
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Development and validation of machine learning models in cardiology

Ricci Lopes, R.

Publication date
2023
Document Version
Final published version

Link to publication

Citation for published version (APA):
Ricci Lopes, R. (2023). Development and validation of machine learning models in cardiology.
[Thesis, fully internal, Universiteit van Amsterdam].

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:15 Apr 2023

https://dare.uva.nl/personal/pure/en/publications/development-and-validation-of-machine-learning-models-in-cardiology(895787b2-01f8-4bd9-8f35-de79f4f2f009).html




 

 

 
 

Development and Validation of 
Machine Learning Models in 

Cardiology 
 

 

 

 

 

Ricardo Ricci Lopes 
 

  



 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Layout: Ricardo Ricci Lopes 

Cover Design: Jonas Marques 

Print: Ridderprint | www.ridderprint.nl 

 

ISBN: 978-94-6483-014-9 

The work in this thesis was supported by ITEA3 Partner: Project 16017. 

Financial support by the Dutch Heart Foundation for publication of this thesis is gratefully 

acknowledged. 

Copyright © R.R. Lopes 2023. All rights are reserved. No part of this book may be 

reproduced, distributed, stored in a retrieval system, or transmitted in any form or by 

any means, without prior written permission of the author.  



Development and Validation of Machine Learning Models in Cardiology
 

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor

aan de Universiteit van Amsterdam

op gezag van de Rector Magnificus

prof. dr. ir. P.P.C.C. Verbeek

ten overstaan van een door het College voor Promoties ingestelde commissie,

in het openbaar te verdedigen in de Agnietenkapel

op woensdag 19 april 2023, te 10.00 uur

door Ricardo Ricci Lopes

geboren te Batatais/SP



Promotiecommissie

Promotores: prof. dr. H.A. Marquering AMC-UvA
prof. mr. dr. B.A.J.M. de Mol AMC-UvA
 

Overige leden: prof. dr. I. Išgum AMC-UvA
prof. dr. M.C. Schut Vrije Universiteit Amsterdam
prof. dr. J. Kluin AMC-UvA
prof. dr. A. Abu-Hanna AMC-UvA
prof. dr. R.J. de Winter AMC-UvA
prof. dr. ir. H. Boersma Erasmus Universiteit Rotterdam

Faculteit der Geneeskunde



Table of Contents 
Chapter 1 
Introduction 

7 

Chapter 2 
Value of machine learning in predicting TAVI outcomes 

19 

Chapter 3 
Inter-center cross-validation and finetuning without patient data 
sharing for predicting transcatheter aortic valve implantation 
outcome  

39 

Chapter 4 
Local and distributed machine learning for inter-hospital data 
utilization: an application for TAVI outcome prediction 

57 

Chapter 5 
Temporal validation of 30-day mortality prediction models for 
transcatheter aortic valve implantation using statistical process 
control 

75 

Chapter 6 
Prediction of atrial fibrillation recurrence after thoracoscopic 
surgical ablation using machine learning techniques 

101 

Chapter 7 
Machine learning-based prediction of insufficient contrast 
enhancement in coronary computed tomography angiography 

129 

Chapter 8 
Improving electrocardiogram-based detection of rare genetic heart 
disease using transfer learning 

153 

Chapter 9 
Discussion 

175 

Summary 185 

Nederlandse samenvatting 189 

Abbreviations 193 

Portfolio 197 

Contributing authors 203 

Acknowledgements 205 

About the author 209 



1 

Chapter 1 

6 
  



1 

Introduction 

7 

Introduction 

Cardiovascular diseases 

Cardiovascular diseases (CVD) are the leading cause of death globally, according 

to the World Health Organization. Most of the CVD can be prevented with a 

healthy lifestyle and controlled use of harmful substances, such as tobacco and 

alcohol (1). Early diagnosis and appropriate treatment are important factors to 

reduce mortality ratio of CVD. Prognostic and diagnostic models have been 

developed to support doctors and patients in the decision-making process on 

medical treatment or surgical interventions. For instance, multiple prognostic risk 

scores have been developed to estimate the risk of cardiac surgeries. Examples of 

these models are the Society Thoracic Surgeon (STS) risk model and the 

EuroScore I and II models, which generate a risk profile of adult surgical patients 

(2,3). These models have been generated several years ago; the STS was 

developed in 2008 and was updated in 2018, the EuroScore was developed in 

2008 and was updated in 2012. It has been suggested that the methodology used 

to create these risk scores is outdated since it used traditional statistical 

approaches, however, methods improved accuracy could be achieved with 

machine learning (ML) models (2–5). 

Considering that treatments and procedures are advancing over the years, the 

prognostic risk scores must also be regularly updated and evaluated over time. 

Moreover, these models do not present the same accuracy over different 

populations (5–8). In addition, new ML techniques have emerged as the state of 

the art for prediction modelling (9,10). These techniques, as well as the traditional 

ML techniques, are currently being deeply explored and evaluated in the 

cardiovascular field (2,11–13). Hence, this thesis supports the decision-making 

process in four cardiovascular diseases, which are presented as follows with a 

description of the relevant prognostic or diagnostic models and their main 

limitations. 

Aortic valve stenosis 

The human heart has four valves, which are responsible to keep blood moving in 

the right direction. Developed or congenital defects on these valves, developed 
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or congenital, might cause severe problems such as heart failure or death (14). 

Aortic stenosis (AS) is the most common valve disease requiring surgery in 

Europe and North America (15,16), with a prevalence of 1.7% in the general 

population aged over 65 years in developed countries (16). Over time, it is 

common that calcium from the blood deposits on the valve, causing calcifications 

in the aortic leaflets and malfunction of the valve, forcing the heart to work harder 

to compensate for it (17). AS is more common in the elderly population and it is 

usually associated with fatigue, dizziness, chest pain, and shortness of breath. 

Without surgery, up to 50% of the patients with severe AS die within one year 

(18). Among treatment options, transcatheter aortic valve implantation (TAVI) 

has emerged as a minimally invasive procedure and has been used as the last 

resort for high-risk patients considered inoperable (19). Currently, TAVI is also 

considered a viable treatment for low and intermediate-risk AS patients (20). 

Multiple risk scores can be used to assess risks and support the decision-making 

process on TAVI (21). The STS and EuroScore II were not specifically created 

for TAVI, although are commonly assessed for TAVI procedures. For in-hospital 

and early mortality, the STS/ACC TAVR (22) and France2 (23) scores have been 

developed. However, in the general population, these scores do not maintain the 

same accuracy as in the original population for which they were created (24,25). 

This highlights the importance of developing treatment models specifically for a 

target population. 

Coronary Artery Disease 

Coronary arteries provide blood to the heart muscle. Over time, a build-up of 

plaques made up of cholesterol can cause narrowing of the coronary arteries. The 

excessive plaque build-up, called Coronary Artery Disease (CAD), reduces the 

blood flow and might cause heart attacks (26). CAD is the most common type of 

heart disease, being the leading cause of death in the United States (27) and being 

responsible for approximately 20% of deaths in Europe (28). 

Computed tomographic coronary angiography (CTCA) is a non-invasive imaging 

technique used to support the diagnosis of CAD (29,30). For accurate assessment 

of the disease on CTCA, a minimal intra-arterial attenuation value is 

recommended (31). However, the contrast material adjustment for the CTCA 
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acquisition, in some cases, is not optimal. With that, the coronary attenuation 

values might be too low, thereby jeopardizing the diagnostic value of CTCA (32). 

Although there are several ML models to support the diagnosis of CAD (33), 

there are no studies aiming at the prediction of CTCAs with insufficient 

attenuations before its acquisition. 

Atrial fibrillation 

The heart’s rhythm is controlled by an electrical signal which normally starts in 

the sinus node, travels through the atrioventricular node and bundle of His to the 

ventricles. A problem with this electrical signal may cause cardiac arrhythmia, 

making the heart to beat too fast, too slow, or irregularly (34). Atrial fibrillation 

(AF) is the most common cardiac arrhythmia in adults, with a prevalence of 2-

4% (35). AF is strongly associated with a variety of conditions, such as valve 

diseases, coronary artery disease, cardiomyopathies, and stroke (36). The 

standard for the diagnosis of AF is by detection on an electrocardiogram (ECG). 

In patients with AF, the ECG is characterized by the absence of P-waves and 

irregular R intervals in the heart signal.  

Cases of AF can be frequent and recurrent, requiring treatment with drugs or 

medical procedures (37). A well-established procedure for AF prevention is 

catheter ablation (37,38). This procedure consists of damaging specific regions 

of the heart that are causing arrhythmia to prevent new cases of AF. Although 

effective, with a rate of 69-80% of non-AF recurrence (39), the patient is not 

always AF-free after the procedure, which could even increase the risk of 

comorbidities and cause an impaired quality of life.  

The use of ML techniques has improved automated detection of AF on ECGs 

(40,41). AF has a clear pattern on the ECG, and the most advanced ML techniques 

can learn important patterns automatically, reaching high accuracy in the 

detection of visual patterns. However, the recurrence of AF after the ablation 

procedure does not have a known pattern in the ECG, making its detection less 

accurate. Although there are some known risk factors and risk scores available 

(42–44), there are still no well-accepted ML models for AF recurrence detection. 

Investigations in this field can lead to discoveries and insights. 
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Cardiomyopathies 

Cardiomyopathies are a group of structural heart diseases associated with the 

malfunctioning of the heart's muscles. There are many causes for 

cardiomyopathies, such as genetic factors, coronary disease (ischemic) and 

hypertension. They might be symptom-free in an early stage, or there may be no 

symptoms at all during the patient's lifetime. However, the worsening of a 

cardiomyopathy can cause heart failure (45). Some cardiomyopathies, like the 

ones caused by the Phospholamban (PLN) p.Arg14del mutation, are rare and 

need early diagnosis. They are among the most malignant cardiomyopathies and 

require early implantation of cardioverter-defibrillators (46,47). 

Currently, the diagnosis of the PLN mutation is made using genetic testing. These 

tests, however, are expensive and time-consuming. Some known characteristics 

of the mutation might be presented in an electrocardiogram (ECG) but, given its 

rarity, these patterns might not be recognized by a general practitioner at the 

clinic. Some ML models were able to outperform specialists in the ECG-based 

detection of PLN mutation, nevertheless, the models are still far from a real 

clinical application (48). These models were trained and evaluated with the same 

proportion of healthy and PLN patients, which is not correspondent with the rarity 

of the disease. 

Machine Learning 

Traditionally, clinical prognostic models are developed using the well-accepted 

Logistic Regression (LR) technique due to its simplicity and straightforward 

interpretation. These models usually have a small number of features compared 

to the number of patients that are included to generate them (49), making them 

easily interpretable. Their resulting coefficients, representing the extent and 

direction of the relationship between a feature and the predicted variable, can be 

used to understand which features are the most impactful in the prediction. LR is 

usually associated with the traditional (statistical) approach, where the goal is the 

analysis of the learned coefficients rather than the predictions themselves (49,50). 

Also, the LR models rely on previous knowledge for appropriate pre-processing 

to handle non-linear features or multicollinearity (51). 
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The use of ML has been increasing in current years given the large improvement 

in computing power and data storage. ML models can deal with non-linearities in 

the features, combining them in multiple ways automatically (51), which 

demands computer power. With the advances in deep learning architectures and 

gradient boosting algorithms, research on the application of ML techniques in the 

cardiovascular field has significantly increased (52–55).  

The use of artificial intelligence in cardiology is seen today as a viable way to 

optimize the physicians’ workload by supporting their decisions and 

automatizing some of their time-consuming tasks. Deep learning, for instance, is 

being largely used to perform segmentation or detect diseases on medical images. 

The models occasionally achieve similar or superior accuracy when compared to 

physicians (56,57). However, the lack of proper and extensive model validation 

is still deemed as a limitation (58).  

Thesis outline 

This thesis presents the development of multiple machine learning models in the 

field of cardiology, as well as techniques to deal with limitations regarding its 

implementations and validation. Models were developed for the prediction of 

TAVI outcomes, recurrence of AF after thoracoscopic surgery, prediction of low 

attenuation on CTCAs, and detection of a rare genetic disease using only an ECG 

signal. I also implemented ways to improve the models’ accuracy with limited 

amounts of available data, using interpretation techniques to better understand 

the models, and validating them with different settings and approaches. My main 

contributions were: (a) the use of machine learning methods for relevant topics 

in cardiology, (b) approaches to deal with data sharing policies using finetuning 

and distributed learning, and (c) optimization and validation of models (internal, 

external, temporal and subgroup analysis) to analyse model performance and 

stability, and (d) model explanation techniques for interpretation of the decisions 

made by the models. 

In Chapter 2 we present the prediction of TAVI outcomes, mortality, and 

improvement of symptoms using ML techniques. The models were developed 

using screening and laboratory features, as well as their combination. 
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We performed an external validation of models trained for the prediction of 1-

year mortality after TAVI in Chapter 3. To overcome limitations regarding data 

sharing, the focus was on neural networks with a finetuning strategy, allowing us 

to take advantage of data from other medical centre to improve the model's 

accuracy. 

Based on the model finetuning strategy described in the previous chapter, in 

Chapter 4 we explored distributed and local ML approaches for inter-hospital 

data utilization. We trained models incrementally in two centres in a distributed 

way and also used an stacking approach to combine models trained locally on 

each centre. 

Knowing that the TAVI procedure and patient selection changed over time, in 

Chapter 5, the stability and performance of mortality prediction models were 

analysed over the years. We divided a national registry into temporally organized 

groups and analysed the data shift and stability of the models over time. 

In Chapter 6 AF is discussed, focusing on the prediction of recurrence after the 

thoracoscopic surgical ablation. We analysed how available pre-operative 

features can predict recurrence and in which subgroups the models achieve the 

highest and lowest accuracy. 

Chapter 7 is about the prediction of insufficient attenuation on the ascending 

aorta to support the diagnosis of coronary artery disease. Patient features, 

commonly used in contrast protocols, were combined with imaging features 

extracted from the test bolus contrast. 

In Chapter 8, an approach to improve the detection of PLN based on ECG is 

proposed. Also, the models were trained and evaluated in an imbalanced scenario, 

with a higher proportion of healthy patients over PLN cases, which is closer to 

clinical practice. The models were pre-trained on an easier task, with larger 

amounts of ECGs, and later tuned to detect the PLN mutation carriers using the 

ECG as input.  

Finally, in Chapter 9, a discussion of the main contributions of this thesis, 

findings, limitations, clinical implications of the machine learning use in the field 

of cardiology, and topics for future research is presented.  
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Abstract 

Transcatheter aortic valve implantation (TAVI) has become a commonly applied 
procedure for high-risk aortic valve stenosis patients. However, for some patients, 

this procedure does not result in the expected benefits. Previous studies indicated 
that it is difficult to predict the beneficial effects for specific patients. We aim to 
study the accuracy of various traditional machine learning (ML) algorithms in the 

prediction of TAVI outcomes. 

Clinical and laboratory data from 1,478 TAVI patients from a single centre were 
collected. The outcome measures were improvement of dyspnoea and mortality. 
Three experiments were performed using (1) screening data, (2) laboratory data, 

and (3) the combination of both. Five well-established ML techniques were 
implemented, and the models were evaluated based on the area under the curve 
(AUC). Random forest classifier achieved the highest AUC (0.70) for predicting 
mortality. Logistic regression had the highest AUC (0.56) in predicting 

improvement of dyspnoea. 

In our single-centre TAVI population, the tree-based models were slightly more 
accurate than others in predicting mortality. However, ML models performed 

poorly in predicting improvement of dyspnoea. 
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Introduction 

Aortic valve stenosis (AS) is one of the most common valvular heart diseases, 

impacting, in general, the elderly population. In the past decade, transcatheter 

aortic valve implantation (TAVI) has developed into a routine treatment for AS 

patients at elevated risk of surgery. Although there is strict patient selection for 

the TAVI procedure and various planning and treatment support tools are 

available (1–3), a number of patients have limited benefit from TAVI (4). 

Improved selection of these patients would allow increased benefit from the 

procedure and improve decision-making. Unfortunately, current risk models have 

only limited accuracy in predicting TAVI outcomes (5). 

Previous clinical prediction models rely on traditional statistical regression 

models (6). Alternatively, machine learning (ML), which is a computer science 

subdiscipline, has shown superior predictive value in various clinical areas, from 

detecting Alzheimer’s disease to identifying lung nodules (7,8). A more specific 

area of ML is supervised learning: with known outcomes, ML algorithms can 

learn automatically to optimise the prediction of this outcome. Moreover, ML 

techniques have outperformed conventional regression models when applied to a 

large amount of data (9). 

Multiple risk models that have been used that are dedicated to the prediction of 

perioperative mortality and are not TAV-specific, but intended for surgical aortic 

valve replacement such as the EuroSCORE, EuroSCORE II or the STS (Society 

of Thoracic Surgery) score (10,11). For TAVI, these are poor predictors of 

mortality and focus on procedural or 30-day mortality, as did the TAVI-specific 

TVT registry score (12). The prediction of 1-year mortality is even more 

challenging (13). A more recent study also incorporated predefined features from 

computed tomography (CT) in combination with comorbidities to enhance the 

model (14). 

We aimed to study the accuracy of various ML algorithms in predicting outcomes 

after a TAVI procedure. The accuracy was evaluated in the prediction of mortality 

and improvement of dyspnoea using a subset of well-established ML techniques. 
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Methods 

Patient population 

The database consists of 1,478 patients who underwent a TAVI between 2007 

and 2018; their median age is 82.9 years [Q1 78.0 – Q3 86.4] and 55% of the 

patients are female. The data contain patient characteristics, medical history, 

symptoms, and test results prior to and after TAVI. Symptoms are dyspnoea, 

fatigue, collapse, and angina pectoris. Tests performed prior to TAVI are 

echocardiography, computed tomography angiography, coronary angiography, 

electrocardiography (ECG), and laboratory tests. Tests done after TAVI are 

echocardiography, ECG and laboratory tests. 

The outcomes used are improvement of dyspnoea and mortality. Dyspnoea is 

measured using the New York Heart Association (NYHA) functional score (1-4). 

Mortality is defined as a patient who died of a cardiovascular disease within 1 

year after the procedure. Patients with missing data are excluded. The baseline 

and 60-day follow-up NYHA score is known for 766 patients (605 improved, 161 

non-improvements) and mortality is known for 1,400 patients (1,263 survivors, 

137 non-survivors). For every outcome parameter, we performed three 

experiments: (1) using only screening data; (2) using only laboratory data; and 

(3) using both screening and laboratory data. The number of patients for each 

experiment is different due to missing values, as presented in Figures 1 and 2. All 

variables, as well as the descriptive statistics, can be found in the Supplementary 

Material (Tables I and II). 
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Figure 1. Number of patients without missing data per feature set for mortality outcome. 

For each feature set added, a lower number of samples is available due to missing 

values in different patients per set. 

Figure 2. Number of patients without missing data per feature set for symptom outcome. 

For each feature set added, a lower number of samples is available due to missing 

values in different patients per set. 

Clinical variables 

The clinical variables used can be divided into three sets: patient characteristics, 

screening data, and laboratory data. The patient baseline characteristics included 
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age, sex, body mass index (BMI), and access route chosen for the procedure. The 

screening data consist of the medical history, symptoms, and echocardiography 

prior to TAVI. The features used from this data are the existence of peripheral 

artery disease, chronic obstructive pulmonary disease (COPD), atrial fibrillation, 

diabetes mellitus (DM) in the medical history, left ventricular function, and aortic 

valve area assessed with echocardiography. The features used from the laboratory 

data are the pre-procedural values of N-terminal pro-b-type natriuretic peptide 

(NT-proBNP), haemoglobin, albumin, chronic kidney disease epidemiology 

collaboration (CKD-EPI), and creatinine. 

Based upon expert opinions we applied clipping to the NT-proBNP and creatinine 

variables, for values greater than 1,000 ng/l and 250 mmol/l, respectively. The 

nominal and categorical data were one-hot encoded; continuous features were 

normalised by removing the mean and scaling to unit variance, as requisite for 

many ML techniques (15). Moreover, the COPD and DM were dichotomised to 

take into account the presence of the disease instead of the degree. 

Classification techniques 

In this study, we selected a number of well-established ML techniques, which 

are: support vector machine (SVM) (16), random forest classifier (RFC) (17), 

multi-layer perceptron (ML) (18), and gradient tree boosting (GTB) (19). In 

addition, traditional logistic regression (LR) was also applied for comparison, 

since this technique is often used in clinical studies. All the implementations used 

in this project were provided by scikit-learn (15), except for GTB. We chose the 

XGBoost (19) library because of its GPU implementation, which speeds up 

training and optimisation. 

To evaluate the models fairly, the database was split into two sets: a training and 

a testing dataset. The training data were used to find the optimal parameters for 

the classification task. The testing set was used to evaluate the trained model in 

unseen data, to ensure generalisation of the model and prevent the memorisation 

of the training set (overfitting). In this study, the models were evaluated with the 

Monte-Carlo cross-validation for 100 iterations and stratified splits of 70% for 

training and 30% for testing. With this large number of different training and 

testing sets, chances of having over-optimistic results are minimised. Moreover, 
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to optimise the parameters of each model, a randomised grid search with stratified 

5-fold cross-validation was performed using the training set. The 

hyperparameters and ranges used for optimisation, including the weight 

penalisation applied to minimise the class unbalance issue, are available in the 

Supplementary Material (Tables III and IV). 

Results of ML techniques are difficult to interpret. To elucidate which features 

may be important in the ML techniques, the average feature importance for RFC 

and GTB was calculated based on the number of times the feature was selected 

for splitting and weighted by the average squared improvement of the model over 

all trees (20). 

Performance assessment 

The median of the area under the curve (AUC) of the receiver operating 

characteristic curve (ROC) from 100 iterations, using test sets, was selected to 

evaluate the performance of each model. To assess whether the difference in AUC 

between highest performing classifier and the other methods was statistically 

significant, the Wilcoxon signed-rank test was performed for each experiment. p-

values < 0.05 were considered statistically significant. 

Results 

The predictive value for improvement of dyspnoea was statistically significant 

but absent/low, with the best median AUC result of 0.56, using only laboratory 

features and LR. For mortality prediction, the model based on RFC was most 

accurate with an AUC of 0.70 [Q1 0.67 – Q3 0.74] and the results are considered 

to be significantly different according to the Wilcoxon test. All results are 

presented in Table 1. There was no significant difference in the results for 1-year 

mortality prediction using only the screening features.  

The combination of the feature data sets did not result in an increased AUC in 

predicting improvement of dyspnoea. In mortality prediction, the models using 

the data combination showed similar AUCs using only laboratory features and all 

features. The median receiver operating characteristic (ROC) curves for the 

prediction of dyspnoea improvement (using the laboratory features) and mortality 

prediction (using all features) are displayed in Figures 3 and 4, respectively. 
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Table 1. Median area under the curve [first and third quartiles] for all experiments. The 

rows are the machine learning technique and the columns are the set of features and the 

kind of outcome prediction. The highest-performing models and the models proved to be 

insignificantly different from those according to the Wilcoxon test are highlighted in bold.  

 Improvement of dyspnoea 1-year mortality 

Model Screening Laboratory All Screening Laboratory All 

GTB 
0.52 

[0.49-0.56] 
0.53 

[0.50-0.55] 
0.51 

[0.47-0.54] 
0.65 

[0.62-0.67] 
0.69 

[0.65-0.72] 
0.69 

[0.66-0.72] 

SVM 
0.52 

[0.49-0.55] 
0.52 

[0.48-0.56] 
0.53 

[0.48-0.56] 
0.65 

[0.62-0.68] 
0.68 

[0.64-0.71] 
0.69 

[0.65-0.72] 

MLP 
0.53 

[0.50-0.56] 
0.52 

[0.48-0.55] 
0.52 

[0.48-0.56] 
0.65 

[0.62-0.68] 
0.66 

[0.62-0.70] 
0.66 

[0.62-0.71] 

RFC 
0.52 

[0.49-0.55] 
0.53 

[0.49-0.56] 
0.51 

[0.46-0.56] 
0.66 

[0.63-0.68] 
0.70 

[0.67-0.73] 
0.70 

[0.67-0.74] 

LR 
0.54 

[0.52-0.57] 
0.56 

[0.52-0.58] 
0.54 

[0.51-0.57] 
0.66 

[0.63-0.69] 
0.67 

[0.62-0.70] 
0.65 

[0.61-0.69] 

GTB gradient tree boosting, SVM support vector machine, MLP multi-layer perceptron, RFC random 
forest classifier, LR logistic regression 

The most relevant features for mortality prediction in GTB and RFC were 

determined by the importance of the features. In order of relevance, these were: 

NT-proBNP, BMI , CKD-EPI, creatinine, and age. 

Discussion 

In our population of 1,478 patients who underwent a TAVI procedure, the 

selected subset of ML techniques had little added prognostic value in predicting 

mortality and improvement of dyspnoea compared to commonly applied LR 

techniques. In the prediction of mortality, ML techniques achieved similar scores 

using all features and only the laboratory features. The increase in prognostic 

value and the improvement of dyspnoea prediction was rather low, even with the 

combination of clinical and laboratory data.  
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Figure 3. Median receiver operating characteristic (ROC) curve from 100 Monte Carlo 

cross-validation iterations for the prediction of dyspnoea improvement using laboratory 

features. AUC area under the curve, GTB gradient tree boosting, LR logistic regression, 

MLP multi-layer perceptron, RFC random forest classifier, SVM support vector machine 

 

 

Figure 4. Median ROC curve from 100 Monte Carlo cross-validation iterations for the 

mortality prediction using all features. AUC area under the curve, GTB gradient tree 

boosting, LR logistic regression, MLP multi-layer perceptron, RFC random forest 

classifier, SVM support vector machine 
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Some recent studies that applied ML have often shown positive results for 

prognosis prediction. In the study of Memarian et al. (21), ML methods were 

applied to multimodal data (clinical data, electroencephalography, magnetic 

resonance imaging) to predict the outcome of surgery in patients with mesial 

temporal lobe epilepsy, achieving a prediction accuracy of 95% using SVM-

derived classifiers. Frizzell et al. (22) compared ML methods to LR in predicting 

30-day readmission in patients discharged following hospitalisation for heart 

failure. Similar to our findings these results did not show an improvement in 

prediction accuracy. The prediction of six cardiovascular outcomes (including 

heart failure and all-cause death) was assessed by Ambale-Venkatesh et al. (23), 

whereby random survival forests and other ML techniques were compared to the 

standard cardiovascular scores. They concluded that ML improved the accuracy 

of cardiovascular event prediction in initially asymptomatic patients. 

Our results confirm that predicting outcomes of TAVI procedures is challenging. 

