǒ(t(p−β)−1) dt

= O(x−p) + ǒ(1)F (x).

Lemma 2.2.1 and the fact that p > β > α imply that this is ǒ(F (x)), so Condition 2.4.3(ii)

holds.

Finally, the proof of our main result combines all of the pieces outlined in this section.

Proof of Theorem 2.3.2. Conditions 2.4.1–2.4.3 have been proven above and the theorem now

follows from Proposition 2.4.1.

The bulk of the remainder of the chapter is devoted to proving Lemmas 2.4.2 and 2.4.3, which

give bounds on moments of size-conditional waiting and residence times. Our proofs of these

lemmas rely on detailed analysis of fractional moments of busy periods (Section 2.5) and on

new general results about SOAP policies (Appendix 2.A).

2.5 Fractional moments of busy periods

A key component of our proof of Theorem 2.3.2 is an analysis of the fractional moments of an

M/G/1 queue. We write B for the length of a busy period and BU for the length of a busy

period with initial work U .

We denote the LST of a random variable V by

Ṽ (s) ∶= E(exp(−sV )).

We shall also encounter the excess EV of a random variable V . It has distribution

P(EV > x) = ∫
x

0

P(V > t)
E(V ) dt

and has LST

ẼV (s) = 1 − Ṽ (s)
sE(V ) . (2.9)

Letting

σ(s) ∶= s + λ(1 − B̃(s)), (2.10)
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we can write the LSTs of B and BU as

B̃(s) = X̃(σ(s)),
B̃U(s) = Ũ(σ(s))).

(2.11)

Although the expression for B̃(s) is recursive, it suffices for extracting moments.

Let D be the derivative operator.

Lemma 2.5.1. The derivative of σ(s) satisfies

Dσ(s) = 1

1 − λ(−D)X̃(σ(s))
. (2.12)

Proof. Differentiating (2.10) yields

Dσ(s) = 1 − λDσ(s) ⋅DX̃(σ(s)),

which rearranges to the desired equation.

Lemma 2.5.2. For all n ∈ Z+,

(−D)nB̃U(s) =
I

∑
i=1

di(Dσ(s))ai ⋅ (−D)biŨ(σ(s))
Ji

∏
j=1

λ(−D)cijX̃(σ(s)),

where I, Ji, ai, bi, cij, di ∈ Z+ are constants, independent of the system parameters λ and X,

satisfying

ai, bi ⩾ 1 for all i,

cij ⩾ 2 for all i, j,

bi +
Ji

∑
j=1

(cij − 1) = n for all i,

b1 > . . . > bn,

a1 = b1 = n,

d1 = 1,

J1 = 0.

Proof. See Appendix 2.B.

As an immediate consequence, we have the following.

Corollary 2.5.1. For all n ∈ Z+,

E(Bn
U) =

I

∑
i=1

di
E(U bi)
(1 − ρ)ai

Ji

∏
j=1

λE(Xcij),

where I, Ji, ai, bi, cij, di ∈ Z+ are as in Lemma 2.5.2.
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The main result of this subsection is that nearly the same formula works for fractional moments,

though it gives an upper bound instead of an exact result. To bound E(Bp
U) for p = n − q,

n ∈ Z+, we start with the formula for E(Bn
U), then decrease some of the exponents by q.

Specifically, for each i, we decrease ai and one more exponent of our choice, either bi or one of

the cij.

Theorem 2.5.1. Let p = n − q > 0 for n ∈ Z+ and q ∈ (0, 1). Then for all choices

of χij ∈ {0, 1} such that ∑Ji
j=0 χij = 1 for all i, we have

E(Bp
U) ⩽

I

∑
i=1

di
E(U bi−qχi0)
(1 − ρ)ai−q

Ji

∏
j=1

λE(Xcij−qχij),

where I, Ji, ai, bi, cij, di ∈ Z+ are as in Lemma 2.5.2.

Proof. See Appendix 2.B.

Remark 2.5.1. Remerova et al. [104, Lemma 3] discuss the finiteness of E(f(B)) for the

M/G/1 busy period B for a quite general class of functions f(⋅). They obtain bounds on

moments of B that are more general but less sharp than Theorem 2.5.1. Bansal et al. [13]

formulate a bound on fractional moments of GI/GI/1 busy periods, but their bound only

characterizes the growth rate in the ρ → 1 limit. Focusing on the M/G/1 setting, in which

a recursive LST is known for busy periods, enables us to obtain a much sharper bound in

Theorem 2.5.1 that characterizes the coefficient of each 1/(1 − ρ)b term. ⋄

2.6 Proving tail optimality

Recall from Section 2.4 that the proof of our main result, Theorem 2.3.2, is complete once we

prove Lemmas 2.4.2 and 2.4.3. This section is devoted to proving these last two lemmas. In doing

so, we require some definitions and preliminary results related to SOAP from Appendix 2.A.

It is therefore recommended to look through that appendix section before thoroughly reading

this section.

Many of the lemma statements in this section use similar preconditions on a parameter p. For

convenience, we name these conditions Φ(p) and Ψ(p):

Φ(p) ⇔ ζ −
1
η <

α − 1
p or p ⩽ 0,

Ψ(p) ⇔ 1 −
1

ζ
<
α − 1
p or p ⩽ 0.

For all p ⩾ q, we have
Φ(p) ⇒ Ψ(p),
Φ(p) ⇒ Φ(q),
Ψ(p) ⇒ Ψ(q).

(2.13)

The latter two implications are straightforward, and Φ(p) ⇒ Ψ(p) follows from ζ ⩽ η and the

fact that Ψ(p) is vacuously true for ζ ⩽ 1.

We prove Lemmas 2.4.2 and 2.4.3 by way of the following more general statements.
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Lemma 2.6.1. For all p > 0 satisfying Φ(p), in the x→ ∞ limit,

E(Q[wx]p) ⩽ ǒ(xp).

Lemma 2.6.2. For all p > 0 satisfying Ψ(p − 1), in the x→ ∞ limit,

E(Rp
x) ⩽ ( x

1 − ρ
)
p

+ ǒ(xp).

Lemma 2.6.3. If ζ < 1 or η < ∞, then in the x→ ∞ limit,

E(Rx) ⩾
x

1 − ρ
− ǒ(x).

Lemmas 2.6.1 and 2.6.2 immediately imply Lemma 2.4.2, and Lemma 2.6.3 immediately

implies Lemma 2.4.3, so it remains only to prove Lemmas 2.6.1–2.6.3. In the remainder of

this section we prove Lemma 2.6.2. We also give the main ideas of the proofs of Lemmas 2.6.1

and 2.6.3, deferring their full proofs to Appendix 2.D.

To prove Lemma 2.6.2, we use Lemma 2.A.1 to bound residence times using a busy period,

namely Rx ⩽st Bx[wx]. We can apply Theorem 2.5.1 to bound moments of the busy period

Bx[wx] in terms of moments of its initial work, which is simply x, and its job size, which is

X0[wx]. Thus, to bound moments of Rx, it suffices to bound moments of X0[wx], which is

the purpose of the following lemma.

Lemma 2.6.4. For all p > 0 satisfying Ψ(p), in the x→ ∞ limit,

E(X0[wx]p+1) = ǒ(xp).

Proof. By (2.15) and Lemma 2.A.5,

E(X0[wx]p+1) = E(X⟨zx⟩p+1) = ∫
zx

0

(p + 1)tpF (t) dt.

Hence for x→ ∞, Assumption 2.3.1 implies

E(X0[wx]p+1) = ∫
O(xmax{1,ζ})

0

O(tp−α) dt

= O(xmax{0,(p−(α−1))max{1,ζ}}). (2.14)

If ζ ⩽ 1, then (2.14) is O(xmax{0,p−(α−1)}) = ǒ(xp). If instead ζ > 1, then Ψ(p) implies (2.14) is

ǒ(xp).

Armed with bounds on moments of X0[wx], we are now ready to prove Lemma 2.6.2.

Proof of Lemma 2.6.2. Let p = n−q for n ∈ Z+ and q ∈ (0, 1). We again apply Theorem 2.5.1,

choosing χi0 = 1 for all i. Using that and Lemma 2.A.1, we obtain

E(Rp
x) ⩽ E(Bp

x[wx]) [by Lemma 2.A.1]

⩽ ( x

1 − ρ0[wx]
)
p

+
I

∑
i=2

di
x
bi−q

(1 − ρ0[wx])ai−q
Ji

∏
j=1

λE(X0[wx]cij). [by Theorem 2.5.1]



38 Heavy-tailed job sizes

Recall from Lemma 2.5.2 that

bi − q +
Ji

∑
j=1

(cij − 1) = n − q = p.

This means for all i and j, we have cij − 1 ⩽ p − bi ⩽ p − 1, so Ψ(cij − 1) holds by (2.13). We

can therefore apply Lemma 2.6.4, which yields

I

∑
i=2

di
x
bi−q

(1 − ρ0[wx])ai−q
Ji

∏
j=1

λE(X0[wx]cij) =
I

∑
i=2

O(xbi−q)
Ji

∏
j=1

ǒ(xcij−1)

=

I

∑
i=2

ǒ(xbi−q+∑
Ji
j=1(cij−1))

= ǒ(xp).

It remains only to prove Lemma 2.6.1 and Lemma 2.6.3. The proof of Lemma 2.6.1, an

upper bound on moments of waiting time, follows essentially the same outline as the proof

of Lemma 2.6.2: we use Lemma 2.A.2 to bound waiting time in terms of busy periods, use

Theorem 2.5.1 to bound the moments of those busy periods in terms of moments of Xi[wx],
then use Lemma 2.6.5 below to bound those moments. Finally, we prove Lemma 2.6.3 by

combining several results from Appendix 2.A.

Lemma 2.6.5. For all p > 0 satisfying Φ(p), in the x→ ∞ limit,

K[wx]

∑
k=1

E(Xk[wx]p+1) = ǒ(xp).

Proofs of Lemmas 2.6.1, 2.6.3, and 2.6.5. See Appendix 2.D.

2.7 Discussion

Over the past decades, much effort has been given to the task of designing policies that

maintain the optimal response time tail, i.e., a response time tail that is equally heavy as the

tail of the job size distribution. While the analysis of individual policies has been successful

in many cases, e.g., SRPT and FB, there are many important policies that have resisted

analysis and, further, little is known about which scheduling mechanisms provably lead to tail

optimality. In this chapter, we provide general sufficient conditions on the type of prioritization

that ensures tail optimality in policies that do not have access to job sizes. Our sufficient

conditions enable the first results on tail optimality for Gittins, RMLF, SERPT, and FB with

limited preemption.

Although our sufficient conditions define a broad class of tail-optimal policies, it must be

stressed that they are not necessary. For instance, Processor Sharing (PS), which is known to

be tail-optimal, does not use job sizes and does not satisfy our sufficient conditions since it is

not a SOAP policy. Thus, it is important to continue to develop both necessary and sufficient
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conditions for tail optimality. An interesting open question is to identify sufficient conditions

that unify the results in [97] for size-based policies with the results in this chapter on policies

that do not have access to job size information. Additionally, the only necessary condition

known for tail optimality is given by [127], which proves that all tail-optimal policies must

“remain stable when faced with the arrival of a job with infinite size.” It is not known if this

condition is also sufficient. To this end, Guillemin et al. [55] have developed an interesting

probabilistic method to prove tail optimality of the response time and service time for a large

class of M/G/1 processor-sharing queues (with and without impatience, and with finite or

infinite capacity). It would be interesting to investigate whether their approach is applicable

to a class of SOAP policies. See also Sections 2.4 and 3 of [22], where the approaches of [55]

and [95] are compared and unified.

Another interesting research topic is to weaken the goal and, instead of trying to characterize

policies that are tail-optimal, characterize classes of policies with response time tails that are

neither optimal (of the same order as the job size tail) nor pessimal (one order higher). It

is known that the orders of the job size and response time tails can differ by any number

γ ∈ (0, 1] [26, 87], and so a natural question is: what forms of prioritization achieve these

intermediate response time tails?

It also remains to be seen what tail-optimality results extend to more complicated queueing

models. This includes single-server systems with variable service rate, such as systems using

computational sprinting [86, 101], as well as systems with multiple servers and systems with a

non-Poisson arrival process.

Finally, it is worth considering tail optimality among light-tailed job size distributions. Are

there sufficient conditions on prioritization that ensure tail optimality in the light-tailed

setting? The results of [127] highlight that if a policy is tail-optimal under heavy-tailed job

sizes it cannot be tail-optimal under light-tailed job sizes, and thus it is clear that the sufficient

conditions must change. In Chapter 3, we characterize the tail performance of SOAP policies

when the job size distribution is light-tailed.

Appendix 2.A SOAP background

Recall from Definition I.1 that a SOAP policy is a policy defined by a rank function r ∶ R+ → R

mapping each job’s age, or attained service, to its rank. The scheduler always serves the job of

minimum rank, so lower rank means higher priority.

In this section we give background on how to analyze the mean response time of SOAP policies.

Appendices 2.A.1 and 2.A.2 review the response time analysis in [113], adapting the notation

slightly to suit our needs. These expressions are hard to work with directly, and the complexity

grows when considering higher moments. As such, we introduce new concepts and results in

Appendices 2.A.3 and 2.A.4 which help simplify the analysis.
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2.A.1 Core SOAP concepts

All of the definitions in the remainder of this section are given in terms of a generic SOAP

policy with rank function r. The way [113] analyzes response time of SOAP policies is with

the “tagged job” approach, following the journey of a specific job from arrival to departure.

Suppose the tagged job has size x. One of their key insights is that to determine the tagged

job’s response time, its current rank is less important than the worst rank it will attain in its

remaining time in the system.

Definition 2.A.1. The worst future rank of a job of size x at age a, written wx(a), is

wx(a) = sup
a⩽b<x

r(b).

The worst ever rank of a job of size x is wx = wx(0).

When the tagged job initially enters the system, there may be a number of other jobs already

present. Any other job with rank wx or less is “relevant” to the tagged job, meaning it will

receive some amount of service during the tagged job’s time in the system.

Definition 2.A.2. The amount of w-relevant work a job has is the amount of service it needs

to either finish or attain rank greater than w. Similarly, the amount of w-relevant work in a

system is the total amount of w-relevant work of all jobs in the system.

To find the response time of the tagged job, we need to know the amount of wx-relevant

work it encounters upon arrival. Because the arrival process is Poisson, this means finding the

steady-state distribution of the amount of wx-relevant work in the system, for which we need

the following definition.

Definition 2.A.3.

(i) The kth w-relevant age interval is (bk[w], ck[w]), where

b0[w] = 0

c0[w] = inf{a ⩾ 0 ∣ r(a) > w}
bk[w] = inf{a > ck−1[w] ∣ r(a) ⩽ w} for all k ⩾ 1

ck[w] = inf{a > bk[w] ∣ r(a) > w} for all k ⩾ 1.

Additionally, let K[w] be the number of w-relevant age intervals, namely the maximum k

such that bk[w] < ∞. It may be that K[w] = ∞.

(ii) The kth w-relevant job segment is

Xk[w] =d max{0,min{X, ck[w]} − bk[w]}.

For convenience, we define Xk[w] = 0 for k > K[w].
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(iii) The kth w-relevant load is

ρk[w] = λE(Xk[w]).
For convenience, we also define

ρΣ[w] =
K[w]

∑
k=0

ρk[w].

The tagged job can also be delayed by jobs arriving after it. The following definition helps us

quantify this delay.

Definition 2.A.4. The w-relevant busy period, written B[w], is the length of an M/G/1
busy period with arrival rate λ and job size X0[w]. Similarly, the w-relevant busy period with

initial work U , written BU[w], is the length of such a busy period with initial work U.

2.A.2 SOAP response time analysis

To study the response time of SOAP policies, we introduce the following random variables.

Definition 2.A.5. The residence time of a job of size x, written Rx, is a random variable

with transform

R̃x(s) = exp(−∫
x

0

(s + λ(1 −B[wx(a)−])) da).

We can write the residence time as the limit of a sum of increasingly many busy periods with

increasingly little initial work:

Rx =d lim
n→∞

n

∑
k=1

Bx/n[wx(kx/n)−].

Definition 2.A.6. The rank-w waiting time, written Q[w], is a random variable that has

the same distribution as a particular busy period:

Q[w] =d BU[w][w−],

where U[w] is the steady-state amount of w-relevant work, which is a random variable with

LST [113, Lemma 5.2]

Ũ[w](s) = 1 − ρΣ[w] +∑K[w]
i=1 ρi[w]ẼXi[w](s)

1 − ρ0[w]ẼX0[w](s)
.

Scully et al. [113, Theorem 5.4] show that for any SOAP policy, Tx is the independent sum of

waiting and residence times, namely Tx =d Q[wx] +Rx, which implies the following formula

for mean response time.

Corollary 2.A.1 ([113, Theorem 5.5]). Under any SOAP policy,

E(Q[w]) =
λ

2
∑K[w]
i=0 E(Xi[w]2)

(1 − ρ0[w])(1 − ρ0[w−]) ,

E(Rx) = ∫
x

0

1

1 − ρ0[wx(a)−] da,

E(Tx) = E(Q[wx]) + E(Rx).
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2.A.3 Stochastic response time bounds

The next two lemmas, proven in Appendix 2.C, bound the residence and waiting time in terms

of busy periods. The main concept in their proofs is the observation that jobs with rank larger

than w will not be served before the w-relevant busy period ends.

Recall for two random variables A and B that A ⩽st B if P(A > t) ⩽ P(B > t) for all t (we

say that A is stochastically bounded by B).

Lemma 2.A.1. For any SOAP policy, the residence time Rx of a job of size x is stochastically

bounded by

Rx ⩽st Bx[wx].

Lemma 2.A.2. For any SOAP policy, the rank-w waiting time Q[w] is stochastically bounded

by

Q[w] ⩽st

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

EBX0[w][w] w.p. π0[w],
EBX1[w][w] w.p. π1[w],
⋮

0 w.p. 1 − ρΣ[w],
where

π0[w] ∶= ρ0[w](1 − ρΣ[w])
1 − ρ0[w] ,

πk[w] ∶= ρk[w]
1 − ρ0[w] for all k ⩾ 1.

These lemmas allow us to express response time moments in terms of busy period moments,

which can be further analyzed using Theorem 2.5.1.

2.A.4 Additional SOAP bounds

The purpose of the next few definitions is to formalize Assumption 2.3.1. All of them relate to

the worst rank for a job of size x.

Definition 2.A.7. The maximum relevant age of a job of size x is the latest age at which

another job can possibly outrank it:

ux = cK[wx][wx] = sup{a > 0 ∣ r(a) ⩽ wx}.

The next two definitions are due to Scully et al. [114].

Definition 2.A.8. A hill age is an age b such that r(a) < r(b) for all ages a < b. An age

that is not a hill age is called a valley age.

Definition 2.A.9. The previous and next hill ages of x are, respectively,

yx = c0[wx−],
zx = c0[wx].
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hill valley hill valley hillvalley hill

yx x zx

0 age a
0

rank r(a)

Figure 2.3: Hills and valleys.

Note that it may be that yx = x = zx. This occurs when the rank function is strictly increasing

at x and x is a “running maximum”, meaning r(a) < r(x) for all ages a ∈ [0, x). For any x
such that yx < zx, we call the interval (yx, zx) a valley, and any interval that does not overlap

with a valley is called a hill. Figure 2.3 illustrates hills and valleys, including previous and

next hill ages.

The next definition is not specific to SOAP but, as we will soon see, can be helpful when

analyzing the moments of a SOAP policy’s response time.

Definition 2.A.10.

(i) The a-cutoff job segment is

X⟨a⟩ =d min{X, a}.

(ii) The a-cutoff load is

ρ⟨a⟩ = λE(X⟨a⟩).

The yx- and zx-cutoff job segments give us another way to write X0[wx−] and X0[wx]:

X0[wx−] =d X⟨yx⟩,
X0[wx] =d X⟨zx⟩.

(2.15)

The following lemma follows immediately from Definitions 2.A.5 and 2.A.6, observing that

w-relevant busy periods are stochastically increasing in w.

Lemma 2.A.3.

(i) Q[w] is stochastically increasing in w.

(ii) Rx is stochastically increasing in x.

(iii) Tx is stochastically increasing in x.

Note that Lemma 2.A.3 completes Step 3 of the proof described in Section 2.4. In fact, the

only part of the proof outlined in Section 2.4 that remains to prove is Step 2, specifically

Lemmas 2.4.2 and 2.4.3. We prove these lemmas in Section 2.6 with the help of the useful

results given in the remainder of this appendix.

The next lemmas follow from integration by parts.
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Lemma 2.A.4. For any p > 0,

E(Xk[w]p) = ∫
ck[w]

bk[w]
p(t − bk[w])p−1F (t) dt.

Lemma 2.A.5. For any p > 0,

E(X⟨a⟩p) = ∫
a

0

pt
p−1
F (t) dt.

Previous and next hill ages are also useful for bounding moments of Xk[wx] for k ⩾ 1,

specifically by combining Lemma 2.A.4 with the following lemma.

Lemma 2.A.6. For all ranks w and k ⩾ 1, if x ∈ (bk[w], ck[w]), then

yx ⩽ bk[w] < x < ck[w] ⩽ zx.

Proof. By Definition 2.A.9, we have x ∈ (yx, zx), where yx is the first age at which the rank

function reaches rank wx, and zx is the first age at which the rank function strictly exceeds wx.

Because k ⩾ 1, there must be some age a ⩽ bk[w] at which r(a) > bk[w], so wx > w. But by

Definition 2.A.3, a job’s rank is at most w during (bk[w], ck[w]), so yx, zx /∈ (bk[w], ck[w]).
We therefore must have yx ⩽ bk[w] and zx ⩾ ck[w].

Appendix 2.B Proofs for Section 2.5

Given a random variable V , it is well known how to obtain positive integer moments of V

from its LST: for all n ∈ Z+,

(−D)nṼ (s) = E(V n
exp(−sV )), (2.16)

so in particular E(V n) = (−D)nṼ (0). Obtaining fractional moments of V from its LST is

trickier but also possible: for all p ⩾ 0, letting p = n− q > 0 for n ∈ Z+ and q ∈ (0, 1), we have

E(V p) = ∫
∞

0

t
n−q

dP(V ⩽ t)

= ∫
∞

t=0

t
n−q

Γ(q) ∫
∞

s=0

(st)q−1 exp(−st) ⋅ t ds dP(V ⩽ t)

= ∫
∞

s=0

1

s1−qΓ(q) ∫
∞

t=0

t
n
exp(−st) dP(V ⩽ t) ds

= ∫
∞

0

1

s1−qΓ(q)(−D)nṼ (s) ds. (2.17)

Lemma 2.5.2. For all n ∈ Z+,

(−D)nB̃U(s) =
I

∑
i=1

di(Dσ(s))ai ⋅ (−D)biŨ(σ(s))
Ji

∏
j=1

λ(−D)cijX̃(σ(s)),
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where I, Ji, ai, bi, cij, di ∈ Z+ are constants, independent of the system parameters λ and X,

satisfying

ai, bi ⩾ 1 for all i,

cij ⩾ 2 for all i, j,

bi +
Ji

∑
j=1

(cij − 1) = n for all i,

b1 > . . . > bn,

a1 = b1 = n,

d1 = 1,

J1 = 0.

Proof. We proceed by induction on n. The base case of n = 0 is immediate by (2.11), so we

turn to the inductive step. By relabeling, we can have a1 > . . . > an without loss of generality.

We address the constraint on the i = 1 constants at the end of the proof.

For a, b, cj ∈ Z+, let

τa,b,⟨c1,...,cJ ⟩(s) = (Dσ(s))a ⋅ (−D)bŨ(σ(s))
J

∏
j=1

λ(−D)cjX̃(σ(s)).

We abbreviate c = ⟨c1, . . . , cJ⟩. Call b +∑J

j=1(cj − 1) the degree of τa,b,c(s). For the inductive

step, it suffices to show that the derivative of a term with degree n is a sum of terms with

degree n + 1. Using Lemma 2.5.1, we compute

−Dτa,b,c(s) = τa+1,b+1,c(s) + aτa+2,b,⟨c1,...,cJ ,2⟩(s)

+
J

∑
j=1

τa+1,b,⟨c1,...,cj+1,...,cJ ⟩(s), (2.18)

where in the second term on the right-hand side, we append c with an extra 2, and in the third

term, we increase the jth element of c by 1. Note that each term has degree n + 1, as desired.

We now address the constraint on the i = 1 term, again by induction on n. The base case of

n = 0 is immediate by (2.11), and the inductive step follows from plugging a = b = n into

(2.18).

Lemma 2.B.1. Let p = m − q > 0 for m ∈ Z+ and q ∈ (0, 1). Then for any nonnegative

random variable V, we have

∫
∞

0

1

s1−qΓ(q)(−D)mṼ (σ(s)) ⋅Dσ(s) ds ⩽ E(V p)
(1 − ρ)1−q .

Proof. We first show that for all s > 0,

σ(s)
s ⩽

1

1 − ρ
. (2.19)
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By (2.10),

σ(s) = s + λ(1 − X̃(σ(s)))

= s + λ∫
∞

0

(1 − exp(−xσ(s))) dP(X ⩽ x)

⩽ s + λE(X)σ(s),
which implies (2.19). Making a change of variable σ = σ(s), we compute

∫
∞

0

1

s1−qΓ(q)(−D)mṼ (σ(s)) ⋅Dσ(s) ds

⩽
1

(1 − ρ)1−q ∫
∞

0

1

(σ(s))1−qΓ(q)(−D)mṼ (σ(s)) ⋅Dσ(s) ds [by (2.19)]

=
1

(1 − ρ)1−q ∫
∞

0

1

σ1−qΓ(q)(−D)mṼ (σ) dσ

=
E(V p)

(1 − ρ)1−q . [by (2.17)]

Proof of Theorem 2.5.1. Let V be a nonnegative random variable. By (2.16), for all m ∈ Z+

and s > 0,

(−D)mṼ (σ(s)) ⩽ (−D)mṼ (0) = E(V m), (2.20)

which when applied to (2.12) implies

Dσ(s) ⩽ 1

1 − ρ
. (2.21)

Combining (2.21) and Lemma 2.5.2 yields

E(Bp
U) = ∫

∞

0

1

s1−qΓ(q)(−D)nB̃U(s) ds

= ∫
∞

0

1

s1−qΓ(q)(
I

∑
i=1

di(Dσ(s))ai ⋅ (−D)biŨ(σ(s))
Ji

∏
j=1

λ(−D)cijX̃(σ(s))) ds

⩽

I

∑
i=1

di
(1 − ρ)ai−1 ∫

∞

0

1

s1−qΓ(q)((−D)biŨ(σ(s))
Ji

∏
j=1

λ(−D)cijX̃(σ(s))) ⋅Dσ(s) ds.

(2.22)

It remains only to bound the integral in (2.22), which we do separately for each value of i. If

χi0 = 1, then applying Lemma 2.B.1 with V = U and m = bi along with (2.20) yields

∫
∞

0

1

s1−qΓ(q)((−D)biŨ(σ(s))
Ji

∏
j=1

λ(−D)cijX̃(σ(s))) ⋅Dσ(s) ds

⩽ ∫
∞

0

1

s1−qΓ(q)((−D)biŨ(σ(s)) ⋅Dσ(s) ds)
Ji

∏
j=1

λE(Xcij) [by (2.20)]

⩽
E(U bi−q)
(1 − ρ)1−q

Ji

∏
j=1

λE(Xcij), [by Lemma 2.B.1]

which gives the desired bound for the ith summand in (2.22). The case where χij = 1 for some

j ⩾ 1 is very similar, except we apply Lemma 2.B.1 with V = X and m = cij.
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Remark 2.B.1. Note that one might hope to get a simpler expression for (−1)n d
n

dsn
Ũ(σ(s)) by

applying the following compact form of Faà di Bruno’s formula for derivatives of composite

functions [68]:

d
n
Ũ(σ(s))
dsn

=

n

∑
k=1

d
k
Ũ(y)
dyk

»»»»»»»»y=σ(s)
Bn,k(σ′(s), σ(2)(s), . . . , σ(n−k+1)(s)), (2.23)

where the partial or incomplete exponential Bell polynomials Bn,k are given by

Bn,k(x1, . . . , xn−k+1) = ∑ n!

j1! . . . jn−k+1!
(x1
1!

)
j1

. . . ( xn−k+1
(n − k + 1)!)

jn−k+1

,

where the sum is taken over all nonnegative integers (j1, . . . , jn−k+1) with j1 + . . .+ jn−k+1 = k

and j1 + 2j2 + . . . + (n − k + 1)jn−k+1 = n. In particular, Bn,n(x) = x
n
, so that the leading

(k = n) term of (−D)nB̃U(s) is bounded by E(Un)(σ′(s))n. In the proof of Lemma 2.6.2,

where we have a busy period with initial work x and job size X0[wx], that would very quickly

lead to the leading term ( x

1−ρ0[wx]
)p. However, to show that the remaining n− 1 terms in (2.23)

are ǒ(xp) requires a detailed study of the higher derivatives of σ(s). ⋄

Appendix 2.C Proofs for Appendix 2.A

Lemma 2.A.1. For any SOAP policy, the residence time Rx of a job of size x is stochastically

bounded by

Rx ⩽st Bx[wx].

Proof. By Definition 2.A.5,

Rx = lim
n→∞

n

∑
k=1

Bx/n[wx(kx/n)−].

It is clear from Definition 2.A.4 that BU[w] is stochastically increasing in w for any U .

Definition 2.A.1 implies wx ⩾ wx(a) for all a ⩾ 0, so

Rx ⩽st lim
n→∞

n

∑
k=1

Bx/n[wx] =d Bx[wx].

Lemma 2.A.2. For any SOAP policy, the rank-w waiting time Q[w] is stochastically bounded

by

Q[w] ⩽st

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

EBX0[w][w] w.p. π0[w],
EBX1[w][w] w.p. π1[w],
⋮

0 w.p. 1 − ρΣ[w],
where

π0[w] ∶= ρ0[w](1 − ρΣ[w])
1 − ρ0[w] ,

πk[w] ∶= ρk[w]
1 − ρ0[w] for all k ⩾ 1.
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Proof. Following the approach of [113, Section 5], one can think of Q[w] as defined by the

following process. A job J with initial rank r arrives at a random time. Because the system

uses FCFS tiebreaking between jobs of the same rank, job J is first served when

• all jobs that arrived before J either complete or have rank strictly greater than r, and

• all jobs that arrived after J either complete or have rank greater than or equal to r.

Then Q[w] is the amount of time from J ’s arrival to its first service.

Define Q
′[w] in the same way as Q[w] but in a system that breaks rank ties by prioritizing

all other jobs over J . Clearly, Q[w] ⩽st Q
′[w]. But we can succinctly describe Q

′[w]: it is
either 0 or the excess of a w-relevant busy period with some amount of initial work. Specifically,

the initial work is a kth w-relevant job segment for some k ⩾ 0. Thus, letting πk[w] be

the steady-state probability that the system is in a w-relevant busy period started by a kth

w-relevant segment, we have

Q
′[w] =d

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

EBX0[w][w] w.p. π0[w],
EBX1[w][w] w.p. π1[w],
⋮

0 w.p. 1 − ρΣ[w].

All that remains is to compute the probabilities πk[w]. For k ⩾ 1, each job’s kth w-relevant

segment starts a w-relevant busy period with expected length E(Xk[w])/(1 − ρ0[w]). Note
that the possibility of a job completing before reaching its kth w-relevant segment is not a

problem: this corresponds to the outcome Xk[w] = 0, in which case we think of the segment

as starting a w-relevant busy period of length 0. Since jobs arrive at rate λ, we have for k ⩾ 1

that

πk =
ρk[w]

1 − ρ0[w] .

The k = 0 case is similar, except that a job’s 0th w-relevant segment only starts a w-relevant

busy period if the system has no w-relevant work. Thus, the arrival rate of jobs whose 0th

w-relevant segment starts a w-relevant busy period is λ(1 − ρΣ[w]), so

π0 =
ρ0[w](1 − ρΣ[w])

1 − ρ0[w] .

Appendix 2.D Proofs for Section 2.6

Lemma 2.6.1. For all p > 0 satisfying Φ(p), in the x→ ∞ limit,

E(Q[wx]p) ⩽ ǒ(xp).

Proof. By Lemma 2.A.2,

E(Q[wx]p) ⩽
K[wx]

∑
k=0

πk[wx] ⋅ E(EBXk[wx][wx]
p), (2.24)
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where

π0[wx] =
ρ0[wx](1 − ρΣ[wx])

1 − ρ0[wx]
= O(1) ⋅ ρ0[wx],

πk[wx] =
ρk[wx]

1 − ρ0[wx]
= O(1) ⋅ ρk[wx] for all k ⩾ 1.

We start by bounding each term of the sum in (2.24). Observe first that for any random

variable V and any p ⩾ 0,

E(EV p) = E(V p+1)
(p + 1)E(V ) .

Then for all k ⩾ 0, we compute

πk[wx] ⋅ E(EBXk[wx][wx]
p) = O(1) ⋅ ρk[wx] ⋅ E(EBXk[wx][wx]

p)

= O(1) ⋅ ρk[wx] ⋅
E(BXk[wx][wx]

p+1)
E(Xk[wx])

= O(1) ⋅ E(BXk[wx][wx]
p+1). (2.25)

Bounding the right-hand side of (2.25) requires bounding fractional busy period moments. We

therefore apply Theorem 2.5.1 to the (p+ 1)th moment above, letting p+ 1 = n− q for n ∈ Z+

and q ∈ (0, 1). We choose χi0 = 1 for all i such that bi ⩾ 2 and χi1 = 1 for all other i. This

choice requires checking that Ji ⩾ 1 for all i such that bi = 1, which holds by Lemma 2.5.2 and

the fact that n ⩾ 2. The choice ensures that

bi − qχi0 ⩾ 1

cij − qχij > 1,

which will allow the use of Lemmas 2.6.4 and 2.6.5 later in the proof.

Applying Theorem 2.5.1 to (2.25) yields, for x→ ∞,

πk[wx] ⋅ E(EBXk[wx][wx]
p) ⩽ O(1) ⋅

I

∑
i=1

di
E(Xk[wx]bi−qχi0)
(1 − ρ0[wx])ai−q

Ji

∏
j=1

λE(X0[wx]cij−qχij)

= O(1) ⋅
I

∑
i=1

E(Xk[wx]bi−qχi0)
Ji

∏
j=1

E(X0[wx]cij−qχij). (2.26)

Recall from Lemma 2.5.2 that

bi − qχi0 +
Ji

∑
j=1

(cij − qχij − 1) = n − q = p + 1 (2.27)

(note that we are applying Theorem 2.5.1 to a (p + 1)th moment, not a pth moment). This

means for all i and j, we have cij − qχij − 1 ⩽ p, so Ψ(cij − qχij − 1) holds by (2.13). Returning
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to (2.26), applying Lemma 2.6.4 and (2.27) gives us

πk[wx] ⋅ E(EBXk[wx][wx]
p)

⩽

I

∑
i=1

E(Xk[wx]bi−qχi0)
Ji

∏
j=1

ǒ(xcij−qχij−1) [by Lemma 2.6.4]

=

I

∑
i=1

E(Xk[wx]bi−qχi0)max{O(1), ǒ(x∑
Ji
j=1(cij−qχij−1))}

=

I

∑
i=1

E(Xk[wx]bi−qχi0)max{O(1), ǒ(xp+1−(bi−qχi0))}, [by (2.27)] (2.28)

where the O(1) covers the Ji = 0 case, in which the product is empty.

We now return to bounding the right-hand side of (2.24), substituting in (2.28) and inter-

changing the order of summation:

E(Q[wx]p) ⩽
I

∑
i=1

max{O(1), ǒ(xp+1−(bi−qχi0))}
K[wx]

∑
k=0

E(Xk[wx]bi−qχi0).

It suffices to show that each term of the outer sum is ǒ(xp). We would like to use Lemmas 2.6.4

and 2.6.5. We know Φ(bi − qχi0 − 1) holds by (2.13) and (2.27). However, the lemmas also

require bi − qχi0 > 1, yet it may be the case that bi − qχi0 = 1. To handle this case, we use the

fact that by Definition 2.A.3,

K[wx]

∑
k=0

E(Xk[wx]) = E(
K[wx]

∑
k=0

Xk[wx]) ⩽ E(X) = O(1).

Combining this with Lemmas 2.6.4 and 2.6.5 gives us

max{O(1), ǒ(xp+1−(bi−qχi0))}
K[wx]

∑
k=0

E(Xk[wx]bi−qχi0)

⩽ max{O(1), ǒ(xp+1−(bi−qχi0))} ⋅max{O(1), ǒ(xbi−qχi0−1)}
= ǒ(xp).

Lemma 2.6.3. If ζ < 1 or η < ∞, then in the x→ ∞ limit,

E(Rx) ⩾
x

1 − ρ
− ǒ(x).

Proof. We consider the ζ < 1 and η < ∞ cases separately.

Case 1: ζ < 1. Definitions 2.A.3 and 2.A.9 imply (see also Figure 2.1)

wx(a) = wx for all a ∈ [0, yx). (2.29)
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From this we compute

E(Rx) = ∫
x

0

1

1 − ρ0[wx(a)−] da [by Corollary 2.A.1]

⩾ ∫
yx

0

1

1 − ρ0[wx(a)−] da

=
yx

1 − ρ0[wx−] [by (2.29)]

=
yx

1 − ρ⟨yx⟩
[by (2.15)]

⩾
x −O(xζ)

1 − ρ⟨x −O(xζ)⟩ [by Assumption 2.3.1 and Lemma 2.A.6]

=
x

1 − ρ⟨Ω(x)⟩ − ǒ(x).

For any ρ
′
∈ (0, ρ), we have

1

1 − ρ′
=

1

1 − ρ
⋅

1

1 + ρ−ρ′

1−ρ

⩾
1

1 − ρ
−

ρ − ρ
′

(1 − ρ)2 . (2.30)

By (2.30) with ρ
′
= ρ⟨Ω(x)⟩, it suffices to show that ρ− ρ⟨Ω(x)⟩ = ǒ(1). This indeed holds by

Lemma 2.A.5 and Definition 2.2.1:

ρ − ρ⟨Ω(x)⟩ = λ∫
∞

0

F (t) dt − λ∫
Ω(x)

0

F (t) dt [by Lemma 2.A.5]

= ∫
∞

Ω(x)
O(t−α) dt [by Definition 2.2.1]

= O(x−(α−1))
= ǒ(1).

Case 2 : η < ∞. A job’s worst future rank wx(a) is decreasing in a by Definition 2.A.1, so for

all a ∈ [0, x),
wx(a) ⩾ wx(x−) = r(x−).

Applying this to Corollary 2.A.1 yields

E(Rx) = ∫
x

0

1

1 − ρ0[wx(a)−] da ⩾
x

1 − ρ0[r(x−)] .

By (2.30) with ρ
′
= ρ0[r(x−)], it suffices to show ρ − ρ0[r(x−)] = ǒ(1).

Let f(⋅) be a strictly increasing function such that for sufficiently large t,

ut+ ⩽ f(t) ⩽ 2ut+. (2.31)

Definition 2.A.3 tells us that for all ages a > f(t), we have r(a) > wt+. But by Definitions 2.A.1

and 2.A.3, we have r(x−) ⩽ r(c0[r(x−)]) = wc0[r(x−)]+, so it must be that x ⩽ f(c0[r(x−)]).
Because f(⋅) is strictly increasing, it is invertible, so Assumption 2.3.1 and (2.31) imply

c0[r(x−)] ⩾ f
−1(x) = Ω(x1/η).
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Combining this with (2.15) and Lemma 2.A.5, we compute, similarly to the previous case,

ρ − ρ0[r(x−)] = ρ − ρ⟨Ω(x1/η)⟩ [by (2.15)]

= ∫
∞

Ω(x1/η)
O(t−α) dt [by Lemma 2.A.5]

= O(x−(α−1)/η)
= ǒ(1).

Lemma 2.6.5. For all p > 0 satisfying Φ(p), in the x→ ∞ limit,

K[wx]

∑
k=1

E(Xk[wx]p+1) = ǒ(xp).

Proof. We compute

K[wx]

∑
k=1

E(Xk[wx]p+1) =
K[wx]

∑
k=1

∫
ck[wx]

bk[wx]
(p + 1)(t − bk[wx])pF (t) dt [by Lemma 2.A.4]

⩽

K[wx]

∑
k=1

∫
ck[wx]

bk[wx]
(p + 1)(zx − yx)pF (t) dt [by Lemma 2.A.6]

⩽

K[wx]

∑
k=1

∫
ck[wx]

ck−1[wx]
(p + 1)(zx − yx)pF (t) dt [by Definition 2.A.3]

⩽ ∫
ux

0

(p + 1)(zx − yx)pF (t) dt. [by Definition 2.A.7]

Hence for x→ ∞, Assumption 2.3.1 implies

K[wx]

∑
k=1

E(Xk[wx]p+1) ⩽ ∫
O(xη)

0

O(xζpt−α) dt

= O(xmax{0,ζp−η(α−1)}),

which Φ(p) implies is ǒ(xp).

Appendix 2.E Generalization to SOAP Bubble policies

In this section we generalize our main results, Theorems 2.3.1 and 2.3.2, to SOAP Bubble

policies, which are a superset of SOAP policies that is introduced in [110]. To review (see

Section 2.3.4), a SOAP Bubble policy has lower and upper rank functions

r
−
, r

+
∶ R+ → R.

A SOAP Bubble policy works like a SOAP policy, except each job j can have a different rank

function rj. Each job’s rank function may be set arbitrarily, provided it remains within the

“bubble” between the lower and upper rank functions, meaning for all jobs j and ages a,

r
−(a) ⩽ rj(a) ⩽ r

+(a).
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One can view ordinary SOAP policies as the special case with r
−(a) = r(a) = r

+(a).
To upper bound the response time of a SOAP bubble policy, one can essentially replicate the

analysis of SOAP policies, but replacing each use of r with either r
−
or r

+
as appropriate. The

intuition is that a tagged job has maximal response time if it follows r
+
while every other job

follows r
−
. Specifically,

• when defining worst future rank (Definition 2.A.1), replace r with r
+
; and

• when defining w-relevant work, intervals, segments, and load (Definitions 2.A.2 and 2.A.3),

replace r with r
−
.

For details, see [110].

To generalize Theorems 2.3.1 and 2.3.2, we begin by defining some new notation. Recalling

that ci[w] is defined using r
−
, let

w
−
x = sup

0⩽b<x
r
−(b),

w
+
x = sup

0⩽b<x
r
+(b),

y
−
x = c0[w−

x−],
z
−
x = c0[w−

x ],
y
+
x = c0[w+

x−],
z
+
x = c0[w+

x ],
u
+
x = cK[w+

x][w
+
x ].

Throughout our proofs, we can simply replace ux with u
+
x , but yx and zx are more subtle.

• The main use of yx and zx is through Lemma 2.A.6, which is used in Lemma 2.6.5. The

lemma statement now holds with y
−
x and z

−
x .

• There is one more use of yx in Lemma 2.6.3, and this one needs to be replaced with y
+
x .

• There is one more use of zx in Lemma 2.6.4, and this one needs to be replaced with z
+
x .

This implies the following generalizations of Assumption 2.3.1 and Theorem 2.3.2. The only

substantial change is that we need two versions of ζ because there are two version of yx
and zx. This ends up breaking the Φ(p) ⇒ Ψ(p) implication in (2.13), so we add some extra

preconditions to our result.

Assumption 2.E.1.

(i) There exists ζ
−
∈ [0,∞] such that z

−
x − y

−
x = O(xζ

−

).

(ii) There exists ζ
+
∈ [ζ−,∞] such that z

+
x − y

+
x = O(xζ

+

).

(iii) There exists η
+
∈ [max{1, ζ+},∞] such that ux = O(xη

+

).

Theorem 2.E.1. Consider an M/G/1 queue whose job size distribution is HT and a SOAP
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Bubble scheduling policy whose lower and upper rank functions obey Assumption 2.E.1. If

ζ
−
−

1

η+
<
α − 1

β
,

1 −
1

ζ+
<
α − 1

β
,

and either ζ
+
< 1 or η

+
< ∞,

then the policy is tail-optimal, i.e., limx→∞
1

F (x)P(T >
x

1−ρ
) = 1.

One can obtain the following simplified condition in much the same way as done in Theo-

rem 2.3.1.

Theorem 2.E.2. Consider an M/G/1 queue whose job size distribution is HT using a SOAP

Bubble scheduling policy whose lower and upper rank functions obey

r
−(a) = Ω(aγ),
r
+(a) = O(aδ)

for some δ > γ > 0. If
δ
γ −

γ

δ
<
α − 1

β
,

then the policy is tail-optimal, i.e., limx→∞
1

F (x)P(T >
x

1−ρ
) = 1.



3 Extension for heavy-tailed job sizes,

light-tailed job sizes, and the Gittins

policy

3.1 Introduction

In this chapter we stay within the context of scheduling in the M/G/1 queue and its effect

on the response time T . In general, a queueing system will have a response time distribution,

and there are a variety of metrics one might hope to minimize. There is significant work on

minimizing mean response time E(T ), which is the average response time of all jobs in a long

arrival sequence [2, 52, 53, 105].

Much less is known about minimizing the tail of response time P(T > t), which is the

probability a job has response time greater than a parameter t ⩾ 0. In light of the difficulty of

studying the tail directly, theorists have studied the asymptotic tail of response time, which

is the asymptotic decay of P(T > t) in the t → ∞ limit [20, 29, 95, 120]. The content of

Chapter 2 also falls within this category, particularly focusing on heavy-tailed job sizes. In

the current chapter, we consider both heavy and light tails, and give special attention to the

Gittins policy (Definition 3.1.1).

Given the importance of both the mean and asymptotic tail of the response time, we study

the following question.

Question 3.1. Does any scheduling policy simultaneously optimize the mean and asymptotic

tail of response time?

For a wide class of job size distributions, prior work answers Question 3.1 when job sizes are

known to the scheduler. In this setting, the Shortest Remaining Processing Time (SRPT)

policy, which preemptively serves the job of least remaining size, always minimizes mean

response time [105]. However, SRPT’s tail performance depends on the (known) job size

distribution.

• If the job size distribution is heavy-tailed (Definition 2.2.1), then SRPT is tail-optimal,

meaning it has the best possible asymptotic tail decay (Definition 2.2.2).

• If the job size distribution is light-tailed (Definition 3.3.2), then SRPT is tail-pessimal,

meaning it has the worst possible asymptotic tail decay (Definition 3.3.3).

When the job size distribution is in one of these two classes, this answers Question 3.1 for

known job sizes: “yes, namely SRPT” in the heavy-tailed case, “no” in the light-tailed case.

55
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Unfortunately, in practice, the scheduler often does not know job sizes, and thus one cannot

implement SRPT. Instead, the scheduler often only knows the job size distribution. We study

Question 3.1 in this unknown-size setting.

The question of minimizing mean response time with unknown job sizes was settled by Gittins

[52]. He introduced a policy, now known as the Gittins policy, which leverages the job size

distribution to minimize mean response time. Roughly speaking, Gittins uses each job’s age,

namely the amount of time each job has been served so far, to figure out which job is most

likely to complete after a small amount of service, then serves that job. For some job size

distributions, Gittins reduces to a simpler policy, such as First-Come, First-Served (FCFS) or

Foreground-Background (FB) [2, 3].

In the unknown-size setting, given that Gittins minimizes mean response time, Question 3.1

reduces to the following.

Question 3.2. For which job size distributions is Gittins tail-optimal for response time?

Unfortunately, the asymptotic tail behavior of Gittins is understood in only a few special

cases.

• In the heavy-tailed case, Corollary 2.3.2 states that Gittins is tail-optimal, but only

under an assumption on the job size distribution’s hazard rate.

• In the light-tailed case, Gittins sometimes reduces to FCFS or FB [2, 3]. For light-tailed

job sizes, FCFS is tail-optimal [29, 120], but FB is tail-pessimal [80].

This prior work leaves Question 3.2 largely open. We do not know whether Gittins is always

tail-optimal in the heavy-tailed case, or whether it is sometimes suboptimal, or even tail-

pessimal. Moreover, we do not understand Gittins’s asymptotic tail at all in the light-tailed

case, aside from when Gittins happens to reduce to a simpler policy.

The prior work above does tell us an important fact: Gittins can be tail-pessimal. This prompts

another question.

Question 3.3. For job size distributions for which Gittins is tail-pessimal, is there another

policy that has near-optimal (arbitrarily close to optimal) mean response time while not being

tail-pessimal?

