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Abstract 
Background and Objective: In silico trials aim to speed up the introduction of new devices 
in clinical practice by testing device design and performance in different patient scenarios 
and improving patient stratification for optimizing clinical trials. In this paper, we 
demonstrate an in-silico trial framework for thrombectomy treatment of acute ischemic 
stroke and apply this framework to compare treatment outcomes in different 
subpopulations and with different thrombectomy stent-retriever devices. We employ a 
novel surrogate thrombectomy model to evaluate the thrombectomy success in the in-silico 
trial. 
Methods: The surrogate thrombectomy model, built using data from a fine-grained finite-
element model, is a device-specific binary classifier (logistic regression), to estimate the 
probability of successful recanalization, the outcome of interest. We incorporate this 
surrogate model within our previously developed in silico trial framework and demonstrate 
its use with three examples of in silico clinical trials. The first trial is a validation trial for the 
surrogate thrombectomy model. We then present two exploratory trials: one evaluating 
the performance of a commercially available device based on the fibrin composition in the 
occluding thrombus and one comparing the performance of two commercially available 
stent retrievers. 
Results: The Validation Trial showed the surrogate thrombectomy model was able to 
reproduce a similar recanalization rate as the real-life MR CLEAN trial (p = 0.6). Results from 
the first exploratory trial showed that the chance of successful thrombectomy increases 
with higher blood cell concentrations in the thrombi, which is in line with observations from 
clinical data. The second exploratory trial showed improved recanalization success with a 
newer stent retriever device; however, these results require further investigation as the 
surrogate model for the newer stent retriever device has not yet been validated. 
Conclusions: In this novel study, we have shown that in silico trials have the potential to 
help inform medical device developers on the performance of a new device and may also 
be used to select populations of interest for a clinical trial. This would reduce the time and 
costs involved in device development and traditional clinical trials. 
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Introduction 
An acute ischemic stroke (AIS) occurs when the blood flow to the brain is disrupted by an 
occlusion or a thrombus in a major intracranial artery. In 2015, the MR CLEAN trial showed 
the added benefit of endovascular treatment/thrombectomy to mechanically remove the 
thrombus compared to the use of thrombolytics, that lyse the occluding thrombus, alone.1 
This was subsequently confirmed by six other trials.2 Since then, thrombectomy has become 
the standard of care for AIS treatment.3 Delays to restore blood supply to the affected 
region, by successfully removing the thrombus, is associated with increased neuronal loss 
and functional disability.4 Hence, complete recanalization and reperfusion in a single 
attempt are accepted measures to evaluate the success of the treatment and performance 
of devices. The success of treatment depends on several factors including vessel access, and 
the characteristics of the thrombus play an undeniably important role. Qualitative and 
quantitative analysis using imaging techniques that are routinely used in AIS care and 
histological analysis of mechanically retrieved thrombi has shown that thrombi are 
heterogeneous. They can contain varying number of red blood cells (RBCs), fibrin, white 
blood cells (WBCs), platelets, calcification, and lipids, which can influence the treatment 
success. For example, fibrin-rich thrombi are stiffer which limits their interaction with the 
struts of the stent-retriever and hence they are thought to be more difficult to retrieve.5,6 

There is still much to gain in the stroke treatment landscape and several novel devices are 
currently being developed to better target and personalize stroke treatment. However, up 
to 90% of the clinical trials testing new treatments are unsuccessful and, by design, clinical 
trials do not explain why treatments fail, thus increasing the time and costs of introducing 
new treatments in the clinic. Computational or in silico modeling approaches are becoming 
increasingly accepted to facilitate the research and development of biomedical products. 7–