Many factors may impact the patient’s outcome, many of which are not 

considered in the modelling. The inclusion of more and different kinds of 

features, such as different examinations, CT scans, and ECG, is currently a 

subject of investigation. By including different sets of features and more complex 

models, the predictive value may increase. 

There was no implicit order in the data variables that we tried to exploit. Also, no 

variables were transformed into a dense representation. We included all variables 

that were considered relevant by clinical experts. We are aware that one-hot 

encoding generates data sparsity. Even though one-hot encoding can downgrade 

the performance of some ML methods, it is an important step for distance-based 

methods such as the SVM. In our study, only a small number of categorical 

variables (with few classes) were one-hot encoded to prevent hampering the 

performance of methods due to data sparsity. 

The methods used in this study are generalisable to other clinical challenges in 

which prediction of outcomes is warranted. It is expected that the application of 

ML techniques in combination with clinical knowledge will become increasingly 

important in coming years to improve prognostics. Models with higher accuracy 

may improve outcome prediction after TAVI, allowing a more individual 

approach in clinical care. 
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This study suffered from a number of limitations. The dataset used in this study 

may be one of the largest Dutch single-centre TAVI datasets available. However, 

with unbalanced measures (such as a relatively small population that did not 

survive the 1st year), the effect of the data is reduced. Moreover, many patients 

were excluded because of missing data, which can be mitigated by using 

imputation techniques. In this study, we chose symptom reduction using the 

NYHA classification and 1-year mortality as outcome measures. Other outcome 

measures, however, might be relevant for the TAVI population. 

Conclusion 

In our population of patients treated with TAVI, ML techniques were able to 

predict mortality using the current set of features. In predicting a reduction of 

dyspnoea, the traditional LR technique outperformed the others. Adding more 

features or increasing the dataset size may result in a situation in which ML 

techniques have more added value. 
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Supplementary material 

Table I. Summarized patient characteristics grouped by symptoms 

    Grouped by symptoms 

    Missing Improved Didn't improve 

variable level    

n    605 161 

Gender 
Female 36 334 (55.39) 98 (60.87) 

Male  269 (44.61) 63 (39.13) 

Body Mass Index   141 
27.10 

[24.50,30.40] 
26.40 

[23.70,30.50] 

Age (years)   143 
83.40 

[77.90,86.60] 
82.70 

[77.50,86.10] 

PAD 
No 155 447 (74.13) 112 (69.57) 

Yes  156 (25.87) 49 (30.43) 

COPD 
No 156 414 (68.66) 114 (70.81) 

Yes  189 (31.34) 47 (29.19) 

Atrial Fibrillation 

No 171 350 (58.04) 109 (67.7) 

Yes, unknown type  77 (12.77) 14 (8.7) 

Yes, paroxysmal  84 (13.93) 17 (10.56) 

Yes, permanent  78 (12.94) 15 (9.32) 

Yes, persistent  14 (2.32) 6 (3.73) 

Diabetes mellitus 
No 166 417 (69.15) 110 (68.32) 

Yes  186 (30.85) 51 (31.68) 

Treatment for 
Diabetes 

Diet alone 92 2 (0.33)  

Insulin  33 (5.46) 5 (3.11) 

No  461 (76.32) 129 (80.12) 

Oral medication  101 (16.72) 23 (14.29) 

Oral medication 
and insulin 

 7 (1.16) 4 (2.48) 

Left Ventricular 
Function 

Good 147 371 (61.63) 108 (67.08) 
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Mildly impaired  110 (18.27) 31 (19.25) 

Moderately 
impaired 

 74 (12.29) 11 (6.83) 

Poor  39 (6.48) 11 (6.83) 

Very poor  8 (1.33)  

Aortic Valve Area 
(cm2) 

  262 0.80 [0.70,1.00] 0.81 [0.70,0.95] 

NT-proBNP (ng/L)   448 1644 [641,3957] 1258 [595,3373] 

Hemoglobin 
(mmol/L) 

  170 7.79 (1.01) 7.85 (1.05) 

Albumin (g/L)   453 42 [40,44] 42.00 [39,45] 

CKD-EPI 
(ml/min/1.73 m2) 

  199 
59.89 

[46.03,75.27] 
59.00 

[43.51,73.44] 

Creatinine 
(mmol/L) 

  174 88 [73,112] 89 [71,113] 

Access Route 

Direct aorta 162 72 (11.94) 32 (20.0) 

Transapical  57 (9.45) 21 (13.12) 

Transfemoral  474 (78.61) 107 (66.88) 

Via arteria 
subclavia 

  0 (0.00) 

 

Table II. Summarized patient characteristics grouped by 1-year mortality 

    Grouped by 1-year mortality 

    Missing Survived Didn't survive 

variable level    

n    1263 137 

Gender 
Female 36 696 (55.77) 67 (48.91) 

Male  552 (44.23) 70 (51.09) 

Body Mass Index   141 
27.00 

[24.20,30.40] 
25.50 

[23.70,29.10] 

Age (years)   143 
82.80 

[77.80,86.20] 
84.00 

[80.00,87.40] 

PAD 
No 155 909 (75.19) 84 (61.31) 

Yes  300 (24.81) 53 (38.69) 

COPD No 156 871 (72.16) 74 (54.01) 
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Yes  336 (27.84) 63 (45.99) 

Atrial Fibrillation 

No 171 734 (61.58) 70 (51.09) 

Yes, unknown 
type 

 127 (10.65) 28 (20.44) 

Yes, paroxysmal  161 (13.51) 17 (12.41) 

Yes, permanent  137 (11.49) 20 (14.6) 

Yes, persistent  33 (2.77) 2 (1.46) 

Diabetes mellitus 
No 166 833 (69.47) 92 (67.15) 

Yes  366 (30.53) 45 (32.85) 

Treatment for 
Diabetes 

Diet alone 92 10 (0.8)  

Insulin  53 (4.24) 7 (5.11) 

No  958 (76.7) 104 (75.91) 

Oral medication  200 (16.01) 23 (16.79) 

Oral medication 
and insulin 

 28 (2.24) 3 (2.19) 

Left Ventricular 
Function 

Good 147 756 (62.84) 59 (43.38) 

Mildly impaired  227 (18.87) 32 (23.53) 

Moderately 
impaired 

 138 (11.47) 26 (19.12) 

Poor  71 (5.9) 16 (11.76) 

Very poor  11 (0.91) 3 (2.21) 

Aortic Valve Area 
(cm2) 

  262 0.80 [0.66,0.95] 0.80 [0.66,0.97] 

NT-proBNP (ng/L)   448 1412 [569,3332] 3365 [1541,7007] 

Hemoglobin 
(mmol/L) 

  170 7.80 (1.00) 7.65 (1.17) 

Albumin (g/L)   453 42 [40,44] 41 [38,43] 

CKD-EPI 
(ml/min/1.73 m2) 

  199 
60.10 

[45.90,74.54] 
48.27 

[33.66,65.41] 

Creatinine 
(mmol/L) 

  174 88 [72,111] 102 [78,154] 

Access Route 

Direct aorta 162 214 (17.58) 35 (25.55) 

Transapical  109 (8.96) 23 (16.79) 

Transfemoral  894 (73.46) 78 (56.93) 
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Via arteria 
subclavia 

  1 (0.73) 

 

Table III. Hyperparameters used for SVM 

Classifier Kernel Type 
Penalty 
parameter C 

Kernel 
coefficient γ 

Degree of 
the 
Polynomial 
kernel 

Class 
weight 

SVM Linear 
[0.001, 0.01, 
0.1, 1, 10, 
100] 

n.a. n.a. 

[balanced, 
1:5, 1:7, 
1:10, 1:13, 
1:15] 

 
Radial basis 
function 

[0.001, 0.01, 
0.1, 1, 10, 
100] 

[1, 0.1, 0.01, 
0.001, 
0.0001] 

n.a. 

[balanced, 
1:5, 1:7, 
1:10, 1:13, 
1:15] 

 Polynomial 
[0.001, 0.01, 
0.1, 1, 10, 
100] 

[1, 0.1, 0.01, 
0.001, 
0.0001] 

[1, 2, 3, 4, 5, 
6] 

[balanced, 
1:5, 1:7, 
1:10, 1:13, 
1:15] 

 Sigmoid 
[0.001, 0.01, 
0.1, 1, 10, 
100] 

[1, 0.1, 0.01, 
0.001, 
0.0001] 

n.a. 

[balanced, 
1:5, 1:7, 
1:10, 1:13, 
1:15] 

 

Table IV. Hyperparameters used for RFC, MLP and GTB 

Classifier Parameter Name Parameter Value 

RFC Number of trees 
[10, 20, 50, 100, 400, 800, 1200, 1600, 
2000] 

 Max features for split None, auto, sqrt, log2 

 Quality of split Gini, entropy 

 Max depth [None, 3, 5, 7, 9, 11, 13, 20, 50] 

 Min samples per split 2, 4, 6, 8, 10, 20 

 Min samples per leaf 2, 4, 6, 8, 10, 20 

 Class weight [balanced, 1:5, 1:7, 1:10, 1:13, 1:15] 

MLP Hidden Layer sizes 
[4, 4], [4, 8, 4], [50, 25], [50, 25, 10], [70, 
40, 20], [70, 30], [50, 30, 20, 10] 

 Regularization parameter [0.1, 0.01, 0.001, 0.0001] 

 Batch size [8, 16, 32, 64]  
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 Learning rate [0.01, 0.001] 

 Activations [Relu, Logistic, TanH] 

 Optimization Adam, L-BFGS 

GTB Minimum child weight [1, 5, 10, 15] 

 Gamma [0, 1, 3, 5] 

 Subsample ratio [0.6, 0.8, 1.0] 

 Subsample ratio of columns [0.6, 0.8, 1.0] 

 Max depth [4, 7, 10, 15] 

 Class weight [5, 7, 10, 13, 15] 

 Max delta step [0, 1, 5, 10] 

 Number of trees [30, 50, 100, 200] 
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Abstract 

Transcatheter aortic valve implantation (TAVI) is the routine treatment 
worldwide for aortic valve stenosis in low- to high-risk patients. Assessing patient 

risk is essential to identify the most suitable candidates that could benefit from 
the procedure. Despite the broad use of statistical predictors in patient selection, 
current machine learning predictors have only been validated on retrospective 
data collected in single centers. Further, external validation is needed to assess 

the improvement in accuracy, which is offered by machine learning and deep 
learning techniques. In this study, we propose a finetuning approach for deep 
learning models by performing an inter-center cross-validation and finetuning 
technique, in order to improve the cross-validation accuracy results. We aimed to 
overcome data exchange and policy-related issues of two medical centers with a 

dedicated protocol, exploiting the exchange of deep learning models, data 
processing and validation steps which does not require any patient data sharing. 
The finetuning is based on the other center’s data for further training of the initial 
model. After finetuning the model, we obtain an average AUC improvement of 
13% and 7% with respect to the initial models. This research demonstrates that 

the predicting capabilities of deep learning models can be extended to and cross-
validated with other centers, independent of limitations in data-sharing policies. 
Moreover, the study shows that finetuning can be exploited to considerably 

improve the accuracy of the prediction models.  



3 

Inter-center cross-validation and finetuning for predicting TAVI outcome 

41 

Introduction 

Aortic valve stenosis is the most common valvular heart disease in the developed 

world, impacting dominantly the elderly population (1). If left untreated, the 

disease has a devastating course, rapidly causing death when symptoms develop. 

Aortic valve stenosis is commonly caused by calcification of the aortic valve. The 

treatment for severe aortic valve disease traditionally consists of surgical aortic 

valve replacement (SAVR). However, in the past decades, transcatheter aortic 

valve implantation (TAVI) has been developed and approved for use in low- to 

severe-risk aortic valve disease (2), which is currently a routine treatment 

worldwide. In fact, recently two randomized controlled trials have shown that the 

use of TAVI in low-risk patients was non-inferior compared to SAVR (1). 

Although TAVI is in continuous development, there are still risks. The broad use 

of this procedure in the last years has shown a high chance of successful outcomes 

because of a strict patient selection, which is performed by a multi-disciplinary 

team. The selection is achieved in an inter-disciplinary discussion meeting and 

by using planning and treatment support tools, which have recently become 

available (3–5). 

Candidates for TAVI are often frail patients with several comorbidities and with 

a complicated medical history (1). Despite this, certain patients sometimes do not 

benefit or only gain limited advantage (6), while it can yield complications during 

or after the procedure. 

Careful patient selection is of paramount importance. Identifying patients who 

are likely to have improvements, or who are at a higher risk after TAVI, is 

essential. Improved selection of these patients could reduce mortality after the 

procedure and would further improve the decision making (1). Moreover, this 

would lead to an improvement in the treatment efficiency of medical centers and 

hospitals. 

Current risk models have only limited accuracy in predicting TAVI outcomes (7). 

Multiple models intended for SAVR, thus non-specific TAVI, have been 

developed and are currently used for risk estimation. Among these are the 

EuroSCORE, EuroSCORE II and the STS (Society of Thoracic Surgery) scores 

(8–11). These are procedural or 30-day mortality predictors. A more specific 30-
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day mortality predictor is the TAVI-specific TVT registry score (12). One-year 

mortality has been identified by the medical experts as the life expectancy 

threshold, above which the TAVI procedure is enabled and appropriate to be 

performed. However, one-year mortality is even more challenging (13) and 

current predictors (14)-(15) do not offer optimal results. 

While previously mentioned clinical prediction models rely on traditional 

statistical regression approaches (16), machine learning approaches (ML) have 

shown competitive predictive value (17) and are capable of benefit from non-

linear relationships. Especially when applied to a large amount of data, ML 

techniques outperform conventional regression models (18). Recently, two ML 

approaches have been developed and have shown promising results by applying 

gradient boosting on a decision tree algorithm (GBDT) [18] [19], to predict one-

year mortality for patients treated with TAVI. The GBDT techniques were 

validated on retrospective patient data from single centers without external 

validation. Moreover, a unique model, exploiting both center data, could provide 

even more accurate results. 

External validations are needed to assess the generalization capabilities of a 

model on other populations from different centers. This can be performed with 

GBDT techniques. However, the creation of a unique GBDT-based model, 

incorporating information data from multiple centers, is technically not possible 

without merging data from all centers. Exchanging the multi-center data involves 

specific ethical committees’ protocols. This involves long administrative 

procedures that can sometimes be difficult to achieve, especially in those 

scenarios where data sharing policies are intrinsically limited (e.g. General Data 

Protection Regulation). 

Deep Learning techniques, which are based on Neural Networks, offer the 

possibility of updating the model at later stages, as additional training. This 

process is known as finetuning. With this approach, it is possible to continue the 

training process of a model with different data. Consequently, data sharing is not 

needed, since models can be exchanged to be re-trained (finetuned). We have 

therefore developed TAVI outcome prediction models for one-year mortality 

while exploiting the finetuning technique. 



3 

Inter-center cross-validation and finetuning for predicting TAVI outcome 

43 

 
 

Figure 1. High-level and simplified overview of the cross-validation and finetuning. 

(Model creation stage) The model is created and internally validated on the IC data and 

sent to the next stage. (Model finetuning stage) The model is finetuned on the FC data 

and sent to the next stage. The model is validated on the FC data before and after the 

finetuning. (Final evaluation stage) The finetuned model is validated on the IC data. 

In this paper, we are investigating a prediction model for TAVI where multi-

center data are used for cross-validation and leading to a unique model without 

data sharing while exploiting a finetuning technique. 

This work has multiple technical contributions. Firstly, we create two 

independent mortality prediction models based on DL techniques. Secondly, we 

cross-validate both models to verify their generalization capabilities, involving 

two centers with normally different populations. We finetune each model using 

the new, unseen data of the alternative center for a final validation. 

The entire process is achieved by organizing the protocol in three stages, which 

requires the exchange of the trained and finetuned models for their evaluation, as 

indicated in the simplified block diagram of Figure 1. 

Methods 

In this section, the main steps of the inter-center cross-validation protocol are 

discussed in detail. 
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High-level overview of the protocol 

The inter-center cross-validation protocol is organized in three stages (Figure 2). 

The first stage is the initial model creation, the second stage is the finetuning of 

the model, and the third stage contains the final evaluation. Each stage has certain 

steps and specific inputs and outputs, sometimes shared between both centers, as 

shown in Table 1. The order of execution is crucial because each output is needed 

by the successive stage to produce the next output. 

Table 1. Input-Output Stages and steps 

Stage Input Output Steps 

Model 
creation 

[1/3] 
Dataset IC 

Pre-Processing IC 
Initial Model, 

Internal validation results 

Imputation, 
Pre-Processing, 
Oversampling, 

Training, 
Evaluation 

Model 
finetuning 

[2/3] 

Dataset FC, 
Pre-Processing IC, 

Initial Model 

Finetuned Model, 
External validation results, 

External validation results after 
finetuning 

Imputation, 
Pre-Processing, 
Oversampling, 

Finetuning, 
Evaluation 

Final 
Evaluation 

[3/3] 

Imputed and pre-
processed Dataset IC, 

Finetuned Model 

Internal validation results after 
finetuning 

Evaluation 

 

The initial model creation stage (Figure 2 left) and the model finetuning stage 

(Figure 2 right) share a common processing chain including the following steps: 

imputation, pre-processing, oversampling and training/finetuning, as discussed in 

detail in Sections 0, 0, 0 and 0, respectively. The final evaluation stage (Figure 2 

bottom) is necessary to compare the model before and after the finetuning. At 

each stage, all created models are evaluated. Section 0 discusses in detail the 

evaluation step. 

Figure 2 details the construction of the protocol diagram, showing all execution 

steps within each stage. Training, evaluation and finetuning steps are shown in 

yellow color, while data harmonization, imputation, pre-processing, and 

oversampling steps are shown in grey color. 



3 

Inter-center cross-validation and finetuning for predicting TAVI outcome 

45 

 
 

Figure 2. Detailed high-level diagram of the inter-center cross-validation protocol. 

Data harmonization 

Data harmonization is an important, preliminary and extensive step to align the 

dataset to a common representation. In this study, we only included patient data 

that was common (cross-available) to both centers. If the information was 

represented in a different form, we manually matched the different data to a 

common representation. Clinical data can be both numerical and categorical. 

Whereas numerical data can be represented in different units, categorical data is 

expressed by a different number of instances. In case the number of categories 

was different, we reduced the number of categories to the amount common to 

both datasets. The dataset harmonization stage is schematically depicted in Figure 

2 (top). 

Imputation 

As a natural consequence of each data collection process, most datasets contain 

a certain amount of missing values. To deal with this problem, we discarded all 

features that had a percentage of missing values higher than 70%. The included 

features are shown in Table 2. We imputed the missing values using MissForest 

(21). This is achieved by creating multiple models based on Random Forest to 

generate an iterative estimation of the missing values, by using non-missing value 

information until the convergence. 
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Pre-processing 

A step of one-hot encoding is used for categorical features. Numerical features 

are standardized by removing their mean and by scaling them to unit variance. 

The mean and the standard deviation values are computed from the training set 

of the initial center by a scaling function, which is used to standardize the datasets 

of both centers. After the pre-processing, the clinical data shown in Table 2 

resulted in 22 features. 

Oversampling 

Given the high chance of success of the TAVI procedure, only a small fraction of 

the patients do not survive the first year. This results in an imbalanced class 

problem. One common approach used to address imbalanced datasets consists of 

a random oversampling of the minority class. Here, we have adopted both the 

random oversampling and the synthetic minority oversampling technique for 

nominal and continuous (SMOTE-NC) (22), which is based on data interpolation 

with the k nearest-neighbors technique. This approach is tested for the minority 

class solely and for both classes, thereby augmenting the training set by a factor 

of three. This strategy has been applied only to the training set, to virtually 

increase the amount of training data by generating new samples (synthetic 

patients). This has shown to be useful to increase the accuracy (23) by eventually 

improving the neural network capabilities of learning new patterns already 

created by the patient data interpolations and present in the training set. 

Training/finetuning 

The applied neural network architecture is illustrated in Figure 3. The finetuning 

of the neural network affects the weights of the connections of both the first and 

the second dense layer. We used Adam optimizer with a 0.0001 learning rate and 

150 epochs for the model creation stage and 100 for the model finetuning stage. 

The chosen hyper-parameters and architecture were manually selected and a grid 

search for further optimization was not performed. 
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Table 2. Summarized patient characteristics from Academic Medical Center (AMC) and 

Catharina Hospital of Eindhoven (CZE-TU/E). 

  AMC CZE-TU/e 

Clinical name 
Unit or 

instances 
Survived 

(1170) 

Non-
survived 

(130) 

Survived 
(450) 

Non-
survived 

(66) 

Chronic obstructive 
pulmonary disease 

No 
Yes 

755 
282 

66 
56 

372 
76 

47 
19 

Diabetes 
No 
Yes 

719 
313 

79 
43 

341 
108 

46 
20 

Body Mass Index kg/m2 
28±5 

(1134) 
27±6 
(130) 

27±4 
(449) 

26±5 
(66) 

Creatinine µmol/L 
98±40 
(1126) 

119±56 
(130) 

109±67 
(444) 

116±46 
(66) 

Smoking 
No 

Former 
Yes 

489 
479 
104 

59 
49 
14 

322 
30 
98 

51 
4 

11 
Beta Blockers class of 
medicine 

No 
Yes 

480 
651 

42 
87 

384 
66 

52 
14 

Hemoglobin mmol/L 
7.8±1.0 
(1123) 

7.7±1.3 
(129) 

7.9±1.0 
(321) 

7.5±0.9 
(45) 

QRS complex time msec 
104±26 
(344) 

105±31 
(52) 

110±29 
(449) 

121±33 
(62) 

Aortic Valve Area cm2 
0.8±0.2 
(949) 

0.8±0.2 
(111) 

0.7±0.2 
(148) 

0.7±0.2 
(18) 

Aortic Valve Peak Gradient mmHg 
 

68±22 
(956) 

63±27 
(117) 

77±24 
(172) 

71±32 
(19) 

Aortic Valve mean Gradient mmHg 
 

68±23 
(622) 

43±19 
(69) 

46±16 
(137) 

39±20 
(15) 

Previous Myocardial Infarction 
No 
Yes 

851 
187 

91 
31 

297 
81 

36 
15 

Sex 
Male 

Female 
514 
656 

65 
65 

240 
210 

45 
21 

Age years 
81±7 

(1170) 
82±10 
(130) 

80±6 
(450) 

80±6 
(66) 

New York Heart Association 
(NYHA) Functional 
Classification 

1 
2 
3 
4 

32 
236 
506 
80 

2 
20 
86 
422 

3 
50 

125 
33 

4 
5 

23 
9 

Previous Devices (pacemaker, 
etc) 

No 
Yes 

970 
102 

104 
18 

312 
43 

35 
12 

 

Evaluation 

Two independent experiments have been performed, one considering AMC as 

the initial center and CZE-TU/e as finetuning center, and one considering CZE-

TU/e as the initial center and CZE-TU/e as finetuning center. These paired 

experiments were necessary to perform the cross-validation and the finetuning 

with a bi-directional approach to both centers. 
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The evaluation consisted of twenty-fold cross-validation for both model creation, 

model finetuning and final evaluation stages. At the model creation stage, this 

leads to the exchange of 20 scaling functions (Pre-processing IC step in Figure 2) 

and 20 neural network models (Initial model) per center. At the finetuning stage, 

this leads to the exchange of 20 finetuned neural network models (Finetuned 

model) per center. In synthesis, the exchange protocol shown in Figure 2 is 

performed 20 times, one time per each individual fold. 

The training set consists of 95% of the data (of which approximately 10% was 

used as validation set) and 5% was used as test set, per fold. The validation set 

was used to analyze the convergence of the neural network by visually identifying 

possible overfitting of the network and consequently tune its parameters. The 

validation set is not shown in Figure 2 for simplicity. 

All scaling (pre-processing IC) and neural networks models (Initial model) were 

exchanged between the two centers at the first model creation stage. The 

finetuned models (Finetuned model) were exchanged once again for the final 

evaluation stage performed on the initial test set, as shown in Figure 2. A 

synchronized cloud storage directory was used to facilitate the exchanges of all 

models and the corresponding scalers. As a result, the validation was performed 

four times during the three stages, two internal validation and two external 

validation, both before and after the finetuning, as shown in Table 1. A total of 

20 AUCs have been computed per evaluation since twenty folds were used. 

 
 

Figure 2. Neural network architecture. 
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Results 

General results overview 

In Figure 4 and Figure 5, the results of both the internal validations and external 

validations are shown. They are represented in the form of a boxplot containing 

the AUCs of the ROC (AUROC) of the twenty folds for each evaluation. Both 

figures represent the results before and after the finetuning with respect to the 

diagram shown in Figure 2. 

Figure 4 shows the results of CZE-TU/e executing the model creation and final 

evaluation stages, and the AMC results of executing the model finetuning stage. 

Alternatively, in Figure 5 the reciprocal process is shown, thus with AMC 

executing the model creation and final evaluation stages and CZE-TU/e executing 

the model finetuning stage. 

The results are plotted varying numbers of oversampling as shown on the x-axis, 

where 0 is defined as random oversampling, 1 as SMOTE-NC oversampling 

applied to the minority class, and 3 as SMOTE-NC augmentation by a factor of 

three. These results are also shown also in Table 3. 

Cross-validation results 

The internal validation is the first assessment of the performance of the predictive 

model on the initial dataset. This is the starting point of the validation process and 

any other result has to be compared with respect to this starting point. The internal 

validation results show an average AUC of 0.584 for AMC and 0.544 for CZE-

TU/e. 

The external validation results show that the models are capable to generalize on 

the data of another center, with similar accuracy. In fact, an average AUC of 

0.588 and 0.583 was observed for AMC and CZE-TU/e, respectively, showing 

similar results to the internal validation. 

 

 

 



3 

 Chapter 3 

50 

 
Figure 2. Results for CZE-TU/e as initial center and AMC as finetuning center. 

 
Figure 3. Results for AMC as initial center and CZE-TU/e as finetuning center. 

  



3 

Inter-center cross-validation and finetuning for predicting TAVI outcome 

51 

Table 3. Results and mean improvement per evaluation 

  Oversampling   

Initial 
center 

Evaluation 0 1 3 Mean 
Mean 
Improvement 

AMC 

Internal valid. 0.585 0.550 0.619 0.584 
+7.30% Internal valid. 

after finetuning 
0.619 0.598 0.664 0.627 

External valid. 0.580 0.617 0.569 0.588 
+0.93% External valid. 

after finetuning 
0.576 0.619 0.587 0.594 

CZE- 
TU/e 

Internal valid. 0.512 0.584 0.537 0.544 
+13.54% Internal valid. 

after finetuning 
0.646 0.571 0.638 0.618 

External valid. 0.548 0.608 0.593 0.583 
+8.44% External valid. 

after finetuning 
0.601 0.640 0.655 0.632 

 

Cross-validation results after finetuning 

The finetuning increased the accuracy of both the internal validation and external 

validation. The improvement due to the finetuning is higher for the first 

experiment where CZE-TU/e is the initial center and AMC is the finetuning 

center. The results have shown that there is an improvement of 13% on the 

internal validation and 8% on the external validation. 

