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A common task for national statistical institutes is to estimate the size of a subpopulation, with

certain specific characteristics, as a proportion of a larger population or subpopulation, in

particular in a time series setting where this proportion is reported on a regular basis. This

paper discusses the probability density function for the stochastic variable that describes this

proportion, where the numerator is treated as realisations of a Poisson process, and the

denominator is the sum of a fixed value and realisations of a Poisson process that is

independent from the numerator.
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1 Introduction

In official statistics it is common to publish tables of the number of individuals or firms that

belong to certain subgroups of a population, categorised by properties. For people such

categorization could be for example gender, age, or level of education. For businesses it would be

more appropriate to consider properties such as turnover, business sector or number of people

employed. Either might also be appropriate to regionalise, i.e. separate such groups out by

region, and of course it is possible and usual to have multiple subdivisions, leading to

multidimensional tables. Often it is appropriate to express the entries in these tables not in the

form of absolute numbers but in terms of a proportion or percentage, which means that the size

of the subgroup is compared to the size of some reference group or larger subgroup of that

population. It is well-established that when such counts are in fact estimates, based on surveys,

that there is a margin of uncertainty which depends on the survey size, and possibly also on

biases. Conceptually, when calculating proportions of a particular subgroup compared to the

whole population, the denominator is set to the size of the statistical reference population, and

possibly also the inclusion probability of the group surveyed, both of which are assumed to be

fixed and deterministic.

However, even when the numbers are based on administrative registers there are also margins of

uncertainty to take into account. Administrative registers are not free of errors but even if they

were error free, the counts are always performed over a finite time interval and within a certain

spatial region. Due to unobserved behaviours of people or businesses these counts should

therefore always be treated as realisations of a stochastic counting process even if the data

source is administrative and even if that administrative source were perfectly accurate.

If it can be assumed that the behaviours of the people or businesses involved do not induce

significant correlated statistics then the appropriate stochastic process is a Poisson process with

the associated distribution function. The counts are then treated as estimators for the

expectation value, the 𝜆 parameter of the Poisson process 𝑃𝑜𝑖𝑠(𝜆). If the tabulated data are to

be published in the form of ratios, it would appear that the above argument implies that

numerator and denominator are each to be treated as realisations of Poisson processes.

However, there is an important issue with this.

This issue is that for any Poisson process, regardless of the value of the parameter 𝜆 there is a

finite probability for that process to produce a realisation, ie. a count, of 0. Since this can occur

for the denominator in the ratio of two Poisson distributed variables there is a finite likelihood

for the ratio to become infinite, and even a finite likelihood for the ratio to be undefined because

it is
0

0
. That means that even an expectation value for this ratio is impossible to establish let

alone any confidence margins. Treating the denominator as a fixed, non-stochastic, quantity is

also not appropriate and would lead to an underestimation of the margins of uncertainty for the

ratio. In the literature where counting statistics are discussed in completely different contexts

(eg. Park et al. (2006)), in some cases a solution is chosen where the numerator is assumed to

satisfy truncated Poisson statistics. Essentially the probability for a count of 0 is set to 0 and the

remaining probabilities for any finite count are re-scaled in order to ensure proper normalisation

of the probability distribution function. In Coath et al. (2013) a slightly different problem is

adressed. In that paper both numerator and denominator contain a Poisson distributed variable

the ratio of which is the variable of interest, but both require subtraction of separate noise
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terms. There is a parallel between Coath et al. (2013) and the present paper although the

approaches to deal with 0 denominators are different.

While the approach of Coath et al. (2013) can also be applied here, this ignores that in the

present application, the role of the denominator in the ratio is that of a reference: a more stable

population than the numerator. The implication is that for this reference population in the

denominator some subset might have the more volatile behaviour where a Poisson process is

appropriate as a model, but part of that population can be regarded as fixed. For instance, out of

the total population inhabiting a particular region during a particular time frame, such as a

month for instance, the majority will have a 0 likelihood of altering at all from one month to the

next. This would mean that for the denominator it is more appropriate to model this as the sum

of some non-stochastic reference value 𝑁 and a stochastic, Poisson behaved, part 𝑋. With the

numerator modelled as an independent Poisson process 𝑌 the ratio is then a stochastic variable

𝑍:

𝑍 ≡
𝑌

𝑁 + 𝑋
(1)

2 the problem

For many counting processes the ratio 𝑍 is required, together with confidence intervals, of two

separate Poisson distributed variables 𝑋 ≡ Pois(𝜆𝑥) and 𝑌 ≡ Pois(𝜆𝑦), but with a denominator

that also has a non-stochastic fixed term:

𝑍 ≡
𝑌

𝑁0 + 𝑋
(2)

In other words the distribution function is needed for 𝑃(𝑍 = 𝑧).