In this chapter, we answer Questions 3.1–3.3 for the M/G/1 queue with unknown job sizes,

covering wide classes of heavy- and light-tailed job size distributions. The key tool we use to

analyze Gittins’s asymptotic response time tail is the SOAP framework (see the introduction

of Part I). SOAP gives a universal M/G/1 response time analysis of all SOAP policies, which

are scheduling policies where a job’s priority level is a function of its age (Definition I.1).

Underlying our Gittins results is a general tail analysis of SOAP policies.

3.1.1 Prior work

Before describing our results explicitly, we place our work in context with existing literature.
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Asymptotic tail analysis of classic scheduling policies

Due to their frequent occurrence, light-tailed job size distributions have received a great amount

of attention by queueing theorists. The performance of policies under light-tailed job sizes is

generally measured in terms of the decay rate of the response time tail. In this sense FCFS

has proven to be optimal among all service policies [120]. Conversely, Foreground-Background

has the worst possible decay rate of the response time tail [80].

On the other hand, it is shown that heavy-tailed job sizes can have a large impact on the

performance characteristics of the queue. For this reason also heavy-tailed job sizes have been

thoroughly investigated in the literature. Remarkably, and contrary to the light-tailed case,

FB is optimal in the heavy-tailed case whereas FCFS has the worst possible response time tail

[20]. This dichotomy between light and heavy tails is not limited to FCFS and FB [29].

Other noteworthy literature highlighting both light and heavy tails includes delicate asymptotic

results for a two-class priority policy [4] and robust optimization using a limited PS policy

[87].

With one exception, discussed below, the literature on this subject has in common that only

a few, relatively simple, policies are considered. This chapter considers policies in which the

priority of a job can vary essentially arbitrarily with its age. This generality is needed to

analyze the Gittins policy, which can be non-monotonic [3].

Tail optimality of certain SOAP policies in the heavy-tailed case

We mention particularly the relation between the current chapter and the previous chapter.

Both chapters study the response time tail behavior of arbitrary SOAP policies, including the

Gittins policy. There are two main factors that distinguish this chapter from Chapter 2.

• Chapter 2 only concerns heavy-tailed job size distributions. In contrast, this chapter

studies both the heavy- and light-tailed cases.

• In Chapter 2 it is shown that Gittins is tail-optimal subject to a condition on the job size

distribution’s hazard rate (Corollary 2.3.2). However, the analysis is not sharp enough

to completely characterize under which (heavy-tailed) job size distributions Gittins is

tail-optimal. In contrast, the analysis in this chapter is sharper, allowing us to identify

Gittins’s tail performance under any job size distribution.

With this said, Chapter 2 lays an important technical foundation that we build upon to derive

our heavy-tailed results. See Remark 3.2.1 for a more technical discussion of what aspects of

Chapter 2 we use and what aspects are new in this Chapter.

Beyond asymptotic optimality

It is well known that FCFS has optimal tail decay rate under light-tailed job sizes. However,

decay rate is a relatively crude tail performance measure, as it does not take into account the

constant (or non-exponential term) in front of the exponent. Although this chapter focuses

just on decay rates, we mention that very recently a policy was introduced that has a better



58 Extension for heavy-tailed job sizes, light-tailed job sizes, and the Gittins policy

leading constant than FCFS [54]. An open question remains what is the best possible leading

constant in the response time tail. A by-product of our results, namely that FCFS is the only

SOAP policy with optimal decay rate, partially answers this question. Specifically, it follows

that no SOAP policy is tail-optimal up to the leading constant.

Mean response time of modified Gittins policies

A recent study [109, Theorem 7.2] shows that if one slightly modifies the prioritization rules

of SRPT, then the mean response time of the resulting policy is only slightly worse than that

of unmodified SRPT (which is optimal in case job sizes are known). It turns out, as shown in

this chapter, that a similar result holds for an approximate version of the Gittins policy, and

that result can thus be seen as the unknown-job-sizes counterpart of [109, Theorem 7.2].

3.1.2 Contributions

Our main contributions, which we describe in more detail later (Section 3.2 for heavy tails

and Section 3.3 for light tails), are as follows:

• Heavy-tailed case: We give a sufficient condition under which an arbitrary SOAP policy

is tail-optimal (Section 3.4).

• Heavy-tailed case: We show that the above condition always applies to Gittins, implying

it is always tail-optimal (Section 3.5).

• Light-tailed case: We characterize when an arbitrary SOAP policy is tail-optimal, tail-

pessimal, or in between (Section 3.6).

• Light-tailed case: We spell out how the above characterization applies to Gittins and

show how to modify Gittins to avoid tail pessimality (Section 3.7).

• General case: At the core of our modification of Gittins which avoids tail pessimality

is a general result which states that slightly perturbing the Gittins rank function only

slightly affects its mean response time (Theorem 3.3.3 and Appendix 3.A).

The rest of the chapter introduces definitions and notation (Section 3.1.3), and concludes with

some remarks about our motivating questions (Section 3.8).

3.1.3 Model description and the Gittins policy

We consider an M/G/1 queue with arrival rate λ, job sizes distributed as X, and load

ρ = λE(X). For the tail of the job size distribution, we write F (t) = P(X > t). We denote

the maximum job size by xmax = inf{t ⩾ 0 ∣ F (t) = 0}, allowing xmax = ∞. We assume that

the scheduling policy is a SOAP policy (Definition I.1), and we write Tπ for the response time

under π. Additionally, we denote by rπ ∶ [0, xmax) → R the rank function of the SOAP policy

π. When the policy being discussed is clear from context, we often omit the subscript and
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simply write r(a). Recall that at every moment in time, a SOAP policy serves the job of

minimum rank, breaking ties in FCFS order.

In this chapter, special attention is given to the Gittins policy. It assigns each job a rank based

on the job’s age, so it naturally falls within the SOAP framework.

Definition 3.1.1. The Gittins policy, denoted “Gtn” in subscripts for brevity, is the SOAP

policy with rank function

rGtn(a) = inf
b>a

∫ b
a
F (t) dt

F (a) − F (b)
.

Note that the Gittins rank function depends on the job size distribution by way of F .

As Definition I.1 suggests, we consider rank functions that are piecewise-continuous and

piecewise-monotonic. This holds for Gittins under very mild conditions on the job size

distribution. For example, Aalto et al. [3] show that it holds when the hazard rate of X is

continuous and piecewise-monotonic.

3.2 Heavy tails

The two main results in the heavy-tailed case are presented in Section 3.2.1:

• Theorem 3.2.1 gives a sufficient condition under which a SOAP policy is tail-optimal for

heavy-tailed job sizes.

• Theorem 3.2.2 shows that for heavy-tailed job sizes, Gittins always satisfies this sufficient

condition, and is thus always tail-optimal.

The class of heavy-tailed job sizes we consider coincides with that of Chapter 2. That is, we

consider the class of HT distributions (Definition 2.2.1). Similarly, we work with the same

tail-optimality criterion as in the previous chapter (Definition 2.2.2).

3.2.1 Results for the heavy-tailed case

Let us focus on a tagged job of size x. For determining whether or not it will be delayed by

other jobs, it is important to know the worst (highest) rank that it will ever have. To that

end, recall from Definition 2.A.1 that the worst ever rank of a job of size x is defined by

wx = sup0⩽a<x r(a). A second object of interest regarding the delay of the tagged job is the set

of ages at which other jobs will have rank lower than wx.

Definition 3.2.1. A w-interval is an interval (b, c) with 0 ⩽ b < c ⩽ xmax such that r(a) ⩽ w

for all a ∈ (b, c).

Note that the tagged job of size x always has priority over jobs having rank higher than wx.

Therefore, it can only be delayed by another job if that other job’s age is in a wx-interval. See

Figure 3.1 for an illustration. To ensure that the tagged job does not wait too long behind other
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x

wx

0 age a
0

rank r(a)

Figure 3.1: Illustration of worst ever rank wx (purple dotted line) and wx-intervals (orange regions)

for a SOAP policy given by rank function r (cyan curve). Additionally, any sub-interval of a wx-

interval is also a wx-interval.

jobs, the wx-intervals must be relatively short. We use the following condition to characterize

the length of wx-intervals.

Condition 3.2.1. There exist ζ, θ ∈ [0,∞) and η ∈ [max{1, ζ+θ},∞] such that the following

hold for any wx-interval (b, c):

(i) If b ⩾ x, then c − b ⩽ O(bζxθ).

(ii) c ⩽ O(xη).

Here, in (i), the multivariable O(⋅) notation is defined as follows. Suppose x1, . . . , xn are

non-negative variables. The notation O(f(x1, . . . , xn)) stands for an unspecified expression

g(x1, . . . , xn) ⩾ 0 for which there exist constants C, y0, . . . , yn ⩾ 0 such that for all x1 ⩾

y1, . . . , xn ⩾ yn, we have g(x1, . . . , xn) ⩽ Cf(x1, . . . , xn). The multivariable Ω(⋅) notation is

defined analogously, with the inequality reversed.

At an intuitive level, we can think of Condition 3.2.1 as saying the following. Condition (i)

refers to the maximum amount of time that jobs older than x can delay the tagged job of size

x:

• If θ is small, then whenever the rank function dips below wx, it does so for only a short

time.

• If ζ + θ is small, then adjacent “peaks” of the rank function are not too far apart. Here,

a “peak” is an age a that is both a local maximum and a “running maximum”, meaning

r(a) > r(b) for all b ∈ [0, a).

Condition (ii) refers to the threshold age after which a job can no longer delay the tagged job:

• If η is small, then not too long after age x, the rank function never dips below wx again.

Thus, the smaller the parameters θ, ζ and η, the shorter the tagged job of size x has to wait

for other jobs. Our main theorem in the heavy-tailed setting, stated below, characterizes how

small these parameters should be in order to achieve tail optimality.
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Theorem 3.2.1. Consider an M/G/1 queue with any HT job size distribution under a SOAP

policy. Condition 3.2.1 implies the policy is tail-optimal if

ζ + (θ − 1)+ −
(1 − θ)+

η <
α − 1

β
. (3.1)

We can apply Theorem 3.2.1 to show that Gittins is tail-optimal. Specifically, we will show

that Gittins satisfies Condition 3.2.1 with ζ = 0, θ = 1, and η = ∞. As such, it achieves a

value of 0 on the left-hand side of (3.1), so Gittins is tail-optimal regardless of the values of α

and β.

Theorem 3.2.2. The Gittins policy is tail-optimal for any HT job size distribution.

Remark 3.2.1 (Comparison to Chapter 2). Having formally stated our sufficient condition

for tail optimality in the heavy-tailed case, we may now compare it in more detail to that of

Chapter 2. Assumption 2.3.1 and the corresponding result Theorem 2.3.2 are the same as this

Chapter’s Condition 3.2.1 and Theorem 3.2.1, respectively, but restricted to the θ = 0 case.

This means, roughly speaking, that in Chapter 2 only the lengths between “peaks” of the rank

function are considered, rather than the lengths of wx-intervals.

Unfortunately, looking only at distances between peaks of the rank function is not enough to

prove Gittins is always tail-optimal in the heavy-tailed case, because Gittins’s peaks can be too

far apart. Specifically, to make Gittins satisfy Condition 3.2.1 with θ = 0, one must in general

set ζ = 1, which turns out to be too large. However, it turns out that even though Gittins’s

peaks can be far apart, they have “gentle slopes”, so wx-intervals starting at very large ages

are not asymptotically larger than wx-intervals starting at smaller ages. Condition 3.2.1 is

sharp enough to capture this by setting ζ = 0 and θ = 1.

Underlying the tail-optimality results of Chapter 2 is a busy period analysis combined with

asymptotic response time bounds. We make use of this busy period analysis, which we distill

into a simple statement (Theorem 3.4.1), but we replace the asymptotic response time bounds

of Chapter 2 with a sharper analysis that accounts for the θ > 0 possibility (Sections 3.4.1

and 3.4.2). ⋄

3.3 Light tails

Similarly to the previous section, we first define the class of light-tailed distributions and state

the corresponding tail-optimality criterion in Section 3.3.1. The main results in the light-tailed

case, presented in Section 3.3.2, are summarized as follows:

• Theorem 3.3.1 classifies SOAP policies into tail-optimal, tail-intermediate, and tail-

pessimal for light-tailed job sizes.

• Theorem 3.3.2 shows that for light-tailed job sizes, Gittins can be any of tail-optimal,

tail-intermediate, or tail-pessimal.
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• Theorem 3.3.3 shows that making a small change to the Gittins rank function results in

only a small change to mean response time.

• Theorem 3.3.4 shows that for a wide class of light-tailed job size distributions for which

Gittins is tail-pessimal, making a small change to Gittins’s rank function results in a

tail-optimal or -intermediate policy with mean response time arbitrarily close to Gittins’s.

3.3.1 Background on light-tailed job sizes

Definition 3.3.1. The decay rate of random variable V, denoted d(V ), is

d(V ) ∶= lim
t→∞

− logP(V > t)
t

.

That is, if the decay rate d(V ) is finite, then P(V > t) = exp(−d(V )t ± o(t)). Higher decay

rates thus correspond to asymptotically lighter tails.

Roughly speaking, the light-tailed job size distributions we study are those with positive

decay rate. Our main tool for investigating the decay rate of a random variable V is via its

Laplace-Stieltjes transform (LST),

Ṽ (s) ∶= E(exp(−sV )).

Under mild conditions on V [82, 89, 90], we can determine its decay rate in terms of the

convergence of its LST:

d(V ) = − sup{s ⩽ 0 ∣ Ṽ (s) < ∞}. (3.2)

The specific class of light-tailed job size distributions we consider, described below, are

those which allow us to use (3.2) throughout this work (Appendix 3.B). The class includes

essentially all light-tailed distributions of practical interest such as finite-support, phase-type,

and Gaussian-tailed distributions. In the terminology of Abate and Whitt [4], we consider all

“Class I” distributions.

Definition 3.3.2 (Light-Tailed Job Size Distribution). Given a job size X, let

s
∗
= inf{s ⩽ 0 ∣ X̃(s) < ∞}.

We say that the distribution of X is LT if s
∗
= −∞ or s

∗
∈ (−∞, 0) and X̃(s∗) = ∞.

Remark 3.3.1. Our results can be generalized to some “Class II” distributions [4], which are

also light-tailed. We comment on this in Appendix 3.B.3. However, working with Class II

distributions generally requires additional regularity or smoothness assumptions [4, Section 5],

so for simplicity of presentation, we focus on Class I distributions. ⋄

Definition 3.3.3 (Tail Optimality in Light-Tailed Case). Consider an M/G/1 queue with an

LT job size distribution. We say a scheduling policy π is

• log-tail-optimal if π maximizes d(Tπ),
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• log-tail-pessimal if π minimizes d(Tπ), and

• log-tail-intermediate otherwise.

In each case, we mean minimizing or maximizing over preemptive work-conserving policies. In

informal discussion, we omit “log-”.

3.3.2 Results for the light-tailed case

We have seen that a job’s worst ever rank plays an important role in the heavy-tailed setting.

When the job size distribution is LT, we are interested in the age at which the rank function’s

global maximum occurs.

Definition 3.3.4. The worst age, denoted a
∗
, is the earliest age at which a job has the global

maximum rank:

a
∗
= inf{a ∈ [0, xmax) ∣ ∀b ∈ [0, xmax), r(a) ⩾ r(b)}.

If the rank function has no maximum, we define a
∗
= xmax.

As an example, FCFS has a
∗
= 0, because a job’s priority is the lowest before it starts service.

In contrast, FB has a
∗
= xmax, because a job’s priority gets strictly lower with age.

We already know that FCFS and FB are tail-optimal and tail-pessimal, respectively. The

theorem below fills in the gaps for all other SOAP policies, showing that the performance of

the response time tail is completely determined by the worst age a
∗
.

Theorem 3.3.1. Consider an M/G/1 queue with any LT job size distribution under a SOAP

policy. Let xmax = inf{x ⩾ 0 ∣ P(X > x) = 0}. The policy is

• log-tail-optimal if a
∗
= 0,

• log-tail-intermediate if 0 < a
∗
< xmax, and

• log-tail-pessimal if a
∗
= xmax.

To apply Theorem 3.3.1 to the Gittins policy, we need to characterize how the job size

distribution affects Gittins’s worst age a
∗
.

Definition 3.3.5. We define two classes of distributions: NBUE and ENBUE.

• We say X is in the New Better than Used in Expectation (see for instance [121]),

writing X ∈ NBUE, if for all ages a ∈ [0, xmax),

E(X) ⩾ E(X − a ∣ X > a).

• We say X is Eventually New Better than Used in Expectation, writing X ∈ ENBUE,

if there exists a0 ⩾ 0 such (X − a0 ∣ X > a0) ∈ NBUE. That is, X ∈ ENBUE if there

exists a0 ⩾ 0 such that for all a ⩾ a0,

E(X − a0 ∣ X > a0) ⩾ E(X − a ∣ X > a).
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Results of Aalto et al. [2, 3] connect the classes NBUE and ENBUE to Gittins’s worst age a
∗
,

implying the following characterization.

Theorem 3.3.2. Consider an M/G/1 queue with any LT job size distribution. Gittins is

• log-tail-optimal if X ∈ NBUE,

• log-tail-intermediate if X ∈ ENBUE \ NBUE, and

• log-tail-pessimal if X /∈ ENBUE.

The fact that Gittins can be log-tail-pessimal is intriguing, considering that it is optimal

for mean response time, and tail-optimal under HT job sizes. Fortunately, in most cases

where Gittins is log-tail-pessimal, slightly tweaking Gittins yields a log-tail-intermediate policy

without sacrificing much mean response time performance.

Definition 3.3.6. A SOAP policy π is a q-approximate Gittins policy if there exists a

constant m > 0 such that for all ages a ∈ [0, xmax),
rπ(a)
rGtn(a)

∈ [m,mq].

We may assume without loss of generality that m = 1, because the policy π
′
with rank

function rπ′(a) = rπ(a)/m has identical behavior to policy π.

Theorem 3.3.3. Consider an M/G/1 queue with any job size distribution. For any q ⩾ 1

and any q-approximate Gittins policy π,

E(Tπ) ⩽ qE(TGtn).

An important observation is that a q-approximate Gittins policy has near-optimal mean

response time for q approaching one. At the same time, changing the Gittins rank function

even within a small factor q ⩾ 1 can decrease the worst age, and therefore improve the tail

performance.

Theorem 3.3.4. Consider an M/G/1 queue with an LT job size distribution X /∈ ENBUE.

Suppose that the expected remaining size of a job at all ages is uniformly bounded, meaning

sup
a∈[0,xmax)

E(X − a ∣ X > a) < ∞.

Then for all ε > 0, there exists a (1 + ε)-approximate Gittins policy that is log-tail-optimal or

log-tail-intermediate.

The remainder of this chapter is organized as follows. We prove our results for heavy tails,

Theorems 3.2.1 and 3.2.2, respectively in Sections 3.4 and 3.5. Similarly, proofs of our results

for the light-tailed case are given in Sections 3.6 (Theorem 3.3.1) and 3.7 (Theorems 3.3.2

and 3.3.4). The remaining main result, Theorem 3.3.3, requires substantially more technical

machinery for its proof, which is why we defer it to Appendix 3.A. Finally, Section 3.8 describes

how our results answer the questions posed in Section 3.1.

Throughout the proofs, we regularly use the definitions and lemmas of Appendix 2.A related

to SOAP.
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3.4 Heavy-tailed job sizes: tail asymptotics of SOAP policies

In this section we prove Theorem 3.2.1. Throughout this section, we use a “polynomially strict”

version of little-o notation, which we write as ǒ(⋅). Given p > 0, the notation ǒ(xp) stands for

O(xp−ε) for some unspecified ε > 0.

Our proof works by building upon intermediate results of Chapter 2. Specifically, since it was

shown that Lemmas 2.6.3 and 2.6.5 together imply tail optimality, we can formulate these

statements as conditions here.

Condition 3.4.1. There exists q > β such that for all p ∈ (0, q],

K[wx]

∑
k=0

E(Xk[wx]p+1) ⩽ ǒ(xp).

Condition 3.4.2.

∫
x

0

1

1 − λE(X0[wx(a)−]) da ⩾
x

1 − ρ
− ǒ(x).

Theorem 3.4.1 (Chapter 2). Consider an M/G/1 queue with an HT job size distribution

under a SOAP policy. Conditions 3.4.1 and 3.4.2 together imply tail optimality.

The proof of Theorem 3.2.1 thus amounts to showing Conditions 3.4.1 and 3.4.2 hold under

(3.1). We do so by way of the following two lemmas, both of which are novel.

Lemma 3.4.1. Condition 3.2.1 implies Condition 3.4.1 if (3.1) holds.

Lemma 3.4.2. Condition 3.2.1 implies Condition 3.4.2 if ζ < 1 or η < ∞.

Proof of Theorem 3.2.1. It suffices to show that (3.1) implies ζ < 1 or η < ∞. This is true

because if η = ∞, then (3.1) implies ζ < (α − 1)/β < 1.

The remainder of this section is devoted to proving these two lemmas. Section 3.4.1 proves

Lemma 3.4.1, and Section 3.4.2 proves Lemma 3.4.2.

3.4.1 Upper bound

Definition 3.4.1. Suppose Condition 3.2.1 holds. We say p ⩾ 0 is good if

ζ + (θ − 1)+ −
(1 − θ)+

η <
α − 1
p .

Proving Lemma 3.4.1 amounts to proving the following two lemmas.

Lemma 3.4.3. Suppose Condition 3.2.1 holds. For all p ⩾ 0, if p is good, then

E(X0[wx]p+1) ⩽ ǒ(xp).
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Lemma 3.4.4. Suppose Condition 3.2.1 holds. For all p ⩾ 0, if p is good, then

K[wx]

∑
k=1

E(Xk[wx]p+1) ⩽ ǒ(xp).

Proof of Lemma 3.4.1. Our goal is to show that if β is good, then Condition 3.4.1 holds.

Because Definition 3.4.1 can be written as a strict upper bound on p, if β is good, then there

exists q > β such that all p ∈ (0, q] are good. The result therefore follows from Lemmas 3.4.3

and 3.4.4.

We devote the rest of this section to proving Lemmas 3.4.3 and 3.4.4. The first step of each proof

is computing (p + 1)th moments of wx-relevant job segments, which we do in Lemmas 3.4.5

and 3.4.6, respectively.

Lemma 3.4.5. Suppose Condition 3.2.1 holds. For all p ⩾ 0,

E(X0[wx]p+1) ⩽

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

O(1) if p < α − 1

O(log x) if p = α − 1

O(xmax{1,ζ+θ}(p−α+1)) if p > α − 1.

Proof. Recall from Definition 2.A.9 that zx = c0[wx]. Because (x, zx) is a wx-interval, Condi-

tion 3.2.1 implies

zx − x = O(xζ+θ). (3.3)

We compute

E(X0[wx]p+1) = ∫
zx

0

(p + 1)tpF (t) dt [by Lemma 2.A.4 and Definition 2.A.9]

⩽ ∫
O(xmax{1,ζ+θ})

0

O(tp−α) dt [by Lemma 2.2.1 and (3.3)]

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

O(1) if p < α − 1

O(log x) if p = α − 1

O(xmax{1,ζ+θ}(p−α+1)) if p > α − 1.

Proof of Lemma 3.4.3. We apply Lemma 3.4.5, splitting into cases depending on how p

compares to α − 1.

Case 1 (p ⩽ α − 1). By Lemma 3.4.5, we have E(X0[wx]p+1) ⩽ O(log x) ⩽ ǒ(xp).
Case 2 (p > α − 1). By Lemma 3.4.5, it suffices to show

max{1, ζ + θ}(p − α + 1) < p.

Dividing by pmax{1, ζ + θ} gives

1 −
1

max{1, ζ + θ} <
α − 1
p .
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If ζ + θ ⩽ 1, then this holds because α > 1. If instead ζ + θ > 1, then by the standard

equality ζ + θ − 1 = ζ + (θ − 1)+ − (1 − θ)+, it suffices to show

ζ + (θ − 1)+
ζ + θ

−
(1 − θ)+
ζ + θ

<
α − 1
p .

Because 1 ⩽ ζ + θ ⩽ η, this holds by Definition 3.4.1.

Lemma 3.4.6. Suppose Condition 3.2.1 holds. For all p ⩾ 0,

K[wx]

∑
k=1

E(Xk[wx]p+1) ⩽

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

O(xθp+ζp−α+1) if ζp < α − 1

O(xθp log xη) if ζp = α − 1

O(xθp+η(ζp−α+1)) if ζp > α − 1.

Proof. Note that Definitions 2.A.1 and 2.A.3 together imply

bk[wx] ⩾ x for all k ⩾ 1. (3.4)

We compute

K[wx]

∑
k=1

E(Xk[wx]p+1)

=

K[wx]

∑
k=1

∫
ck[wx]

bk[wx]
(p + 1)(t − bk[wx])pF (t) dt [by Lemma 2.A.4]

⩽

K[wx]

∑
k=1

∫
ck[wx]

bk[wx]
(p + 1)(ck[wx] − bk[wx])pF (t) dt

⩽

K[wx]

∑
k=1

∫
ck[wx]

bk[wx]
(p + 1)(ck[wx] − bk[wx])p ⋅O(t−α) dt [by Lemma 2.2.1]

⩽

K[wx]

∑
k=1

∫
ck[wx]

bk[wx]
O(xθpt−αbk[wx]ζp) dt [by Condition 3.2.1 and (3.4)]

⩽

K[wx]

∑
k=1

∫
ck[wx]

bk[wx]
O(xθptζp−α) dt

⩽ O(xθp)∫
cK[wx][wx]

x

O(tζp−α) dt [by (3.4)]

⩽ O(xθp)∫
O(xη)

x

O(tζp−α) dt [by Condition 3.2.1]

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

O(xθp+ζp−α+1) if ζp < α − 1

O(xθp log xη) if ζp = α − 1

O(xθp+η(ζp−α+1)) if ζp > α − 1.

Proof of Lemma 3.4.4. We apply Lemma 3.4.6, splitting into cases depending on how ζp

compares to α − 1.
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Case 1 (ζp < α − 1). By Lemma 3.4.6, it suffices to show

θp + ζp − α + 1 < p.

If θ ⩽ 1, then this holds because ζp < α − 1. Otherwise, if θ > 1, we can rearrange it to

ζ + θ − 1 <
α − 1
p ,

in which case it also holds by Definition 3.4.1.

Case 2 (ζp = α−1). By Lemma 3.4.6, it suffices to show η < ∞ and θ < 1. Because ζp = α−1,

we can simplify Definition 3.4.1 to

(θ − 1)+ −
(1 − θ)+

η < 0,

which implies η < ∞ and θ < 1.

Case 3 (ζp > α − 1). By Lemma 3.4.6, it suffices to show

θp + η(ζp − α + 1) < p.

Since θ − 1 = (θ − 1)+ − (1 − θ)+, dividing by ζp gives

ζ +
(θ − 1)+

η −
(1 − θ)+

η <
α − 1
p .

Because η ⩾ 1, this holds by Definition 3.4.1.

3.4.2 Lower bound

The proof of Lemma 3.4.2 requires a lower bound on c0[wx(a)−].

Lemma 3.4.7. Suppose Condition 3.2.1 holds, and let κ = 2max{α − 1, θ}. For all x ⩾ 0

and a ∈ (yx, x),

c0[wx(a)−] ⩾ Ω((x − a

xζ
)
1/κ

).

Proof. Because κ > θ ⩾ 0, by Condition 3.2.1 and (3.4), for all x
′
⩾ 0 and k ⩾ 1,

x
′
⩾ Ω((ck[wx′] − bk[wx′]

bk[wx′]ζ
)
1/κ

). (3.5)

We now plug in x
′
= c0[wx(a)−] and make the following observations.

• By Definition 2.A.3, we know x
′
= c0[wx(a)−] is the earliest age at which a job has rank

at least wx(a), so wx′ = wx(a).

• By Definition 2.A.1, a job’s rank is at most wx(a) between ages a and x, so there exists

k ⩾ 1 such that

bk[wx(a)] ⩽ a < x ⩽ ck[wx(a)].
In particular, x > bk[wx(a)] and x − a ⩽ ck[wx(a)] − bk[wx(a)].
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Applying these observations to (3.5) with x
′
= c0[wx(a)−] yields the desired bound.

Proof of Lemma 3.4.2. The η < ∞ case follows from Lemma 2.6.3, so we address only the

ζ < 1 case.

We first observe that for all ρ
′
∈ [0, ρ],

1

1 − ρ′
⩾

1

1 − ρ
−

ρ − ρ
′

(1 − ρ)2 .

This means Condition 3.4.2 holds if

∫
x

0

(E(X) − E(X0[wx(a)−])) da ⩽ ǒ(x). (3.6)

We can rewrite the integrand as

E(X) − E(X0[wx(a)−]) = ∫
∞

0

F (t) dt − ∫
c0[wx(a)−]

0

F (t) dt [by Lemma 2.A.4]

⩽ ∫
∞

c0[wx(a)−]
O(t−α) dt [by Lemma 2.2.1]

⩽ O(c0[wx(a)−]−(α−1)).

Of course, the integrand is also bounded above by E(X), so

∫
x

0

(E(X) − E(X0[wx(a)−])) da ⩽ ∫
x

0

O(min{1, c0[wx(a)−]−(α−1)}) da. (3.7)

A job of size x attains its worst ever rank wx at age yx. This means that for all a < yx, we

have wx(a) = wx, which by Definition 2.A.9 implies c0[wx(a)−] = yx. Splitting the integral in

(3.7) at a = yx yields

∫
x

0

(E(X) − E(X0[wx(a)−])) da ⩽ ∫
yx

0

O(y−(α−1)
x ) da + ∫

x

yx

O(min{1, c0[wx(a)−]−(α−1)}) da

⩽ O(y(2−α)
+

x ) + ∫
x

yx

O(min{1, c0[wx(a)−]−(α−1)}) da.
(3.8)

Because yx ⩽ x and α > 1, it suffices to show the integral in (3.8) is ǒ(x).
The remaining obstacle is bounding c0[wx(a)−]. Plugging the expression of Lemma 3.4.7 into

(3.8) and substituting u = x
−ζ(x − a) gives

∫
x

yx

O(min{1, c0[wx(a)−]−(α−1)}) da ⩽ ∫
x

0

O(min{1, (x − a

xζ
)
−(α−1)/κ

}) da

⩽ ∫
x

x−xζ
O(1) da + x

ζ ∫
x
1−ζ

1

O(u−(α−1)/κ) du

= O(xζ) +O(xζ+(1−ζ)(1−(α−1)/κ)).

Because ζ < 1 and (α − 1)/κ ∈ (0, 1/2], this is ǒ(x), as desired.
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3.5 Heavy-tailed job sizes: Gittins is tail-optimal

In this section we prove Theorem 3.2.2. The proof boils down to a series of lemmas providing

various bounds on the Gittins rank function and a related function, defined below.

Definition 3.5.1. The time-per-completion function is

φ(b, c) =
∫ c
b
F (t) dt

F (b) − F (c)
.

Note that one can write the Gittins rank function as rGtn(a) = infc>a φ(a, c).

We begin by stating (and restating) several bounds on rGtn and φ from prior work (and

Chapter 2).

Lemma 3.5.1 (Section 2.3.2). Under Gittins with any HT job size distribution, rGtn(a) = O(a),
and therefore wx = O(x).

Lemma 3.5.2 (Scully et al. [108, Theorem 6.4]). Under Gittins with any HT job size distri-

bution, zx − yx = O(x).

Lemma 3.5.3 (Lemma 2.A.6). Under any SOAP policy, for any w-interval (b, c), if x ∈ (b, c),
then

yx ⩽ b < c ⩽ zx.

Lemma 3.5.4 (Scully et al. [108, Lemma 6.8]). For any HT job size distribution, the time-

per-completion function is bounded by

φ(b, c) ⩾ Ω(bc(c − b)).

Combining these with one new property of the time-per-completion function, stated below

and proven in Appendix 3.A, suffices to prove Theorem 3.2.2. While many similar results have

been stated in prior work [2, 3], to the best of our knowledge, the following property is new.

Lemma 3.5.5. Under Gittins, for any w-interval (b, c), if r(c) ⩾ w, then φ(b, c) ⩽ w.

We prove Lemma 3.5.5 in Appendix 3.A.2. With it in hand, we are ready to prove the main

result of this section.

Theorem 3.2.2. The Gittins policy is tail-optimal for any HT job size distribution.

Proof. We show that Gittins satisfies each item of Condition 3.2.1, with ζ = 0, θ = 1, and

η = ∞. We have η = ∞, so (ii) holds trivially. It thus remains only to show (i). Consider a

wx-interval (b, c) with b ⩾ x. Because ζ = 0 and θ = 1, our goal is to show c − b = O(x).
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Suppose first that r(c) ⩾ wx, which allows us to apply Lemma 3.5.5. We compute

c − b ⩽
z(b+c)/2
y(b+c)/2

⋅
b
c(c − b) [by Lemma 3.5.3]

⩽ O(1) ⋅ bc(c − b) [by Lemma 3.5.2]

⩽ O(φ(b, c)) [by Lemma 3.5.4]

⩽ O(wx) [by Lemma 3.5.5]

= O(x). [by Lemma 3.5.1] (3.9)

We conclude by reducing the r(c) < wx case to an r(c′) ⩾ wx case. Suppose r(c) < wx. Let c
′

be the minimum age after c with rank at least wx (and c
′
= ∞ if such an age does not exist).

By Definition 3.2.1, (b, c′) is a w-interval, so Lemmas 3.5.2 and 3.5.3 together imply c
′
is finite.

This means r(c′) ⩾ wx, so (3.9) implies c − b ⩽ c
′ − b ⩽ O(x).

3.6 Light-tailed job sizes: tail performance of SOAP policies

In this section prove our main theorem for LT job size distributions.

Theorem 3.3.1. Consider an M/G/1 queue with any LT job size distribution under a SOAP

policy. Let xmax = inf{x ⩾ 0 ∣ P(X > x) = 0}. The policy is

• log-tail-optimal if a
∗
= 0,

• log-tail-intermediate if 0 < a
∗
< xmax, and

• log-tail-pessimal if a
∗
= xmax.

Proof. The result follows from Lemmas 3.6.1, 3.6.2, and 3.6.7, which we prove in the rest of

this section.

3.6.1 Tail-optimal and tail-pessimal cases

Lemma 3.6.1. Consider an M/G/1 queue with any LT job size distribution under a SOAP

policy. The policy is log-tail-optimal if a
∗
= 0.

Proof. Suppose that a
∗
= 0. In this case, due to the FCFS tiebreaking (Definition I.1), the

oldest job in the system always has priority over all other jobs. Therefore the SOAP policy is

exactly FCFS, which is known to be log-tail-optimal [29, 120].

Lemma 3.6.2. Consider an M/G/1 queue with any LT job sizedistribution under a SOAP

policy. The policy is log-tail-pessimal if a
∗
= xmax.

Proof. Assume that a
∗
= xmax, i.e. the rank function has no global maximum. An important

example of such a rank function is r(a) = a, which is the FB policy. Mandjes and Nuyens [80]
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prove that FB is log-tail-pessimal, and our aim is to generalize this result to an arbitrary rank

function without a global maximum.

Our proof uses the same strategy as Mandjes and Nuyens [80]. Recall that yx denotes the

(first) age of the maximum rank in the interval [0, x]. Since T (x) is stochastically increasing

in x, it holds that P(T (x) > t) ⩾ P(T (yx) > t) for all t ⩾ 0. Additionally we have that

P(T (yx) > t) ⩾ P(TFB(yx) > t) for all t, x ⩾ 0, where TFB(x) is the response time for a job of

size x under FB. The reason for this last inequality is that a job of size yx must wait for all

other jobs to receive up to yx units of service before completing. As a result, and recalling

Definition 3.3.1 for the decay rate, [80, Proposition 8] implies that

d(T (x)) ⩽ d(T (yx)) ⩽ d(TFB(yx)) = d(Byx), (3.10)

with Bx denoting the duration of a busy period with job sizes min{X, x}.
Additionally, up to its last line the proof of [80, Lemma 9] is valid for arbitrary service policies.

If x0 > 0 is such that P(X ⩾ x0) > 0, we thus find

d(T ) ⩽ P(X ⩾ x0)−1
xmax

∫
x0

d(T (x)) dF (x). (3.11)

Combining (3.10) and (3.11) yields

d(T ) ⩽ P(X ⩾ x0)−1
xmax

∫
x0

d(Byx) dF (x).

Now let c(x) = d(Bx) and ĉ(x) = c(yx) = d(Byx). Furthermore, we define the function hx(θ) =
θ − λ (E(eθmin{X,x}) − 1). Due to [80, Equation (3)] we have the identity c(x) = supθ hx(θ).
Our next goal is to show that limx→xmax

ĉ(x) = ĉ(xmax). Let ε > 0. By [80, Lemma 10], there

exists x0 such that ∣c(x) − c(xmax)∣ < ε for all x > x0. Because a
∗
= xmax there exists x1 > x0

such that ĉ(x1) = c(x1), and therefore ∣ĉ(x1) − c(xmax)∣ < ε. We now mention two properties

of the function ĉ(x). On one hand ĉ(x) is decreasing because yx is increasing in x and Bx

is stochastically increasing in x. On the other hand, since yx ⩽ x, we have that ĉ(x) ⩾ c(x).
Combining these two properties we conclude that ∣ĉ(x) − c(xmax)∣ < ε for all x > x1, and

hence that limx→xmax
ĉ(x) = ĉ(xmax).

The final step is to use the arguments of [80, Proposition 11] to show that d(T ) ⩽ d(B). Since
no work-conserving policy has response time decay rate lower than the busy period decay rate

[80, Corollary 6], we conclude that the policy is log-tail-pessimal.

3.6.2 Tail-intermediate case

The final part of this section is devoted to the case that 0 < a
∗
< xmax, where we will show that

the corresponding service policy is log-tail-intermediate. To this end, we define two policies,

referred to as the step and spike policies, and relate the tail performance of any SOAP policy

with 0 < a
∗
< xmax to the performance of step and spike.
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Definition 3.6.1. The step and spike policies are the SOAP policies given by the following

rank functions:
rstep(a) = min{a, a∗},
rspike(a) = 1{a = a

∗}.

We divide all jobs in two classes: those with size at most a
∗
and those with size larger than a

∗
.

These classes will be called class 1 and class 2 respectively. For each class i ∈ {1, 2}, let

• λ
(i)

be the arrival rate of class i jobs,

• T
(i)

the response time of class i jobs.

Also, let W be the stationary amount of work in the queue and let Xa∗ ∶= min{X, a∗}.
It turns out that only class 2 jobs affect the asymptotic decay rate of response time. Furthermore,

we will show in the proof of Lemma 3.6.7 that for any SOAP policy π with a given worst

age a
∗
,

T
(2)
spike ⩽st T

(2)
π ⩽st T

(2)
step.

It therefore suffices to show that both step and spike are tail-intermediate, and in particular

to analyze d(T (2)
step) and d(T (2)

spike).
Our approach makes heavy use of LSTs (Section 3.3.1). Recall from (3.2) that one can

determine a random variable’s decay rate by determining when its LST converges. For

functions f ∶ R→ R ∪ {−∞,∞} which diverge below a certain value and converge above it,

let

γ(f) ∶= sup{s ∈ R ∶ ∣f(s)∣ = ∞} = inf{s ∈ R ∶ ∣f(s)∣ < ∞}
be the value at which f switches from diverging to converging. Recalling that Ṽ (⋅) denotes

the LST of V , we can thus rewrite (3.2) as

d(V ) = −γ(Ṽ ). (3.12)

With B ∶= B∞ denoting a busy period, let σ(s) be defined as σ(s) ∶= s + λ(1 − B̃(s)), and
similarly σa∗(s) ∶= s + λ(1 − B̃a∗(s)). Since B̃(s) = X̃(σ(s)) (and B̃a∗(s) = X̃a∗(σ(s))), we
have that σ

−1(s) = s − λ(1 − X̃(s)) and σ
−1
a∗ (s) = s − λ(1 − X̃a∗(s)).

Lemma 3.6.3. The function γ satisfies

γ(X̃) < γ(W̃ ) < σ(γ(σ)) < γ(σ).

Proof. We rewrite each of the four quantities in terms of the function σ
−1
. Note that γ(X̃) =

γ(σ−1). We also have that W̃ (s) = (1 − ρ)s/σ−1(s) for s ≠ 0, so γ(W̃ ) is the rightmost

non-zero root of σ
−1
. It can be seen that σ

−1
is continuous and convex, with one negative root

and one root at zero. Particularly, the negative root of σ
−1

is larger than its singularity (if

there is one), and it follows that γ(X̃) < γ(W̃ ).
For the third inequality we observe that (σ−1)′(0) ∈ (0, 1). If ŝ minimizes σ

−1
, then it follows

by convexity that ŝ < σ
−1(ŝ). In terms of its inverse σ, this is equivalent to γ(σ) > σ(γ(σ)).

Finally, ŝ is clearly larger than the negative root of σ
−1

and therefore σ(γ(σ)) > γ(W̃ ).



74 Extension for heavy-tailed job sizes, light-tailed job sizes, and the Gittins policy

Let f ◦ g denote the function s↦ f(g(s)). The following lemma characterizes the decay rates

of FCFS, FB, and the step and spike policies.

Lemma 3.6.4. It holds that d(TFCFS) = −γ(W̃ ) and d(TFB) = −γ(W̃ ◦ σ). Furthermore,

if π is either the step or spike policy, then d(Tπ) = −γ(W̃ ◦ σa∗).

Proof. First, Equation (3.12) and Lemma 3.6.3 imply that

d(TFCFS) = d(W +X) = min{d(W ), d(X)} = min{−γ(W̃ ),−γ(X̃)} = −γ(W̃ ).

The decay rate of TFB equals the decay rate of the excess of a busy period [80], i.e. a busy

period with initial work W . Therefore d(TFB) = −γ(TFB) = −γ(W̃ ◦ σ) by (3.12).

In the remainder of the proof, let π be the step or spike policy. We write T̃π(s) = λ
(1)

λ
T̃

(1)
π (s)+

λ
(2)

λ
T̃

(2)
π (s), where we note that T

(2)
π ⩾st T

(1)
π . It follows that d(Tπ) = d(T (2)

π ), so we restrict

ourselves to jobs with sizes larger than a
∗
. We tag such a job, and we split its response time in

two parts T
(2)
π = U

(2)
π + V (2)

π . Here, U
(2)
π is the time it takes for all jobs currently in the system

to finish and for all jobs arriving afterwards to reach age a
∗
, and V

(2)
π is the remaining time it

takes for the tagged job to finish. Observe that U
(2)
π is a busy period with initial work W and

job sizes Xa∗ , so that

Ũ
(2)
π (s) = W̃ (s + λ(1 − B̃a∗(s))) = W̃ (σa∗(s)).

As a consequence,

d(T (2)
π ) ⩽ d(U (2)

π ) (3.13)

for both policies.

First consider the case that π is the step policy. Note that V
(2)
step is a busy period with initial

work X and job sizes Xa∗ . Therefore we have that

Ṽ
(2)
step(s) = X̃(s + λ(1 − B̃a∗(s))) = X̃(σa∗(s)).

Because γ(X̃) < γ(W̃ ) by Lemma 3.6.3, it follows that γ(X̃ ◦ σa∗) ⩽ γ(W̃ ◦ σa∗) and thus

that d(U (2)
step) ⩽ d(V (2)

step). The decay rate of the sum of two independent variables equals the

minimum of the individual decay rates, leading to d(T (2)
step) = d(U (2)

step).

Now consider the spike policy. Due to its lower rank at ages after a
∗
, we have V

(2)
spike ⩽st V

(2)
step,

so also d(T (2)
spike) ⩾ d(T (2)

step) = d(U (2)
step). In combination with d(T (2)

spike) ⩽ d(U (2)
spike) = d(U (2)

step), we
therefore conclude with (3.12) that d(Tπ) = d(T (2)

π ) = d(U (2)
π ) = −γ(Ũ (2)

π ) = −γ(W̃ ◦ σa∗) for

both the step and spike policies.

The next lemma states a few properties of σ and σa∗ that we will use later in this section.

Lemma 3.6.5. For all s < 0, σ(s) < σa∗(s) < s and σ
−1(s) > σ

−1
a∗ (s) > s.

Proof. We only prove the second inequality, because the first will follow directly. Note that

σ
−1
a∗ (s) − s = λ(X̃a∗(s) − 1), which is strictly positive since Xa∗ is non-negative and s < 0.

Note also that σ
−1(s) − σ

−1
a∗ (s) = X̃(s) − X̃a∗(s), which is strictly positive since X ⩾st Xa∗

and s < 0.
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Lemma 3.6.6. Let T be the response time under the step or spike policies. Then

d(TFB) < d(T ) < d(TFCFS).

Proof. In light of Lemma 3.6.4 we have to show that γ(W̃ ) < γ(W̃ ◦ σa∗) < γ(W̃ ◦ σ). We

focus first on the first inequality, and define γ
∗
= γ(W̃ ◦ σa∗) as a shorthand notation. There

can be two reasons for W̃ (σa∗(γ)) to diverge. The first possibility is that W̃ diverges at the

point σa∗(γ∗), that is, σa∗(γ∗) = γ(W̃ ). Then by Lemma 3.6.5 it holds that

γ
∗
= σ

−1
a∗ (γ(W̃ )) > γ(W̃ ).

However, it could also be the case that σa∗ diverges at γ
∗
. If so, then it follows from Lemmas 3.6.3

and 3.6.5 that

γ
∗
= γ(σa∗) > σa∗(γ(σa∗)) > γ(W̃ ),

where we remark that Lemma 3.6.3 also holds if σ is replaced by σa∗ (with analogous proof).

It remains to show that γ(W̃ ◦ σa∗) < γ(W̃ ◦ σ). To do this we use the exact same argument,

where W̃ ◦ σa∗ plays the role of W̃ , and σ
−1
a∗ ◦ σ plays the role of σa∗ . d(TFB) < d(U (2)

π ).

Lemma 3.6.7. Consider an M/G/1 queue with any LT job size distribution under a SOAP

policy. The policy is log-tail-intermediate if 0 < a
∗
< xmax.

Proof. Let π be a policy with 0 < a
∗
< xmax. Once again we write T̃π(s) =

λ
(1)

λ
T̃

(1)
π (s) +

λ
(2)

λ
T̃

(2)
π (s), noting that T

(2)
π ⩾st T

(1)
π . Therefore d(Tπ) = d(T (2)

π ), so we restrict ourselves

to jobs with size larger than a
∗
. We tag such a job, and we split its response time in two

parts T
(2)
π = U

(2)
π + V

(2)
π . Here we recall that U

(2)
π is the time it takes for all jobs currently

in the system to finish and for all jobs arriving afterwards to reach age a
∗
, and V

(2)
π is the

remaining time it takes for the tagged job to finish. Observe that during the age interval

[0, a∗], the tagged job is delayed by all work in the system upon arrival, and all jobs arriving

afterwards up to age a
∗
. This holds regardless of the behavior of the rank function in [0, a∗], so

U
(2)
π = U

(2)
step = U

(2)
spike. Furthermore, note that on one hand V

(2)
π is minimized if rπ(a) is minimal

for all a > a
∗
(which holds for rspike). On the other hand, V

(2)
π is maximized if rπ(a) = r(a∗)

for all a ⩾ a
∗
(which holds for rstep). These observations lead to V

(2)
spike ⩽st V

(2)
π ⩽st V

(2)
step, and

hence also to T
(2)
spike ⩽st T

(2)
π ⩽st T

(2)
step. The result now follows from Lemma 3.6.6.

3.7 Light-tailed job sizes: Gittins can be tail-optimal, tail-

pessimal, or in between

Theorem 3.3.2. Consider an M/G/1 queue with any LT job size distribution. Gittins is

• log-tail-optimal if X ∈ NBUE,

• log-tail-intermediate if X ∈ ENBUE \ NBUE, and

• log-tail-pessimal if X /∈ ENBUE.
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Proof. By Theorem 3.3.1, it suffices to determine the worst age a
∗
. Combining the following

two prior results characterizes a
∗
in terms of whether X is in each of NBUE and ENBUE.

• A result of Aalto et al. [2, Proposition 7] implies a
∗
= 0 if and only if X ∈ NBUE.

• A result of Aalto et al. [3, Proposition 9] implies a
∗
< xmax if and only if X ∈ ENBUE.

