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1

GENERAL INTRODUCTION 

The rates of overweight and obesity have reached pandemic proportions and has major 

consequences for public health and the economies of today’s world. Estimates suggest that 

300 million individuals are affected by obesity and almost half of the global population 

has overweight1. The global obesity pandemic is a driver for obesity-related complications 

such as insulin resistance, type 2 diabetes (T2D), cardiovascular disease and nonalcoholic 

fatty liver disease (NAFLD)1. In fact, the prevalence of these obesity-related complications 

is proportional to the increase in body mass index (BMI)2. In 2040, the predicted global 

prevalence of T2D in adults is a staggering 10%. For NAFLD, the prevalence at that time 

is predicted to be approximately 25-30% with the vast majority of cases (>80%) identified 

in individuals with obesity3. The ongoing rise in prevalence of these diseases and lack of 

effective treatment options, presents an unprecedented challenge for the public health4,5. 

Clearly, there is a high need to deeply investigate the complex pathophysiology of obesity, 

insulin resistance and NAFLD to identify new and effective treatment options. 

The central cause of overweight and obesity can be brought down to an imbalance 

between the number of calories consumed and the number of calories used for energy 

expenditure by the human body2. This simple thermodynamic equation, however, is 

subject to and driven by many external regulatory factors. These have thus far been proven 

challenging to integrate in an all-encompassing approach to unravel the pathogenesis of 

obesity and -related disorders. Despite decades of dedicated research and billions of euros 

spent annually, there are only a few registered therapeutic treatment options available for 

obesity and its complications with unfortunately limited efficicacy. 

Currently, numerous biomedical studies aim to assess how (epi)genetic, molecular, 

behavioral, developmental, and environmental forces affect the intake and the processing 

of these excessive calories2. Nevertheless, for most of its existence, the focus of biomedical 

research has been on the ability to first identify and second to target specific diseases-

associated signaling pathways. Although this approach has generated new and exciting 

therapeutic strategies that target specific pathways, it does not account for the interindividual 

variability in disease development and response to therapy, which is particularly relevant for 

multifactorial diseases. Moreover, this approach cannot provide an overview of multiple 

pathways at the same time, neither is it possible to identify which pathways are proximal 

and which are dominant in disease development. Nevertheless, in search of potential new 

treatment options for obesity and related-complications, the scientific community still 

hangs on to this one-size-fits all approach by performing large randomized controlled trials 

without accounting for sex, age, ethnicity, and other confounders. To successfully tackle the 

obesity pandemic and stop the seemingly never-ending rise in prevalence of obesity related 
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diseases, it is critical to move beyond this general approach and focus on the interindividual 

differences. 

It is now increasingly recognized that every individual, potentially responds different 

to an overflood of calories suggesting that there are also differences in metabolic processes 

in each individual6. This starts in the gut, where a collection of bacteria, archaea and 

eukarya -collectively termed the gut microbiome- have colonized the gastrointestinal tract7. 

Microorganisms are among the oldest living organisms on Earth originating over 3700 

million years ago8. Microorganisms, including the large number residing in the gastro-

intestinal tract, have a profound impact on physiology and the ability to influence general 

health and disease states9,10. With the introduction of affordable high-throughput sequencing, 

interest in and identification of the role of the gut microbiota in modulation of host 

metabolism has grown exponentially11. Profound differences in gut microbial composition 

between disease stages were identified and by employing a translational approach, causal 

evidence of gut microbiota in human metabolism was obtained for several diseases ranging 

from metabolic to psychiatric disorders12. Hence, maybe Hippocrates was right when he 

said: “all disease begins in the gut”. It is now crystal clear that the gut microbiota influences 

numerous physiological processes including digestion, absorption, metabolism, and 

immune system development and function11,13. Yet, the impact and importance of the gut 

microbiota in the development of metabolic diseases is still under debate. As of to date, it 

has been shown that a few interventions targeting the gut microbiota suggest beneficial 

effects on clinical manifestations of metabolic disease whereas other interventions did not 

yield any meaningful outcome11,14,15. However, it is possible that the large interindividual 

variation in response to gut microbiota targeted interventions could be attributed to the 

heterogeneity of the disease itself, combined with the variation of the patients baseline 

microbial composition, as shown in several studies16. These interindividual differences open 

up the prospect of precision medicine, yet it also highlights the complexity of metabolic 

disease development. In fact, the complexity of contributing factors can obscure various 

structural associations between metabolic activities in different tissues, preventing deeper 

insight into molecular mechanisms of disease development17. 

We need studies that characterize patients in depth before and after interventions, 

where clinical data is combined with high-dimensional data such as fecal metagenomics, 

metabolomics, host tissue transcriptomics with the overarching aim to identify patients’ 

signatures that allow us to predict response to a specific intervention18. Moreover, by 

employing a systems biology approach using these panomics data, it is possible to identify 

the crosstalk between different relevant biological layers identifying the hierarchy of these 

biological layers. 
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In this thesis, we took a global approach to investigate factors that may contribute 

to the development of obesity, insulin resistance and NAFLD in humans. We used a 

machine learning approach to integrate transcriptomics, fecal metagenomics and plasma 

metabolomics datasets from individuals that underwent bariatric surgery. In addition, we 

used the steppingstones that were provided by the comprehensive panomics analyses to 

move from association to causation and performed two clinical trials targeting the gut 

microbiota. Last, we investigated an old but new player in metabolic disease development, 

cellular senescence and found that insulin is highly associated with markers of senescence in 

both the liver as in the adipocytes. 

OUTLINE OF THE THESIS

Part 1. Systems biology in metabolic disease 

This part starts with a review assessing the quality of the evidence that is supportive of a causal 

role for the gut microbiome in obesity and diabetes development in humans (Chapter 2).  

Challenging aspects in determining causality in humans are postulated together with 

strate gies that might hold potential to indeed assess a driving role for gut microbiota in 

metabolic disease development. Furthermore, we discuss means to modify gut microbiome 

composition in humans to help establish causality and discuss systems biology approaches 

that might hold the key to unravel the role of gut microbiota in obesity and metabolic 

diseases. In Chapter 3, we describe the distinct differences in gut microbial composition 

and function between individuals with and without obesity. Moreover, we show that the gut 

microbiome can explain the variance in several clinical phenotypes associated with obesity. 

In Chapter 4 we describe the design and the aims of the BARIA study. Using this longitudinal 

bariatric surgery cohort, we aim to perform a systems biology approach identifying gut 

microbial, immunological and metabolic markers in a large and well phenotyped bariatric 

surgery cohort to identify novel pathways in the pathogenesis of obesity, T2D and NAFLD. 

The next three chapters used both clinical and omics data of participants from the BARIA 

study. In Chapter 5, we describe that the heterogeneity of a bariatric surgery population 

can be stratified better phenotypically using metabotyping, i.e., monitoring the fasting 

plasma metabolome, that captures the functional output of a complex multi-organ system, 

human host and their microbes rather than traditional clinical classifiers. Using state of 

the art machine learning techniques, we identified five distinct metabotypes, which were 

differentially enriched for metabolic pathways related to immune function, fatty acid 

metabolism, protein-signaling, and obesity pathogenesis. Stratification into metabotypes 

identified specific biomarker signatures for each phenotype from the multi-omics data. In 
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Chapter 6, we performed plasma metabolomic profiling on both fasting and postprandial 

samples and investigated global metabolic responses to a mixed meal test. We identified 

abnormal metabolism of (branched chain) amino acids, fatty acids and acylcholines in 

individuals with (pre)diabetes. Furthermore, we traced the differences in metabolic responses 

back to other omics sets including fecal metagenomics and transcriptomics data of liver, 

adipose tissue, and jejunum. Finally, by applying integrative machine learning models, 

we identified possible new biomarkers for glycemic control including N−acetylaspartate, 

phenylalanine derived metabolites and butyrate producing bacterial species that may be 

useful for intervention and prevention of T2D. In Chapter 7, we took a global approach 

to investigate factors that may contribute to NAFLD development in humans and used a 

machine learning approach to integrate transcriptomics, fecal metagenomics and plasma 

metabolomics datasets from obese women with and without NAFLD. Analyses of these 

integrated omics sets revealed a robust NAFLD-signature and highlight the additive value of 

a multi-omics approach to study NAFLD pathophysiology.

Part 2. From association to causation

In this part we used the steppingstones provided by the systems biology approach of part 1, 

to assess the causal role of the gut microbiome in the pathogenesis of NAFLD. In Chapter 8,  

we reveal by performing four distinct experiments in humans that the gut microbiome 

of individuals with NAFLD produces incredible amounts of ethanol that are clinically 

revelant for the development and progression of NAFLD. In Chapter 9, we performed a 

double-blind randomized controlled trial in which individuals with NAFLD received either 

an allogenic or autologous fecal microbiota transplantation (FMT). We observed that an 

allogenic FMT using lean vegan donors in individuals with NAFLD induced changes in 

intestinal microbiome composition, which was associated with beneficial changes in plasma 

metabolites and markers of NAFLD.