9 In-silico trials (ISTs) can be set up by combining in silico models of disease and treatment 
with statistical models that generate ‘virtual’ patients (combination of prognostic clinical 
factors and parameters required for the in silico models). 10–12 ISTs can then generate 
outcome at a population level to predict the efficacy of a treatment. A common obstacle to 
running ISTs is the computational requirements of the models. Many models of biological 
and medical processes can be computationally expensive for a single patient, and hence 
running these models for potentially hundreds of patients is only possible on advanced high 
performance computing infrastructure, which may not be readily available to many 
potential users of IST technology. A method to overcome this limitation is the use of 
surrogate models (also known as metamodels or emulators). The goal of surrogate 
modelling is to estimate the outcome of interest, from a complex model, with a 
computationally inexpensive model. Such an approach is also commonly used in 
uncertainty quantification, which is another application requiring large numbers of 
simulations.13–15 This reduction in complexity often comes with a loss of accuracy and 
mechanistic understanding of the simulation result. For an IST application, the level of 
accuracy and understanding of the detailed model for every patient is not required, as the 
outcomes of interest are at the population scale. 

There are several approaches to surrogate modelling. One approach is a reduction in model 
complexity, for example, a simplification of the physics or a reduction of element order 
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and/or grid resolution in finite element modelling.16,17 Alternatively, one can train a 
statistical model using results from the full model. Common approaches for this are 
Gaussian Process Models and Generalized Linear Models (such as logistic regression 
models). 13–15 

Miller et al. and Konduri et al. have previously published a framework for designing and 
implementing an IST for AIS.18,19 In this study, we present and integrate a novel surrogate 
model, based on logistic regression trained on outcomes from a finite-element model of 
thrombectomy, into our IST framework and validate the model using the MR CLEAN 
trial.1,18–20 We then demonstrate the use of the IST platform, using the surrogate 
thrombectomy model, for studying the influence of fibrin composition in the thrombus on 
thrombectomy outcome and comparing the performance of two commercially available 
thrombectomy devices. 

Methodology 
To execute the proposed ISTs we use the following three steps. First, we implement a 
surrogate model based on a finite-element (FE) thrombectomy model.21,22 Secondly, we link 
the virtual patient characteristics included in the virtual patient generation model used in 
our IST framework to the thrombectomy model inputs.18 Finally, we incorporate this 
surrogate model into our IST framework so we can sample virtual patients from the virtual 
patient generation model, apply the surrogate model to the generated cohort, and 
aggregate and report the results on a population-level.18 In the following sections, we 
describe the methodology of these three steps in detail. We then describe the three ISTs 
that were run for this study. Figure 1 shows a summary of the collection of clinical data and 
how it is used to develop and validate the models for the IST. 

Surrogate thrombectomy model 
Given the computational requirements of FE thrombectomy simulations (19–50 hours on 
28 CPUs of an Intel Xeon64), it is practically infeasible to use this simulation approach for a 
large cohort of virtual patients. Consequently, we use a surrogate, logistic regression, model 
for the trials, trained using FE model simulations across the range of observed patient 
parameters. The FE model of thrombectomy (Figure 2) has been previously validated and is 
described in detail in Luraghi et al.21,22 Implementation details are given in Supplementary 
Section S3.1. In brief, the FE model simulates a thrombectomy procedure using a stent 
retriever device (Device A or B) on 100 segmented vascular geometries from patients in the 
MR CLEAN Registry (described in Section 2.2), as shown in Figure 1.3 Only occlusions in the 
M1 segment of the middle cerebral artery were modelled, as these are most common.1,3 

To capture the effect of thrombus characteristics (length and fibrin composition) on the 
performance of Device A, we ran two simulations for each vascular geometry, with 
randomly selected thrombus characteristics (from the empirical distributions). Of these, 
184 had a viable outcome, whereas 16 of them encountered numerical instability and 
would have required ad hoc simulation settings. For Device B, 100 thrombectomy 
simulations were run, with 94 of these resulting in viable outcomes. 
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Figure 1: A summary of the use of clinical data to develop and validate the Device A surrogate model, 
as well as the interdependence between the different models used within the IST framework. 
 

 
Figure 2: A) Steps of the thrombectomy simulation. The Middle Cerebral Artery (MCA) of the vascular 
models is designed as straight, because the images are collected with angiographies with contrast 
liquid that cannot reach beyond the occlusion site. B) Examples of successful and unsuccessful 
thrombectomy outcomes. 
 