Theorem 3.3.4. Consider an M/G/1 queue with an LT job size distribution X /∈ ENBUE.

Suppose that the expected remaining size of a job at all ages is uniformly bounded, meaning

sup
a∈[0,xmax)

E(X − a ∣ X > a) < ∞.

Then for all ε > 0, there exists a (1 + ε)-approximate Gittins policy that is log-tail-optimal or

log-tail-intermediate.

Proof. Suppose E(X − a ∣ X > a) is uniformly bounded. Definition 3.1.1 implies

rGtn(a) ⩽
∫∞

a
F (t) dt
F (a)

= E(X − a ∣ X > a),

so rGtn(a) is also uniformly bounded. This means that for any ε > 0, there exists some

sufficiently large age a(ε) such that increasing the rank at age a(ε) < xmax from rGtn(a(ε))
to (1 + ε)rGtn(a(ε)) and leaving all other ranks unchanged yields a new SOAP policy with

worst age a
∗

= a(ε). By construction, the new policy is a (1 + ε)-approximate Gittins

policy, and because its worst age is a
∗
< xmax, Theorem 3.3.1 implies it is log-tail-optimal or

log-tail-intermediate.

Recall from Theorem 3.3.3 that a (1 + ε)-approximate Gittins policy achieves mean response

time within a factor of 1 + ε of optimal. We defer its proof to Appendix 3.A. This means that

Theorem 3.3.4, whose precondition applies to non-pathological LT job size distributions, gives

a non-tail-pessimal policy with near-optimal mean response time.

Remark 3.7.1. The Shortest Expected Remaining Processing Time (SERPT) policy, which has

rank function rSERPT(a) = E(X − a ∣ X > a), is sometimes considered as a simpler alternative

to Gittins [113, 114]. Our results imply that SERPT has the same tail-optimality properties

as Gittins.

• In Chapter 2 it is shown that SERPT is always tail-optimal in the heavy-tailed case,

which matches our result for Gittins.

• Theorem 3.3.1 and Definition 3.3.5 imply that in the light-tailed case, SERPT is tail-

optimal, tail-intermediate, and tail-pessimal under the same conditions as we show for

Gittins in Theorem 3.3.2. In fact, one can show a stronger property: SERPT’s and

Gittins’s response time distributions have the same decay rate. This follows from the

fact that SERPT and Gittins have the same worst age a
∗
[2, 3]. ⋄
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3.8 Conclusion

In this chapter we have characterized the asymptotic tail performance of the response time in

an M/G/1 queue under very broad conditions, namely for every SOAP policy, and for both

HT and LT job size distributions.

In the heavy-tailed case, we characterize tail-optimal policies by a sufficient condition on the

rank function (Theorem 3.2.1). This condition holds for a wide range of SOAP policies, and

specifically for the Gittins policy (Theorem 3.2.2), providing a proof of its tail optimality

under general conditions.

In the light-tailed case, we classify policies’ performance as tail-optimal, tail-pessimal, or

tail-intermediate. We show that the performance of a SOAP policy depends on the age at which

the maximal rank is attained (Theorem 3.3.1). It turns out that the Gittins policy may belong

to any of the three categories, depending on the job size distribution (Theorem 3.3.2). Finally,

when Gittins has pessimal tail performance, boundedness of the expected remaining job size

implies that there exists a slight modification of Gittins that has optimal or intermediate tail

while maintaining near-optimal mean response time (Theorem 3.3.4).

Returning to the motivating questions

We conclude by returning to Questions 3.1–3.3, restated below for convenience.

Question 3.1. Does any scheduling policy simultaneously optimize the mean and asymptotic

tail of response time?

Question 3.2. For which job size distributions is Gittins tail-optimal for response time?

Question 3.3. For job size distributions for which Gittins is tail-pessimal, is there another

policy that has near-optimal (arbitrarily close to optimal) mean response time while not being

tail-pessimal?

Our characterization of Gittins’s tail asymptotics (Theorems 3.2.2 and 3.3.2) answers Ques-

tion 3.2, and our modification in the case where Gittins is tail-pessimal (Theorem 3.3.4)

answers Question 3.3 affirmatively. This leaves only Question 3.1. In cases where we have

shown that Gittins is tail-optimal, the answer is clearly affirmative. We might hope to conclude

that the answer is negative in cases where we have shown that Gittins is tail-pessimal or

tail-intermediate, but the situation is still slightly unclear. As we explain in more detail below,

the remaining ambiguity is due to the fact that we have restricted our attention to FCFS

tiebreaking when two jobs have the same rank (Definition I.1).

It has been shown that the Gittins policy minimizes mean response time with arbitrary

tiebreaking between jobs of the same rank [52, 53, 111]. Moreover, at least one of these proofs

[111] may be easily extended to show that any “non-Gittins” policy is strictly suboptimal for

mean response time, where a “non-Gittins” policy is one that for a non-vanishing fraciton of

time serves a job other than one of minimal Gittins rank. Therefore, to fully answer Question 3.1,
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one would have to consider Gittins under arbitrary tiebreaking rules. We conjecture that using

a different tiebreaking rule cannot improve the asymptotic decay rate of Gittins’s response

time in the light-tailed case.

Finally, we note that we have of course only answered Questions 3.1–3.3 for the classes of

heavy-tailed and light-tailed job size distributions we consider in this work (Definitions 2.2.1

and 3.3.2). Practically speaking, we believe the classes of distributions we consider are likely

broad enough to draw useful conclusions. But it remains an open question whether we may

extend our theory to broader classes of distributions. In particular, it seems likely that our

proofs may hold mostly unchanged for additional light-tailed job size distributions, as discussed

in Appendix 3.B.3.

Appendix 3.A Properties of the Gittins policy via the “Git-

tins game”

The goal of this section is to prove two key remaining properties of the Gittins policy,

Theorem 3.3.3 and Lemma 3.5.5. To prove both of these properties, we will use a different

perspective on the Gittins policy called the “Gittins game” [107]. The Gittins game gives an

alternative way to define the Gittins rank function. While it is less direct than the definitions

we have used so far (Definitions 3.1.1 and 3.5.1), the intermediate steps it introduces turn out

to be crucial for proving Theorem 3.3.3 and Lemma 3.5.5.

Aside from Theorem 3.3.3 and Lemma 3.5.5, most of the definitions and results in this section

are due to Scully et al. [107], who actually study a much more general job model than ours. For

simplicity, we restate the key definitions and results in our setting. However, the statements

and proofs of Theorem 3.3.3 and Lemma 3.5.5 are straightforward to translate to the more

general job model of Scully et al. [107].

3.A.1 The Gittins game

The Gittins game is an optimization problem. Its inputs are a job at some age b and a penalty w.

During the game, we serve the job for as long as we like. If the job completes, the game ends.

At any moment before the job completes, we may choose to give up, in which case we pay the

penalty w and the game immediately ends. The goal of the game is to minimize the expected

sum of the time spent serving the job plus the penalty paid.

We can think of the Gittins game with penalty w as an optimal stopping problem whose state

is the age b of the job. Standard optimal stopping theory [99, 117] implies that the optimal

strategy thus has the following form: serve the job until it reaches some age c ⩾ b, then give

up. A possible policy here is never giving up, which is represented by c = ∞.

Suppose we start serving a job at age b and stop if it reaches age c. The expected amount of



3.1 Properties of the Gittins policy via the “Gittins game” 79

time we spend serving the job is

service(b, c) ∶= E(min{X, c} ∣ X > b) = ∫
c

b

F (t)
F (b)

dt,

and the probability the job finishes before reaching age c is

done(b, c) ∶= P(S ⩽ c ∣ S > b) = 1 −
F (c)
F (b)

.

We can write the time-per-completion function (Definition 3.5.1) as the ratio of these two

quantities: φ(b, c) = service(b, c)/ done(b, c).
Suppose we employ the stop-at-age-c policy in the Gittins game starting from age b with

penalty w. The expected cost of the Gittins game with this policy is

game(w; b, c) ∶= service(b, c) + w(1 − done(b, c)).

The optimal cost of the Gittins game is therefore

game
∗(w; b) ∶= inf

c⩾b
game(w; b, c).

The lemma below follows immediately from the definition of game
∗(w; b) as an infimum of

game(w; b, c), each of which is a linear function of w [107, Lemmas 5.2 and 5.3].

Lemma 3.A.1. For all ages b, the optimal cost game
∗(w; b) is increasing and concave as a

function of w. Because giving up immediately is always a possible policy, it is also bounded

above by game
∗(w; b) ⩽ w.

3.A.2 Relating the Gittins game to the Gittins rank function

The Gittins game is intimately connected to the Gittins rank function, and it is this connection

that is important for proving Lemma 3.5.5. The following lemmas state two such connections.

They are the same or very similar to many previous results in the literature on Gittins in the

M/G/1 queue [2, 52, 53, 107, 112], but we sketch their proofs for completeness.

Lemma 3.A.2. The Gittins rank function can be expressed in terms of the Gittins game as

r(a) = inf(w ⩾ 0 ∣ game
∗(w; a) < w) = max(w ⩾ 0 ∣ game

∗(w; a) = w).

Proof. The infimum and maximum are equivalent by Lemma 3.A.1. The infimum is equal to

the rank r(a) = infc>a φ(a, c) because, by the fact that we can write game(w; b, c) as

game(w; b, c) = w − (w − φ(b, c)) done(b, c), (3.14)

we have game(w; b, c) < w if and only if φ(b, c) < w.

Lemma 3.A.3. In the Gittins game with penalty w with the job currently at age a, it is

optimal to continue serving the job if and only if r(a) ⩽ w, and it is optimal to give up if and

only if r(a) ⩾ w.
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Proof. Giving up incurs cost w, so by the maximum in Lemma 3.A.2, it is optimal to give up

if and only if r(a) ⩾ w. This means it is optimal to continue serving the job if r(a) < w. The

fact that serving is optimal in the r(a) = w edge case follows from the fact that if φ(a, c) = w

for some c > a, then by (3.14), we have game(w; a, c) = w.

We are now ready to prove Lemma 3.5.5, which we restate below. Recall that a w-interval is one

in which the Gittins rank is bounded above by w. The key to the proof is that Lemma 3.A.3

relates w-intervals to optimally playing the Gittins game.

Lemma 3.5.5. Under Gittins, for any w-interval (b, c), if r(c) ⩾ w, then φ(b, c) ⩽ w.

Proof. Consider playing the Gittins game starting from age b. By Lemma 3.A.3, giving up if the

job reaches age c is an optimal policy. Specifically, because (b, c) is a w-interval, it is optimal

to continue serving the job until at least age c; and because r(c) ⩾ w, it is optimal to give

up if the job reaches age c. This means game
∗(w; b) = game(w; b, c). Combining Lemma 3.A.1

and (3.14) implies φ(b, c) ⩽ w.

We note that Lemma 3.5.5 is similar, but not identical, to properties of Gittins in the M/G/1
queue studied by Aalto et al. [2, 3]. Related properties have also been shown for versions of

Gittins in discrete-time settings [42, 52, 53].

3.A.3 Relating the Gittins game to mean response time

It remains only to prove Theorem 3.3.3, which bounds the mean response time of q-approximate

Gittins policies. To do so, we use a result of Scully et al. [107] that relates the Gittins game to

a system’s mean response time.

Definition 3.A.1. Let r ∶ [0, xmax) → R be the rank function of some SOAP policy, and

let w ∈ R.

(i) The (r, w)-relevant work of a job is the amount of service the job requires to either

complete or reach rank at least w according to r, meaning reaching an age a satisfy-

ing r(a) ⩾ w.

(ii) The (r, w)-relevant work of the system is the total (r, w)-relevant work of all jobs

present. We denote the steady-state distribution of (r, w)-relevant work under policy π

by Wπ(r, w). Note that r need not be the rank function of policy π.

The (rGtn, w)-relevant work of a job is related to the Gittins game via Lemma 3.A.3: it is the

amount of time we would serve the job when optimally playing the Gittins game with penalty w.

It turns out that mean (rGtn, w)-relevant work directly translates into mean response time.

Lemma 3.A.4 (Scully et al. [107, Theorem 6.3]). Under any scheduling policy π that does

not use information on exact job sizes, the mean response time can be written in terms

of (rGtn, w)-relevant work as

E(Tπ) =
1

λ
∫

∞

0

E(Wπ(rGtn, w))
w2

dw.
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The proof of Lemma 3.A.4 relies on Little’s law, a relation involving service(a, w), and the

observation thatWπ(rGtn, w) = ∑n

i=1 service(ai, w), where n is the number of jobs in the system

and ai is the age of job i.

With Lemma 3.A.4 in hand, the proof of Theorem 3.3.3, restated below, reduces to bounding

the mean amount of (rGtn, w)-relevant work under q-approximate Gittins policies.

Theorem 3.3.3. Consider an M/G/1 queue with any job size distribution. For any q ⩾ 1

and any q-approximate Gittins policy π,

E(Tπ) ⩽ qE(TGtn).

Proof. Recall from Definition 3.3.6 that we may assume rπ(a)/rGtn(a) ∈ [1, q] for all ages a

without loss of generality. We will prove

E(Wπ(rGtn, w)) ⩽ E(Wπ(rπ, qw)) ⩽ E(WGtn(rGtn, qw)), (3.15)

from which the theorem follows by the computation below:

E(Tπ) =
1

λ
∫

∞

0

E(Wπ(rGtn, w))
w2

dw [by Lemma 3.A.4]

⩽
1

λ
∫

∞

0

E(WGtn(rGtn, qw))
w2

dw [by (3.15)]

=
1

λ
∫

∞

0

E(WGtn(rGtn, w
′))

(w′/q)2 d(w′/q) [by substituting w
′
= qw]

= qE(TGtn). [by Lemma 3.A.4]

To show the left-hand inequality of (3.15), it suffices to show that an arbitrary job’s (rGtn, w)-
relevant work is upper bounded by its (rπ, qw)-relevant work (Definition 3.A.1). This is indeed

the case: rGtn(a) ⩽ w implies rπ(a) ⩽ qrGtn(a) ⩽ qw, so the job will reach rank w under

Gittins after at most as much service as it needs to reach rank qw under π.

To show the right-hand inequality of (3.15) we use a property of SOAP policies due to Scully

et al. [113, proof of Lemma 5.2]. The property implies that for any rank w and SOAP policy π,

we can express E(Wπ(rπ, w)) in terms of just the job size X, arrival rate λ, and the set of ages

Aπ[w] = {a ∈ [0, xmax) ∣ rπ(a) < w}. In particular, for any fixed job size distribution, arrival

rate, and rank w, E(Wπ(rπ, w)) is a nondecreasing function of Aπ[w], where we order sets by

the usual subset partial ordering. We have rπ(a) ⩾ rGtn(a), which means Aπ[w] ⊆ AGtn[w],
which implies the right-hand inequality of (3.15), as desired.

We note that one can use the techniques of Scully and Harchol-Balter [110] to generalize the

statement and proof of Theorem 3.3.3 beyond SOAP policies. It turns out that Theorem 3.3.3

still holds even if we allow q-approximate Gittins policies to adversarially assign ranks to jobs,

provided that the assigned ranks are still within a factor-q window around the rank Gittins

would assign.
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Appendix 3.B Relationship between decay rate and LST

The goal of this section is to justify our computation of decay rates (Definition 3.3.1) by means

of LST convergence (Section 3.6.2). Our specific goal is to justify our use of (3.12), which

states d(V ) = −γ(Ṽ ). As a reminder,

d(V ) = lim
t→∞

− logP(V > t)
t

,

γ(f) = inf{s ∈ R ∣ ∣f(s)∣ < ∞}.

3.B.1 Sufficient condition for computing decay rates

Our main tool for translating between d(V ) and γ(Ṽ ) is a result of Mimica [82], restated as

Lemma 3.B.1 below, which gives a sufficient condition for d(V ) = −γ(Ṽ ). The result rests on

the following definition.

Definition 3.B.1. We say a function f ∶ R→ R ∪ {−∞,∞} is regularly varying from the

right at s
∗
with negative index, or simply “regularly varying at s

∗
”, if there exists α > 0 such

that for all c > 0,

lim
s↓0

f(s∗ + cs)
f(s∗ + s) = c

−α
.

In particular, f having a pole of finite order at s
∗
suffices.

It turns out being regularly varying at the singularity is the condition we need to express

decay rate in terms of LST convergence.

Lemma 3.B.1 (special case of Mimica [82, Corollary 1.3]). Let V be a non-negative random

variable with γ(Ṽ ) > −∞. If either Ṽ (s) or its derivative Ṽ
′(s) is regularly varying at γ(Ṽ ),

then

d(V ) = −γ(Ṽ ).

3.B.2 Showing that the sufficient condition for computing decay rates

holds

It remains to show that the precondition of Lemma 3.B.1 holds whenever we apply (3.12) in

Section 3.6.2. It turns out that all of the LSTs to which we apply (3.12) have a common form,

so we will show that Lemma 3.B.1 applies to all functions of that form. To describe the form,

we need the following definition.

Definition 3.B.2. Consider an M/G/1 queue with arrival rate λ, job sizes distributed as X,

and load ρ = λE(X).

(i) We define the function

σ
−1
X (s) = s − λ(1 − X̃(s)).

Note that σ
−1
X (s) = ∞ if and only if X̃(s) = ∞.
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(ii) We define σX to be the inverse of σ
−1
X , choosing the branch that passes through the origin.

That is, for s ⩾ infr σ
−1
X (r), we define σX(s) to be the greatest real solution to

σX(s) = s + λ(1 − X̃(σX(s))).

If s < infr σ
−1
X (r), then no such solution exists, so we define σX(s) = −∞.

(iii) We define the work-in-system transform

W̃X(s) =
s(1 − ρ)
σ−1
X (s)

.

Note that all of the above definitions depend on both λ and X, However, because the following

discussion considers a fixed arrival rate λ and varies only the job size distribution, we keep λ

implicit to reduce clutter. Additionally, we assume in all uses of the above definitions that ρ < 1.

One may recognize the functions defined in Definition 3.B.2 as core to the theory of the

M/G/1 queue with job sizes distributed as X [57].

• The work-in-system transform is, as suggested by its name, the LST of the equilibrium

distribution WX of the total workload in the M/G/1.

• The function σX is related to busy periods in the M/G/1. Specifically, the length of a

busy period started by initial workload V has LST Ṽ (σX(s)).

It turns out that throughout Section 3.6.2, all of the LSTs to which we apply (3.12) are of

the form W̃X or W̃X ◦ σY (the latter meaning s ↦ W̃X(σY (s))), for LT job sizes X and Y

(Definition 3.3.2). Specifically, X is the system’s job size, and Y is either X or a truncation

min{X, a∗}. Therefore, to justify the uses of (3.12) using Lemma 3.B.1, it suffices to prove

Theorems 3.B.1 and 3.B.2 below.

Theorem 3.B.1. For any LT job size X,

(i) γ(W̃X) ∈ (−∞, 0); and

(ii) W̃X has a first-order pole at γ(W̃X), so it is regularly varying at γ(W̃X).

Theorem 3.B.2. For any LT job sizes X and Y,

(i) γ(W̃X ◦ σY ) ∈ (−∞, 0), and

(ii) either W̃X ◦ σY or (W̃X ◦ σY )′ is regularly varying at γ(W̃X ◦ σY ).

Our approach is as follows. We first prove Theorem 3.B.1. We then prove a lemma characteriz-

ing σX , which we use in conjunction with Theorem 3.B.1 to prove Theorem 3.B.2.

Proof of Theorem 3.B.1. Recall from Definition 3.B.2 that W̃X(s) = s(1 − ρ)/σ−1
X (s), so we

focus on σ
−1
X . Because X̃ is a mixture of exponentials, σ

−1
X is convex, so it has at most two

real roots. It is well-known that under the assumption on X made in Definition 3.3.2, σ
−1
X has

a first-order root at 0 and a negative first-order root [4, 80], the latter of which is γ(W̃X), but
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we give a brief proof for completeness. One can compute σ
−1
X (0) = 0 and (σ−1

X )′(0) = 1 − ρ, so

σ
−1
X has a first-order root at 0. Definition 3.3.2 implies X̃(γ(X̃)) = ∞, so σ

−1
X (γ(X̃)) = ∞.

This means σ
−1
X has another first-order root in (γ(X̃), 0).

Lemma 3.B.2. For any job size X with an LT distribution,

(i) γ(σX) ∈ (−∞, 0);

(ii) σX(γ(σX)) ∈ (−∞, 0); and

(iii) there exist C0, C1 > 0 such that in the s ↓ 0 limit,

σX(γ(σX) + s) = σX(γ(σX)) + C0

√
s ±Θ(s),

σ
′
X(γ(σX) + s) = C1√

s
±Θ(1),

so σ
′
X is regularly varying at γ(σX).

Proof. As in the proof of Theorem 3.B.1, we again use the fact that σ
−1
X is convex, has roots

at a negative number and at zero, and is negative between its roots. Specifically, this fact

implies that σ
−1
X has a finite negative global minimum. By Definition 3.B.2, this minimum is

γ(σX), and the value at which the minimum is attained is σX(γ(σX)) proving (i) and (ii).

It remains only to prove (iii). The fact that LSTs are analytic in the interior of their domains

of convergence implies that σ
−1
X can be written as a Taylor series about γ(σX) whose first

nonzero coefficient is quadratic, i.e. for some constant K > 0,

σ
−1
X (s) = Ks

2
±Θ(s3).

An extension of the Lagrange inversion theorem [93, §1.10(vii)] implies that the inverse of

σ
−1
X , namely σX , may thus be written in the desired form. The desired form for σ

′
X , which

completes (iii), then follows from

(σ−1
X )′(s) = 2Ks ±Θ(s2),

σ
′
X(s) =

1

(σ−1)′(σX(s))
.

Proof of Theorem 3.B.2. There are three cases to consider:

• γ(W̃X) > σY (γ(σY )),

• γ(W̃X) < σY (γ(σY )), and

• γ(W̃X) = σY (γ(σY )).

For an intuitive grasp of these cases, it is helpful to imagine decreasing s starting at s = 0,

tracking the behavior of W̃X(σY (s)) as s decreases.

If γ(W̃X) > σY (γ(σY )), then at some point before s = s
∗
reaches γ(σY ), meaning for some

s
∗
∈ (−γ(σY ), 0), we have γ(W̃X) = σY (s∗). This means γ(W̃X ◦ σY ) = s

∗
. The Lagrange
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inversion theorem [93, §1.10(vii)] and the fact that s > γ(σY ) imply that σY can be linearly

approximated near s
∗
, so the result follows from Theorem 3.B.1.

If γ(W̃X) < σY (γ(σY )), then in contrast to the previous case, s reaches γ(σY ), the last point

at which σY (s) is finite, before σ(s) reaches the pole of W̃x. This means γ(W̃X ◦ σY ) = γ(σY ).
Similarly to the previous case, we can linearly approximate W̃x near γ(σY ), so the result

follows from Lemma 3.B.2.

If γ(W̃X) = σY (γ(σY )), then roughly speaking, both of the previous cases’ events happen

simultaneously: just as s reaches γ(σY ), the last point at which σY (s) is finite, σY (s) reaches

the pole of W̃X . Combining Theorem 3.B.1 and Lemma 3.B.2 implies that in the s ↓ γ(σY )
limit, we can approximate W̃X(σY (s)) as

W̃X(σY (s)) =
K0

σY (γ(s))
±Θ(1) = K1√

s − γ(σY )
±Θ(1),

for some constants K0, K1 > 0, from which the result follows.

3.B.3 Expanding our definition of light-tailed job size distributions

The class of light-tailed distributions we consider in Definition 3.3.2, namely what Abate and

Whitt [4] call “Class I” distributions, is well behaved enough for Theorems 3.B.1 and 3.B.2 to

hold. More generally, our results apply to any job size distribution with positive decay rate for

which one can show Theorems 3.B.1 and 3.B.2. In particular, this includes many distributions

that Abate and Whitt [4] call “Class II”. These are job sizes X such that X̃(γ(X̃)) < ∞.

In order to prove Theorems 3.B.1 and 3.B.2 for Class II job size distributions, one would need

to assume a regularity condition. We believe it would suffice to assume that X̃
′
is regularly

varying at γ(X̃). The main change to the proofs would be additional casework. For example,

it may be that W̃X still has a first-order pole, or it may be that it diverges without a pole

because X̃ does. See Abate and Whitt [4] and references therein for additional discussion.

More generally, it likely suffices to assume that some higher-order derivative X̃
(n)

is regularly

varying at γ(X̃), as the result of Mimica [82, Corollary 1.3] we use applies to higher derivatives

as well. Other results of Mimica [82] may allow one to relax the assumption even further.





Part II

A scaling approach for queueing networks

Introduction

Where in Part I the focus was on a queue in isolation, this part of the thesis considers queueing

networks. That is, models in which the output of some queues contributes to the input of

other queues. As one might expect, such links between queues result in the corresponding

queues to exhibit dependent behavior. For instances in which the number of queues is large,

this dependence can cause issues regarding numerical tractability. Chapter 4 focuses on an

alternative, asymptotic, approach: scaling.

We introduce the work in Chapter 4 by means of two applications of stochastic models. In

the first application, analyzed in [122], we consider a manufacturing model that combines

the Erlang loss model and the machine-repair model. That is, the machines, which are the

servers in the Erlang loss model, may become customers of a repair queue (see Figure II.1).

Note that the Erlang loss feature entails that arrivaling products are lost when no machine is

idle, and that the machine-repair feature entails that the service provided by the machines is

interrupted when it breaks down, only to continue once repaired. In addition, it is assumed

that only busy servers may break down.

While both the Erlang loss model and the machine-repair model have incited much research

effort, the described combination of the two is significantly harder to analyze. This is due

to the dual role of the machines: the serving of products and the breakdown of machines

interfere, creating dependence of the two parts of the model. It turns out, however, that when

representing the state of the model as the number of idle, busy, and broken machines, it can be

viewed as a closed network consisting of three stations (queues) [122, Section 2]. Queue-length

analysis of (a generalization of) such a network is the main subject of Chapter 4.

The second application we consider is a vehicle sharing system with multiple pick-up/drop-off

locations (in the sequel we omit the term drop-off), as considered in [50]. The vehicles in the

system are modeled as customers of a closed queueing network, visualized in Figure II.2. Each

pick-up location is represented by a single-server station, and we have an infinite-server station

for each ordered pair of pick-up locations (representing vehicles traveling between two pick-up

locations).

An unfortunate aspect of the vehicle sharing system is that the number of infinite-server

stations is the square of the number of pick-up locations. This leads to a large state space

(where each state represents one way in which customers are distributed over the stations), in

turn rendering exact computations impossible. For example, the model corresponding to a

vehicle sharing system with 50 vehicles and 3 pick-up locations has over 2 ⋅ 1012 states.
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Figure II.1: Manufacturing model where the machines in the processing facility are simultaneously

servers (left part of the network) and customers (right part of the network).

Figure II.2: Vehicle sharing system illustrated as a closed queueing network with single-server

stations (pick-up locations) and infinite-server stations (IS).

The problems mentioned in the two examples (dependencies between queues and large state

spaces) are exemplary for closed queueing networks in general. To overcome these problems,

we consider in Chapter 4 a scaling approach to analyze the queue lengths in these types of

networks. The limit result is easy to interpret and can be used as an approximation for the

queue-length distributions in the unscaled system. We also show that such approximations

are typically quite accurate. Finally, we mention in Section 4.5 the specific implication of our

results for the manufacturing model and vehicle sharing system.



4 Scaling limits for closed product-form

queueing networks

4.1 Introduction

Queues are often part of larger systems. Aiming to evaluate their performance, a substantial

research effort has focused on the analysis of queueing networks, a prominent complication

being that the individual queue lengths in the network are often dependent. A central role

is played by the class of networks obeying a product-form stationary distribution, where its

components correspond to the numbers of customers in the individual queues (also referred to as

stations). These product-form networks were first studied in the seminal papers by R. Jackson

[63] and J. Jackson [62] in the 1950s, triggering much research in this area. Most notably, a

large class of product-form networks, so-called BCMP networks [14], was identified in the

1970s, covering queueing networks consisting of single-server, multi-server and infinite-server

stations. Since the discovery of the BCMP class, many further results have been obtained.

On one hand, it has been shown that introducing features such as batch routing [24], loss

dynamics [12], discrete-time dynamics [25, Chapter 6] and negative customers [49] does not

necessarily break the product-form nature of the stationary distribution. On the other hand,

general properties of product-form networks have been revealed, such as the arrival theorem

[76] and aggregation theorems [23]. For an overview of the queueing-network literature we

refer to [25].

Within the study of queueing networks a distinction has been made between open and

closed networks. In open networks, i.e., networks with external arrivals and departures, if the

stationary distribution factorizes into components corresponding to individual queues, then

the queue lengths are mutually independent. Closed networks, however, have the additional

constraint that the sum of the queue lengths must equal the population size at any point in

time, rendering the individual queue lengths dependent. As a consequence, analytical and

numerical difficulties arise when one aims at evaluating performance measures. Closed-form

expressions are often beyond reach because the population size constraint complicates the

evaluation of terms summing over all possible queue-length vectors, which appear in for

instance the normalization constant. Additionally, for large networks numerical approaches

face computational challenges, such as the need to evaluate summations over a large set of

states. In addition, there is the risk of running into computer-precision related problems, a

challenge that has been addressed by Lam [75], but only in relation to the evaluation of the

normalization constant.

To remedy the above-mentioned issues arising when analyzing closed product-form queueing

networks, in various papers the use of scaling limits has been advocated. Here the objective is to

89
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obtain closed-form distributional results in specific asymptotic regimes. A prominent approach

relies on integral representations for the generating function of the stationary distribution,

which have been used to asymptotically evaluate the normalization constant [19, 83]. In [79]

strong approximation theory is applied to produce limit theorems for a large class of queueing

networks. We also refer to the exact-order asymptotic analysis developed in [51].

The current chapter can be seen as part of the research area discussed in the previous paragraph,

in that it addresses the analytical and numerical difficulties of closed queueing networks by

proposing a scaling method. The general idea of such a method is to make some of the model

parameters depend on a number n in a certain way, and let n tend to infinity. When done in a

suitable way, one can obtain insightful asymptotic results, revealing a tractable approximation

for the behavior of the more complex unscaled system. A prime example of the effectiveness

of scaling is the widely-recognized Halfin-Whitt regime [56]. For an Erlang loss queue, this

regime scales the workload and the number of servers in a quality-and-efficiency driven way:

the utilization of the servers approaches 100%, while the blocking probability remains close to

zero. Halfin and Whitt prove that the number of customers in the scaled system tends to a

truncated normal random variable in the limit.

For our model, i.e., a general closed product-form network consisting of both single-server

stations and infinite-server stations, we define a new scaling regime inspired by the Halfin-Whitt

scaling. Indeed, we extend the Halfin-Whitt scaling in such a way that it is applicable to

queueing networks rather than individual stations in isolation. This we do by letting the traffic

load at all stations become large and choosing the population size in such a way that the

joint queue-length distribution has a non-degenerate limit. We remark that for finite-capacity

open networks, our regime has the same quality-and-efficiency property as the Halfin-Whitt

regime. This study can be considered as an extension of [122], where a similar approach has

been followed for a specific three-station closed network representing an extended machine-

repair model. We substantially generalize the results from [122], in that we establish similar

asymptotic results for a more general class of closed product-form networks.

The contributions of this chapter are the following. Under the Halfin-Whitt inspired scaling, we

obtain the asymptotic stationary joint distribution of all queue lengths in the closed product-

form network. This specifically entails that, appropriately normalized, the queue lengths

of the single-server stations behave as (possibly truncated) exponential random variables,

whereas the queue lengths of the infinite-server stations behave as (possibly truncated) normal

random variables. Whether the truncation needs to be imposed, depends on whether the

queue under consideration is a dominant queue, i.e. the station with largest queue-length

variance. In the typical case that there is a single dominant station, the queue lengths are

asymptotically independent. Importantly, although the pre-limit stationary distribution is

relatively involved, it considerably simplifies in the scaling limit. Furthermore, we observe

by means of numerical experiments that for a reasonably sized system, the queue-length

distributions are well approximated by their limit distributions.

The chapter is organized as follows. In Section 4.2 we describe our model in detail, analyze

the normalization constant and introduce our scaling regime. The main results are then stated

and discussed in Section 4.3. The proof of our main theorem is given in Section 4.4, where we
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Figure 4.1: Closed queueing network with infinite-server (IS) stations and single-server (SS) stations.

leave some technical details for Appendix 4.A. Subsequently, the practical relevance of our

model is discussed in greater detail in Section 4.5, while numerical results in Section 4.6 show

that the limiting queue-length distributions are able to yield accurate approximations. We

conclude and provide pointers for further research in Section 4.7.

4.2 Model and preliminaries

This section presents the model description and a number of key concepts that play an

important role in this chapter. First, Section 4.2.1 introduces the product-form stationary

distribution and describes which networks satisfy it. We discuss the normalization constant

of this stationary distribution in Section 4.2.2. Subsequently, Section 4.2.3 gives the precise

definition of the scaling regime that we study in this chapter.

4.2.1 Model description

We consider a closed queueing network with C customers. Each station can be of two types:

R stations are infinite-server queues, while the remaining K + 1 are single-server queues. At a

later stage we omit one single-server station, as its queue length equals C minus the sum of

the other queue lengths. It is worth noting that the total service rate provided to all customers

in any of the R infinite-server stations is linear in the number of customers present, since all

customers can be served simultaneously in an infinite-server queue. In any of the single-server

stations, however, the service rate provided is constant whenever the number of customers

present is positive, and zero otherwise. See Figure 4.1 for an example of such a network.

Let B1, . . . , BR be the stationary numbers of customers at the infinite-server stations, and

D1, . . . , DK+1 their counterparts at the single-server stations.

The only further assumption we impose on our model is that it has the following product-form

stationary distribution: for b1, . . . , bR, d1, . . . , dK+1 such that b1 + ...+ bR + d1 + ...+ dK+1 = C,

P(B1 = b1, ..., BR = bR, D1 = d1, ..., DK+1 = dK+1) = p̃0

R

∏
r=1

η
br
r

br!

K+1

∏
k=1

θ
dk
k . (4.1)

Here ηr, θk ⩾ 0 are parameters representing traffic loads of individual stations, and p̃0 is the

normalization constant, which ensures that all probabilities sum to 1.
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The stationary distribution (4.1) applies under fairly broad conditions. A precise specification

providing all instances that yield this particular product form is rather challenging (see [25,

Section 5.7] for a detailed discussion). However, an important sufficient network property for

this is quasi-reversibility. This property, concerning individual stations, states that if a station

has a Poisson arrival process, its departure process is also Poisson and the queue length is

independent of past departures (see e.g. [70, Section 6] for more background). If all stations of

the network are quasi-reversible when considered in isolation, then the stationary distribution

is guaranteed to obey the product form (4.1). To give an example, quasi-reversibility holds for

infinite-server stations under arbitrary service time distributions, and for single-server stations

when service times are exponential under FCFS, or when the server applies processor sharing

or the LCFS pre–emptive resume discipline. Quasi-reversibility is a sufficient condition for a

product-form stationary distribution, but it is not necessary (cf. [32]).

Although the network described above is assumed to be closed, there is also a class of finite-

capacity open networks with Poisson arrivals satisfying (4.1). Such networks are technically

open, but behave exactly like a closed network. This concept is explained in great detail

in [102], in the context of computer systems with window flow control. A similar reasoning

applies to an open queueing network with R +K stations, where external arrivals are blocked

when there are already C customers present in the network. To see why this system can be

interpreted as a closed network, suppose that all departures out of the system join an artificial

single-server station (which we identify with station K + 1), and that all external admitted

arrivals form the departure process of this station. The system is now closed, and with the

total number of customers being equal to C, the behavior at the original stations is the same.

Indeed, the original situation where a customer is blocked is equivalent to the situation where

no customers are present in station K + 1.

We proceed with a few notational issues. Throughout this chapter we will denote vectors by

bold symbols. This for instance means that we denote by b and d the vectors (b1, ..., bR) and

(d1, ..., dK), respectively. We also introduce specific notation related to the truncation of such

vectors to their first entries: for instance for r ⩽ R we mean by br the vector (b1, ..., br), so
that bR = b. For the sum of the entries of vectors we use the well-known norm notation, e.g.

∥b∥ ∶= ∑R

r=1 br. Furthermore, we use the convention that a geometric random variable has

support {0, 1, 2, ...}; if the success probability is p, we write G (p). With P(µ) we denote a

Poisson random variable with mean µ. For sequences fn and gn, we write fn ∼ gn if fn/gn → 1

as n → ∞. Additionally, ‘⩽st’, ‘=d’ and ‘→d’, respectively, denote stochastically bounded,

equality in distribution and convergence in distribution.

In this chapter, we will work with a normalized version of (4.1). We assume without loss of

generality that θK+1 = maxk=1,...,K+1{θk}. Due to the closed nature of the network, rescaling

all station parameters through division by θK+1 leads to a different normalization constant,

but otherwise this has no effect on the stationary joint distribution. Therefore, (4.1) can be

rewritten as, with ∥b∥ + ∥d∥ ⩽ C,

pb,d ∶= P(B = b,D = d) = p0

R

∏
r=1

ρ
br
r

br!

K

∏
k=1

σ
dk
k , (4.2)
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where p0 = θ
C
K+1p̃0, ρr = ηr/θK+1 for all r and σk = θk/θK+1 ⩽ 1 for all k. The parameters

ρ1, ..., ρR and σ1, ..., σK can be interpreted as the traffic loads of the corresponding stations.

The joint stationary distribution (4.2) is the starting point of the scaling analysis presented in

this chapter, and we view ρ1, ..., ρR and σ1, ..., σK as system parameters. The results in the

rest of the chapter are valid for every queueing network that satisfies (4.2).

Remark 4.2.1. In this chapter we consider the system’s behavior in a specific regime in which

the total number of customers C grows, according to a scaling that we will specify later. By

(4.2), there is dependence between the stations: the individual stationary queue lengths are

correlated due to the constraint ∥B∥+∥D∥ ⩽ C. However, it also implies that when C grows

large, this dependence becomes weaker, and in the limit as C → ∞, vanishes.

For the infinite-server station indexed by r ⩽ R, the probability of br customers at the station

is proportional to ρ
br
r /br!. For this reason, the queue length at infinite-server station r is

approximately distributed as P(ρr) as C grows large.

Likewise, for a single-server station index by k ⩽ K, the probability of dk customers at

the station is proportional to σ
dk
k . If σk < 1 this implies that the queue-length distribution

approximately behaves as G (σk) as C grows large.

The remaining station, single-server station K + 1, has the highest traffic load among the

single-server stations and thus acts as a bottleneck of the network. This means that its queue

length becomes arbitrarily large with C. ⋄

4.2.2 Normalization constant

We now turn our attention to the calculation of the normalization constant p0 in (4.2). Note

that since ∥B∥ + ∥D∥ ⩽ C, we have

p
−1
0 = ∑

b,d ∶∥b∥+∥d∥⩽C

R

∏
r=1

ρ
br
r

br!

K

∏
k=1

σ
dk
k . (4.3)

Observe that the normalization constant involves summation over terms that are products of R

Poisson-type factors, and K geometric-type factors. Because of the R+K indices, the number

of terms in the summation in (4.3) is (C+R+K
R+K

), making direct calculation of the normalization

constant beyond reach for large networks. Alternative approaches have been proposed, such

as the method of generating functions [103], for devising efficient algorithms to compute the

normalization constant and marginal queue-length distributions. More recently, a generalized

method of moments has been studied for closed product-form networks [31].

To provide a different way of decreasing its numerical complexity, we now focus on a simplified

representation of the normalization constant, given in Lemma 4.2.2 below. The proofs of the

two lemmas in this subsection are not essential for understanding the main results of this

chapter, and could be skipped at first reading. We still include them however, since we use the

same approach in the proof of our main theorem.

To obtain the different representation for p0, we evaluate the summation over the K geometric-

type indices, and subsequently use a probabilistic argument for the summation over the R
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Poisson-type factors. For this purpose, it is useful to define

Sj(x) ∶= ∑
b ∶∥b∥⩽C

R

∏
r=1

(ρr/x)br
br!

∑
d ∶∥d∥⩽C−∥b∥

j

∏
k=1

(σkx )
dk
, (4.4)

so that p
−1
0 = SK(1). To evaluate the inner geometric sum, we wish to express p

−1
0 = SK(1) in

terms of S0(x) for certain x. The following recursion is a key element in this derivation.

Lemma 4.2.1. For x ≠ σj, Sj(x) satisfies the recursion

Sj(x) =
1

1 − σj/x
Sj−1(x) −

(σj/x)C+1

1 − σj/x
Sj−1(σj), j = 1, ..., K.

Proof. The recursion follows from an evaluation of the geometric series. Taking the sum over

dj, we see that for x ≠ σj,

Sj(x) = ∑
b ∶∥b∥⩽C

R

∏
r=1

(ρr/x)br
br!

∑
dj−1 ∶∥dj−1∥⩽C−∥b∥

j−1

∏
k=1

(σkx )
dk

⋅
1 − (σj/x)C−∥b∥−∥dj−1∥+1

1 − σj/x

=
1

1 − σj/x
( ∑

b ∶∥b∥⩽C

R

∏
r=1

(ρr/x)br
br!

∑
dj−1 ∶∥dj−1∥⩽C−∥b∥

j−1

∏
k=1

(σkx )
dk

− (σj/x)C+1 ∑
b ∶∥b∥⩽C

R

∏
r=1

(ρr/σj)br
br!

∑
dj−1 ∶∥dj−1∥⩽C−∥b∥

j−1

∏
k=1

(σkσj )
dk

)

=
1

1 − σj/x
Sj−1(x) −

(σj/x)C+1

1 − σj/x
Sj−1(σj),

(4.5)

thus proving the claim.

The lemma shows that Sj(x) can be split into two terms, each involving Sj−1(⋅). We exploit

this recursion to derive an alternative expression for p0, which is presented in the following

lemma. As an aside, we remark that here and in the sequel, the cases σk = 1 for some k and

σj = σl for some j, l can be resolved using L’Hôpital’s rule.

Lemma 4.2.2. The normalization constant equals

p0 = (
K

∏
k=1

1

1 − σk
(S0(1) −

K

∑
l=1

σ
C+1
l

K

∏
j=1, j≠l

1 − σj

1 − σj/σl
S0 (σl)))

−1

, (4.6)

where

S0(x) =
C

∑
i=0

(∥ρ∥/x)i
i!

.

Proof. Note that by (4.3) and Lemma 4.2.1,

p
−1
0 = SK(1) = 1

1 − σK
SK−1(1) −

σ
C+1
K

1 − σK
SK−1(σK).
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Applying Lemma 4.2.1 another K − 1 times leads to an expression of the form

p
−1
0 = aS0(1) +

K

∑
l=1

ul S0 (σl) , (4.7)

where a and u1, ..., uK are coefficients depending on σ1, ..., σK . To find a, observe that the

only term with S0(1) results from the first term of Lemma 4.2.1 of all K iterations. Therefore,

a = ∏K

k=1(1 − σk)−1. Similarly, observe that the only term with S0 (σK) follows from the

second term in the first iteration and then the first term in all remaining iterations. Therefore,

uK = −σC+1
K (1 − σK)−1∏K−1

j=1 (1 − σj/σK)−1. Note that the single-server stations 1, ..., K are

identical in (4.3) up to their parameters σ1, ..., σK . By symmetry, we conclude that, for any

l = 1, . . . , K,

ul = −
σ
C+1
l

1 − σl

K

∏
j=1, j≠l

1

1 − σj/σl
.

Thus, it holds that

p
−1
0 = S0(1)

K

∏
k=1

1

1 − σk
−

K

∑
l=1

S0 (σl)
σ
C+1
l

1 − σl

K

∏
j=1, j≠l

1

1 − σj/σl

= (
K

∏
k=1

1

1 − σk
) ⋅ (S0(1) −

K

∑
l=1

S0 (σl)σC+1
l

K

∏
j=1, j≠l

1 − σj

1 − σj/σl
) .

(4.8)

To prove Lemma 4.2.2, it remains to show that S0(x) = ∑C

i=0 (∥ρ∥/x)i/i!. This is done by

expressing S0(x) in terms of cumulative Poisson probabilities. That is, using (4.4),

S0(x) = ∑
b ∶∥b∥⩽C

R

∏
r=1

(ρr/x)br
br!

= e
∥ρ∥/x ∑

b ∶∥b∥⩽C
P (P (ρ1x ) = b1, ...,P (ρRx ) = bR)

= e
∥ρ∥/x

P(
R

∑
r=1

P (ρrx ) ⩽ C) = e
∥ρ∥/x

P (P (∥ρ∥x ) ⩽ C) =

C

∑
i=0

(∥ρ∥/x)i
i!

,

which concludes the proof.

The number of numerical operations needed to evaluate the normalization constant using

(4.6) is O(K2 + KC). The algorithm of [103] has a complexity of O(RC2 + KC), and has

the benefit that marginal queue lengths follow without much additional computational effort.

However, when knowledge of the joint distribution is required, one cannot avoid computing the

individual probabilities of all (C+R+K
R+K

) states, which is tractable only for very small networks.

We resolve this issue by working in a scaling regime, that will be introduced in the next

subsection, and in which the stationary distribution exhibits easy-to-interpret behavior. The

asymptotic findings can be used to devise approximations for the unscaled system, as will be

pointed out in Section 4.6.
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4.2.3 The scaling regime

When distributions do not allow a closed-form analysis, a commonly used approach in applied

probability is to resort to scaling limits. The main idea is to parametrize (a subset of) the

system parameters by n, with the objective to arrive at an explicit limiting distribution as

n→ ∞. It is often not a priori clear how this parametrization should be done; finding a scaling

that leads to useful and meaningful results in the limit is an art on its own. The resulting

limiting distribution can be used to produce approximations for the pre-limit system.

In their celebrated 1981 paper, Halfin and Whitt [56] introduced an important new scaling for

many-server queues. The asymptotic regime considered corresponds to letting the workload

ρ and the number of servers C grow to infinity in such a way that (C − ρ)/√ρ converges

to a constant β̄ > 0. In the specific context of the Erlang loss model, an appropriately

normalized version of the queue length then asymptotically behaves as a normal random

variable truncated at β̄ [56, Theorem 3]. The scaling we impose in our network setting is

inspired by the Halfin-Whitt regime, in that we also scale the parameter ρ and the total

number of customers C.

We now give a precise definition of the scaling we impose. Let ν1, ..., νR, α1, ..., αK ∈ R and

w1, ..., wR, c1, ..., cK > 0 be scaling parameters for individual stations. It proves useful to assume

without loss of generality that ν1 ⩾ ... ⩾ νR and that α1 ⩽ ... ⩽ αK . We scale the system

parameters as follows:

◦ we replace ρr by ρ
(n)
r for each r ∈ {1, ..., R},

◦ we replace σk by σ
(n)
k for each k ∈ {1, ..., K},

◦ we replace C by Cn,

where

ρ
(n)
r = wr n

νr , σ
(n)
k ∶=

n

n + ckn
αk
,

which can be interpreted as scaled traffic loads, and where for β > 0 and γ ∶= max{1 − α1,
1

2
ν1},

we let the total number of customers be defined as

Cn ∶= ⌊ÂÂÂÂÂρ
(n)ÂÂÂÂÂ + βn

γ⌋ . (4.9)

The definitions for ρ
(n)
r , σ

(n)
k and Cn may seem restrictive, but any network satisfying (4.2)

can be constructed with the right choices of the scaling parameters. For a detailed discussion

on fitting these parameters to a system in practice, we refer to Section 4.6.2.

Observe that in this scaling regime, the traffic loads of the infinite-server stations become

arbitrarily large as n→ ∞ (provided ν1, ..., νR > 0), and the traffic loads of the single-server

stations tend to 1 as n→ ∞ (provided α1, ..., αK < 1). To account for the large queue lengths

that are inherent for these traffic loads, also the population size Cn grows (at a suitable pace)

as n→ ∞.

Our precise choice (4.9) for Cn can be motivated as follows. It turns out that, to get non-

degenerate limits, the total number of customers should be picked such that it equals the



4.3 Results 97

mean of ∥B∥ increased by a constant β times the largest of the standard deviations of all

queue lengths. As argued in Remark 4.2.1, when the total number of customers is large, Br

behaves as P(ρr) = P(ρ(n)r ), which has standard deviation (ρ(n)r )
1
2 =

√
wr n

1
2
νr . In addition,

when σk < 1, Dk behaves as G (1 − σk) = G (1 − σ
(n)
k ), which has standard deviation

√
σ
(n)
k

1 − σ
(n)
k

∼
1
ck
n
1−αk .