Part 3. Cellular senescence, an old but new player in metabolic disease

Cellular senescence is a state of irreversible cell cycle arrest with important physiological 

functions. However, cellular senescence is also a hallmark of ageing and has been associated 

with several pathological conditions. In the past decade, cellular senescence gained significant 

interest due to its putative role in the development of NAFLD and the progression towards 

NASH. Until recently, it was suggested that hepatocyte cellular senescence is a mere 

consequence of the metabolic dysregulation and inflammatory phenomena in fatty liver 

disease. However, recent work in rodents has suggested that senescence may be a causal 

factor in NAFLD development. In Chapter 10, we aim to provide insight in the quality 

of the evidence supportive of a causal role of cellular senescence in the development of 
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NAFLD in rodents and humans. In addition, we elaborate on key cellular and molecular 

features of senescence and discuss the efficacy and safety of novel senolytic drugs to treat 

or even prevent NAFLD. In Chapter 11, we show by using clinical data, portal vein plasma, 

immunohistochemistry, and transcriptomics data derived from individuals with obesity to 

establish a link between insulin and senescence in the liver. We found strong correlations 

between markers of cellular senescence and insulin, independent of NAFLD suggesting that 

hepatocytic senescence, driven by prevailing insulin concentrations, precedes NAFLD. These 

observations were validated using an external validation cohort. In Chapter 12, we used 

the same approach as in the previous chapter by using clinical, immunohistochemistry, 

and transcriptomic data derived from non-diabetic individuals with obesity, we have shown 

that peripheral insulin resistance is highly correlated with markers of cellular senescence 

in mesenteric adipose tissue prior to the presence of glycaemic dysregulation. These 

results confirm previous studies indicating that adipocytic cellular senescence may play an 

important role already in the earliest stages of insulin resistance before the onset of T2DM.
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ABSTRACT 

The pathophysiology of obesity and obesity-related diseases such as type 2 diabetes mellitus 

(T2DM) is complex and driven by many factors. One of the most recently identified factors 

in development of these metabolic pathologies is the gut microbiota. The introduction 

of affordable, high-throughput sequencing technologies has significantly expanded our 

understanding of the role of the gut microbiome in modulation of host metabolism 

and (cardio)metabolic disease development. Nevertheless, evidence for a role of the gut 

microbiome as causal, driving factor in disease development mainly originates from studies 

in mouse models: data showing causality in humans is scarce. In this review, we will discuss 

the quality of evidence supporting a causal role for the gut microbiome in the development 

of obesity and diabetes, in particular T2DM, in humans. Considering overlap in potential 

mechanisms, the role of the gut microbiome in type 1 diabetes mellitus will also be addressed. 

We will elaborate on factors that drive microbiome composition in humans and discuss 

how alterations in microbial composition or microbial metabolite production contribute 

to disease development. Challenging aspects in determining causality in humans will be 

postulated together with strategies that might hold potential to overcome these challenges. 

Furthermore, we will discuss means to modify gut microbiome composition in humans to 

help establish causality and discuss systems biology approaches that might hold the key to 

unravel the role of gut microbiome in obesity and T2DM.
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INTRODUCTION 

The global rise in prevalence of obesity presents an unprecedented challenge to public 

health and economies of today’s world. Obesity has been associated with a plethora of 

metabolic disturbances including dyslipidaemia and insulin resistance; both are considered 

major risk factors for development of cardiovascular disease (CVD), non-alcoholic fatty 

liver disease (NAFLD) and several forms of cancer. Obesity therefore is considered one of 

the greatest public health threats of the 21st century1. Factors that strongly contribute to 

the obesity epidemic include decreased physical activity and increased (high-caloric) food 

intake. However, if the pathogenesis of obesity would have been this simple, Hippocrates’ 

prescription for treatment of obesity: “eat only once a day and take no baths and sleep on 

a hard bed and walk naked as long as possible” would have been a successful prescription2. 

Unfortunately, treatment (and prevention) of obesity and obesity-related complications 

have been proven to be more complex. Despite extensive efforts in the field, successful 

strategies to tackle this pathology are still limited. The need to mechanistically unravel 

development of obesity and –related disease is therefore high and crucial for development 

of novel, effective treatment strategies. 

The rise in prevalence of obesity coincides with the prevalence of type 2 diabetes 

mellitus (T2DM), which is a leading cause of CVD in almost all high-income countries3. It 

has been estimated that by the year 2040, a staggering 642 million people will suffer from 

this disease worldwide3. Numerous researchers have dedicated their careers to unravelling 

pathophysiological pathways that underlie the development of T2DM in obesity. In 2009, 

DeFronzo introduced a then-new paradigm in diabetes research: the ominous octet4. 

This paradigm describes that in addition to muscle, liver and beta-cells (triumvirate5), 

adipocytes, the gastrointestinal tract, alpha-cells, kidney and brain all play important roles 

in the development of T2DM. The dogma also describes the complexity of development 

of T2DM: numerous determinants drive disease development; however, the hierarchy of 

these driving factors remains largely unknown. Additionally, determinants other than those 

described in the ‘ominous octet’ might play a role in the development of T2DM. In the past 

decade, the gut microbiome has been identified as a novel, potentially driving, factor in the 

pathophysiology of T2DM. 

In addition to T2DM, the incidence of type 1 diabetes mellitus (T1DM) is rapidly 

increasing worldwide as well6,7. Genetic predisposition or children being born from genetically 

susceptible mothers cannot simply explain this phenomenon8. The disproportionate increase 

in T1DM incidence has therefore largely been attributed to environmental influences such 

as early enterovirus infection9. In addition, the clinical onset of T1DM is usually preceded by 

years of enhanced systemic inflammation and augmented autoimmunity that associate with 
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shifts in gut microbial composition10. The gut microbiome has therefore been put forward 

as driving force in pathogenesis of T1DM.

Interest in and identification of the role of the gut microbiome in modulation of host 

metabolism have grown exponentially since the introduction of affordable, high-throughput 

sequencing technologies. These technologies allowed for compositional as well as functional 

analysis of intestinal microbiota in humans and mouse models. Murine models have 

provided crucial insight in determinants of gut microbiome composition and the role of 

the gut microbiome in health and disease. Although studies performed in murine models 

support the hypothesis that the gut microbiome might play a causal role in development of 

obesity and diabetes, data showing causality in humans is still scarce. 

In this review, we aim to provide insight in (the quality of) evidence that is supportive 

of a causal role for the gut microbiome in obesity and diabetes development in humans. 

We will elaborate on factors that drive microbiome composition in humans and discuss 

possible mechanisms through which the gut microbiome and microbial metabolites 

affect host metabolism. Challenging aspects in determining causality in humans will be 

postulated together with strategies that might hold potential to indeed assess a driving role 

for gut microbiota in metabolic disease development. Furthermore, we will discuss means 

to modify gut microbiome composition in humans to help establish causality and discuss 

systems biology approaches that might hold the key to unravel the role of gut microbiota in 

obesity and diabetes. 

Factors shaping the gut microbiota 

The human gut microbiota is a complex ecosystem consisting of an estimated 1014 bacteria11. 

This number equals the number of human cells12. The combined genetic material of 

the gut microbiota, collectively called the gut microbiome, exceeds the human genome 

approximately 100 times13,14,15. The gut microbial community is dominated by five bacterial 

phyla; Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria and Verrucomicrobia. 

Variable pH (pH increases from proximal to distal intestine) and oxygen concentration 

(decreases from proximal to distal intestine) affect both relative and absolute abundance of 

bacteria across the gastrointestinal (GI) tract. The proximal GI tract is enriched in bacteria 

belonging to the phyla Firmicutes and Proteobacteria and the genus Lactobacilli, whereas 

the distal GI tract mainly comprises bacteria belonging to the phyla Bacteroidetes, Firmicutes 

and the Akkermansia municiphilia species16.