 Similar results are obtained for the second experiment, where AMC is the initial 

center and CZE-TU/e is the finetuning center. The results have shown that there 

is an improvement of 7% on the internal validation and 0.9% on the external 

validation. 

Discussion 

The cross-validation results have shown similar accuracy for the internal 

validation and the external validation, for both experiments. This evaluation was 

needed to assess the predicting potential and generalization capabilities of the 

one-year mortality model prior to the finetuning. 

The comparison of the model accuracies after the finetuning has shown that the 

finetuning improves the overall accuracy. The models created with the CZE-TU/e 
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data have shown higher accuracy after the finetuning with respect to the model 

created with the AMC data. This improvement can be explained by the fact that 

the AMC data used to finetune the model is based on a larger population than the 

one of CZE-TU/e, thereby including more variation. 

These are important achievements because they motivate further centers to use 

their clinical data, in the future, to create updated and optimized versions of this 

or other models possibly yielding higher validation accuracies and gradually 

more extended validations. To this end, a proper data harmonization is required 

to align the data between multiple centers. 

Adding further clinical data could possibly add more informative features and, 

theoretically, could lead to better results. Besides this, the architecture of the 

neural network may be improved and an optimized search for the 

hyperparameters would be appropriate. 

Conclusions 

We have developed a dedicated exchange protocol to overcome data exchange 

and policy-related issues. The proposed protocol enables the cross-validation of 

two deep learning models used to predict one-year mortality for TAVI. 

Finetuning was successfully used to improve the results by retraining the model 

on the dataset of the other cooperating center 

 This study has shown that finetuning is a promising technique to improve 

prediction models for the use in new centers and organize this in a cooperative 

fashion. Moreover, this study provides an exchange protocol, which can be used 

for other clinical applications and further validation when multiple centers are 

involved. 
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Abstract 

Machine learning models have been developed for numerous medical prognostic 
purposes. These models are commonly developed using data from single centers 

or regional registries. Including data from multiple centers improves robustness 
and accuracy of prognostic models. However, data sharing between multiple 

centers is complex, mainly because of regulations and patient privacy issues.  

We aim to overcome data sharing impediments by using distributed ML and local 
learning followed by model integration. We applied these techniques to develop 
1-year TAVI mortality estimation models with data from two centers without 

sharing any data. 

A distributed ML technique and local learning followed by model integration was 
used to develop models to predict 1-year mortality after TAVI. We included two 
populations with 1,160 (Center A) and 631 (Center B) patients. Five traditional 
ML algorithms were implemented. The results were compared to models created 

individually on each center. 

The combined learning techniques outperformed the mono-center models. For 
center A, the combined local XGBoost achieved an AUC of 0.67 (compared to a 

mono-center AUC of 0.65) and, for center B, a distributed neural network 

achieved an AUC of 0.68 (compared to a mono-center AUC of 0.64). 

This study shows that distributed ML and combined local models techniques, can 

overcome data sharing limitations and result in more accurate models for TAVI 
mortality estimation. We have shown improved prognostic accuracy for both 
centers and can also be used as an alternative to overcome the problem of limited 

amounts of data when creating prognostic models. 
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Introduction 

Transcatheter Aortic Valve Implantation (TAVI) is a consolidated procedure for 

aortic stenosis treatment. To support patient selection, traditional risk 

stratification models, either for general cardiac surgery or TAVI specific, are used 

for mortality estimation (1,2). Other models, exploiting more complex 

algorithms, have shown higher accuracies when compared to traditional logistic 

regression-based models (3,4). Nevertheless, mortality estimation models have 

shown limited prediction accuracy when tested on other center's populations than 

the one used to generate the models (5–8). This can be explained by the different 

distribution in the populations, given by different patient selection or practice 

variation among institutions.  

Mitigating the models' accuracy drop on different populations is essential to 

obtain models with higher generalization capability. For this purpose, model 

updating or fine-tuning have been used successfully (9,10). These techniques 

consist of making small adjustments in the model, using data from a different 

population, to make the models more robust for that specific population and 

achieve higher accuracies. It is also known that machine learning (ML) models 

usually benefit from a large amount of data, allowing to learn complex non-linear 

interactions among variables. Ideally, a single model would be developed using 

data from multiple centers to optimize the model's accuracy. As a practical 

alternative, models can be iterated by making small adjustments for each 

population. Sharing data between centers, however, is a complex procedure 

because of regulations dealing with patient's privacy and, therefore, this is not 

always possible in practice because of data protection regulations such as the 

European General Data Protection Regulation (11). 

One possible approach to overcome the data sharing limitation is by exploiting 

distributed ML techniques. These techniques allow the training of models at 

multiple physical locations, regardless of their geographical distance, with 

limited or no data sharing. A popular distributed ML strategy, called Cyclical 

Weight Transfer (CWT), consists of sharing a single model across locations 

sequentially and cyclically for incremental updates. At each location, the model 

is modified using the data available at that center before sending it to the next 

location. This approach has been used to train deep learning models with medical 
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images, achieving similar results as if the data was located in a single location 

(12). A simpler approach is to combine models trained locally at different 

locations. This can be achieved by using stacking ensemble, where the prediction 

probabilities of the models trained locally are used as features to fit a logistic 

regression (LR) model (13,14). With these approaches, the models are expected 

to have a higher reliability and achieve better generalization capability. 

In this study, we exploited two techniques to deal with the data sharing limitation 

to potentially improve the accuracy of models for 1-year TAVI mortality 

prediction. To this end, we trained multiple models based on CWT and stacking 

approaches across two centers without data sharing. 

Methods 

Population 

Models to predict 1-year modality were created with data from a total of 1,791 

patients who underwent TAVI procedures in two distinct centers were included 

in this study. The Amsterdam UMC—Location AMC (AMC) with 1,160 

consecutive patients (first dated October 2007 and last dated April 2018) and the 

Catharina Hospital of Eindhoven (CZE) with 631 consecutive patients (first dated 

January 2015 and last dated December 2018). The 1-year mortality information 

was collected from a follow-up study for the AMC and by the national census for 

the CZE. Patients with missing outcome or with more than 50% of missing data 

were excluded from the study. This study, considering also where the data were 

located, was performed at the Amsterdam UMC and the Eindhoven University of 

Technology for the CZE. 

Pre-processing 

Only variables that were available in both datasets were included while missing 

values were imputed with the mean for numerical variables and the mode for 

categorical variables. The measures of central tendency used for imputation were 

calculated for each center and used to impute it owns center's data.  

Additional pre-processing was applied to the data for the development of the 

Neural Networks (NN) to facilitate its convergence. The continuous variables 

were standardized by removing their mean and by scaling them to unit variance 
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while one-hot encoding was applied for categorical features. These steps are not 

required for the other classifiers. 

Two approaches were evaluated to deal with the class imbalance during training: 

class weighting and random over-sampling. The first approach consists of 

assigning different weights to balance the loss of the two classes during training. 

The second approach consists of randomly oversampling the samples of the 

minority class. 

Model Development 

In this study, we evaluated four distinct classifiers: Random Forest (RF), Extreme 

Gradient Boosting (XGB) (15), CatBoost (CATB) (16), and NN. Two NN 

architectures were evaluated: a narrow and a wide. The narrow is composed by 

two layers of 8 and 4 neurons while the wide is composed by two layers with 100 

and 40 neurons. The complete architectures are described in the Supplementary 

Material Table I. All experiments were performed on Python 3.6.9 and scikit-

learn library 0.21.3 (17). We used a CWT approach to train the models with data 

from both centers in an iterative fashion. Besides that, we also evaluated stacking 

models trained individually for each center. For this, prediction outputs from 

models trained on each center were used to train a LR model and obtain a unique 

prediction output. 

Cyclical Weight Transfer Approach 

The CWT approach is slightly different for the NN and the tree-based models. In 

CWT, as illustrated in Figure 1, the NN weights are initialized by one center and 

sent to the other center for updating the weights with the other center's data. This 

updating procedure continues until the stopping criteria is reached. Dropout was 

included between layers to randomly prevent some neurons from being updated 

by the training center (18). 
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Figure 1. Illustration of the development of a prognostic model using the Cyclic Weight 

Transfer approach. The model is being trained by two different centers in an iterative 

fashion. Each model version is trained and exchanged between centers for n iterations 

or until a stopping criterion is reached.  

The tree-based models (RF, CATB, and XGB) were trained by adding new trees, 

from each center, at every new iteration. To this end, the models were exchanged 

iteratively between centers resulting in the forest to grow. For example, as 

illustrated in Figure 2, an initial model created with a single tree for the first center 

is sent to the second center, where a new tree is added. This exchanging iterative 

process continues until the stopping criterion is reached: a maximum number of 

iterations (500) or the validation error stopped decreasing for both centers after 

10 epochs. Although the trees created by one center are never modified by the 

other, the model is iteratively being updated by the addition of new trees from 

each center. For the XGB and CATB, the previous trained trees are taken in 

consideration when fitting new trees. 

The center with the largest amount of data was used to start the training process. 

The hyperparameters and architectures were empirically optimized. Information 

regarding the values for which the hyperparameter optimization was performed 

can be found in the Supplementary Material Table II. 
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Figure 2. Example of a tree-based model (random forest) that is created by two different 

centers (represented by different colors). (a) A predefined number of trees is initially 

created by the first center. (b) The second center adds new trees to the forest, without 

modifying the previous trees. (c) The random forest training process is complete, with the 

same number of trees from each center. 

 
 

Figure 3. Example of a stacking model. The models are trained independently on each 

center and its prediction probabilities are used as features to train a single logistic 

regression model. 
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Stacking Approach 

Stacking has been successfully applied in previous studies (19,20). At the 

initiation of the process, the models were trained locally at each center. To this, 

the hyperparameters were optimized via grid search with 5-fold cross-validation. 

The evaluated hyperparameters are presented in the Supplementary Material 

Table III. After both centers had their models trained, they were used to compute 

the probability output for all samples (training and testing). The probability 

output from both center's training set was used as features (2 features in total; the 

probability from center A and the probability from center B) to train an LR model. 

The probability output from the test samples was used to evaluate the LR model. 

With this approach, represented in Figure 3, the models and probability outputs 

from both centers were exchanged only once. Different classifiers were not 

stacked together (i.e., the NN from center A was only combined with the NN 

from center B). 

Internal Evaluation 

To evaluate the value of creating models using data from 2 centers, we compared 

these models with the models that were trained on the data from only 1 center. 

These mono-center models were trained locally and tested on its own data. The 

optimization and evaluation of these models was the same as the used for the 

stacked approach, with hyperparameter optimization via grid search and 

evaluation with a 5-fold cross-validation scheme. These models have already 

been developed in a previous study (7). 

Evaluation 

The models were evaluated with stratified 20-fold cross-validation. With this, 

each center split its own data in 20-folds, leading to twenty iterations with 

different test sets. The testing folds were kept unused until the final evaluation. 

The area under the curve (AUC) of the receiver operating characteristic (ROC) 

was used to evaluate each model. The average of the twenty AUCs, as well as the 

standard deviation (std), was reported for each center. 
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Results 

Among all 1,791 patients from two centers include on this study, 188 patients 

(10%) did not survive through the first year after TAVI. The baseline 

characteristics of the patients from both centers are summarized in Table 1. 

The cyclical NN model with a narrow architecture achieved the highest average 

ROC AUC of 0.66 (center A: 0.64 AUC, center B: 0.68 AUC). This NN also 

achieved the highest score for center A. The stacked models with the highest 

accuracies achieved a ROC AUC of 0.65. This accuracy was achieved by three 

models; CATB (center A: 0.64 AUC, center B: 0.65 AUC), XGB (center A: 0.67 

AUC, center B: 0.63 AUC) and the NN with a narrow architecture (center A: 0.64 

AUC, center B: 0.65 AUC). The stacked XGBoost achieved the highest 

individual accuracy for center B. In Figure 4 we show the average ROC of the 

models with highest AUCs and in Table 2 we present all results. 

The highest average accuracy for the mono-center models was a ROC AUC of 

0.64, achieved by CATB, RF and the NN with narrow architecture. The highest 

individual accuracy was achieved by XGB for center A (AUC of 0.65) and CATB 

for center B (AUC of 0.64). 

Discussion 

Our proposed approaches of distributed and combined local models to predict 1-

year TAVI mortality with data from two centers outperformed the models trained 

with each center individually (mono-center). T approaches do not require the data 

to be sent from center to center once each center process its own data. 

Additionally, the centers benefited from training the models using these 

approaches, once their accuracies outperformed the accuracies of the mono-

centers models (trained locally and independently). For both centers, the 

combined prediction models outperformed the models using only the local data. 

These approaches can be extended to multiple centers or different problems, not 

being exclusive for TAVI. 
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Table 1. Descriptive statistics of the study group, mean ± SD or N (%). 

  Center A Center B 

Variable Instances 
Survived 
(n=1039) 

Non-
survived 
(n=121) 

Survived 
(n=564) 

Non-
survived 

(n=67) 

Sex 
Male 587 (56%) 61 (50%) 303 (54%) 46 (69%) 

Female 452 (44%) 60 (50%) 261 (46%) 21 (31%) 

Age (year)  81 ± 7 83 ± 7 81 ± 6 80 ± 6 

Chronic obstructive 
pulmonary disease 

No 755 (73%) 66 (55%) 464 (83%) 48 (71%) 

Yes 282 (27%) 55 (45%) 98 (17%) 19 (28%) 

Diabetes 
No 720 (69%) 79 (65%) 241 (75%) 47 (70%) 

Yes 313 (30%) 42 (35%) 142 (25%) 20 (30%) 

Body mass index 
(kg/m2) 

 28 ± 5 27 ± 6 27 ± 4 26 ± 4 

Creatinine (µmol/L)  98 ± 41 120 ± 56 108 ± 62 116 ± 46 

Smoking 

No 479 (46%) 59 (49%) 392 (70%) 51 (76%) 

Former 456 (44%) 49 (40%) 41 (7%) 4 (6%) 

Yes 104 (10%) 13 (11%) 131 (23%) 12 (18%) 

Beta blockers class 
of medicine 

No 596 (57%) 80 (66%) 498 (88%) 53 (79%) 

Yes 437 (42%) 40 (33%) 66 (12%) 14 (21%) 

Hemoglobin 
(mmol/L) 

 7.8 ± 1 7.7 ± 1 7.9 ± 1.0 7.5 ± 0.9 

QRS complex time 
(msec) 

 104 ± 26 107 ± 27 110 ± 29 121 ± 33 

Aortic valve area 
(cm2) 

 0.8 ± 0.2 0.8 ± 2 0.7 ± 0.2 0.7 ± 0.2 

Aortic valve peak 
gradient (mmHg) 

 68 ± 23 64 ± 26 77 ± 24 71 ± 32 

Aortic valve mean 
gradient (mmHg) 

 43 ± 16 44 ± 19 46 ± 16 39 ± 20 

Previous myocardial 
infarction 

No 851 (82%) 91 (75%) 387 (79%) 36 (69%) 

Yes 187 (18%) 30 (25%) 105 (21%) 16 (31%) 

New York Heart 
Association (NYHA) 
functional 
classification 

1 28 (3%) 1 (1%) 9 (3%) 4 (9%) 

2 220 (21%) 17 (14%) 59 (20%) 5 (12%) 

3 473 (46%) 82 (68%) 184 (61%) 24 (57%) 

4 76 (7%) 21 (17%) 49 (16%) 9 (21%) 

Previous devices 
(such as 
pacemaker) 

No 937 (90%) 104 (86%) 417 (89%) 36 (75%) 

Yes 102 (10%) 17 (14%) 52 (11%) 12 (25%) 
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Table 2. Average area under the receiver operating characteristic curve and its standard 

deviation for all experiments. The rows are the classifiers on different setups (cyclical, 

stacking or internal validation) and the columns are different balancing techniques per 

center. Highest accuracies per center and on average are highlighted in bold. 

    Center A (n=1160) Center B (n=631) Average of centers 

  Model 
Balanced 

class 
weight 

Random 
oversam

pling 

Balanced 
class 

weight 

Random 
oversam

pling 

Balanced 
class 

weight 

Random 
oversam

pling 

C
y
c
li

c
a
l 

XGB 
0.58 ± 
0.10 

0.58 ± 
0.10 

0.62 ± 
0.16 

0.54 ± 
0.15 

0.60 ± 
0.13 

0.56 ± 
0.13 

CATB 
0.62 ± 
0.15 

0.60 ± 
0.14 

0.61 ± 
0.14 

0.61 ± 
0.16 

0.62 ± 
0.15 

0.61 ± 
0.15 

RF 
0.62 ± 
0.11 

0.61 ± 
0.12 

0.64 ± 
0.13 

0.64 ± 
0.14 

0.63 ± 
0.12 

0.63 ± 
0.13 

NN wide 
0.62 ± 
0.14 

0.63 ± 
0.14 

0.67 ± 
0.14 

0.65 ± 
0.17 

0.65 ± 
0.14 

0.64 ± 
0.16 

NN narrow 
0.64 ± 
0.12 

0.62 ± 
0.13 

0.68 ± 
0.12 

0.62 ± 
0.15 

0.66 ± 
0.12 

0.62 ± 
0.14 

S
ta

c
k
in

g
 

XGB 
0.67 ± 
0.10 

0.61 ± 
0.08 

0.63 ± 
0.17 

0.60 ± 
0.13 

0.65 ± 
0.14 

0.61 ± 
0.11 

CATB 
0.64 ± 
0.11 

0.62 ± 
0.10 

0.65 ± 
0.16 

0.62 ± 
0.13 

0.65 ± 
0.14 

0.62 ± 
0.12 

RF 
0.63 ± 
0.10 

0.60 ± 
0.09 

0.64 ± 
0.15 

0.63 ± 
0.15 

0.64 ± 
0.13 

0.62 ± 
0.12 

NN wide 
0.64 ± 
0.13 

0.62 ± 
0.13 

0.64 ± 
0.14 

0.61 ± 
0.11 

0.64 ± 
0.14 

0.62 ± 
0.12 

NN narrow 
0.64 ± 
0.12 

0.65 ± 
0.13 

0.66 ± 
0.14 

0.59 ± 
0.14 

0.65 ± 
0.13 

0.62 ± 
0.14 

M
o

n
o

-c
e
n

te
r 

XGB 
0.65 ± 
0.11 

0.59 ± 
0.11 

0.59 ± 
0.17 

0.56 ± 
0.18 

0.62 ± 
0.14 

0.58 ± 
0.15 

CATB 
0.63 ± 
0.11 

0.59 ± 
0.12 

0.60 ± 
0.15 

0.64 ± 
0.17 

0.62 ± 
0.13 

0.62 ± 
0.15 

RF 
0.65 ± 
0.10 

0.59 ± 
0.11 

0.62 ± 
0.14 

0.62 ± 
0.16 

0.64 ± 
0.12 

0.61 ± 
0.14 

NN wide 
0.64 ± 
0.11 

0.62 ± 
0.13 

0.63 ± 
0.15 

0.61 ± 
0.15 

0.64 ± 
0.13 

0.62 ± 
0.14 

NN narrow 
0.63 ± 
0.12 

0.58 ± 
0.12 

0.65 ± 
0.16 

0.60 ± 
0.16 

0.64 ± 
0.14 

0.59 ± 
0.14 

XGB XGBoost, CATB CatBoost, RF Random Forest, NN Neural network 
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Figure 4. Average ROC curve (standard deviation) of the 20-fold cross-validation for the 

distributed and combined local models. NN = neural network, XGB = XGBoost.  

Some recent studies presented ML models for TAVI outcome prediction. In 

previous studies, Lopes et al. (3) and Mamprin et al. (4) developed pipelines for 

outcome prediction for individual centers. Additionally, Al-Farra et al. (6) and 

Mamprin et al. (7) showed the accuracy drop on the evaluation of previous 

traditional risk scores or recent ML models when evaluated on different 

populations. The importance of model updating was highlighted by Lopes et al. 

(9) and Al-Farra et al. (10), where NN and LR models were updated after the 

training process was complete. They concluded that model updating is of utmost 

importance when using the models on different (external) populations. 

This study suffered from some limitations. Some important features, which have 

shown prognostic value in previous studies, were not included in this study 

because these were not similarly reported by both centers. Also, to be aligned 

with previous studies, a simple imputation technique was used instead of a 

multiple imputation. Additionally, although center A has almost twice the number 

of patients from center B, the data acquisition period is relatively large (11 years, 

compared to 4 years from center B). This might affect the accuracy of the models 

since the TAVI procedures are constantly improving, from patient selection to 

the procedure itself, and the effects of these changes are not included in the 
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models. Regarding the distributed experiments, the hyperparameter optimization 

process was reduced to a limited number of options and not many optimizations 

were implemented since this was not the subject of the study. Numerous 

additional settings could be adjusted for cyclical training: for example, the NN 

could be trained for multiple epochs or on mini-batches, weights could be 

assigned to the loss to deal with different population sizes, or even a combined 

loss could be taken into account when back-propagating the loss. 

Conclusion 

In our study, we demonstrate two approaches to overcome the data sharing 

limitations between medical centers. For both centers, the combined models 

outperformed models in which only patients from their own center was used: for 

the larger center, the stacking approach showed the highest accuracy and for the 

smaller center, the distributed approach achieved the highest accuracy. The 

highest accuracy improvement was achieved for the center with a smaller number 

of patients, showing that when limited amounts of data are involved in creating 

prognostic ML models, federated can be successful option to generate a unique 

model in a cooperative fashion. 
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Supplementary Material 

Table I. Evaluated neural networks architectures. 

Architecture Layer Extra param     

Narrow 

Dense(8) kernel reg.=l2(0.001), activity reg.=l2(0.001) 

LeakyReLU(0.01)     

Dropout(0.5)     

Dense(4) kernel reg.=l2(0.001), activity reg.=l2(0.001) 

LeakyReLU(0.01)     

Dropout(0.5)     

Dense(1) kernel reg.=l2(0.001), activity reg.=l2(0.001) 

Sigmoid()         

Wide 

Dense(100) kernel reg.=l2(0.001), activity reg.=l2(0.001) 

LeakyReLU(0.01)     

Dropout(0.5)     

Dense(40) kernel reg.=l2(0.001), activity reg.=l2(0.001) 

LeakyReLU(0.01)     

Dropout(0.5)     

Dense(1) kernel reg.=l2(0.001), activity reg.=l2(0.001) 

Sigmoid()         

 

Table II. Hyperparameter used and searched to train the distributed models. 

Classifier Param Value   

Tree-based 
Trees 1, 3, 5  

Depth 4, 5, 6  

Neural networks 

Learning rate 0.01, 0.001, 0.0001 

Optimizer Adam  

Min. epochs 10  

Max. epochs 500  

Early stopping 10   

 

Table III. Hyperparameters grid used for RF, XGB, CATB, and NN. 
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Classifier Parameter name Parameter value 

RF Number of trees [20, 50, 100, 200] 

 Max features [auto] 

 Max depth [2, 3, 4, 8] 

 Min samples per split [2, 4, 6] 

 Min samples per leaf [1, 2, 4] 

 Class weight [Balanced] 

XGB Number of trees [500] 

 Max features [None, auto] 

 Max depth [2, 3, 4] 

 Gamma [0, 0.5, 1, 3] 

 Subsample [0.7, 1] 

 Learning rate [0.1, 0.01, 0.001] 

 Col sample by tree [0.7, 1] 

 Scale pos weight [1, 2, 3] 

 Min child weight [1, 5, 10] 

CATB Number of trees [500] 

 Max depth [2, 3, 4] 

 Gamma [0, 0.5, 1, 3] 

 L2 leaf reg [3, 10] 

 Learning rate [0.05, 0.10, 0.15] 

 Auto class weights [Balanced] 

NN Learning rate 0.01, 0.001, 0.0001 

  Architecture [Narrow, Wide]  
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Abstract 

Various mortality prediction models for Transcatheter Aortic Valve Implantation 
(TAVI) have been developed in the past years. The effect of time on the 

performance of such models, however, is unclear given the improvements in the 
procedure and changes in patient selection, potentially jeopardizing the 
usefulness of the prediction models in clinical practice. We aim to explore how 
time affects the performance and stability of different types of prediction models 

of 30-day mortality after TAVI. We developed both parametric (Logistic 
Regression) and non-parametric (XGBoost) models to predict 30-day mortality 
after TAVI using data from the Netherlands Heart Registration. The models were 
trained with data from 2013 to the beginning of 2016 and Statistical Process 
Control was used to analyse how time affects the models’ performance on 

independent data from the mid of 2016 to the end of 2019. The area under the 
Receiver Operating Characteristics curve (AUC) was used to evaluate the models 
in terms of discrimination and the Brier Score (BS), which is related to 
calibration, in terms of accuracy of the predicted probabilities. To understand the 
extent to which reupdating the models contribute to the models’ stability, we also 

allowed the models to be updated over time. We included data from 11,291 
consecutive TAVI patients from hospitals in the Netherlands. The parametric 
model without re-training had a median AUC of 0.64 (IQR 0.54-0.73) and BS of 
0.028 (IQR 0.021-0.035). For the non-parametric model, the median AUC was 

0.63 (IQR 0.48-0.68) and BS was 0.027 (IQR 0.021-0.036). Over time, the 
developed parametric model was stable in terms of AUC and unstable in terms of 
BS. The non-parametric model was considered unstable in both AUC and BS. 
Repeated model updates resulted in stable models in terms of AUC and decreased 
the variability of BS, although BS was still unstable. The updated parametric 

model had a median AUC of 0.66 (IQR 0.57-0.73) and BS of 0.027 (IQR 0.020-
0.035) while the non-parametric model had a median AUC of 0.66 (IQR 0.57-
0.74) and BS of 0.027 (IQR 0.023-0.035). The temporal validation of the TAVI 
30-day mortality prediction models showed that the models updated over time 

are more stable and accurate when compared to the frozen models. This highlights 
the importance of repeatedly updating models over time to improve or at least 
maintain their performance stability. The non-parametric approach did not show 

improvement over the parametric approach.  
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Introduction 

Aortic stenosis is the most common valvular disease in developed countries. If 

symptomatic, the stenosis requires valve intervention (1). Transcatheter Aortic 

Valve Implantation (TAVI) has become the routine treatment for aortic stenosis 

even for low and intermediate risk patients (2–4). Besides the improvements of 

the procedure and technology involved (5,6), such as using smaller sheaths and 

organizing specialized teams for the procedure, a strict patient selection is being 

followed to select patients who are likely to benefit from TAVI (7). 