Since ν1 ⩾ ... ⩾ νR and α1 ⩽ ... ⩽ αK , the largest asymptotic standard deviation is attained

by either B
(n)
1 or D

(n)
1 . Note that the first case applies if 1 − α1 <

1

2
ν1, and the second if

1 − α1 >
1

2
ν1. These observations, and the fact that the population size must be an integer,

intuitively explain our choice (4.9) for Cn.

In line with the observations above, we say that a station is dominant if its asymptotic queue-

length variance has the largest power of n out of all the stations (excluding single-server station

K + 1). Thus, infinite-server station r ∈ {1, ..., R} is dominant if 1

2
νr = γ, and single-server

station k ∈ {1, ..., K} is dominant if 1 − αk = γ. Later it will turn out that in the limit as

n→ ∞, it is precisely the dominant stations that are affected by the population size constraint.

Under our scaling the queue lengths B at the infinite-server stations and the queue lengths D

at the single-server stations depend on n. In the sequel we let B
(n)

and D
(n)

, respectively,

denote the corresponding random vectors. Our objective is to analyze their behavior as n→ ∞.

Since their means may become arbitrarily large with n, we consider normalized versions: for

r ∈ {1, . . . , R} and k ∈ {1, . . . , K},

B̄
(n)
r ∶=

B
(n)
r − ρ

(n)
r√

ρ
(n)
r

, and D̄
(n)
k ∶= (1 − σ

(n)
k )D(n)

k . (4.10)

Note that in both cases we scale by a factor of the order of the standard deviation. For B̄
(n)
r ,

a term representing the mean is subtracted, similarly to the central limit theorem.

To help the reader understand the key concepts in this chapter, a table of the most important

scaling parameters is included in Appendix 4.D.

4.3 Results

In this section, we derive the asymptotic joint distribution of (B̄(n)
, D̄

(n)). The remaining

queue length, D
(n)
K+1, can then be obtained from the identity

ÂÂÂÂÂB
(n)ÂÂÂÂÂ +

ÂÂÂÂÂD
(n)ÂÂÂÂÂ +D

(n)
K+1 = Cn. (4.11)

Our main result, which holds for ν1, ..., νR > 0 and α1, ..., αK < 1, is presented in Section 4.3.1.

Section 4.3.2 presents an adaptation of our main result for networks with only single-server

stations. The remaining cases, where νR ⩽ 0 or αK ⩾ 1, are investigated in Section 4.3.3.
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4.3.1 Main result

We first consider the case where the traffic loads are large at all stations. That is, we assume

that ν1, ..., νR > 0 (the traffic loads at infinite-server stations tend to infinity) and α1, ..., αK < 1

(the traffic loads at single-server stations tend to 1). We study the normalized queue lengths

(B̄(n)
, D̄

(n)) by means of their joint Laplace-Stieltjes transform (LST). We define this LST

using (4.10):

Pn(s, t) ∶= E(
R

∏
r=1

e
−srB̄

(n)
r

K

∏
k=1

e
−tkD̄

(n)
k )

= ∑
b,d ∶∥b∥+∥d∥⩽Cn

⎛
⎜
⎝

R

∏
r=1

e
−sr

br−ρ
(n)
r√

ρ
(n)
r

⎞
⎟
⎠
⋅ (

K

∏
k=1

e
−tk(1−σ

(n)
k )dk)P(B(n)

= b,D
(n)

= d).

(4.12)

It is noted that strictly speaking Pn(s, t) is not an LST, as the random variables B̄
(n)
r may

attain negative values. This feature does not affect the upcoming analysis, including the

application of Lévy’s convergence theorem, and hence we will stick to the term LST.

Our main theorem, to be proved in Section 4.4, gives an explicit expression for the limit

of Pn(s, t) as n → ∞, from which we can directly derive the asymptotic distribution of

(B̄(n)
, D̄

(n)).
A bit of notation is necessary for the statement of the main theorem. First, for a standard-

normally distributed random variable, we write

φ(x) = 1√
2π
e
− 1

2
x
2

for its density function and Ψ(x) ∶= Φ(x)/φ(x) for its Mills ratio, i.e. its distribution function

divided by its density function. Secondly, concerning the highest-loaded stations, let R
−
⩽ R

be the largest integer such that ν1 = ν2 = ... = νR− and let K
−
⩽ K be the largest integer such

that α1 = α2 = ... = αK− . Observe that the number of dominant stations can now be expressed

as

R
−
1{1−α1⩽

1
2
ν1} +K

−
1{1−α1⩾

1
2
ν1}.

We then denote

W ∶=
R

−

∑
r=1

wr and λ(s) ∶=
β +

R
−

∑
r=1

sr
√
wr

√
W

.

In addition, define

κjl(t) ∶=
cj(1 + tj)

cj(1 + tj) − cl(1 + tl)
, ζ(t) ∶= 1 −

K
−

∑
l=1

⎛
⎜
⎝

K
−

∏
j=1, j≠l

κjl(t)
⎞
⎟
⎠
e
−βcl(1+tl),

η(s, t) ∶= Ψ (λ(s)) −
K

−

∑
l=1

⎛
⎜
⎝

K
−

∏
j=1, j≠l

κjl(t)
⎞
⎟
⎠
Ψ (λ(s) − cl(1 + tl)

√
W) ,

ξ(s) ∶= Φ (λ(s)) and χ(s) ∶= φ(λ(s)).

With this notation, we can state the main theorem as follows.
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Theorem 4.3.1. Consider a queueing network with stationary distribution (4.2). Assume

that νR > 0 and that αK < 1. Then the joint LST Pn(s, t) of (B̄(n)
, D̄

(n)) satisfies

lim
n→∞

Pn(s, t) = (
R

∏
r=1

e
1
2
s
2
r)(

K

∏
k=1

1

1 + tk
) ⋅ U(s, t), (4.13)

where

U(s, t) ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ζ(t)
ζ(0) if 1 − α1 >

1

2
ν1,

χ(s)
χ(0) ⋅

η(s, t)
η(0,0) if 1 − α1 =

1

2
ν1,

ξ(s)
ξ(0) if 1 − α1 <

1

2
ν1.

In all three cases we recognize known distributions from the joint LST. Let N1, ...,NR,E1, ...,EK
be independent random variables, the first R having standard-normal distributions and the last

K having unit-rate exponential distributions. In the corollary below we claim that the right-

hand side of (4.13) is the LST of the (R+K)-tuple (NNN ,EEE ) conditioned on Z (NNN R− ,EEE K−) ⩽ β,

where

Z (NNN R− ,EEE K−) ∶= 1{1−α1⩽
1
2
ν1}

R
−

∑
r=1

√
wrNr + 1{1−α1⩾

1
2
ν1}

K
−

∑
k=1

1
ck

Ek. (4.14)

To provide some intuition why this condition makes sense, consider the population size

constraint
ÂÂÂÂÂB

(n)ÂÂÂÂÂ +
ÂÂÂÂÂD

(n)ÂÂÂÂÂ ⩽ Cn. Subtracting
ÂÂÂÂÂρ

(n)ÂÂÂÂÂ and dividing by n
γ
on both sides, we

have ÂÂÂÂÂB
(n)ÂÂÂÂÂ −

ÂÂÂÂÂρ
(n)ÂÂÂÂÂ

nγ
+

ÂÂÂÂÂD
(n)ÂÂÂÂÂ
nγ

⩽

Cn −
ÂÂÂÂÂρ

(n)ÂÂÂÂÂ
nγ

. (4.15)

Recalling the definition γ ∶= max{1− α1,
1

2
ν1} and the scaled queue lengths (4.10), if B̄

(n)
r →d

Nr for each r and D̄
(n)
k →d Ek for each k, the inequality (4.15) would converge, as n→ ∞, to

Z (NNN R− ,EEE K−) ⩽ β.

To summarize, Theorem 4.3.1 leads to the following corollary.

Corollary 4.3.1. As n→ ∞,

(B̄(n)
, D̄

(n)) →d (NNN ,EEE ∣Z (NNN R− ,EEE K−) ⩽ β). (4.16)

Consequently, the random variables B̄
(n)
1 , ..., B̄

(n)
R , D̄

(n)
1 , ..., D̄

(n)
K are asymptotically independent

if the number of dominant stations is one.

Proof. With standard integration techniques one can check that the joint Laplace-Stieltjes

transform of the tuple (NNN ,EEE ∣Z (NNN R− ,EEE K−) ⩽ β) is precisely as given in Theorem 4.3.1 (see

Appendix 4.C), so that the stated follows by Lévy’s convergence theorem. The independence

statement follows from the fact that if there is only one dominant station, then Z depends on

just one random variable.
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It can be seen from (4.14) that the condition Z (NNN R− ,EEE K−) ⩽ β, relating to the condition

that there are at most Cn customers at the R+K stations, only involves indices corresponding

to the dominant stations. Hence in the limit, the population size constraint only affects the

dominant stations. In addition, suppose that the number of dominant stations is one, which

happens precisely if 1

2
ν1 > max{ν2, 1 − α1} or 1 − α1 > max{ν1, 1 − α2}. In that case, the

condition applies to only one random variable, which amounts to a truncation of that variable.

Remark 4.3.1. We mention the consequences of our main result for single-server station K + 1.

As described earlier, this is the single-server station with the highest traffic load, the queue

length of which follows from the remaining queue lengths by the population size constraint.

Corollary 4.3.1 thus implicitly provides the asymptotic distribution of D
(n)
K+1. Dividing the

population size constraint (4.11) by n
γ
, we have that

D
(n)
K+1

nγ
=

Cn −
ÂÂÂÂÂρ

(n)ÂÂÂÂÂ
nγ

−

ÂÂÂÂÂB
(n)ÂÂÂÂÂ −

ÂÂÂÂÂρ
(n)ÂÂÂÂÂ

nγ
−

ÂÂÂÂÂD
(n)ÂÂÂÂÂ
nγ

.

By (4.9), (4.10) and Corollary 4.3.1, it thus holds that

D
(n)
K+1

nγ
→d β − (Z (NNN R− ,EEE K−) ∣Z (NNN R− ,EEE K−) ⩽ β)

as n→ ∞. ⋄

4.3.2 Scaling result for R = 0

So far we have omitted networks consisting of single-server stations only, because Theorem

4.3.1 relies on the value of ν1. In the case that R = 0, however, this parameter does not exist.

With a slight modification, we can establish the counterpart of Corollary 4.3.1 for single-server

networks.

Corollary 4.3.2. Suppose R = 0 and αK < 1. As n→ ∞,

D̄
(n)

→d (EEE ∣Z (0,EEE K−) ⩽ β). (4.17)

The variables D̄
(n)
1 , ..., D̄

(n)
K are thus asymptotically independent if K

−
= 1.

Proof. The result follows from Corollary 4.3.1 by setting ν1 = −∞.

4.3.3 Scaling results for νR ⩽ 0 and/or αK ⩾ 1

Since Theorem 4.3.1 only covers the case where νR > 0 and αK < 1, it remains to analyze

its complement in which νR ⩽ 0 and/or αK ⩾ 1. Recall that in Section 4.2.3, we introduced

normalized versions of B
(n)

and D
(n)

in order to preserve finite mean. Note however that

for infinite-server stations r with νr ⩽ 0 and for single-server stations k with αk ⩾ 1, the

unnormalized queue length converges to a finite-mean random variable. Because of this, it is

no longer necessary to normalize in these cases. For all r ∈ {1, ..., R} for which νr ⩽ 0, we will
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therefore consider the distribution of the random variable B
(n)
r instead of B̄

(n)
r . Likewise, for

all k ∈ {1, ..., K} for which αk ⩾ 1, we will consider the distribution of the random variable

D
(n)
k instead of D̄

(n)
k .

In this regime, a statement similar to Corollary 4.3.1 holds, which is given in the following

corollary.

Corollary 4.3.3. Assume that ν1 > 0 or α1 < 1. Let I be the smallest integer such that νI ⩽ 0,

and let J be the smallest integer such that αJ ⩾ 1. As n→ ∞,

(B̄(n)
1 , ..., B̄

(n)
I−1, D̄

(n)
1 , ..., D̄

(n)
J−1) →d (N1, ...,NI−1,E1, ...,EJ−1 ∣Z (NNN R− ,EEE K−) ⩽ β).

Proof. See Appendix 4.B.

Remark 4.3.2. The remaining random variables, i.e. B
(n)
I , ..., B

(n)
R and D

(n)
J , ..., D

(n)
K , all have

finite mean because νI , ..., νR ⩽ 0 and αJ , ..., αK ⩾ 1. In the proof of Corollary 4.3.3 we will see

that they behave as Poisson random variables with means ρ
(n)
I , ..., ρ

(n)
R and geometric random

variables with parameters 1− σ
(n)
J , ..., 1− σ

(n)
K , respectively. This implies in particular that, for

each r such that νr < 0 and for each k such that αk > 1, the random variables B
(n)
r and D

(n)
k

become degenerate with value 0 as n→ ∞. ⋄

Remark 4.3.3. Corollary 4.3.3 assumes that ν1 > 0 or α1 < 1 because our scaling would not

make sense otherwise. If ν1 ⩽ 0 and α1 ⩾ 1, the stations’ traffic loads no longer increase with

n. ⋄

4.4 Proof of Theorem 4.3.1

In this section we present a proof of our main theorem, Theorem 4.3.1, which consists of two

parts. First, in Section 4.4.1, we derive a structured expression for Pn(s, t) (Lemma 4.4.1)

relying on techniques similar to those used in the proof of Lemma 4.2.2 (the derivation of the

normalization constant). Then, we discuss this expression piece by piece, already recognizing

some known LSTs and providing intuition.

In the second part of the proof (Section 4.4.2), we asymptotically analyze in Lemmas 4.4.3-4.4.6

all parts of the expression obtained from Lemma 4.4.1. In most cases, we can build on a

version of the central limit theorem (Lemma 4.4.2) to find the asymptotics. One particular

case, however, requires more subtle asymptotic bounds, and this case is treated in Lemma

4.4.6. We finish the proof by substituting the asymptotically analyzed parts back into the

expression for Pn(s, t).
In the proofs, some mathematical expressions will repeatedly appear in our calculations. To

keep these calculations readable, we use the following notation.

◦ The adapted traffic load for infinite-server station r:

ζ
(n)
r (sr) ∶= ρ

(n)
r exp

⎛
⎜
⎝
−

sr√
ρ
(n)
r

⎞
⎟
⎠
, ζ

(n)(s) ∶=
R

∑
r=1

ζ
(n)
r (sr).
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◦ The adapted traffic load for single-server station l:

δ
(n)
l (tl) ∶= σ

(n)
l e

−tl(1−σ
(n)
l )
.

◦ A frequently occurring quantity related to the single-server stations j and l:

y
(n)
jl (tj, tl) ∶=

1 − δ
(n)
j (tj)

1 − δ
(n)
j (tj)/δ(n)l (tl)

.

◦ A Poisson probability related to S0(1):

f
(n)(s) ∶= P (P (ζ(n)(s)) ⩽ Cn) .

◦ A Poisson probability related to S0(δ(n)l (tl)):

g
(n)
l (s, tl) ∶= P (P (ζ(n)(s)/δ(n)l (tl)) ⩽ Cn) .

◦ A quantity appearing in Pn(s, t):

h
(n)
l (s, tl) ∶= exp(ζ(n)(s) ( 1

δ
(n)
l (tl)

− 1)) ⋅ (δ(n)l (tl))
Cn+1

.

4.4.1 Structured form of LST

The following lemma gives an exact expression for the LST Pn(s, t) in terms of the new

notation that was introduced above, and forms the backbone of the proof of Theorem 4.3.1.

Lemma 4.4.1. The LST of (B̄(n)
, D̄

(n)) satisfies

Pn(s, t) = (
R

∏
r=1

e
−ρ(n)

r +sr

√
ρ
(n)
r +ζ(n)

r (sr)) × (
K

∏
k=1

1 − σ
(n)
k

1 − δ
(n)
k (tk)

)

×

f
(n)(s) −

K

∑
l=1

(
K

∏
j=1, j≠l

y
(n)
jl (tj, tl)) g(n)l (s, tl)h(n)

l (s, tl)

f (n)(0) −
K

∑
l=1

(
K

∏
j=1, j≠l

y
(n)
jl (0, 0)) g(n)l (0, 0)h(n)

l (0, 0)
.

(4.18)

Proof. Denote by p
(n)
b,d and p

(n)
0 , respectively, the stationary distribution and normalization

constant of the scaled system. Then, we can rewrite the joint LST of (B̄(n)
, D̄

(n)) in (4.12) as

Pn(s, t) = ∑
b,d ∶∥b∥+∥d∥⩽Cn

⎛
⎜
⎝

R

∏
r=1

e
−sr

br−ρ
(n)
r√

ρ
(n)
r

⎞
⎟
⎠
⋅ (

K

∏
k=1

e
−tk(1−σ

(n)
k )dk) p(n)b,d

= p
(n)
0 (

R

∏
r=1

e
sr

√
ρ
(n)
r ) ∑

b ∶∥b∥⩽Cn

⎛
⎜⎜
⎝

R

∏
r=1

(ζ(n)r (sr))
br

br!

⎞
⎟⎟
⎠

∑
d ∶∥d∥⩽Cn−∥b∥

(
K

∏
k=1

(δ(n)k (tk))
dk)

= p
(n)
0 (

R

∏
r=1

e
sr

√
ρ
(n)
r )S(n)

K (1),
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where S
(n)
j (x) is obtained from Sj(x) when (ρr, σk, C) is replaced by (ζ(n)r (sr), δ(n)k (tk), Cn).

Therefore we have by (4.8) that

Pn(s, t) = p
(n)
0 (

R

∏
r=1

e
sr

√
ρ
(n)
r ) ⋅ (

K

∏
k=1

1

1 − δ
(n)
k (tk)

)

× (S(n)
0 (1) −

K

∑
l=1

(δ(n)l (tl))
Cn+1 (

K

∏
j=1, j≠l

y
(n)
jl (tj, tl))S(n)

0 (δ(n)l (tl)) )

= p
(n)
0 (

R

∏
r=1

e
sr

√
ρ
(n)
r ) ⋅ (

K

∏
k=1

1

1 − δ
(n)
k (tk)

) ⋅ (eζ
(n)(s)

P (P (ζ(n)(s)) ⩽ Cn)

−
K

∑
l=1

(δ(n)l (tl))
Cn+1 (

K

∏
j=1, j≠l

y
(n)
jl (tj, tl))e

1

δ
(n)
l (tl)

ζ
(n)(s)

P(P ( 1

δ
(n)
l (tl)

ζ
(n)(s)) ⩽ Cn))

= p
(n)
0 (

R

∏
r=1

e
sr

√
ρ
(n)
r +ζ(n)

r (sr)) ⋅ (
K

∏
k=1

1

1 − δ
(n)
k (tk)

)

× (f (n)(s) −
K

∑
l=1

(
K

∏
j=1, j≠l

y
(n)
jl (tj, tl))g(n)l (s, tl)h(n)

l (s, tl)).

(4.19)

Using Pn(0,0) = 1 we find that p
(n)
0 equals

(
R

∏
r=1

e
−ρ(n)

r ) ⋅ (
K

∏
k=1

(1 − σ
(n)
k )) ⋅ (f (n)(0) −

K

∑
l=1

(
K

∏
j=1, j≠l

y
(n)
jl (0, 0))g(n)l (0, 0)h(n)

l (0, 0))
−1

,

and after substituting this back in (4.19), the proof is completed.

The expression for Pn(s, t) in Lemma 4.4.1 is a product of three factors (separated by the

×-symbols). These factors, say u
(n)
1 , u

(n)
2 , and u

(n)
3 , each play an intuitively appealing role in

relation to Corollary 4.3.1. More specifically, our analysis below reveals that as n → ∞ the

first two factors u
(n)
1 and u

(n)
2 correspond to the transforms of the normal and exponential

distribution, respectively. In addition, we show that as n→ ∞ the factor u
(n)
3 (which is the

second line of (4.18)) immediately relates to the condition Z (NNN R− ,EEE K−) ⩽ β. As will become

clear in the proofs, the factor u
(n)
3 is significantly more subtle to analyze than the factors u

(n)
1

and u
(n)
2 .

Let us start with u
(n)
1 . By applying a standard Taylor expansion to exp(−sr/

√
ρr

(n)) around

zero, we obtain

exp (−ρ(n)r + sr

√
ρ
(n)
r + ζ

(n)
r (sr))

= exp
⎛
⎜
⎝
−ρ

(n)
r + sr

√
ρ
(n)
r + ρ

(n)
r

⎛
⎜
⎝
1 −

sr√
ρ
(n)
r

+
s
2
r

2ρ
(n)
r

+ o( 1

ρ
(n)
r

)
⎞
⎟
⎠
⎞
⎟
⎠
. (4.20)

As n→ ∞, Expression (4.20) converges to exp(1

2
s
2
r), which can be recognized as the transform

E (exp(−srN )) of a standard-normal random variable N . From this we can conclude that,

as n→ ∞, u
(n)
1 converges to a product of R standard-normal LSTs.
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For u
(n)
2 , we can apply the same strategy: for each k and αk < 1, as n→ ∞, we have σ

(n)
k → 1

so that we can apply a Taylor expansion to exp(−tk(1 − σ
(n)
k )) around zero. Therefore,

1 − σ
(n)
k

1 − δ
(n)
k (tk)

=
1 − σ

(n)
k

1 − σ
(n)
k (1 − tk(1 − σ

(n)
k ) + o(1 − σ

(n)
k ))

=
1 − σ

(n)
k

(1 − σ
(n)
k )(1 + σ

(n)
k tk) + o(1 − σ

(n)
k )

. (4.21)

As n → ∞, Expression (4.21) converges to (1 + tk)−1, which is the LST of an exponentially

distributed random variable with rate 1. This implies that, as n → ∞, u
(n)
2 converges to a

product of K unit-rate exponential LSTs.

With the asymptotic behavior of u
(n)
1 and u

(n)
2 at hand, to prove Theorem 4.3.1 it remains

to analyze u
(n)
3 . To this end, we inspect the behavior of the functions f

(n)(s), g(n)l (s, tl) and

h
(n)
l (s, tl) in the limiting regime for n→ ∞, distinguishing different values of α1 and αl. This

analysis is covered by the next subsection.

In addition to f
(n)(s), g(n)l (s, tl) and h(n)

l (s, tl), the sequence u(n)
3 also contains the coefficients

∏K

j=1, j≠l y
(n)
jl (tj, tl) for each single-server station l = 1, ..., K. Multiplying the numerator and

denominator of

y
(n)
jl (tj, tl) =

1 − δ
(n)
j (tj)

1 − δ
(n)
j (tj)/δ(n)l (tl)

by n/δ(n)j (tj), it follows that

y
(n)
jl (tj, tl) =

n(etj(1−σ
(n)
j ) − 1) + cjn

αje
tj(1−σ

(n)
j )

n(etj(1−σ
(n)
j ) − etl(1−σ

(n)
l )) + cjn

αjetj(1−σ
(n)
j ) − cln

αletl(1−σ
(n)
l )

. (4.22)

As αj, αl < 1, we have

y
(n)
jl (tj, tl) ∼

cj(1 + tj)
cj(1 + tj) − cln

αl−αj(1 + tl)
→

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 if αj < αl,

cj(1 + tj)
cj(1 + tj) − cl(1 + tl)

if αj = αl,

1 if αl < αj,

(4.23)

as n→ ∞. In particular, it holds that

lim
n→∞

K

∏
j=1, j≠l

y
(n)
jl (tj, tl) = 0 ⟺ αl > α1.

This fact has an intuitive backing: we expect the condition in Corollary 4.3.1 to apply only to

the stations with largest variability in queue lengths. For single-server stations, these are the

stations l for which αl is minimal.

4.4.2 Asymptotic analysis of f
(n)(⋅) , g

(n)
l (⋅, ⋅) and h

(n)
l (⋅, ⋅)

In Lemmas 4.4.3-4.4.6 we explicitly analyze the asymptotic behavior of the functions f
(n)(s),

g
(n)
l (s, tl) and h

(n)
l (s, tl) for all values of the parameters α and ν. To evaluate the cumulative
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Poisson probabilities appearing in f
(n)(s) and g(n)l (s, tl), we require an additional central-limit

type result given in Lemma 4.4.2. All lemmas in this subsection are proved in Appendix 4.A.

Lemma 4.4.2. Suppose xn → ∞ as n → ∞. If (Cn − xn)/
√
xn → Q with Q ∈ [−∞,∞],

then P (P(xn) ⩽ Cn) → Φ(Q) as n→ ∞.

We proceed by determining the asymptotic behavior of the functions f
(n)(s), g(n)l (s, tl) and

h
(n)
l (s, tl) as n→ ∞. This behavior is highly dependent on the values of ν1, α1 and αl, so that

it is necessary to distinguish various cases. In most cases standard asymptotic methods suffice

(Lemmas 4.4.3–4.4.5), but one particular case requires a more refined approach (Lemma 4.4.6).

Lemma 4.4.3. As n→ ∞,

f
(n)(s) →

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if 1 − α1 >
1

2
ν1,

Φ (λ(s)) if 1 − α1 ⩽
1

2
ν1.

Lemma 4.4.4. As n→ ∞,

g
(n)
l (s, tl) →

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if 1 − α1 = 1 − αl >
1

2
ν1,

Φ(λ(s) − cl(1 + tl)
√
W ) if 1 − α1 = 1 − αl =

1

2
ν1.

Lemma 4.4.5. As n→ ∞,

h
(n)
l (s, tl) →

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if 1 − α1 > 1 − αl and 1 − α1 ⩾ ν1,

0 if ν1 > 1 − α1 > 1 − αl ⩾
1

2
ν1,

exp (−βcl(1 + tl)) if 1 − α1 = 1 − αl >
1

2
ν1,

φ(λ(s))
φ(λ (s) − cl(1 + tl)

√
W )

if 1 − α1 = 1 − αl =
1

2
ν1.

The above lemmas treat all cases where either 1−α1 ⩾ ν1 or 1−αl ⩾
1

2
ν1. Although g

(n)
l (s, tl) is

not evaluated in all these cases, observe that in (4.18) this function only occurs as the product

g
(n)
l (s, tl)h(n)

l (s, tl). Since g(n)l (s, tl) ∈ [0, 1], it follows that its specific value is irrelevant as

long as h
(n)
l (s, tl) → 0. We conclude that only the case where both 1−α1 < ν1 and 1−αl <

1

2
ν1

remains.

This last case requires a more subtle reasoning. Since g
(n)
l (s, tl) → 0 and h

(n)
l (s, tl) → ∞ as

n→ ∞, we must analyze the product of the two functions before taking the limit. The proof

of Lemma 4.4.6 relies on a change-of-measure argument.

Lemma 4.4.6. If 1 − α1 < ν1 and 1 − αl <
1

2
ν1, then g

(n)
l (s, tl)h(n)

l (s, tl) → 0 as n→ ∞.

We have now collected all the ingredients to establish the asymptotic expression for Pn(s, t)
as presented in Theorem 4.3.1.

Proof of Theorem 4.3.1. The result is a consequence of Lemma 4.4.1 when substituting

Equations (4.20), (4.21), and (4.23), in combination with the functions that we asymptotically

evaluated in Lemmas 4.4.3–4.4.6 (both for general s, t and for s = t = 0, that is).
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Figure 4.2: Closed network equivalent to the manufacturing model of Figure II.1.

4.5 Applications

Corollary 4.3.1 describes the asymptotic joint queue-length distribution under our scaling.

This result may serve as the basis for approximations of the pre-limit distribution, which can

be used e.g. when designing the network. Closed queueing networks can be broadly applied, as

they can be used to represent for instance hospital units, computer systems, communication

networks and manufacturing systems. In this section we discuss the implication of our results

for the two examples mentioned in the introduction of Part II.

Example 1 (Extended machine-repair model). In the extended machine-repair model, products

that require processing arrive at a facility with C machines. If all machines are occupied,

products are blocked and immediately leave the system upon arrival. An occupied machine

may break down, and resumes processing only after it has been repaired by a single repairer.

It is hereby assumed that a product remains assigned to the same machine for the duration

of its service, even if the machine breaks down intermediately. An in-depth analysis of this

system can be found in [122].

The queueing dynamics of this facility are visualized in Figure II.1. The network is open, but

by the discussion in Section 4.2.1 it is equivalent to a closed network with two single-server

stations (the external station and the repair station) and an infinite-server station (processing

station). This closed network is depicted in Figure 4.2, and under the conditions described in

Section 4.2 it obeys a product-form distribution (4.2).

Corollary 4.3.1 then states that the normalized numbers of occupied and broken machines

tend to a normal and exponential distribution respectively, with a condition depending on

the values of the chosen scaling parameters. If 1 − α1 >
1

2
ν1, the limiting distribution of the

number of broken machines is truncated at c1β. If 1−α1 <
1

2
ν1, the limiting distribution of the

number of occupied machines is truncated at β/√w1. Finally, if 1 − α1 =
1

2
ν1, the condition

amounts to
√
w1N1 +

1

c1
E1 ⩽ β, which in particular implies dependence between the queue

lengths. ⋄

Example 2 (Vehicle sharing system). In modern society the demand for flexible transportation

has led to the development of vehicle sharing systems. In such systems, a number of vehicles

is scattered among a fixed number of locations. Users may pick up a vehicle at any location

(if available) and drop it off at any, possibly different, location. To accurately describe the

behavior of such a system, a well-fitting model is important.
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Closed queueing networks are often used in modeling vehicle sharing systems, see e.g. George

and Xia [50]. In this model, the population size C is the total number of vehicles across

the network. The pick-up (and drop-off) locations are modeled by single-server queues, and

between each ordered pair of pick-up locations, an infinite-server queue is used to describe

the time spent by a user between these locations. See Figure II.2 for an example with three

pick-up locations.

Notice that the number of stations used to model the network grows quadratically in the number

of pick-up locations. For this reason, vehicle-sharing systems quickly become analytically and

numerically intractable when the number of pick-up locations increases. The result of Corollary

4.3.1, however, does not become more complex as the number of stations grows. Under typical

circumstances R
−
and K

−
are low and the asymptotic queue-length distributions are therefore

(asymptotically) tractable. ⋄

4.6 Numerical illustrations

In Section 4.4 we have established a convergence-in-distribution result for the random vector

(B̄(n)
, D̄

(n)). In this section we will discuss the performance of approximations based on this

scaling limit. In Section 4.6.1, we assess the pre-limit distributions by means of numerical

experiments, and compare them to the limiting distributions of Corollary 4.3.1. Importantly,

the number of scaling parameters (relating to the vectors w, ν, c and α and the scalar β)

exceeds the number of parameters of our pre-limit model (i.e., the vectors ρ and σ and the

scalar C). This leaves us with some freedom to choose the scaling parameters; using an example

network, we show in Section 4.6.2 how this can be done.

Computation of individual queue-length distributions directly from the stationary distribution

(4.2) is hard for networks with many stations, as the state space grows quickly with the size

of the network. We therefore choose to use an acceptance-rejection simulation [58] for all

numerical experiments in this section. This entails sampling from the stationary distribution

without the population size constraint (which comes down to separately sampling from Poisson

and geometric distributions), and rejecting the samples that fail to satisfy the population size

constraint. The set of accepted samples is then stochastically equivalent to a set of equally

many independent samples from (4.2). An estimate for the marginal queue-length distributions

can thus be found by counting the number of accepted samples with each possible queue-length

value. Throughout this section we constantly use 10
7
samples for all simulation results (of

which at least half gets accepted).

4.6.1 Accuracy of approximation

We start by considering networks consisting of a large number of stations — for instance,

one can think of a vehicle-sharing system from Section 4.5 with ten pick-up locations, which

has more than a hundred stations. We consider a setting with R
−
= 1 and K

−
⩽ 2 (such

that there are at most three dominant stations). This entails by Corollary 4.3.1 that the
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Values of ν1, α1, α2

Condition on the joint distribution

of (B̄(n)
1 , D̄

(n)
1 , D̄

(n)
2 )

Case 1 1 − α1 > 1 − α2, 1 − α1 >
1

2
ν1

1

c1
D̄

(n)
1 ⩽ β

Case 2 1 − α1 = 1 − α2 >
1

2
ν1

1

c1
D̄

(n)
1 + 1

c2
D̄

(n)
2 ⩽ β

Case 3 1 − α1 = 1 − α2 =
1

2
ν1

√
w1B̄

(n)
1 + 1

c1
D̄

(n)
1 + 1

c2
D̄

(n)
2 ⩽ β

Case 4 1 − α1 =
1

2
ν1 > 1 − α2

√
w1B̄

(n)
1 + 1

c1
D̄

(n)
1 ⩽ β

Case 5 1 − α1 <
1

2
ν1

√
w1B̄

(n)
1 ⩽ β

Table 4.1: Five cases for the values of ν1, α1, α2 and the corresponding condition on the joint

distribution of (B̄(n)
1 , D̄

(n)
1 , D̄

(n)
2 ).

ν1 ν2, ..., ν6 α1 α2 α3, ..., α7 w1, ..., w6 c1 c2 c3, ..., c7 β n

Case 1 1 0.5 −1 0 0.5 1 1 1 1 1 25

Case 2 1 0.5 0 0 0.5 1 1 2 1 1 100

Case 3 1 0.5 0.5 0.5 0.9 1 1 2 1 1 100

Case 4 1 0.5 0.5 0.8 0.9 1 1 1 1 1 100

Case 5 2 0.5 0.9 0.9 0.9 1 1 1 1 1 100

Table 4.2: Scaling parameter values for the plots in Figure 4.3.

variables B̄
(n)
2 , ..., B̄

(n)
R converge to independent standard-normal random variables, and that

D̄
(n)
3 , ..., D̄

(n)
K converge to independent unit-rate exponential random variables. The asymptotic

distributions of B̄
(n)
1 , D̄

(n)
1 and D̄

(n)
2 are less trivial because they may be affected by the

condition Z (NNN R− ,EEE K−) ⩽ β. Figure 4.3 therefore focuses on these random variables: it shows

their density functions, estimated by simulation. Strictly speaking, the variables B̄
(n)
1 , D̄

(n)
1 and

D̄
(n)
2 have probability masses instead of densities for finite n since they are discrete. However,

we consider the scaled mass functions of these variables and refer to them as densities in the

sequel, so as to facilitate comparison with their limits as n→ ∞.

How the condition Z (NNN R− ,EEE K−) ⩽ β impacts the distributions of B̄
(n)
1 , D̄

(n)
1 and D̄

(n)
2 depends

mainly on the values of ν1, α1 and α2, see Table 4.1. The five different cases are visible in

the rows of Figure 4.3, in which simulation results are shown for a network with R = 6 and

K = 7. In cases 1 and 5, the condition applies to only one random variable, which causes the

associated density function to be truncated at β.

In all of the cases the density of B̄
(n)
1 resembles the normal density, whereas the densities

of D̄
(n)
1 and D̄

(n)
2 resemble the exponential density. At a more detailed level, Figure 4.3 also

shows the impact of the different conditions (i.e. the five cases that were displayed in Table

4.2). In cases where B̄
(n)
1 (or D̄

(n)
1 , D̄

(n)
2 ) is not part of the condition, its density function is

simply a slightly perturbed version of that of a standard normal (or unit-rate exponential).

On the other hand, in cases where B̄
(n)
1 (or D̄

(n)
1 , D̄

(n)
2 ) is part of the condition, we see that
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Figure 4.3: Density functions of B̄
(n)
1 , D̄

(n)
1 and D̄

(n)
2 , estimated by simulation, depending on the

values of the scaling parameters ν1, α1, α2. The exact parameter values for the five cases (top to

bottom) can be found in Table 4.2.

the corresponding random variable is less likely to assume larger values. We conclude that the

structure of the limit distributions, as identified in Corollary 4.3.1, carries over to the pre-limit

setting.

4.6.2 Fitting scaling parameters

In the remainder of this section we show how to use our scaling regime in a concrete queueing

network model. Particularly, we show how the scaling parameters can be chosen to appropriately

reflect the model at hand. The extended machine-repair model described in Section 4.5 will

serve as an example. For this system we compare the actual queue-length distributions

(obtained by acceptance-rejection simulation) to the limiting distributions in the scaling regime

(as stated in Corollary 4.3.1). Although the acceptance-rejection simulation gives sufficiently

accurate results and is consistent with the previous subsection, we remark that for the small

machine-repair network, direct calculation of (4.2) is also numerically tractable.

To compare the behavior of the queue lengths under a given set of model parameters with our
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limit results, we have to choose appropriate scaling parameters. Since we have 2R + 2K + 1

scaling parameters (the entries of the vectors w, ν, c, and α and the scalar β) compared to

only R +K + 1 model parameters (the entries of the vectors ρ and σ and the scalar C), this

can be done in many different ways. Choosing appropriate scaling parameters is important,

because not all choices lead to accurate approximations. The following intuitive procedure

may serve as a guideline.

1. First select which stations are dominant, i.e. the stations whose queue lengths will

be incorporated in the condition Z (NNN R− ,EEE K−) ⩽ β. These should correspond to the

queue lengths with largest variance, as these are affected most by the population size

constraint. These variances are, respectively, ρ1, ..., ρR, σ1/(1 − σ1)2, . . . , σK/(1 − σK)2
(if we drop the population size constraint). There is some freedom in choosing the number

of dominant stations. Working with more dominant stations yields a limit result that is

more accurate but whose evaluation is more complex.

2. Choose values for ν and α such that the dominant stations are indeed affected by the

condition, and the remaining stations are not.

3. Fix n, and choose values for w, c, β such that the scaled network coincides with the

network under consideration.

With these underlying ideas, one may choose scaling parameters as follows.

1. Let A denote the set of dominant stations, which we construct as follows. Order the

variances ρ1, ..., ρR, σ1/(1 − σ1)2, . . . , σK/(1 − σK)2 from high to low. Include in A the

smallest number of stations with highest variance, such that

∑
r∈A

ρr + ∑
k∈A

σk
(1 − σk)2

⩾ T ⋅ (
R

∑
r=1

ρr +
K

∑
k=1

σk
(1 − σk)2

)

for some threshold fraction T ⩽ 1. That is, choose the largest variances such that the

sum of these variances makes up for at least a fraction T of the total variance. The

best value of T may depend on the model at hand and the trade-off between accuracy

and complexity discussed above. We empirically observed that picking T = 0.8 provides

rather accurate approximations in most cases.

2. For r, k ∈ A and some γ > 0, choose values for νr, αk such that 1

2
νr = 1 − αk = γ ∶=

max{1

2
ν1, 1 − α1}. It turns out that the value γ may be chosen arbitrarily, since each

value leads to the same limit result (see the discussion below). For r, k ∉ A, choose values

for νr, αk such that 1

2
νr < γ and 1 − αk < γ (the exact values are again irrelevant).

3. Pick any value for n. Then choose values for w1, ..., wR such that ρ
(n)

= ρ, values for

c1, ..., cK such that σ
(n)

= σ and β such that Cn = C.

Despite the freedom in choosing scaling parameters, we underline that the decision for the set

of dominant stations A completely determines the limit result. This can be verified with the

following argument. For non-dominant stations, observe that the queue lengths converge to
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C ρ1 σ1
Parameter set 1 100 40 0.99

Parameter set 2 100 90 0.90

Parameter set 3 100 90 0.66

Table 4.3: Three parameter sets of the extended machine-repair model.

ν1 α1 w1 c1 β n

Scaling parameter set 1 1 −0.24567 1 1 0.61 40

Scaling parameter set 2 1 0.5 1 1.054 1.1 90

Scaling parameter set 3 1 0.8526 1 1 1.1 90

Table 4.4: Scaling parameter sets generating the same system as the parameter sets in Table 4.3.

standard-normal and unit-rate exponential variables regardless of the scaling parameters. The

queue-length distributions of the dominant stations on the other hand, depend on the condition

∑r∈A

√
wrNr +∑k∈A

1

ck
Ek ⩽ β. It therefore seems like the distributions of the dominant queue

lengths depend on the values of w, c and β. However, the identities ρ
(n)

= ρ, σ
(n)

= σ and

Cn = C imply that wr = ρrn
−2γ

for r ∈ A, ck = (σ−1
k − 1)nγ for k ∈ A and β = (C − ∥ρ∥)n−γ

.

With these scaling parameter values, the factor n
−γ

cancels out of the condition, which makes

the values of n and γ irrelevant for the limit result.

We now move to the extended machine-repair model (described in Section 4.5) for a concrete

numerical example of the steps above. Recall that in this model, the queue lengths of interest

are the number of occupied machines and the number of broken machines. We denote these

random variables by B1 and D1 respectively. The model has three parameters: the total number

of machines C, the traffic load of the processing station ρ1, and the traffic load of the repair

station σ1. Consider the three sets of parameter values shown in Table 4.3.

Following the steps above, we find the scaling parameters given in Table 4.4. Note that by

definition of our scaling regime, taking scaling parameter set 1 induces precisely the machine-

repair model with parameter set 1. Hence, for this parameter set, comparing the actual

queue-length distributions and our limit results amounts to comparing n = 40 and n → ∞.

The same holds for n = 90 and parameter sets 2 and 3.

In Figures 4.4–4.6 we show plots of the density functions of B̄
(n)
1 and D̄

(n)
1 for each parameter

set, obtained by simulation. For comparison, the densities are plotted against the limit results

of Corollary 4.3.1.

Parameter set 1. Observe that 1 − α1 >
1

2
ν1. Corollary 4.3.1 states in this case that

B̄
(n)
1 →d N1, D̄

(n)
1 →d (E1 ∣E1 ⩽ β)

as n→ ∞. Therefore, we have plotted in Figure 4.4 the densities of B̄
(40)
1 and D̄

(40)
1 (obtained

through simulation) against respectively a standard-normal density and a unit-rate exponential
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Figure 4.4: Density functions of B̄
(n)
1 (left) and D̄

(n)
1 (right) for parameter set 1, both for n = 40

(dots) and for n → ∞ (line).

Figure 4.5: Density functions of B̄
(n)
1 (left) and D̄

(n)
1 (right) for parameter set 2, both for n = 90

(dots) and for n → ∞ (line).

density truncated at β.

Parameter set 2. Observe that 1 − α1 =
1

2
ν1. Corollary 4.3.1 states for 1 − α1 =

1

2
ν1 that

(B̄(n)
1 , D̄

(n)
1 ) →d (N1,E1∣N1 + E1 ⩽ β)

as n→ ∞. Therefore, Figure 4.5 plots the densities of B̄
(90)
1 and D̄

(90)
1 against respectively the

densities of (N1 ∣N1 + E1 ⩽ β) and (E1 ∣N1 + E1 ⩽ β).
Parameter set 3. Observe that 1 − α1 <

1

2
ν1. Corollary 4.3.1 states in this case that

B̄
(n)
1 →d (N1 ∣N1 ⩽ β), D̄

(n)
1 →d E1

as n→ ∞. Therefore, Figure 4.6 plots the densities of B̄
(90)
1 and D̄

(90)
1 against respectively a

standard-normal density truncated at β and a unit-rate exponential density.

Figures 4.4–4.6 show that for a network with C = 100, Corollary 4.3.1 provides rather accurate

approximations of the queue-length densities. In relatively small networks there is the obvious

alternative of direct evaluation of the product-form density. For larger networks this will

lead to computational issues, whereas the complexity of our asymptotic results is just mildly

affected by the network size.



4.7 Discussion and further research 113

Figure 4.6: Density functions of B̄
(n)
1 (left) and D̄

(n)
1 (right) for parameter set 3, both for n = 90

(dots) and for n → ∞ (line).

4.7 Discussion and further research

For a broad class of queueing networks, such as those of BCMP type, the joint queue-length

distribution has a product-form structure. It may seem to lend itself well to numerical evaluation,

but in case of closed networks the population size constraint makes this a non-trivial task.

To overcome such computational issues, we have proposed a scaling regime, inspired by the

Halfin-Whitt scaling. The corresponding limiting joint stationary queue-length distribution is

transparent, numerically tractable and provides insight into the dependencies between the

individual queue lengths. We have pointed out how to map our scaling parameters on those of

the queueing network under consideration. A series of numerical experiments shows that the

resulting approximations are close to the true (pre-limit, that is) values.

Scaling methods in queueing networks form a rich research area in which there is still ample

room to extend our current results. One option is to include multi-server stations in the

network. As the queue lengths become very large in our scaling regime, we expect that such a

station would effectively behave as a single-server station, with the service rate multiplied by

the number of servers.

Another model extension preserving product form relates to multiclass networks. In these

models customers may be of different classes, where each class may have its specific routing

and service requirements. The product form of the stationary distribution is preserved under

class-dependent routing probabilities and, for certain station types, under class-dependent

service requirements. Many queueing network results apply to multiclass networks, but scaling

analysis becomes more involved, primarily because each customer class now has its own

population size.

Further research efforts could focus on exploiting our scaling results for design and optimization

purposes. In addition, as we have indicated, our scaling method provides freedom in relation

to the choice of the scaling parameters, which raises the question how to choose the entries of

w,ν, c,α and β so as to maximally accurately represent the underlying queueuing network.

As a final remark, we discuss the recent related work by Jelenković et al. [66, 67]. Similar to

this chapter, their work concerns scaling analysis of a closed product-form queueing network

with infinite-server and single-server stations. A notable feature in the scaling proposed by
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Jelenković et al. is that the number of single-server stations is also scaled (together with

the workloads and the population size). Limiting queue length distributions are derived in

a number of scaling regimes where the relative value of the workloads, population size and

number of heaviest-loaded stations is varied.

Interestingly, as opposed to our Laplace-Stieltjes transform approach, Jelenković et al. work with

a probabilistic analysis method. Their idea is based on a particular probabilistic representation

of the stationary queue-length distribution. For example, when substituting R = K = 1, one

can write the right-hand side of (4.2) as

P(P(ρ1) = b1) ⋅ P(G (σ1) = d1)
P(P(ρ1) + G (σ1) ⩽ C) . (4.24)

Using the convergence results of Poisson to normal distributions and Geometric to exponential

distributions, our main results can alternatively be proven with this probabilistic representation:

for the R = K = 1 example, Corollary 4.3.1 could be proven as follows. Let s, t be such that

Z(s, t) ⩽ β. By (4.10) and (4.24),

P (B̄(n)
1 ⩽ s, D̄

(n)
1 ⩽ t) = P

⎛
⎜
⎝
B

(n)
1 − ρ

(n)
1√

ρ
(n)
1

⩽ s, (1 − σ
(n)
1 )D(n)

1 ⩽ t
⎞
⎟
⎠

=

P (P(ρ(n)
1 )−ρ(n)

1√
ρ
(n)
1

⩽ s) ⋅ P ((1 − σ
(n)
1 )G (σ(n)

1 ) ⩽ t)

P (P(ρ(n)1 ) + G (σ(n)
1 ) ⩽ Cn)

. (4.25)

Applying standard convergence results of the Poisson and geometric distributions, it can be

seen that the numerator of (4.25) converges to P (N ⩽ s) ⋅ P (E ⩽ t) as n → ∞ (assuming

that ν1 > 0 and α1 < 1). For the inequality inside the probability in the denominator, we

subtract ρ
(n)
1 and divide by n

γ
on both sides. The definition of Cn then implies that the

denominator of (4.25) is asymptotically equal to

P(P(ρ(n)1 ) − ρ
(n)
1

nγ
+

G (σ(n)
1 )

nγ
⩽ β) .

As n→ ∞, this probability converges to P (Z(N ,E ) ⩽ β).
When we combine the expressions of the numerator and denominator of (4.25), we have

P (B̄(n)
1 ⩽ s, D̄

(n)
1 ⩽ t) →

P (N ⩽ s) ⋅ P (E ⩽ t)
P (Z(N ,E ) ⩽ β)

as n → ∞, from which Corollary 4.3.1 follows. In light of this alternative proof, it can be

worthwhile exploring which other scaling approaches to product-form networks could benefit

from a probabilistic representation similar to the one in (4.24).

Appendix 4.A Proofs of Section 4.4

Lemma 4.4.2. Suppose xn → ∞ as n → ∞. If (Cn − xn)/
√
xn → Q with Q ∈ [−∞,∞],

then P (P(xn) ⩽ Cn) → Φ(Q) as n→ ∞.
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Proof. Observe that a Poisson random variable with mean m ∈ N can be written as a sum

of m Poisson random variables with mean 1. Therefore, with (Xi)i∈N, (Yi)i∈N i.i.d. copies of

P (1),
⌊xn⌋

∑
i=1

Xi =d P(⌊xn⌋) ⩽st P(xn) ⩽st P(⌈xn⌉) =d

⌈xn⌉

∑
i=1

Yi.