Although a definition of what a healthy gut microbiome comprises still has to be 

defined, it is clear that in healthy individuals, the composition of the intestinal microbiota is 

highly diverse17. Interestingly, together with increased industrialization, an overall decline in 

gut microbiota diversity can been observed18. This decline likely is a consequence of modern 
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lifestyle and driven by introduction of new medication and increased availability of processed 

foods. Importantly, gut microbial composition is highly variable between individuals and 

is continuously modified by both endogenous and exogenous factors. This interindividual 

variability already starts at birth and is mainly determined by the microbiota composition 

of the mother19. Interestingly, the intestine of a new-born is not sterile; it has been suggested 

that intrauterine exposure to the mothers’ microbiome is one of the first shaping factors of 

the gut microbiome20. The intestine is further colonized by bacteria as soon as the amniotic 

fluid disappears21 and predominantly determent by the mode of delivery. Children born 

through natural (vaginal) delivery have a gut microbiota composition resembling the 

vaginal microbiota composition of the mother. Children born through Caesarean section 

on the other hand, have a gut microbiota composition that resembles the skin microbiota 

composition of the mothers22. These first determinants of gut microbiota composition 

persist for months, potentially even longer23. Whether differences in gut microbiota this 

early in life affect disease development later in life remains to be determined. 

A recent study that combined whole genome sequencing (WGS) with 16S rRNA 

sequencing showed that there are significant interindividual differences in gut microbial 

diversity and richness depending on age and ethnicity of the host24. In addition to 

interindividual changes in microbiota composition, functional analysis of the gut microbiota 

of children and adults indicated age-related differences in the abundance of genes involved 

in amino acid metabolism, lipopolysaccharide (LPS) biosynthesis, RNA degradation and 

steroid hormone biosynthesis25. Although these results indicate that gut microbiota output 

differs between subjects in an age-dependent manner, these results have to be interpreted 

with caution. WGS is indicative only of potential functions but does not assess the actual 

gene expression levels. Rather, these results indicate that age and ethnicity are associated 

with differences in functionality of the gut microbiome. 

One of the most important modulators of the gut microbiota is diet. Intervention 

studies in humans have revealed the extent to which the microbiota can be modulated by 

dietary changes26,27. The influence of diet on gut microbiome composition and functionality 

can be described in three different themes28. First, the response of the gut microbiota to 

(major) changes in dietary composition is very fast. Several studies have shown an acute 

shift in gut microbial composition and functionality as soon as two days after the start of 

a dietary intervention26,27. Switching from plant- and meat-based diets to a diet with a daily 

add-on of 30 grams of dietary fibres induced both compositional and functional changes in 

the gut microbiota26. In addition, compositional and functional changes were observed in 

subjects who followed either a high–fibre, low-fat or low–fibre, high-fat diet for ten days26,27. 

Second, despite rapid changes in composition and function following (major) changes in 

dietary composition, long-term dietary habits are required to induce major changes in 
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gut microbiota composition. This is most clearly exemplified by observations that certain 

microbial taxa found in traditional populations that stick to a plants-only diet (unique 

abundance of bacteria from the genus Prevotella and Xylanibacter) are absent in Western 

populations29). Furthermore, several studies have shown acute effects of diet on microbiome 

composition soon after the start of a dietary intervention but failed to show major changes at 

later time points. One study, for example, reported that dietary intervention for ten days did 

not mediate major compositional changes in gut microbiota composition whereas changes 

were detectable 24 hours after the start of the dietary intervention27. Third, there is high 

interindividual variability in response of microbiome composition to changes in dietary 

composition30,31,32. The fact that dietary interventions to treat obesity have variable effects 

could therefore potentially be due to differences in microbiota composition at the start 

of the diet33. Increased intake of fibres and decreased total caloric intake have been shown 

to increase microbial diversity in subjects with low microbial gene richness, at baseline. In 

contrast, subjects with high microbial gene richness at baseline remain unaffected by this 

dietary interventio31. 

Medication also significantly influences the gut microbial composition. Antibiotics 

treatment is well-known for influencing the gut microbiota34,35. Moreover, antibiotics use 

early in life has been associated with weight gain later in life36. A recent study showed that 

oral antibiotic treatment leads to specific expansion of Firmicutes37, which might have 

unfavourable effects since an increased abundance of Firmicutes has been associated with 

obesity38 and T2DM39. A single blinded randomized controlled trial in 20 male obese subjects 

who received either vancomycin or amoxicillin for seven days showed that vancomycin-

treated subjects had significantly decreased peripheral insulin sensitivity compared to 

amoxicillin-treated subjects40. Vancomycin treatment, which specifically eradicates Gram+ 

bacteria, shifts the gut microbial community to a community dominated by Gram- bacteria 

which might negatively affect host metabolism, including insulin sensitivity. In another 

study, however, these metabolic effects of vancomycin treatment were not observed41. In this 

randomized double-blind, placebo-controlled trial, 57 obese human subjects were treated 

(oral) with vancomycin, amoxicillin, or placebo for seven days41. Amoxicillin treatment did 

not significantly affect microbiota composition whereas treatment with vancomycin had 

major impact on microbial diversity and composition with a decrease of Gram+ bacteria and 

a compensatory increase in Gram- bacteria. Although this was accompanied by changes in 

microbiota-mediated metabolic processes (i.e., reduced conversion of primary to secondary 

bile acids and reduced production of short chain fatty acids), insulin sensitivity, energy 

metabolism and systemic low-grade inflammation were unaffected41. The discrepancy 

in metabolic outcome in these two studies is potentially due to differences in fecal 

bacterial richness at baseline. In a recent study from our group, we show that microbiota 
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composition at baseline is indeed an accurate determinant of the effect of fecal microbiota 

transplantation (FMT) on insulin sensitivity. We were able to predict with high accuracy if 

obese, insulin resistant recipients should be categorized as responders or non-responders 

following an allogenic FMT from a lean donor42. The fact that FMT-mediated improvements 

in metabolism do not sustain in recipients with high bacterial diversity at baseline (prior to 

FMT) can be attributed to the presence of a highly personal core microbiome43. In this subset 

of recipients, intestinal microbiota composition following FMT quickly returns to baseline 

composition, potentially driven by resilience of the host immune system44. It cannot be 

excluded, however, that lifestyle (particularly dietary habits) of these subjects plays a large 

part in this phenomenon. Nevertheless, higher bacterial diversity is likely accompanied by 

a more pronounced personal core microbiome composition which is difficult to change 

with FMT or antibiotics treatment. Therefore, microbiota-mediated effects on metabolism 

following FMT or antibiotic treatment are more challenging and less sustainable in subjects 

with high bacterial diversity

Metformin is currently the most prescribed oral antidiabetic medication and known 

to affect intestinal microbiota composition45,46. In a recent double-blind, placebo-controlled 

trial in patients with T2DM it was indeed shown that metformin-treated subjects had 

significantly altered gut microbiome composition compared to patients receiving placebo47. 

Interestingly, germ-free (GF) mice that received an FMT from metformin-treated subjects 

had improved glucose tolerance compared to mice that received an FMT from placebo-

treated controls suggesting that metformin-induced changes in gut microbiome composition 

mediate part of the beneficial effects of this drug on glucose homeostasis47. It has been 

suggested that the beneficial effects of metformin are, at least in part, mediated by the 

production of short chain fatty acids (SCFA’s) by the gut microbiota46. Functional shifts in 

LPS biosynthesisand SCFA metabolism in patients treated with metformin were observed46. 

Interestingly, known adverse events of metformin such as diarrhoea, nausea, vomiting and 

bloating were associated with a relative increase in abundance of Escherichia species46. 

In a recent study assessing the gut metagenome in faecal samples of 748 human subjects 

with and without T2DM, it was shown that metformin is a strong confounding factor in 

metagenomic analysis46. Thus, when assessing microbiota composition in T2DM subjects, it 

is of critical importance to correct for metformin use. 

Proton pump inhibitors (PPI) are frequently used oral anti-acid medication that have 

also been implicated to modulate gut microbiota composition48. Although fecal microbial 

diversity did not change significantly, certain taxa known to have high potential to overgrow 

(e.g., Clostridium difficile), were increased after four weeks of omeprazole (40 milligrams/

day) treatment. These results suggest that PPI treatment might predispose to Clostridium 

difficile infection48. 
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The role of human genetics in shaping the composition of the gut microbiota remains 

largely associative. A recent study in monozygotic twins suggested heritability of a number 

of microbial species49, in part based on the association between the human gene locus 

that encodes lactase and the Bifidobacterium genus. Other associations between human 

genetic make-up and microbiome composition were found in genome-wide association 

studies in which genetic loci, microbial taxa and functional pathways were linked50,51,52. 

Recently, a novel, computational method applied on cross-sectional datasets from two 

large metagenomic studies, was used to investigate regulatory factors driving individual 

microbial composition53. Interestingly, it was suggested that gut microbial composition, at 

least at the species level, was independent of host genetics53. This conclusion challenges the 

assumption that along with host genetics and host immunity has a smaller role in shaping 

the gut microbiome than was previously considered. If true, this conclusion will have major 

influence on the development of successful generic procedures and products to manipulate 

microbiota composition54. 