The TAVI candidate selection is performed by a multi-disciplinary team, where 

multiple risk scores, such as STS (Society of Thoracic Surgery) (8) and 

EuroSCORE (9,10) are considered. Although those scores are not TAVI specific, 

they are well accepted parametric models and used for early-mortality estimation 

after cardiac surgery. Other instruments, such as FRANCE2 (11), ACC-TAVI 

(12), and also non-parametric models (13,14) aimed at predicting mortality 

specifically after TAVI have been introduced. The external validation of such 

models, in which patients originate from other settings and countries, has shown 

worse performance than on the internal validation obtained on the original dataset 

(15–17). Such models only achieved improved performance when updated for 

that specific centre (18,19). 

The TAVI patient selection process and the procedure itself are changing over 

time, and it is still unknown if there is a performance drift in the accuracy of the 

mortality prediction models over time in the same setting. With that, it is not clear 

if the prediction of models developed a while ago are stable and fit for continuous 

use without updates. Although a limited prospective validation was performed in 

a previous study (18), only a single test set was used by the authors and the 

performance change and model’s stability were not assessed repeatedly over 

time. In addition, the evaluated risk scores were developed using a parametric 

model and it is unclear how non-parametric models (such as boosting trees) 

behave on the same TAVI mortality prediction task. Therefore, an investigation 

is needed to assess the stability of models over long periods of time. Statistical 

Process Control (SPC) is a monitoring and alerting instrument that combines 

graphical and statistical inferences that can be used to monitor the accuracy and 

errors of the prediction models over time (20,21). With this approach, the model's 
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stability over time can be visualized and statistically assessed. We aim to explore 

how time affects the performance and stability of both a parametric and a non-

parametric prediction model for 30-day mortality after TAVI. To this end, we 

used a large dataset from all heart centres in the Netherlands to train the models 

and use SPC to monitor their stability and performance prospectively. 

Methods 

Study population 

We included all patients registered in the Netherlands Heart Registration (NHR)1 

who underwent a TAVI procedure between January 2013 and December 2019 in 

the Netherlands. The NHR is a national registry that includes data from all the 

sixteen-heart intervention centres in the Netherlands, containing demographics, 

clinical characteristics, intervention, and procedure details (22). The NHR 

Transcatheter Heart Valve Interventions registration committee gave permission 

for this analysis in January 2021.  

For this study, the outcome used is the 30-day mortality after the TAVI procedure. 

Two of the sixteen centres were excluded given that less than 5% of the 30-day 

mortality status of their patients was available when conducting the study. In 

addition, patients without a mortality status or that had a concomitant procedure 

(e.g., pacemaker implantation) were not included. 

In order to analyse the studied population, general statistics were computed for 

all variables. Mean and standard deviation was computed to data with normal 

distribution and median and interquartile range for non-normally distributed data. 

Chi-square or Two-sample T-test was used as appropriate. 

Variables 

We included all variables that were available in the NHR and that had been 

already used in TAVI risk scores and other studies (13–19). Among the variables, 

demographic data such as age, sex, and body mass index (BMI) were included. 

Also, clinical history and screening variables, including the estimated Glomerular 

Filtration Rate (eGFR), the New York Heart Association (NYHA) score, chronic 

                                                      
1 https://nederlandsehartregistratie.nl 
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lung disease, dialysis, systolic pulmonary arterial pressure, creatinine, diabetes 

mellitus (DM), left ventricular ejection fraction, and recent myocardial infarction 

were included. In terms of the procedure, its acuity, the chosen access route, 

critical preoperative state and, year of the procedure were included. All used 

variables were acquired before the TAVI procedure was performed. 

The eGFR and creatinine were clipped for values larger than 60 mL/min/1.73m2 

and 250 µmol/L, respectively based on expert opinion. Also, DM was represented 

by three categories: no DM, with untreated DM, and with DM being treated with 

insulin. Additionally, the procedure acuity and access route were dichotomized 

to elective/non-elective and femoral/non-femoral access respectively. 

To deal with the missing values, an iterative multiple imputation method 

(MissForest) was used to impute data. For this step, only the data from the 

training set was used to train the imputation model, which was later used to 

impute the data on the test set. Dummy variables were created by leaving one 

category out for the NYHA score, year of the procedure, and DM categories. 

Prediction models 

We evaluated two well-established parametric and non-parametric techniques: 

logistic regression (LR) and extreme gradient boosting (XGB). LR is a parametric 

approach and has one coefficient assigned for each variable of the model, 

allowing a relatively easy interpretation and low model complexity. On the other 

hand, XGB is a non-parametric approach, based on building an ensemble of 

decision trees. With that, predictions of multiple trees are combined into a single 

prediction. The models were developed using the scikit-learn (23) and XGBoost 

(24) Python libraries. 

Both models had their hyperparameters tuned using a grid-search approach with 

the training data in a stratified 10-fold cross-validation (CV). Specifically, 

different sets of parameters were assessed to find the optimum model, such as the 

error used for training (L1 or L2) of the LR model, and the tree depth for XGB. 

All hyperparameters assessed are listed in the supplementary material Table S1. 

The hyperparameter set with the highest average Area Under the Curve (AUC) 

of the receiver operating characteristics’ curve across the tuning data, which is 

held out of the training set, of all folds was selected and used to train the models. 
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In order to visualize the agreement between predicted mortality risk and real 

mortality, a calibration plot was created for all prediction models. 

Model validation 

Internal validation 

Internal validation was performed to evaluate the models regardless of any 

temporal shifts in the data. To this end, the data from all the treatment years were 

gathered together and a 10-fold CV was conducted as described above. The 

imputation model was created based on the training folds and later used to impute 

the corresponding test set.  

The average AUC, with standard deviation (SD), was used to evaluate the models. 

While the AUC is commonly used for the evaluation of clinical models, it is not 

sensitive to changes in the prevalence of the event. Hence, the Brier Score (BS), 

which is sensitive to prevalence and calibration was also selected as a measure of 

the accuracy of the predicted probabilities. The higher the AUC and the lower the 

BS, the better.  

Temporal validation 

Temporal validation was conducted to simulate the models’ predictive 

performance over time, reproducing how they would perform if used in a real-

life scenario with prospective patients. To this end, all patients were gathered 

together and sorted by their procedure date. To have a sufficiently large number 

of patients and still sizable groups suitable for SPC, the data was split into 38 

mutually exclusive groups. Except for the first group, with 320 samples, all 

remaining groups had 297 samples each. 

Group analysis 

For context, we first visualize changes in 30-day mortality ratio and age over 

time. Then, we prepare the data for the SPC analysis. Specifically, from all thirty 

eight, the first eight groups in which performance was stable were used to train 

the initial models and to calculate the standard deviation in the performance 

measures. The standard deviations are used to determine the limits of the 

statistical control charts. The remaining groups are used for obtaining and 

scrutinizing the models’ performance: based on the SPC limits, one can interpret 

whether the performance measurements exhibit natural (expected) variability, or 
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structural (unexpected) variability. Two experiments were performed: a) without 

re-training the model on each iteration (frozen model) and b) re-training the 

model on each successive iteration (model update). This is done to compare the 

stability between the fixed model and a model with a repeated update over time. 

For the frozen model, the model was trained once and evaluated on all subsequent 

parts individually. The model update, on the other hand, has the testing data from 

the previous iteration added to the training data on each new iteration. Figure 1 

shows a representation of both experiments. 

Statistical process control 

SPC is a graphical framework showing the progression of a key measurement 

over time and, additionally, provides simple rules to judge whether the variation 

in the measurements reflects expected natural variation or a structural change. In 

this case, the analysed process is the validation of the parametric and non-

parametric TAVI mortality prediction models. A part of the data, 8 groups in this 

study, as is often recommended, was used to calculate the mean and standard 

deviation of the process, which are used in judging the nature of the variation. 

However, performance on these initial groups should show a stable process 

without trends. Otherwise, subsequent groups, one by one, are used to replace the 

previous (unstable) groups until performance is stable on 8 consequent groups. 

Figure 1. Schematic representation of the experiments with a frozen model and model 

update scenario. The frozen model was kept unchanged for all iterations while the model 

update was re-trained in every new iteration. 
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There are various types of control charts. Zone charts (or pre-control charts) are 

attractive due to their simple interpretation and were used to analyse the model's 

stability. Zone charts divide the chart into three zone limits in a “traffic light” 

design. The green zone, defined by mean ± 2 SDs of the process, indicates a stable 

process. The yellow zone, within 2-4 SDs of the mean, indicates a stable process 

if no two or more consecutive points fall in this zone. The points are the evaluated 

performance metrics (AUC and BS) used to assess the model's stability. The red 

zone, >4 SDs, indicates an unstable process if any point falls in this zone. All 

statistical analysis were performed with Python (version 3.8.8). To implement the 

models, the scikit-learn (version 0.24.1) and XGBoost (version 1.3.3) libraries 

were used. 

Results 

In total, data from 12,440 TAVI patients matched our inclusion period 2013-2019 

and were considered for this study. For the analysis, data from 11,291 patients 

were included after excluding 837 patients for not having 30-day mortality 

information, 309 for belonging to the two centres with a high missing rate of 

mortality information, and 3 patients for having an additional procedure (i.e. not 

isolated TAVI).  

The mean age of the included patients was 79.72 ± 6.86 and 50.21% of the 

patients were female. The baseline and procedural characteristics of the 

population used in this study, as well as the descriptive statistics, can be found in 

Table 1.  
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Table 1. Characteristics of the 11,291 TAVI patients stratified by their 30-day mortality 

survival status. Values are represented as mean and standard deviation (SD), median and 

interquartile range (IQR), number (n), or percentage (%). 

Grouped by 30-day mortality 

  Missing Non-surv. Surv. p-value 

n   410 10881  

Age (yr), mean 
(SD) 

 0 80.3 (7.2) 79.7 (6.9) 0.095 

Sex, n (%) 
Male 0 191 (46.6) 5,430 (49.9) 0.205 

Female  219 (53.4) 5,451 (50.1)  

BMI (kg/m2), mean 
(SD) 

 143 26.5 (5.6) 27.3 (4.9) 0.010 

Year of procedure, 
n (%) 

2013 0 60 (14.6) 723 (6.6) <0.001 

2014  61 (14.9) 973 (8.9)  

2015  55 (13.4) 1,305 (12.0)  

2016  57 (13.9) 1,450 (13.3)  

2017  60 (14.6) 1,898 (17.4)  

2018  60 (14.6) 2,073 (19.1)  

2019  57 (13.9) 2,459 (22.6)  

eGFR 
(mL/min/1.73m2), 
mean (SD) 

 36 55.3 (21.6) 60.5 (29.3) <0.001 

NYHA class, n (%) 

1 1151 32 (8.8) 1,067 (10.9) <0.001 

2  62 (17.1) 2,718 (27.8)  

3  216 (59.7) 5,377 (55.0)  

4  52 (14.4) 616 (6.3)  

Chronic lung 
disease, n (%) 

No 37 298 (73.8) 8,627 (79.5) 0.006 

Yes  106 (26.2) 2,223 (20.5)  

Procedure acuity, 
n (%) 

Elective 220 312 (80.6) 9,733 (91.1) <0.001 

Emergency  4 (1.0) 19 (0.2)  

Urgent  71 (18.3) 932 (8.7)  

Dialysis, n (%) 
No 212 387 (97.7) 

10,570 
(98.9) 

0.042 

Yes  9 (2.3) 113 (1.1)  

TAVI access route, 
n (%) 

Direct aortic 
access 

15 56 (13.7) 781 (7.2) <0.001 

Other access  2 (0.5) 15 (0.1)  

Subclavian 
access 

 31 (7.6) 623 (5.7)  

Transapical  53 (13.0) 679 (6.2)  

Transf., other  37 (9.1) 684 (6.3)  
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Transf., 
percutaneous 

 179 (43.9) 6,104 (56.2)  

Trasnf., surgical  50 (12.3) 1,982 (18.2)  

Critical 
preoperative state, 
n (%) 

No 94 382 (96.2) 
10,747 
(99.5) 

<0.001 

Yes  15 (3.8) 53 (0.5)  

Systolic pulmonary 
arterial pressure 
(mmHg), median 
(IQR) 

 2084 
25.0 
[25.0,38.5] 

25.0 
[25.0,31.2] 

0.001 

Non-surv: Non-survival, Surv: Survival, BMI: Body Mass Index, NYHA: New York Heart Association 
Functional Classification, TAVI: Transcatheter Aortic Valve Implantation, SD: Standard Deviation, 
IQR: Interquartile Range. 

Internal validation 

In the internal validation, with the inclusion of all 11,291 patients at the same 

time and a 10-fold CV, both the LR and XGB achieved a mean AUC of 0.68 and, 

respectively, a mean BS of 0.034 and 0.036 (Table 2). The calibration plots are 

available in the supplementary material Figure 1. 

Group analysis 

In Figure 2, the 30-day mortality and age of the patients are plotted over time. 

They demonstrate downward trends. When preparing data for the temporal 

validation for SPC analysis, we observed that the first 4 points (2013-2014) 

showed a trend, and were hence excluded (supplementary material Figure 2). The 

subsequent 8 groups did show stable performance and hence were used to train 

the frozen model and the initial model that will subsequently be updated. 

Table 2. Evaluation of the models trained without temporal assessment (internal 

validation) with standard deviation. AUC = Area Under the Receiver Operating 

Characteristic curve, BS = Brier Score. 

Model/Metric AUC BS 

Logistic Regression 0.68 ± 0.07 0.034 ± 0.001 

XGBoost 0.68 ± 0.05 0.036 ± 0.001 
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Statistical process control 

Figure 3 displays the performance of the LR and XGB frozen models. While the 

AUC was considerably stable for the LR model and remained stable after 2017 

for the XGB, BS was mostly in the red zone (> 4 SD) for both models. Figure 4 

displays the progress of performance over time when using the model update 

approach (note that the zone limits are continuously updated as well). Both LR 

and XGB models were stable in their AUC, but instability in BS is observed at 

the beginning. The AUC limits of the updated LR model slightly changed 

compared to the frozen model. The AUC of the XGB model and BS of both 

models had their range visibly increased. This indicates a larger standard 

deviation which reflects larger uncertainty detected over time. The frozen 

parametric model had a median AUC of 0.64 (IQR 0.54-0.73) and BS of 0.028 

(IQR 0.021-0.035) while the frozen non-parametric model had a median AUC of 

0.63 (IQR 0.48-0.68) and BS of 0.027 (IQR 0.021-0.036). Regarding the model 

update, the parametric model had a median AUC of 0.66 (IQR 0.57-0.73) and BS 

of 0.027 (IQR 0.020-0.035) while the non-parametric had a median AUC of 0.66 

(IQR 0.57-0.74) and BS of 0.027 (IQR 0.023-0.035). 

Figure 5 shows the calibration curves (all points combined), with the frozen and 

model update approaches, for both LR and XGB models. The frozen LR and XGB 

models are completely overestimating the predicted mortality risk. The model 

update approach does achieve a more balanced calibration. The calibration plots, 

assessed over time, are available in the supplementary material Figure 3 (for LR) 

and supplementary material Figure 4 for (XGB). 
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Figure 5. Calibration plots of the LR and XGB models. The plots were generated after 

the combination of all data points. 

Discussion 

Without repeated updates over time, the parametric TAVI mortality prediction 

model was considered stable regarding discrimination (in terms of the AUC) but 

unstable regarding the accuracy of the predicted probabilities (in terms of the BS). 

The non-parametric model was unstable in both AUC and BS. When models were 

repeatedly updated over time, both parametric and non-parametric models were 

considerably more stable and had only few points in the yellow and red zones. 

TAVI procedures are over time offered to younger patients and patients with 

lower risk. Therefore, the mortality outcomes improved over time and the average 

age and mortality of the analysed TAVI population declined over time. When not 

updated, this decline in mortality results in the tendency of the prediction models 

to overestimate the mortality probability, which in turn leads to unstable models. 
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When we performed the model update analysis, which also updates the limits, a 

widening in these limits was clearly visible reflecting the larger uncertainty 

because of the higher variation in the data. It is important to note that the AUC is 

much less affected by the mortality prevalence than the BS. This explains why 

the BS become quickly unstable in the frozen models.  

Regarding TAVI mortality prediction models, Al-Farra et al. (18) performed a 

prospective analysis of mortality prediction models and highlighted the 

importance of performing model updates to overcome performance drifts. In this 

latter study, two parametric models were analysed and the prospective data was 

treated as a single dataset, while we divided the prospective data into multiple 

groups and we used SPC. Also, recent studies using national registries from 

Germany and Switzerland (27,28) analysed temporal trends over the TAVI 

procedures, confirming the reduction in mortality we found. However, the 

accuracy and stability of the risk scores over time was not considered in these 

studies, nor was SPC used. Using SPC to investigate stability over time on 

prediction models had been used by Minne et al. (25,26) for evaluating pre-

existent models for the prediction of mortality in the intensive care unit. Similar 

to our results, they found a significant difference within BS over time, while the 

AUC remained stable. However, they did not find time trends in the mortality or 

age of the observed patients. Also, the authors used a first-level recalibration 

approach, instead of re-training the model, to deal with the effects of time on the 

data. Although effective in their study, it was also suggested that more rigorous 

approaches, such as the model update we used, might be needed. 

Strengths of this study include the use of a large national registry with more than 

10,000 patients, with real recent data over many years. In addition, we compared 

two methods: a parametric (LR) and a non-parametric method (XGB). 

Furthermore, instead of simply analysing a frozen model with prospective data, 

we proposed a model update approach and evaluated its performance. Finally, we 

used two important performance measures: AUC for gauging discrimination and 

the BS for measuring the accuracy of the predicted probability. We also looked 

at the implications of (in)stability in terms of calibration graphs. As far as we 

know, this is the first study performing temporal analysis of TAVI mortality 

prediction models with such techniques. 
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This study also has some limitations. This data is from a national registry and has 

multiple centres. The centres might have different standards for patient selection 

or the performance of the procedure and this information was not taken into 

account directly (the centre was not used as a feature). In addition, the analysed 

data is from a country with a mainly Caucasian population, so a country-specific 

analysis. Also, a fixed number of samples per group was used to better understand 

how the models change over time and this leads to a different number of groups 

per year/month. Considering the clinical implementation of this study, one would 

have to wait until the number of procedures is reached to include a new group. 

Our work shows the importance of taking time into account when using mortality 

prediction models. Specifically, in our large dataset, the stability of both 

parametric and non-parametric models was considered poor, mainly for the BS. 

This demonstrates the danger of only considering AUC when evaluating 

prediction models, which is a common practice, and the importance of analysing 

multiple metrics when evaluating models. With the model update, the stability 

increased for both parametric and non-parametric models. However, this 

improved stability came at the cost of more uncertainty in performance. We found 

that it might be risky to use a model for longer periods without updating, 

independent of whether it is a parametric or non-parametric model. The frozen 

models were poorly calibrated and, also with the model update, the calibration 

was still insufficient. An underestimation or overestimation of the predicted 

probability is seen in the calibration plots for both models. Finally, we would like 

to highlight the importance of inspecting the confidence intervals (reflecting 

honesty in uncertainty) rather than the absolute improvement of the models' 

performance. 

Future work can investigate differences between centres. Also, in order to avoid 

the necessity of having enough patients to compose a new group. Individual 

Control Charts, that are able to analyse individual measurements, could be 

explored. In addition, a subgroup analysis could provide insight into specific 

groups that markedly diverge from the rest of the population. Furthermore, one 

hypothesis is that the older data might harm the model and can be ignored, or 

given less weight, over time once it might be too different from the current 
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population. Finally, reproducing this experiment with a different (TAVI) 

population warrants further research. 

Conclusion 

In our study, the prediction models that were updated over time were more stable 

and accurate compared to the frozen models. It highlights the importance of 

repeatedly updating the models over time to improve their performance stability. 

Although the updated models were more stable, the calibration was still poor and 

it came also at the cost of more uncertainty in performance. There were no clear 

benefits in using the non-parametric model over the parametric model. The 

trained models, when not updated, were unstable and presented a higher 

overestimation of 30-day mortality after TAVI than the models that were updated 

over time.  
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Supplementary Material 

Table S1. Hyperparameters grid used for XGB and LR. 

Classifier Parameter name Parameter value 

XGB Number of trees [1000] 

 Early stopping rounds [10] 

 Validation set [0.1] 

 Subsample [0.9, 0.7] 

 Max depth [2, 4, 8] 

 Min child weight [1, 5] 

 Gamma [0, 1, 5, 10] 

 Colsample by tree [1, 0.7] 

 Learning rate [0.1, 0.05] 

 Scale pos weight [1, 2, 3] 

LR Penalty [L1, L2] 

 Solver [liblinear, lbfgs] 

 C [0.1, 1, 10] 
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Figure 1. Calibration plots for LR and XGB (internal validation) per fold and all 

combined.  

 
Figure 2. Stability check using Logistic Regression for the initial points. The first 4 points 

were excluded since they were not considered stable 



5 

Chapter 5 

98 

 
 

Figure 3. Calibration plots for LR (temporal validation) per 2 groups and all combined.  
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Figure 4. Calibration plots for XGB (temporal validation) per 2 groups and all combined.  
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Abstract 

Thoracoscopic surgical ablation (SA) for atrial fibrillation (AF) has shown to be 
an effective treatment to restore sinus rhythm in patients with advanced AF. 

Identifying patients who will not benefit from this procedure would be valuable 
to improve personalized AF therapy. Machine learning (ML) techniques may 
assist in the improvement of clinical prediction models for patient selection. The 
aim of this study is to investigate how available baseline characteristics predict 

AF recurrence after SA using ML techniques. 

One-hundred-sixty clinical baseline variables were collected from 446 AF 
patients undergoing SA in our tertiary referral center. Multiple ML models were 

trained on five outcome measurements, including either all or a number of key 
variables selected by using the least absolute shrinkage and selection operator 

(LASSO). 

There was no difference in model performance between different ML techniques 

or outcome measurements. Variable selection significantly improved model 
performance (AUC: 0.73, 95% CI: 0.68–0.77). Subgroup analysis showed a 
higher model performance in younger patients (< 55 years, AUC: 0.82 vs. > 55 
years, AUC 0.66). Recurrences of AF after SA can be predicted best when using 

a selection of baseline characteristics, particularly in young patients. 
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Introduction 

In patients with advanced atrial fibrillation (AF), thoracoscopic surgical ablation 

(SA) is effective to restore sinus rhythm (SR) (1). Minimally invasive SA for AF 

using video-assisted thoracoscopic surgery has increasingly been performed and 

has a success rate of 69–80% in terms of freedom of AF at one year after surgery 

(2). 

Several clinical variables predicting AF recurrence after catheter ablation (CA) 

have been identified. These variables are currently being applied for patient 

selection for both CA and SA (3). Despite our knowledge of risk factors that are 

associated with lower efficacy and more recurrences, there are no risk scores or 

prediction models available that consider all the available pre-procedural clinical 

data that may affect the outcome of SA. More importantly, it is unknown to what 

extent the AF recurrence risk after an SA procedure is embedded in baseline 

clinical characteristics, and to what extent the AF recurrence risk is purely 

stochastic or related to technical aspects of the procedure (i.e., reconnection 

across ablation lines). Therefore, a systematic analysis tool to assess the risk of 

any ablation failure could potentially lead to enhanced identification of patients 

who may benefit from SA versus those in whom SA therapy would be futile. 

Conventionally developed clinical prediction models are using traditional linear 

regression methods. As an alternative, other machine learning (ML) techniques 

enable the discovery of (novel) potentially complex patterns in data sets through 

automated algorithms, using techniques like the kernel trick or multilayer neural 

network, which may result in more efficient processing of non-linear 

relationships and complex interactions between variables (4). ML has already 

been successfully used on many studies enabling the detection and diagnosis of 

AF (5). By using a ML approach, more effective selection and weighing of 

parameters of choice can be achieved, leading to promising clinical prediction 

models, which may be more accurate than classical prediction models (6,7). Still, 

the ultimate predictive value of such models will depend on the proportion of risk 

factors present in the variables that are causally related to an outcome versus non-

predictive risk factors that are randomly distributed among subjects. Therefore, 

we sought to optimize the prediction of AF recurrence following SA with the use 
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of available clinical, laboratory and imaging data to investigate to what extent the 

risk of AF recurrence is already embedded in the preoperative data. 

In this study, we built several ML models that incorporate preoperative data in 

AF patients scheduled for SA to comprehensively predict the AF recurrence risk. 

The aim of this study was I) to evaluate the proportion of baseline characteristics 

that are causal risk factors for AF recurrence after SA using different ML 

techniques; II) to investigate the differential performance of ML models on 

multiple conventional and modified definitions of AF recurrence; and III) to 

analyze whether the accuracy of the ML models is pertinent for clinically relevant 

subgroups. 

Materials and Methods 

Patient Characteristics  

Patients with paroxysmal or persistent AF who underwent SA in our center 

between February 2008 to June 2017 were eligible for this analysis. All patients 

provided written informed consent before the procedure. Clinical variables 

collected prior to SA were used for further analysis and consisted of patients’ 

characteristics, AF type and duration, medical history, the (determinants of the) 

CHA2DS2-VASc score, medication, Holter and electrocardiogram (ECG) reports, 

vital parameters, imaging (i.e., echocardiography, magnetic resonance imaging, 

computer tomography), and laboratory measurements. A full list of all collected 

variables is shown in Supplementary Material Table I. All continuous variables 

were standardized by removing the mean and scaling to unit variance. For 

categorical variables we used one-hot encoding (also known as “dummy 

coding”). 

Procedure and Outcome 

Included patients underwent SA following our standard protocol, using a hybrid 

surgical–electrophysiological approach as described previously (8,9). 

Approximately half of the patients underwent additional ganglion plexus (GP) 

ablation as part of the standard of care in all procedures performed before 2010, 

or as part of participation in the randomized Atrial Fibrillation Ablation and 

Autonomic Modulation via Thoracoscopic Surgery (AFACT) trial (2). As the 
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AFACT trial demonstrated, there was no difference in AF recurrence between the 

randomized treatment groups, so data of patients with and without GP ablation 

were pooled. Patients were followed for 24 months after SA with frequent ECG 

and 24 h-Holter monitoring (2). 

Five different definitions of AF recurrence were applied: 

• Outcome 1: any episode of atrial tachyarrhythmia (AF, atrial flutter, atrial 
tachycardia) lasting > 30 s (10). 

• Outcome 2: any episode of AF (but not atrial flutter or atrial tachycardia) 
lasting > 30 s.  