In Bridio et al. the importance of vascular anatomy on the outcome of virtual thrombectomy 
procedures was demonstrated.23 The 100 patient- specific vasculatures were analyzed with 
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the methodology described in Bridio et al.23 to extract 28 anatomic parameters for each 
vascular model. 

Each carotid siphon was divided in 4 bends (superior, anterior, posterior and inferior, Fig. 
3A) and the following parameters were extracted with a MATLAB (The MathWorks, USA) 
script, (Fig. 3B-E): 

• length of the Internal Carotid Artery (ICA) bends: Lsup, Lant, Lpos, Linf; 

• average diameter of the ICA bends: Dsup, Dant, Dpos, Dinf; 

• radius of curvature of the ICA bends: rsup, rant, rpos, rinf; 

• tortuosity of the ICA bends: tsup, tant, tpos, tinf (calculated as: tbend = , where 
Lbend I the length of the bend along the centerline and dbend is the Euclidean distance 
between extreme points of the bend); 

• angles between adjacent ICA bends: αsup−ant, αant−pos, αpos−inf; 

• distance between the bifurcation point and the starting point of the superior bend: 
dT−sup; 

• distances between adjacent ICA bends: dsup−ant, dant−pos, dpos−inf; 

• angles at the T-junction (bifurcation of the ICA into MCA and the anterior cerebral 
artery (ACA)): αICA−ACA, αICA−MCA, αMCA−ACA; 

• average MCA diameter (M1 segment): DMCA; 

• average ACA diameter: DACA. 
 

 
Figure 3: Geometric characterization of the vascular anatomy: A) four bends of the carotid siphon; B) 
angles at the T-junction; C) radius of curvature of the ICA bends; D) angles between adjacent ICA 
bends; E) distances between the bifurcation point and the starting point of the superior bend, and 
between adjacent ICA bends. Adapted from Bridio et al. 23 
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The median and interquartile ranges of the calculated parameters are provided in 
Supplementary Section S2.1. The collected anatomy parameters along with the thrombus 
length (Lthr), the fibrin/platelet content (Fib), and the associated simulation outcome are 
the parameters defining each sample in the training database for the surrogate model to 
be included in the IST pipeline. A binary classification model was chosen that, given as input 
the geometry and thrombus parameters, provides as outcome a probability of success of 
the thrombectomy procedure. In this application, the explanatory variables are the 
geometric and thrombus parameters of each sample, and the two classes are success or 
failure of the virtual thrombectomy procedure. The chosen algorithm for performing the 
classification is logistic regression, a widely-used supervised machine learning algorithm 
used for binary classification problems.24 Other algorithms were tested, i.e. Perceptron, 
Support Vector Machines and Stochastic Gradient Descent: logistic regression showed the 
best performance in a leave-one-out test (training the classification model excluding one 
sample at a time, to be used for testing), providing above 90% correct predictions. 

To reduce the number of explanatory variables, a univariate logistic regression model was 
trained for each geometric and thrombus parameter, as input for the classification to 
determine treatment success. We used a test-train approach with 70% of the samples used 
for training and 30% for testing. To assess the classification ability of the models, the 
Receiver Operating Characteristic (ROC) curve was constructed for each of the 30 models.25 
Tenfold cross-validation was performed to assess the consistency of the results. For the 
purpose of selecting the most influencing parameters in the determination of 
thrombectomy outcomes, the parameters associated to classification models that 
produced a ROC curve with Area Under the Curve AUC≥0.7 were chosen. The explanatory 
variables were thus reduced from 30 to eight parameters: Dsup, rsup, tant, αICA−MCA, DMCA, 
DACA, Lthr, Fib. 

The final multivariable logistic regression model was trained based on samples described 
by the eight geometric and thrombus parameters and the simulation outcomes. In the IST 
pipeline, given the eight parameters for a new virtual patient, the model provides the 
probability for the patient of belonging to the class of successful or unsuccessful 
thrombectomy procedure. 