Although the hierarchy of factors that drive gut microbial composition remains largely 

unknown, it is evident that a complex interplay between ethnicity, host genetics, mode of 

delivery, dietary habits and (history of) medication use all play an important role in shaping 

the microbial community. We will discuss in the next paragraphs available evidence that 

implicate a role for the gut microbiota in development of metabolic diseases such as obesity 

and diabetes in humans. 

Gut microbiome composition and T2DM development in humans: why it is challenging 

to determine causality in humans

Interest in the role of the gut microbiota in development of metabolic disturbances such as 

obesity and T2DM in humans has risen significantly over the past decade. This is in part due to 

the introduction of novel and more affordable next-generation sequencing (NGS) techniques 

combined with increased availability of fecal samples and tissue biopsies obtained from 

human subjects. Nevertheless, studies reporting a link between gut microbiome composition 

and metabolic disease development in humans are still largely associative/correlative in nature 

and mostly based on the differences in relative abundance of bacterial strains in the accessible 

fecal compartment. Furthermore, reproducibility of results from studies in humans has been 

shown to be fairly low55, which challenges a one-directional interpretation of the role of the 

gut microbiota in disease development. Discrepancies in study set up, geographical location 

of sample preparation and inconsistencies in data analysis all play part in low reproducibility. 

Full transparency of study details including open access to methodology and raw data in 

online repositories and collaborative initiatives between research groups (e.g., exchange of 

samples and analysis on different sites) will enhance the reproducibility of data in the field. 
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Scarcity of biopsies or luminal/mucosal material from proximal parts of the intestine 

leaves the microbial composition and function of this important part of the GI tract relatively 

unexplored. In addition, gut microbiota composition has been mainly linked to clinical 

parameters obtained from observational (retrospective) studies. Often times, it cannot be 

concluded if gut microbiota composition was affected prior to disease development (causal) 

or whether the microbiota composition is a reflection (consequence) of the disease itself. 

This chicken-egg situation can in part be clarified in large, prospective studies such as the 

Dutch Life Lines56 and HELIUS57 cohorts. Although prospective studies will provide insight 

in the timeline of disease development linked to changes in gut microbiota composition, 

a causal contribution (i.e., microbiota as driving factor for disease development) can only 

be concluded from intervention studies. However, controlled intervention studies with 

significant effect on microbiota composition in humans are rare and have thus far been 

limited to FMT, antibiotic treatment, diet and probiotic therapy. Although FMT in particular 

holds potential to serve as efficient intervention strategy to study causality in humans58, 

other intervention studies in humans have thus far shown limited causal evidence for a 

role of the gut microbiota in metabolic disease development41. A top-down approach to 

determine a causal role of the gut microbiome in the development of (cardio)metabolic 

disease is presented in figure 1. 

Causality: insight from studies in mice

Causal evidence that link the intestinal microbiota to host health and development of 

metabolic disease mostly originates from rodent studies59. The GI tract of humans and 

mice are anatomically, genetically and physiologically quite similar. Composition of sec-

tional tissue of small and large intestine from mice resembles sections from humans. In 

addition, Goblet and Paneth cells fulfil the same unique role in intestinal integrity and host-

microbiota equilibrium in both humans and mice60. Nevertheless, important differences 

exist and therefore, care must be taken to draw direct parallels between mice and human 

studies. An important difference between human and mouse GI tract is that the mouse 

cecum is relatively large in comparison with the size of the total GI tract. Moreover, the 

cecum is an important site for fermentation in mice. Increased fermentation capacity in mice 

significantly affects gut microbial diversity, composition and functionality60. In contrast, the 

human cecum, is relatively small and does not have a clear function61. Genetic background 

is one of the main drivers of the metabolic phenotype in mice whereas in humans, obesity 

and insulin resistance are driven by a complex interaction of genetics, diet and lifestyle4. 

Furthermore, and in sharp contrast to most human studies, mouse studies can be strictly 

controlled to minimize confounding factors that often times complicate data interpretation 

in humans (e.g., food intake, dietary composition, history of medication use). The ability to 
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genetically modify mice provides valuable mechanistic insight in how the gut microbiota 

affects host metabolism and augments metabolic disease development. 

Studies in germ free (GF) mice, which lack microbiota, provided first important evidence 

that the gut microbiota potentially plays a causal role in development of obesity and –

related diseases. It was demonstrated that, despite a higher food intake, GF mice are leaner 

compared to conventionally raised mice62. In addition, GF mice are fairly resistant to HFD 

induced obesity63. GF mice allow for generation of gnotobiotic models: GF mice colonized 

with a specific microbe of interest or harbouring a strictly defined microbial community. 

FMT using a fecal transplant from conventionally raised mice, increased body fat by 60% and 

reduced food intake in GF recipients62. The gut microbiota thus increases the ability to derive 

energy from food (particularly from indigestible carbohydrates) thereby fueling energy 

metabolism of the host. A follow up study, in which fecal microbiota was transplanted from 

conventionally raised obese mice to GF mice, further accelerated establishment of a causal 

role for the gut microbiota in development of obesity38. Interestingly, GF recipient mice that 

received a transplant from an obese donor gained more weight on the same diet compared 

to recipients that received a transplant form a lean donor. These results suggested that the 

microbiome of obese mice harvest more energy from dietary components. Additionally, 

these data implicated that an obese phenotype can be transferred from donor to recipient 

indicating causality. In line, a study where fecal microbiota from twins discordant for obesity 

was transplanted to GF mice, showed that recipients of the faecal microbial transplant from 

the obese co-twin gained significantly more weight gain compared to counterparts that 

received a transplant from the lean co-twin64. Although studies in GF mice have provided 

crucial insight in the contribution of the gut microbiota to host metabolism, there are 

substantial differences in metabolism of germ free versus conventionally raised mice60. For 

example, GF mice have the tendency to consume more calories, excrete more lipids and 

weigh less than conventionally raised mice65. Importantly, lack of microbiota has significant 

consequences for maturation and capacity of the immune system and intestinal physiology66. 

Since immune system and intestinal function are crucial players in development of 

(microbiome-mediated) obesity and T2DM, results obtained from GF mice should be 

interpreted with some restraint. Despite convincing evidence from studies in mice, data 

implicating a causal role for the gut microbiota in obesity development in this model system 

cannot be projected on humans. To exemplify difficulties in interpreting mouse and human 

data and to underscore the challenges of translational research approaches, a recent study 

in mice reported that a membrane protein of the mucin-degrading bacterium Akkermansia 

mucinophilia improved obesity and T2DM67. This was conflicting with a study in humans 

where both Akkermansia mucinophilia and Desulfovirbrio were enriched in samples of 

T2DM patients68 thus underscoring the question whether decreased relative abundance 
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of specific strains is a driving factor or merely a reflection of the disease. It is therefore 

relevant to ask where we currently stand in our understanding and evidence of the role of 

the gut microbiome in cardiometabolic disease development in human disease and look 

into strategies to tackle these challenges. 

suggested that the microbiome of obese mice harvest
more energy from dietary components. Additionally,
these data implicated that an obese phenotype can be
transferred from donor to recipient indicating causality.
In line, a study where fecal microbiota from twins
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the gut microbiota to host metabolism, there are sub-
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Despite convincing evidence from studies in mice,
data implicating a causal role for the gut microbiota in

obesity development in this model system cannot be
projected on humans. To exemplify difficulties in
interpreting mouse and human data and to underscore
the challenges of translational research approaches,
a recent study in mice reported that a membrane
protein of themucin-degrading bacteriumAkkermansia
muciniphila improved obesity and TDM (). This
was conflicting with a study in humans where both
Akkermansia muciniphila and Desulfovibrio were
enriched in samples of patients with TDM () thus
underscoring the question whether decreased relative
abundance of specific strains is a driving factor or
merely a reflection of the disease. It is therefore relevant
to ask where we currently stand in our understanding
and evidence of the role of the gut microbiome in
cardiometabolic disease development in human disease
and look into strategies to tackle these challenges.

Gut Microbiome Composition and Function
in Cardiometabolic Disease Development:
Evidence From Human Studies

In line with studies in rodents, an increased ratio of
Firmicutes/Bacteroidetes, which reduces with weight

Figure 1. How to determine causality of the gut microbiome in cardiometabolic disease: a top-down approach to determine a causal
role of the microbiome/microbial metabolite in obesity and T2DM in humans. (1) Microbiome andmicrobial metabolite composition is
determined in lean and obese/T2DM subjects. Bacteria or metabolites of interest have to associate with these conditions. (2) Following
interventions that impact on microbiome composition of functional output and affect metabolic phenotype of the host, the
bacterium/metabolite of interest has to correlate with the changes in phenotype. (3) Bacterium or metabolite of interest accelerates or
improves phenotype in a model system (e.g.,mouse models for obesity and T2DM) and in healthy or obese, insulin-resistant volunteers,
respectively.
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Figure 1: how to determine causality of the gut microbiome in cardiometabolic disease.