• Outcome 3: one single episode of any atrial tachyarrhythmia lasting > 1 
h. 

• Outcome 4: one single episode of any atrial tachyarrhythmia lasting > 6 
h. 

• Outcome 5: one single episode of AF (but not atrial flutter or atrial 
tachycardia), lasting > 1 h. 

All outcomes were assessed during the two-year follow-up period, with exclusion 

of the first three months following the procedure, which were considered a 

blanking period for outcome analysis.  

Missing Data 

Missing data was imputed with MissForest (11), which is an iterative imputation 

method based on random forest. Only the training set was used to train the 

imputation model. The target variables (different definition of AF recurrences) 

were not included in this process. Variables that were less than 70% complete 

and patients with more than 70% missing data were, sequentially, discarded from 

the analysis. 

Machine Learning Algorithms  

Five well-established ML algorithms were selected: support vector machine 

(SVM), logistic regression (LR), random forest (RF), neural network (NN), and 

gradient boosting (GB). All models were implemented using scikit-learn (12). 

Furthermore, we applied the least absolute shrinkage and selection operator 

(LASSO), which performs a regularization to automatically select variables and 

reduces the number of variables by fitting a linear regression with L1 

regularization. This is done to decrease the model’s complexity and reduce the 
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input noise (13). Variable selection steps are expected to reduce redundant or 

irrelevant data and can lead to an increase in the model’s accuracy (14). 

Analysis Pipeline and Variable Selection 

A nested cross-validation (CV), with an internal and external CV, was used for 

evaluation. The external CV was a stratified 5-fold, which means that 80% of the 

data was used for training and 20% for testing (repeated five times until all data 

is used for both training and test). The test set was not used during training and 

validation steps. 

The internal CV, also a stratified 5-fold, was first used by LASSO to select the 

variables to assure that the model generalized well to different data samples. 

Variables selected more than once in the CV by LASSO were subsequently 

included to train the models (13). This strategy was adopted to avoid the chance 

of selecting a variable that was only meaningful to predict a single fold. 

Subsequently, the same internal 5-fold CV was used to determine the best 

hyperparameters by grid search for each classifier on each fold and to train the 

models. The hyperparameter ranges used are displayed in Supplementary 

Material Table II and III. The pipeline, shown in Figure 1, was ran for all the 

outcome measurements as target variables. 

Model Evaluation 

The area under the curve (AUC) of the receiver operating characteristic was used 

to evaluate the performance of each model (external CV) and to select the model 

after the hyperparameter optimization (internal CV). Since a 5-fold CV was used 

for evaluation, we computed the mean AUC, standard deviation (SD) and 

confidence interval (CI) of each classifier. 

Subgroup Analysis 

We performed a predefined subgroup analysis using the model structure 

(outcome measurement, (key)-variables, ML algorithm) of the two best 

performing models. For this analysis, the probability prediction from the test sets 

(from all 5-folds) were combined, creating a single distribution with a single 

prediction probability for each sample. Samples were selected from this 

distribution given their subgroups and an AUC was computed for each subgroup 
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individually. Subgroups were chosen based on their established predictive value 

for AF recurrence or inclusion in the CHA2DS2-VASc score (15,16). Variables 

with an unbalanced distribution were not taken into account. The following 

variables were included for subgroup analysis: CHA2DS2-VASc score, 

congestive heart failure, history of stroke, history of CA, vascular disease, 

diabetes, hypertension, left atrial volume index (LAVI), sex, and age. Subgroups 

were created by using the predefined categories in case of categorical variables, 

and quartiles in case of continuous variables. 

 
 

Figure 1. Schematic representation of nested cross-validation methodology. Initially, the 

missing data is removed and an iterative imputation is performed in a stratified 5-fold CV 

(external) using only the training set. The imputation model is further used to imput the 

test set. After that, an internal CV is performed for the LASSO feature selection and 

hyperparameter optimization. As the last step, the model is trained with the training set 

and validated with the test set. An average AUC is reported. 
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Model Interpretation  

To increase the interpretability of our results, we explored the predictive impact 

of the selected features in our two best performing models. To gain more insight, 

we applied the unified framework Shapley additive explanations (SHAP) for the 

interpretation of predictions, which can be used for both linear and non-linear 

models (17). The SHAP was calculated for each feature comparing the prediction 

of the model without that feature. In addition, in cases where LR proved to be the 

best performing model, we used the coefficients of each feature to provide an 

interpretation of how each individual feature affected the prediction. 

Statistical Analysis 

Continuous data are presented as mean (SD) or median (range) for normally and 

non-normally distributed data, respectively. The unpaired T-test and Mann–

Whitney U test were used for comparisons of AUCs between two groups. One-

way ANOVA and Kruskal–Wallis tests were used for comparisons of AUCs 

between more than two groups. Statistical analyses were performed using SPSS 

Version 26 (IBM Corporation, Armonk, NY, United States). ML were developed 

with Python programming language 3.6 (Python Software Foundation, 

http://www.python.org/). 

Results 

Of the 495 patients, 49 (10%) patients were excluded because of incomplete 

baseline data. The mean age of the 446 included patients was 60 (SD ± 9) years, 

335 (75%) were male and 266 (60%) had persistent AF (Table 1). An overview 

of baseline characteristics stratified by success or failure according to different 

outcome definitions is shown in Supplementary Material Table IV. In total, 18 

out of 160 baseline variables (11%) were excluded because of missing values in 

more than 30% of the patients. 

Prediction of AF Recurrence within Two Years after SA.  

Outcome 1 

A total of 188 (42%) of the 446 patients experienced recurrence of AF within two 

years after SA according to the definition of AF recurrence following current 

guidelines (Outcome 1). Prediction of AF recurrence, and all baseline 
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characteristics, resulted in an AUC varying from 0.53 (95% CI: 0.38–0.68 

[SVM]) to 0.66 (95% CI: 0.59–0.72 [RF]) (Figure 2, Table 2). Variable selection 

using LASSO resulted in a selection of 12 key variables on the 5-fold CV. 

Variables regarding left atrial (LA) size, age and comorbidity (i.e., use of ACE 

inhibitors) demonstrated to be the most frequently (100%) selected variables to 

predict AF recurrence defined as Table 3. Training the models on Outcome 1 with 

the 12 selected key-variables resulted in an improved AUC up to 0.70 (95% CI: 

0.62–0.78 (LR)). 

Outcomes 2–5  

In line with the results of Outcome 1, model performance significantly improved 

for all other outcome definitions using selected key variables instead of using all 

142 available variables (p < 0.001). There were no significant differences in 

model performance between all outcome definitions (p = 0.35), nor in model 

performance between different ML techniques (p = 0.28). However, the best 

performing model for Outcome 2 (LASSO, LR) had a higher AUC (0.73, 95% 

CI: 0.68–0.77) compared to the best performing model of Outcome 1 (LASSO, 

LR; AUC: 0.70, 95% CI: 0.62–0.78). Figure 2 shows the average 5-fold ROC of 

model training for Outcome 1 and Outcome 2 with all and a selection of variables. 

Table 1. Summarized patients’ characteristics for all included patients. 

Variable  No. of Patients (%) 

n  446 

Sex, n (%)  

 Male 335 (75.1) 

 Female 111 (24.9) 

BMI, mean (SD) 25.8 (7.5) 

Age, mean (SD) 60.0 (8.7) 

CHA2DS2-VASc, n (%)  

 0 122 (27.4) 

 1 141 (31.6) 

 ≥ 2 183 (41.0) 

AF type, n (%)  

 Paroxysmal 180 (40.4) 

 Persistent 266 (59.6) 
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Figure 2. Average 5-fold ROC of testing on Outcome 1 or Outcome 2 with all or a 

selection of variables for two years without AF recurrence. ROC receiver operating 

characteristic curves, AUC area under the curve. 
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Table 3. Key-variables for Outcome 1 and Outcome 2, ranked by the percentage the 

variable was selected during the 5-fold cross validation (1-fold = 20%). Variables selected 

by LASSO, in at least two folds (40%), were included for training the models. 

Outcome 1 Outcome 2 

Variable - Assessment at 
Baseline 

Selecti
on 

Variable 
Selecti

on 

LAVI - TTE 100% Max. SBP—X-ECG 100% 

PR-interval - ECG 100% ACE-inhibitor (use)—medication 100% 

LA craniocaudal axis index - CT 100% ARB (use) - medication 80% 

Max. SBP - X-ECG 100% LAVI - TTE 60% 

ACE-inhibitor (use) - medication 100% Total duration - X-ECG  60% 

Age - demographics 100% FVC - lung capacity test 60% 

LA anteroposterior axis index - CT 80% 
Class II antiarrhythmics (use) - 
medication 

60% 

Max. resistance - X-ECG 80% Loop diuretics (dose) - medication 60% 

Previous catheter ablation - medical 
history 

80% HR - ECG 60% 

RSPV (width) - CT 60% LA craniocaudal axis index - CT 40% 

FEV1 - lung capacity test  60% 
Previous catheter ablation - 
medical history 

40% 

Height - physical examination 60% 
Total duration of AF - Holter 
monitoring 

40% 

Type of AF - medical history 60%   

Tricuspid valve regurgitation - TTE 40%   

FVC - lung capacity test 40%   

Hs-troponine - blood sampling  40%   

Class II antiarrhythmics (use)—
medication 

40%   

Class III antiarrhythmics (dose)—
medication 

40%   

AF atrial fibrillation, ARB angiotensin receptor blockers, CT computed tomography, ECG 
electrocardiogram, FEV1 forced expiratory volume in one second, FVC forced vital capacity, HR heart 
rate, HS-troponine high sensitive troponine, LA left atrium, LAVI left atrial volume index, RSPV right 
superior pulmonary vein, SBP systolic blood pressure, TTE transthoracic echocardiography, X-ECG 
exercise testing 

Model Interpretation Analysis  

Feature importance (SHAP) of each key variable for the two best prediction 

models (LR, SVM) regarding Outcome 1 and Outcome 2 was calculated and 

averaged over the test folds (Figure 3). For both outcomes, the key variables with 

the highest SHAP values (amplitude) were consistent for the two models. For 

Outcome 1, AF type, maximal systolic blood pressure (SBP) during exercise 

testing, increased craniocaudal index of the LA on CT, and PR interval on the 
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baseline ECG were the key variables with the highest SHAP values. Hence, 

patients with persistent AF had a higher risk of AF recurrence (defined as 

Outcome 1) than patients with paroxysmal AF. In addition, for the continuous 

variables, the progressive change in color in Figure 3 indicates a possible linear 

relationship between the value of the variable and Outcome 1. Patients with a low 

maximal SBP during exercise testing, increased craniocaudal index of the LA and 

prolonged PR interval had a higher risk of AF recurrence (Outcome 1). For 

Outcome 2, maximal SBP during exercise testing, loop diuretics dose and heart 

rate on the baseline ECG were key variables with the highest SHAP values for 

both models. There was no difference in the direction of the SHAP values 

between the models of Outcome 1 and Outcome 2. As LR proved to be the best 

performing ML technique for both Outcome 1 and Outcome 2, we calculated the 

average LR coefficients (Supplementary Material Table V). 

Analysis of AF Recurrence Prediction in Subgroups 

Figure 4 shows the results of the balanced subgroups ranked by AUC for 

Outcome 1 and Outcome 2. There was an interaction between model performance 

and age, with the best performance of the model in patients < 55 years old (AUC: 

0.82) for Outcome 2. 

Discussion 

This study of 446 patients undergoing SA for paroxysmal or persistent AF in our 

center aimed to improve patient selection for SA by investigating the value of 

baseline characteristics for the prediction of AF recurrence. Our main findings 

are: I) investigated ML models perform moderately well in the prediction of AF 

recurrence when all available baseline variables are included, but, with a selection 

of key variables, the prediction of AF recurrence improves; II) there are no 

differences in model performance using modified definitions of AF recurrence or 

different ML techniques; and III) subgroup analysis shows an improved model 

performance in younger patients.  
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Figure 4. Subgroup analysis with pre-defined groups based on Outcome 1 and Outcome 

2 best prediction models. 
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Prediction of AF Recurrence after Thoracoscopic Surgery 

In line with risk scores and predictors for AF recurrence after CA for AF, clinical 

variables available before SA may predict which patients will benefit from SA. 

In this study, the use of all available baseline characteristics resulted in a 

moderate AUC to predict AF recurrence. However, an increased model 

performance was observed when using a selection of variables. A possible 

explanation is that input of a selection of key variables leads to less noise and 

redundancy. The key variables selected by LASSO to predict AF recurrence 

included LA size, which is a well-known predictor for AF recurrence after AF 

catheter ablation. Other included key variables were relatively uncommon as 

stand-alone predictors for AF recurrence. However, these may have been selected 

because they reflect patients’ levels of frailty and comorbidities which may affect 

the risk of AF recurrence, or as a reflection (e.g., length) of well-known predictors 

(e.g., sex) that were not chosen. Surprisingly, patients with a low maximal SBP 

during exercise testing demonstrated to be at increased risk for AF recurrence. 

Possibly, this is because this group consists of the foremost advanced AF patients 

with a higher risk of AF recurrence, who are therefore more aggressively treated 

with antihypertensive or class II antiarrhythmic medication, or of patients with 

concomitant diastolic dysfunction. The selected key variables also explain why 

the model performs better in younger patients. As this patient group consists of 

patients with fewer comorbidities, it may represent a more homogeneous group 

with respect to the arrhythmogenic substrate for AF than older patients with 

multiple comorbidities.  

AF Recurrence Definition and Measurement 

Following current guidelines, AF recurrence was defined as any episode of atrial 

tachyarrhythmia lasting > 30 s beyond the three months blanking period (9). 

However, this definition is debatable, as one brief single episode does not carry 

the same symptom burden as episodes that last days to weeks (18). Our results 

did not show any difference in model performance when adjusting the definitions 

of AF recurrence. The models had a trend towards a higher AUC for Outcome 2 

than for Outcome 1. A possible explanation is that recurrent AF may represent an 

advanced atrial substrate, or progressive disease, whereas recurrent atrial 

tachycardias may also result from technical failure of the procedure (i.e., 
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reconnection across ablation lines) (19,20). However, due to the generally low 

burden of AF recurrence (21), repeat ablation was not performed in a large 

proportion of these patients and reconnection across ablation lines was not 

proven.  

Additional Value of ML Techniques in the Prediction of AF 

Recurrence 

It is expected that the application of ML techniques will improve future risk 

scores and prediction models. Our study shows a very moderate predictive value 

when using ML models including all available clinical variables as data input. 

However, using additional techniques, such as LASSO and SHAP, revealed some 

interesting findings that may improve prediction of AF recurrences after 

thoracoscopic AF surgery. Our findings underscore that ML tools, particularly 

those for selection and weighing of variables of interest, may contribute to 

improvement of prediction models and risk scores. This may be particularly 

relevant for large data sets with multiple variables wherein regular statistical 

methods show insufficient correlations.  

Clinical Implications 

Improved patient selection for SA could result in a higher success rate of the 

procedure. In patients with a predicted high risk of AF recurrence, it could be 

decided not to perform the procedure to prevent the associated complications. In 

addition, patient selection could identify patients at high risk for AF recurrence 

that could benefit from additional (continuous) monitoring, other specific follow-

up management, and early re-intervention in case of (a)symptomatic AF 

recurrence. The selection of patients for SA is already based on a thorough 

preoperative screening based on the patient’s medical history and baseline 

characteristics. Therefore, the included patients are already part of a highly 

selected population. This reduces the odds of improving patient selection with the 

available baseline variables, regardless of the use of ML techniques. As the AF 

field is evolving, future use of complex in-depth patient characteristics, 

procedural and mapping data, and improvements of the surgery technology, 

combined with different feature selection techniques, may further increase model 

performance. 
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Limitations 

This study has some limitations. First, we only used data from a single center in 

our test and validation sets. Thereby, it is unknown how our models will perform 

in other comparable datasets. Furthermore, patients included in this analysis were 

patients who underwent SA. Patients that did not consent or were deemed 

unsuitable for the operation were therefore excluded from this analysis. This may 

impact on the generalizability of our findings. In addition, we did not perform a 

prospective validation of our models. 

AF recurrence was monitored by repetitive ECGs and Holter monitoring as 

recommended by the guidelines (10). Patients were encouraged to obtain 

additional rhythm recording when symptomatic, but no continuous monitoring 

was performed. Therefore, asymptomatic recurrences of AF may have remained 

undetected. This could have been avoided by using loop recorders, which were 

not available for our population. However, the main goal of SA is to reduce AF-

related symptoms in patients with advanced AF and thereby improve quality of 

life. Additionally, no specific indexes for adrenergic tone were available or 

included in this study. Finally, LASSO is, by definition, a linear regression with 

L1 regularization selecting features based on the linear correlation. As a result, 

the linear techniques might have been benefited when this feature selection was 

performed. The use of non-linear techniques (e.g., the feature importance of the 

RF) for feature selection, or even simpler techniques, might increase the accuracy 

of the ML techniques that can handle nonlinearities. 

Conclusions 

The proportion of risk of AF recurrence after SA embedded in baseline variables 

is modest. Advanced ML models predict recurrences of AF after SA best when 

using a selection of baseline characteristics, particularly in young patients. 
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Supplementary Material 

Table I. All variables and percentage of missing values.  

Variable 
Missing 
(%) 

 Variable 
Missing 
(%) 

AF duration (last episode) - holter 
monitoring 

81  LIPV (height) - CT 12 

AF duration (total) - holter 
monitoring 

1  LIPV (width) - CT 69 

Total ECV – medical history 24  LSPV (height) - CT 7 

EHRA score – symptom score 33  LSPV (width) - CT 66 

TV (diameter) - TTE 77  PV stenosis - CT 12 

LAVI - TTE 37  RIPV (height) - CT 8 

Creatinine - blood sampling  1  RIPV (width) - CT 69 

CRP - blood sampling  19  RSPV (height) - CT 8 

eGFR - blood sampling  4  RSPV (width) - CT 69 

Hemoglobin - blood sampling  1  TV (diameter) - CT 10 

INR- blood sampling  28  ACE-inhibitor (use) - 
medication 

2 

Potassium - blood sampling  0  ACE-inhibitor (dose) - 
medication 

65 

Leukocytes - blood sampling  1  ARB (use) - medication 2 

Sodium - blood sampling  0  ARB (dose) - medication 70 

NT-proBNP - blood sampling  7  Calcium antagonist (use) - 
medication 

2 

Thromobytes - blood sampling  1  Calcium antagonist (dose) - 
medication 

78 

Hs-troponine - blood sampling  42  Lipid lowering drugs (use) - 
medication 

2 

TSH - blood sampling  7  Lipid lowering drugs (dose) - 
medication 

65 

Urea - blood sampling  37  Class IA antiarrhythmics (use) 
- medication 

3 

Pulmonary FEV (absolute) - lung 
capacity test 

14  Class IA antiarrhythmics (dose) 
- medication 

84 

Pulmonary FEV (relative) - lung 
capacity test 

14  Class IC antiarrhythmics (use) 
- medication 

2 

Pulmonary FEV1VC (absolute) - 
lung capacity test 

14  Class IC antiarrhythmics 
(dose) - medication 

60 

Pulmonary FEV1VC (relative) - 
lung capacity test 

14  Class II antiarrhythmics (use) - 
medication 

1 

Pulmonary FVC (absolute) - lung 
capacity test 

14  Class II antiarrhythmics (dose) 
- medication 

44 

Pulmonary FVC (relative) - lung 
capacity test 

14  Class III antiarrhythmics (use) - 
medication 

1 

Arrhythmia - X-ECG 8  Class III antiarrhythmics (dose) 
- medication 

53 

Duration - X-ECG 7  Class IV antiarrhythmics (use) 
- medication 

2 
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Ending - X-ECG 7  Class IV antiarrhythmics (dose) 
- medication 

75 

Ischemia - X-ECG 7  Other antiarrhythmics (use) - 
medication 

2 

Max. HR - X-ECG 6  Other antiarrhythmics (dose) - 
medication 

74 

Max. DBP - X-ECG 6  Loop diuretics (dose) - 
medication 

76 

Max. SBP - X-ECG 6  Loop diuretics (use) - 
medication 

2 

METS - X-ECG 45  Nitrates (use) - medication 3 

Min. HR - X-ECG 7  Nitrates (dose) - medication 84 

Min. DBP - X-ECG 7  OAC (use) - medication 0 

Min. SBP - X-ECG 7  OAC (dose) - medication 79 

WATT - X-ECG 57  Potassium diuretics (use) - 
medication 

3 

AVB - ECG 6  Potassium diuretics (dose) - 
medication 

82 

Axis - ECG 6  Thiazide diuretics (use) - 
medication 

2 

HR - ECG 4  Thiazide diuretics (dose) - 
medication 

76 

PR interval - ECG 24  Antiplatelet drug (use) - 
medication 

3 

QRS interval - ECG 4  Antiplatelet drug (dose) - 
medication 

82 

QT interval - ECG 5  Amiodarone - medication 13 

QTc - ECG 5  Atenolol - medication 14 

Rhythm - ECG 4  Bisoprolol - medication 13 

Ventricular conduction - ECG 5  Carvedilol - medication 13 

Aortic valve regurgitation - TTE 40  Digoxin - medication 14 

Aortic valve stenosis - TTE 36  Diltiazem - medication 14 

Mitral valve regurgitation - TTE 26  Disopyramide - medication 14 

Mitral valve stenosis - TTE 42  Flecainide - medication 10 

Pulmonary valve regurgitation - 
TTE 

83  Quinidine - medication 14 

Pulmonary valve stenosis - TTE 77  Metoprolol - medication 10 

Tricuspid valve regurgitation - TTE 37  Nebivolol - medication 14 

Tricuspid valve stenosis - TTE 52  Propafenone - medication 14 

Type of failure - holter monitoring 0  Propranolol - medication 13 

AF - holter monitoring 8  Sotalol - medication 11 

Atrial flutter - holter monitoring 8  Verapamil - medication 14 

Atrial tachycardia - holter 
monitoring 

9  Age - demographics 0 

AV block - holter monitoring 9  BMI – physical examination 0 

Mean HR - holter monitoring 10  Height - physical examination 0 
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Max. HR - holter monitoring 8  HR - physical examination 1 

Min. HR - holter monitoring 8  HR regular - physical 
examination 

8 

Flutter ablation - medical history 64  SBP - physical examination 2 

Other cardiac procedure - medical 
history 

9  Weight - physical examination 0 

Cardiac surgery - medical history 0  DBP - physical examination 2 

Catheter ablation, PVI - medical 
history 

0  Age ≥ 65 - demographics 0 

Catheter ablation, other - medical 
history 

68  Age ≥ 75 - demographics 0 

All PV - Catheter ablation, PVI 81  Alcohol - intoxications 55 

Entry block - Catheter ablation, PVI 81  CHADS2 - risk score 0 

Exit block - Catheter ablation, PVI 81  CHA2DS2-VASc - risk score 0 

Lesions - Catheter ablation, PVI 81  Hypercholesterolemia - 
medical history 

20 

CHF - medical history 9  Congestive heart failure - 
medical history 

0 

MI - medical history 0  Diabetes mellitus - medical 
history 

0 

Pacemaker - medical history 0  Drugs - intoxications 37 

PCI - medical history 0  Family history of CVD - 
medical history 

37 

Surgical ablation - medical history 69  Female - demographics 0 

Heart valve surgery - medical 
history 

9  Hypertension - medical history 0 

Aberrant PV - CT 4  Smoking - intoxications 22 

LA anteroposterior axis index - CT 7  Stroke - medical history 0 

LA craniocaudal axis index - CT 10  Vascular disease - medical 
history 

0 

 

Table II. Hyperparameters grid used for SVM. 

Classifier Kernel type 
Penalty 
parameter C 

Kernel 
coefficient γ 

Degree of the 
Polynomial 
kernel 

Class 
weight 

SVM Linear 
[0.1, 1, 10, 
100, 1000] 

n.a. n.a. 
[None, 
Balanced] 

 
Radial basis 
function 

[0.1, 1, 10, 
100, 1000] 

[1, 0.1, 0.01, 
0.001] 

n.a. 
[None, 
Balanced] 

 Polynomial 
[0.1, 1, 10, 
100, 1000] 

[1, 0.1, 0.01, 
0.001] 

[3, 4, 5] 
[None, 
Balanced] 

 Sigmoid 
[0.1, 1, 10, 
100, 1000] 

[1, 0.1, 0.01, 
0.001] 

n.a. 
[None, 
Balanced] 
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Table III. Hyperparameters grid used for RF, GB, and NN. 

Classifier Parameter name Parameter value 

RF Number of trees [100, 500, 1000, 2000] 

 Max features [None, auto] 

 Max depth [None, 2, 3, 4] 

 Min samples per split [2, 4, 8] 

 Min samples per leaf [1, 2, 4] 

 Class weight [None, Balanced] 

GB Number of trees [10, 50, 100, 200, 500] 

 Max features [None, auto] 

 Max depth [None, 2, 3, 4] 

 Min samples per split [2, 4, 8] 

 Min samples per leaf [1, 2, 4] 

 Class weight [None, Balanced] 

NN Activation [relu] 

 Hidden layer sizes 
[5], [10], [50], [5, 5], [10, 10], [50, 50], [5, 5, 5], [10, 10, 
10], [50, 50, 50] 

 Alpha [0.001, 0.0001] 

 Solver [adam] 

 Learning rate [adaptive] 

 Initial learning rate [0.1, 0.01, 0.001] 
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Table IV. Summarized patients characteristics for all included patients divided by outcome 

definition.  