Linking virtual patient characteristics to the surrogate thrombectomy model 
parameters 
The virtual population model is based on the data of patients enrolled in the MR CLEAN 
Registry: a prospective, observational, multi-center study from 16 intervention hospitals in 
the Netherlands. It includes all AIS patients above the age of 18 who underwent 
endovascular treatment since the completion of the MR CLEAN Trial in 2014.3 The methods 
used to implement the virtual population model have been previously described.18 In 
summary, the virtual population model is developed using the probability density functions 
of the most prognostic and/or relevant patient characteristics. Statistical (vine copula and 
linear regression) methods are then employed to create correlations between these density 
functions that allows the creation of cohorts of AIS patients based on patient characteristics 
of interest. Our virtual population generation model to create virtual AIS patient cohorts is 
publicly available here: https://mdmtest.shinyapps.io/INSIST-VP/.  
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Generating local geometric characteristics 
The eight local geometrical and thrombus parameters that were significant to the 
thrombectomy outcome were extracted for a subset of the MR CLEAN Registry patients (N= 
100) with distal M1 occlusions and sufficient image quality.21,23 The flowchart describing the 
patient selection is in Figure 1. An analysis of the complete MR CLEAN Registry patient 
cohort and selected patients showed that they were representative of the full population 
in terms of clinical characteristics. The results of this analysis are given in Supplementary 
Section S2.2. 

 
Figure 4: Selection of parameters for each patient. Thrombus characteristics were correlated to clinical 
characteristics. Geometric characteristics were randomly sampled from patient distributions, with 
MCA diameter, ACA diameter, and ICA diameter correlated. 
 

Since these local geometrical parameters were not significantly correlated to clinical 
characteristics used for describing the virtual patients, these parameters could not be 
directly linked to the virtual patients. Hence, four parameters (tant, DMCA, rsup and αMCA−ACA) 
were randomly sampled from distributions calculated from the 100 patients. Since three 
artery diameter parameters (DMCA, DACA, Dsup) were correlated to each other, DACA and Dsup 

were determined based on these correlations. Details on the correlations between the 
geometrical parameters is provided in the Supplementary Section S1.1. A schematic 
representation of the linkage between the virtual patient and local geometrical parameters 
is provided in Figure 4. 

Generating patient-specific thrombus characteristics 
In addition to the local geometric parameters, the surrogate thrombectomy model requires 
thrombus characteristics. The composition of the thrombus is also the population 
characteristic of interest for one of the exploratory trials presented in this paper. As shown 
in Figure 1, to link the thrombus characteristics (composition and length) with the clinical 
characteristics in the virtual population, we assessed the association of various clinical 
variables with the thrombus characteristics using multivariate linear regression. The clinical 
variables that were included in the models were selected based on previous studies and 
clinical knowledge and included age, sex, history of previous stroke, history of diabetes 
mellitus, history of atrial fibrillation, occlusion location, presence of hyperdense artery sign 
(HAS), collateral score, ASPECT score, systolic blood pressure, NIHSS at baseline, and time 
from symptom onset to groin puncture. Variables with a P-value of <0.157 (Akaike’s 
Information Criterion) in the multivariate model were selected for the final model, which 
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predicts the thrombus characteristic of interest. The significant variables were sex, 
occlusion location and the hyperdense artery score (binary imaging marker for thrombus 
density as a proxy for fibrin content). 

Because the described approach only showed three categorical or binary clinical 
characteristics to be significantly associated, the resulting distributions for thrombus 
composition and length did not reproduce the variation observed in the data. To account 
for the unexplained variation due to the use of categorical data and other unknown 
characteristics, we added noise to the thrombus characteristics. To represent the noise, we 
used a Gumbel distribution which was fit to the relative error in the predictions for the 
training population. 