Substracting xn and dividing by
√
xn yields

1√
xn

⌊xn⌋

∑
i=1

(Xi − 1) − xn − ⌊xn⌋√
xn

⩽st

P(xn) − xn√
xn

⩽st

1√
xn

⌈xn⌉

∑
i=1

(Yi − 1) + ⌈xn⌉ − xn√
xn

.

Appropriately rewritten as

1√
⌊xn⌋ +O(1)

⌊xn⌋

∑
i=1

(Xi − 1) − O(1)√
xn

⩽st

P(xn) − xn√
xn

⩽st

1√
⌈xn⌉ −O(1)

⌈xn⌉

∑
i=1

(Yi − 1) + O(1)√
xn

,

we may apply the central limit theorem to conclude that (P(xn) − xn)/
√
xn converges to a

standard-normal random variable as xn → ∞. Using this observation the result immediately

follows from the fact that

P (P(xn) ⩽ Cn) = P (P(xn) − xn√
xn

⩽
Cn − xn√

xn
) → Φ(Q)

as xn → ∞.

In the following proofs we write ρr, ζr, σl and δl for ρ
(n)
r , ζ

(n)
r (sr), σ(n)

l and δ
(n)
l (tl) to simplify

the notation.

Lemma 4.4.3. As n→ ∞,

f
(n)(s) →

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if 1 − α1 >
1

2
ν1,

Φ (λ(s)) if 1 − α1 ⩽
1

2
ν1.

Proof. We start with the case 1 − α1 >
1

2
ν1. Note that in this case

Cn = ⌊
R

∑
r=1

ρr + βn
1−α1⌋ .

To prove f
(n)(s) → 1, we apply Lemma 4.4.2 with

xn =

R

∑
r=1

ζr =
R

∑
r=1

(ρr − sr
√
ρr + o (√ρr))

(so that Q = ∞).

For the limit of f
(n)(s) in case 1 − α1 ⩽

1

2
ν1, an application of Lemma 4.4.2 with

xn =

R

∑
r=1

ζr =
R

∑
r=1

(ρr − sr
√
ρr + o (√ρr))
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and

Cn = ⌊
R

∑
r=1

ρr + βn
1
2
ν1⌋

leads to

Q = lim
n→∞

Cn − xn√
xn

= lim
n→∞

βn
1
2
ν1 +

R

∑
r=1

(sr
√
ρr + o (√ρr))

√
R

∑
r=1

(ρr + o (ρr))
=
β +∑R

−

r=1 sr
√
wr√

∑R−

r=1wr

= λ(s).

Recall that R
−
is defined as the largest integer such that ν1 = . . . = νR− . Hence, if 1−α1 ⩽

1

2
ν1,

then f
(n)(s) → Φ (λ(s)).

Lemma 4.4.4. As n→ ∞,

g
(n)
l (s, tl) →

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if 1 − α1 = 1 − αl >
1

2
ν1,

Φ(λ(s) − cl(1 + tl)
√
W ) if 1 − α1 = 1 − αl =

1

2
ν1.

Proof. The proof for g
(n)
l (s, tl) is similar to the proof for f

(n)(s). Suppose first that 1 − α1 =

1 − αl >
1

2
ν1. Note that with

xn =

R

∑
r=1

ζr/δl =
R

∑
r=1

ρr
n + cln

αl

n exp(−sr/
√
ρr) etl(1−σl),

we have

Cn − xn√
xn

=

R

∑
r=1

ρr +
β

c1
n
1−α1 −

R

∑
r=1

(ρr +O(nνr+αl−1) −O(n
1
2
νr))

√
R

∑
r=1

(ρr + o(ρr))
.

When 1 − α1 = 1 − αl >
1

2
ν1 we take Q = ∞ in Lemma 4.4.2, concluding that g

(n)
l (s, tl) → 1.

Next, for g
(n)
l (s, tl) as 1 − α1 = 1 − αl =

1

2
ν1, an application of Lemma 4.4.2 with

xn =

R

∑
r=1

ζr/δl =
R

∑
r=1

ρr
n + cln

αl

n exp(−sr/
√
ρr) etl(1−σl)

and

Cn = ⌊
R

∑
r=1

ρr + βn
1
2
ν1⌋
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leads to

Q = lim
n→∞

Cn − xn√
xn

= lim
n→∞

R

∑
r=1

ρr + βn
1
2
ν1 −

R

∑
r=1

(ρr + cl(1 + tl)nαl−1ρr − sr
√
ρr) + o(√ρr)

√
R

∑
r=1

(ρr + o (ρr))

=

β +
R

−

∑
r=1

(sr
√
wr − cl(1 + tl)wr)

√
R−

∑
j=1

wr

= λ(s) − cl(1 + tl)
√
W.

We conclude that if 1 − α1 = 1 − αl =
1

2
ν1, then g

(n)
l (s, tl) → Φ(λ(s) − cl(1 + tl)

√
W ).

Lemma 4.4.5. As n→ ∞,

h
(n)
l (s, tl) →

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if 1 − α1 > 1 − αl and 1 − α1 ⩾ ν1,

0 if ν1 > 1 − α1 > 1 − αl ⩾
1

2
ν1,

exp (−βcl(1 + tl)) if 1 − α1 = 1 − αl >
1

2
ν1,

φ(λ(s))
φ(λ (s) − cl(1 + tl)

√
W )

if 1 − α1 = 1 − αl =
1

2
ν1.

Proof. Let H
(n)
l (s, tl) ∶= log(h(n)

l (s, tl)) and observe that H
(n)
l (s, tl) is a sum of the two

components ζ
(n)(s)(1/δl(tl) − 1) and (Cn + 1) log(δl(tl)). We explicitly consider these two

components separately. In the following calculations, terms irrelevant as n→ ∞ will be dealt

with using the ‘∼’ symbol. From the first component of H
(n)
l (s, tl) we extract the leading

terms by applying Taylor expansions. As n→ ∞, this component can be rewritten as

R

∑
r=1

ρre
−sr/

√
ρr (e

tl(1−σl)

σl
− 1)

∼

R

∑
r=1

ρr(1 − sr/
√
ρr) (

1
σl

− 1 +
tl(1 − σl)

σl
+

1

2
t
2
l (1 − σl)2
σl

)

∼

R

∑
r=1

wrn
νr(1 − sr/

√
wrn

νr) (clnαl−1 + tlcln
αl−1 +

1

2
c
2
l t

2
l n

2αl−2)

∼

R

∑
r=1

(wrcl(1 + tl)nαl−1+νr −
√
wrcl(1 + tl)srnαl−1+

1
2
νr +

1

2
wrc

2
l t

2
l n

2αl−2+νr) . (4.26)

We continue by considering the second component of H
(n)
l (s, tl). Defining τl(tl) ∶= 1− δl(tl) =

1 − σle
−tl(1−σl)

= (1 − e
−tl(1−σl)) + (1 − σl)e−tl(1−σl) and using that 1 − σl ∼ cln

αl−1 − c
2
l n

2αl−2,

we have for this component that

(Cn + 1) log(1 − τl(tl)) = −(Cn + 1) (τl(tl) +
1

2
τl(tl)2 + o(τl(tl)2))

= −Cn (τl(tl) +
1

2
τl(tl)2 + o(τl(tl)2)) + o(1).
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Observing that τl(tl) ∼ (1 + tl)(1 − σl) − (1

2
t
2
l + tl)(1 − σl)2, the second component is thus

asymptotically equivalent to

−Cn ((1 + tl)(1 − σl) +
1

2
(1 − σl)2 + o(1 − σl)2)

∼ −Cn ((1 + tl)(clnαl−1 − c
2
l n

2αl−2) + 1

2
c
2
l n

2αl−2)

= −Cn ((1 + tl)clnαl−1 − (1
2
+ tl)c2l n2αl−2) . (4.27)

When adding the two components displayed in (4.26) and (4.27), we conclude that h
(n)
l (s, tl) =

exp(H(n)
l (s, tl)) as n→ ∞, with

H
(n)
l (s, tl) ∼ (1 + tl)clnαl−1 (

R

∑
r=1

(wrnνr −
√
wrsrn

1
2
νr) − Cn)

+ c
2
l n

2αl−2 (
R

∑
r=1

1

2
wrt

2
l n

νr + Cn(tl +
1

2
))

= −(1 + tl)clnαl−1 (
R

∑
r=1

√
wrsrn

1
2
νr + (Cn −

R

∑
r=1

wrn
νr))

+ c
2
l n

2αl−2 (1
2
(1 + tl)2

R

∑
r=1

wrn
νr + (1

2
+ tl) (Cn −

R

∑
r=1

wrn
νr))

= −(1 + tl)clnαl−1 (
R

∑
r=1

√
wrsrn

1
2
νr + βn

γ)

+ c
2
l n

2αl−2 (1
2
(1 + tl)2

R

∑
r=1

wrn
νr + (1

2
+ tl)βnγ) . (4.28)

We consider (4.28) as a reference point from now on, and distinguish four cases:

1. Suppose that 1 − α1 > 1 − αl and 1 − α1 ⩾ ν1. Then γ = 1 − α1 ⩾ ν1, so (4.28) has

leading term −cl(1 + tl)βnαl−1+γ, which tends to −∞ as n → ∞. Hence, in this case

h
(n)
l (s, tl) → 0 as n→ ∞.

2. If ν1 > 1 − α1 > 1 − αl ⩾
1

2
ν1, then n

αl−1+
1
2
νr

= O(1), hence

h
(n)
l (s, tl) = exp (−(1 + tl) (O(1) + βcln

1−α1n
αl−1))

× exp (O(1) + βn
1−α1(1

2
+ tl)c2l n2αl−2)

= exp (−(1 + tl)βclnαl−α1 +O(1)) → 0.

3. If 1 − α1 = 1 − αl >
1

2
ν1, then n

αl−1+
1
2
ν1

= o(1), so with (4.28) we have

h
(n)
l (s, tl) = exp (−(1 + tl) (O(nαl−1+

1
2
ν1) + βn

1−α1cln
αl−1))

× exp ((O(n2αl−2+ν1) +O(n2αl−2−(α1−1))))
= exp (−(1 + tl)βcl + o(1)) → exp (−βcl(1 + tl)) .
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4. Finally, if 1 − α1 = 1 − αl =
1

2
ν1 , then with (4.28),

h
(n)
l (s, tl) = exp( − cl(1 + tl) (

R

∑
r=1

√
wrsrn

αl−1+
1
2
νr + β)

+
1

2
c
2
l (1 + tl)2

R

∑
r=1

wrn
2αl−2+νr +O(n2αl−2+

1
2
ν1))

→ exp
⎛
⎜
⎝
−cl(1 + tl)

⎛
⎜
⎝
β +

R
−

∑
r=1

sr
√
wr

⎞
⎟
⎠
+

1

2
c
2
l (1 + tl)2

R
−

∑
r=1

wr
⎞
⎟
⎠

= exp (−cl(1 + tl)
√
Wλ(s) + 1

2
c
2
l (1 + tl)2W)

= exp (1
2
(λ(s) − cl(1 + tl)

√
W)2 − 1

2
λ(s)2)

=
φ (λ(s))

φ(λ(s) − cl(1 + tl)
√
W )

.

This completes the proof of Lemma 4.4.5.

Lemma 4.4.6. If 1 − α1 < ν1 and 1 − αl <
1

2
ν1, then g

(n)
l (s, tl)h(n)

l (s, tl) → 0 as n→ ∞.

Proof. Let

x
(n)
l = ζ

(n)(s)/δ(n)l (tl) =
R

∑
r=1

ρ
(n)
r

σ
(n)
l

exp(−sr/
√
ρ
(n)
r ) etl(1−σ

(n)
l )

;

in the sequel we write just xn for brevity. In this proof, our first objective is to identify the

asymptotics of g
(n)
l (s, tl) = P(P(xn) ⩽ Cn). To this end, let Pn =d P(xn), and let Q be an

alternative measure under which this Poisson random variable has mean Cn, such that

g
(n)
l (s, tl) = EP (1{Pn ⩽ Cn}) = EQ (L1{Pn ⩽ Cn}) ,

with L denoting the likelihood ratio or Radon-Nikodym derivative

L =
dP

dQ
= (e

−xn(xn)Pn

Pn!
)/(e

−Cn(Cn)Pn

Pn!
) = e

Cn−xn ( xn
Cn

)
Pn

.

We thus arrive at

g
(n)
l (s, tl) = e

Cn−xnEQ ((xn/Cn)Pn 1{Pn ⩽ Cn}) .

Define P̄n ∶= (Pn − Cn)/
√
Cn and recall that, by the central limit theorem, the distribution of

P̄n converges to a standard-normal distribution. In terms of this new random variable, we have

g
(n)
l (s, tl) = e

Cn−xn ( xn
Cn

)
Cn

qn, (4.29)

where

qn ∶= EQ (((xn/Cn)
√
Cn)

P̄n

1{P̄n ⩽ 0}) = ∫
0

−∞
(( xn
Cn

)
√
Cn

)
y

dFP̄n
(y), (4.30)
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with FP̄n
(y) being the distribution function of P̄n. The idea is to show that FP̄n

(y) behaves as

a standard-normal distribution for sufficiently large Cn, and hence that

qn ∼ ∫
0

−∞
(( xn
Cn

)
√
Cn

)
y

φ(y) dy,

where φ(y) is the standard-normal density function in y. To formally achieve this, we bound

FP̄n
(y) using the Berry-Esseen theorem. This states that for all Cn large enough,

sup
y

»»»»»»FP̄n
(y) − Φ(y) − m3

6
√
Cn

(1 − y
2)φ(y) − φ(y)l(y)»»»»»» = O ( 1√

Cn
) ,

where m3 is the third moment of a Poisson(1) random variable and l(⋅) is a function that is

bounded by a constant times 1/
√
Cn.

We proceed by analyzing qn using the Berry-Esseen theorem. Observe that (4.30) contains

the density of P̄n, whereas ‘Berry-Esseen’ concerns a bound in terms of the corresponding

distribution function. Therefore, we apply integration by parts, yielding

qn = ∫
0

−∞
(( xn
Cn

)
√
Cn

)
y

dFP̄n
(y) = ∫

0

−∞
e
any d

dy
(FP̄n

(y) − FP̄n
(0)) dy

= −∫
0

−∞
ane

any (FP̄n
(y) − FP̄n

(0)) dy, (4.31)

where an ∶=
√
Cn log(xn/Cn). Now applying the Berry-Esseen bound in (4.31),

qn = −∫
0

−∞
ane

any (Φ(y) − Φ(0)) dy + ∫
0

−∞
ane

any m3

6
√
Cn

((1 − y
2)φ(y) − φ(0)) dy

+ ∫
0

−∞
ane

any (φ(y)l(y) − φ(0)l(0)) dy + ∫
0

−∞
ane

any ⋅O ( 1√
Cn

) dy.

Recall that l(y) = O (1/
√
Cn), so the last three integrals contain a term of that order. For the

first integral, we integrate by parts once more to obtain

qn = ∫
0

−∞
e
anyφ(y) dy + 1√

Cn
∫

0

−∞
ane

anyr(y) dy,

where r(y) is bounded by a quadratic function. Observe that the second integral converges, so

the second term is O(1/
√
Cn). Therefore, completing the square in the exponent,

qn = ∫
0

−∞

1√
2π

exp(any −
y
2

2
) dy +O ( 1√

Cn
)

= exp(a
2
n

2
)∫

0

−∞

1√
2π

exp (−1

2
(y − an)2) dy +O ( 1√

Cn
)

= exp(a
2
n

2
)Φ(−an) +O ( 1√

Cn
)

= exp(a
2
n

2
) (1 − Φ(an)) +O ( 1√

Cn
) ,

(4.32)
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using the symmetry of the normal distribution. A known property of the tail of the normal

distribution is

e
x
2/2 (1 − Φ(x)) ∼ 1

x
√
2π

(4.33)

as x→ ∞ (cf. [45, p. 175]). To apply this property to the first term on the right-hand side of

(4.32), it is necessary to verify that an goes to ∞ as n→ ∞. This can be seen by relying on a

Taylor expansion, and recalling that 1 − α1 < ν1 and 1 − αl <
1

2
ν1:

an =

√
Cn log

xn
Cn

=

√
√√√√√⎷

R

∑
r=1

wrn
νr + o(nν1) ⋅ log

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

R

∑
r=1

wrn
νr(1 + cln

αl−1)e−
sr√

wrn
νr e

tl(1−σ
(n)
l )

R

∑
r=1

wrn
νr + o(nν1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= Ω(n
1
2
ν1) ⋅ log (1 + Ω (nαl−1)) = Ω(n

1
2
ν1−(1−αl)) → ∞

as n→ ∞, where we use the Ω(⋅)-notation of Section 1.4. Using property (4.33) in (4.32), and

substituting the result in (4.29), we thus obtain that, as n→ ∞,

g
(n)
l (s, tl) = e

Cn−xn ( xn
Cn

)
Cn

( 1

an
√
2π

+O ( 1√
Cn

)) = e
Cn−xn ( xn

Cn
)
Cn

⋅ o(1).

Multiplying with h
(n)
l (s, tl), and using δ

(n)
l (tl)xn = ζ

(n)(s), it holds that

g
(n)
l (s, tl)h(n)

l (s, tl) = e
Cn−xn ( xn

Cn
)
Cn

⋅ o(1) ⋅ exn−ζ
(n)(s) (δ(n)l (tl))

Cn+1

= o(1) ⋅ eCn−ζ
(n)(s) (ζ

(n)(s)
Cn

)
Cn

.

The stated result now follows from writing all terms as exponentials and applying the Taylor

expansion to the logarithm:

g
(n)
l (s, tl)h(n)

l (s, tl) = o(1) exp(Cn − ζ
(n)(s) + Cn log (1 + (ζ

(n)(s) − Cn
Cn

)))

= o(1) exp(Cn − ζ
(n)(s) + Cn

ζ
(n)(s) − Cn

Cn
+O(1)) → 0,

as n→ ∞.

Appendix 4.B Proof of Corollary 4.3.3

Proof of Corollary 4.3.3. This proof mimics the proof of Theorem 4.3.1. For convenience we

write

Tn(s, t) ∶= E(
I−1

∏
r=1

e
−srB̄

(n)
r

R

∏
m=I

e
−smB

(n)
m

J−1

∏
k=1

e
−tkD̄

(n)
k

K

∏
l=J

e
−tlD

(n)
l ) ,

which differs from Pn(s, t) in the fact that B
(n)
I , ..., B

(n)
R and D

(n)
J , ..., D

(n)
K are unscaled. We

now follow the line of the proof of Lemma 4.4.1, with a few adjustments for the unscaled

random variables:
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◦ the factors e
sm

√
ρ
(n)
m are removed, for m = I, . . . , R,

◦ the variables ζ
(n)
m (sm) are defined as ρ

(n)
m e

−sm rather than ρ
(n)
m e

−sm/
√
ρ
(n)
m , form = I, . . . , R,

◦ tl(1 − σl) is replaced by tl, for l = J, . . . ,K.

Hence, Tn(s, t) equals the right-hand side of (4.18) subject to the adjustments above. The

first term of Tn(s, t) then equals

I−1

∏
r=1

e
−ρ(n)

r +sr

√
ρ
(n)
r +ζ(n)

r (sr)
R

∏
m=I

e
ρ
(n)
m (e−sm−1)

.

In this expression, the first I−1 factors are as in (4.20) and converge to standard-normal LSTs

as n → ∞. We recognize the latter R − I + 1 factors as LSTs of Poisson random variables

with mean ρ
(n)
m .

The second term of Tn(s, t) equals

J−1

∏
k=1

1 − σ
(n)
k

1 − δ
(n)
k (tk)

K

∏
l=J

1 − σ
(n)
l

1 − σ
(n)
l e−tl

.

With (4.21), the first J − 1 factors of this expression converge to LSTs of unit-rate exponential

random variables as n→ ∞, and the second K − J + 1 are easily identified as geometric LSTs

with parameter 1 − σ
(n)
l .

Following the proofs of Lemmas 4.4.3–4.4.6, it can be seen that the adjustments do not change

the asymptotic behavior of the last term of Tn(s, t). Therefore, the result follows from Theorem

4.3.1 and recognizing known LSTs in the first two terms of Tn(s, t) as described above.

Appendix 4.C Proof of Corollary 4.3.1

Proof of Corollary 4.3.1. This proof amounts to verifying that the LST corresponding to

(NNN ,EEE ∣Z (NNN R− ,EEE K−) ⩽ β) equals the right-hand side of (4.13). This can be done with

standard integration techniques. In this section we illustrate the proof for the case that

1− α1 =
1

2
ν1. We leave out the other two cases, as these can be verified using the precise same

steps.

Rather than the LST of (NNN ,EEE ∣Z (NNN R− ,EEE K−) ⩽ β), we consider in this section the LST

of (NNN R− ,EEE K− ∣Z (NNN R− ,EEE K−) ⩽ β), which we call Q(s, t). The former LST can simply be

obtained through multiplying Q(s, t) by R−R−
standard-normal LSTs and K −K−

unit-rate

exponential LSTs. For 1 − α1 =
1

2
ν1, observe that the right-hand side of (4.13) equals

⎛
⎜
⎝

R
−

∏
r=1

e
1
2
s
2
r
⎞
⎟
⎠
⎛
⎜
⎝

K
−

∏
k=1

1

1 + tk

⎞
⎟
⎠
⋅
φ(λ(s))
φ(λ(0)) ⋅

Ψ (λ(s)) −
K

−

∑
l=1

(
K

−

∏
j=1, j≠l

κjl(t))Ψ (λ(s) − cl(1 + tl)
√
W)

Ψ (λ(0)) −
K−

∑
l=1

(
K−

∏
j=1, j≠l

κjl(0))Ψ (λ(0) − cl
√
W)

.

(4.34)
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Our objective is to show that Q(s, t) equals (4.34).

To simplify the notation, we write

p ∶= P
⎛
⎜
⎝

R
−

∑
r=1

√
wrNr +

K
−

∑
k=1

1
ck

Ek ⩽ β
⎞
⎟
⎠
,

b̂ ∶=
R

−

∑
r=1

br
√
wr, and

d̂j ∶=
j

∑
k=1

dk/ck.

By definition of the LST, and with d(bR− ,dk) denoting an abbreviation for db1...dbR− dd1...ddk,

it follows that

Q(s, t) = E
⎛
⎜
⎝
⎛
⎜
⎝

R
−

∏
r=1

e
−srNr

⎞
⎟
⎠
⎛
⎜
⎝

K
−

∏
k=1

e
−tkEk

⎞
⎟
⎠
»»»»»»

R
−

∑
r=1

√
wrNr +

K
−

∑
k=1

1
ck

Ek ⩽ β
⎞
⎟
⎠

= ∫
bR− ,dK− ∶ b̂+d̂K−⩽β

⎛
⎜
⎝

R
−

∏
r=1

e
−srbrφ(br)

⎞
⎟
⎠
⋅
⎛
⎜
⎝

K
−

∏
k=1

e
−tkdke

−dk
⎞
⎟
⎠
⋅
1
p d(bR− ,dK−)

=
1
p

⎛
⎜
⎝

R
−

∏
r=1

e
1
2
s
2
r
⎞
⎟
⎠

∫
bR− ,dK− ∶ b̂+d̂K−⩽β

⎛
⎜
⎝

R
−

∏
r=1

φ (br + sr)
⎞
⎟
⎠
⋅
⎛
⎜
⎝

K
−

∏
k=1

e
−(tk+1)dk⎞⎟

⎠
d(bR− ,dK−).

This expression may be compared to Expression (4.3), where we encountered a large summation

containing products of Poisson-type and geometric-type factors. Here, we have its continuous

version: an integral containing products of normal and exponential densities. This effectively

means that the proof steps are similar to those of Lemmas 4.2.1 and 4.2.2: we give a recursive

argument to evaluate the integrals over exponential densities, and a probabilistic approach is

used for the integrals over normal densities.

For intermediate steps where j ⩽ K
−
integrals over exponential densities are left, define

Vj(x) ∶= e
−λ(s)

√
Wx+ 1

2
Wx

2

∫
bR− ∶ b̂⩽β

⎛
⎜
⎝

R
−

∏
r=1

φ (br + sr −
√
wrx)

⎞
⎟
⎠

×

c1(β−b̂)

∫
d1=0

e
( x
c1

−(t1+1))d1⋯

cj(β−b̂−d̂j−1)

∫
dj=0

e
( x
cj

−(tj+1))dj
d(bR− ,dj),

(4.35)

and notice that Q(s, t) = p
−1 (∏R

−

r=1 e
1
2
s
2
r)VK−(0).

Lemma 4.C.1. Vj(x) satisfies the recursion

Vj(x) =
cj

cj(1 + tj) − x
(Vj−1(x) − Vj−1(cj(1 + tj))) .
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Proof. Integrating (4.35) over dj yields

Vj(x) = e
−λ(s)

√
Wx+ 1

2
Wx

2

∫
bR− ∶ b̂⩽β

⎛
⎜
⎝

R
−

∏
r=1

φ (br + sr −
√
wrx)

⎞
⎟
⎠

×

c1(β−b̂)

∫
d1=0

e
( x
c1

−(1+t1))d1⋯

cj−1(β−b̂−d̂j−2)

∫
dj−1=0

e
( x
cj−1

−(1+tj−1))dj−1
d(bR− ,dj−1)

×
cj

cj(1 + tj) − x
(1 − e

(x−cj(1+tj))(β−b̂−d̂j−1)) .

Observe that the last exponential contains the indices b1, ..., bR− and d1, ..., dj−1. Carefully

distributing these indices over the corresponding integrals gives

Vj(x) =
cj

cj(1 + tj) − x
(Vj−1(x)

− e
−λ(s)

√
Wcj(1+tj)+ 1

2
(cj(1+tj)

√
W )2 ∫

bR− ∶ b̂⩽β

⎛
⎜
⎝

R
−

∏
r=1

φ (br + sr −
√
wrcj(1 + tj))

⎞
⎟
⎠

c1(β−b̂)

∫
d1=0

e
( cj (1+tj )

c1
−(1+t1))d1⋯

cj−1(β−b̂−d̂j−2)

∫
dj−1=0

e
( cj (1+tj )

cj−1
−(1+tj−1))dj−1

d(bR− ,dj−1))

=
cj

cj(1 + tj) − x
(Vj−1(x) − Vj−1(cj(1 + tj))) ,

yielding the stated.

We are finally ready to show that Q(s, t) is given by (4.34), which proves Corollary 4.3.1. We

proceed as follows: first, we use Lemma 4.C.1 to write Q(s, t) in terms of V0(x), for certain x.
A probabilistic argument subsequently gives an expression for the integrals in V0(x). Some

rearrangements then lead to the equality of Q(s, t) and (4.34).

Since Q(s, t) = p
−1 ∏R

−

r=1 e
1
2
s
2
r VK−(0), we are interested in the value of VK−(0). For this

variable, Lemma 4.C.1 implies

VK−(0) = 1

1 + tK−
(VK−−1(0) − VK−−1(cK−(1 + tK−))) .

Iterating K
−
times gives an expression of the form

VK−(0) = a V0(0) +
K

−

∑
l=1

ul V0 (cl(1 + tl)) ,

where a and u1, ..., uK− are coefficients depending on c1, ..., cK− and t1, ..., tK− . To find a, observe

that the only term with V0(0) results from repeatedly taking the left term of all K
−
iterations.

Therefore, a = ∏K
−

k=1(1 + tk)−1. Similarly, observe that the only term with V0 (cK−(1 + tK−))
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results from taking the right term in the first iteration and then repeatedly taking the left

term of the remaining iterations. Therefore,

uK− = −
1

1 + tK−

K
−−1

∏
j=1

cj

cj(1 + tj) − cK−(1 + tK−) .

By symmetry, we conclude that, for any l = 1, ..., K
−
,

ul = −
1

1 + tl

K
−

∏
j=1, j≠l

cj

cj(1 + tj) − cl(1 + tl)
.

Thus, it holds that

VK−(0) =
⎛
⎜
⎝

K
−

∏
k=1

1

1 + tk

⎞
⎟
⎠
V0(0) −

K
−

∑
l=1

1

1 + tl

⎛
⎜
⎝

K
−

∏
j=1, j≠l

cj

cj(1 + tj) − cl(1 + tl)
⎞
⎟
⎠
V0 (cl(1 + tl))

=

⎛
⎜
⎝

K
−

∏
k=1

1

1 + tk

⎞
⎟
⎠
⋅
⎛
⎜
⎝
V0(0) −

K
−

∑
l=1

⎛
⎜
⎝

K
−

∏
j=1, j≠l

κjl(t)
⎞
⎟
⎠
V0 (cl(1 + tl))

⎞
⎟
⎠
.

(4.36)

With expression (4.36) at hand, V0(x) still needs to be analyzed. Using (4.35) and observing

that its integral can be written as a probability involving R
−
normal random variables, we

have

V0(x) = e
−λ(s)

√
Wx+ 1

2
Wx

2

∫
bR− ∶ b̂⩽β

⎛
⎜
⎝

R
−

∏
r=1

φ (br + sr −
√
wrx)

⎞
⎟
⎠

dbR−

= e
1
2
(λ(s)−

√
Wx)2

e
− 1

2
λ(s)2

P
⎛
⎜
⎝

R
−

∑
r=1

√
wrN (√wrx − sr, 1) ⩽ β

⎞
⎟
⎠

=
φ(λ(s))

φ (λ(s) −
√
Wx)

P (N (wrx −
√
wrsr,W ) ⩽ β)

=
φ(λ(s))

φ (λ(s) −
√
Wx)

Φ (λ(s) −
√
Wx) = φ(λ(s))Ψ (λ(s) −

√
Wx) . (4.37)

Substituting (4.37) into (4.36), we conclude that

Q(s, t) = 1
p

⎛
⎜
⎝

R
−

∏
r=1

e
1
2
s
2
r
⎞
⎟
⎠
VK−(0) = 1

p

⎛
⎜
⎝

R
−

∏
r=1

e
1
2
s
2
r
⎞
⎟
⎠
⎛
⎜
⎝

K
−

∏
k=1

1

1 + tk

⎞
⎟
⎠
φ(λ(s))

×
⎛
⎜
⎝
Ψ (λ(s)) −

K
−

∑
l=1

⎛
⎜
⎝

K
−

∏
j=1, j≠l

κjl(t)
⎞
⎟
⎠
Ψ (λ(s) − cl(1 + tl)

√
W)

⎞
⎟
⎠
.

We now find the value of p by using that Q(0,0) = 1. We then indeed have that Q(s, t) equals

(4.34), which completes the proof.
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Appendix 4.D Table of definitions

Object Definition

wr (r = 1, ..., R) positive parameter affecting the traffic load at station r

ck (k = 1, ..., K) positive parameter affecting the traffic load at station k

νr (r = 1, ..., R) real parameter affecting the traffic load at station r, where

ν1 ⩾ ... ⩾ νR

αk (k = 1, ..., K) real parameter affecting the traffic load at station k, where

α1 ⩽ ... ⩽ αK
β positive parameter affecting the population size

γ
parameter affecting the population size, defined as

γ = max{1 − α1,
1

2
ν1}

ρ
(n)
r (r = 1, ..., R) traffic load at station r, defined as ρ

(n)
r = wrn

νr

σ
(n)
k (k = 1, ..., K) traffic load at station k, defined as σ

(n)
k = n/(n + ckn

αk)

Cn
population size of the network, defined as

Cn = ⌊ÂÂÂÂÂρ
(n)ÂÂÂÂÂ + βn

γ⌋

B
(n)
r (r = 1, ..., R)

scaled queue length at station r, defined as

B
(n)
r = (B(n)

r − ρ
(n)
r )/

√
ρ
(n)
r

D
(n)
k (k = 1, ..., K)

scaled queue length at station k, defined as

D
(n)
k = (1 − σ

(n)
k )D(n)

k

R
− number of heaviest loaded infinite-server stations (i.e. largest

integer such that ν1 = ν2 = ... = νR−)

K
− number of heaviest loaded single-server stations (i.e. largest

integer such that α1 = α2 = ... = αK−)

Table 4.5: Definitions of the main scaling parameters and random variables.



Part III

Extremes of Markov additive processes

Introduction

The Markov additive process (throughout the manuscript abbreviated to MAP) can be seen as

a generalized Markov-modulated version of the Lévy process. Indeed, when an independently

evolving continuous-time Markov chain on a finite state space, usually referred to as the

background process, is in state i, the MAP behaves as a Lévy process Xi(⋅). Additionally, a
MAP allows for jumps at transition epochs of the background process. As such, MAPs offer a

natural modeling framework to study stochastic processes of which the behavior changes over

time, with broad applications in e.g. credit and risk theory, inventory management, finance and

queueing. This last application may seem unrelated, but MAPs come into play when studying

the workload process of Markov-modulated queues. Early references on MAPs include [33, 92].

A key object of study concerns the extreme values attained by the MAP over a finite or infinite

horizon. With Y (⋅) denoting the MAP under consideration, the focus of this study is on the

analysis of the distribution of its running maximum process Y (t) ∶= sups∈[0,t] Y (s) (as well

as the corresponding running minimum process). Besides being interesting in its own right,

the running maximum process can be directly translated in terms of the first-passage process

τ(y) ∶= inf{s ⩾ 0 ∶ Y (s) > y}, due to the known duality between the events {Y (t) > y} and

{τ(y) < t}. Building upon related results for Lévy processes, a wide range of characterizations

has been derived, typically in terms of Laplace transforms or so-called scale functions. We refer

to Ivanovs [59, Chapter 2] for an extensive account of the main results on extremes of MAPs

as well as the corresponding first-passage process. Particularly noteworthy are the results

obtained by Asmussen and Kella [11], who used martingale methods to effectively extend the

Pollaczek-Khinchine formula for a general class of Lévy processes to the MAP setting. We in

addition mention the work by Dieker and Mandjes [40] as well as D’Auria et al. [43] on the

joint distribution of the maximum and the epoch at which it occurs (the latter work being

predominantly in terms of the first-passage process).

This part of the thesis addresses two gaps in the existing literature on extremes of MAPs. In

the first place, the analysis of most papers requires the background process to have a unique

stationary distribution, and thus the assumption is made that it is irreducible. Sometimes an

absorbing state is added through the concept of “killing” (see e.g. [59, Section 2.5]), but this

allows for only one transient class and a single recurrent state. To the best of our knowledge,

the only work considering multiple transient classes is [38], in which the background chain is

essentially a counting process. In contrast, we make no assumption on the structure of the

background chain in Chapter 5, hence allowing for any number of transient and recurrent

classes. This generalization is particularly useful when modeling processes of which the behavior
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Figure III.1: Example of a MAP with two background states. Here, during [0, t1) ∪ [t2, t3) the

MAP behaves as the Lévy process X1(⋅) and during [t1, t2) ∪ [t3, t4) it behaves as the Lévy process

X2(⋅).

may change irreversibly, such as models with catastrophes.

In the second place, general results on the distribution of a spectrally-positive MAP’s maximum

are usually formulated in terms of Laplace transforms [11, 30, 40, 59, 74]. Although there

exist various numerical techniques to retrieve the cumulative distribution function from such

a transform, none of these remain accurate further along the tail. Employing a change of

measure, we derive transform-free results in Chapter 6. We specifically find an expression

for the asymptotic tail probability of the maximum, which is suitable for insurance risk

applications.

We proceed by discussing a number of commonalities between Chapters 5 and 6, including a

description of the model, two preliminary results, and a sketch of the analysis approach.

Model

We give the formal definition of a MAP. Let the background process (J(t))t⩾0 be a continuous-

time Markov chain with d ∈ N states, generator matrix Q ∶= (qij)di,j=1, and qi ∶= −qii > 0.

Associated with every state i let (Xi(t))t⩾0 be a Lévy process, and assume that these Lévy

processes are mutually independent. Let tn denote the time of the n-th transition of the

background chain. If J(0) = j0, we have that Y (t) = Xj0(t) for t ∈ [0, t1), and, if the
transition at tn is from (say) i to j (where i ≠ j), then

Y (t) ∶= Y (tn−) + L
n
ij + (Xj(t) −Xj(tn)) ,

where t ∈ [tn, tn+1), n ∈ N, and (Lnij)n∈N is a sequence of independent copies of the random

variable Lij , representing the size of the jump at the time of a transition from background state

i to background state j (where i ≠ j). We assume that these jumps are independent of the

underlying Lévy processes and of the background process. Since jumps at self-transitions, say

from background state i to itself, can be incorporated in the Lévy process Xi(⋅), we assume

without loss of generality that there are no such self-transitions. An example of a MAP is

shown in Figure III.1.
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Preliminaries and method

We now mention two important results that are essential in Chapters 5 and 6. The first of

these results, the Wiener-Hopf decomposition, shows that the value of the Lévy process at

an exponentially distributed epoch can be written as the difference between two independent

non-negative quantities. In case the Lévy process is spectrally one-sided, these distributions can

be characterized explicitly in terms of the model primitives; notably, one of the two quantities

is exponentially distributed.

The second result, referred to as the Number of Zeroes proposition in the sequel, concerns a

property of the matrix exponent of a spectrally one-sided MAP. The matrix exponent should be

interpreted as a matrix function that has a one-on-one correspondence with a MAP, similarly to

how the Laplace-Stieltjes transform has a one-on-one correspondence with a random variable.

The Number of Zeroes proposition quantifies the number of zeroes of the matrix exponent’s

determinant.

These two results are formally stated in Chapters 5 and 6 (in the specific form suitable for

that chapter), and constitute the main ingredients in the common recipe followed in both

chapters. First, the Wiener-Hopf decomposition is used to relate the values of the MAP at two

successive transition epochs. The resulting expression is then turned into a system of linear

equations involving the matrix exponent, which still contains a number of unknown constants.

These unknowns are then identified by combining Cramer’s rule and the Number of Zeroes

proposition.





5 Extreme values of Markov additive

processes with a non-irreducible

background process

5.1 Introduction

In the literature on extremes for MAPs one typically assumes that the background process is

irreducible. This assumption is convenient, as it guarantees existence and uniqueness of its

invariant distribution, and allows the use of time-reversal arguments. On the other hand, the

assumed irreducibility obviously restricts the general applicability of the model. There may be

events, such as a crash of a stock market, that cause permanent changes in the fluctuations

of the price levels. The resulting process can naturally be modeled using a non-irreducible

background process. Furthermore, in the context of credit risk, one could think of companies

paying interest to an obligor until they go into default, thus causing a loss to the obligor,

after which they effectively leave the system — another setting that can be modelled using

a non-irreducible background process. This credit-related example motivated Delsing and

Mandjes [38] to consider the extreme values attained by a MAP of a specific Cramér-Lundberg

type, endowed with a non-irreducible background process of a specific structure. Importantly,

however, the topic of extremes of more general MAPs under a non-irreducible background

process was so far largely unexplored.

The main objective of this chapter is to extend existing results for extremes of MAPs to

the case of an arbitrary Markovian background process, thus covering the situation that the

background process is non-irreducible. Concretely, we describe the distribution of the maximum

attained by the MAP until the background process reaches an absorbing state (which covers

the running maximum over an exponentially distributed horizon, and in particular also the

all-time maximum). With i representing the initial state of the background chain, we let this

maximum be denoted by Zi. The main results in this chapter provide the distribution of Zi for

all i = 1, ..., d (where d is the number of background states), for a spectrally one-sided MAP

(i.e., the direction of all jumps is either positive or negative). As a by-product of this result,

we also succeed in deriving the distribution of the maximum of a spectrally one-sided Lévy

process over a phase-type distributed time interval.

The way in which our results are obtained is transparent and remarkably straightforward. Our

approach is based on the two key results described in the introduction of Part III. Firstly,

the Wiener-Hopf decomposition for spectrally one-sided Lévy processes [37, 73] allows us to

describe the dynamics of the MAP between two successive transition epochs of the background

process. Standard analytic techniques are then used to transform the resulting expressions
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into a linear system of equations from which the distribution of the MAP’s maximum follows.

The second key result, as was established by Ivanovs et al. [61], characterizes the number

of singularities with positive real part of the matrix exponent corresponding to a spectrally

one-sided MAP. Using this result we find a procedure for obtaining the solution to the system

of equations, consequently determining the distribution of Zi for all i. Notably, the approach

does not rely on the use of martingale methods.

This chapter is structured as follows. In Section 5.2 we describe our model, introduce the

necessary notation, and state the two important preliminary results that were mentioned

above. For the spectrally-positive case (no downward jumps, that is), as treated in Section

5.3, we derive a system of linear equations for the transforms of Zi, i = 1, ..., d. To solve these

equations we introduce an ordering on the communicating classes of the background chain,

which allows us to recursively determine the distribution of Zi for all initial states i = 1, ..., d.

In Section 5.4, covering the spectrally-negative case (no upward jumps, that is), we derive a

similar system of equations for the complementary distribution function of Zi, i = 1, ..., d. By

using the fact that the solution is of a specific form, we show how to solve this system. Where

in most of the literature on extreme values of Lévy processes one considers extreme values

over an exponentially distributed interval, in Section 5.5 it is pointed out how we can use

our MAP-based framework to extend such results to extreme values of Lévy processes over a

phase-type time interval. Section 5.6 describes a series of numerical experiments illustrating

the use of our results, and presents some implementation guidelines. Concluding remarks are

made in Section 5.7.

5.2 Model and preliminaries

In this section we first describe the model that we consider in this chapter. This is followed by

the introduction of some notation and a description of our key objective. We then discuss the

Wiener-Hopf decomposition for spectrally one-sided Lévy processes and the Number of Zeroes

proposition, i.e., the results mentioned in the introduction of Part III, which play a crucial

role in our reasoning. We conclude this section by explicitly outlining the approach that will

be followed.

Model

In this chapter, we consider a spectrally one-sided MAP Y (⋅). The MAP is characterized

by its underlying Lévy processes X1(⋅), ..., Xd(⋅), its background process J(⋅) with generator

matrix Q ∶= (qij)di,j=1 (with qi ∶= −qii), and its jumps distributed as Lij whenever a transition

from state i to state j occurs. We assume by convention that Y (0) = 0.

Additionally, we incorporate (state-dependent) killing, which happens with rate ϑi ⩾ 0 when

the background process is in state i. At the moment the MAP is killed, it remains constant

indefinitely, such that the running maximum becomes the all-time maximum of the process.

Alternatively, killing can be thought of as reaching an absorbing background state that
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corresponds to a Lévy process that is identical to 0. Various specific choices of the killing rates

ϑi are of interest. When choosing ϑi = ϑ > 0 for all i, for instance, we consider the running

maximum over an exponentially distributed horizon with mean 1/ϑ. In addition, the choice

ϑi = 0 for all i corresponds to the all-time maximum. We also note that with a specific choice

of the rates ϑi we can analyze the maximum of a Lévy process over a phase-type interval, as

argued in Section 5.5.

Denoting by ∆ the killing time of the MAP, its distribution is characterized by the following

system of equations:

E(e−α∆ ∣ J(0) = i) = qi + ϑi
qi + ϑi + α

⎛
⎜
⎝
∑
j/=i

qij
qi + ϑi

E(e−α∆ ∣ J(0) = j) + ϑi
qi + ϑi

⎞
⎟
⎠
,

for α ⩾ 0. This system of equations follows by observing that the time till the first event (being

either a transition of the background process J(⋅) or killing) is exponentially distributed with

rate qi+ϑi; then one needs to distinguish between the background state becoming j (for j /= i)

and killing.

Notation

Each spectrally-positive Lévy process Xi(⋅) is characterized by its Laplace exponent φi(⋅), as
given by

φi(α) ∶= logE(e−αXi(1))
for α ⩾ 0, where its right inverse is denoted by ψi(⋅). Similarly, for a spectrally-negative Lévy

process Xi(⋅), we consider the cumulant generating function

Φi(α) ∶= logE(eαXi(1))

for α ⩾ 0, with Ψi(⋅) denoting its right inverse. To be interpreted as the MAP-counterpart of

the Laplace exponent defined above, let M(α) = (mij(α))i,j=1,...,d (referred to as the matrix

exponent) be the matrix with coefficients

mij(α) ∶= qij E(e−αLij) + φi(α)1{i=j} − ϑi 1{i=j};

here all Xi(⋅) are assumed spectrally positive, and the jumps Lij are assumed non-negative

almost surely. Later, we will also work with a similar object for the spectrally-negative case

(in which the jumps Lij are assumed non-positive almost surely); this MAP-counterpart of the

cumulant generating function will be introduced at the beginning of Section 5.4.

Objective

Our aim is to analyze the distribution of Zi, i.e., the maximum of the MAP under state-

dependent killing, conditional on the initial background state being i:

Zi ∶= sup{Y (s) ∶ s ∈ [0,∆] ∣ J(0) = i}.
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As mentioned before, we wish to do this without a priori assuming that J(⋅) corresponds to

an irreducible continuous-time Markov chain. A central role is played by the probabilities, for

u ⩾ 0,

pi(u) ∶= P(Zi ⩾ u).

Preliminaries

To formally state the Wiener-Hopf decomposition, denote for a given Lévy process X(⋅) its

running maximum process by (X(t))t⩾0, and its running minimum process by (X(t))t⩾0. Let
Tν be an exponentially distributed random variable with mean ν

−1
, sampled independently of

anything else. In this chapter we use the Wiener-Hopf decomposition for both spectrally-positive

and spectrally-negative Lévy processes, as stated below.

Proposition 5.2.1 (Wiener-Hopf decomposition). Let (X(t))t⩾0 be a Lévy process. Then

X(Tν) can be decomposed as the sum of the two independent quantities X(Tν) and X(Tν) −
X(Tν). Moreover, the second component X(Tν) −X(Tν) is distributed as X(Tν).
If X(⋅) is spectrally positive with Laplace exponent φ(⋅) and corresponding right inverse ψ(⋅),
then X(Tν) is distributed as −Tψ(ν) and

E (e−γX(Tν)) =
ν

ν − φ(γ) (1 − γ

ψ(ν)) .

If X(⋅) is spectrally negative with cumulant generating function Φ(⋅) and corresponding right

inverse Ψ(⋅), then X(Tν) is distributed as TΨ(ν) and

E (eγX(Tν)) =
ν

ν − Φ(γ) (1 − γ

Ψ(ν)) .

This decomposition shows that, when X(⋅) is spectrally one-sided, the (transforms of the) two

components can be expressed explicitly in terms of the underlying Laplace exponent (in the

spectrally-positive case) or cumulant generating function (in the spectrally-negative case), and

their right inverses. For the proof behind this decomposition and more background we refer to

e.g. Kyprianou [73, Chapter 6].

As mentioned in the introduction of Part III, the Number of Zeroes proposition concerns a

characterization of the zeroes of the determinant of the matrix exponent M(α) of a spectrally-

positive MAP. A special role is played by Lévy processes Xi(⋅) that are monotone a.s. (also

referred to as subordinators). Let S
↑
(S

↓
) represent the set of background states corresponding to

increasing (decreasing, respectively) subordinators. The following result is a slight restatement

of [61, Theorem 1 & Remark 2.1].

Proposition 5.2.2 (Number of Zeroes). Let γ ⩾ 0, and suppose the background chain J(⋅)
consists of a single (hence recurrent) class.

If X1(⋅), ..., Xd(⋅) are spectrally-positive Lévy processes and the jump sizes at transition

epochs Lij are non-negative a.s. for all i, j, then the equation detM(γ) = 0 has d − ∣S↑∣
solutions in C with positive real part.
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If X1(⋅), ..., Xd(⋅) are spectrally-negative Lévy processes and the jump sizes at transition

epochs Lij are non-positive a.s. for all i, j, then the equation detM(−γ) = 0 has d − ∣S↓∣
solutions in C with positive real part.

Next to these two results, we often exploit the following standard relation between two transform

types. For α ⩾ 0 and a non-negative random variable Y , let βY (α) ∶= ∫∞

0
e
−αx
P(Y > x) dx

and ηY (α) ∶= ∫∞

0
e
−αx
P(Y ∈ dx), the latter representing the Laplace-Stieltjes transform of Y .

The two transforms are related through the identity

βY (α) =
1 − ηY (α)

α . (5.1)

The relation trivially follows as an application of integration by parts.