A top-down approach to determine a causal role of the microbiome/microbial 

metabolite in obesity and T2DM in humans. Microbiome and microbial metabolite 

composition is determined in lean and obese/T2DM subjects. Bacteria or metabolites of 

interest have to associate with these conditions (1). Following interventions that impact 

on microbiome composition of functional output and affect metabolic phenotype of the 

host, the bacterium/metabolite of interest has to correlate with the changes in phenotype 

(2). Bacterium or metabolite of interest accelerates or improves phenotype in a model 

system (e.g., mouse models for obesity and T2DM) and in healthy or obese, insulin resistant 

volunteers, resp. (3).

Gut microbiome composition and function in cardiometabolic disease development: 

evidence from human studies

In line with studies in rodents, an increased ratio of Firmicutes/Bacteroidetes, which reduces 

with weight loss69, has been associated with obesity in humans. Increased abundance of 
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Firmicutes was suggested to extract more energy from food70. In contrast, other research 

groups were not able to find differences in the ratio between Firmicutes/Bacteroidetes in 

obese versus lean subjects71,72. It is important to point out that technical difficulties and 

methodological discrepancies have been suggested to facilitate underrepresentation of 

bacterial groups, in particular of Bacteroides73, thereby incorrectly indicating affected 

abundance between phyla. Furthermore, despite interesting findings on differences in the 

ratio Firmicutes/Bacteroidetes, it remains to be determined if this is a reflection of dietary 

intake or a driving factor of obesity. The relevance of these findings is therefore debatable. 

Insulin resistance precedes development of T2DM and several metabolic markers 

thereof have been associated with Lactobacillus and Clostridium species45. Fasting glucose 

and HbA1c levels showed a positive correlation with Lactobacillus whereas Clostridium 

showed a negative correlation with these parameters45. Additionally, it has been shown that 

T2DM patients had reduced abundance of bacteria that produce the presumably beneficial 

short chain fatty acid butyrate39.

Interestingly, in three (independent) metagenomic studies17,32,74, obesity was associated 

with a reduced bacterial gene richness. Subjects with a less diverse gut microbiota com-

position were shown to have higher BMI, increased fat mass, reduced insulin sensitivity, 

dyslipidaemia, and increased markers of inflammation17. In addition, low bacterial richness 

was predictive for weight gain in a ten-year follow-up in which subjects with low bacterial 

richness had gained more weight compared to subjects with higher bacterial richness. As 

is the case for reported associations between improved ratio of Firmicutes/Bacteroidetes 

following weight loss, it remains to be determined if increased bacterial richness is a mere 

reflection of a healthy and varied diet, or that it directly contributes to the protection from 

obesity. Nevertheless, bacterial richness was simultaneously reported to have predictive 

potential for dietary interventions aiming to lose weight31. Metagenomics studies should be 

interpreted with caution, since a recent meta-analysis indicated that the reproducibility of 

metagenomics studies in humans is limited75. The authors concluded -after pooling datasets 

from several separate studies69,74,76- that there was no association between Body Mass Index 

(BMI) and taxonomic composition. 

Bacterial metabolites and bacteria-derived components as modifiers of human metabolism 

Changes in gut microbial output (metabolite production) or host exposure to bacterial-

derived components (e.g., endotoxin) have been suggested to play a larger role in metabolic 

disease development than microbial composition on the genome level per se77. A chronic, 

low-grade inflammatory state is often found in patients with obesity, insulin resistance and 

T2DM78. This increased inflammatory state has been proposed to be a driving factor in 

development of insulin resistance. In particular by reducing insulin sensitivity in muscle 
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and adipose tissue79 and by impairing pancreatic islet function80. Although increased 

inflammatory tone in obesity is likely driven by multiple factors, studies in mouse models 

indicate that the gut microbiota is a causal factor in increasing inflammatory tone in 

obesity81,82,83. These findings lead to the hypothesis of metabolic endotoxemia in obesity 

and T2DM; a low-grade inflammatory state resulting from translocation of toxic, bacteria-

derived components of mainly Gram-negative bacteria (e.g., endotoxin)81. Significantly 

higher concentrations of LPS have indeed been measured in plasma from patients with 

T2DM compared to non-diabetic subjects84,85,86. Nevertheless, the risk of exogenous 

LPS contamination during analysis remains a topic of debate87. Blood from the GI tract 

drains into the portal vein; highest concentrations of LPS are therefore likely to be found 

in this compartment of the circulation. The portal vein is the main (75%) supplier of 

blood to the liver. High LPS influx into the liver potentially has significant consequences 

for inflammatory signalling pathways and insulin signalling in the liver. This hypothesis 

remains to be addressed since portal vein blood and liver biopsies are difficult to obtain. 

Increased translocation of endotoxin is potentially facilitated by a diet-induced increase in 

gut permeability and subsequent reduction in protective gut barrier function88. In line with 

increased gut permeability, humans predisposed to develop T2DM, had increased circulating 

levels of bacterial DNA89.

The gut microbiota produces numerous organic compounds such as nitric oxide, 

ammonia, carbon oxide, indole and hydrogen sulphide, that possess pro- and anti-

inflammatory properties and might be able to alter gut permeability90. Hydrogen sulphide 

has specifically gained interest in the past decades for its role in GI diseases91 and CVD92. 

However, the role of these organic compounds in cardiometabolic disease is still under debate, 

partially due to the numerous conflicting studies which have been published. For example, 

H2S can potentially alter gut permeability91 and increased levels of H2S are found in patients 

with ulcerative colitis93, whereas H2S could have a protective role against nonsteroidal anti-

inflammatory drug induced gastritis94. Interestingly, a recent paper showed that H2S possess 

cardioprotective effects during the cardiac remodelling process post myocardial infarction 

in rats by increasing macrophages infiltration into the infarcted myocardium and thus 

antagonizing hypoxia induced damage of cardiomyocytes95,96. In addition, H2S might have 

a beneficial role in the immune-inflammatory processes in atherosclerosis by inhibiting the 

macrophage-derived foam cell formation97. However, these studies are performed in murine 

models, in vitro or ex vivo, therefore the (causal) role of H2S in CVD and GI diseases has to 

be defined. The conflicting results regarding the inflammatory properties of H2S suggests 

that H2S may be a double-edged sword. Future research therefore needs to be focused on 

resolving these discrepancies and further investigate the role of this gaseous molecule on 

immune-inflammatory responses in CVD and GI disease. 
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Gut microbiota produce a large number of (yet to be defined) small molecules through 

primary (direct) or secondary (indirect) metabolic pathways98. It has therefore been 

suggested that the composition of gut-derived metabolites (as a measure for microbial 

output and functionality) is largely dependent on the diet of the host18. Although some of 

these metabolites might be retained within the gut ecosystem, others might be released in 

the circulation of the host and exert a diverse array of metabolic effects99,100 . The bacterial 

metabolite trimethylamine (TMA) is an example of one of many gut-derived metabolites 

which has been associated with cardiovascular disease development in humans101. TMA 

is converted to trimethylamineoxide (TMAO) in the liver. High concentrations of TMAO 

were shown to accelerate atherosclerosis development in mice, and high concentrations of 

TMAO are correlated with a higher incidence of cardiovascular disease in humans102. Several 

studies have observed increased levels of TMAO in patients with T2DM than in healthy 

subjects103,104,105. Interestingly, increased levels of TMAO were observed in hepatic insulin 

receptor knockout mice (LIRKO mice) via upregulation of the TMAO-producing enzyme 

FMO3 in the liver106. Furthermore, knockdown of FMO3, the enzyme responsible for 

conversion of TMA to TMAO, prevented hyperglycemia, hyperlipidemia and atherosclerosis, 

suggesting that TMAO might be a potential player in diabetes associated atherosclerosis, 

at least in mice106. The first mechanistic link between TMAO and cardiovascular risk was 

provided in a study that showed that TMAO mediates blood platelet hyper-responsiveness 

and subsequent thrombosis107. 

Short chain fatty acids and (human) metabolic disease

 Short chain fatty acids (SCFA) are produced by bacterial fermentation of non-digestible 

dietary fibres in the large intestine and mainly comprise acetate, propionate and butyrate. 