Integration into the in-silico trial framework 
The surrogate thrombectomy model was integrated into our IST framework, ‘des-ist’.18,26 
The des-ist framework provides easy integration of multiple data-driven and mechanistic 
models for running (event-based) ISTs. Models are included into the framework in 
independent Docker or Singularity containers, and inputs and outputs are linked using a 
common API. 26–28 For the ISTs used in this paper, the simulation steps were: 

Step 1. Generate a virtual population of patients using a statistical model; 
Step 2. For each patient, determine their local geometric and thrombus characteristics 
based on their clinical characteristics; 
Step 3. For each patient, predict recanalization status based on patient characteristics;  
Step 4. Collate the patient recanalization outcomes and determine the recanalization 
success rate. 
 
Steps 1, 2 and 3 were described in detail above. Step 4 is a part of the trial outcome module 
that has previously been described in Miller et al.18 This module uses RMarkdown to auto-
generate a report with statistics on all patient input characteristics and output data.29 

In-silico trials 
In this paper, we present three ISTs using the described models and framework: a validation 
trial, and two examples of exploratory ISTs. The outcome of interest in the trials is defined 
as the proportion of the population that experience complete recanalization of the 
occluded artery due to thrombectomy. 

We sample 500 virtual patients for each arm of the trials. The surrogate thrombectomy 
model is stochastic. Hence, for a single trial realisation, we randomly sample for success or 
failure for each patient based on their recanalization probability predicted by the model. 
We run 1,000 realisations of this success/failure sampling (on the same patient cohort) to 
determine a distribution of the recanalization success rate of the population. The mean of 
this distribution is then used in a two-proportion Z-test to determine if there is a significant 
difference between the two trial arms (or between the IST and the clinical data in the case 
of the Validation Trial). 

Validation trial 
We first run a validation trial to validate the surrogate thrombectomy model. This trial’s 
results are compared with recanalization success rates observed in the intervention arm of 
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the MR CLEAN Trial.1 The inclusion criterion to generate the virtual population for this are 
similar to the MR CLEAN Trial, with the addition of M1 occlusion and treatment only with 
Device A. The main inclusion criterion for the MR CLEAN Trial are: age of at least 18 years, 
AIS due to an intracranial large vessel occlusion (assessed on a CT Angiography scan), NIHSS 
at baseline of 2 or more, duration between onset and treatment less than 6 hours, and 
systolic blood pressure less than 185mmHg.20 

In the MR CLEAN Trial, the recanalization status of the occluded artery was defined using a 
4-point modified Arterial Occlusion Lesion (mAOL) score ranging from 0 (complete occlusion 
of the primary occlusive lesion) to 3 (complete recanalization of the occluded artery with 
any distal flow). Although eTICI score (a measure of reperfusion as assessed on procedural 
Digital Subtraction Angiography scans) is the clinical standard for assessing treatment 
success, since the thrombectomy models estimate recanalization, for this Validation Trial, 
we define a thrombectomy to be successful if AOL is 3. 

Thrombus composition trial 
One potential application of ISTs is comparing outcomes for different subpopulations. We 
use our IST platform to compare the recanalization rates of a commercially available device 
(Device A) in patients with different composition of the occluding thrombus. The thrombus 
composition is defined based on the proportion of fibrin to red blood cells and is divided 
into two categories: high fibrin (≥75% fibrin) and low fibrin content (≤75% fibrin). The 
threshold was chosen based on the median fibrin content in the Validation Trial. To 
corroborate our results in the Thrombus Composition Trial, we use data from patients in 
the MR CLEAN Registry. We use the model presented in Section 2.2.2 to estimate the fibrin 
composition of the patients in the MR CLEAN Registry with a distal M1 occlusion who were 
treated with Device A. For this dataset, the eTICI score was used as a substitute for mAOL 
score as the measure of recanalization, as the mAOL scores are not available in the MR 
CLEAN Registry. We define recanalization success as an eTICI score of 2B–3, as is common 
practice in clinical assessments. 

Device comparison trial 
We demonstrate the use of our IST platform to compare the performance of two 
commercially available stent retrievers. We label these devices ‘Device A’ and ‘Device B’. 
The inclusion criteria used was the same as for the Validation Trial described above. For this 
trial, we used a sample of 500 patients in both arms of the trial. 