Grouped 
by 
outcome 

Outcome 1 
(n=446) 

Outcome 2 
(n=446) 

Outcome 3 
(n=446) 

Outcome 4 
(n=446) 

Outcome 5 
(n=446) 

Success Failure Success Failure Success Failure Success Failure Success Failure 

n 258 188 363 83 270 176 290 156 367 79 

Gender, n (%)          

Male 
208 

(80.6) 
127 

(67.6) 
274 

(75.5) 
61 

(73.5) 
215 

(79.6) 
120 

(68.2) 
230 

(79.3) 
105 

(67.3) 
277 

(75.5) 
58 

(73.4) 

Female 
50 

(19.4) 
61 

(32.4) 
89 

(24.5) 
22 

(26.5) 
55 

(20.4) 
56 

(31.8) 
60 

(20.7) 
51 

(32.7) 
90 

(24.5) 
21 

(26.6) 
BMI, 
mean 
(SD) 

25.8 
(7.2) 

25.8 
(7.8) 

25.6 
(7.8) 

26.9 
(5.8) 

25.7 
(7.2) 

26.0 
(7.8) 

25.6 
(7.6) 

26.2 
(7.3) 

25.6 
(7.7) 

27.0 
(5.9) 

Age, 
mean 
(SD) 

58.8 
(8.7) 

61.6 
(8.4) 

59.9 
(8.6) 

60.5 
(9.1) 

59.2 
(8.7) 

61.3 
(8.5) 

59.2 
(8.9) 

61.5 
(8.2) 

59.9 
(8.6) 

60.5 
(9.3) 

CHA2DS2-VASc, n(%)       

0 
85 

(32.9) 
37 

(19.7) 
105 

(28.9) 
17 

(20.5) 
87 

(32.2) 
35 

(19.9) 
92 

(31.7) 
30 

(19.2) 
106 

(28.9) 
16 

(20.3) 

1 
76 

(29.5) 
65 

(34.6) 
106 

(29.2) 
35 

(42.2) 
8 1 

(30.0) 
60 

(34.1) 
89 

(30.7) 
52 

(33.3) 
109 

(29.7) 
32 

(40.5) 

>=2 
97 

(37.6) 
86 

(45.7) 
152 

(41.9) 
31 

(37.3) 
102 

(37.8) 
81 

(46.0) 
109 

(37.6) 
74 

(47.4) 
152 

(41.4) 
31 

(39.2) 

AF type           

Paroxysm
al 

130 
(50.4) 

50 
(26.6) 

154 
(42.4) 

26 
(31.3) 

137 
(50.7) 

43 
(24.4) 

141 
(48.6) 

39 
(25.0) 

157 
(42.8) 

23 
(29.1) 

Persistent 
128 

(49.6) 
138 

(73.4) 
209 

(57.6) 
57 

(68.7) 
133 

(49.3) 
133 

(75.6) 
149 

(51.4) 
117 

(75.0) 
210 

(57.2) 
56 

(70.9) 

 

Table V. Average LR coefficients over folds. Positive values indicates bad outcome and 

negative values indicates good outcome. 

Outcome 1 Outcome 2 

Variable Average Variable Average 

LAVI - TTE  0.011 LAVI - TTE 0.028 

PR-interval - ECG 0.010 
LA craniocaudal axis index - 
CT 

0.020 

RSPV (width) - CT 0.010 Duration - X-ECG 0.004 

Tricuspid valve regurgitation - TTE 0.002 Max. SBP - X-ECG -0.019 

LA anteroposterior axis index - CT 0.011 FVC - lung capacity test 0.022 

LA craniocaudal axis index - CT 0.036 
Previous catheter ablation - 
medical history 

0.372 

Max. resistance - X-ECG -0.003 
AF duration (total) - holter 
monitoring 

0.027 

Max. SBP - X-ECG -0.013 
Class II antiarrhythmics 
(use) - medication 

0.103 

FEV1 - lung capacity test -0.065 
Loop diuretics (dose) - 
medication 

0.036 
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FVC - lung capacity test -0.103 
ACE-inhibitor (use) - 
medication 

0.054 

Hs-troponine - blood sampling  -0.019 ARB (use) - medication -0.140 

Previous catheter ablation - medical 
history 

0.439 HR - ECG -0.019 

Class II antiarrhythmics (use) - 
medication 

-0.088   

Class III antiarrhythmics (dose) - 
medication 

-0.001   

ACE-inhibitor (use) - medication 0.028   

Age - demographics 0.024   

Height - physical examination -0.679   

Type of AF - medical history 0.621   
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Abstract 

Patient-tailored contrast delivery protocols strongly reduce the total iodine load 
and in general improve image quality in CT coronary angiography (CTCA). We 

aim to use machine learning to predict cases with insufficient contrast 

enhancement and to identify parameters with the highest predictive value. 

Machine learning models were developed using data from 1,447 CTs. Were 

included patient features, imaging settings and, test bolus features. The models 
were trained to predict CTCA images with a mean attenuation value in the 
ascending aorta below 400 HU. The accuracy was assessed by the area under the 
receiver operating characteristic (AUROC) and precision-recall curves 
(AUPRC). Shapley Additive exPlanations, was used to assess the impact of 

features on the prediction of insufficient contrast enhancement. 

A total of 399 out of 1,447 scans revealed attenuation values in the ascending 
aorta below 400 HU. The best model trained using only patient features and CT 

settings achieved an AUROC of 0.78 (95% CI: 0.73–0.83) and AUPRC of 0.65 
(95% CI: 0.58–0.71). With the inclusion of the test bolus features, it achieved an 
AUROC of 0.84 (95% CI: 0.81–0.87), an AUPRC of 0.71 (95% CI: 0.66–0.76), 
and a sensitivity of 0.66 and specificity of 0.88. The test bolus’ peak height was 

the feature that impacted low attenuation prediction most. 

Prediction of insufficient contrast enhancement in CT coronary angiography 
scans can be achieved using machine learning models. Our experiments suggest 

that test bolus features are strongly predictive of low attenuation values and can 

be used to further improve patient-specific contrast delivery protocols. 
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Introduction  

Computed tomographic coronary angiography (CTCA) is a non-invasive imaging 

technique used for the anatomical assessment of coronary artery disease [1–6]. 

Iodine containing contrast material (CM) is used to enhance luminal attenuation 

to enable assessment of the coronary artery lumen, vessel wall, and the 

surrounding structures [7]. Adjustments in CM delivery protocols change the 

attenuation coefficient of the blood pool. A commonly used strategy to adjust CM 

delivery is to regulate the iodine delivery rate (IDR = amount of iodine injected 

per second [g I/s] = concentration of CM × flow rate in ml/s) [7]. Besides CM 

delivery, coronary lumen attenuation also depends on patient features like body 

weight and length as well as CT scanner settings and the tube voltage (kV) in 

particular [7]. Other parameters, such as the peak height and time to peak of a test 

bolus, are also associated with attenuations but are commonly not considered in 

current CM protocols [8, 9]. A better understanding of the interrelation between 

these parameters and luminal attenuation is valuable for further improvements in 

patient-specific contrast delivery protocols. Reducing the iodine load is important 

to lower the risk for renal function impairment, reduce environmental pollution, 

and lower overall costs. However, inappropriate correction in contrast 

administration may result in insufficient coronary lumen attenuation and this is 

not tolerable. 

For accurate assessment of coronary artery disease on CTCA, intra-arterial 

attenuation values higher than 350 HU are recommended [10–15]. In previous 

studies, the introduction of patient-tailored CM protocols, adjusting the IDR for 

body weight and kV, resulted in more constant coronary artery attenuation values 

and a favorable reduction in total iodine load [8, 10–12]. However, in some cases, 

CM delivery resulted in low coronary attenuation values, thereby jeopardizing 

the diagnostic value of CTCA [8].  

We hypothesized that machine learning (ML) can help to predict cases with 

insufficient contrast attenuation in CTCA. This will allow for CM delivery and 

CT scanner settings to enhance coronary attenuation and improve diagnostic 

value. Additionally, we investigated the added value of using the test bolus 

features for the prediction. To this end, we also analyzed the impact of the 

features on predicting insufficient attenuation.  
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Materials and Methods 

Study design and population 

This retrospective study was performed following the principles of the 

Declaration of Helsinki and the local Institutional Review Board approved this 

study. The Ethics Committee approved this research with a waiver. All 

consecutive patients above 18 years old who underwent CTCA between 

September 2017 and September 2020 were included in the study. CT scans were 

excluded if the acquisition protocol deviated from the standard CTCA protocol 

(e.g., TAVI or cardiac function) or if the test bolus enhancement curves were not 

stored in the hospital’s picture archiving and communication system. 

CTCA acquisition protocol 

The imaging protocol has been described before [8]. In summary, all images were 

obtained using a third-generation dual-source 192 detector row CT scanner 

(Somatom Force, Siemens Healthcare). Sublingual nitro-glycerine spray was 

administered before the CTCA acquisition and beta-blockers were administered 

on indication (heart rate > 65 per min). The time between the start of contrast 

medium injection and the time to peak contrast enhancement in the ascending 

aorta was determined using a test bolus injection with a fixed contrast bolus of 

10 ml undiluted contrast medium (Ultravist 300: iopromide 300 mg I/ml, Bayer 

AG or Xenetix 350: iobitridol 350 mg I/ml, Guerbet OptiVantage DH) a fixed 

scan-dealy of 8 s and a fixed kV value of 100 kV. For timing the CTCA 

acquisition, the scan delay was determined by the time to peak and an additional 

4 s for coronary artery filling. For the CTCA scans, automatic tube voltage 

selection (CARE kV, Siemens Healthcare, Erlangen, Germany) was applied in 

all patients with kV categories ranging from 70 to 120kV with increments of 

10kV. All CTCA scans were visually evaluated by the attending CT technician. 

CT scanner acquisition parameters were: detector collimation 2 × 96 × 0.6 mm, 

slice acquisition 2 × 192 × 0.6 mm using a z-flying focal spot, gantry rotation 

time of 250 ms, temporal resolution of 66 ms, 70–120 kV tube voltage (CARE 

kV), and 180-600 µA tube current. High-pitch spiral scanning was performed in 

diastole in patients with a regular heart rate < 70/min. A prospective ECG-gated 

sequential scan (step and shoot) was performed in diastole for patients with 

irregular heart rate < 70/min or heart rates ranging between 70 and 80/min. For 
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patients with irregular heart rates of > 80/min, a sequential scan was performed 

in systole. Padding in an adaptive prospective sequential scan mode for high and 

irregular heart rates was used to enable reconstruction of more cardiac phases. 

Images were reconstructed with a slice thickness of 0.6 mm and an increment of 

0.4 mm using iterative reconstruction factor 2 (ADMIRE, Siemens Healthcare).  

Contrast delivery protocol 

Iodinated contrast medium (300 or 350 mg I/ml) was administered via a dual-

head contrast delivery injector (Guerbet OptiVantage DH) equipped with a high-

pressure resistant extension tube and injected in the right antecubital vein. A test 

bolus of 10 ml contrast medium was injected at 6 ml/s or 6.5 ml/s, followed by a 

40 ml saline chaser also injected at 6 or 6.5 ml/s. The bolus of (un)diluted contrast 

material for high-pitch spiral CTCA scans was 50 ml and the bolus for 

prospective sequential step-and-shoot scans was 65 ml. The larger contrast bolus 

volume in prospective sequential step-and-shoot scans was applied to compensate 

for the longer acquisition time. The contrast bolus was injected at an injection 

rate of 6 ml/s or 6.5ml/s. All contrast injections were followed by a saline chaser 

of 40 ml (6 or 6.5 ml/s). The IDR was adjusted for body weight and kV settings, 

as presented in a previous study [8]. The kV settings for CTCA acquisition, as 

selected by CARE kV, were used together with body weight to provide a patient-

specific IDR (1–2.3 g I/s). To reach the required IDR, the CM was diluted with 

saline via the dual-head contrast delivery injector, of which one was filled with 

undiluted contrast material and the other with saline solution. The two fluids were 

blended in the high-pressure resistant extension tube, after which it was injected 

in the right antecubital vein. 

Data extraction 

Data was retrieved automatically from DICOM headers and electronic patient 

records. Collected patient features included sex, age, average heart rate, body 

weight, and body height. Also, kV settings (tube voltage), iodine delivery rate 

(IDR), total iodine load, and contrast dose concentration were collected. 

Furthermore, we extracted test bolus features, such as the peak height of the test 

bolus attenuation curve (peak height in HU), the time to peak of the contrast curve 

(time-to-peak in seconds), and the time to the start of the contrast curve (the time-

to-start-curve in seconds) from the bolus tracking curves (DynEva, Siemens 
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Healthcare) as illustrated in Figure 1. An association between the height of the 

test bolus and coronary attenuation has been reported in previous studies. 

Therefore, we considered the test bolus to contain important information and 

included this in the model [8, 9]. Regarding the time to start and time to peak, the 

default delay of 8 s was ignored in the analysis once the values used were obtained 

from the bolus tracking curves. 

 
 

Figure 1. Dynamic bolus tracking of the test-bolus scan example. An ROI is used to 

measure the attenuation at the level of the ascending aorta below the level of the carina 

(A, 1). The curve (B) represents the measured values over time. Time-to-start-curve 

(blue dashed line) in seconds, time-to-peak (red dashed line) in seconds, and peak 

height (green dashed line) in HU where t = 0 corresponds to 8 seconds after contrast 

media injection.  

For the assessment of luminal attenuation, we used an in-house developed tool to 

automatically detect the ascending aorta. Correspondingly, a region of interest 

with a radius of approximately 70% of the aorta radius was fitted to calculate the 

average attenuation in the ascending aorta and exclude possible edges and 

calcifications in the vessel wall. In cases in which the tool did not detect the 

ascending aorta, the location was selected manually. The attenuation value in the 

ascending aorta was used as a proxy of the attenuation in the coronary arteries. It 

should be noted that the attenuation in the ascending aorta is slightly higher than 

that in the coronary arteries. Previous research has shown that there is a strong 
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association between attenuation in the ascending aorta and coronary arteries with 

a mean decay of 25 HU expected from the ascending aorta to the proximal 

coronary arteries and of 50 HU to the distal coronary arteries [8]. Therefore, the 

cutoff value for adequate attenuation in the ascending aorta for this study was 400 

HU. 

Model development 

The models were trained to predict insufficient luminal attenuation in the 

ascending aorta. Insufficient attenuation was defined as an average attenuation 

lower than 400 HU within the region of interest. ML techniques were used to deal 

with both linear and nonlinear interactions between the included features. These 

techniques included the following: logistic regression (LR), random forest (RF), 

extreme gradient boosting (XGB), support vector machines (SVM), and neural 

networks (NN). To assess the added value of extracting information from the test 

bolus, we performed two experiments: only patient features with CT settings and, 

additionally, also including the test bolus features. Both experiments followed the 

same methods and only differed in the features included. 

We used stratified 10-fold cross-validation (CV) for the development and 

evaluation of the ML models. In some cases where CTs from the same patient 

were split into training and test set, the CTs were removed from the training set 

to avoid patient data leakage. The training set was also used to find the optimal 

hyper-parameters using a grid search with another 5-fold CV. For model selection 

after the hyper-parameter optimization, the models with the largest average area 

under precision (positive predictive value) and recall (sensitivity) curves were 

selected. The testing folds were not used during the training steps.  

To deal with the missing values, we used MissForest, an iterative technique based 

on random forests [16] for imputation. The imputation model was created with 

the training data only to avoid data leakage. As a requirement for some of the ML 

techniques, the continuous features were standardized by removing their mean 

and scaling to unit variance. 

Detailed information about the selected classifiers and hyper-parameters used for 

optimization is available in the Supplementary Material Tables I and II. The 
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analysis was performed with Python (Python Software Foundation, version 3.6, 

www.python.org) using the scikit-learn [17] and XGBoost [18] packages. 

Model evaluation  

The area under the receiver operating characteristic (AUROC) and precision-

recall curves (AUPRC) were used to evaluate the models. As a 10-fold CV was 

applied, we computed the averages and 95% confidence interval (CI) for each 

model. The Wilcoxon signed-rank test was performed to assess whether the 

difference in AUROC and AUPRC between the prediction models with and 

without using the test bolus features are statistically significant (p-value < 0.05). 

Model interpretation  

For the visualization of the importance of included features in the prediction 

analysis, the Shapley Additive exPlanations (SHAP) framework was used [19]. 

For each of the features, the feature importance (SHAP value) was calculated by 

making predictions excluding that feature. This value describes how it affects the 

prediction probability. The larger the SHAP value, the more it affects the 

prediction. Additionally, the values can be either positive, for low attenuations, 

or negative, for regular attenuations. 

The SHAP values were computed for the entire population. In addition, for a 

better understanding of the effect of the features per tube voltage, we also 

computed the SHAP values per tube voltage group (70 – 120 kV). 

Results 

A total of 1,447 scans from 1,364 patients were included in the analysis. Of these 

scans, 399 (27%) were considered to have insufficient attenuation. Figure 2 

displays an example of CTCAs with insufficient (227 HU), accurate (433 HU), 

and high (595 HU) attenuation. The tool for automated ascending aorta detection 

failed in less than 1% of the cases. Baseline and descriptive features are shown in 

Table 1 and average attenuation values per tube voltage are shown in Table 2. 

The relationship between patient weight and mean attenuation per kV group is 

shown in Supplementary Material Figure I. Despite the already-applied 

correction for kV and body weight in our acquisition protocol, there was 

considerable variation between patients. 
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Table 1. Descriptive statistics of the study group, mean ± SD or N (%). 

    Missing (n) 
Low attenuation 

(n=399) 

Regular 
attenuation 

(n=1048) 

Age (yrs)  374 55.7 ± 11.8 52.8 ± 12.2 

Sex (female)  374 494 (62%) 101 (37%)* 

Height (cm)  568 171 ± 10 177 ± 10* 

Weight (kg)  556 77 ± 14 86 ± 19* 

Average heart rate (bpm)  0 61.9 ± 10.2 61.6 ± 11.2 

Iodine delivery rate (g I/s)  0 1.5 ± 0.3 1.5 ± 0.3* 

Tube voltage (kV) 

70 0 357 (34%) 111 (28%)* 

80  426 (41%) 110 (28%) 

90  214 (20%) 75 (19%) 

100  29 (3%) 39 (10%) 

110  18 (2%) 23 (6%) 

120  4 (0%) 41 (10%) 

Total iodine load (g)  0 16.0 ± 2.8 15 ± 2.7 

Peak height - test bolus (HU)  0 127 ± 40 95 ± 35* 

Time to peak - test bolus (s)  0 8.5 ± 2.7 9.6 ± 3.4* 

Time to start - test bolus (s)   2 3.4 ± 1.9 4.3 ± 2.4* 

*p<0.001, Two-sample T-test or Chi-square, as appropriate. 

Table 2. Average and standard deviation of the attenuations per tube voltage group. 

  Low attenuation  Regular attenuation 

Tube voltage (kV) n Attenuation (HU)  n Attenuation (HU) 

70 111 350 ± 37  357 522 ± 41 

80 110 342 ± 35  426 499 ± 37 

90 75 348 ± 34  214 506 ± 36 

100 39 347 ± 35  29 484 ± 36 

110 23 340 ± 27  18 473 ± 33 

120 41 312 ± 36  4 431 ± 44 

 

The AUROC and AUPRC together with corresponding 95% CI for all 

experiments are shown in Table 3. The models with the highest average 

accuracies were trained with RF and had an AUPRC of 0.71 (95% CI: 0.66–0.76) 

and AUROC of 0.84 (95% CI: 0.81–0.87), with a sensitivity of 0.66 and 
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specificity of 0.88 (Figure 3). Notably, these models included the test bolus 

features. Regarding the models without the test bolus features, the best 

performing model was also achieved by the RF model. In comparison, this model 

had an AUROC of 0.78 (95% CI: 0.73–0.83) and AUPRC of 0.65 (95% CI: 0.58–

0.71). The differences between the AUROC and AUPRC values for the various 

models using the test bolus features were not statistically significant. The 

AUROC difference of the prediction models between using and not using the test 

bolus features was statistically significant (p-value = 0.027). The difference in 

AUPRC between the two models was not statistically significant (p-value = 0.23). 

Table 3. Evaluation of the low attenuation detection models with 95% confidence interval. 

AUPRC = area under the precision-recall curve, AUROC = area under the receiver 

operating characteristic curve. 

 Including patients features CT 
settings and test bolus features 

Including patients features and 
CT settings 

Model/Metric AUPRC AUROC AUPRC AUROC 

Logistic 
regression 

0.70 
(0.63-0.76) 

0.83 
(0.79-0.87) 

0.62 
(0.55-0.68) 

0.77 
(0.72-0.82) 

Random forest 
0.71 

(0.66-0.76) 
0.84 

(0.81-0.87) 
0.65 

(0.58-0.71) 
0.78 

(0.73-0.83) 

XGBoost 
0.70 

(0.66-0.75) 
0.83 

(0.80-0.87) 
0.64 

(0.59-0.69) 
0.78 

(0.74-0.82) 
Support vector 
machines 

0.67 
(0.62-0.73) 

0.82 
(0.78-0.86) 

0.56 
(0.50-0.63) 

0.75 
(0.70-0.80) 

Neural networks 
0.69 

(0.63-0.74) 
0.82 

(0.79-0.86) 
0.61 

(0.55-0.68) 
0.76 

(0.71-0.80) 

 

Figure 3. Average receiver operating characteristic (left) and precision-recall curves 

(right) with 95% confidence interval for models trained with patient features, CT settings, 
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and test bolus features and with only patient features and CT settings. RF = random 

forest, AUC = area under the curve. 

The SHAP summary plot is presented in Figure 4, showing only the features 

related to the CM protocol. As might be expected, it shows that high tube voltages 

are strongly associated with low attenuations. Furthermore, higher body weights 

and lower IDR also result in higher chances of insufficient attenuation. As the 

contrast delivery protocol, used in this study, adjusted the IDR for kV settings 

and body weight, the effect of these features was evaluated in each tube voltage 

group (Figure 5). The kV categories of 70, 80, and 90 kV are associated with 

intended attenuation values (with a negative SHAP value) and 100, 110, and 120 

kV with lower attenuation values (with a positive SHAP value). 

Figure 6 shows the SHAP values of all features used in the model. Of all these 

features, the peak height of the test bolus contrast curve is the most impactful 

feature (with low peak height associated with low attenuation) followed by body 

height (high body height values associated with low attenuation). Regarding the 

protocol features, the tube voltage is the third most important. 

 
Figure 4. Importance of the CM protocol features (average on the test folds) using SHAP 

values. The amplitude of the SHAP value indicates the feature importance for the 

prediction (positive values mean low attenuation). The colors represent the values of the 

features, with red for high values and blue for low values. CM = Contrast material. 
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Figure 5. Importance of the CM protocol features (average on the test folds) using SHAP 

values divided by tube voltage group. The amplitude of the SHAP value indicates the 

feature importance for the prediction (positive values mean low attenuation). The colors 

represent the values of the features, with red for high values and blue for low values. 

Note that there is only one color for the tube voltage since there is only one tube voltage 

per group. CM = Contrast material.  

Discussion  

In this study, we have shown that ML models are accurate in predicting low 

attenuation scans. Moreover, in the setting of a patient-specific contrast delivery 

protocol adjusting the IDR for kV setting and body weight, the peak height of the 

test bolus curves is the most impacting feature for the model. Including the test 

bolus features, the prediction accuracy of the models increased, compared to 

models using only patient features and CT settings. This highlights the 

association of the test bolus features, specifically the peak height of the test bolus 

attenuation curve with luminal attenuation and this should be considered when 

further refining contrast protocols. 
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Figure 6. Importance of all features included in the model (average on the test folds) 

using SHAP values. The amplitude of the SHAP value indicates the feature importance 

for the prediction (positive values mean low attenuation). The colors represent the values 

of the features, with red for high values and blue for low values. CM = Contrast material. 

In our population, attenuation was inversely associated with kV, despite IDR 

adjustment for kV settings. These results suggest that it is worth adjusting the 

IDR even more for kV in our clinical protocol. However, such extra IDR 

adaptation for kV cannot account for the interplay of other settings on IDR and 

image quality as indicated by the results showing that multiple parameters 

influence image quality, most likely in a non-linear fashion. In a previous study, 

we showed that the patient-tailored contrast delivery protocol contributed to 

reduced variation in contrast attenuation in the coronary arteries. However, 

despite the correction for kV and body weight, there remained considerable 

variation between patients, and coronary attenuation was not sufficiently high in 

all patients to assure accurate radiologic assessment. Therefore, our study 

suggests that a straightforward correction for kV settings and body weight 

underestimates the complexity of the scanning parameters, which do not take the 

interaction of other parameters with the IDR into account. 

Although the peak height of the test bolus was already found significantly 

associated with image quality in other studies, in this study, we aimed at the 
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application of AI to predict too low coronary artery attenuation in a clinical 

setting with a contrast protocol adjusted for body weight and kV. The strong 

association of the test bolus and optimal enhancement in the ascending aorta on 

the CCTA is not surprising because of its similar signal. However, the test bolus 

is a small volume of contrast. A longer bolus results in accumulation and 

therewith a higher plateau of attenuation. The filling time will result in this 

plateau feature. The form of this upslope and plateau may vary, most likely 

concerning time to peak and peak value. 

Model performance 

We evaluated five different ML techniques and the differences between the 

accuracy of these models were not statistically significant. All evaluated ML 

techniques used in this study seem to be able to identify insufficient contrast 

cases, including LR, which only takes linear relationships between features and 

outcome into consideration. Using as reference the RF model, with a sensitivity 

of 0.66 and specificity of 0.88, we can identify 263 (from 399) CTs with a 

relatively small number of false positives (125). Additionally, the prediction 

probability threshold could be adjusted to have higher sensitivity at a cost of 

lowering the specificity. 

Comparison with previous studies 

Multiple studies aim to use ML to improve the CT acquisition process and image 

quality [20]. Also, some studies aimed on developing patient-tailored CM 

protocols using the test bolus features in 100–120 kV scans, not covering the 

currently available kV range 70–120 kV [23, 24].  

Besides the use of test bolus, some studies use tailored CM protocols with 

(automatic) bolus tracking. Martin et al. [25] evaluated the feasibility of a 

vendor’s software using a tube voltage-tailored CM application, which still 

resulted in more than 25% of the CTAs with attenuations in the ascending aorta 

below 400 HU. In another study with bolus tracking, Yin et al. [26] evaluated 

protocols tailored for BMI or BSA, and, either way, cases of insufficient 

attenuation in the aorta occurred. The use of AI, as presented in the current study, 

could potentially improve different protocols by automatically detecting cases 

with insufficient attenuation when using a test bolus protocol. 
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Limitations 

This study was performed with a relatively large cohort; however, due to the 

retrospective nature of the study design, some patient-specific features were 

incomplete. Furthermore, this is a single-center study and the CTCAs were 

acquired with a specific protocol, making the ML models not generally suitable 

for different protocols without re-training them with additional data. Also, the 

selected cutoff value, 400 HU for the ascending aorta is arbitrary. However, it 

should be noted that this value is not the only marker of high-quality coronary 

CTA. Moreover, the quality was addressed by the (objective) attenuation 

assessment whereas the quality could also have been addressed by the 

(subjective) radiologist’s rating. However, it should be noted that this value is not 

the only marker of high-quality coronary CTA. Moreover, the quality was 

addressed by the (objective) attenuation assessment whereas the quality could 

also have been addressed by the (subjective) radiologist’s rating. 

Regarding the ML techniques used in this study, all models tested achieved 

similar accuracies. It might be explained by the limited number of features 

considered for this analysis. The addition of more features, such as information 

extracted from the test scan or engineered features, would add additional value 

that could be exploited by the techniques that can handle a large number of 

features and nonlinearities. Although attenuation is an important topic regarding 

image quality of CCTAs, it does not cover image quality completely. Noise, 

artifacts, or qualitative quality assessments were not considered in this study. 