Approach

Now that we have the essential notation and previous results at our disposal, we proceed by

summarizing our approach. In both spectrally one-sided cases the starting point is to use

Proposition 5.2.1 to find a relationship between characteristics of the MAP at two successive

transition epochs of the background chain. This relationship can be transformed to a system

of equations for (transforms related to) p1(u), . . . , pd(u), involving the matrix M(⋅); here we

recall that we defined pi(u) ∶= P(Zi > u). In the spectrally-positive case (Section 5.3), this

system contains unknown constants which can be determined exploiting Proposition 5.2.2. In

the spectrally-negative case (Section 5.4), the solution is directly expressed in terms of the

zeroes of detM(⋅), entailing that again Proposition 5.2.2 can be used.

5.3 Spectrally-positive case

Throughout this section we assume that the MAP Y (⋅) is spectrally positive. As pointed out

above this entails that, for each i, j ∈ {1, ..., d}, Xi(⋅) has no downward jumps and the random

variable Lij is non-negative a.s.

We will point out how to identify

Pi(γ) ∶= ∫
∞

0

e
−γu

pi(u) du,

which is the transform of the tail distribution of Zi, and the corresponding Laplace-Stieltjes

transform

ζi(γ) ∶= E(e−γZi).
Note that by (5.1), ζi(γ) = 1−γPi(γ), so that either of these transforms uniquely characterizes

the distribution of Zi, the random variable of our interest. Once the Laplace-Stieltjes transform

ζi(γ) is evaluated, a numerical inversion algorithm, e.g. the one developed in [5], can be used

to obtain the distribution of Zi.

A few observations can be made.
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◦ Recalling that Tγ denotes an exponentially distributed random variable with rate γ,

it holds that γPi(γ) = P(Zi > Tγ). In other words, γPi(γ) can be interpreted as the

probability of Y (⋅) reaching an exponentially distributed level (with mean γ
−1
) before

the process is killed.

◦ Furthermore, bearing in mind that killing occurs at rate ϑi when the background process

J(⋅) is in state i, it is worth noting that when ϑi = ϑ for all i, (numerical) inversion of

Pi(γ)
ϑ

=
1

ϑ
∫

∞

0

e
−γu
P(Y (Tϑ) > u ∣ J(0) = i) du

= ∫
∞

0

∫
∞

0

e
−γu

e
−ϑt
P(Y (t) > u ∣ J(0) = i) dt du

with respect to both γ and ϑ yields P(Y (t) > u ∣ J(0) = i), i.e., the tail probability of

the running maximum of the unkilled MAP at time t.

◦ Finally, we note that Pi(0) = E(Zi), the expected maximum that the MAP attains.

Throughout this section, we analyze the behavior of Pi(γ) for a fixed initial state i. Since

the running maximum of a non-decreasing process necessarily equals the current value of the

process, the analysis turns out to be slightly different depending on whether or not the Lévy

process Xi(⋅) is a non-decreasing subordinator. We consider in Section 5.3.1 the case in which

the fixed state i does not correspond to a non-decreasing subordinator, and in Section 5.3.2

the case in which it does. In the analysis of these sections, unknown constants appear; Section

5.3.3 points out how to determine these constants.

5.3.1 Non-subordinator case

In this subsection we focus on the case that J(0) = i, where i ∉ S
↑
, so that the spectrally-

positive Lévy process Xi(⋅) may move downwards in any interval with positive probability.

Recall that ϑi + qi is the rate of the exponentially distributed time until the first event; this

first event corresponds to killing with probability π
◦
i ∶= ϑi/(ϑi + qi), and to a transition of the

background process to state j with probability πij ∶= qij/(ϑi + qi). We decompose pi(u) by

distinguishing between the case that the value of the MAP’s running maximum X i(Tϑi+qi) at

time Tϑi+qi is above or below u. In the former case we have that Zi > u, so that we are done; in

the latter case with probability π
◦
i we will not exceed u before killing, whereas with probability

πij we are left with the probability of Zj exceeding level u −Xi(Tϑi+qi) − Lij before killing.

Formalizing this reasoning, and applying Proposition 5.2.1 to decompose Xi(Tϑi+qi) into the

non-negative independent random variables X i(Tϑi+qi) and Xi(Tϑi+qi)−X i(Tϑi+qi), we obtain

Pi(γ) = ∫
∞

u=0

e
−γu ∫

∞

w=u

P(X i(Tϑi+qi) ∈ dw) du +

∫
∞

u=0

e
−γu ∫

u

w=0

P(X i(Tϑi+qi) ∈ dw) ∑
j/=i

qij
ϑi + qi

P(X i(Tϑi+qi) + Lij + Zj ⩾ u − w) du,

where we have also used that X i(Tϑi+qi) has the same distribution as Xi(Tϑi+qi) −X i(Tϑi+qi).
We continue by evaluating these two terms, which in the sequel we refer to by P

+
i (γ) and
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P
−
i (γ), separately. Evaluation of the first term is relatively straightforward; an interchange of

the order of integration readily yields

P
+
i (γ) = ∫

∞

w=0

∫
w

u=0

e
−γu

duP(X i(Tϑi+qi) ∈ dw)

= ∫
∞

w=0

1 − e
−γw

γ P(X i(Tϑi+qi) ∈ dw) = 1 − κi(γ)
γ ,

where

κi(γ) ∶= E(e−γXi(Tϑi+qi)) = ϑi + qi
ϑi + qi − φi(γ)

(1 − γ

ψi(ϑi + qi)
) (5.2)

by virtue of Proposition 5.2.1. We now focus on the evaluation of the second term, which

is considerably more involved. As a first step, we interchange the order of the sum and the

integrals:

P
−
i (γ) = ∑

j/=i

qij
ϑi + qi

P
−
ij(γ),

where

P
−
ij(γ) ∶= ∫

∞

u=0

e
−γu ∫

u

w=0

P(X i(Tϑi+qi) ∈ dw)P(X i(Tϑi+qi) + Lij + Zj ⩾ u − w) du.

The quantities P
−
ij(γ) can be evaluated separately, as follows. Realize that by Proposition

5.2.1, −X i(Tϑi+qi) is exponentially distributed with rate µi ∶= ψi(ϑi + qi). We thus obtain the

triple integral

P
−
ij(γ) = ∫

∞

u=0

e
−γu ∫

u

w=0

∫
∞

y=0

µie
−µiy P(X i(Tϑi+qi) ∈ dw)P(Lij + Zj ⩾ u − w + y) dy du,

which, after replacing y by x − u + w, can be rewritten as

∫
∞

u=0

e
−γu ∫

u

w=0

∫
∞

x=u−w
µie

−µi(x−u+w)
P(X i(Tϑi+qi) ∈ dw)P(Lij + Zj ⩾ x) dx du.

Our strategy is to interchange the order of the integrals, so as to be able to do the (easy)

integration over u first. By first swapping the integrals over u and w, and then those over u

and x, we find

P
−
ij(γ) = ∫

∞

w=0

∫
∞

x=0

(∫
x+w

u=w

e
−(γ−µi)udu)µie−µi(x+w)

P(X i(Tϑi+qi) ∈ dw)P(Lij + Zj ⩾ x) dx

= ∫
∞

w=0

∫
∞

x=0

µi e
−γw

γ − µi
(e−µix − e

−γx) P(X i(Tϑi+qi) ∈ dw)P(Lij + Zj ⩾ x) dx,

where the second equality follows by performing the integration over u and reorganizing the

resulting expression. We can rewrite this expression as the difference of two terms, in each of

which the double integral factorizes into the product of two single integrals. In particular, with

ηij(γ) ∶= ∫
∞

0

e
−γx
P(Lij + Zj ⩾ x) dx,

some rearranging of terms leads to the expression

P
−
ij(γ) =

µi
γ − µi

∫
∞

0

e
−γw
P(X i(Tϑi+qi) ∈ dw) (ηij(µi) − ηij(γ)) =

µi κi(γ)
γ − µi

(ηij(µi) − ηij(γ)).
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To separate Lij and Zj in the expression for ηij(γ), we rely on a probabilistic argument for

non-negative and independent random variables A and B. That is, using the memoryless

property of the exponential distribution,

∫
∞

0

e
−γx
P(A +B ⩾ x) dx =

1
γP(A +B > Tγ)

=
1
γ (P(A > Tγ) + P(A < Tγ)P(A +B > Tγ∣A < Tγ))

=
1
γ (P(A > Tγ) + P(A < Tγ)P(B > Tγ))

=

1 − E (e−γA)
γ + E(e−γA)∫

∞

0

e
−γx
P(B ⩾ x) dx,

(5.3)

where we use (5.1) in the last step. Furthermore, let λij(⋅) be the Laplace-Stieltjes transform

of Lij , the size of the (non-negative) jump at a transition by the background chain from state i

to state j (in other words, λij(γ) ∶= E(e−γLij)). Recalling the definition of Pi(γ), we conclude

from the identity (5.3) that, with Λij(γ) ∶= (1 − λij(γ))/γ,

ηij(γ) = Λij(γ) + λij(γ)Pj(γ).

We now combine all the above findings, which enable us to express Pi(γ) in terms of Pj(γ),
with j /= i. Recalling that

Pi(γ) = P
+
i (γ) +∑

j≠i

qij
ϑi + qi

P
−
ij(γ)

and substituting the obtained expressions for P
+
i (γ) and P

−
ij(γ), we obtain, for any i ∉ S

↑
,

Pi(γ) =
1 − κi(γ)

γ +
µi κi(γ)
γ − µi

∑
j/=i

qij
ϑi + qi

(Λij(µi) + λij(µi)Pj(µi) − Λij(γ) − λij(γ)Pj(γ)).

By using (5.2), recalling that µi = ψi(ϑi + qi) and defining

κ̄i(γ) ∶=
1 − κi(γ)

γ =
1

ϑi + qi − φi(γ)
( ϑi + qi
ψi(ϑi + qi)

−
φi(γ)
γ ) ,

we can compactly summarize this result as follows.

Lemma 5.3.1. For i /∈ S
↑
and any γ ⩾ 0, the transform of the tail probability pi(u) is given

by

Pi(γ) = κ̄i(γ) +∑
j/=i

qij

ϑi + qi − φi(γ)
(Λij(γ) + λij(γ)Pj(γ) − Λij(µi) − λij(µi)Pj(µi)). (5.4)

So far we have been working with the transform Pi(γ) of the tail probability pi(u). In the

remainder of this subsection, we rewrite the above lemma in terms of ζi(γ) ∶= E(e−γZi), which
will take a particularly nice form. To this end, first note that, as a consequence of (5.1),

Pi(γ) =
1 − ζi(γ)

γ . (5.5)
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Substituting this in (5.4) and rewriting leads to, for γ ⩾ 0,

1 − ζi(γ)
γ =

1 − κi(γ)
γ +∑

j/=i

qij

ϑi + qi − φi(γ)
(
1 − λij(γ)

γ + λij(γ)
1 − ζj(γ)

γ

−
1 − λij(µi)

µi
− λij(µi)

1 − ζj(µi)
µi

),

or, equivalently,

ζi(γ) = κi(γ) +∑
j/=i

qij

ϑi + qi − φi(γ)
(λij(γ)ζj(γ) − λij(µi)ζj(µi)

γ
µi

)

−
qi

ϑi + qi − φi(γ)
(1 − γ

µi
)

= ∑
j/=i

qij

ϑi + qi − φi(γ)
(λij(γ)ζj(γ) − λij(µi)ζj(µi)

γ
µi

) + ϑi
ϑi + qi − φi(γ)

(1 − γ
µi

) .

(5.6)

Multiplying (5.6) by ϑi + qi + φi(γ) yields the identity

(ϑi + qi − φi(γ)) ζi(γ) = ϑi (1 −
γ
µi

) +∑
j/=i
qij (λij(γ)ζj(γ) − λij(µi)ζj(µi)

γ
µi

) . (5.7)

We continue by considering the case that none of the states corresponds to a non-decreasing

subordinator. Then the system of equations (5.7) that characterizes ζ1(γ), . . . , ζd(γ) can be

written in a considerably more compact form. To this end, recall that the matrix M(γ) ≡

(mij(γ))di,j=1 is defined by

mij(γ) = qijλij(γ) + φi(γ)1{i=j} − ϑi 1{i=j}. (5.8)

Furthermore, using that mii(µi) = 0, we define the quantity bi(γ) as follows:

bi(γ) ∶= ∑
j/=i
mij(µi)ζj(µi)

γ
µi

− ϑi (1 −
γ
µi

)

= (
d

∑
j=1

mij(µi)ζj(µi) + ϑi)
γ
µi

− ϑi = γ
ωi + ϑi
µi

− ϑi,

(5.9)

with the constants ωi defined by

ωi ∶=
d

∑
j=1

mij(µi) ζj(µi). (5.10)

Upon combining the above, we obtain the equations ∑d

j=1mij(γ) ζj(γ) = bi(γ) , for i = 1, . . . , d.

In evident vector/matrix notation, we have thus rewritten (5.7) as follows.

Theorem 5.3.1. Suppose that no state corresponds to a non-decreasing subordinator (i.e.,

i /∈ S
↑
for all i = 1, . . . , d). Then, for any γ ⩾ 0, the vectors ζ(γ) ∶= (ζ1(γ), . . . , ζd(γ))

and b(γ) ∶= (b1(γ), . . . , bd(γ)) satisfy

M(γ) ζ(γ) = b(γ). (5.11)
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It is important to note that, throughout the analysis, no assumptions on the chain structure

of the background process J(⋅) have been imposed. Also observe that we still need to identify

the constants ωi that appear in (5.9), which we will do in Section 5.3.3.

As an aside we mention that the identity (5.6) can alternatively be derived using a probabilistic

argumentation, which is for completeness provided in Appendix 5.A.1.

5.3.2 Subordinator case

The previous subsection dealt with the case that the initial state i was such that the spectrally-

positive Lévy process Xi(⋅) does not correspond to a non-decreasing subordinator (i /∈ S
↑
,

that is). The analysis led to the matrix equation (5.11) for the case that no state corresponds

to a non-decreasing subordinator. In the present subsection we address the case where i ∈ S
↑
,

and point out how (5.11) should be adjusted if some of the background states correspond to

non-decreasing subordinators.

To this end, let for a given i = 1, . . . , d the Lévy process Xi(⋅) be non-decreasing almost surely.

It is important to note that in this case necessarily φi(γ) ⩽ 0 and ψi(γ) = ∞ for all γ ⩾ 0.

Our method for analyzing Pi(γ) is largely the same as in the previous subsection, but is

somewhat simpler due to the evident fact that any non-decreasing process attains its maximum

at the end of the interval under consideration. Concretely, we could mimic the approach of the

previous subsection while replacing X(Tϑi+qi) by X(Tϑi+qi), but it turns out to be convenient

to condition on the value of Y (⋅) at the minimum of the killing time and the first transition

of the background process. This yields

Pi(γ) = ∫
∞

0

e
−γu

pi(u) du = ∫
∞

0

e
−γu
P(Xi(Tϑi) ⩾ u, Tϑi ⩽ Tqi) du +

∫
∞

0

e
−γu∑

j/=i

qij
qi
P(Xi(Tqi) + Lij + Zj ⩾ u, Tϑi > Tqi) du.

(5.12)

With P
+
i (γ) and P

−
i (γ), respectively, representing the two terms in the right-hand side of

(5.12), we use Proposition 5.2.1 and (5.1) to obtain

P
+
i (γ) = ∫

∞

0

e
−γu ϑi

ϑi + qi
P(Xi(Tϑi+qi) ⩾ u) du

=
ϑi

ϑi + qi

1
γ (1 − E (e−γXi(Tϑi+qi)) ) =

ϑi
ϑi + qi

1
γ (1 − ϑi + qi

ϑi + qi − φi(γ)
)

and

P
−
i (γ) = ∫

∞

0

e
−γu∑

j/=i

qij
ϑi + qi

P(Xi(Tϑi+qi) + Lij + Zj ⩾ u) du

= ∑
j/=i

qij
ϑi + qi

1
γ (1 − E (e−γXi(Tϑi+qi))λij(γ) ζj(γ))

= ∑
j/=i

qij
ϑi + qi

1
γ (1 −

ϑi + qi
ϑi + qi − φi(γ)

λij(γ) (1 − γPj(γ)))

=
qi

ϑi + qi

1
γ −

1
γ ∑
j/=i

qij

ϑi + qi − φi(γ)
(1 − γΛij(γ) − γλij(γ)Pj(γ)) ,



5.3 Spectrally-positive case 141

recalling the identities ζj(γ) = 1 − γPj(γ) and λij(γ) = 1 − γΛij(γ) in the last two steps.

After collecting the above intermediate results, we obtain the following characterization.

Lemma 5.3.2. For i ∈ S
↑
and any γ ⩾ 0,

Pi(γ) =
−φi(γ)

ϑi + qi − φi(γ)
1
γ +∑

j/=i

qij

ϑi + qi − φi(γ)
(Λij(γ) + λij(γ)Pj(γ)). (5.13)

Observe that (5.13) could also be obtained by taking the limit µi = ψi(ϑi + qi) → ∞ in

Lemma 5.3.1, which is consistent with the fact that ψi(⋅) = ∞ for subordinator processes

Xi(⋅). Similar to the non-subordinator case, we can again present a vector/matrix version for

the Laplace-Stieltjes transforms ζi(γ) of (the distributions of) the random variables Zi. To

this end, define b
◦
i (γ) ∶= −ϑi for i ∈ S

↑
and b

◦
i (γ) ∶= bi(γ) for i /∈ S

↑
, with bi(γ) as defined

in (5.9). Then, using similar steps as before, we eventually find the following counterpart of

Theorem 5.3.1.

Theorem 5.3.2. The vectors ζ(γ) = (ζ1(γ), . . . , ζd(γ)) and b
◦(γ) ∶= (b◦1(γ), . . . , b◦d(γ))

satisfy

M(γ) ζ(γ) = b
◦(γ) (5.14)

for any γ ⩾ 0.

Note that also in this set of equations, the vector b
◦(γ) still contains unknowns. These

constants ωi, one for each i /∈ S
↑
, will be identified in the next subsection.

5.3.3 Evaluation of the unknowns

So far, we have established that in the spectrally-positive case, the Laplace-Stieltjes transforms

of Z1, ..., Zd are given by the solutions of (5.14) (which amounts to (5.11) in case none of the

Lévy processes Xi(⋅) is a non-decreasing subordinator process). This subsection settles the

complication that (5.11) contains unknown constants ωi. As we have seen, the number of such

constants equals the number of states that do not correspond to non-decreasing subordinators,

which we denote by d
◦
(i.e., d

◦ ∶= d − ∣S↑∣). To identify these d
◦
unknowns, and ultimately

the solution ζ(γ) of (5.14), we subsequently analyze three cases:

◦ the background chain has no transient classes,

◦ the background chain has exactly one transient class, and

◦ the background chain has more than one transient class.

We proceed by studying each of these cases separately.

◦ No transient classes. In case the background chain has no transient classes, all classes of the

chain are necessarily recurrent. To analyze Zi it evidently suffices to restrict ourselves to the

recurrent class that the background state i is in. As a consequence, without loss of generality

we may assume that the background process J(⋅) is irreducible. In this case, which has been
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studied extensively (see e.g. the results in [40, 43]), the following procedure can be used to

identify the ωi. Note that, using the linear equations given in (5.14), one may express the

vector ζ(γ) by relying on Cramer’s rule. More concretely, with the matrix Mb,i(γ) denoting

the matrix M(γ) in which the i-th column is replaced by the vector b
◦(γ), we have that

ζi(γ) =
detMb,i(γ)
detM(γ) .

Since ζi(γ) is finite, any zero of the denominator should be a zero of the numerator. According

to Proposition 5.2.2, in case J(⋅) consists of a single class, detM(γ) = 0 has d
◦
zeroes in

the right half of the complex plane. For ease of exposition, we make the assumption that

these zeroes have multiplicity 1 (and we call them, say, γ1, . . . , γd◦). In the special case this

assumption does not hold, a reasoning similar to the one below still applies, but one needs to

resort to the concept of Jordan chains. We do not discuss this procedure in detail, but instead

refer to the in-depth treatment in [43].

Having distinct zeroes guarantees that we have d
◦
equations to identify the ωi. That is, for

i = 1, . . . , d and j = 1, . . . , d
◦
,

detMb,i(γj) = 0; (5.15)

in other words, the zeroes of detM (in the right half of the complex plane, that is) are also

zeroes of detMb,i, for each i = 1, . . . , d. For any given j = 1, . . . , d
◦
, this seemingly yields d

equations, but it can be seen easily that each of these d equations effectively provides the

same information. Indeed, with mk(γ) denoting the k-th column of M(γ), suppose for any

fixed i, that detM(γ) = 0 and detMb,i(γ) = 0 for some γ ⩾ 0. This implies that both M(γ)
and Mb,i(γ) are singular, and as a consequence there are non-trivial vectors u and v such that

d

∑
j=1

mj(γ) vj = 0, ∑
j/=i

mj(γ)uj + b
◦(γ)ui = 0.

As a consequence, for any i
′ /= i,

0 = −ui′
d

∑
j=1

mj(γ) vj + vi′ ∑
j/=i

mj(γ)uj + vi′b
◦(γ)ui

= −ui′vimi(γ) + ∑
j/=i,i′

(vi′uj − ui′vj)mj(γ) + vi′uib
◦(γ),

entailing that there is a linear combination of the columns of Mb,i′(γ) that equals 0. In other

words, Mb,i′(γ) is singular, and hence detMb,i′(γ) = 0 as well.

Now that we know that (5.15), for any given index j = 1, . . . , d
◦
, provides us with just a

single equation, we study this equation in more detail. Let us focus on detMb,1(γj) = 0, for

j = 1, . . . , d
◦
(we take i = 1, that is). With M̄ij(γ) representing the (d − 1) × (d − 1) matrix

which results after deleting the i-th column and the j-th row from M(γ), and recalling that

b
◦
i (γ) = γ (ωi + ϑi)/µi − ϑi for i ∉ S

↑
and b

◦
i (γ) = −ϑi for i ∈ S

↑
, this equation can be

rewritten as

∑
i∉S↑

(γj
ωi + ϑi
µi

− ϑi) (−1)1+idet M̄i1(γj) + ∑
i∈S↑

ϑi (−1)idet M̄i1(γj) = 0.
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We thus obtain d
◦
equations (one for each γj) that are linear in the unknowns ω1, . . . , ωd◦ ,

which can be dealt with in the standard manner, thus yielding a solution for the ωi.

◦ A single transient class. We now consider the case in which the background chain has a

single transient class, say T ⊂ {1, . . . , d}, next to one or more recurrent classes. In this case,

note that the ζi(γ) for all recurrent states i, i.e., i /∈ T , can be computed by the procedure

pointed out above. Subsequently, for i ∈ T we rewrite the i-th equation of (5.14) as

∑
j∈T

mij(γ)ζj(γ) = b
◦
i (γ) − ∑

j/∈T
mij(γ)ζj(γ). (5.16)

Observe that the right-hand side is known; we will denote it by b̄
◦
i (γ). Define d̄ ∶= ∣T ∣ as

the number of transient states and d̄
◦ ∶= ∣T \ S↑∣ as the number of transient states that

do not correspond to non-decreasing subordinators. In addition, we define the d̄ × d̄ matrix

M̄(γ) ∶= (mij(γ))i,j∈T , and we let the d̄-dimensional vector ζ̄(γ) ∶= (ζi(γ))i∈T represent the

entries of ζ(γ) that correspond to the states in T . Likewise, b̄
◦(γ) = (b̄◦i (γ))i∈T represents the

vector of right-hand sides of (5.16). Using these definitions, (5.16) can be written as

M̄(γ) ζ̄(γ) = b̄
◦(γ).

Clearly, suppose that we could prove that det M̄(γ) = 0 has d̄
◦
zeroes in the right half of the

complex plane, then we could identify the constants ωi by following the same approach as

the one we developed for the case of no transient classes. This is why we now verify that the

entries of M̄(γ) can be written in the form (5.8), with transition rates that correspond to a

single recurrent class, so that we can apply Proposition 5.2.2 to establish the desired property

for the number of zeroes of det M̄(γ) = 0 in the right half of the complex plane. By rewriting

the diagonal elements of M̄(γ) as

mii(γ) = qii + φi(γ) − ϑi = q̄ii + φi(γ) − ϑ̄i, (5.17)

with

q̄ii ∶= − ∑
j∈T\{i}

qij and ϑ̄i ∶=
⎛
⎜
⎝
ϑi + ∑

j/∈T
qij

⎞
⎟
⎠
, (5.18)

we conclude that the row sums of transition rates q̄ii +∑j∈T\{i} qij equal zero for all i ∈ T .

This means that M̄(γ) indeed has the desired form: the entries are of the form (5.8), with

transition rates that correspond to a single recurrent class. Applying Proposition 5.2.2 we

have that det M̄(γ) = 0 has d̄
◦
zeroes in the right half of the complex plane, so that we can

identify the ωi for i ∈ T \ S↑
(repeating the remark on roots with the multiplicity larger than

1, as made above in relation to the case with recurrent states only).

◦ Multiple transient classes. We now consider the case where there are K > 1 transient classes

(say T1, . . . , TK). We let R be the union of all remaining recurrent classes. Furthermore, we

write Tk ↝ Tk′ if there is a direct transition from a state in Tk to a state in Tk′ , i.e., there is

a state i ∈ Tk and a state j ∈ Tk′ such that qij > 0. To handle the case of multiple transient
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T1 RT2T4

T3

Figure 5.1: Example of layer sets, with K = 4 transient classes. In this case, C0 = R, C1 = R ∪ T1,

C2 = R∪ T1 ∪ T2, and C3 = R∪ T1 ∪ T2 ∪ T3 ∪ T4. In this figure, an arrow between the classes U and

V means that U ↝ V .

classes, we order the transient classes in ‘layers’, as follows. Let C0 ∶= R, and for n = 1, 2, . . .

let the n-th layer set be given by

Cn ∶= Cn−1 ∪ {Tk ∶ for all k
′
such that Tk ↝ Tk′ it holds that k

′
∈ Cn−1} .

It is worth noting that if a background state i is element of the layer set Cj but not of Cj−1,

then the background chain can reach a recurrent state in minimally j transitions. In addition,

we can observe that the number of non-empty layer sets (including C0) is at most K + 1. See

Figure 5.1 for a pictorial illustration.

In the previous two cases, we already explained how to compute ζi(γ) for i ∈ R and i ∈ C1,

respectively. We now point out how we can evaluate ζi(γ) for i ∈ Cn, having ζi(γ) for

i ∈ R,C1, . . . , Cn−1 at our disposal, so that we can recursively determine all ζi(γ). Suppose
that Tk ⊆ Cn \ Cn−1 (where it is noted that there are potentially multiple transient classes in

Cn \ Cn−1). As states in Tk cannot have direct transitions to classes outside Cn−1, we have for

i ∈ Tk that

∑
j∈Tk

mij(γ)ζj(γ) = b
◦
i (γ) − ∑

j∈Cn−1

mij(γ)ζj(γ).

From this point, the analysis follows that of the case with a single transient class. More

specifically, the number of zeroes of the determinant of the matrix (mij(γ))i,j∈Tk in the right

half of the complex plane equals the number of states in Tk that do not correspond to non-

decreasing subordinators, using the same argument as in the case of a single transient class.

This allows us to identify the ωi for i ∈ Tk \ S↑
.

5.4 Spectrally-negative case

The model we analyze in this section can be seen as the spectrally-negative counterpart of the

one considered in the previous section. This concretely means that now the Lévy processes

Xi(⋅) are assumed to be spectrally negative, and that the jumps Lij are non-positive. In

addition, we replace our earlier definition of the entries of the matrix M(ν) = (mij(ν))di,j=1 by

mij(ν) ∶= qijλij(−ν) + Φi(ν)1{i=j} − ϑi 1{i=j}, (5.19)
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for ν ⩾ 0, to account for the non-positive jumps. As in the spectrally-positive case, the matrix

M(ν) will be helpful in establishing the main result of this section.

Unlike in the previous section, throughout this section we focus directly on pi(u) = P(Zi ⩾ u)
rather than on its Laplace transform Pi(γ); as it turns out, Laplace transforms are not required

in the analysis of the spectrally-negative case. A convenient feature, made more precise later,

is that in the spectrally-negative setting the form of the distribution of the Zi is known.

Somewhat comparably to the setup of Section 5.3, to make the presentation as transparent

as possible we first treat the case where none of the Lévy processes Xi(⋅) is a non-increasing

subordinator (Section 5.4.1), after which we point out how to adapt the analysis to the case

where some of the Xi(⋅) are (Section 5.4.2).

The following claim plays a crucial role in this section.

Lemma 5.4.1. The equation detM(ν) = 0 has d
◦
zeroes with a positive real part, say

ν1, . . . , νd.

By Proposition 5.2.2 we already know that Lemma 5.4.1 holds if the background process is

irreducible. In Section 5.4.3 we provide a proof for the case that the background process has a

general chain structure.

5.4.1 Non-subordinator case

In this subsection we consider the situation that none of the states corresponds to a non-

increasing subordinator. This means that, for all i = 1, . . . , d, Proposition 5.2.1 implies that

the running maximum X i(Tϑi+qi) has an exponential distribution with rate µi ∶= Ψi(ϑi + qi).
Recalling that the time until either the process is killed or the background chain changes its

state is distributed exponentially with rate ϑi + qi, we thus obtain the identity

pi(u) = e
−µiu +∑

j/=i

qij
ϑi + qi

p
−
ij(u), (5.20)

with

p
−
ij(u) ∶= ∫

u

0

µie
−µiwP(X i(Tϑi+qi) + Lij + Zj ⩾ u − w) dw. (5.21)

To streamline our analysis, we impose (Property A) below. By Lemma 5.4.1 we know that

in this setting without non-increasing subordinators the equation detM(ν) = 0 has d zeroes

with a positive real part.

The d zeroes of detM(ν) with a positive real part are distinct. (Property A)

Importantly, however, imposing (Property A) effectively does not impose any restriction: as

discussed in Remark 5.4.2, the argumentation can be adapted to cover zeroes with higher

multiplicities.

A crucial fact is that the first-passage process pertaining to Y (⋅) is a MAP itself, irrespective

of whether or not the background process is irreducible; cf. the discussion in [59, Section 2.6].



146 Extreme values of Markov additive processes with a non-irreducible background process

This implies that the random variables Zi have phase-type distributions; see e.g. [7, Section

III.4] for background on this class of distributions. More specifically, one obtains their Laplace

transforms by plugging in α = 0 in the expression of the first statement of [59, Corollary 4.21].

The result concretely entails that, in our setting without non-increasing subordinators, for a

d × d transition rate matrix Λ, a vector λ ∶= −Λ1 ⩾ 0 with at least one positive entry, and

initial distributions a1, . . . ,ad,

E(e−γZi) = ai(γI − Λ)−1λ.
Recalling the definition of M(ν) in (5.19), the zeroes of detM(ν) coincide with those of

det(−νI − Λ); cf. [59, Theorem 4.7] and again the first statement of [59, Corollary 4.21].

Because of this, the matrix (γI − Λ) is singular in γ = −ν1, ...,−νd, hence E(e−γZi) can be

written as a linear combination of the terms 1/(γ + ν1), ..., 1/(γ + νd). This means that under

(Property A) we can write, for k = 1, . . . , d and u ⩾ 0,

pi(u) =
d

∑
k=1

cik e
−νku, (5.22)

where C = (cik)di,k=1 is a matrix of unknown coefficients whose rows add up to 1.

Remark 5.4.1. As mentioned above, the first statement of [59, Corollary 4.21] already provides

a characterization of the distribution of the random variables Zi (for i = 1, . . . , d) under a

possibly non-irreducible background chain. It is noted, though, that in [59, Corollary 4.21], the

distribution of the Zi is given in terms of a Laplace-Stieltjes transform, which contains unknown

matrices (viz. in the terminology of [59], the matrices Λ(q) and Π(q)) which can be numerically

computed, e.g. using [59, Theorem 4.14]. Our contribution is that we obtain a more explicit

result in Theorem 5.4.1 below: our result concerns the probabilities pi(u), corresponding to

the tail of Zi, rather than their transforms. For each i, we succeed in expressing pi(u) in terms

of the solutions of an eigensystem. ⋄

We now exploit the structure as given in (5.22) to generate equations by which we can

determine the coefficients cik. To this end, we define aik ∶= cikνk. By conditioning on the value

of Zj in (5.21) using (5.22), we thus obtain

p
−
ij(u) = ∫

u

0

µie
−µiw ∫

∞

0

d

∑
k=1

ajk e
−νkv P(X i(Tϑi+qi) + Lij ⩾ u − w − v) dv dw. (5.23)

We then substitute v by u−w − x and recall that X i(Tϑi+qi) and Lij are non-positive random

variables, leading to

p
−
ij(u) = ∫

u

0

µie
−µiw ∫

u−w

−∞

d

∑
k=1

ajke
−νk(u−w−x) P(X i(Tϑi+qi) + Lij ⩾ x) dx dw

= ∫
u

0

µie
−µiw ∫

0

−∞

d

∑
k=1

ajke
−νk(u−w−x) P(X i(Tϑi+qi) + Lij ⩾ x) dx dw.

Pulling the sum in front of the integrals leads to a sum in which the two integrals factorize.

That is, we obtain

p
−
ij(u) =

d

∑
k=1

ajk ∫
0

−∞
e
νkx (1 − P(X i(Tϑi+qi) + Lij < x)) dx ⋅ ∫

u

0

µie
−µiwe

−νk(u−w)
dw. (5.24)
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Now, we can rewrite the first integral in this expression using (5.1) and Proposition 5.2.1,

yielding

∫
0

−∞
e
νkx (1 − P(X i(Tϑi+qi) + Lij < x)) dx =

1
νk
E (eνkXi(Tϑi+qi)) λij(−νk)

=
1
νk

(Ψi(ϑi + qi) − νk
ϑi + qi − Φi(νk)

ϑi + qi
Ψi(ϑi + qi)

)λij(−νk)

=
1
νk

( ϑi + qi
ϑi + qi − Φi(νk)

µi − νk
µi

)λij(−νk).

Furthermore, we note for the second integral of (5.24) that

∫
u

0

µie
−µiwe

−νk(u−w)
dw =

µi
µi − νk

(e−νku − e
−µiu).

Combining the above, we conclude that

p
−
ij(u) =

d

∑
k=1

cjk
ϑi + qi

ϑi + qi − Φi(νk)
(e−νku − e

−µiu)λij(−νk). (5.25)

It can be seen that the µi differ from the νk, because if they would be equal for some pair

(i, k), then pi(u) would have a term that is constant in u, thus violating its form given in

(5.22). In Appendix 5.A.2 an alternative, probabilistic proof of (5.25) is given.

We now focus on finding the values of the coefficients cik for i, k = 1, . . . , d. Observe that we

have two alternative ways of writing pi(u): the representation (5.22), and a representation

based on (5.20) and (5.25). Note that both are linear combinations of e
−µiu and e

−ν1u, . . . , e
−νdu.

The weights corresponding to each of these d + 1 exponentials should match, thus providing

equations that impose constraints on the cik.

◦ Focusing on the terms corresponding to e
−νku, for k = 1, . . . , d, we thus obtain the

equations

cik = ∑
j/=i

(qij
1

ϑi + qi − Φi(νk)
λij(−νk)) cjk, (5.26)

where, as observed earlier, ∑d

k=1 cik = 1.

◦ Regarding the terms corresponding to e
−µiu, recalling that µi differs from all the νk, we

should have

1 −
d

∑
k=1

∑
j/=i

(qij
1

ϑi + qi − Φi(νk)
λij(−νk)) cjk = 0.

This equation holds true if (5.26) applies, which can be seen by recognizing the left-hand

side as 1 −∑d

k=1 cik (as the obvious consequence of ∑d

k=1 cik = 1). In other words, this

equation does not provide any additional information.

We now observe that (5.26) is equivalent to, for i, k = 1, . . . , d,

d

∑
j=1

mij(νk) cjk = 0. (5.27)
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We reassuringly notice from (5.27) that the matrix M(νk) is singular for all k = 1, ..., d, and

hence that the νk are indeed the solutions to detM(ν) = 0.

As was done in the spectrally-positive case, our result can be rewritten in a more compact

vector/matrix form. In particular, to find the cjk, it is enough to solve, for k = 1, . . . , d, the

matrix-vector equation

M(νk) ck = 0,

where ck ∶= (c1k, . . . , cdk)⊤, subject to C 1 = 1. The following theorem summarizes the findings

above.

Theorem 5.4.1. Under (Property A), pi(u) satisfies

pi(u) =
d

∑
k=1

cik e
−νku,

for i = 1, . . . , d. Here, for k = 1, . . . , d, the vectors ck solve M(νk) ck = 0 subject to C 1 = 1.

Remark 5.4.2. We briefly comment on the case where some solutions of detM(ν) = 0 have

multiplicity larger than one. For instance in the case of a root with multiplicity 2, suppose

that, for some k1 /= k2, νk1 = νk2 = ν, giving rise to terms in (5.22) proportional to e
−νu

and

u e
−νu

. Finding the associated weights works effectively as pointed out above: use the identity

(5.20) to find two alternative expressions for pi(u), and then equate the terms proportional to

u e
−νu

, so as to obtain linear equations for these coefficients (in addition to equating all terms

proportional to e
−νku). For an in-depth treatment of these multiplicity issues, we again refer

to [43]. ⋄

5.4.2 Subordinator case

We now consider the case where some of the states of the background process correspond to

a non-increasing subordinator. Let i be in the set of states corresponding to non-increasing

subordinators, denoted by S
↓
. For i ∈ S

↓
, Zi = 0 with positive probability.

The structure of this section is similar to that of the non-subordinator case, the main difference

being that now the MAP cannot cross positive levels (in the upward direction, that is) while

the background process is in i ∈ S
↓
. Therefore, the following decomposition applies, for u > 0:

pi(u) = ∑
j/=i

qij
ϑi + qi

p
−
ij(u), (5.28)

with

p
−
ij(u) ∶= P(Xi(Tϑi+qi) + Lij + Zj ⩾ u).

Regarding the zeroes of detM(ν), we make a similar claim and assumption as in Section

5.4.1. Let d
◦ ∶= ∣S \ S↓∣ be the number of states that do not correspond to a non-increasing

subordinator. Then by Lemma 5.4.1 we know that detM(ν) has d
◦
zeroes with a positive real

part, say (νk)k∉S↓ . In our analysis we impose (Property A’) below.

The d
◦
zeroes of detM(ν) with a positive real part are distinct. (Property A’)
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The case of zeroes with higher multiplicities can be dealt with as discussed in Remark 5.4.2,

and the case that J(⋅) is not irreducible is covered by Section 5.4.3.

Relying on the same reasoning as in Section 5.4.1, under (Property A’), we again have due to

the first-passage process being a MAP and the first statement of [59, Corollary 4.21], that

pi(u) is a linear combination of exponential terms, where the number of such terms now equals

d
◦
. Concretely, for u > 0 and i = 1, . . . , d,

pi(u) = ∑
k∉S↓

cike
−νku. (5.29)

To identify the coefficients cik, it proves worthwhile to further study p
−
ij(u). In particular, for

any j = 1, . . . , d, conditioning on the value of Zj yields

p
−
ij(u) = ∑

k∉S↓

∫
∞

u

cjkνke
−νkv P(Xi(Tϑi+qi) + Lij ⩾ u − v) dv.

Then we subsequently use the relation (5.1) and Proposition 5.2.1 to obtain

p
−
ij(u) = ∑

k∉S↓

cjke
−νkuE (eνkXi(Tϑi+qi)) λij(−νk) = ∑

k∉S↓

cjk
ϑi + qi

ϑi + qi − Φi(νk)
e
−νku λij(−νk),

such that in combination with (5.28), we have

pi(u) = ∑
j/=i

∑
k∉S↓

cjk
qij

ϑi + qi − Φi(νk)
e
−νku λij(−νk). (5.30)

By equating (5.29) and (5.30) we thus obtain equations that the coefficients should satisfy.

As it turns out, doing this for any i ∈ S
↓
and k ∉ S

↓
we again obtain (5.26). Following the

same steps as the ones leading to Theorem 5.4.1, we obtain the following result. Notably, the

matrix C now consists of entries cik with k ∉ S
↓
, while ck ∶= (c1k, . . . , cdk)⊤ as before.

Theorem 5.4.2. Under (Property A’), the tail probability pi(u) satisfies

pi(u) = ∑
k∉S↓

cike
−νku,

for i = 1, . . . , d. Here, for k ∉ S
↓
, the vectors ck solve M(νk) ck = 0 subject to ∑k∉S↓ cik = 1

for all i ∉ S
↓
.

We note that, due to the fact that the rows i of C such that i ∈ S
↓
do not add up to one, we

have that P(Zi = 0) = 1 −∑k∉S↓ cik > 0.

5.4.3 Number of roots with a positive real part

In the previous subsections we provided a recipe to compute the tail probabilities pi(u) using

Lemma 5.4.1. The objective of this subsection is to prove this lemma. To this end, we partition

the state space of the background chain in K transient classes (say T1, . . . , TK) and L recurrent
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classes (say R1, . . . , RL). We label the classes such that for ℓ ∈ {1, . . . , K} class ℓ refers to

Tℓ, and for ℓ ∈ {K + 1, . . . , K + L} class ℓ refers to Rℓ−K . We also order the transient classes

as was done in Section 5.3.3: for any ℓ, Tℓ has no transitions to other classes Tℓ′ such that

ℓ
′
⩽ ℓ. Furthermore, we let d

◦
ℓ be the number of states in class ℓ that do not correspond to

non-increasing subordinators, ℓ = 1, . . . , K + L.

With the introduced ordering of class, the transition rate matrix of the background chain can

now be written in the following form:

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

Q̄1 S12 ⋯ S1K S1,K+1 ⋯ S1,K+L

0 Q̄2 ⋯ S2K S2,K+1 ⋯ S2,K+L

⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮

0 0 ⋯ Q̄K SK,K+1 ⋯ SK,K+L

0 0 ⋯ 0 QK+1 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮

0 0 ⋯ 0 0 ⋯ QK+L

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (5.31)

The block matrices QK+1, . . . , QK+L correspond to the recurrent classes, and can be interpreted

as ‘true’ transition rate matrices of Markov chains of lower dimension, in that they have

non-negative entries except on their diagonals, and their row sums are all zero. This does

not hold for the block matrices Q̄1, . . . , Q̄K : since they correspond to transient classes, their

off-diagonal entries are still non-negative, but they have at least one strictly negative row sum.

The matrices Sk,ℓ, with k = 1, . . . , K and ℓ = K + 1, . . . , K + L, contain non-negative entries

and correspond to transitions from Tk into a different class.

The next step is to construct the matrix M(ν) that corresponds to the ‘rearranged tran-

sition matrix’ Q. This matrix is ‘block-upper-triangular’, which is inherited from the ma-

trix Q. It concretely means that, for appropriately constructed matrices M̄1(ν), . . . , M̄K(ν)
and MK+1(ν), . . . ,MK+L(ν) (based on Q̄1(ν), . . . , Q̄K(ν) and QK+1(ν), . . . , QK+L(ν), respec-
tively),

detM(ν) = det M̄1(ν)⋯ det M̄K(ν) detMK+1(ν)⋯ detMK+L(ν); (5.32)

here the matrices M̄ℓ(ν) (for ℓ = 1, . . . , K) correspond to transient classes, whereas the

matrices Mℓ(ν) (for ℓ = K + 1, . . . , K + L) correspond to recurrent classes. It is clear that

detMℓ(ν), where ℓ = K + 1, . . . , K +L, has d◦ℓ roots with a positive real part, as an immediate

consequence of Proposition 5.2.2. This also holds for det M̄ℓ(ν), where ℓ = 1, . . . , K, which

follows by rewriting the diagonal entries as we did in (5.17) and (5.18) in such a way that

M̄ℓ(ν) has the desired form to apply Proposition 5.2.2. Upon combining the above, we conclude

that detM(ν) = 0 has ∑K+L
ℓ=1 d

◦
ℓ = d

◦
zeroes, as desired.

Remark 5.4.3. As indicated above, the computation of the coefficients cik amounts to solving

an eigensystem; see Theorems 5.4.1 and 5.4.2. However, using the structure of the background

chain, in specific cases this computation can be simplified considerably. Appealing to the

factorization of detM(ν) provided in Equation (5.32), it can be argued that some of the

cik are necessarily equal to 0. In the first place, let νk be a root of detM(ν) such that

detMℓ(νk) = 0 for some ℓ ∈ {K + 1, . . . , K + L} (i.e., ℓ corresponds to a recurrent class).

If the roots of detM(ν) are simple, this means that νk does not solve detMℓ′(ν) = 0 for
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ℓ
′
∈ {K + 1, . . . , K + L} with ℓ

′ /= ℓ, nor det M̄ℓ′(ν) = 0 for ℓ
′
∈ {1, . . . , K}. By virtue of

the structure of the matrix M(ν), which is inherited from the transition rate matrix Q (as

given in (5.31)), we thus conclude that cik = 0 for all states i from which the recurrent class

ℓ cannot be reached. In the second place, analogously, if νi is such that det M̄ℓ(νi) = 0 for

some ℓ ∈ {1, . . . , K} (i.e., ℓ corresponds to a transient class), then cik = 0 for all states k that

cannot be reached from this transient class. This reduction procedure makes intuitive sense:

informally, the distribution of Zi cannot be affected by properties of the MAP that correspond

to states that cannot be reached from state i. ⋄

5.5 Maximum of a spectrally one-sided Lévy process over a

phase-type period

In Lévy fluctuation theory, the focus is predominantly on the evaluation of the distribution

of extreme values over exponentially distributed intervals; see for instance Proposition 5.2.1

for a key result in this context. In the present section, we use our results on the maximum

of a killed MAP to determine the distribution of a spectrally one-sided Lévy process over a

phase-type distributed time interval.

The practical relevance of working with the class P of phase-type distributions lies in the

fact that any distribution on the positive half-line can be approximated arbitrarily closely

by a distribution in P [7, Theorem III.4.2]. The proof of this property reveals that actually

any distribution on the positive half-line can be approximated arbitrarily closely by elements

from a smaller class, namely the class of mixtures of Erlang distributions. In particular, a

deterministic positive number can be approximated by an Erlang-distributed random variable

with a large number of phases.

This section has two main goals. In Section 5.5.1, we show how our results on the maximum of

a killed spectrally one-sided MAP can be applied to derive the distribution of the maximum

of a spectrally one-sided Lévy process over a phase-type distributed time interval. Then, in

Section 5.5.2, we obtain more specific results for the practically relevant class of mixtures of

Erlang distributions.

5.5.1 Translation into the MAP framework

We start our exposition by interpreting a phase-type distributed random variable as an

absorption time in a continuous-time Markov chain. Each element in the class P is characterized

by (i) a finite state space {1, ..., d}, (ii) an initial distribution α ∈ R
d
, (iii) a d × d matrix

T = (tij)di,j=1 with non-positive diagonal entries, non-negative off-diagonal entries and non-

positive row sums, and (iv) a non-negative exit vector t ∶= −T1. Note that the (d+1)×(d+1)
matrix

T̄ ∶= ( T t

0
⊤

0
) ,
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is a genuine transition rate matrix of a (d+ 1)-state Markov chain, in that its diagonal entries

are non-positive, its off-diagonal entries are non-negative, and its row sums are equal to zero.

The (d + 1)-st column and row in this matrix correspond to a newly added state d + 1, which

we refer to as the absorbing state. Observe that this chain can hit state d + 1 from any other

state according to the exit vector t. Now, the phase-type random variable corresponding to the

above instance is the time it takes the expanded Markov chain (with transition rate matrix

T̄ ) to reach the absorbing state, where the initial state has been sampled according to the

distribution α.

We now consider the distribution of the maximum of the spectrally one-sided Lévy process

X(⋅) over a phase-type distributed time interval (being characterized by the initial distribution

α and the transition rate matrix T̄ ). To use the MAP framework that we have been working

with in the previous sections, we let X1(⋅), ..., Xd(⋅) be independent copies of a common

spectrally one-sided Lévy process X(⋅), such that the resulting MAP evolves as this Lévy

process. We write φ(⋅) for the Laplace exponent of X(⋅) in case it is spectrally positive, and

we write Φ(⋅) for the cumulant generating function of X(⋅) in case it is spectrally negative. In

addition, we let Xd+1(t) ≡ 0 for all t ⩾ 0. Furthermore, we choose Q = T + diag(t) and ϑ = t

such that absorption in state d + 1 corresponds to killing. In addition, let the jumps of the

MAP at transition epochs of the background process, as represented by the random variables

Lij, be equal to zero. Observe that under this construction, with Z̄ denoting the maximum of

the Lévy process X(⋅) over the phase-type interval,

P(Z̄ ⩾ u) =
d

∑
i=1

αiP(Zi ⩾ u),

where P(Zi ⩾ u) can be analyzed using the techniques for extremes of MAPs, as developed

earlier in the chapter.