In what follows it is assumed that 𝑧 ≡
𝑛

𝑚
with 𝑛,𝑚 ∈ ℕ+ and where 𝑛 and𝑚 are relative prime.

Also 𝑁0 ∈ ℕ+ to ensure that 𝑍 never has its denominator = 0. For validity of approximations to

be made, it is further assumed that 𝜆𝑥, 𝜆𝑦, > 10

𝑃(𝑍 = 𝑧) = 𝑃�
𝑌

𝑁0 + 𝑋
= 𝑧�

= 𝑃�
𝑌

𝑁0 + 𝑋
=

𝑛

𝑚
�

= 𝑃 (𝑚𝑌 − 𝑛𝑋 = 𝑛𝑁0) (3)

= �

𝑙≥𝑁0/𝑚

𝑃(𝑌 = 𝑙𝑛)𝑃(𝑋 = 𝑙𝑚 − 𝑁0)

= �

𝑙≥𝑁0/𝑚

𝜆𝑙𝑛𝑦 𝑒
−𝜆𝑦

(𝑙𝑛)!

𝜆
𝑙𝑚−𝑁0
𝑥 𝑒−𝜆𝑥

(𝑙𝑚 − 𝑁0)!

While the summation can be written out exactly, as shown here, a closed form solution is

intractable for𝑚 ≠ 𝑛. Therefore the Poisson distributions will be treated as approximately

normal distributions with the appropriate mean and standard deviation. Given the assumptions

for the 𝜆, this is an allowable approximation. In addition, while 𝑙 is a discrete variable it is treated

as a continuous variable here, so that summations over 𝑙 become integrations. The probability
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𝑃(𝑧) is therefore also replaced with a probability density 𝑓(𝑧), with appropriate normalisation:

𝑓(𝑧)d𝑧 ≈ (𝑁0 + 𝜆𝑥)

∞

�

𝑁0/𝑚

1

�2𝜋𝜆𝑦
𝑒
−
1

2

(𝑙𝑛−𝜆𝑦)
2

𝜆𝑦
1

�2𝜋𝜆𝑥
𝑒
−
1

2

(𝑙𝑚−𝑁0−𝜆𝑥)
2

𝜆𝑥 𝑚d𝑙

=
𝑚(𝑁0 + 𝜆𝑥)

2𝜋�𝜆𝑥𝜆𝑦

∞

�

𝑁0/𝑚

𝑒
−
1

2
�
𝑙2𝑛2−2𝑙𝑛𝜆𝑦+𝜆

2
𝑦

𝜆𝑦
+
𝑙2𝑚2−2𝑙𝑚(𝑁0+𝜆𝑥)+(𝑁0+𝜆𝑥)

2

𝜆𝑥
�
d𝑙

=
𝑚(𝑁0 + 𝜆𝑥)

2𝜋�𝜆𝑥𝜆𝑦

∞

�

𝑁0/𝑚

𝑒
−
1

2
�𝑙2�

𝑛2

𝜆𝑦
+
𝑚2

𝜆𝑥
�−2𝑙�𝑛+𝑚(1+

𝑁0
𝜆𝑥

)�+𝜆𝑦+
(𝑁0+𝜆𝑥)

2

𝜆𝑥
�
d𝑙

=
𝑚(𝑁0 + 𝜆𝑥)

2𝜋�𝜆𝑥𝜆𝑦

∞

�

𝑁0/𝑚

𝑒

−
1

2
�
𝑛2

𝜆𝑦
+
𝑚2

𝜆𝑥
���𝑙−𝜆𝑥𝜆𝑦

𝑛+𝑚(1+
𝑁0
𝜆𝑥

)