The model can accurately predict low attenuation retrospectively in a large 

population. Therefore, the current study should be conceived as a proof-of-

concept study to predict low attenuation. The effectiveness of the proposed 

prediction model needs to be addressed in a subsequent prospective study. Also, 

the extent to which the IDR should be adjusted was beyond the scope of this 

study. Regression models to estimate the attenuation itself, instead of a binary 

classification, may be a solution. With a correct estimation of the attenuation, the 

IDR could be adjusted such that the predicted attenuation is close to acquired 

luminal attenuation that should be close to the desired value. This approach will 

be explored in a further study. 



7 

  Machine learning-based prediction of insufficient contrast enhancement 

145 

Although the peak height of the test bolus was already found significantly 

associated with image quality in other studies [8, 9], in this study, we aimed at 

the application of AI to predict too low coronary artery attenuation in a clinical 

setting with a contrast protocol adjusted for body weight and kV. The strong 

association of the test bolus and optimal enhancement in the ascending aorta on 

the CCTA is not surprising because of its similar signal. However, the test bolus 

is a small volume of contrast. A longer bolus results in accumulation and 

therewith a higher plateau of attenuation. The filling time will result in this 

plateau feature. The form of this upslope and plateau may vary, most likely 

concerning time to peak and peak value. 

An infrequent but important factor for inadequate contrast media arrival is 

dynamic venous compression in the thoracic outlet region. Although technicians 

are trained in patient positioning to avoid venous compression for optimal 

contrast dynamics, dynamic venous compression can not be ruled out entirely and 

this might have also contributed to low attenuation in some patients, which is not 

accounted for in the current analysis. 

Clinical implications 

Current fixed CM delivery protocols may be too simple for adequate contrast 

enhancement in CTCA. An important step in improving patient-tailored contrast 

delivery protocols is to understand why and when current approaches fail. 

Predicting when the protocol is potentially failing is the first step to develop more 

robust protocols. With the models developed in this study, insufficient attenuation 

can accurately be predicted and adjustments (such as increasing the IDR) can be 

performed to avoid too low attenuation. This study also shows the potential value 

of the information that can be extracted from the test bolus which can be 

incorporated in more advanced and robust protocols.  

Conclusion 

We demonstrate that ML is accurate in the prediction of CCTA with insufficient 

attenuation on our local imaging protocol. We have shown that, in a protocol 

already adjusting for kV and body weight, the most impacting feature for the ML 

model is the peak height of the test bolus curve. Our findings support the 

development of more refined and more robust patient-tailored contrast delivery 
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protocols with the inclusion of test bolus features. Also, it should be noted that 

the approach is general and could be applied to a wide range of scanning 

protocols.  
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Supplementary material 

Analysed classifiers 

LR is the standard technique for clinical models. LR is a linear model and is not 

able to handle the nonlinearities in the data properly. The RF and XGB are an 

ensemble of decision trees, with different approaches, leading to more complex 

models but these models can deal with the non-linearity. The SVM and NN are 

traditional and well-established ML techniques and are also able to deal with the 

non-linearity of the data differently: the SVM uses hyperplanes in a 

multidimensional space and the NN uses multiple hidden layers with non-linear 

activation functions. 

 
Figure I. Scatter plot showing the relationship between mean attenuation and patient 

weight per kV group. 
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Table I. Hyperparameters grid used for SVM. 

Classifier Kernel type 
Penalty 
parameter C 

Kernel 
coefficient γ 

Degree of the 
Polynomial 
kernel 

Class 
weight 

SVM Linear 
[0.1, 1, 10, 
100, 1000] 

n.a. n.a. 
[None, 
Balanced] 

 
Radial basis 
function 

[0.1, 1, 10, 
100, 1000] 

[1, 0.1, 0.01, 
0.001] 

n.a. 
[None, 
Balanced] 

 Polynomial 
[0.1, 1, 10, 
100, 1000] 

[1, 0.1, 0.01, 
0.001] 

[2, 3, 4] 
[None, 
Balanced] 

 Sigmoid 
[0.1, 1, 10, 
100, 1000] 

[1, 0.1, 0.01, 
0.001] 

n.a. 
[None, 
Balanced] 

Table II. Hyperparameters grid used for RF, GB, and NN. 

 

Classifier Parameter name Parameter value 

RF Number of trees [50, 100, 200, 500] 

 Max features [auto] 

 Max depth [2, 4, 8] 

 Min samples per split [2, 4, 8] 

 Min samples per leaf [1, 2, 4] 

 Class weight [None, Balanced] 

XGB Number of trees [1000] 

 Max depth [3, 6, 12] 

 Gamma [0, 1, 5, 10] 

 Subsample [0.9, 0.7] 

 Learning rate [0.1, 0.05] 

 Col sample by tree [1, 0.7] 

 Min child weight [1, 5] 

 Early stopping rounds 10 

 Eval set size 0.1 

 Scale pos weight [1, 2, 3, 4] 

NN Activation [relu] 

 Hidden layer sizes 
[50], [100], [10, 10], [50, 50], [5, 5, 5], [10, 10, 10], [50, 50, 
50] 

 Alpha [0.001, 0.0001] 

 Solver [adam] 

 Learning rate [adaptive] 

 Initial learning rate [0.1, 0.01, 0.001] 

 Early stopping True 

 N iter no change 10 

LR Penalty [L1, L2] 

 Solver [Liblinear, lbfgs] 

 C [0.1, 1, 10] 
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Abstract 

The pathogenic mutation p.Arg14del in the gene encoding Phospholamban (PLN) 
is known to cause cardiomyopathy and leads to increased risk of sudden cardiac 

death. Automatic tools might improve the detection of patients with this rare 
disease. Deep learning is currently the state-of-the-art in signal processing but 
requires large amounts of data to train the algorithms. In situations with relatively 
small amounts of data, like PLN, transfer learning may improve accuracy. We 
propose an ECG-based detection of the PLN mutation using transfer learning 

from a model originally trained for sex identification. 

The sex identification model was trained with 256,278 ECGs and subsequently 
finetuned for PLN detection (155 ECGs of patients with PLN) with two control 

groups: a balanced age/sex matched group and a randomly selected imbalanced 
population. The data was split in 10 folds and 20% of the training data was used 
for validation and early stopping. The models were evaluated with the area under 
the receiver operating characteristic curve (AUROC) of the testing data. We used 

gradient activation for explanation of the prediction models. 

The models trained with transfer learning outperformed the models trained from 
scratch for both the balanced (AUROC 0.87 vs AUROC 0.71) and imbalanced 

(AUROC 0.0.90 vs AUROC 0.65) population. The proposed approach was able 
to improve the accuracy of a rare disease detection model by transfer learning 
information from a non-manual annotated and abundant label with only limited 

data available.  
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Introduction 

The phospholamban (PLN) p.Arg14del mutation is known to cause both 

arrhythmogenic – and dilated cardiomyopathy in patients with this condition 

leading to increased risk of sudden cardiac death and end-stage heart failure (1). 

This frequently necessitates implantation of an implantable cardioverter 

defibrillator (ICD) or even heart transplantation. PLN p.Arg14del is a rare 

mutation, present in 0.08%- 0.38% in selected cardiomyopathy cohorts (2) and 

the early diagnosis of this mutation, especially before patients get symptomatic, 

could potentially prevent sudden cardiac death, for example by implanting an 

ICD (3,4). The current standard diagnosis is performed by highly specialized 

electrophysiologists and cardio-geneticist with DNA sequencing, the latter being 

time-consuming and expensive. Alternatively, PLN mutation diagnostics could 

benefit from tools for automatic identification of patients with the mutation on a 

large scale and low cost, for example on ECGs. Some characteristics in 

electrocardiograms (ECG), like inverted T waves in leads V4 to V6 and low-

voltage ECGs, can often be identified in patients with this PLN mutation (3,5–8).  

Electrocardiography is a commonly used, non-invasive, and low cost inexpensive 

tool to assess electrical activity of the heart and is used to identify heart rhythm 

irregularities and other related cardiovascular diseases (9). Besides disease 

related information, an ECG carries a lot of patient-specific information since it 

is a unique and distinctive combination of signals, which differ per individual 

(10). It has been shown that ECG can also be used to identify sex (11) or even the 

effects of intake illegal drugs (12). Recently, artificial intelligence has emerged 

as a powerful tool and has been broadly applied in cardiology, leading to 

promising results in multiple diagnostics related tasks, including the analyses of 

ECGs (8,13–18). 

Advances in artificial intelligence, specifically the developments of deep learning 

(DL) architectures and convolutional neural networks (CNNs), mostly rely on 

convolutional filters to extract features from data. Based on these advances, 

multiple studies have been performed to automatically recognize various 

diseases, like arrhythmia, coronary artery disease and genetic mutations in ECG 

signals (8,13–15). A recent study introduced a CNN-based method that was able 

to estimate the age and sex of patients based on the entire ECG (16). Different 
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from traditional Machine Learning techniques, which rely on handcrafted 

features, CNNs have the capability of extracting temporal and spatial (variation 

of the signal over the different leads) information from raw data, as illustrated in 

Figure 1, without explicit definitions of the features searched for. In general, 

CNNs need large amounts of (manually annotated) data to train and to achieve 

accurate results. These large amounts of annotated data are commonly not 

available, especially for tasks in rare diseases. To deal with a limited amount of 

training data, it has been proposed to pre-train models on a different domain or 

task and use these models as the initial step to subsequently adapt them for 

another task (19,20). This approach, known as transfer learning, aims to take 

advantage of the parameters learned from an initial task, with more labelled data 

available, commonly providing a better starting point for further training on a 

different task. During the training phase of DL models, kernels are learned 

automatically and are used to extract informative features of the data. This 

process of learning the kernels might not be optimal if, for example, the amount 

of data is low, leading to redundant or non-useful kernels. Using transfer learning, 

the kernels are learnt during an easier task or from a problem with more data, 

leading to better results when finetuning it to specific tasks. Transfer learning has 

previously been applied for ECG for arrhythmia detection, transferring 

information from models pre-trained on a large database of natural images (21) 

and for pre-training on human ECGs to improve equine ECG classification tasks 

(22). 

A previous study (8), demonstrated that it is possible to detect PLN in ECG 

signals using machine learning techniques and a beat-to-beat approach. The 

models outperformed experts in terms of sensitivity and accuracy and had a 

reasonable evaluation. However, it should be noted that this accuracy is not yet 

high enough to be used in clinical practice. Moreover, it should be considered 

that this score was achieved in a balanced dataset, which contained the same 

number of PLN and non-PLN patients, which is not representative for real-life 

scenarios given the rarity of the mutation.  



8 

Improving ECG-based detection of rare disease using transfer learning 

157 

Figure 1. Illustration of layers with convolutional filters to extract temporal (blue) and 

spatial (red) information from ECGs with multiple leads. A CNN can be composed of 

many of these layers. After many layers, the signal becomes less human interpretable. 

PLN-mutation is also hampered with a small amount of data because of the 

sparsity of this disease. To potentially improve the accuracy of an ECG-based 

detection of PLN gene mutation using DL, we propose using transfer learning to 

deal with the rarity of this disease. We aimed to take advantage of the large 

amount of non-labelled data by creating a pre-trained model. As the available 

ECGs have been acquired for multiple reasons, we created the pre-trained model 

of demographics information since this kind of information was available for all 

patients. Predicting demographics has been performed before [16], which 

motivated us to follow this approach. In our study, we have selected “sex – 

classification” instead of “age – regression” because the of the dichotomous 

classification of PLN identification. Note that such a pre-trained model could be 

used for multiple medical classification tasks. We evaluate the potential benefits 

of using transfer learning, by pre-training a CNN model on a large ECG database, 

using the entire signal, analyzing whether subsequently finetuning this model 

results in increased accuracy compared to training it from scratch. To this end, 

we 1) pre-train a CNN model for sex identification, for which no manual or 

expensive annotations are needed, as the source task and fine-tune this model for 

the identification of PLN patients, 2) evaluate the model using balanced and 
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unbalanced datasets, and 3) identified the parts of the ECG's valuable for the 

prediction to allow the possibly identification of novel patterns in the ECGs. 

Methods 

We introduce a two-step approach in which we first build a CNN model for sex 

identification using ECGs, which is subsequently used as pre-trained model to 

further develop the model to identify PLN patients. As matters of comparison, 

we trained the models from scratch using the same architecture. A gradient-based 

technique is used for the visualization and interpretations of the predictions. 

Sex database 

Single ECGs from a total of 256,278 patients were included (52% male and mean 

age of 50 years). We included patients, from 18 to 60 years, with at least one 

digital 8-leads ECG available with 10 s of duration and a 500 Hz or 250 Hz 

sampling rate. For patients with multiple ECGs available, only the first ECG 

acquired was included. The ECGs were acquired with a GE ECG machine and 

stored using the MUSEweb data management system (GE Healthcare, Chicago, 

Illinois, United States of America). The ECGs were resampled to 250 Hz, leading 

all ECGs to have the same length, with 8 leads x 2500 sampling, for further 

feeding the CNN. Only the 8 main leads (I, II, V1-V6) were included since the 

others (III, aVR and aVL) are derived leads and including those might add 

redundancy to the model. 

Development of the sex identification model 

The architecture and hyperparameters for the sex identification model were the 

same as the ones proposed by (16). The network, summarized in Figure 2, is 

composed of blocks with convolutional kernels, batch normalization, and max 

pooling. The convolutional kernels of the first 8 blocks are of size (1, X), with X 

decreasing from 7 to 3, and filters over each individual lead. In the 9th block, the 

convolutional kernels are of size (8, 1) and filters over all the leads together. The 

two final blocks are composed of fully connected layers.  
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Figure 2. Schematic representation of the architecture for the sex identification and PLN 

detection. The first 8 blocks process time signal and the subsequently one is filtering 

over the leads. The model was initially trained on a larger database for sex identification 

and further finetuned for PLN detection. 

Early stop of the training was triggered during training if the validation error of 

the network increased for five epochs. Three different learning rates (1e-2, 1e-3 

and 1e-4) and four different batch sizes (16, 32, 64, 128) were tested and the one 

showing the lowest validation loss was selected. The model was trained with 

Adam optimizer, a learning rate of 1e-3 and batch size of 32. We used the default 

values for the other hyperparameters. An initial split of the data was performed 

for training (80% of patients) and test (20% of patients). Besides that, 20% of the 

training data was used as the validation set.  

PLN database 

The PLN dataset and the data collection protocol are the ones presented by 

Bleijendaal et al. (8). The ECGs were classified as PLN or control. Similar to the 

sex database, single ECGs with 10 s were included. Differently from the approach 

presented in Ref. (8), the entire signal was used and all the ECGs were resampled 

to 250 Hz to have the same length as the sex database (8 × 2500). Figure 3 

displays an example of ECGs of a PLN patients and a control patient as well as 

some of the known PLN features in the ECG. 
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Figure 3. Example of a PLN p.Arg14del mutation and healthy control ECG patients used 

on this study. ECG features associated with this mutation such as low QRS voltages on 

the extremity leads of the ECG (A) and T-wave inversion on the lateral leads V4-V6 (B 

and C) are shown. 

Two different experiments were performed with balanced and imbalanced 

populations. The imbalanced control dataset was developed using patients, aged 

from 18 to 60 years old, who underwent general clinic ECG acquisition (non-

cardiovascular pre-operative screening at the out-patient clinic) of the 

Amsterdam UMC, location AMC. From this dataset, with 13,467 patients, a 

matched control group was selected to create the balanced experiment, so both 

control and PLN group have similar distribution regarding age and sex. For the 

imbalanced experiment, all 13,467 patients were included without any constraints 

regarding the selection. All baseline characteristics of the patients used in our 

models can be found in Table 1. To avoid a possible bias, all PLN and control 

patients were not included in the sex identification experiment. 
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Development of the PLN model 

In both experiments, the dataset was split into training, validation and testing set. 

The training and validation sets were used to train and optimize the models, and 

the test set was kept unseen until the final evaluation. Because of the small 

number of patients with the PLN condition and to have a more robust evaluation, 

a stratified shuffle split with 10 folds was applied as cross-validation for both 

experiments.  

Table 1. Characteristics of the PLN patients, balanced control group and imbalanced 

control group. Values are represented as median and interquartile ranges, unless stated 

otherwise. bpm = beats per minute, ms = millisecond 

Variable 
name 

PLN 
Control 
balanced 

p-
value 

Control 
imbalanced 

p-value 

n 155 155 1.000 13,467  

Age 39 [28–50] 39 [28–50] 1.000 52 [45-57] <0.001 

Sex (male %) 63 (41) 63 (41) 1.000 6207 (46) 0.225 

Ventricular 
rate (bpm) 

68 [60–75] 65 [57–73] 1.000 68 [60-77] 0.071 

Atrial rate 
(bpm) 

68 [60–75] 66 [57–73] 1.000 68 [60-78] 0.193 

QRS duration 
(ms) 

86 [80–94] 94 [84–104] 1.000 90 [82-98] 0.037 

QT interval 
(ms) 

388 [368–406] 400 [374–426] 1.000 390 [370–414] 0.535 

QT corrected 
(ms) 

407 [394–424] 410 [401–429] 1.000 412 [403–427] 0.113 

 

The transfer learning PLN model was built using the pre-trained model for sex 

identification. The last layer of the pre-trained model, responsible for the 

classification of the sex, was discarded and a new one was added. All layers of 

the model remained trainable. Similar to the sex identification model, a validation 

set (20% of the training data) was used for the analysis of the network 

convergence. Also, during the finetuning of the model, early stopping in case of 

increasing validation error was performed and multiple learning rates and batch 

sizes were tested. The model was optimized using RMSprop (23), similarly to 

(8). To deal with the high disproportion of class samples in the imbalanced 

experiment, class weights were assigned during the training, so the class with 

fewer samples have a higher impact during the training process. With this 

approach, the mistakes committed by the model on PLN samples are highly 
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penalized when compared to mistakes on the control group, compensating the 

class imbalance. 

Model evaluation 

We evaluated the models using the average Area Under the Receiver Operating 

Characteristic curve (AUROC) with its 95% confidence interval (CI). Besides 

that, the specificity, sensitivity and area under Precision-Recall curves (AUPRC) 

were reported. The AUPRC is more informative than ROC curve and (24) 

commonly used for detection of rare diseases (25). Unless stated otherwise, all 

reported results are based on the test set, which was kept unseen by the model 

until the evaluation. To check whether the difference in AUROC between the 

models was statistically significant, the Wilcoxon signed-rank test was performed 

for each experiment. 

Prediction model interpretation 

For a better understanding of the prediction models, we applied Grad-CAM (26). 

This technique uses the gradient of the model's classification to localize important 

regions of the ECG. We applied Grad-CAM for all patients from one of the 

balanced test sets (n = 62). Only one test set was selected to avoid repetition on 

the evaluated ECGs. Important regions determined with Grad-CAM were 

qualitatively assessed by a single investigator (H.B.) and classified as either 

containing actual relevant information or the presence of ECG noise (e.g. baseline 

shift or other noise) that might have induced a high gradient response in the 

model. To analyse which leads contain the most important information, we 

calculated the sum of importance per lead for all assessed ECGs. 

Results 

The sex identification model achieved an accuracy of 0.82 in the validation and 

0.83 in the test set. For the PLN experiment, the transfer learning model achieved 

an average AUROC of 0.87 (95% CI: 0.84-0.90) in the balanced experiment, 

compared to an AUROC of 0.72 (95% CI: 0.66-0.78) for the model trained from 

scratch, with a statistically significant difference (p-value<0.01). Regarding the 

imbalanced experiment, again the transfer learning model (AUROC: 0.90, 95% 

CI: 0.87-0.93) outperformed the model created from scratch (AUROC: 0.65, 95% 



8 

Improving ECG-based detection of rare disease using transfer learning 

163 

CI: 0.56-0.74) with a statistically significant difference (p-value<0.01). In Figure 

4 we show the ROC of the models with the balanced and imbalanced datasets. 

Table 2 shows the AUROC, AUPRC, sensitivity and specificity of all developed 

models. For comparison, we also present the results of a previous study, where 

AUROC of 0.80 was achieved by a machine learning model and 0.65 by a 

specialist. 

Figure 4. Average ROC curve and 95% CI for PLN detection in a balanced dataset (left) 

and imbalanced dataset (right) with transfer learning (red) and the model trained from 

scratch (blue). Results from a previous study (8) are represented with an “X”. ROC = 

receiver operating characteristic, AUC = area under the curve  

Figure 5 shows the Precision-Recall Curve for balanced and imbalanced 

experiments. In both experiments, the transfer learning models (AUPRC of 0.88 

and 0.28) outperformed the models trained from scratch (AUPRC of 0.70 and 

0.03). 

In Figure 6, we present two examples of ECGs and regions of maximum gradient 

activation (most relevant for prediction). In both ECGs the QRS complex is the 

region with a large gradient activation, also activation in the region of the T-wave 

can be seen. From the total 62 ECGs that were analyzed, the ECG region with 

most activations, for both PLN and control, was the QRS complex (27 (87%) for 

both PLN and control). In 2 ECGs (6%) of the control group, the T-wave was the 

region with most activation. According to the assessed ECGs, the most important 
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lead is the V2 for both PLN and control ECGs. A summary of the ECG regions 

that were found to be the most relevant for PLN detection is presented in Table 

3. 

Table 2. Evaluation of the models trained from scratch and with transfer learning in 

balanced and imbalanced dataset. Both sensitivity and specificity were measured with 0.5 

as threshold. Not available information is represented as na. 

Model/Metric Sensitivity Specificity AUROC AUPRC 

Balanced     

From scratch 0.36 0.81 0.71 0.70 

Transfer learning 0.80 0.78 0.87 0.88 

Bleijendaal et al. (8) 0.71 0.81 0.80 na 

Expert (8) 0.32 0.97 0.65 na 

Imbalanced     

From scratch 0.81 0.45 0.65 0.03 

Transfer learning 0.63 0.95 0.90 0.28 

AUROC Area Under the Receiver Operating Characteristic curve, AUPRC Area Under the Precision-
Recall curves. 

 

Figure 5. Precision-Recall curves and 95% CI for balanced (left) and imbalanced (right) 

datasets with transfer learning (red) and the model trained from scratch (blue). AUC = 

area under the curve 
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Figure 6. Examples of positive cases in which Grad-CAM highlighted the QRS complex, 

specifically the upward leg of the R and S-waves (top) the downward leg of both the R 

and S-waves (bottom). Regions highlight in green are the most relevant for the model. 

Discussion 

In this study, we have shown that pre-trained DL models can significantly 

improve ECG-based PLN patient detection. The improvement was observed in 

AUROC and AUPRC measures for both the balanced and imbalanced 

experiment. Our results confirm that transfer learning, even from simple tasks 

like sex identification, could be beneficial to models trained to predict diseases 

with considerable small datasets.  
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Table 3. This table shows the regions of the electrocardiogram and leads with most 

gradient activation (using Grad-CAM), for both PLN and the control in a subset of our data. 

 PLN (n = 31) Control (n = 31) 

Correct prediction by CNN (%TP/%TN) 22 (71) 15 (48) 

QRS complex (%) 27 (87) 27 (87) 

  Q-wave (%) 0 (0) 0 (0) 

  R-wave (%) 3 (10) 0 (0) 

  S-wave (%) 7 (22) 7 (22) 

  Downward leg of R and S (%) 8 (26) 14 (45) 

  Upward leg of R and S (%) 9 (29) 6 (19) 

T-wave (%) 0 (0) 2 (6) 

Other than QRS-complex or T-wave (%) 1 (3) 1 (3) 

Artifact/noise (%) 3 (10) 1 (3) 

Leads (%)*   

I (%) 2 (6) 2 (6) 

II (%) 5 (16) 0 (0) 

V1 (%) 1 (3) 4 (13) 

V2 (%) 11 (35) 8 (26) 

V3 (%) 4 (13) 7 (22) 

V4 (%) 3 (10) 5 (16) 

V5 (%) 5 (16) 2 (6) 

V6 (%) 0 (0) 2 (6) 

CNN Convolutional Neural Network, TP True positive, TN True negative, *one sample did not return 
gradient. 

A recent study by Bleijendaal et al. (8), presented the first approach to detect PLN 

from ECGs using DL from individual heart beats on ECG and showed reasonable 

accuracies when compared to specialists. The presented transfer learning model 

in this study, using the entire signal, outperformed both their DL models and the 

results achieved by experts. It should be noted that in the study from Bleijendaal 

et al. [8], the training and testing were only conducted using a balanced dataset, 

which is not representative of clinical practice given the rarity of the disease. 

Besides that, while we decided to use a previous evaluated architecture for sex 

identification as proposed by Attia et al. (16), they used a beat-wise approach and 

a reasonably shallow architecture developed specifically their study given the 
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limited amount of data. This shallower architecture might be the reason why their 

model outperformed our model trained from scratch.  

Many other studies that applied transfer learning for cardiac disease have shown 

promising results. Kachuee et al. (27), for instance, presented a CNN model 

trained for arrhythmia classification and finetuned for myocardial infarction 

classification. Other studies focused on transfer learning from “off-the-shelf” pre-

trained models on natural images: Salem et al. (21) outperformed traditional ML 

models by finetuning a model with spectrograms from ECGs and Xiao et al. (28) 

took advantage from a pre-trained model for early detection of myocardial 

ischemia on ambulatory ECGs. In the current active field of deep learning, many 

studies aiming for optimizing architectures have been published. Regular CNNs 

as well as hybrid approaches, using CNN and Recurrent neural networks (RNN), 

are promising approaches and adequate to time series as presented by Hong et al. 

Recurrent neural networks have a different kind of architecture capable of 

learning long-term temporal dependencies. Petmezas et al. (29) developed a 

hybrid CNN-RNN pipeline to detect atrial fibrillation. Londhe and Atulkar (30) 

presented a deep learning architecture for segmentation of the P, QRS and T 

waves. However, such networks are more complex and less efficient compared 

to regular CNNs. On the other hand, Yan et al. (31) presented an approach using 

spiking neural networks, which has a lower energy cost and showed similar 

results to the traditional CNN. Since the aim of our study was to evaluate the 

added value of transfer learning, the comparison with other DL approaches was 

beyond the scope of our study. 