Studies in mice have shown that SFCA supplementation improves insulin-sensitivity and 

dyslipidaemia, prevents weight gain and increases energy expenditure in diet-induced 

obese mice108,109. SCFA-mediated activation of G-protein coupled receptor (GPR)-mediated 

signalling pathways are involved in several metabolic processes including enteroendocrine 

regulation110; glucagon-like-peptide (GLP) 1 secretion111,112; inflammatory response113,114; 

glucose uptake and fatty acid oxidation115 and energy metabolism39. Murine and ex vivo 

experiments have shown that SCFA improve intestinal barrier function by a SCFA-mediated 

increase in transcription of mucin genes116,117. Improved gut barrier function prevents overt 

exposure to the innate immune system of the host, potentially reducing inflammatory tone. 

SCFA are inhibitors of histone deacetylases (HDACs). SCFA-mediated inhibition of HDAC in 

regulatory T cells (Treg) was shown to increase Forkhead box P3 (FOXP3) expression thereby 

affecting Treg generation118,119. In line, SCFA-mediated inhibition of HDAC has been shown 

to have anti-inflammatory properties by regulating intestinal macrophages120 and dendritic 
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cells121. Depletion of SCFA, might therefore contribute to the increased inflammatory tone 

often found in patients with obesity and diabetes. The beneficial anti-inflammatory effects 

of SCFA in humans however remain to be further elucidated. 

Through a complex intestine-brain-neural circuit, SCFA have been suggested to increase 

intestinal gluconeogenesis, thereby improving peripheral glucose production and insulin 

sensitivity122. In a recent study in rats, however, it was shown that the SCFA acetate increased 

food intake and promoted glucose-stimulated insulin secretion109. In humans, acetate 

supplementation was reported to facilitate short-term satiety123 and reduce weight gain124.

In line, SCFA reduced food intake and prevented weight by activating anorectic pathways 

in the brain108. Direct colonic delivery of propionate reduced weight gain in a randomized 

controlled study in 60 overweight subjects,125. In addition, fecal acetate levels have been 

inversely correlated to insulin resistance126. 

Despite these positive correlations between SCFA and metabolic health in humans, 

the fecal microbiota composition of obese subjects has been reported to be shifted towards 

increased numbers of SCFA-producing species compared to lean subjects74,127. In line, 

increased fecal concentrations of SCFA, especially butyrate, have been observed in obese 

subjects38,99,128. Interestingly, it was shown that in twins discordant for obesity, the gut 

microbiota of the obese twin was relatively enriched in SCFA-producing bacteria compared 

to the lean twin64. It has been proposed that an increased capacity to extract energy (in 

the form of bacterial SCFA production) from fibres might be a driving factor in obesity 

development. Thus, despite increased relative abundance of SCFA-producers and increased 

fecal SCFA content in obesity, it is difficult to interpret potential health benefits of SCFA 

in obese subjects. Following production, SCFA are rapidly absorbed by the host (at least 

in healthy subjects) where they regulate glucose and lipid metabolism. In addition, SCFA 

can be absorbed and converted by the gut microbiota itself. It can therefore be speculated 

that, despite increased SCFA production, the gut microbiota of obese subjects has reduced 

capacity to handle SCFA. 

In contrast to obese subjects without diabetes, fecal microbiota from obese, T2DM 

patients, has been shown to be relatively depleted in SCFA-producing bacterial species45,39. In 

line, vancomycin treatment of metabolic syndrome patients reduced insulin sensitivity with a 

coinciding reduction in butyrate-producing bacteria129. A study in which the fecal microbiota 

of lean, insulin-sensitive donors was transplanted to insulin-resistant metabolic syndrome 

recipients, demonstrated that improved insulin sensitivity following fecal microbiota 

transplantation correlated positively with abundance of butyrate-producing bacteria130. A 

metagenomic study showed that metformin-naïve T2DM patients could be associated with 

a decrease in genera of butyrate-producers (e.g., Roseburia spp, Subdoligranulum spp)46. In 

the same study, it was shown that the gut microbiota of metformin-treated T2DM patients 
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contains significantly more butyrate and proprionate-producers compared to T2DM patients 

not treated with metformine. 

Bile acid signalling in host metabolism

Bile acids play a pivotal role in human health and metabolic disease development, mainly 

by their role as signalling molecules that can activate receptors in the gut, liver and adipose 

tissue131. Primary bile acids (cholic and chenodeoxycholic acids) are produced from 

cholesterol in the liver via a complex pathway including at least 17 enzymes and is under 

control of the nuclear Farnesoid X receptor (FXR) and its downstream targets FGF15/19 

(in intestine) and SHP (in liver)132. Mice also produce alpha- and beta-muricholic acids (α/

βMCAs) in addition to the primary bile acids found in humans133. Upon secretion into the 

intestine, bile acids are subject to modifications by the gut microbiota133,134,133. Primary bile 

acids are metabolized into secondary bile acids (deoxycholic and lithocholic acids) following 

7α-dehydroxylation, which compromises numerous reactions carried out by bacteria that 

mainly belong to the Firmicutes135,136. It was shown that in mice, gut microbiota regulates 

expression of several key enzymes in bile acid formation including CYP7A1 and CYP27A1 

by changing the composition of the bile acid pool, thereby alleviating FXR inhibition137. 

In addition to bile acid synthesis and modification, bile acid uptake in the gut has been 

suggested to be regulated by the microbiota. Expression of the apical sodium dependent 

bile acid transporter (ASBT), a transporter found in the small intestine responsible for the 

uptake of bile acids, is reduced in conventionally raised mice compared to their germ-free 

counterparts137. 

Data underscoring a role for bile acids in metabolic disease development originate in 

large from mouse studies. For example, cholic acid supplementation reduced HFD-induced 

weight gain and attenuated insulin resistance in mice, coinciding with increased circulating 

levels of bile acids138. FXR and downstream target FGF15/19 have been shown to regulate 

glucose and lipid metabolism139. Synthetic inhibition of FXR reduced bile acid pool size and 

attenuated weight gain and glucose intolerance in HFD-fed mice140. Furthermore, by acting 

on the GPR TGR5, bile acids have been shown to promote (antidiabetic) GLP1 secretion141 

and increase energy metabolism138. Higher concentrations of deoxycholic acid (DCA) have 

been associated with obesity in mice142. Tauro- β-muricholic acid, an endogenous FXR 

antagonist143,137 is metabolized by the gut microbiota. Therefore, germ free mice are not able 

to metabolize this bile acid. This ability has been shown be a prerequisite to induce obesity, 

hepatic steatosis, impaired glucose tolerance and reduced insulin sensitivity137. The bile acids 

receptors FXR and TGR5 might play an important role in the development of metabolic 

diseases and have become major targets in translational and intervention studies131. Bile 

acids generated by the gut microbiota can modulate signalling through these bile acid 
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receptors and therefore might have the potential to alter lipid and glucose metabolism in 

humans.

In humans, bile acids have been implicated in regulation of food intake144. Further-

more, increased circulating levels of bile acids have been reported in obese, T2DM subjects145 

and were shown to correlate with BMI144. Rectal administration of TDCA improved glucose 

homeostasis and lowered food intake in obese, T2DM subjects146. Particular interest in a role 

for bile acids in regulation of host (energy) metabolism, however, arose from observations 

that (postprandial) bile acid metabolism is severely affected following bariatric surgery147. 

Circulating levels of primary and secondary bile acids are increased after bariatric surgery 

and correlate with improved glucose control148,149,147. Bile-acid mediated signalling events 

have been reported to be increased in post-Roux-en-Y Gastric Bypass (RYGB) subjects: this 

correlated with the release of satiety-promoting gut hormones such as GLP-1 and PYY150,151,152. 

Furthermore, supporting an important role for bile acids in RYGB-mediated improvements 

in glucose homeostasis: metabolism of FXR knock-out mice is not improved following 

vertical sleeve gastrectomy153. The beneficial effects of RYGB on energy metabolism were 

reproduced by diverting the biliary flow from duodenum to ileum in rats, suggesting that 

bile acids play an important role in adiposity, liver steatosis, lipid and glucose metabolism154. 

The animals in this study lost approximately 20% of their body weight, therefore these 

results must be interpreted with caution, since these results can be partially explained by 

weight loss.

Crosstalk between the gut microbiota and bile acids affect host metabolism. However, 

most of the studies that mechanistically assess pathways involved in this crosstalk were 

performed in animal models. The Human and rodent bile acid pools have major com po-

sitional differences. This has significant consequences for bile acid signalling properties and 

conclusions derived from rodent studies have to interpreted with caution. In humans, causal 

evidence supporting a role for changes in microbiota composition with subsequent bile 

acid-mediated changes in host metabolism remains largely unknown. 