𝑛2𝜆𝑥+𝑚
2𝜆𝑦

�

2

+

+𝜆𝑦
𝜆𝑦𝜆𝑥+(𝑁0+𝜆𝑥)

2

𝑛2𝜆𝑥+𝑚
2𝜆𝑦

−�𝜆𝑥𝜆𝑦

𝑛+𝑚(1+
𝑁0
𝜆𝑥

)

𝑛2𝜆𝑥+𝑚
2𝜆𝑦

�

2

�

d𝑙

=
𝑚(𝑁0 + 𝜆𝑥)

2𝜋�𝜆𝑥𝜆𝑦
𝑒
−
1

2
�𝜆𝑦+

(𝑁0+𝜆𝑥)
2

𝜆𝑥
−�𝑛+𝑚(1+

𝑁0
𝜆𝑥

)�
2 𝜆𝑥𝜆𝑦

𝑛2𝜆𝑥+𝑚
2𝜆𝑦

�
�

𝜆𝑥𝜆𝑦

𝑛2𝜆𝑥 +𝑚2𝜆𝑦

∞

�

𝑥0

𝑒
−
1

2
𝑥2
d𝑥

=
(𝑁0 + 𝜆𝑥)

2𝜋�𝑧2𝜆𝑥 + 𝜆𝑦

𝑒
−
1

2
�𝜆𝑦+

(𝑁0+𝜆𝑥)
2

𝜆𝑥
−�𝑧+(1+

𝑁0
𝜆𝑥

)�
2 𝜆𝑥𝜆𝑦

𝑧2𝜆𝑥+𝜆𝑦
�
∞

�

𝑥0

𝑒
−
1

2
𝑥2
d𝑥

=
(𝑁0 + 𝜆𝑥)

2𝜋�𝑧2𝜆𝑥 + 𝜆𝑦

𝑒

−
1

2
�
�𝑧(𝑁0+𝜆𝑥)−𝜆𝑦�

2

𝑧2𝜆𝑥+𝜆𝑦
�
∞

�

𝑥0

𝑒
−
1

2
𝑥2
d𝑥 (4)

in which the integration variable 𝑥 is defined as:

𝑥 ≡ �𝑙 − 𝜆𝑥𝜆𝑦

𝑛 +𝑚(1 +
𝑁0

𝜆𝑥
)

𝑛2𝜆𝑥 +𝑚2𝜆𝑦
��

𝑛2𝜆𝑥 +𝑚2𝜆𝑦

𝜆𝑥𝜆𝑦
(5)

and the integration limit 𝑥0 satisfies:

𝑥0 = �
𝑁0

𝑚
− 𝜆𝑥𝜆𝑦

𝑛 +𝑚(1 +
𝑁0

𝜆𝑥
)

𝑛2𝜆𝑥 +𝑚2𝜆𝑦
��

𝑛2𝜆𝑥 +𝑚2𝜆𝑦

𝜆𝑥𝜆𝑦

= �𝑁0 − 𝜆𝑥𝜆𝑦

𝑧 + (1 +
𝑁0

𝜆𝑥
)

𝑧2𝜆𝑥 + 𝜆𝑦
��

𝑧2𝜆𝑥 + 𝜆𝑦

𝜆𝑥𝜆𝑦
(6)

=
𝜆𝑥(𝑧

2𝑁0 − 𝑧𝜆𝑦 − 𝜆𝑦)

�𝜆𝑥𝜆𝑦(𝑧
2𝜆𝑥 + 𝜆𝑦)

It can be convenient to re-scale the Poisson parameters with 𝑁0:

�𝜆𝑥 ≡ 𝜆𝑥/𝑁0

�𝜆𝑦 ≡ 𝜆𝑦/𝑁0 (7)

so that:

𝑓(𝑧)d𝑧 =
�𝑁0(1 + �𝜆𝑥)

2𝜋�𝑧2�𝜆𝑥 + �𝜆𝑦

𝑒

−
1

2
𝑁0�

�𝑧(1+�𝜆𝑥)−�𝜆𝑦�
2

𝑧2�𝜆𝑥+�𝜆𝑦
�
∞

�

𝑥0

𝑒
−
1

2
𝑥2
d𝑥 (8)
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with

𝑥0 = �𝑁0

�𝜆𝑥(𝑧
2 − 𝑧�𝜆𝑦 − �𝜆𝑦)