Results 
Validation trial 
We generated 500 virtual patients with an M1 occlusion, who would be treated with Device 
A based on the inclusion criterion of the MR CLEAN Trial. A comparison of the inclusion 
criteria and other key characteristics of the generated virtual patients with the patients 
from the intervention arm of the MR CLEAN Trial is provided in Table 1. The cohort of 72 
MR CLEAN Trial patients used had a M1 occlusion, were treated with Device A and had an 
available mAOL score. 

The mean recanalization rate aggregated over 1,000 realizations in the Validation Trial is 
85.2. This rate is within the 95% confidence interval of MR CLEAN Trial cohort (81.9, IQR:73-
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91), and a two-proportion Z-test on the proportions gives a p-value of p = 0.6 (Table 2). The 
distribution of the recanalization rate over the realisations can be found in Supplementary 
Figure S2a. Consequently, though we do not have sufficient data to fully interrogate the 
credibility of the model, the results show no evidence to support the hypothesis that the 
model is not credible. 

Table 1: Population characteristics of the MR CLEAN Trial (M1 thrombi only) and the 
generated in silico population. Results are given as: median (interquartile range) unless 
specified otherwise. 

Characteristics MR CLEAN trial 
(M1 thrombi) N= 72 

In silico trial  
N = 500 

Clinical 
Age (yr) 68 (56-76) 71 (61–80) 
Male sex—no./% 36/50% 276/55% 
NIHSS 16 (14-20) 15 (11–19) 
Systolic blood pressure (mmHg) 145 (130-161) 145 (131–159) 
Workflow 
Onset to randomization (mins) 221 (155-292) NA 
Onset to ER (mins) NA 56 (36–92) 
ER to EVT (mins)  NA 102 (66–143) 
Thrombus 
Proportion fibrin (%) NA 76 (61–85) 
Length (mm) NA 12 (9–18) 

 

Thrombus composition trial 
The distribution of thrombus composition for the two arms is shown in Figure 5 and the 
recanalization success rates are shown in Table 3. The full distribution of success rates for 
the 1,000 realisations of each trial arm can be found in Supplementary Figure S2b. A two 
proportion Z-test on the mean success rates gives a p-value of p =0.001. This trend can also 
be observed in the data from the MR CLEAN Registry (M1 thrombi): eTICI 3 was 32% for 
high fibrin thrombi and 46% for low fibrin. 

Table 2: Recanalization success rate of MR CLEAN Trial [1] compared to the thrombectomy 
model, for M1 occlusions using Device A. CI: 95% confidence interval for population success 
rate based on sample success rate. SD: standard deviation on the success rate (over 1000 
realisations of the trial on the same cohort of 500 patients). The confidence interval on the 
MR CLEAN Trial refers to the expected rate in the (stroke) population given the 72 patient 
sample size 

Trial Patient count  Recanalization success (%) 
MR CLEAN 72 81.8 CI: 73-91 
In-silico Trial 500 85.2 SD 1.4 

Device comparison trial 
The results for 1,000 samples of the trial, using the same cohort of 500 patients and for 
both devices, indicate that Device B may have improved recanalization outcomes for 
patients. This improvement is found to be statistically significant—a two proportion Z-test 
p-value is p = 0.007. The recanalization rates are given in Table 4. The distributions of the 
success rates for the trial can also be found in Supplementary Figure S2c. 
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Discussion 
In this study, we present the application of an IST framework to execute a validation and 
two exploratory AIS trials. In the validation trial, we showed that the treatment success 
rates assessed by the surrogate thrombectomy model that was integrated into our IST 
framework are comparable to those observed in the real-life MR CLEAN Trial. The first 
exploratory trial, assessing the performance of a commercially available device in relation 
to the fibrin composition of the occluding thrombus, showed that the chance of retrieving 
fibrin-rich thrombi is lower than thrombi with low fibrin / high red blood cell concentrations. 
The second exploratory trial showed that our IST framework can be used to compare the 
performance of two (commercially available) devices to successfully retrieve the thrombus. 

 
Figure 5: Thrombus composition in the two arms of the trial. 