With the higher accuracy of the presented approach compared to previous efforts, 

the potential value of this application in clinical practice has improved. Moreover, 

the assessment of the accuracy in a population that better resembles clinical 

populations compared to previous efforts, allows a better estimation of its value 

in clinical practice. The presented approach includes a trade-off between 

sensitivity and specificity, which can and should be adjusted for the desired 

application. With higher precision (positive predictive value), this model could 

be deployed to identify possible PLN candidates in the clinic. However, before 

such an application can be integrated in practical environments, this approach has 

to be more extensively tested in multiple populations. Next, various aspects such 
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as the clinical value, needs to be assessed. Besides that, the same approach could 

be used to improve detection of other diseases, such as Long-QT syndrome, or 

even detect multiple diseases with a similar model using a multi-class prediction 

model, as it has been proposed by Ribeiro et al. (32). However, since other 

mutations are less malignant and/or less common in the Netherlands, we did not 

have large quantities of data for other mutations. Although the model trained with 

imbalanced data showed high AUROC values, it can be overoptimistic for the 

imbalanced experiment given the high class imbalance of the experiment. While 

the sensitivity only takes in account the positive samples, the specificity takes in 

account the negative samples and even a small percentage of false positives leads 

to a number reasonable higher than the positive samples. Evaluation with other 

metrics, such as the PR-Curves, illustrates the effect of the imbalance in the 

results.  

This study suffered from some limitations. A small quantity of the ECGs had 

noisy regions and yielded high activations on the prediction interpretation. 

Nevertheless, the number of ECGs with most activation on the noisy region was 

relatively low (6% of the assessed samples), which is very unlikely to 

significantly affect the models. Besides that, the PLN dataset is rather small, 

comes from a single center only and it is not guaranteed that subjects in the 

control group, for both balanced and imbalanced experiments, do not have PLN 

(since they were not tested). We assume that the control subjects do not have PLN 

because of the rare nature of the disease. In addition, the imbalanced control 

population is reasonably older than the PLN population and, although we 

visualized PLN related regions in the ECGs using the gradient technique, the 

model might be using some age-related features. Validation in an external dataset 

(preferably from a different center) is still necessary to evaluate how 

generalizable our models are to a different population. Moreover, we suffered 

from the “black box” effect and even with an advanced approach for prediction 

interpretation, it is not possible to completely understand and interpret on what 

ECG features the predictions are performed for the PLN identification. While our 

model is mainly influenced by the QRS complex, Bleijendaal et al. (8) found the 

T-wave as an important region for their model using a different method. Our 

model is mainly activated by either the upward leg of the R and S waves or the 

downward leg of the R and S waves. This part of the QRS complex might be 
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relative to the amplitude of the wave and it is a known PLN feature. This 

difference is not surprising since both regions are known to be influenced by 

PLN. Therefore, differences in the methods adopted (transfer learning approach, 

kernel size and convolution over leads) can result in different learned 

convolutional kernels to solve a similar classification problem. In this study, we 

used a previous evaluated architecture for sex identification, but deeper and more 

complex architectures could be considered, such as a residual network or RNN. 

Deeper networks, trained with large amounts of data, might lead to robust kernels 

which can improve prediction capability. 

Conclusion 

In our study, the accuracy of the ECG-based identification of the rare 

phenomenon of PLN strongly improved by using a transfer learning approach in 

which a model was pre-trained on sex classification. Improvement was observed 

both in balanced and imbalanced experiments. The QRS complex was found to 

be the most important region in the ECG for PLN identification. We conclude 

that we can improve the accuracy of the detection of a rare disease by creating a 

model exploiting transfer learning and using information without the need of 

manual annotation when only limited data as available.  
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Discussion 

General Discussion 

The presented research is characterized by optimization, testing and validation of 

machine learning (ML) models and the discussion of their clinical usefulness 

compared to standard approaches and technologies. This research required close 

collaboration with physicians to understand the context and problems, get access 

to datasets, and define boundary conditions regarding model development, 

validation and interpretation. The studies of this thesis have cardiology as a 

common denominator, but they cover only a small fraction of possible topics in 

the field. The selected studies, here presented as chapters, were conducted 

considering the availability of data and clinical needs defined by a clinical 

contributor. The major objective of this thesis was to develop and validate ML 

models in the cardiology domain. To this end, I teamed up with several physicians 

and scientists to understand their problems and how ML could be used to 

potentially solve them, while aligned with their expectations.  

The main findings of this thesis also have the use of ML to enhance cardiology 

as a common denominator. It is important to note that the robustness and accuracy 

of the presented ML models depend not only on the technical aspect of the models 

but mainly on the quality of the data used for their creation. The physicians, 

aligned with statisticians, commonly want to compare ML with traditional 

statistical approaches based on linear or logistic regression. The results we 

obtained show that there is almost no difference in accuracy when models are 

created with different techniques. Despite that, there are huge accuracy gaps 

when different feature sets are used.  

It is commonly assumed that ML models require a lot of data. The large data 

demand can be seen either as a drawback or as a strength: the models can learn 

from a large amount of data and benefit from non-linear relations between the 

features. The traditional statistical approaches are usually trained based on 

demographics, tabular clinical data, and scores given by physicians. Unless 

important non-linear relationships are present in the feature set, it is unlikely that 
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ML models will significantly outperform the traditional approaches. However, 

deep learning is seen as state-of-the-art when considering the analysis of multi-

dimensional data, such as medical images (1), and its performance has been 

commonly claimed to outperform clinicians (2). In addition, non-parametric 

models and micro-simulations (simulating small variations in the data to observe 

changes in the outcome), can improve decision-making and risk assessment (3).  

The availability and low quality of data, including disparities in datasets, are the 

major limitations of our studies. As an example, it is common to consider 

information from the census to track if a patient from a cohort has died. In this 

sense, it is unclear if the patient has died as a consequence of the surgery or was 

hit by a car. In bi-institutional datasets, one centre’s dataset may contain three 

times as many patients as the second centre. These are a few of many examples 

that might end up adding noise to the data and jeopardizing its quality. Despite 

various registries harbouring an abundance of data, the collection and storage of 

data are not standardized. Using data before the harmonization required for a 

registry demands additional steps to harmonize data from different centres, which 

usually means fewer parameters available for modelling of any kind. The 

standardization issues could be reduced if interoperability standards were adopted 

and applied regularly in a particular discipline like cardiology. Data 

harmonization and availability will be addressed in more detail as follows. 

The use of ML has been investigated in several areas of cardiology (4–7). The 

use of ML techniques increased largely in cardiology and various other medical 

fields due to the advances in storage, computer processing, and a new focus on 

data quality (8–10). Although not addressed in our studies, today’s requirements 

of data security, data access, and privacy are as challenging as organizing and 

conducting research with patient datasets itself. A healthcare data storage system, 

with the guarantee of data security, is now considered a critical requirement. Not 

only for privacy and security reasons but also because this data is extremely 

valuable to gain insights, create prediction models, reduce healthcare costs, and 

mainly, to improve people’s lives (11,12). These efforts pay off only when one 

can be sufficiently certain that the models are accurate and robust enough to be 

used and that they aggregate value. How they are developed and validated is of 

utmost importance to guarantee the accuracy, robustness, and stability of the 
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models. As a starting point, considering that much work had to be done in this 

respect, we explored ways to assess and deal with these three requirements 

simultaneously in several applications for cardiology. 

Similarly to the experience of other authors, we had to deal with multiple other 

challenges, such as data sharing limitations, limited amount of available data, and 

model explanation. These challenges can affect the quality of the model and, 

therefore, its performance. Although the quality of data must be high enough to 

ensure reasonable models, it is an illusion that one can work with perfect datasets 

in terms of correct registration and completeness. Consequently, proper metrics 

and evaluation must be considered to assess how the models deal with 

imperfection and to which extent imperfect data affect model performance. 

In this thesis, we focused on strategies to improve accuracy by creating models 

based on different training approaches, such as finetuning, local, and distributed 

learning. In the studies, we also assessed the robustness and stability of models 

and used validation strategies such as internal, external, and temporal validation. 

We found that our applications and outcomes carried acceptable degrees of 

accuracy and robustness. However, remains room for improvement by exploring 

other technical approaches. Nevertheless, the quality of the data remains a 

limiting factor that should be reduced by data-centric approaches to assess and 

potentially improve it (10,13). 

Challenges 

Data harmonization 

It is a common scenario for data to be acquired over multiple years and collected 

from different sources. Eventually, some information that is crucial for one 

medical centre may not even be considered in another. It might occur that, when 

external validation is being performed, the external data is not on the same 

standard and format as the data that was used to train the models. For the TAVI 

mortality prediction models described in Chapters 2 and 3, for instance, some 

features had to be harmonized with the external dataset used for training and 

validating the models: some of them were excluded (such as scores from 

questionnaires on quality of life) for only being available at one of the centres; 

while others, such as time measurements of the patient’s heartbeat (measured in 
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milliseconds and centiseconds) had to be converted to the same unit of 

measurement. Also, features available in only one of the centres or with a high 

percentage of missing values were excluded. As in Chapter 5, the use of registries 

is one resource to minimize data availability and standardization issues. 

Another possible problem could be that an equipment that has been used for 

multiple years during the generation of the dataset is changed, either in total or 

just in some settings. Consequently, data used in Chapters 2-4 that was acquired 

over several years could have been through possible changes that were not 

assessed. In Chapter 5, we investigated the accuracy and stability of TAVI 

mortality prediction models over the years using a large national registry. In 

Chapter 7, we created models to predict insufficient contrast enhancement on 

Coronary CT Angiography. However, the bolus' volume and injection speed of 

the test bolus were modified during the data acquisition period. These changes 

were not taken into consideration and should be assessed in future studies. 

Data availability  

It is a rule of thumb that the more data you have, the better the ML models are. 

However, sometimes, it is impossible to have a large quantity of clinical data 

regarding a specific procedure or disease. This lack of data mainly occurs with 

rare diseases or complex procedures, such as artificial valve implantation. To deal 

with the limited amount of data, we used finetuning (Chapters 3 and 7) and 

distributed learning (Chapter 8) in this thesis. Both approaches are relevant not 

only because they use more data to train the models but also because they do not 

require data to be shared among centres, guaranteeing confidentiality for patients. 

Also shown in Chapter 8, using a stacking method (for instance, training a simple 

logistic model with the probability output from other models) might be beneficial 

and achieve higher accuracy than individual models. This approach is easy to be 

implemented, as only the models are shared between centres and they can be 

optimized individually in each centre. 

Model optimization and validation 

When developing ML models, it is a good practice to have a test set that consists 

of data unseen by the model, to evaluate the trained models. This is highly 

recommended as many of the complex techniques, such as random forest and 
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XGBoost, are prone to overfitting. It is usually desired to have all the available 

data used for testing, validated either by k-fold cross-validation or repeated 

shuffle split. Also, another good practice is not using validation data, which is the 

data used to optimize the models' hyperparameters or interrupt the training, to 

evaluate the models. All models developed in this thesis did not have their 

hyperparameters tuned with testing data. 

The accuracy metric, or metrics, used to evaluate the models should be aligned 

with the goal of the model. The area under the curve (AUC) of the receiver 

operating characteristics is current and commonly used as the main metric when 

evaluating clinical models. In Chapter 5, the AUC stayed relatively stable when 

the prevalence of positive samples decreased. In that case, another metric, which 

is prevalence dependent, such as the Brier Score, was impacted by the prevalence 

changes. In this scenario, if the calibration of the model is important, analysing 

only the AUC would not show the prevalence change over time. Considering a 

more imbalanced scenario, such as the one presented in Chapter 8 where I aimed 

to support the diagnosis of a rare disease (with only a small fraction of positive 

samples), the proposed diagnostic support model had a relatively high AUC. 

However, despite the high AUC, the model was not specifically adjusted to have 

a high precision or recall. The threshold should have been adjusted to optimize a 

specific metric, trying to recover as many diseased patients as possible or trying 

to minimize the false positives. This illustrates that used metrics and thresholds 

should always be tailored in alignment with the desired use of the models and that 

metrics should be informative enough to ensure high accuracy when using the 

model in its intended use. 

Final remarks and future directions 

The creation of ML models depends intrinsically on data. Although cardiologists 

are becoming more familiar with AI, I understand that their focus should not be 

on learning AI theories but on how to improve the raw material used for the 

model’s creation. Although interoperability frameworks are becoming more 

common, there is no unique way of collecting and storing data, which makes it 

difficult to develop models using combined data from multiple centres and 

sources. Also, patient’s data is not constantly checked for consistency and quality, 
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even though this is an important step. Well-structured and validated procedures, 

as well as automatized data quality checks, should be considered by medical 

centres that aim to support AI researchers to create more optimized models. 

The creation of ML models requires multiple steps and decisions need to be made 

when implementing them: how the models are optimized and validated, the pre-

processing steps, and the metrics to be evaluated. The physicians should be 

involved in most of the steps and decisions, from model conception to validation, 

as they are the experts in the field where the models will be used. All the steps 

must be aligned with the physicians’ needs to provide the best practice to patients. 

Even the definition of the target variable or features to be included could be very 

complex decisions. In Chapter 6, even though we focused on two outcomes, we 

evaluated prediction models for five different outcomes. 

On occasions, it might not be simple to use the available data. In Chapter 7, for 

instance, the test bolus information is not easily accessible. When the data 

collection started for a previous study, the physicians accessed the files, one by 

one, and took notes of the test bolus information. Extracting information 

manually, however, is time-consuming and prone to errors when considering 

large amounts of data. For that reason, we implemented tools to automatically 

measure some information in the CT and applied reverse engineering to extract 

information from some of the files to promptly access the test bolus data. 

Regarding the clinical use of the developed ML models, they should be used with 

caution. It is shown in this thesis that the models must be validated in many ways 

as they might have different sources of bias and flaws. Also, although ML models 

are becoming more common in clinical practice, the models themselves do not 

determine a diagnosis or predict the mortality of a patient. They estimate the 

likelihood of a particular outcome based on the data used for training the model. 

The models are proposed to be used as a decision-support tool to optimize 

physicians’ (and patients’) decisions and/or provide potentially new insights on a 

specific condition. 

Evidently, the use of ML in cardiology is in a developing phase. Boundary 

conditions with respect to the quality of data and specific tools to be used are still 

in the investigation phase. Despite encouraging results reported, questions remain 
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not only on the quality of software development but also on the experts required 

to take care of the appropriate handling of tools. Although multidisciplinarity 

should be highly appreciated, specially trained engineers should be leading in 

developing tools. In addition, with the clinician’s support, they must play a 

leading role in defining the quality of data input. Despite the current popularity 

of ML for advancing medical decision-making or highlighting previously 

underexposed associations, the quality of this technology application should be 

beyond doubt. 

In this thesis, I explored the use of machine learning models for various topics in 

cardiology. In many of the chapters, although we used data from different 

sources, I did not focus on the use of multi-dimension raw data in most of the 

studies. The features were mainly collected manually by physicians/technicians 

(as scores or measurements) and presented as a small set of numeric values for 

the models to be trained. With DL approaches, like the one used in Chapter 8, 

multi-dimensional data (from ECGs or CTs) can be explored to let the models 

learn important features by themselves. Techniques like finetuning and 

distributed learning were applied to deal with data sharing policies and limited 

amounts of data for training the models. Model interpretation techniques and 

validation approaches, such as internal, external and temporal, were also 

explored. With these remarks, the work here presented also demonstrates the 

importance of continuous and proper evaluation of the models and data used. 
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Summary 
 

This thesis presented multiple strategies to train and validate machine learning-

based prognostic, diagnostic, and decision support models in the field of 

cardiology. Prediction models are commonly used to support the decision of 

doctors and patients, however, they must be properly evaluated to avoid over-

optimistic accuracies. For the evaluation of prediction models, depending on the 

desired use of the model, it is important to use an external population for 

validation. Also, it has been suggested that changes in procedures, population, 

and patient selection have important implications for models. The thesis explores 

multiple ways to assess and train outcome prediction models in Chapters 2-6 and 

diagnostic and decision-support models in Chapters 7-8 while dealing with 

several challenges. 

Patients might have unfavourable outcomes after a Transcatheter Aortic Valve 

Implantation (TAVI) procedure, such as no improvement of symptoms or 

mortality. In Chapter 2, were investigated machine learning models in the 

prediction of 1-year mortality and improvement of symptoms after a TAVI 

procedure using screening and laboratory data. The accuracy of the different 

types of prediction models, such as linear and non-linear models, was similar 

when predicting mortality. Also, the accuracy of the models slightly improved 

when laboratory and screening data are combined. However, the accuracy of the 

models trained to predict the improvement of symptoms was rather low, 

independent of the features used. 

In Chapter 3, I performed an external validation and finetuning of neural 

network-based TAVI mortality prediction models with data from two medical 

centres. I found that finetuning improved the overall accuracy of the models, 

especially for the centre that had the lowest number of patients. This study 

reassured the idea that combining data from multiple centres can potentially 

improve the models' accuracy. 

Besides finetuning, there are other ways to train models without sharing data. 

Therefore, in Chapter 4, local and distributed approaches were explored to train 
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neural networks and tree-based algorithms for predicting mortality after TAVI. 

The models were trained in a distributed way and also trained locally followed 

by a model combination technique. Both centre-specific models had their 

accuracy improved with the proposed approaches. The larger centre's models had 

higher accuracy when using the stacking approach while the smaller centre's 

models had higher accuracy when training with the distributed approach. 

Chapter 5 shows how the accuracy of TAVI mortality prediction models 

changed over the years because of changes in the procedure, patient selection and 

population. I evaluated the performance and stability of models trained once with 

only the oldest data available and compared with models being re-trained 

repeatedly over time including more recent data. The models that were re-trained 

repeatedly over time had improved stability compared to the model trained only 

once. The stability of the re-trained models mainly improved because of the 

decrease in patient mortality through the years, which was not considered in the 

model trained only once. 

The study in Chapter 6 focused on the outcome prediction after a thoracoscopic 

procedure for patients with atrial fibrillation. The baseline prediction model was 

created including all available features and the proposed model was based on 

features automatically selected, which improved the AUC significantly. The 

performed subgroup analysis showed reasonably high accuracy for younger 

patients. 

In Chapter 7 the focus shifts to the prediction of insufficient contrast 

enhancement on Coronary CT Angiography. The prediction models achieved 

higher accuracies when including test-bolus variables, which are not commonly 

used to adjust contrast delivery protocols. In addition, the test bolus’ peak height 

was found as the feature that impacts the predictions the most, reinforcing that 

test bolus variables can be used to further improve patient-specific contrast 

delivery protocols. 

Finally, in Chapter 8, I presented a diagnostic support model for the 

identification of patients with a rare genetic disease (PLN mutation) based on 

ECGs. The proposed approach, using a pre-trained model for sex prediction, 

outperformed the accuracy of models trained from scratch and previous studies. 
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This higher accuracy was observed with both balanced and imbalanced PLN-

control ratio scenarios for training and testing. 
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In dit proefschrift worden meerdere strategieën gepresenteerd voor het trainen en 

valideren van op machine learning gebaseerde prognostische, diagnostische en 

beslissingsondersteunende modellen op het gebied van cardiologie. 

Voorspellingsmodellen worden vaak gebruikt om de beslissing van artsen en 

patiënten te ondersteunen, maar ze moeten goed geëvalueerd worden om te 

optimistische uitkomsten te vermijden. Voor de evaluatie van 

voorspellingsmodellen is het, afhankelijk van het gewenste doel van het model, 

van belang een externe populatie voor de validatie te gebruiken. Ook wordt 

aangetoond dat veranderingen in procedures, populatie en patiëntenselectie 

belangrijke implicaties hebben voor modellen. Het proefschrift verkent meerdere 

manieren om uitkomstvoorspellende modellen te beoordelen en te trainen in de 

Hoofdstukken 2-6 en diagnostische en beslissingsondersteunende modellen in 

de Hoofdstukken 7-8, onderhevig verschillende uitdagingen. 

Patiënten kunnen onwenselijke uitkomsten hebben na een Transcatheter Aortic 

Valve Implantation (TAVI) procedure, bijvoorbeeld aanhoudende symptomen na 

de TAVI procedure of sterfte. In Hoofdstuk 2, onderzochten we machine 

learning modellen in de voorspelling van 1-jaars mortaliteit en verbetering van 

symptomen na een TAVI procedure met behulp van screening en laboratorium 

gegevens. De nauwkeurigheid van de verschillende soorten 

voorspellingsmodellen, zoals lineaire en niet-lineaire modellen, was 

vergelijkbaar bij het voorspellen van mortaliteit. De nauwkeurigheid van de 

modellen licht wanneer laboratorium- en screeningsgegevens werden 

gecombineerd. Echter, de nauwkeurigheid van de modellen getraind om de 

afname van symptomen te voorspellen was vrij laag, onafhankelijk van de 

gebruikte kenmerken. 

In Hoofdstuk 3 voerde Ik een externe validatie en ‘finetuning’ uit van neurale 

netwerk-gebaseerde TAVI mortaliteitsvoorspellingsmodellen met gegevens van 

twee medische centra. Ik vond dat ‘finetuning’ de algemene nauwkeurigheid van 

de modellen verbeterde, vooral voor het centrum dat het laagste aantal patiënten 



 

Nederlandse samenvatting 

190 

had. Deze studie bevestigt het idee dat het combineren van gegevens van 

meerdere centra de nauwkeurigheid van de modellen kan verbeteren. 

Naast ‘finetuning’ zijn er ook andere manieren om modellen te trainen zonder 

gegevens te delen. Daarom werden in Hoofdstuk 4, lokale en gedistribueerde 

benaderingen 

 onderzocht om ‘neural networks’ en ‘tree-based’ algoritmen te trainen voor het 

voorspellen van mortaliteit na TAVI. De modellen werden op een gedistribueerde 

manier getraind en ook lokaal getraind, gevolgd door een model combinatie 

techniek. Beide centrum-specifieke modellen verbeterde de nauwkeurigheid door 

de voorgestelde toe te passe. De modellen van de grotere centra hadden een 

hogere nauwkeurigheid bij gebruik van de stapelingsbenadering, terwijl de 

modellen van de kleinere centra een hogere nauwkeurigheid hadden bij training 

met de gedistribueerde benadering. 

Hoofdstuk 5 laat zien hoe de nauwkeurigheid van TAVI 

mortaliteitsvoorspellingsmodellen door de jaren heen veranderde door 

veranderingen in de procedure, patiëntenselectie en populatie. Ik evalueerden de 

prestaties en stabiliteit van modellen die eenmaal waren getraind met alleen 

langst bewaarde de beschikbare gegevens en vergeleek die met modellen die in 

de loop van de tijd herhaaldelijk opnieuw werden getraind, inclusief recentere 

gegevens. De modellen die in de loop van de tijd herhaaldelijk opnieuw werden 

getraind, hadden een betere stabiliteit dan het model dat slechts eenmaal was 

getraind. De stabiliteit van de opnieuw getrainde modellen verbeterde 

voornamelijk door de afname in patiëntensterfte door de jaren heen, waarmee 

geen rekening werd gehouden met het model dat slechts eenmaal was getraind. 

De studie in Hoofdstuk 6 richtte zich op de uitkomstvoorspelling na een 

thoracoscopische procedure voor patiënten met atriumfibrilleren. Het baseline 

voorspellingsmodel werd gemaakt inclusief alle beschikbare kenmerken en het 

voorgestelde model was gebaseerd op automatisch geselecteerde kenmerken, 

waardoor de AUC significant verbeterde. De uitgevoerde subgroep analyse 

toonde een redelijk hoge nauwkeurigheid voor jongere patiënten. 

In Hoofdstuk 7 ligt de focus naar de voorspelling van onvoldoende 

contrastversterking op coronaire CT-angiografie. De voorspellingsmodellen 
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bereikten een hogere nauwkeurigheid wanneer test-bolus variabelen werden 

meegenomen, die niet algemeen gebruikt worden om contrast 

toedieningsprotocollen aan te passen. Bovendien bleek de piekhoogte van de 

testbolus het meest van invloed te zijn op de voorspellingen, wat versterkt dat 

testbolusvariabelen gebruikt kunnen worden om patiëntspecifieke 

contrasttoedieningsprotocollen verder te verbeteren. 

Tenslotte presenteerde Ik in Hoofdstuk 8 een diagnostisch ondersteuningsmodel 

voor de identificatie van patiënten met een zeldzame genetische ziekte (PLN 

mutatie) op basis van het electrocardiogram. De voorgestelde aanpak, 

gebruikmakend van een vooraf getraind model voor geslachtsvoorspelling, 

overtrof de nauwkeurigheid van modellen getraind vanaf nul en eerdere studies. 

Deze hogere nauwkeurigheid werd waargenomen met zowel gebalanceerde als 

onevenwichtige PLN-controle ratio scenario's voor training en testen. 
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Abbreviations 
 

AF Atrial Fibrillation 

AI Artificial Intelligence 

AMC Academic Medical Center 

ARB Angiotensin Receptor Blockers 

AS Aortic Stenosis 

AUC Area Under the Curve 

AUPRC Precision-Recall Curve 

AUROC Area Under the Receiver Operating Characteristic 

BMI Body Mass Index 

BS Brier Score 

BSA Body Surface Area 

CATB CatBoost 

CI Confidence Interval 

CKD-EPI Chronic Kidney Disease Epidemiology Collaboration 

CM Contrast Material 

CNN Convolutional Neural Network 

CO Cardiac Output 

COPD Chronic Obstructive Pulmonary Disease 

CT Computed Tomography 

CTCA Computed Tomography Coronary Angiography 

CV Cross-Validation 

CWT Cyclical Weight Transfer 

CZE Catharina Ziekenhuis 

DL Deep Learning 

DM Diabetes Mellitus 

ECG Electrocardiogram 

FEV1 Forced Expiratory Volume in One Second 

FVC Forced Vital Capacity 

GBDT Gradient Boosting Decision Tree 

GPU Graphics Processing Unit 

Grad-CAM Gradient-weighted Class Activation Mapping 

GTB Gradient Tree Boosting 

HR Heart Rate 

HS-troponin High Sensitive Troponin 
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HU Hounsfield Units 

ICD Implantable Cardioverter Defibrillator 

IDR Iodine Delivery Rate 

kV Kilovolt 

LA Left Atrium 

LASSO Least Absolute Shrinkage and Selection Operator 

LAVI Left Atrial Volume Index 

LR Logistic Regression 

ML Machine Learning 

MLP Multi-layer Perceptron 

NT-proBNP N-terminal pro-b-type Natriuretic Peptide 

NYHA New York Heart Association 

PLN Phospholamban 

RF Random Forest 

RFC Random Forest Classifier 

RNN Recurrent Neural Networks 

ROC Receiver Operating Characteristic 

RSPV  Right Superior Pulmonary Vein 

SA Surgical Ablation 

SBP Systolic Blood Pressure 

SHAP Shapley Additive exPlanations 

SR Sinus Rhythm 

STS Society of Thoracic Surgery 

SVM Support Vector Machines 

TAVI Transcatheter Aortic Valve Implantation 

TIL Total Iodine Load 

TTE  Transthoracic Echocardiography 

X-ECG Exercise Testing ECG 

XGB eXtreme Gradient Boosting 
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