5.5.2 Mixtures of Erlang distributions

We are particularly interested in the case where the time interval is a mixture of Erlang

distributions, because with this distribution class we can approximate any non-negative

random variable arbitrarily closely. A mixture of Erlang distributions concretely means that,

for some k ∈ N and i = 1, . . . k, with probability pi ∈ [0, 1] we sample from an Erlang

distribution with shape parameter di ∈ N and scale parameter τi > 0 (obviously requiring

∑k

i=1 pi = 1). It takes little thought to conclude that, in order to evaluate the maximum of

the Lévy process of such an interval, it suffices to be able to evaluate its maximum over an

Erlang-distributed time interval (say with parameters d ∈ N and τ > 0). This requires us

to extend the result of an example from Asmussen and Ivanovs [10] which focuses on the

maximum of Brownian motion (with a given drift and variance parameter) over an Erlang(d, τ)

distributed time interval. Specifically, we generalize this result to any spectrally one-sided

Lévy process (where, to avoid trivial cases, we assume that the underlying Lévy process is

not a subordinator). Related results on maxima over an Erlang horizon include [27, Section

5], [37, Section IV.1], and [119]. In the remainder of this subsection we treat both spectrally

one-sided cases separately.
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Maximum of a spectrally-positive Lévy process over an Erlang-distributed time interval

Recall from Theorem 5.3.1 that the Laplace-Stieltjes transform of the maximum, ζ(γ), satisfies
the linear system M(γ)ζ(γ) = b(γ), where the (d × d)-dimensional matrix M(⋅) is given by

M(γ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−τ + φ(γ) τ 0 ⋯ 0 0

0 −τ + φ(γ) τ ⋯ 0 0

⋮ ⋮ ⋱ ⋮ ⋮ ⋮

0 0 0 ⋯ −τ + φ(γ) τ

0 0 0 ⋯ 0 −τ + φ(γ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

The direct implication of the matrix M(⋅) being upper triangular is that ζ(γ) as well as

the unknown constants ωi can be solved recursively. A concrete recipe for this could be the

following. Defining m(γ) ∶= −τ + φ(γ), we first find ζd(γ) = bd(γ)/m(γ). Note that by

definition of bd(γ) (see (5.9)), the numerator contains the constant ωd, which can be identified

using the observation that the (single) zero, say γ
⋆ ∶= ψ(τ), from the denominator should be

a zero of the numerator as well. As a next step, we identify ζd−1(γ) observing that

ζd−1(γ) =
bd−1(γ) − τ ζd(γ)

m(γ) =
m(γ) bd−1(γ) − τ bd(γ)

m2(γ) .

This expression contains the (by now known) constant ωd as well as the (still unknown)

constant ωd−1 through the function bd−1(γ). However, ωd−1 can again be found noting that the

double zero from the denominator (which is again γ
⋆
) is also a double zero of the numerator.

Thus noting that m(γ⋆) = 0, we obtain

m
′(γ⋆) bd−1(γ⋆) − τ b

′
d(γ⋆) = 0,

from which we find the unknown constant ωd−1. We can continue along these lines until we have

identified all Laplace-Stieltjes transforms ζi(γ) and corresponding constants ωi, for i = 1, . . . , d.

After a number of computations, one then obtains

ζi(γ) = (1 − γ

ψ(τ)) (− τ

m(γ))
d−i+1

−
γ

ψ(τ)
d−i

∑
j=1

(− τ

m(γ))
j

lim
ν→ψ(τ)

ζi+j(ν).

Since ζj(ψ(τ)) is not well defined for any j = 1, ..., d, we note that limν→ψ(τ) ζj(ν) can be

derived from ζj(γ) by L’Hôpital’s rule.

Maximum of a spectrally-negative Lévy process over an Erlang-distributed time interval

For the spectrally-negative case, we follow the line of reasoning used in Section 5.4. The first

observation is that in this case M(ν) has a single positive root with multiplicity d, namely

ν ∶= Ψ(τ). Because the geometric multiplicity of M(ν) is one, its exponent contains multiples

of u
k
e
−νu

for k = 0, ..., d − 1 (cf. Remark 5.4.2). Let Zi be the maximum of the process X(⋅)
when starting in phase i, i.e., with still d − i + 1 phases ahead (which is equivalent to setting

αi = 1). We can represent the density of Zi by a mixture of d − i + 1 Erlang densities, i.e.,

P(Zi ∈ du) =
d−i+1

∑
k=1

aik
ν
k

(k − 1)!u
k−1
e
−νu

du, (5.33)
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where the aik are coefficients that we will determine below. Evidently, the quantity ν
k/(k− 1)!

could have been incorporated in the coefficient aik, but, as it turns out, not doing so makes the

formulas slightly cleaner. We already mention that ad1 = 1, as the maximum of a spectrally-

negative Lévy process over an exponentially distributed interval is exponentially distributed

with parameter Ψ(τ) (see Proposition 5.2.1). As a consequence of (5.33), we find that

pi(u) = ∫
∞

u

P(Zi ∈ dx) =
d−i+1

∑
k=1

aik e
−νu

k−1

∑
m=0

ν
m
u
m

m!
. (5.34)

Similar to the strategy followed in Section 5.4, we now derive a second expression for pi(u), also
in terms of the aik, which, in combination with (5.34), allows us to determine these unknown

coefficients. To this end, note that in our setting (5.20) implies, for i = 1, . . . , d − 1, that

pi(u) = e
−νu

+ p
−
i+1(u), (5.35)

where

p
−
i+1(u) = ∫

u

0

νe
−νw
P(X(Tτ) + Zi+1 ⩾ u − w) dw. (5.36)

Conditioning on the value v of Zi+1, using (5.33), and substituting x = u − w − v, we thus

obtain

p
−
i+1(u) = ∫

u

0

νe
−νw ∫

∞

u−w

d−i

∑
k=1

ai+1,k
ν
k

(k − 1)!v
k−1
e
−νv
P(X(Tτ) ⩾ u − w − v) dv dw

= ∫
u

0

e
−νw ∫

0

−∞

d−i

∑
k=1

ai+1,k
ν
k+1

(k − 1)!(u − w − x)k−1e−ν(u−w−x)P(X(Tτ) ⩾ x) dx dw.

It then follows from an application of the binomial theorem that

p
−
i+1(u) = ∫

u

0

∫
0

−∞

d−i

∑
k=1

ai+1,k
ν
k+1

(k − 1)!
k−1

∑
ℓ=0

(k − 1
ℓ )(u − w)ℓ(−x)k−1−ℓeν(x−u)P(X(Tτ) ⩾ x) dx dw

=

d−i

∑
k=1

ai+1,k

k−1

∑
ℓ=0

e
−νu ∫

u

0

ν
ℓ+1(u − w)ℓ

ℓ!
dw ⋅ ∫

0

−∞

ν
k−ℓ(−x)k−1−ℓ
(k − 1 − ℓ)! e

νx
P(X(Tτ) ⩾ x) dx

=

d−i

∑
k=1

ai+1,k

k−1

∑
ℓ=0

Gℓ(u) Hk−1−ℓ,

(5.37)

with

Gm(u) ∶= e
−νu ∫

u

0

ν
m+1

w
m

m!
dw and Hm ∶=

0

∫
−∞

ν
m+1(−x)m

m!
e
νx
P(X(Tτ) ⩾ x) dx.

For an alternative, probabilistic derivation of (5.37), we refer to Appendix 5.A.3. We proceed

by evaluating the objects Gm(u) and Hm. The former can be rewritten as

Gm(u) = e
−νuν

m+1

m!
∫

u

0

w
m
dw = e

−νu ν
m+1

(m + 1)!u
m+1

.

Deriving a closed-form expression for Hm is significantly more involved. The following lemma

proves useful in this regard.



5.5 Maximum of a spectrally one-sided Lévy process over a phase-type period 155

Lemma 5.5.1. For any non-negative random variable A and m = 1, 2, . . . ,

∫
0

−∞
(−x)meνxP( − A ⩾ x) dx = m! ν

−m−1
− hm,

where hm ∶= ∫∞

0
x
m
e
−νx
P(A > x) dx. In addition, hm satisfies the recursion

hm =
m
ν hm−1 −

1
ν h

◦
m,

with h
◦
m ∶= E(Ame−νA) and h0 =

1

ν
(1 − E(e−νA)).

Proof: The first claim is verified by observing that P(−A ⩾ x) = 1 − P(A > −x). The second

claim, the recursive relation for hm, follows by applying integration by parts. Namely, for

m = 1, 2, . . . ,

hm ∶= ∫
∞

0

x
m
e
−νx
P(A > x) dx = −

1
ν ∫

∞

0

x
m
P(A > x) d(e−νx)

= ∫
∞

0

e
−νx

ν d(xmP(A > x)) = m
ν hm−1 −

1
ν h

◦
m.

Finally, the expression for h0 results from the definition of hm in combination with (5.1). This

completes the proof. □

In our analysis, we apply this lemma to the case where A = −X(Tτ), so that

h
◦
m = E (Ame−νA) = (−1)m d

m

dνm
E (e−νA) = (−1)m d

m

dνm
(Ψ(τ) − ν

τ − Φ(ν)
τ

Ψ(τ)) .

In conclusion,

Hm = 1 −
ν
m+1

m!
hm,

where for n = 1, ...,m,

hn =
n
ν hn−1 −

1
ν h

◦
n, and h0 =

1
ν (1 − Ψ(τ) − ν

τ − Φ(ν)
τ

Ψ(τ)) .

At this point, we have obtained two expressions for pi(u), both in terms of a sum whose

summands are proportional to e
−νu

, u e
−νu

, . . . , u
d−i

e
−νu

. Equating these gives a linear system

from which the coefficients aik can be solved. In this context it is noted that, conveniently,

solving this linear system allows a recursive solution procedure. To see this, first recall that

ad1 = ν. Then ad−1,1 and ad−1,2, appearing in (5.34) for i = d − 1, are by (5.37) expressed in

terms of ad1. Then, along similar lines, ad−2,1, ad−2,2 and ad−2,3 are expressed in terms of ad−1,1
and ad−1,2, and so on.
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Figure 5.2: Example background chain.

5.6 Numerical experiments

In the previous sections, we developed theory on the distribution of the maximum of a spectrally

one-sided MAP. We now discuss some practical issues concerning the implementation of our

findings, the identification of the role played by each of the model parameters, and the

application of our results in a practical context. So as to cover these three issues, we consider

three experiments: the first highlights the impact of the structure of the background process,

the second focuses on the maximum of a Lévy process in Erlang-distributed time intervals,

and the third is motivated by a problem in risk theory.

5.6.1 Impact of the chain structure of the background process

In this first experiment we consider a spectrally-positive MAP in which the background chain

J(⋅) has the structure shown in Figure 5.2 (where qij > 0 when there is an arrow from i to j

and qij = 0 otherwise). With states 4 and 5 being absorbing, the background process is clearly

not irreducible. As a consequence, we cannot use results from the existing literature, and have

to rely on the results found in Section 5.3.

Our goal is to evaluate ζ(γ), i.e., the vector of Laplace-Stieltjes transforms of the Zi. This

vector is the solution of the matrix equation (5.14), where we follow the procedure developed

in Section 5.3.3 to determine the unknown constants ωi. We first categorize the communicating

classes of J(⋅) in layers: using the notation from Section 5.3.3, we have C0 = R = {4, 5},
C1 = {2, 3, 4, 5} and C2 = {1, 2, 3, 4, 5}. Note that even though the communicating class {1}
has a transition to the recurrent state 5, it belongs only to C2 because it also has transitions

into C1. Following our procedure, we consecutively evaluate ζi(γ) for i ∈ {4, 5}, then for

i ∈ {2, 3}, and finally for i = 1.

Using this approach, we now consider an example MAP with the background chain structure

given in Figure 5.2. We letX1(⋅), X2(⋅), X3(⋅), X5(⋅) correspond to standard Brownian motions,

and X4(⋅) to a gamma process (i.e. Lévy process with independent gamma distributed

increments) with jump intensity 2 and jump size parameter 2, so that

φ4(α) = 2 log ( 2

α + 2
) .
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Figure 5.3: Probability density functions f1(⋅), . . . , f5(⋅), corresponding to Z1, ..., Z5, with the model

parameters as specified in this section.

Additionally, we let the background be governed by the transition rate matrix

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−4 1 2 0 1

0 −20 1 0 19

0 1 −20 19 0

0 0 0 0 0

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

and we set Lij = 0 for all i, j, so there are no jumps at transition epochs of the background

process. Finally, we consider the setting where ϑ = (0, 0, 0, 0.5, 0.5)⊤, meaning that killing

only happens in states 4 and 5. For these model parameters, we plot in Figure 5.3 the density

functions fi(⋅) of the Zi.

We comment on a few aspects pertaining to Figure 5.3 that illustrate the impact of the chain

structure. First, from the given transition rate matrix it is clear that if J(0) = 2, then the

process likely ends up in state 5. This explains why the densities of Z2 and Z5 behave similarly.

A similar reasoning applies to Z3 and Z4. Also, Z4 and Z5 are ‘closer to being killed’ than

Z2 and Z3, and therefore have more probability mass close to zero. Finally, notice that from

initial state 1, absorption in state 4 or 5 is about equally likely, resulting in a density function

that roughly behaves as the average of the two pairs mentioned above.

5.6.2 Maximum of a Lévy process in an Erlang-distributed time interval

This example focuses on the distribution of the maximum of a Lévy process over a time

interval of Erlang-distributed length, applying the theory of Section 5.5. We choose the model

parameters as pointed out in Section 5.5.1. That is, we let background state i represent the

i-th phase of the interval. With n denoting the total number of phases, we let qi,i+1 =
1

n
for

all i = 1, ..., n − 1 and ϑ = (0, 0, ..., 0, 1

n
)⊤. This way, the mean interval length equals unity

and killing occurs only in the last phase. Because phase transitions should not affect the Lévy

process, we take Li,i+1 = 0 for all i = 1, ..., n − 1. We particularly study the impact of the
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Figure 5.4: Density functions f(⋅) of the maximum of a standard Brownian motion over an n-

phase Erlang-distributed interval with mean 1 (for n = 1, 2, 5), with the solid line representing their

counterpart for a deterministic interval of length 1 (taking n → ∞).

number of phases on the distribution of the maximum of the Lévy process, bearing in mind

the Erlang distribution’s capability of approximating a deterministic number. Indeed, our

Erlang random variable converges to the deterministic value 1 as n→ ∞, and this experiment

serves to get insight into the maximum of a Lévy process during a deterministic time interval.

We first consider the case of X(⋅) being a standard Brownian motion, noting that for this

instance we know that its maximum in a deterministic interval has a half-normal distribution

(i.e., the distribution of the absolute value of a normally distributed random variable). Figure

5.4 shows the corresponding density functions for n = 1, 2, 5 phases, as well as its limiting

counterpart. The figure confirms that the densities converge to the limit, where the curve for

n = 5 already produces a reasonable fit.

We proceed with an example in which the distribution of the maximum over a deterministic

time horizon is not known. Let X(⋅) be the independent sum of (i) a standard Brownian

motion that is increased by a positive drift 1, and (ii) a compound Poisson process with arrival

rate 1 and Erlang(2, 2) distributed jumps in the negative direction (thus rendering the process

spectrally negative). Figure 5.5 illustrates the (fast) convergence of the density functions as n

grows, thus providing us with a way to approximate the distribution of the maximum of X(⋅)
evaluated over a deterministic interval.

5.6.3 Risk model

The last example is a special case of the model discussed in [38], and is motivated by applications

in credit risk. The process of interest is the capital of an insurance company over time, with a

finite number of obligors n. Each obligor independently goes into default after an exponentially

distributed time with mean 1. When going into default, the obligor makes a claim of exponential

size with mean 1, and immediately ends the contract with the insurance company (i.e., leaves

the system). Each obligor not gone into default pays premiums at rate r per time unit. Figure
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Figure 5.5: Density functions f(⋅) of the maximum of the Lévy process X(⋅) over an n-phase Erlang-

distributed interval with mean 1 (for n = 1, ..., 5). Here, X(⋅) is the sum of a standard Brownian

motion with positive drift, and a compound Poisson process with negative Erlang-distributed jump

sizes.

Figure 5.6: Sample path of the capital surplus of the insurance company, with four obligors.

5.6 shows a possible sample path of the process. We wish to quantify the ruin probability, i.e.,

the probability that the capital of the insurance company eventually hits zero, given some

initial reserve u ⩾ 0.

This model can be cast in our framework as follows. Let background state i represent the

number of obligors that have not yet gone into default. Then, the transition rates of the

background chain are qi,i−1 = i for i = 1, . . . , n (all other transition rates are 0). As we are

interested in the all-time ruin probability, we let ϑ = 0. Observe that the ruin probability

depends on the minimum of the process, where the results in this chapter are in terms of the

maximum, but this is easily remedied by flipping the sign. Concretely, we choose Xi(t) = −irt

for t ⩾ 0, i = 0, . . . , n, and we have positive jumps Li,i−1 of exponentially distributed size with

mean 1 for i = 1, . . . , n. The ruin probability with initial capital u is now given by P(Zn ⩾ u).
In an example with (initially) four obligors, Figure 5.7 shows how the ruin probability depends
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Figure 5.7: Ruin probability per initial capital, for a few different premium rates r.
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Figure 5.8: Relation between premium rate and initial capital, for a few fixed ruin probabilities.

on the initial capital u and premium rate r. The ruin probability is decreasing in both u and

r, and our techniques can be used to assess the impact of these parameters. Clearly, one can

trade off u and r: when reducing the premium rate r, a higher initial surplus u is needed to

guarantee a given ruin probability. This trade-off is illustrated in Figure 5.8.

5.7 Directions for further research

In this final section, we discuss two directions for further research.

Adding jumps ‘in the opposite direction’

A possible extension to our model could be the inclusion of phase-type distributed jumps

in the ‘opposite direction’ to the model. More concretely, in our spectrally-positive setup

we would allow phase-type negative jumps (both in the Lévy processes and in the jumps at

transition epochs of the background process), and analogously in our spectrally-negative setup

we would allow phase-type positive jumps. Alternatively, one could consider jumps ‘in the

opposite direction’ whose distribution has a rational Laplace transform (rather than being a

phase-type distribution). Extensions of this type are in line with earlier analyses, such as [78],
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being conceptually relatively straightforward, but requiring a substantial amount of additional

notation. Relative to the spectrally one-sided MAPs that we considered in the present chapter,

models that include phase-type jumps ‘in the opposite direction’ are significantly more general;

we recall that any positive random variable can be approximated arbitrarily closely by a

phase-type distributed random variable [7, Theorem III.4.2].

Wiener-Hopf-type results under non-irreducibility

In the present chapter the focus has been on spectrally one-sided MAPs, the underlying aim

being the derivation of computable quantities. As a result, our analysis provides expressions

for the distribution of the maximum in terms of the model primitives. In [60], general MAPs

(i.e., without any assumptions on the direction of the jumps, but still requiring that J(⋅) is

irreducible) are considered, leading to a Wiener-Hopf-type decomposition. The price to be

paid, however, is that the characterization of the distribution of the maximum is considerably

less explicit than in the spectrally one-sided cases. An interesting question is to what extent

the results in [60] for the extrema carry over to the case that J(⋅) is not irreducible.

Appendix 5.A Probabilistic arguments

In this section we present alternative, probabilistic derivations of some equations in this

chapter.

5.A.1 Alternative derivation of Equation (5.6)

Starting from state i, we once again condition on whether the MAP is killed before leaving

state i or the background process jumps to some state j ≠ i. This leads to

Zi =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

X i(Tϑi+qi) with probability
ϑi

ϑi + qi
,

X i(Tϑi+qi) + [X i(Tϑi+qi) + Lij + Zj]+ with probability
qij

ϑi + qi
, j ≠ i.

In terms of Laplace-Stieltjes transforms, this is equivalent to

ζi(γ) =
ϑi

ϑi + qi
κi(γ) +∑

j≠i

qij
ϑi + qi

κi(γ)E (e−γ[Xi(Tϑi+qi)+Lij+Zj]+) , (5.38)

where by Proposition 5.2.1, the random variable −X i(Tϑi+qi) is exponentially distributed with

rate µi. We now present a lemma enabling us to evaluate the rightmost Laplace-Stieltjes

transform.

Lemma 5.A.1. Let A be a non-negative random variable. Then for γ, µ ⩾ 0, we have

E (e−γ[A−Tµ]
+

) =
µ

µ − γE (e−γA) − γ
µ − γE (e−µA) .
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Proof. Applying the standard identity e
−x+ + e

x
−

= e
−x + 1 to x = γ(A − Tµ), it holds that,

using the memoryless property of Tµ,

E (e−γ[A−Tµ]
+

) = E (e−γ(A−Tµ)) + 1 − E (eγ[A−Tµ]
−

)

= E (e−γA)E (eγTµ) + 1 − (P(A > Tµ) + P(A < Tµ)E (eγTµ)) .

The result follows from the fact that P(A < Tµ) = E (e−µA).

Equation (5.6) can now immediately be obtained from (5.38) by using the above lemma with

A = Lij + Zj and recalling (5.2).

5.A.2 Alternative derivation of Equation (5.25)

Observe that the definition (5.21) is equivalent to

p
−
ij(u) ∶= P (X i(Tϑi+qi) < u , X i(Tϑi+qi) +X i(Tϑi+qi) + Lij + Zj ⩾ u) .

For k = 1, ..., d, let Zjk be independent exponentially distributed random variables with rate

νk. An alternative formulation of (5.23) is that, recalling that X i(Tϑi+qi) is exponentially

distributed with parameter µi,

p
−
ij(u) =

d

∑
k=1

cjkP (X i(Tϑi+qi) < u , X i(Tϑi+qi) +X i(Tϑi+qi) + Lij + Zjk ⩾ u) .

Because X i(Tϑi+qi) and Lij are non-positive, the memoryless property of Zjk implies that

p
−
ij(u) =

d

∑
k=1

cjkP (X i(Tϑi+qi) < u , Zjk +X i(Tϑi+qi) ⩾ u) ⋅ P (Zjk > −(X i(Tϑi+qi) + Lij)) .

Since Zjk has an exponential distribution with rate νk, we have that P(Zjk > A) = E(e−νkA) for
any non-negative random variable A. Combining this observation with the fact that X i(Tϑi+qi)
is exponentially distributed with rate µi, we then arrive at

p
−
ij(u) =

d

∑
k=1

cjk
µi

µi − νk
(e−νku − e

−µiu)E (eνkXi(Tϑi+qi))λij(−νk)

=

d

∑
k=1

cjk
ϑi + qi

ϑi + qi − Φi(νk)
(e−νku − e

−µiu)λij(−νk),

where the transform of X i(Tϑi+qi) is taken from Proposition 5.2.1. This completes the alterna-

tive derivation of Equation (5.25).
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5.A.3 Alternative derivation of Equation (5.37)

Let Uk be an Erlang random variable with k phases of rate ν, and let (Vn)n⩽k denote the first

n phases of Uk. Equation (5.36) can be written as

p
−
i+1(u) = P(X i(Tτ) ⩽ u, X i(Tτ) +X i(Tτ) + Zi+1 > u)

=

d−i

∑
k=1

ai+1,kP(X i(Tτ) ⩽ u, X i(Tτ) +X i(Tτ) + Uk > u)

since Zi+1 is a mixture of d − i Erlang random variables (see (5.33)). Suppose we need to

add to X i(Tτ) exactly ℓ ∈ {1, ..., k} exponential phases of Uk in order to exceed u, that is,

u −X i(Tτ) ∈ [Vℓ−1, Vℓ). The remainder of the ℓ-th phase is again exponential, so there are

k − ℓ + 1 phases left to negate the non-positive variable X i(Tτ). Therefore we write

p
−
i+1(u) =

d−i

∑
k=1

ai+1,k

k

∑
ℓ=1

P(X i(Tτ)+Vℓ−1 ⩽ u < X i(Tτ)+Vℓ , X i(Tτ)+(Vk−Vℓ+Tν) > 0), (5.39)

where by Proposition 5.2.1, X i(Tτ) is exponentially distributed with rate ν. Now note that

the two events in the above probability are independent, and their respective probabilities are

P(X i(Tτ) + Vℓ−1 ⩽ u < X i(Tτ) + Vℓ) = ∫
u

0

P(Vℓ − Vℓ−1 > u − x)P(X i(Tτ) + Vℓ−1 ∈ dx)

= ∫
u

0

e
−ν(u−x) ν

ℓ
x
ℓ−1

(ℓ − 1)!e
−νx

dx = Gℓ−1(u)
(5.40)

and

P(X i(Tτ) + (Vk − Vℓ + Tν) > 0) = ∫
∞

0

P(X i(Tτ) > −x)P(Vk − Vℓ + Tν ∈ dx)

= ∫
∞

0

P(X i(Tτ) > −x)ν
k−ℓ+1

x
k−ℓ

(k − ℓ)! e
−νx

dx = Hk−ℓ.

(5.41)

Combining (5.39), (5.40) and (5.41) finally leads to Equation (5.37).





6 Ruin probabilities of Markov additive

processes

6.1 Introduction

Primarily motivated by applications in insurance risk, much attention has been directed to

evaluating ruin probabilities [8]. In this context, one typically assumes that the driving net

cumulative claim process X(⋅) is of Lévy type (or a subclass thereof, such as the compound

Poisson process). With the insurance firm’s initial surplus being u, one is mainly interested in

computing the probability p(u) of the surplus level process u−X(⋅) dropping below 0. If this

is beyond reach, which is often the case, one may settle for the (exact) tail asymptotics, the

goal being to identify an explicit function p̄(u) such that p(u)/p̄(u) → 1 as u→ ∞.

Research into such exact asymptotics goes back about a century. In the regime that the

driving Lévy process is of compound Poisson type, and in case the claim size distribution is

light-tailed, the classical Cramér-Lundberg asymptotics entail that p(u) decays, for u large, like

p̄(u) = α e
−θ⋆u

for positive constants α and θ
⋆
(where the decay rate θ

⋆
solves the so-called

Lundberg equation). In the analysis one often relies on a duality with the stationary workload

in the M/G/1 queue; see e.g. [8, Chapter IV.2] and [37]. Where in the literature the focus lies

on finding the exact tail asymptotics for spectrally-positive (i.e., having only positive jumps)

light-tailed Lévy processes, Bertoin and Doney [17] derive such asymptotics for their spectrally

two-sided counterpart (i.e., having jumps in both directions).

A natural extension of the above body of work concerns exact tail asymptotics of ruin

probabilities in the context of MAPs. Studying such an extension is one of the main objectives

of this chapter, specifically for a spectrally-positive light-tailed MAP. We find that the exact

asymptotics of the ruin probability p(u) are of Cramér-Lundberg type, i.e., they are of the

form p̄(u) = α e
−θ⋆u

for positive α and θ
⋆
. The present chapter complements Chapter 5 and its

prior works, such as [40, 43, 59], which succeeded in identifying the Laplace transform of p(u)
for spectrally one-sided MAPs. With the expressions found there, one could in principle try to

perform Laplace inversion in order to obtain numerical values for p(u), but a complication

is that these become inaccurate in the regime that ruin is rare. The findings of the present

chapter remedy this issue: we provide an asymptotic expansion that becomes increasingly

accurate as u grows.

Cramér-Lundberg asymptotics have been studied for various kinds of specific MAPs. Without

providing an exhaustive overview, we discuss a few relevant contributions. Siegl and Tichy

[118] consider a compound Poisson process with dividend barrier and two possible claim

frequencies governed by a two-state Markov chain. In Jasiulewicz [65] a model is analyzed with

the premium rate depending continuously on the reserve level and the Markov-modulated claim

165
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frequency. More general MAPs of compound Poisson type are studied with constant premium

rate [84] or constant claim frequency [128]. The case where all components of the compound

Poisson process are allowed to change with the background chain is considered by Zhu and

Yang [129]. Typically, for the case that the driving process is of MAP type, the prefactor

α is characterized relatively implicitly; see e.g. [8, Theorem VII.3.7], where α is expressed

in terms of random quantities at a stopping time under an alternative probability measure.

An exception to this is the work of Miyazawa [85] on the Cramér-Lundberg asymptotics of

a Markov-modulated compound Poisson process including jumps at transition epochs. By

considering a ladder-height approach, that work determines an explicit expression for the

prefactor α for this model.

In detail, the contributions of this chapter are the following:

◦ In the first place, we succeed in establishing exact asymptotics p̄(u) = α e
−θ⋆u

for the

ruin probability p(u) in the model where the net cumulative claim process is represented

by a spectrally-positive MAP Y (⋅) with light-tailed claim sizes and negative drift (such

that p(u) → 0 as u → ∞). Through a delicate analysis of the overshoot of Y (⋅) over

level u (under a specific alternative probability measure), we manage to express the

constants α and θ
⋆
in terms of the model primitives. By lower bounding the overshoot

by 0 we obtain, as a by-product, a version of the Lundberg inequality for light-tailed

spectrally-positive MAPs.

◦ Secondly, we show that the ruin probability p(u) can be efficiently computed by simula-

tion; this is particularly useful in the regime that ruin is rare, in which direct simulation

would be extremely time-consuming. To this end, we construct a generalized version

of Siegmund’s algorithm [9, Chapter VI.2], which amounts to performing importance

sampling using the alternative measure that we identified when establishing the exact

asymptotics. The resulting estimator can be considered optimal, in that we succeed

in proving that it has bounded relative error. Numerical experiments reveal that the

number of runs required to obtain an estimate with a given precision (i.e., the ratio

of the width of the confidence interval and the estimate) is essentially constant in u;

this is a huge improvement over direct simulation, under which this number of runs

roughly grows as e
θ
⋆
u
. The experiments also show that p̄(u) = α e

−θ⋆u
is an accurate

approximation of the ruin probability, even for relatively small initial surplus levels u.

A crucial idea underlying our analysis is the observation that in order to identify whether the

spectrally-positive MAP Y (⋅) has crossed level u, it is sufficient to monitor only the maxima

of Y (⋅) between every two successive transition epochs of the background process; in other

words, it is not needed to monitor Y (⋅) continuously in time. The resulting embedded process

turns out to be conceptually substantially simpler than the original one. When deriving the

exact asymptotics via the embedded process, two steps play a key role at the technical level.

(i) The first concerns the introduction of a specific new probability measure Q under which the

net cumulative claim process Y (⋅) has a positive drift, so that ruin occurs almost surely; see

for instance [8, Chapter VII.3]. The main idea is then to write p(u) in terms of the likelihood

ratio of a path to ruin under the original measure P, relative to the new measure Q. This
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reasoning leads to an expression for p(u) in terms of the overshoot of Y (⋅) over u under Q.

(ii) In the second step, which combines application of the Wiener-Hopf decomposition with

the Number of Zeroes proposition, this overshoot is analyzed in further detail (in the regime

that u→ ∞).

The outline of this chapter is as follows. Section 6.2 defines our MAP Y (⋅), introduces the
ruin probability p(u), and highlights relevant preliminary results. The change-of-measure

argument is carried out in Section 6.3, which leads, as mentioned above, to an expression

for p(u) in terms of the overshoot of Y (⋅) over u under Q. As an intermediate step towards

the identification of the exact asymptotics of p(u), the purpose of Section 6.4 is to find the

transform of the overshoot distribution under Q. As it turns out, this overshoot transform can

be expressed in terms of the solution to a set of linear equations. Combining the above findings,

in Section 6.5 the exact asymptotics of the ruin probability are derived (i.e., the constants

α and θ
⋆
in p̄(u) = α e

−θ⋆u
are identified). A simulation algorithm of generalized Siegmund

type, enabling fast estimation of p(u), is given in Section 6.6. In addition, we give a proof for

its bounded relative error, making the algorithm particularly useful in the rare-event regime.

Finally, Section 6.7 presents the output of simulation experiments that provide an indication

of the achievable speedup, as well as of the accuracy of the approximation p(u) ≈ p̄(u).

6.2 Model and preliminaries

In this section we first introduce the model that we consider in this chapter. This is followed

by a description of our specific objective regarding the ruin probability. We then discuss the

Wiener-Hopf decomposition for spectrally-positive Lévy processes and the result (the Number

of Zeroes proposition) concerning the number of singularities of a spectrally one-sided MAP.

Finally, we briefly outline the approach that we will follow in later sections to establish the

exact asymptotics.

The model and preliminaries strongly resemble those featuring in Chapter 5, save for a few

specific aspects (e.g. the restriction to spectrally-positive processes, the background process

being irreducible, no killing, and slightly different versions of the Wiener-Hopf decomposition

and Number of Zeroes Proposition). Accordingly, much of the notation of Chapter 5 carries

over to the present chapter.

Model

We start by defining our model. Let the background process J(⋅) ≡ (J(t))t⩾0 be an irreducible

continuous-time Markov chain with state space {1, ..., d} for d > 1. The corresponding generator

matrix is given by Q ∶= (qij)di,j=1, with qi ∶= −qii > 0, having invariant probability distribution

π = (π1, . . . , πd). Associated with every state i, let Xi(⋅) ≡ (Xi(t))t⩾0 be a spectrally-positive

Lévy process, evolving independently of J(⋅). Our model is a MAP Y (⋅) with background

chain J(⋅), underlying Lévy processes X1(⋅), ..., Xd(⋅) and jumps distributed as Lij when a

transition from state i to state j occurs. We assume that Y (0) = 0.
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Objective

The aim of this chapter is to identify the tail asymptotics of the maximum of the MAP

conditional on the initial background state being i ∈ {1, . . . , d}. That is, with

pi(u) ∶= P(max
s⩾0

Y (s) ⩾ u ∣ J(0) = i),

we wish to find an explicit function p̄i(u) such that pi(u)/p̄i(u) → 1 as u→ ∞. We say that

p̄i(u) are the exact asymptotics of pi(u). We throughout assume that Y (⋅) has a negative drift,

i.e.,

µ ∶=
d

∑
i=1

πiE (Xi(1)) +
d

∑
i=1

∑
k≠i

πiqik E (Lij) < 0, (6.1)

such that exceeding u is increasingly rare as u→ ∞; in the actuarial literature, this condition

is known as the net profit condition. The focus is on a light-tailed spectrally-positive MAP,

under which pi(u) decays effectively exponentially. We provide a more precise description of

what we mean by the MAP being light-tailed in Section 6.3.

Preliminaries

As in Chapter 5, the Wiener-Hopf decomposition and the Number of Zeroes proposition play

a crucial role in the analysis. Since we focus on the spectrally-positive case, we only use the

corresponding part of the Wiener-Hopf decomposition.

Proposition 6.2.1 (Wiener-Hopf decomposition). Let (X(t))t⩾0 be a spectrally-positive Lévy

process. Then X(Tν) can be decomposed as the sum of the two independent quantities X(Tν)
and X(Tν) −X(Tν). Moreover, X(Tν) −X(Tν) has the same distribution as X(Tν) which is

distributed as −Tψ(ν). In addition,

E (e−γX(Tν)) =
ν

ν − φ(γ) (1 − γ

ψ(ν)) .

For a detailed account, see e.g. Kyprianou [73, Chapter 6].

Likewise, we require the Number of Zeroes proposition [61, Theorem 2] for the spectrally-

positive case only.

Proposition 6.2.2 (Number of Zeroes). Let (Y (t))t⩾0 be a spectrally-positive MAP, and let

the underlying background process (J(t))t⩾0 be irreducible. Then the equation det M(γ) = 0

has d − ∣S↑∣ − 1µ⩽0 solutions in C with positive real part.

Approach

We conclude this section with a short account of the approach followed in the derivation

of the exact asymptotics, as covered by Sections 6.3–6.5. The MAP itself being a rather

involved object, we work with a more manageable embedded version. This embedded process
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is constructed in such a way that the event of the MAP exceeding u is equivalent to the event

of the embedded process exceeding u. More specifically, throughout this chapter we restrict

ourselves, similar to the approach followed in Chapter 5, to the value of Y (⋅) at only three

types of time points. In the interval between two transitions of the background process we

record the value of Y (⋅)

(i) at the start of the interval (right after the jump at transition epoch, that is),

(ii) at the epoch that the maximum value (within the interval) is achieved, and

(iii) at the end of the interval (right before the jump at transition epoch, that is).

It can be seen that in order to verify whether Y (⋅) exceeds u we can restrict ourselves to the

values of the MAP at epochs of type (ii). The increments of the MAP between the embedded

time points are relatively straightforward to deal with, as a consequence of Proposition 6.2.1.

In Section 6.3 we work with the above embedding to find an alternative expression for the

ruin probability under an alternative measure Q. Concretely, we succeed in expressing pi(u)
in terms of the overshoot of Y (⋅) over level u under Q. This overshoot is then analyzed in

Section 6.4, which eventually leads to the exact asymptotics of pi(u) in Section 6.5.

6.3 Change of measure

In this section we derive an alternative expression for the ruin probability pi(u) by applying a

change of measure. The derivation consists of the following four steps:

1. constructing a system of equations for finding the positive solution to the so-called

Lundberg equation, providing the candidate for the exponential decay rate θ
⋆
appearing

in the exact asymptotics of pi(u) (we show later that θ
⋆
is independent of the initial

state i);

2. defining an embedding of the MAP Y (⋅), based on the time points of type (i), (ii) and (iii)

that were introduced in Section 6.2;

3. defining an alternative probability measure Q, also corresponding to a MAP, but with

different driving Lévy processes, a different Markovian background process, and jumps

at transition epochs having different distributions;

4. calculating the likelihood ratio of the actual probability measure P with respect to the

new probability measure Q, through which we find a compact expression for our target

probability pi(u).

The compact expression for pi(u) provides us with an explicit (exponentially decaying) bound

on pi(u), uniformly in u ⩾ 0. More importantly, however, it also eventually allows us to

evaluate the exact asymptotics of pi(u), as shown in Sections 6.4 and 6.5.
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Step 1: the Lundberg equation

The Lundberg equation, which yields the candidate for the exponential decay rate θ
⋆
appearing

in the exact asymptotics of pi(u), involves the increment of the MAP between two consecutive

epochs that the background state changes to an (arbitrarily chosen) reference state i0 ∈

{1, . . . , d}. The goal of Step 1 is to quantify the moment generating function of this increment,

providing the solution to the Lundberg equation.

Denote, for i = 1, . . . , d, by (V n
i )n∈N a sequence of independent random variables being

distributed as the generic random variable Vi ∶= Xi(Tqi) (in words: the maximum of the

spectrally-positive Lévy process Xi(⋅) over an exponentially distributed time with mean q
−1
i ).

Also, denote by (W n
i )n∈N a sequence of independent random variables distributed as the generic

random variable Wi ∶= −Xi(Tqi) (in words: minus the minimum of the spectrally-positive Lévy

process Xi(⋅) over an exponentially distributed time with mean q
−1
i ); recall from Proposition

6.2.1 that Wi is exponentially distributed with parameter δi ∶= ψi(qi). Let the resulting 2d

sequences be independent. Due to Proposition 6.2.1, the Laplace-Stieltjes transforms of these

random variables are given by

vi(α) ∶= E (e−αVi) = ∫
∞

0

e
−αx

f
(P)
i (x) dx =

qi
qi − φi(α)

(1 − α

δi
) ,

wi(α) ∶= E (e−αWi) = ∫
∞

0

e
−αx

g
(P)
i (x) dx =

δi
δi + α

,

with f
(P)
i (⋅) the density of Vi and g

(P)
i (⋅) the density of Wi (for ease assumed to exist), both

under the original measure P. Below, we will use the notation h
(P)
ij (⋅) for the density of Lij

under P.

Now fix a reference state i0 ∈ {1, . . . , d}, and define by U the increment of Y (⋅) between

two subsequent visits of the background process to this state i0. That is, if tn and tm are

two subsequent times that the background chain enters state i0, then U is distributed as

Y (tm)−Y (tn). We assume that we are in the light-tailed regime, in the sense that the Lundberg

equation

ũ(θ) ∶= E (eθU) = 1

has a positive solution, say θ
⋆
; in the literature, ũ(θ) is referred to as the moment generating

function (mgf) of the random variable U .

Two remarks are in place now. In the first place, the fact that the Lundberg equation has

a positive solution implies that the jumps Lij have a finite mgf in an open interval around

the origin, and that the same holds for the mgfs of the possible upward jumps of the Lévy

processes Xi(⋅). It is for this reason that we call the driving MAP Y (⋅) light-tailed. In the

second place, we note that it may seem that θ
⋆
depends on the reference state i0 chosen.

Below, however, we argue that the choice of i0 does not affect the value of θ
⋆
.

Next, we show that we can express the root θ
⋆
in terms of a generalized eigensystem. Let

yj ≡ yj(θ), for j /= i0, be the moment generating function of the increment of Y (⋅), with the

background process starting in state j, before the background process reaches the reference

state i0. To derive a system of equations, consider an increment of Y (⋅) in an interval of the
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type (tn, tn+1], that is, an interval between two successive transition epochs of the background

process J(⋅). By Proposition 6.2.1, we know that such an increment can be written as the

sum of three independent variables: the maximum of the corresponding Lévy process in this

interval, the decrease after this maximum, and the jump at the transition epoch. In terms of

moment generating functions this leads to the equations

ũ(θ) = yi0 = vi0(−θ)wi0(θ) ∑
j/=i0

qi0j
qi0

λi0j(−θ) yj,

and, for j /= i0,

yj = vj(−θ)wj(θ)
⎛
⎜
⎝
qji0
qj
λji0(−θ) + ∑

k/=j,i0

qjk
qj
λjk(−θ) yk

⎞
⎟
⎠
. (6.2)

Then we equate ũ(θ) to 1, in order to find θ
⋆
. We thus end up with the following system of

equations: for i = 1, . . . , d,

qiyi = vi(−θ)wi(θ) ∑
j/=i
qijλij(−θ) yj, (6.3)

with yi0 = 1. Note that if y solves this system of equations, then so does c ⋅ y for any c,

implying that the solution θ
⋆
does not depend on the reference state i0. It also means that

y is unique up to a multiplication by a factor, so that ratios of the type yi/yj are uniquely

determined. Due to the fact that the components of the vector y = y(θ⋆) can be interpreted as

moment generating functions, we conclude that y is necessarily componentwise positive. Below

we will use the eigenvalue/eigenvector pair (θ⋆,y) when defining the alternative measure Q.

Step 2: the embedding

The idea is to embed the process Y (⋅) into a simpler process that still contains all information

based on which it can be determined whether it exceeds level u. To this end, observe that it

suffices to consider only the values of Y (⋅) that correspond to maxima between transitions

of the background process. This observation is visualized in Figure 6.1; the maxima between

transition epochs (i.e., the dots) give all information that is needed to verify whether level u is

ever crossed.

Define the embedded process (Sn)n by

S0 ∶= V
0
K0
,

Sn ∶= Sn−1 −W
n
Kn−1

+ L
n
Kn−1,Kn

+ V
n
Kn
, n = 1, 2, . . . ,

with K0 ∶= J(0) and Kn ∶= J(tn) denoting the state of the background process right after the

n-th transition of the background process.

As discussed above, and appealing to Proposition 6.2.1 to justify the independence between

the sequences (V n
i )n∈N and (W n

i )n∈N, we can rewrite the ruin probability pi(u) in terms of

the embedded process (Sn)n, as follows:

pi(u) = P(∃n ∈ N0 ∶ Sn ⩾ u ∣K0 = i).
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Figure 6.1: Example of a MAP with two background states, with dots representing the embedded

process (Sn)n. That is, the dots represent the maxima of the intervals [tn, tn+1) for n ∈ N.

Step 3: construction of the alternative probability measure

To evaluate the ruin probability in the regime that u→ ∞, we work with a change of measure.

Particularly, we set up the alternative probability measure Q (to be defined below), under

which the process is still a MAP, but now has positive drift. The goal is to evaluate pi(u)
where the path of (Sn)n is sampled under Q. The measure Q is such that

EQ (eθU) = E (e(θ+θ
⋆)U) = ũ(θ + θ

⋆) (6.4)

(where a more descriptive definition will be given below). From ũ(⋅) being convex, ũ
′(0) < 0

(due to (6.1)) and ũ(0) = ũ(θ⋆) = 1, it follows that ũ
′(θ⋆) > 0, which means that under the

new measure Q the drift of (Sn)n has become positive, so that u is eventually exceeded almost

surely under Q. As an aside, we also note that if state i corresponds to a subordinator process

Xi(⋅) under P, then the same applies under Q (and vice versa).

Let ℓ ≡ ℓ(S) be the appropriate likelihood ratio (or Radon-Nikodym derivative), which records

the likelihood of the path of (Sn)n under P relative to Q (until (Sn)n exceeds u, that is). Then

we have the following standard equality translating the likelihood of outcomes under Q into

those under P:

pi(u) = E(1{∃n ∈ N0 ∶ Sn ⩾ u} ∣K0 = i) = EQ(ℓ(S)1{∃n ∈ N0 ∶ Sn ⩾ u} ∣K0 = i).

An important benefit of working with Q is that under this measure, the event in the indicator

function has probability 1 due to the positive drift, whereas under P the same probability

vanishes as u becomes large; as a consequence,

pi(u) = EQ(ℓ(S) ∣K0 = i). (6.5)

It is noted that by many other definitions of Q we could have achieved a positive drift, and

thus the validity of (6.5). The crucial feature of our specific alternative measure, as given in

(6.4), however, is that for this Q the likelihood ratio ℓ takes a simple form, as we will show

below.
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The alternative measure Q, in an abstract sense defined via (6.4), is concretely described

as follows. Under Q, the distributions of (V n
i )n and (W n

i )n are characterized through the

densities

f
(Q)
i (x) = f

(P)
i (x) e

θ
⋆
x

vi(−θ⋆)
, g

(Q)
i (x) = g

(P)
i (x) e

−θ⋆x

wi(θ⋆)
,

respectively, for i = 1, . . . , n and x > 0. Note that this means that the Laplace-Stieltjes

transform of the (V n
i )n under Q becomes

v
(Q)
i (α) = vi(α − θ

⋆)
vi(−θ⋆)

and that under Q the (W n
i )n are exponentially distributed with parameter

δ
(Q)
i ∶= δi + θ

⋆
.

In addition, the (Lnij)n under Q have density

h
(Q)
ij (x) = h

(P)
ij (x) e

θ
⋆

x

λij(−θ⋆)
,

where, in the same way as above, the corresponding Laplace-Stieltjes transform can be verified

to be λ
(Q)
ij (α) = λij(α − θ

⋆)/λij(−θ⋆).
Now that we have defined the driving Lévy processes and the jumps at transition epochs under

Q, we conclude by considering the transition rates of the background process under Q. For

i /= j these become

q
(Q)
ij = qijλij(−θ⋆)

yj
yi
.

It is readily verified that this choice implies that the diagonal elements of the transition rate

matrix under Q are

q
(Q)
ii = −∑

j/=i
q
(Q)
ij = −∑

j/=i
qijλij(−θ⋆)

yj
yi

= −qi
1

vi(−θ⋆)wi(θ⋆)
,

where the last equality is by virtue of (6.3).

Step 4: the likelihood ratio

The next step is to evaluate the likelihood ratio ℓ(S) on a path such that (Sn)n reaches u,

which is equal to pi(u) by (6.5). Let N ≡ N(u) denote the first n for which Sn ⩾ u (which is

under the new measure Q finite almost surely). Then ℓ ≡ ℓ(S) can be written as the product

of four factors:

◦ In the first place there is the contribution of the ‘in between maxima’ V
0
K0
, . . . , V

N
KN

:

N

∏
m=0

f
(P)
Km

(V m
Km

)
f
(Q)
Km

(V m
Km

)
=

N

∏
m=0

vKm
(−θ⋆) e−θ

⋆
V

m
Km .
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◦ Secondly, there is the contribution of the ‘in between minima’ W
0
K0
, . . . ,W

N−1
KN−1

:

N−1

∏
m=0

g
(P)
Km

(Wm
Km

)
g
(Q)
Km

(Wm
Km

)
=

N−1

∏
m=0

wKm
(θ⋆) eθ

⋆
W

m
Km .