Gut microbiome alterations after bariatric surgery 

Bariatric surgery is a last resort for the treatment of morbid obesity and -related 

complications such as T2DM and is superior to any other treatment regimen aiming to 

reduce weight155,156. The rapid improvement in metabolic parameters such as fasting 

glucose157 and fasting insulin158, (usually within days after surgery) can be explained in 

large by calorie restriction159,160. Bariatric surgery has significant effects on gut microbiome 

composition, induced by considerable alterations in the gastrointestinal tract (i.e., reduced 

caloric intake, reduced gastric emptying, alterations in gastric acid production and bile 

acid161. Tremaroli et al.162 showed that two distinct bariatric surgery procedures, i.e., vertical 
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sleeve gastrectomy (VSG) (no intestinal diversion) and RYGB (with intestinal diversion), 

have similar effects on gut microbiome composition. Nevertheless, and despite small sample 

size, functional shifts were apparent and differed between the two surgical procedures and 

between the control group162. RYGB has significant effects on gut microbial composition, the 

abundance of Firmicutes, which is generally high in obesity, decreases and Proteobacteria 

increases following RYGB *REF. These effects differ strongly from effects of diet-mediated 

weight loss71. However, a recent meta-analysis showed that there is a high discrepancy in 

human studies investigating gut microbial alterations after bariatric surgery163, therefore 

these results have to be validated in larger cohorts. 

Altered microbiome composition and microbial metabolic output (e.g., metabolite 

production) after bariatric surgery was hypothesized to add to the long-term beneficial 

effects of this surgical procedure on weight loss, diabetes remission and cardiovascular risk164. 

In support of this hypothesis, microbiota of murine RYGB donors augmented weight gain 

in GF recipients compared to GF mice that had received microbiota from sham-operated 

donors164. Similar effects were observed in GF mice that received fecal microbiota transplants 

from human RYGB or VSG donors compared to GF mice transplanted with feces from obese 

controls162. Mice colonized with microbiota from RYGB treated mice had higher lean mass 

and lower respiratory quotient (ratio between CO2 produced and O2 consumed) compared 

to VSG and control group, indicating decreased utilization of carbohydrates and increased 

utilization of lipids in the RYGB recipient mice164. 

Bariatric surgery is associated with significant changes in gut microbial composition 

and functionality162,163. However, large prospective studies are needed to validate these 

alterations and to further investigate whether the gut microbiome contributes to the 

beneficial metabolic effects of bariatric surgery. Bearing in mind the great dissimilarities in 

metabolic outcome165 (responder, non-responder), it would be interesting to have follow up 

data available of the gut microbiome composition, diversity, and functionality years after 

the initial surgery.

The gut microbiome and type 1 diabetes mellitus 

Although the main focus of this review is on the role of the gut microbiome in development 

of T2DM, the gut microbiome has also been implicated in the pathogenesis of T1DM. 

Both disorders are characterized by alterations in host immune response and have been 

linked to an immune system-gut microbiota interaction166. Interestingly, enhanced systemic 

inflammation and autoimmunity can be detected years before disease onset. This suggests 

that environmental factors, including changes in gut microbiota composition and output 

(e.g., LPS, SCFA production), are determinants of disease progression and can have predictive 

value for those at risk to develop T1DM. It has been suggested that shifts in gut microbial 
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communities indeed precede disease development167. Nevertheless, in humans it is difficult 

to determine whether an altered microbiota, as observed in T1DM patients, is causal to or a 

consequence of compromised immune function. In addition, studies performed in humans 

are often subject to major confounding factors. 

T1DM is generally considered to be driven by an (auto)immune-associated destruction 

of insulin producing pancreatic beta cells168,169. Approximately 70-90% of patients with 

T1DM show features of an immunological contribution (e.g., self-reactive autoantibodies 

such as IA2 and GAD, genetic associations with genes controlling immune response)170. The 

remainder of T1DM cases can be classified as monogenic forms of T1DM, including certain 

types of maturity-onset diabetes of the young (MODY)171 or have a yet to be determined 

pathogenesis. T1DM generally manifests early in life. Interestingly, most children are 

diagnosed in autumn and winter172, and being born in spring is associated with a higher 

change of developing T1DM173. This suggests that the pathogenesis of T1DM is heterogeneous 

and environmental (seasonal) influences might initiate or even drive the pathogenic 

processes in T1DM. A plethora of environmental factors such as vitamin D deficiency174,175, 

infant and adolescent nutrition176 and early enterovirus infection9 all have been postulated 

to contribute to the development of T1DM6. Improved sanitation and decreased incidence 

of childhood infections over the past decades, is associated with an increased incidence of 

autoimmune diseases such as T1DM and led to the hygiene hypothesis177,178. According to 

this hypothesis, infants may benefit from early exposure to specific microorganisms and 

parasites; this stimulation of the immune system early in life was indeed associated with 

lowered risk to develop allergies and autoimmune diseases later in life177,178,179. Removing 

microbes from an individual’s living environment therefore has consequences for gut 

microbiome composition and development of the immune system. These associative studies 

have increased interest in the role of the gut microbiome in the development of T1DM in 

the past decade. As for T2DM, however, mechanistic evidence for a role of the gut microbiota 

in the pathophysiology of T1DM is mainly derived from studies in rodents. 

Studies in BioBreeding Diabetes Prone (BB-DP) rats180 and non-obese diabetic (NOD) 

mice181 that were treated with antibiotics indicated that the subsequent alterations in 

gut microbial composition reduced the risk of T1DM development. In 2008, a landmark 

paper by Wen et al182 showed that MyD88, which functions as a critical signal transducer in 

interleukin (IL)-1 and TLR signalling pathway, deficient NOD mice are protected from the 

development of T1DM182. Interestingly, the protection of developing T1DM is lost when 

deficient MyD88 mice are housed under GF conditions, suggesting that an interaction 

between the gut microbiota and the innate immune system has a role in the development 

of T1DM. In addition to shifts in gut microbial composition as contributing determinant 

for development of T1DM, microbial output in the form of SCFA’s have been implicated to 
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elevate the number and enhance the function of intestinal Treg cells and T helper 17 cells 

(Th17 cells)183,119,118. Treg cells and Th17 are lymphocyte subsets with opposing actions184. An 

imbalance between Treg cells (anti-inflammatory) and Th17 cells (pro-inflammatory) has 

been shown to contribute to the pathophysiology of autoimmune diseases184. Since T1DM is 

a T-cell-mediated disease associated with a reduced number of dysfunctional Treg cells185,186, 

an imbalance between Treg cells and Th17 cells could therefore augment an inflammatory 

response184. Interestingly, Th17 cells are important in maintenance of intestinal barrier 

function187. In a recent study, it was shown that antibiotic treatment reduced the number 

of Th17 cells in the lamina propria and increased T1DM incidence in NOD mice188. This 

result corresponds with earlier findings189 and strengthens the hypotheses that an increased 

intestinal permeability might precede the clinical onset of T1DM190. The importance of a 

gut microbiome capable of producing sufficient SCFA was underscored by a study in which 

mice were fed diets supplemented with acetate and/or butyrate191. The acetate yielding diet 

decreased the number of activated diabetogenic T cells in lymphoid tissue. The butyrate-

supplemented diet markedly increased the number and function of Treg cells and increased 

the expression of the tight junction protein occludin in the colon thereby preserving gut 

integrity. An intriguing interplay between genetics, altered gut microbiome/metabolites and 

immunity might play a role in the development of T1DM. Rodent studies have provided 

insight in this interplay, however, human data is scarce. In the next paragraph, we will discuss 

studies involving the gut microbiome in the development of T1DM in humans. 

Comparison of the faecal bacterial composition of four pairs of T1DM infants and 

controls revealed a higher ratio of Bacteroidetes/Firmicutes approximately six months after 

birth in infants who developed T1DM compared to the controls10. This corresponds to other 

studies that reported increased ratio of Bacteroidetes/Firmicutes in T1DM children192,193. In 

addition, the diversity of the gut microbiome was less diverse in T1DM subjects compared 

to the controls10. Seroconversion is the time between development of a specific antibody till 

moment of detection of this antibody in the circulation194. In infants that later developed 

T1DM, detectability of anti-islet autoantibodies coincided with reduced abundance of 

bacterial genes associated with SCFA production and with gut intergrity193. This indicates 

that changes in early autoantibody production is related to changes in microbiome 

functional output.