��𝜆𝑥�𝜆𝑦(𝑧
2�𝜆𝑥 + �𝜆𝑦)

(9)

A practical problem is that while the numerator 𝑌 is measured, for instance as an item retrieved

from administrative data, the denominator is only available in the summed form Num𝑖 = 𝑁0 +𝑋𝑖

so that 𝑁0 and 𝑋𝑖 are not known separately. This means that a separate step is still required to

estimate 𝑁0, if there is no a-priori value available. One route can be if the denominator is

determined repeatedly. For administrative data this repeated measurement is not unreasonable

to assume: national statistical institutes that make use of administrative registers tend to obtain

extracts from such registers on a regular basis, which can be annually, but monthly and even daily

updates are not at all unusual. This means it is feasible to obtain repeated measurements Num,

where by assumption 𝑁0 is constant and the variations in the values arise from 𝑋. If this is the

case then the average of these repeated measurements corresponds to the expectation value:

Num = 𝑁0 + 𝐸(𝑋) = 𝑁0 + 𝜆𝑋 (10)

The variance of these measurements, given the assumption that 𝑋 follows a Poisson distribution,

satisfies:

𝑉𝑎𝑟(Num) = 𝑉𝑎𝑟(𝑋) = 𝜆𝑋 (11)

Combining Eqs. (10) and (11) leads to an estimator for 𝑁0 from such data:

𝑁0 = Num− 𝑉𝑎𝑟(Num) (12)

Asymptotically, i.e. for many samples, this is unbiased. For finite samples there might be some

issues in that the precision with which the average and variance are estimators of 𝜆𝑋 can be low

if only very few samples are available. If in addition 𝑁0 is not much larger than 𝜆𝑋, that, in

combination with the finite precision, might result in an estimated value of 𝑁0 ≤ 0 which would

violate the assumptions of this paper. Operationally it would therefore be advisable to use

instead:

𝑁0 = max �1,Num− 𝑉𝑎𝑟(Num)� (13)

so that even for small numbers of samples for the denominator a solution can always be

obtained.

It is important to mention at this point that it may not be appropriate to regard the repeated

extracts from registration data as fully independent. For instance there is an important

demographic register - the base register of persons or ’basisregistratie personen’ (BRP) - in which

for any given person no changes are made if there is no life-course event to register (such as a

birth or death, a marriage or legal partnership, a change of residence, etc.). Other longitudinal

registers tend to suffer from the same problem, where registration errors, once made, may

remain undetected for multiple months. While this should be captured in the formulation (10) it

can mean that nevertheless with this approach the variance 𝜆𝑋 is slightly underestimated. In

some cases it may be possible to correct for this if multiple sources are available for the same

data but such procedures have their own pitfalls and shortcomings. From experience with the

major registers in the Netherlands the effect is modest in most cases.
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3 Some sample distributions

Figure 3.1 For a number of values of the three parameters𝑁, 𝜆𝑋 and 𝜆𝑌, the resulting

probability densities are shown. The parameter values are shown in each panel. Also

indicated are the expectation value with a downward pointing triangle near the top of

the panel and the 95% confidence interval with the shorter vertical lines and the 99%

confidence interval with the longer vertical lines.

In figure 1 the resulting distribution function is shown for various values of the parameters 𝑁, 𝜆𝑋,

and 𝜆𝑌. Within each row the value of 𝜆𝑌 is constant and going down the panels row by row, it

increases in value. In the left-most column 𝑁 and 𝑋 are identical in value, both decreasing going

down the panels. In the second and third column 𝑁 and 𝜆𝑋 are unequal and the values are

switched around between the two. In the fourth and fifth column the difference between 𝑁 and

𝑋 is larger, with again switching the values around between column 4 and column 5. The cases

that are more likely to be encountered in official statistics are relatively large values of 𝑁, and

smaller values for 𝜆𝑋 and 𝜆𝑌. In these cases the probability density is relatively symmetric such

as the panel in the top right corner of Fig 1. The more asymmetric probability density, such as in

the bottom left panel occurs for small values of 𝑁 and 𝜆𝑋 and large values of 𝜆𝑌 which are less

likely to occur in typical settings in official statistics.