◦ In the third place, there is the contribution of the jumps at transition epochs of the

background process L
1
K0,K1

, . . . , L
N
KN−1,KN

:

N

∏
m=1

h
(P)
Km−1,Km

(LmKm−1,Km
)

h
(Q)
Km−1,Km

(LmKm−1,Km
)
=

N

∏
m=1

λKm−1,Km
(−θ⋆) e−θ

⋆
L
m
Km−1,Km .

◦ And finally there is the contribution due to the jumps of the background process:

N

∏
m=1

qKm−1,Km
/qKm−1

q
(Q)
Km−1,Km

/q(Q)
Km−1

.

It is readily verified (recognizing a ‘telescopic product’) that this contribution simplifies

to

yi
yKN

(
N−1

∏
m=0

vKm
(−θ⋆) ⋅

N−1

∏
m=0

wKm
(θ⋆) ⋅

N

∏
m=1

λKm−1,Km
(−θ⋆))

−1

.

It is also noted that, by the definition of the process (Sn)n,
N

∑
m=0

V
m
Km

−
N−1

∑
m=0

W
m
Km

+
N

∑
m=1

L
m
Km−1,Km

= SN .

Multiplying the above four components of the likelihood ratio, the resulting expression greatly

simplifies. It means that, upon combining the above, and recalling the identity (6.5), we have

arrived at the following result.

Theorem 6.3.1. For all u ⩾ 0 and i ∈ {1, . . . , d},

pi(u) = EQ ( yi
yKN

vKN
(−θ⋆) e−θ

⋆
SN) .

Remark 6.3.1. To get insight into the expression found in Theorem 6.3.1, compare it to its

counterpart for the maximum of a random walk with independent and identically distributed

increments (Xn)n∈N (distributed as the generic random variable X). With p(u) the probability
of the random walk exceeding level u, and SN denoting the value of this random walk at the

moment N that u is crossed, a similar change of measure yields p(u) = EQ(e−θ
⋆
SN ), with θ⋆

solving E[eθ
⋆
X] = 1 and the X under Q having Laplace-Stieltjes transform

EQ (e−αX) = E (e−(α−θ⋆)X) .

This principle underlies the celebrated Siegmund algorithm for efficiently estimating p(u); see
for a detailed account e.g. [9, Equation (2.5)]. The additional factors for the MAP case, as

appearing in Theorem 6.3.1, have two reasons. First, the factor yi/yKN
reflects the impact of
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the initial and eventual background states of the MAP. Secondly, regarding vKN
(−θ⋆), one

could say that (by definition) the number of ‘steps’ of the embedded process (Sn)n is odd:

in step n there have been n + 1 contributions ‘of the V -type’, and just n contributions ‘of

the (−W + L)-type’, the consequence being that at step N the contribution of the moment

generating function of one of the Vi (namely the last one) has not been neutralized. This

results in the additional factor vKN
(−θ⋆) in the expression for pi(u). ⋄

While the focus of the section lies on deriving an alternative expression for pi(u), as a

by-product we obtain a uniform upper bound on pi(u). To this end, we define

y
+
∶= max

j=1,...,d

yi
yj
, v

+
∶= max

j=1,...,d
vj(−θ⋆).

Realizing that by definition SN ⩾ u, the following result, which can be seen as the MAP-

counterpart of the conventional Lundberg inequality, is an immediate consequence of Theorem

6.3.1.

Corollary 6.3.1. For all u ⩾ 0 and i ∈ {1, . . . , d},

pi(u) ⩽ y
+
v
+
e
−θ⋆u

.

Observe that SN can be decomposed into u + R(u), with R(u) denoting the ‘overshoot’ of

the embedded process (Sn)n over level u (i.e., SN(u) − u ⩾ 0); we also write N(u) rather than

just N to stress the dependence on u. This means that if we manage to compute, for θ > 0,

i = 1, ..., d,

rij(θ) ∶= lim
u→∞

EQ (e−θR(u)
1{KN(u) = j} ∣K0 = i) ,

then Theorem 6.3.1 would entail

lim
u→∞

pi(u) eθ
⋆
u
=

d

∑
j=1

rij(θ⋆)
yi
yj
vj(−θ⋆), (6.6)

which is the MAP-counterpart of the classical Cramér-Lundberg asymptotics that we were

aiming at. Therefore, we would be done if we would be able to devise a way to compute the

overshoot transform rik(θ). As it turns out, this can be done by taking a second transform

(with respect to u): note that

rij(θ) = lim
α↓0

α sij(α, θ),

where

sij(α, θ) ∶= ∫
∞

0

e
−αu

EQ (e−θR(u)
1{KN(u) = j} ∣K0 = i) du. (6.7)

Informally, the object α sij(α, θ)) corresponds to the overshoot over an exponentially dis-

tributed threshold with mean α
−1
, which grows to ∞ when sending α ↓ 0. In other words:

what is left is (i) computing sij(α, θ), and (ii) let α ↓ 0 in α sij(α, θ). These are the topics of

the next two sections.
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6.4 Computing the overshoot transform

In this section we are interested in evaluating the double transform sij(α, θ) corresponding to

the target level u and the overshoot R(u), as defined in (6.7). Recall that i and j respectively

represent the initial background state and the state at the time level u is crossed. To find an

expression for sij(α, θ), we distinguish three scenarios for the MAP during the first background

state i:

1. Level u has been crossed before the first transition of the background process. This only

leads to a contribution if i = j.

2. Level u has not been crossed before the first transition of the background process, but due

to the jump at the transition epoch it crosses level u. This only leads to a contribution

if i ≠ j.

3. Level u is not crossed before or at the first transition epoch of the background process

(to state k, say), but later it is.

We now split sij(α, θ) into the components s
(1)
i (α, θ), s(2)ij (α, θ), and s(3)ijk(α, θ) corresponding

to the above three scenarios. In the first place, for i /= j we have

sij(α, θ) =
q
(Q)
ij

q
(Q)
i

s
(2)
ij (α, θ) v(Q)

j (θ) +∑
k≠i

q
(Q)
ik

q
(Q)
i

s
(3)
ijk(α, θ), (6.8)

where

v
(Q)
i (θ) ∶= EQ (e−θVi) =

vi(θ − θ
⋆)

vi(−θ⋆)
,

with s
(2)
ij (α, θ) and s

(3)
ijk(α, θ) evaluated below. The first term in the right-hand side of (6.8) is

interpreted as the contribution due to the scenario in which Vi remains below u, a transition

from background state i to background state j is made, and the corresponding jump brings

Y (⋅) above u; in this scenario the overshoot includes an extra Vj (because we consider the

embedded process, see Step 2 in Section 3). The second term in the right-hand side of (6.8)

reflects the scenario in which Vi remains below u, and a transition from background state i to

background state k /= i is made such that after the corresponding jump the process Y (⋅) is

still below u. The transform s
(2)
ij (α, θ) is formally defined by

∫
∞

0

e
−αu

EQ (e−θR(u)
1{Ȳ (t1) < u, Y (t1) + Lij ⩾ u,K1 = j} ∣K0 = i) du,

in which case R(u) = Y (t1) + Lij + Vj − u, and the transform s
(3)
ijk(α, θ) by

∫
∞

0

e
−αu

EQ (e−θR(u)
1{Ȳ (t1) < u, Y (t1) + Lij < u,K1 = k,KN(u) = j} ∣K0 = i) du.

In the case that i = j we obtain along similar lines

sii(α, θ) = s
(1)
i (α, θ) +∑

k≠j

q
(Q)
ik

q
(Q)
i

s
(3)
iik(α, θ), (6.9)
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with s
(1)
i (α, θ) evaluated below. The first term in the right-hand side of (6.9) is the contribution

due to the scenario in which Vi exceeds u. In the second term in the right-hand side of (6.8) we

have that Vi remains below u, and a transition from background state i to background state

k /= j is made such that after the corresponding jump Y (⋅) is still below u. The transform

s
(1)
i (α, θ) is formally defined by

∫
∞

0

e
−αu

EQ (e−θR(u)
1{Ȳ (t1) ⩾ u} ∣K0 = i) du,

in which case R(u) = Ȳ (t1) − u.

We now further evaluate the expressions of s
(1)
i (α, θ), s(2)ij (α, θ), and s

(3)
ijk(α, θ). First, by

conditioning on the value of Vi ∈ [u,∞), we directly find that

s
(1)
i (α, θ) = ∫

∞

u=0

e
−αu ∫

∞

v=u

f
(Q)
i (v) e−θ(v−u) dv du.

By conditioning on Vi ∈ [0, u), Wi and Lij ∈ [u − (Vi −Wi),∞), we also have that

s
(2)
ij (α, θ) = ∫

∞

u=0

e
−αu ∫

u

v=0

f
(Q)
i (v) ∫

∞

w=0

g
(Q)
i (w) ∫

∞

z=u−v+w
h
(Q)
ij (z) e−θ(v+z−u−w)

dz dw dv du.

Analogously, conditioning on Vi ∈ [0, u), Wi and Lij ∈ [0, u − (Vi −Wi)),

s
(3)
ijk(α, θ) = ∫

∞

u=0

e
−αu ∫

u

v=0

f
(Q)
i (v)

∫
∞

w=0

g
(Q)
i (w) ∫

u−v+w

z=0

h
(Q)
ik (z) rkj(θ, u − v + w − z) dz dw dv du,

where

rkj(θ, u) ∶= EQ(e−θR(u)
1{KN(u) = j} ∣K0 = k).

Next, for each of the quantities, we swap the order of the integrals so that the most elementary

integration (i.e., the one over u), becomes the innermost integral. Then this integral is computed,

and after that the other integrals can be evaluated successively.

Along the lines that we sketched above, we obtain

s
(1)
i (α, θ) = ∫

∞

v=0

f
(Q)
i (v) e−θv ∫

v

u=0

e
(θ−α)u

du dv

=
1

θ − α
∫

∞

v=0

f
(Q)
i (v) (e−αv − e

−θv) dv =
v
(Q)
i (α) − v

(Q)
i (θ)

θ − α
.

For s
(2)
ij (α, θ), a similar strategy can be followed. This yields

s
(2)
ij (α, θ) = ∫

∞

v=0

f
(Q)
i (v) ∫

∞

z=0

h
(Q)
ij (z)∫

∞

w=0

δ
(Q)
i e

−δ
(Q)
i w ∫

z+v−w

u=v

e
(θ−α)u

e
−θ(z+v−w)

du dw dz dv

=
δ
(Q)
i

α − θ
∫

∞

v=0

f
(Q)
i (v)∫

∞

z=0

h
(Q)
ij (z) ∫

∞

w=0

e
−δ

(Q)
i w (e−αv−θ(z−w)

− e
−α(z+v−w)) dw dz dv

=
δ
(Q)
i

α − θ
∫

∞

v=0

e
−αv

f
(Q)
i (v) dv∫

∞

z=0

h
(Q)
ij (z) ( e

−θz

δ
(Q)
i − θ

−
e
−αz

δ
(Q)
i − α

) dz

=
δ
(Q)
i

α − θ
v
(Q)
i (α)

⎛
⎜
⎝
λ
(Q)
ij (θ)

δ
(Q)
i − θ

−
λ
(Q)
ij (α)

δ
(Q)
i − α

⎞
⎟
⎠
,
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where

λ
(Q)
ij (θ) ∶= EQ (e−θLij) =

λij(θ − θ
⋆)

λij(−θ⋆)
.

We calculate s
(3)
ijk(α, θ) in a similar fashion. In addition to the usual rearrangement of the

integrals, we perform the change-of-variable y = x − u + v, so as to obtain

s
(3)
ijk(α, θ)

= ∫
∞

u=0

e
−αu ∫

u

v=0

f
(Q)
i (v)∫

∞

x=u−v
δ
(Q)
i e

−δ
(Q)
i (x−u+v) ∫

x

z=0

h
(Q)
ik (z) rkj(θ, x − z) dz dx dv du

= δ
(Q)
i ∫

∞

z=0

h
(Q)
ik (z) ∫

∞

x=z

e
−δ

(Q)
i x

rjk(θ, x − z) ∫
∞

v=0

e
−δ

(Q)
i v

f
(Q)
i (v) ∫

v+x

u=v

e
(δ(Q)

i −α)u
du dv dx dz

=
δ
(Q)
i

α − δ
(Q)
i

∫
∞

z=0

h
(Q)
ik (z) ∫

∞

x=z

(e−δ
(Q)
i x

− e
−αx) rjk(θ, x − z) ∫

∞

v=0

e
−αv

f
(Q)
i (v) dv dx dz

=
δ
(Q)
i

α − δ
(Q)
i

v
(Q)
i (α)∫

∞

z=0

h
(Q)
ik (z) ∫

∞

x=z

(e−δ
(Q)
i x

− e
−αx) rjk(θ, x − z) dx dz

=
δ
(Q)
i

α − δ
(Q)
i

v
(Q)
i (α)∫

∞

z=0

h
(Q)
ik (z) ∫

∞

x=0

(e−δ
(Q)
i (x+z)

− e
−α(x+z)) rkj(θ, x) dx

=
δ
(Q)
i

α − δ
(Q)
i

v
(Q)
i (α) (λ(Q)

ik (δ(Q)
i ) skj(δ(Q)

i , θ) − λ
(Q)
ik (α) skj(α, θ)) .

We have thus managed to express the entries of the vector

sj(α, θ) ≡ (s1j(α, θ), . . . , sdj(α, θ))⊤

in themselves. We proceed by writing the resulting linear equations in vector/matrix-form. To

this end, note that under Q the matrix M(α) has entries

mij(α) ∶= q
(Q)
ij λ

(Q)
ij (α) + φ

(Q)
i (α)1{i=j}.

For the remainder of this section, the notation M(α) implies that we are working under the

measure Q. Also, with

bj(α, θ) ≡ (b1j(α, θ), . . . , bdj(α, θ))⊤,
we define

bij(α, θ) ∶= ∑
k≠i

q
(Q)
ik λ

(Q)
ik (δ(Q)

i ) skj(δ(Q)
i , θ) + 1{i=j} (φ(Q)

i (α) − q
(Q)
i )

v
(Q)
j (α) − v

(Q)
j (θ)

θ − α
+

1{i≠j}q
(Q)
ij v

(Q)
j (θ) α − δ

(Q)
i

α − θ

⎛
⎜
⎝
λ
(Q)
ij (θ)

δ
(Q)
i − θ

−
λ
(Q)
ij (α)

δ
(Q)
i − α

⎞
⎟
⎠
.

It is useful to observe that if background state i corresponds to a non-decreasing subordinator,

we have δi → ∞, so the expression simplifies to

bij(α, θ) ∶= 1{i=j} (φ(Q)
i (α) − q

(Q)
i )

v
(Q)
j (α) − v

(Q)
j (θ)

θ − α
.
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To obtain a system of equations for sj(α, θ), we combine (6.8) and (6.9) with the expressions

for s
(1)
i (α, θ), s(2)ij (α, θ), and s(3)ijk(α, θ). When multiplying (6.8) and (6.9) by

q
(Q)
i

v
(Q)
i (α)

α − δ
(Q)
i

δ
(Q)
i

= φ
(Q)
i (α) − q

(Q)
i

for each i = 1, ..., d, it is seen that, for any given α and θ, we obtain the following system of

linear equations.

Theorem 6.4.1. For any α > 0 and θ > 0, and for j = 1, . . . , d,

M(α) sj(α, θ) = bj(α, θ).

We would be able to determine the vector sj(α, θ) from Theorem 6.4.1, were it not for the

fact that for i ∉ S
↑
, k ∈ {1, ..., d}, the quantities skj(δi, θ) appearing in bij(α, θ) are unknown.

Defining

ωij ≡ ωij(θ) ∶= ∑
k≠i

q
(Q)
ik λ

(Q)
ik (δ(Q)

i ) skj(δ(Q)
i , θ),

we now turn our attention towards finding (ωij)i∉S↑ .

Note that, using the linear equations given in Theorem 6.4.1, one may express the vector

sj(α, θ) by relying on Cramer’s rule. More concretely, with the matrix Mbj ,i(α, θ) denoting

the matrix M(α) in which the i-th column is replaced by the vector bj(α), we have that

sij(α, θ) =
detMbj ,i(α, θ)
detM(α) . (6.10)

Since sij(α, θ) is finite, any zero of the denominator should be a zero of the numerator.

According to Proposition 6.2.2, detM(α) = 0 has d
◦ ∶= d − ∣S↑∣ zeroes in the right half

of the complex plane (recalling that the asymptotic drift is positive under Q). For ease of

exposition, we let these zeroes have multiplicity 1 (and we call them, say, α1, . . . , αd◦). When

this multiplicity property does not hold, a reasoning similar to the one below still applies, but

one needs to resort to the concept of Jordan chains; we do not discuss this procedure in detail,

but instead refer to the in-depth treatment in [43].

Having distinct zeroes guarantees that we have d
◦
equations to identify the ωij. That is, for

i = 1, . . . , d and j = 1, . . . , d
◦
,

detMbj ,i(αj, θ) = 0; (6.11)

in other words, the zeroes of detM (in the right half of the complex plane, that is) are also

zeroes of detMbj ,i, for each i = 1, . . . , d.

By precisely the same argument as the one given in Section 5.3.3, Equation (6.11) provides the

same information for any i = 1, ..., d, so it suffices to consider just the equationMbj ,1(αj, θ) = 0.

With M̄ik(α) representing the (d − 1) × (d − 1) matrix which results after deleting the i-th

column and the k-th row from M(α), this equation can be rewritten as

∑
i∉S↑

(−1)i−1
⎛
⎜
⎝
ωij + 1{i≠j}q

(Q)
ij v

(Q)
j (θ)

αj − δ
(Q)
i

αj − θ

⎛
⎜
⎝
λ
(Q)
ij (θ)

δ
(Q)
i − θ

−
λ
(Q)
ij (αj)

δ
(Q)
i − αj

⎞
⎟
⎠
⎞
⎟
⎠
det M̄i1(αj)

+ (−1)j−11{i=j} (φ(Q)
i (αj) − q

(Q)
i )

v
(Q)
j (αj) − v

(Q)
j (θ)

θ − αj
det M̄j1(αj) = 0.
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We thus obtain d
◦
equations (one for each αj) that are linear in the unknowns ω1j, . . . , ωd◦j,

which can be dealt with in the standard manner, thus yielding a solution for the ωij. This

procedure can be repeated for each eventual state j. Now that the quantities ωij (for i /∈ S
↑
)

are known, Equation (6.10) expresses sij(α, θ) in terms of known quantities.

6.5 Exact tail asymptotics

As pointed out at the end of Section 3, in order to evaluate rij(θ⋆), we are interested in

limα↓0 αsij(α, θ⋆). The purpose of this section is to find an explicit expression for this limit,

and consequently determining the exact asymptotics of pi(u) by Equation (6.6). We rely on

the fact that from Section 6.4 we know how sij(α, θ⋆) can be evaluated.

It is first observed that as α ↓ 0, the denominator ∂(α) ∶= detM(α) of (6.10) tends to 0, so

that L’Hopital’s rule gives

lim
α↓0

α

∂(α) =
1

∂ ′(0) .

This explains why we first study the behavior of ∂(α) as α ↓ 0. To this end, we write, taking

entry-wise Taylor expansions at α = 0,

M(α) = Q + αZ +O(α2),

where Z = (zij)di,j=1 is given by

zij ∶= φ
(Q)′
i (0)1{i=j} + q

(Q)
ij λ

(Q)′
ij (0)1{i≠j}.

Hence, we can express ∂(α) as the determinant of a sum. In order to work with determinants

of sums, we have the following lemma. Let C
E
k be the matrix consisting of all columns of C,

but with its k-th column replaced with the k-th column of E.

Lemma 6.5.1. If C and E are d × d matrices, then, as ε ↓ 0,

det(C + εE) = det(C) + ε
d

∑
k=1

det(CE
k ) +O(ε2).

Proof. Recall that det(C + εE) is the sum of 2
d
determinants; one for each possible matrix in

which each of the columns equals the corresponding column of C or εE. Using this rule, one

can write det(C + εE) as a polynomial in ε of degree d where the coefficients of the ε
ℓ
are

sums of (d
ℓ
) determinants of the above type. The result follows by isolating the terms that do

not depend on ε and those that are linear in ε, and by in addition aggregating all terms that

correspond to ε
2
, . . . , ε

d
.

The idea is now to set C = Q + αZ, ε = α
2
and E any finite matrix in the above lemma. It

immediately follows that ∂(α) = det(Q+αZ)+O(α2). We then use the lemma a second time,

but now with C = Q, ε = α and E = Z, so as to obtain

∂(α) = detQ + α
d

∑
k=1

det(QZ
k ) +O(α2) = α

d

∑
k=1

det(QZ
k ) +O(α2).
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Hence, we obtain

lim
α↓0

α

∂(α) =
1

∂ ′(0) =
1

∑d

k=1 det(QZ
k )
.

We thus conclude that

rij(θ) = lim
α↓0

α sij(α, θ) = lim
α↓0

α
detMbj ,i(α, θ)

∂(α) =

detMbj ,i(0, θ)
∑d

k=1 det(QZ
k )

=

detQbj ,i(θ)
∑d

k=1 det(QZ
k )
.

Combining this with (6.6), we obtain the main result of the chapter: the exact asymptotics

for pi(u). As mentioned, this result can be considered the MAP-counterpart of the classical

Cramér-Lundberg result.

Theorem 6.5.1. For any initial state i ∈ {1, ..., d},

lim
u→∞

pi(u) eθ
⋆
u
= αi ∶=

yi

∑d

k=1 det(QZ
k )

d

∑
j=1

detQbj ,i(θ
⋆)

yj
vj(−θ⋆).

The above theorem provides a possible approximation for the ruin probability pi(u) in the

regime that u is large. Concretely, we propose the approximation

pi(u) ≈ p̄i(u) ∶= αi e
−θ⋆u

. (6.12)

In Section 6.7 the accuracy of (6.12) is assessed.

6.6 Efficient simulation

In this section we point out how to efficiently estimate pi(u) by simulation, with emphasis on

the regime that u is large. The main idea is to rely on importance sampling, using a generalized

version of the celebrated Siegmund algorithm. More specifically, we propose to run independent

simulations of the MAP under Q, and subsequently average the values of

γ ∶=
yi
yKN

vKN
(−θ⋆) e−θ

⋆
SN

that are sampled in each of the runs. By Theorem 6.3.1 this results in an unbiased estimator.

The main objective of this section is to prove that this estimator has bounded relative error.

Its efficiency gain (relative to direct simulation, that is) is demonstrated in Section 6.7 through

a series of numerical experiments.

A pseudo-code corresponding to a single run of this generalized Siegmund algorithm is given

by Algorithm 1. Here s records the current value of the embedded MAP and j the current

background state. Also, the function ‘sample(X)’ generates and returns a sample of the random

variable X, independent of everything what has been sampled before. Finally, the function

‘sampleNextState(j,Q(Q))’ returns a new state of the background chain sampled under Q,

when the current state is j.

The while loop in Algorithm 1 updates the value of the MAP at maxima between two successive

background transition epochs. Lines 3 through 7 respectively correspond to sampling the
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Data: Initial state i of background process and target level u;

distributions of Vj, Wj, and Ljk under Q;

transition rate matrix Q = (qij)di,j=1 under Q;

eigenvalue θ
⋆
and corresponding eigenvector y.

Result: Unbiased sample of pi(u).
1: Initialization: s← sample(V (Q)

i ) and j ← i.

2: while s < u do

3: w ← sample(W (Q)
j );

4: j ← sampleNextState(j,Q(Q));
5: ℓ← sample(L(Q)

jk );
6: v ← sample(V (Q)

k );
7: s← s − w + ℓ + v and j ← k.

8: end while

9: return (yi/yj) × vj(−θ⋆) × e
−θ⋆s

.

Algorithm 1: A single run in the generalized Siegmund algorithm

decrease of the MAP before the next background transition, sampling the next background

state, sampling the jump at the transition epoch and sampling the maximum between the

current and next background transitions.

An important performance measure of algorithms estimating small probabilities is their relative

error, defined by the standard deviation of the estimate divided by the estimated probability.

Not only does γ ≡ γ(u) yield an unbiased estimator of pi(u), the next theorem entails that the

relative error is bounded in u. We refer to this property as bounded relative error [9, Chapter

VI.1].

Theorem 6.6.1. A sample of pi(u) as returned by Algorithm 1 has bounded relative error.

Proof. The proof is closely related to its counterpart for the random walk case [9, Chapter

VI.2]. Denote, in line with the notation that we have previously used, by R(u) and KN(u)
the overshoot and the background state, respectively, at the time that level u is crossed. Now

consider the process (R(u), KN(u))u⩾0, conditional on K0 = i. Above, we have computed the

transform rij(θ), by which we uniquely characterized the limiting distribution of (R(u), KN(u))
as u→ ∞; we let (R,K) be distributed as the corresponding limiting random vector.

As a result of the above, the ruin probability (which equals the mean of γ(u), as defined above)

satisfies the following asymptotics, as u→ ∞:

e
θ
⋆
u
EQ(γ(u)) = e

θ
⋆
u
pi(u) = EQ ( yi

yKN(u)
vKN(u)(−θ

⋆) e−θ
⋆(SN(u)−u))

→ EQ ( yiyK vK(−θ⋆) e−θ
⋆
R) =

d

∑
j=1

rij(θ⋆)
yi
yj
vj(−θ⋆) =∶ C1.

We have bounded relative error as the second moment of γ(u) vanishes at essentially the same



6.7 Numerical experiments 183

rate as the square of pi(u); to see this, observe that

e
2θ

⋆
u
EQ (γ2(u)) = e

2θ
⋆
u
EQ ( y

2
i

y2KN(u)

v
2
KN(u)(−θ

⋆) e−2θ
⋆
SN(u))

→ EQ ( y
2
i

y2K
v
2
K(−θ⋆) e−2θ

⋆
R) =

d

∑
j=1

rij(2θ⋆) (yiyj vj(−θ
⋆))

2

=∶ C2,

where it is noted that C2 > C
2
1 due to Jensen’s inequality. The variance of a single observa-

tion γ(u) in our generalized Siegmund algorithm thus satisfies

e
2θ

⋆
u
VarQ ( yi

yKN(u)
vKN(u)(−θ

⋆) e−θ
⋆
SN(u)) → C2 − C

2
1 .

It now directly follows that for u large the relative error tends to

c ∶=

√
C2 − C2

1

C1
∈ (0,∞). (6.13)

We observe that apparently the relative error loses its dependence on u as u grows, and that

it is bounded by a constant.

6.7 Numerical experiments

In this section we numerically study the asymptotic behavior of p(u), measuring in particular

the efficiency of the generalized Siegmund algorithm compared to direct estimation. We in

addition include an experiment that studies the impact of the background process on the ruin

probability.

To obtain a direct estimation of the ruin probability p(u), one may simulate the model at

hand say n times under the original measure P, and then determine the fraction of runs in

which the process exceeds level u. This leads to an unbiased estimator, with the relative error

equalling √
1

n
p(u)(1 − p(u))

p(u) =

√
1 − p(u)
np(u) .

In order to achieve a relative error of at most ε, one thus requires roughly

n ≈
1 − p(u)
ε2 p(u)

runs. The particularly worrisome element in this quantity is the p(u) in the denominator, being

very small when u is large. Concretely, with p(u) decaying roughly as e
−θ⋆u

and 1 − p(u) ≈ 1,

we conclude that n blows up like e
θ
⋆
u
as u grows.

The generalized Siegmund algorithm, in which the process is simulated under Q, on the other

hand has bounded relative error. With c given in (6.13), and again aiming for a relative error

ε, this algorithm thus requires roughly n ≈ c/ε2 runs for large u. As a result, the generalized
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Siegmund algorithm gives an accurate estimation for any u, in that for large u the number of

runs required becomes independent of u. This in particular means that this number of runs

does not blow up as p(u) → 0.

In the remainder of this section we discuss experiments in which we apply our generalized

Siegmund algorithm. It should be noted that executing this algorithm requires being able to

sample random variables (Vk)k∈{1,...,d}, while only their respective Laplace-Stieltjes transforms

are known (see Proposition 6.2.1). To this end we first apply numerical inversion to obtain a

discretization of the distribution function of each of the Vk. In our numerics we have used the

intensively tested and frequently cited algorithm that was developed in [5]; in the experiments

reported in this section we use 10
3
mass points. With this approximate distribution function at

our disposal, we can use the inverse distribution function method to sample a random variable

distributed according to Vk. Three remarks are in place here.

◦ First observe that, for any k, the Laplace inversion has to be performed just once (say,

in the pre-processing phase); once the approximate distribution function of Vk has been

computed, the generalized Siegmund algorithm can be repeatedly executed until an

estimate of sufficient precision has been produced.

◦ Secondly, the simulation of the embedded process under the original measure P has the

same inherent issue that the Vk must be sampled. In other words, the need to perform

Laplace inversion is not specific for the generalized Siegmund algorithm.

◦ The fact that we propose to use numerical Laplace inversion to run our generalized

Siegmund algorithm, triggers the question why we do not simply numerically invert the

transform of p(u) (as can be obtained with the results from Chapter 5). However, the

latter method is typically inferior to the generalized Siegmund algorithm, in particular

in the current context where the ruin probability p(u) is small, as a consequence of the

fact that the Laplace inversion becomes increasingly inaccurate further along the tail.

We now describe the specific MAP we use in our experiments. It consists of two background

states, the first and second corresponding respectively to a standard Brownian motion X1(⋅)
with drift −1

3
, and a compound Poisson process X2(⋅) with drift −1 and jumps of Exp(1) size

arriving at rate 2

3
. Note that we constructed this instance such that E(X1(1)) = E(X2(1)) =

−1

3
, allowing for better comparison between the impacts of both processes on the ruin

probability. To make our model as elementary as possible, our setup does not contain jumps

at transition epochs; we stress however that adding those does not lead to any conceptual

complications.

Experiment 1. In the first experiment we vary the value of the ruin level (or, in risk

applications, the initial reserve) u, so as to provide empirical backing for the claims of Theorems

6.5.1 and 6.6.1. In addition, we obtain insight into the accuracy of the approximation (6.12).

We consider the instance q1 = q2 = 1, and we vary u (with steps of 10) from 10 to 80, see

Table 6.1. Two approximations of the ruin probability are presented: the second column shows

estimates of p1(u) that are generated by 10
4
runs of Algorithm 1, and the third column

presents the approximation p̄1(u) = α1 e
−θ⋆u

of (6.12) (with α1 ≈ 0.6390 and θ
⋆
≈ 0.4066). The
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u
p1(u) estimated

by Algorithm 1
α1 e

−θ⋆u relative error per

run under Q

relative error per

run under P

10 1.084 ⋅ 10−2 1.09537 ⋅ 10−2 0.623 9.55

20 1.862 ⋅ 10−4 1.87784 ⋅ 10−4 0.630 73.3

30 3.224 ⋅ 10−6 3.21924 ⋅ 10−6 0.626 5.57 ⋅ 102

40 5.519 ⋅ 10−8 5.51886 ⋅ 10−8 0.622 4.26 ⋅ 103

50 9.460 ⋅ 10−10 9.46117 ⋅ 10−10 0.623 3.25 ⋅ 104

60 1.620 ⋅ 10−11 1.62196 ⋅ 10−11 0.629 2.48 ⋅ 105

70 2.789 ⋅ 10−13 2.78058 ⋅ 10−13 0.621 1.89 ⋅ 106

80 4.798 ⋅ 10−15 4.76685 ⋅ 10−15 0.619 1.44 ⋅ 107

Table 6.1: Ruin probabilities as a function of u, and the relative error per run under Q and P.

approximations of both methods differ around 1%, even for small values of u. This indicates,

for our specific MAP, fast convergence of the expression in Theorem 6.5.1.

In addition, Table 6.1 shows the average relative error of a single run under Q (Algorithm 1),

based on the sample (fourth column). This is compared to the same error when one would

estimate the ruin probability directly under P (fifth column). Where the relative error of

Algorithm 1 is fairly constant, the same error under direct estimation shows exponential

increase in u, as anticipated. If, say, one is interested in an estimate for p1(u) with relative

error at most 5%, the instances u = 10, 40, 80 respectively require approximately 4 ⋅ 104, 7 ⋅ 109,

and 8 ⋅ 1016 runs. The number of runs required under Q, on the other hand, is around 250 for

any value of u.

Experiment 2. In the second experiment the background chain transition rates q1 and q2 are

varied, and with them the proportion of time spent in each of the two background states. For

each combination of these parameter values we run Algorithm 1 with u = 40 a total of 10
4

times. The output consists of the estimated ruin probability and the relative error per run

based on the sample. The results are shown in Table 6.2.

As we can see, the ruin probability heavily depends on the transition rates of the background

chain. The larger the proportion of time spent in the compound Poisson state (state 2), the

larger the ruin probability, and the larger the proportion of time spent in the Brownian state

(state 1), the smaller the ruin probability. It is also reassuring to see that, for this MAP, the

(bounded) relative error per run is rather low. With 10
4
runs this results in a relative error in

the order of 5 ⋅ 10−3.

When q1 >> q2, one expects that the net cumulative claim process effectively coincides with a

compound Poisson process, which has a ruin probability that asymptotically decays as 2

3
e
−u

3 .

Substituting u = 40 gives 1.0797 ⋅10−6, close to the values of p1(40) in the top rows. Conversely,

when q1 << q2, the net cumulative claim process should be close to a Brownian motion, which

has a ruin probability e
− 2

3
u
. Substituting u = 40 gives 2.6231 ⋅ 10−12, in line with the values of

p1(40) in the bottom rows.
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q1 q2
fraction of time

in state 1
p1(40)

relative error

per run

10
4

1 1/10001 1.078 ⋅ 10−6 0.520

10
3

1 1/1001 1.072 ⋅ 10−6 0.519

10
2

1 1/101 1.026 ⋅ 10−6 0.527

10 1 1/11 7.043 ⋅ 10−7 0.536

5 1 1/6 4.873 ⋅ 10−7 0.543

2 1 1/3 1.833 ⋅ 10−7 0.577

1 1 1/2 5.519 ⋅ 10−8 0.622

1 2 2/3 1.075 ⋅ 10−8 0.594

1 5 5/6 8.559 ⋅ 10−10 0.584

1 10 10/11 1.374 ⋅ 10−10 0.575

1 10
2

100/101 5.005 ⋅ 10−12 0.465

1 10
3

1000/1001 2.821 ⋅ 10−12 0.408

1 10
4

10000/10001 2.629 ⋅ 10−12 0.408

Table 6.2: Ruin probabilities as a function of the fraction of time spent in each of the two background

states.

6.8 Discussion and concluding remarks

In this chapter we have considered a ruin model driven by a light-tailed spectrally-positive

Markov additive process. We first identified the exact asymptotics of the ruin probability, and

then devised an efficient simulation algorithm. Since previous literature restricts to MAPs

with specific underlying Lévy processes, our results narrow the gap in the understanding of

these asymptotics for arbitrary MAPs. Nevertheless, various directions for further research are

possible, of which we list a few.

When the net cumulative claim process is a spectrally-negative MAP (i.e., having jumps in the

downward direction only), the all-time maximum has a phase-type distribution (see Section

5.4.1). This means that in that case the exact asymptotics of the ruin probability can be dealt

with relatively easily. Considerably more challenging, however, is the case of a MAP with

jumps in both directions; this would extend the result for the Lévy case that was established

in [17]. A possible first step in this direction could be to assume that the jumps in one of the

directions are of phase-type (cf. [64] for instance).

A second interesting extension would concern the inclusion of heavy-tailed jump size distri-

butions, applying to jumps of the Lévy processes and/or jumps at transition epochs. Such

distributions deny the existence of a positive solution θ
⋆
to the Lundberg equation, thus

invalidating our change-of-measure approach. Instead, we suggest to build upon the results of

[47], in which the ‘principle of a single big jump’ is exploited.

In this chapter we used an embedded process to simplify the analysis while maintaining all
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information on the ruin probability over level u. For this embedded process, we in particular

identified the transform sij(α, θ) of the overshoot over level u. However, it is clear that

the overshoot over level u of the embedded process can be substantially different from

its counterpart for the original MAP. This leaves open the problem of characterizing the

distribution of the overshoot for our MAP. Extensions in this direction would be valuable

additions to the literature on first passage times.





Publications

The Chapters 2 up to 6 are based, in their respective order, on the papers [115, 116, 123, 124,

125].

Part I

O. Boxma and J. Dorsman proposed the idea for [115], and Z. Scully initiated the work on

[116]. The mathematical analysis and writing tasks of both papers were mainly shared by Z.

Scully and L. van Kreveld. For [116] specifically, J. Dorsman, O. Boxma and A. Wierman

continuously provided helpful input in terms of analysis and editing.

Chapter 2: [115] Scully, Z., van Kreveld, L., Boxma, O., Dorsman, J., and Wierman,

A. (2020c). Characterizing policies with optimal response time tails under

heavy-tailed job sizes. Proceedings of the ACM on Measurement and Analysis

of Computing Systems, 4(2):1–32.

Chapter 3: [116] Scully, Z. and van Kreveld, L. (2021). When does the Gittins policy have

asymptotically optimal response time tail? arXiv preprint arXiv:2110.06326.

Part II

L. van Kreveld took the lead in the mathematical analysis and writing of [122] and its more

general successor [123]. Aside from that, all authors contributed equally to both papers.

[122] van Kreveld, L., Boxma, O., Dorsman, J., and Mandjes, M. (2020).

Scaling analysis of an extended machine-repair model. In Proceedings of the

13th EAI International Conference on Performance Evaluation Methodologies

and Tools, pages 172–179.

Chapter 4: [123] van Kreveld, L., Boxma, O., Dorsman, J., and Mandjes, M. (2021).

Scaling limits for closed product-form queueing networks. Performance

Evaluation, 151:102220.

Part III

The majority of the analysis and writing of [124, 125] was performed by L. van Kreveld and

M. Mandjes. The role of J. Dorsman was mainly advisory and editorial.

Chapter 5: [124] van Kreveld, L., Mandjes, M., and Dorsman, J. (2022a). Extreme value

analysis for a Markov additive process driven by a nonirreducible background

chain. Stochastic Systems, 12(3):293–317.

Chapter 6: [125] van Kreveld, L., Mandjes, M., and Dorsman, J. (2022b). Cramér-

Lundberg asymptotics for spectrally positive Markov additive processes.
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approach to growth networks. Operations Research. To appear.
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Summary

Asymptotic Analysis of Stochastic Systems

In this thesis, we discuss a number of problems in stochastic systems involving queues and

Lévy processes. For the more advanced systems in these categories, it is commonly seen that

exact analytical results are unachievable and/or that direct numerical computations are too

slow. As an alternative, we aim our attention at asymptotic approaches. In some cases, we

study the stochastic system as one parameter tends to a threshold value, whereas in other

cases it proves useful to asymptotically scale the system as a whole.

Three general topics separate the thesis into equally many parts that can be read individually.

Part I concerns the effect of the scheduling policy on the asymptotic response time tail in

the M/G/1 queue. In Part II a scaling approach is adopted to approximate queue-length

distributions in a closed product-form network. Lastly, the main content of Part III is the

analysis of the (asymptotic) maximum of a Markov additive process (MAP).

In the scheduling context of Part I, it is known that the performance of a policy strongly

depends on the job size distribution. We analyze the asymptotic response time tail for the

class of SOAP policies. Specifically, the focus in Chapter 2 lies on heavy-tailed job sizes. We

characterize which SOAP policies have a response time tail of the same order as the job size

tail, and are thus optimal. Our characterization takes the form of an easily verifiable condition

on the rank function. The set of new policies for which tail optimality is established includes

Foreground-Background with limited preemption, Shortest Expected Remaining Processing

Time and Randomized Multi-Level Feedback. In the course of our analysis, we derive new

bounds on fractional moments of busy periods.

Chapter 3 extends the main result of Chapter 2 in two ways. Firstly, it relaxes the condition

for tail optimality in the case of heavy-tailed job sizes. Secondly, a characterization for tail

optimality of SOAP policies is derived for light-tailed job sizes. For this class of job size

distributions, a policy is tail-optimal (tail-pessimal) if it maximizes (minimizes) the decay rate

of the response time tail. The two extensions allow us to characterize the tail performance of

the prominent Gittins policy. Particularly, for heavy-tailed job sizes it is always tail-optimal,

and in the light-tailed case it may be optimal, pessimal or in between, depending on the nature

of the job size distribution. For instances in which Gittins is pessimal, we derive a condition

under which a slight modification of its rank function increases its response time decay rate,

and thus avoids pessimality.

In Part II, closed product-form queueing networks with single-server and infinite-server

stations are considered. The joint stationary queue-length distribution of such models is a

set of geometric (single-server) and Poisson (infinite-server) distributions, together with a

population size constraint. As this constraint makes the corresponding distribution challenging
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to numerically analyze, we consider in Chapter 4 a scaling of Halfin-Whitt type. The limiting

normalized distribution of the joint queue lengths is identified using asymptotic analysis of

Laplace-Stieltjes transforms. We show that the normalized queue lengths are exponentially

(single-server) and normally (infinite-server) distributed, and the population size constraint

translates to a single constraint on only the most heavily loaded station(s).

Finally, the objective of Part III is to identify the distribution of the maximum of a MAP.

Knowledge on this distribution is valuable in several respects: it contributes to the fundamental

understanding of MAPs, it has a direct implication for first passage processes, and it is the

key performance metric in risk applications. Chapter 5 characterizes the distribution of the

maximum of a spectrally one-sided MAP over a phase-type horizon (which includes exponential

horizons). In the spectrally-positive case, we provide a recursive procedure for computing

the Laplace-Stieltjes transform of the maximum. Our characterization of the maximum in

the spectrally-negative case is more explicit in the sense that it is neither recursive nor in

terms of transforms. By letting the state of the background chain correspond to the phase of a

phase-type distribution, our results also allow computation of the maximum of any spectrally

one-sided Lévy process over a phase-type horizon.

In Chapter 6 we focus specifically on a spectrally-positive light-tailed MAP, and analyze the

asymptotic tail probability of its maximum (or, equivalently, the asymptotic ruin probability

for a Cramér-Lundberg risk model in the MAP setting). Our analysis relies on the introduction

of an alternative measure, under which the ruin probability is one. An expression is derived

for the exact asymptotics in terms of the solution to a system of equations. In addition, the

change-of-measure approach allows for an algorithm that estimates the ruin probability with

bounded relative error, yielding much shorter running times than direct simulation.
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Samenvatting

Asymptotische Analyse van Stochastische Systemen

In dit proefschrift bespreken we een aantal vraagstukken voor stochastische systemen. We

richten onze aandacht in het bijzonder op wachtrijen en Lévy processen. Bij geavanceerdere

systemen uit deze categorie geldt doorgaans dat exacte analytische resultaten onhaalbaar zijn

en/of directe numerieke berekeningen te langzaam. Als alternatief vestigen we onze aandacht

op asymptotische aanpakken. Daarbij maken we gebruik van twee soorten asymptotiek: die

waar een enkele parameter een drempelwaarde nadert, en die waar het systeem als geheel

asymptotisch wordt geschaald.

Dit proefschrift is onderverdeeld in drie delen. Elk van deze delen kan los van de andere

gelezen worden en bestrijkt de asymptotische analyse van bepaalde stochastische systemen.

Deel I betreft het effect van de bedieningsdiscipline op de asymptotische staart van de

verblijftijdverdeling in de M/G/1-wachtrij. In Deel II hanteren we een schalingsaanpak om

wachtrijlengteverdelingen te benaderen van een gesloten wachtrijnetwerk met een stationaire

product-vorm verdeling. De voornaamste inhoud van Deel III, ten slotte, is de analyse van het

(asymptotische) maximum van een Markov additief proces (MAP).

In de bedieningsdiscipline-context van Deel I is algemeen bekend dat de prestatie van een

discipline sterk afhangt van de taakgrootteverdeling. We analyseren de asymptotische staart van

de verblijftijdverdeling voor de klasse van SOAP-disciplines. In het bijzonder gaat de aandacht

in Hoofdstuk 2 uit naar zwaarstaartige taakgroottes. We karakteriseren welke SOAP-disciplines

een verblijftijdstaart van dezelfde orde hebben als de staart van de taakgrootte, en daarmee

optimaal zijn. Onze karakterisering heeft de vorm van een gemakkelijk verifieerbare conditie op

de rangfunctie. De verzameling nieuwe disciplines waarvoor staartoptimaliteit wordt bevestigd,

bevat Foreground-Background met beperkte onderbreking, Shortest Expected Remaining

Processing Time en Randomized Multi-Level Feedback. In de loop van onze analyse leiden we

nieuwe bovengrenzen af voor fractionele momenten van aaneengesloten bedieningsperiodes.

Hoofdstuk 3 breidt het hoofdresultaat van Hoofdstuk 2 op twee manieren uit. In de eerste

plaats zwakt het de conditie voor staartoptimaliteit af in het geval van zwaarstaartige taak-

groottes. Ten tweede wordt een karakterisering voor staartoptimaliteit van SOAP-disciplines

afgeleid voor lichtstaartige taakgroottes. Bij deze klasse taakgrootteverdelingen is een discipline

staartoptimaal (staartinferieur) als het de vervalsnelheid van de staart van de verblijftijd

maximaliseert (minimaliseert). De twee uitbreidingen stellen ons in staat om het staartgedrag

van de belangrijke Gittinsdiscipline te bepalen. In het bijzonder geldt dat deze discipline

bij zwaarstaartige taakgroottes altijd optimaal is. In het lichtstaartige geval kan de Git-

tinsdiscipline optimaal zijn, inferieur of ergens daartussen, afhankelijk van de aard van de

taakgrootteverdeling. Voor gevallen waarin Gittins inferieur is, leiden we een conditie af onder

welke een kleine wijziging van de rangfunctie resulteert in een verhoogde vervalsnelheid van de
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verblijftijdstaart, waardoor inferioriteit wordt vermeden.

In Deel II worden gesloten wachtrijnetwerken met stationaire product-vorm verdelingen

beschouwd, bestaande uit rijen met één bediende of een oneindig aantal bedienden. De geza-

menlijke stationaire rijlengteverdeling van zulke modellen is een verzameling van geometrische

verdelingen (één bediende) en Poissonverdelingen (oneindig aantal bedienden), samen met een

beperking op de populatiegrootte. Omdat deze beperking het numeriek analyseren van de

corresponderende verdeling bemoeilijkt, beschouwen we in Hoofdstuk 4 een schaling van het

type Halfin-Whitt. De limietverdeling van de genormaliseerde gezamenlijke wachtrijlengten

wordt bepaald door middel van asymptotische analyse van Laplace-Stieltjes transformaties.

We laten zien dat de genormaliseerde wachtrijlengten exponentieel (één bediende) en normaal

(oneindig aantal bedienden) verdeeld zijn, en dat de beperking op de populatiegrootte zich

vertaalt naar een enkele beperking op slechts de meest zwaarbeladen wachtrij(en).

Ten slotte is het doel van Deel III om de verdeling van het maximum van een MAP te bepalen.

Bekendheid van deze verdeling is waardevol in meerdere opzichten: het draagt bij aan de

fundamentele kennis over MAPs, het verloop van intreetijdprocessen kan hiermee worden

bepaald, en het is de belangrijkste prestatiemaat in de verzekeringswiskunde. Hoofdstuk 5

karakteriseert de verdeling van het maximum van een spectraal eenzijdige MAP gedurende

een fase-type interval (dus ook voor exponentiële intervallen). In het spectraal positieve geval

geven we een recusieve procedure voor het berekenen van de Laplace-Stieltjes transformatie

van het maximum. Onze karakterisering van het maximum in het spectraal negatieve geval is

explicieter in die zin dat deze noch recursief, noch in termen van transformaties is gedefinieerd.

Door de toestand van de achtergrondketen te laten samenhangen met de fase van een fase-type

verdeling, staan onze resultaten een berekening toe van het maximum van een willekeurig

spectraal eenzijdig Lévy proces gedurende een fase-type interval.

In Hoofdstuk 6 concentreren we ons op een spectraal positieve en lichtstaartige MAP, en

analyseren we de asymptotische staartkans van het maximum (met andere woorden, de

asymptotische rüıneringskans van een Cramér-Lundberg model in de MAP-context). Onze

analyse bouwt op de introductie van een alternatieve kansmaat, onder welke de rüıneringskans

één is. Een uitdrukking voor de exacte asymptotiek wordt afgeleid in termen van de oplossing

van een stelsel vergelijkingen. Daarnaast maakt de verandering van maat een algoritme mogelijk

dat de rüıneringskans schat met begrensde relatieve fout, wat veel kortere looptijden oplevert

dan directe simulatie.
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