Table 3: In silico trial results for the two arms of the Thrombus Composition Trial. 
Recanalization success is the percentage of patients who successfully recanalized due to 
thrombectomy in the trial. Mean and standard deviation are given for 1000 realisations of 
the thrombectomy model on the same set of patients. 

Fibrin category Recanalization success (%) 
Mean Std dev. 

High ( ≥75%) 81.8 1.5 
Low ( ≤75%) 89.1 1.3 

 

ISTs have the potential to provide significant economical advantages (time and money) for 
the medical industry.7 As such, an increasing number of models and frameworks are being 
developed for virtual patient generation and ISTs. Many of these frameworks have focused 
on vaccines or drug treatments. Such models are often less computationally complex to 
simulate compared to medical devices. For example, the Universal Immune System 
Simulator (UISS) has been used to run ISTs for both tuberculosis and COVID-19 vaccines in 
virtual populations.30,31 Other examples include interrogating treatment regimens for HIV 
[12], pre-clinical trials of novel drug therapies, or the UVA/PADOVA Type 1 Diabetes 
simulator of insulin response in Type 1 Diabetes.32,33 Of these, only the UVA/PADOVA has 
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been accepted by the FDA for use in pre-clinical trials.33,34 Such ISTs could be particularly 
influential for rare diseases, such as the IST for congenital pseudothrosis of the tibia, a rare 
condition for which clinical trials take large amounts of time and money due to low patient 
recruitment and data.35 

One example of the application of an IST for a surgical device is the study by Sarrami-
Foroushani et al.36 This study used an ANSYS computational fluid dynamics model to 
simulate the flow diversion before and after device implantation for treatment of 
intracranial aneurysms. Simulations were performed on geometries extracted from 82 
patients. Such an approach is useful to run highly credible and detailed ISTs on the 82 
patients, such as the response in hypertensive compared to normotensive scenarios that 
was explored in the study. However, the addition of new patient geometries using this 
approach is time consuming, and scale-up to hundreds of patients is computationally 
infeasible. By combining the statistical virtual population model and surrogate 
thrombectomy model, we can easily predict outcome in patients with geometric parameter 
combinations not present in the original patient set. Consequently, we are able to run much 
larger trials and explore different subsets of the population very easily and quickly. This has 
the potential to be exceedingly useful in refining clinical trial inclusion criteria during the 
development of new thrombectomy devices. Though the surrogate model comes with a 
loss of patient-level accuracy and detail, the loss is considered acceptable because we are 
interested in the population-, rather than patient-, scale outcomes, and we can evaluate 
credibility at a population scale. 

Like most of the ISTs discussed, our IST uses statistically generated cohorts of virtual 
populations and we have validated the models against available clinical data. The extensive 
data that is available to us also allows us to corroborate some of our observations using 
small sample sets which would otherwise not be considered sufficient for proof of efficacy. 
This provides another example of the potential value of ISTs such as these. Notably, the 
subset of patient data that was available in our validation trial was small (n =72) and would 
have been insufficient to provide proof of efficacy of the device. Yet, by executing an IST 
with 500 patients, we showed that the 95% confidence interval of the recanalization status 
predicted by the IST and that observed in the clinical data were comparable. 

Our finding from the first exploratory IST that fibrin-rich thrombi are more difficult to 
retrieve is in line with several other in-vivo and clinical studies assessing the influence of 
thrombus composition on treatment success. Fibrin-rich thrombi are stiffer and have a 
higher coefficient of friction compared to RBC-rich thrombi. This is associated with 
decreased interaction with the struts of the stent, and consequently these fibrin-rich 
thrombi require more treatment attempts and longer procedure times to successfully 
retrieve.5,6 A similar (but not significant) trend was also observed in the clinical data from 
the MR CLEAN Registry. However, the treatment success rates observed in the MR CLEAN 
Registry were much lower than those in IST. This observation could be due to several 
reasons. Firstly, the current in silico thrombectomy model does not simulate thrombus 
fragmentation, which was frequently observed in the MR CLEAN Registry patients. 
Approximately, 74% of the patients with low-fibrin thrombi and 71% of the patients with 
fibrin-rich thrombi had reperfusion of up to 50% of the downstream territory suggesting 
the restoration of the antegrade flow with the formation of distal thrombi. These treatment 
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success rates, though not significantly different between fibrin-rich and low fibrin 
subgroups, are more comparable to those estimated by the IST. 