For smaller values of 𝜆𝑋 and 𝜆𝑌 the explicit calculation (3) can be carried out. Some examples are

shown in fig. 3.2. The open circles are the actual values of 𝑃(𝑧). The vertical lines indicating the

95 and 99 percentiles in fig. 3.2 are determined from these exact probabilities. Of course both

the numerator and denominator in 𝑍 are integers, and therefore 𝑃(𝑧) is only defined for values
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Figure 3.2 For two combinations of values of the three parameters 𝑁, 𝜆𝑋 and 𝜆𝑌, the

resulting probabilities are shown by explicit summation. The parameter values are

shown in each panel, where the middle panel has the same parameter values as the

left panel, but the ordinate is a logarithmic scale. Also indicated are the 95%

confidence interval with the shorter vertical lines and the 99% confidence interval

with the longer vertical lines.

of 𝑧 ∈ ℚ. This means that it is not straightforward to see the connection between the continuous

distributions of figure 3.1 and fig. 3.2. To facilitate this, a smoothed version is also shown as a

solid line. This is constructed by first calculating the cumulative probability function from the

exact 𝑃(𝑧). The cumulative function is monotonic which implies that a more stable interpolation

can be obtained using a spline function. The spline is constructed using ln(𝑧) as independent

variable and ln(𝑃(𝑍 ≤ 𝑧)) as dependent variable. Using the spline, the function is resampled on

a regularly spaced grid in ln(𝑧). This resampled function is smoothed using a Gaussian kernel.

after which the transformation back from the logarithmic domain and taking the derivative is

carried out. The result is shown as a solid line in all panels of fig. 3.2. Evidently the peak of the

probability density function is much lower than the highest value of the exact 𝑃(𝑧) which is

entirely due to the smoothing. It is also worth noting that even the smoothed distribution

function has a considerable amount of structure. Evidently this structure becomes less

pronounced as 𝜆𝑋 and 𝜆𝑌 increase.

4 more general case

As outlined in section 1, the formulation of the problem (2) implies a setting where the

subpopulation of particular interest is represented by 𝑌 which is quite volatile, i.e. completely

following a Poisson process, whereas the reference population in the denominator is a more

stable sum of a fixed population and a smaller part behaving as a Poisson process. A natural

extension of the formalism would be a setting in which also the numerator is partly fixed and

partly Poissonian, so that the ratio 𝑍 would become:

𝑍 ≡
𝑀0 + 𝑌

𝑁0 + 𝑋
(14)

This leads to:

𝑓(𝑧)d𝑧 ≈ (𝑁0 + 𝜆𝑥)

∞

�

𝑁0/𝑚

1

�2𝜋𝜆𝑦
𝑒
−
1

2

(𝑙𝑛−𝑀0−𝜆𝑦)
2

𝜆𝑦
1

�2𝜋𝜆𝑥
𝑒
−
1

2

(𝑙𝑚−𝑁0−𝜆𝑥)
2

𝜆𝑥 𝑚d𝑙

=
(𝑁0 + 𝜆𝑥)

2𝜋�𝑧2𝜆𝑥 + 𝜆𝑦

𝑒

−
1

2
�
�𝑧(𝑁0+𝜆𝑥)−𝑀0−𝜆𝑦�

2

𝑧2𝜆𝑥+𝜆𝑦
�
∞

�

𝑥0

𝑒
−
1

2
𝑥2
d𝑥 (15)
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in which the integration variable 𝑥 is now defined as:

𝑥 ≡ �𝑙 − 𝜆𝑥𝜆𝑦

𝑛(1 +
𝑀0

𝜆𝑦
) + 𝑚(1 +

𝑁0

𝜆𝑥
)

𝑛2𝜆𝑥 +𝑚2𝜆𝑦
��

𝑛2𝜆𝑥 +𝑚2𝜆𝑦

𝜆𝑥𝜆𝑦
(16)

and the integration limit from eq. (6) is adjusted accordingly. Note that (14) can trivially be

reformulated as:

𝑍 ≡
𝑀0

𝑁0 + 𝑋
+

𝑌

𝑁0 + 𝑋
(17)

which is the sum of two stochastic variables 𝑍1 ≡ 𝑀0/(𝑁0 + 𝑋) and 𝑍2 ≡ 𝑌/(𝑁0 + 𝑋). If 𝑍1 and

𝑍2 could be treated as independent variables the result would be simpler than eq. (15), but of

course the presence of the same 𝑋 in both denominators prevents this. However an analysis

similar to that shown in the appendix demonstrates that the variance of 𝑍1 is much smaller than

the variance of 𝑍2 for realistic situations, so that one would expect the resulting probability

distribution function to be rather similar to the one with𝑀0 = 0, but shifted by an amount

𝑀0/(𝑁0 + 𝜆𝑥).

5 Conclusions

It is common for national statistical institutes to report proportions of populations or

subpopulations that staisfy certain properties of interest. Where such proportions are inferred

from survey data, there is a natural way to also determine the margins of uncertainty of that

estimate. However, if such proportions are determined from counts in numerator and

denominator that are extracted from registers of administrative data, this does not mean that

they are free of uncertainty. The processes controlling the registration have stochastic

components. The distribution function most appropriate to describe the stochastic components

is the Poisson distribution. For the numerator this is straightforward. For the denominator this

can be problematic since there would be a finite probability for the denominator to be 0. Also

conceptually it is more sensible to treat the denominator as the sum of a constant value > 0 and

a stochastic component that follows a Poisson distribution, distinct from the numerator. This

paper discusses the resulting distribution function appropriate for the ratio, enabling the

reporting of margins of uncertainty as well as point estimates of ratios and proportions of

populations are reported from source material that is not surveys but registers or administrative

data. The expressions in the appendix were kindly provided by Sander Scholtus in the course of

reviewing an earlier version of this paper, which I am happy to acknowledge.
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appendix

For the purposes of obtaining an approximate expression just for the expectation value and

variance of 𝑍 one can also follow another route, making use of a Taylor series expansion of 𝑍

around the expectation value. The reasoning is as follows. Starting point is expression (2) which is

written as 𝑍 = 𝑓(𝑋, 𝑌), and the point around which the Taylor expansion is to be constructed is:

𝑧0 = 𝑓 (𝐸(𝑋), 𝐸(𝑌)) = 𝑓(𝜆𝑋, 𝜆𝑌) =
𝜆𝑌

𝑁0 + 𝜆𝑋
(18)

Then:

𝑍 ≈ 𝑧0 +
𝜕𝑓

𝜕𝑋
|(𝜆𝑋,𝜆𝑌) (𝑋 − 𝜆𝑋) +

𝜕𝑓

𝜕𝑌
|(𝜆𝑋,𝜆𝑌) (𝑌 − 𝜆𝑌)

= 𝑧0 − �
𝜆𝑌

(𝑁0 + 𝜆𝑋)
2 � (𝑋 − 𝜆𝑋) + �

1

(𝑁0 + 𝜆𝑋)
� (𝑌 − 𝜆𝑌)

= 𝑧0 +
𝜆𝑌

𝑁0 + 𝜆𝑋
�
𝑌 − 𝜆𝑌

𝜆𝑌
−

𝑋 − 𝜆𝑋

𝑁0 + 𝜆𝑋
� (19)

With this expression in hand, and using the assumption that 𝑋 and 𝑌 are independent and

therefore uncorrelated, the expression for the variance becomes:

var (𝑍) ≈ �
𝜆𝑌

𝑁0 + 𝜆𝑋
�

2

�var�
𝑌

𝜆𝑌
� + var�

𝑋

𝑁0 + 𝜆𝑋
��

= �
𝜆𝑌

𝑁0 + 𝜆𝑋
�

2

��
𝜆𝑌

𝜆2𝑌
� +

𝜆𝑋

(𝑁0 + 𝜆𝑋)
2 �

=
𝜆𝑌

(𝑁0 + 𝜆𝑋)
2 �1 +

𝜆𝑋𝜆𝑌

(𝑁0 + 𝜆𝑋)
2 � (20)

where the approximate equality arises because only the first term in the Taylor series is taken

into account.

Figure 5.1 For the parameter values corresponding to the panels of figure 3.2 the

expectation value of 𝑍 and the approximate variance and standard deviation are

shown in the table.
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