Secondly, although our assumption that the occluding thrombi are always homogeneous 
was necessary to simplify the simulations, it is not always true in real-life scenarios. Several 
histopathological studies have shown that thrombi are heterogeneous and contain varying 
proportions of fibrin, platelets, RBCs, WBC, lipids and calcification. The heterogeneity of the 
thrombus influences its interaction with the stent and can impact the treatment outcome.6 

Thirdly, our treatment model assumes that the stent-retriever is always placed in 
accordance to the BADDASS approach (BAlloon guiDe with large bore Distal Access catheter 
with dual aspirate with Stent-retriever as Standard approach) which recommends the stent-
retriever to be placed two-thirds behind the thrombus.37 The influence of not following this 
recommendation on treatment success has not yet been established on clinical data, but it 
could be a plausible cause of treatment success overestimation by the IST. 

Lastly, and most importantly, our IST framework does not account for the influence of 
thrombolysis. Treatment with intravenous alteplase prior to thrombectomy is part of 
standard stroke care. Alteplase is a fibrin specific activator that converts plasminogen to 
plasmin and helps to soften thrombi, especially those that are RBC-rich. Treatment with 
alteplase can impact the length and structure of the thrombus prior to thrombolysis, but it 
is known that the ability of alteplase to completely recanalize the occluding thrombus is 
limited, especially in patients with a large vessel occlusion.38 

In the second exploratory trial we showed Device B performed better than Device A. An 
advantage of an IST is the ability to compare different treatments on the same cohort of 
patients. However, it is important to note that since Device B is a newer device, fewer 
training simulations were run to build the surrogate thrombectomy model as there was 
insufficient data for model validation. When data becomes available, we intend to further 
investigate the validation of this model. Nevertheless, the execution of this second 
exploratory trial suggests that the performance of two devices may be compared using in 
silico approaches. The execution of this trial also highlights a key advantage of in silico 
approach over clinical trials: testing the performance of two devices on the same patients. 
The thrombectomy model presented in this study was only developed for M1 occlusions. 
Although, M1 occlusions are most frequently observed in AIS patients with a large vessel 
occlusion in the anterior circulation, extending our treatment model to include all 
occlusions, especially those occluding the distal arteries is crucial to strengthen the findings 
obtained in our study. 

Despite the above-mentioned limitations, to the best of our knowledge, this is the first 
project that has successfully implemented and executed ISTs for AIS. With this experiment, 
we have shown that in silico modelling approaches, when validated, could allow us to make 
plausible hypothesis towards treatment selection at a population level. Due to the proof-
of-concept nature of our study, making such hypotheses remains outside the scope of this 
study. Nevertheless, ISTs can help to elucidate the reasons for treatment failure. This 
knowledge would allow us to quantify the potential benefit of implementing in silico 
modelling approaches. 
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Conclusion 
In this study, we have presented an approach to implement and execute in silico trials (ISTs) 
of thrombectomy treatment for acute ischemic stroke (AIS). We believe that the insights 
provided from validated in silico modelling approaches would allow us to obtain a better 
understanding of the patho-physiology of AIS and reasons for treatment failure at patient 
and population levels. They will also allow device manufacturers to optimize device design 
before entering into expensive pre-clinical and clinical testing. ISTs will not replace 
randomized clinical trials. However, we concur with the recommendations of the FDA and 
other regulatory bodies that ISTs will contribute towards the level of evidence required to 
establish the efficacy of a treatment device. This will, in the future, provide valuable input 
to improve the design of clinical trials, better patient stratification techniques, and aid in 
faster and more efficient implementation of new treatments in clinical practice. 
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