In line, infants that expressed at least two diabetes-associated autoantibodies had low 

abundance of lactate and butyrate producing species compared to autoantibody-negative 

infants195. In the BABYDIET study196, infants with first-degree relatives with T1DM and HLA 

genotypes associated with increased risk to develop T1DM at 6 or 12 months, had similar 

gut microbial composition and diversity compared to controls197. Interestingly, however, 

alterations in microbial interactions networks were observed in infants who developed  
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anti-islet cells autoantibodies197. In a longitudinal prospective cohort of 33 HLA-matched 

infants followed from birth until three years of age, decreased microbial diversity correlated 

with seroconversion, thus prior to the diagnosis of T1DM198. Furthermore, levels of 

human beta-defensin 2 (hBD2) were increased in infants who later developed T1DM198. 

Since hBD2 is an antimicrobial product produced by colonic epithelial cells during 

inflammation199,200, this finding supports the hypothesis that development of T1DM is 

accompanied by intestinal inflammation. A case-control study in ten infants who were 

at risk to develop T1DM (i.e., positive for at least two diabetes-associated autoantibodies) 

reported higher intestinal permeability as assessed by a lactulose/mannitol test in those 

infants compared to controls201. A possible mechanistic explanation for the contribution of 

the gut microbiome in the development of T1DM comes from a recent perspective study 

in Finland, Estonia and Russia179. Finland and, albeit to lesser extent, Estonia, have higher 

autoimmune disease prevalence, including T1DM, compared to neighbouring Russia. Gut 

microbiome development was followed from birth until the age of three in 222 infants and 

differed markedly between infants from Finland and Estonia compared to Russian infants. 

Of particular interest was a marked reduction in Bacteroides species in Russian infants 

compared to infants from Finland and Estonia. Functional pathway analysis suggested 

that early microbial communities of infants from Finland and Estonia produced more 

LPS compared to their Russian counterparts. However, LPS produced in this cohort was 

mainly derived from Bacteroides species: Bacteroides-derived LPS differs structurally and 

functionally from LPS derived from for example E. coli and has been shown to be non-

immunogenic in mice179. Furthermore, in contrast to E. coli LPS, Bacteroides-derived LPS 

did not decrease incidence of autoimmune diabetes in NOD mice. Although a clear link 

between Bacteroides-derived LPS and T1DM could not be made in this study, these data 

raise the interesting hypothesis that the nature and composition of different LPS subtypes 

might determine the level of immune activation and serve protective roles in autoimmune 

disease development179. In line, based on the relation between celiac disease and T1DM, 

the intestine and its inhabitants might be a shared risk factor202. These findings however, 

have to be interpreted with caution since geographically, gut microbial composition varies 

considerably young children at risk to develop T1DM203. A framework for the potential role 

of the gut microbiome in the development in T1DM is given in figure 2.

Interventions in humans: diet, pro and prebiotics and fecal microbiota transplantation 

As mentioned previously, gut microbiota composition as well as gut microbial function 

is highly related to dietary intake of the host26. A relative deprivation in plant-based 

dietary fibres in industrialized nations has been suggested to be a driving force behind the 

widespread change in functional capacity of the gut microbiota potentially contributing 
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to the increasing prevalence of obesity and -related complications204,45,39. In addition to 

macronutrient intake, it has been shown that food additives such as artificial sweeteners 

induce both compositional and functional changes in gut microbiota and augment features 

of the metabolic syndrome205,206. Since the gut microbiota is easily accessible and responds 

rapidly to changes in nutrient composition, dietary reinforcements have been put forward 

as an attractive therapeutic target for obesity. However, in addition to low overall adherence 

to diets, high inter-individual differences in response to diet makes this a challenging 

endeavour. For example, complex carbohydrate supplementation increased starch-

degrading taxa in some but not all subjects who participated in a strictly controlled 10-week 

dietary intervention30. Another study showed that a low calorie, high fibre diet increased 

diversity only in subjects with high-gene count at baseline31. Subjects with improved glucose 

metabolism after a three-day intervention with whole grain bread had higher ratio of 

Prevotella/Bacteroidetes after the interventions than non-responders32. 

 The inter-individual response to diet was particularly exemplified in a landmark study 

by Zeevi and coworkers who showed that the individual postprandial glycemic response 

to a high glycemic meal was highly variable33. This response correlated with individual 

microbiota composition. Interestingly, using a machine-learning approach, the individual 

response to and success of a particular dietary regimen could be predicted based on existing 

microbiota composition. This work provided crucial insight in the role of the gut microbiota 

in responsiveness to dietary strategies. Using novel, personalized pre- or probiotics to 

modify the gut microbiota composition of people predicted to have low response rate to 

diet-induced weight loss regimens into a more responsive composition might optimize the 

effectiveness of dietary strategies. 

Probiotics are living microorganisms that either have potential to improve host 

metabolism directly (e.g., by improving gut barrier function or increasing SCFA-production) 

or have the capacity to re-establish a more favourable intestinal balance by modulating 

pH, antibacterial compound production and competing with pathogens207,208. In mice, the 

probiotic strains Akkermansia muciniphila209 and Lactobacillus planetarium210 were both 

shown to lower endotoxemia and weight gain in HFD-fed mice. In humans, administration 

of Lactobacillus reuteri was associated with increased insulin secretion in obese, insulin 

resistant subjects211. Furthermore, a double–blinded, randomized, placebo-controlled inter-

vention trial in overweight subjects showed beneficial effects of Lactobacillius gasseri on 

weight loss compared to fermented milk use only212.

Prebiotics are nonmicrobial entities (usually dietary fibres) that elicit a favourable 

impact on microbial composition and function. Prebiotics might therefore be a feasible 

tool to modulate gut microbiota. Supplementation of prebiotics has been associated with 

improved plasma lipid levels and improved glycemic control in both humans209,213 and 
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mice214. Oligofructose was shown to increase release of the satiety promoting hormone 

PPY and GLP1 in mice215. In T2DM humans, oligofructose proved to be a useful prebiotic: 

supplementation for three months increased weight loss and improved glucose control 

compared to patients receiving placebo216. Despite focus of (food) industry on development 

of novel pre- and probiotics to modulate microbiota composition and/or functional output 

to subsequently improve host metabolism, thus far, only minimal beneficial effects of 

gut microbiota-mediated on metabolism have been obtained. Improved engraftment of 

probiotic strains might help improve effectiveness of probiotic strain administration217.

Fecal microbiota transplantation

FMT has a long medical history and has been used for treatment of several gastro-intestinal 

illnesses. As long as 1700 years ago, FMT was used to treat patients with food poisoning and 

diarrhoea in China218. After the realization that hygiene plays an important role in preventing 

infectious disease, FMT became obsolete. In 1958, after a long period of silence, FMT 

garnered interest again following a describing its use in treating fulminant enterocolitis219. 

The real breakthrough of FMT as treatment modality was after publication of an open-label, 

randomized, controlled trial, which demonstrated that the resolution of C. diff infection 

was 94% after FMT compared to 31% efficacy of conventional vancomycin treatment220. 

FMT is now the method of choice for treatment of recurrent Clostridium difficile infection. 

However, FMT is also of interest as therapeutic modality for a wide range of diseases 

including inflammatory bowel disease221, obesity58 and metabolic syndrome58. In addition, 

neurological222 and psychological disorders223, might benefit from FMT if correlations with 

altered gut microbiome composition are indeed valid. In two separate studies in humans, 

our group has shown that FMT has beneficial effects on insulin sensitivity42,58. Although 

effects are temporal and variable, FMT might have merit as intervention option for 

metabolic syndrome.

Peripheral insulin sensitivity of obese, insulin resistant subjects was significantly 

improved six weeks after receiving a transplant from a lean, insulin sensitive donor 

(allogenic transplant)130. Transplantation of own fecal microbiota (autologous transplant) 

did not affect insulin sensitivity. In a second, larger cohort of obese, metabolic syndrome 

subjects, we were able to reproduce these findings. Allogenic FMT improved insulin 

sensitivity compared to autologous FMT in metabolic syndrome recipients six weeks after 

transplantation. Interestingly, 12 weeks after transplantation, this beneficial effect could no 

longer be observed. Engraftment of donor microbiota in the gut of recipient negatively 

associated with metabolic outcome of FMT suggesting that specific donor-host interactions 

are important determinants of FMT efficacy. In line, based on baseline microbiota 

composition of the recipient, the metabolic response to FMT could be predicted.
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Variation in experimental protocols, preparation of fecal samples and diurnal oscillations 

of the gut microbiota224 are additional explanations for variable efficacy of FMT. This 

underscores the need for development of stringent standard operation procedures (SOPs)54. In 

addition to bacteria, viruses, fungi and bacteriophages that all reside in the fecal compartment 

are co-transplanted225. Although it has yet to be determined if and how these components 

contribute to FMT efficacy, it was recently shown that the virome (bacteriophages) has an 

important role in host health by modulating bacterial community and by direct interaction 

with host cells226,227. In addition, eukaryotic viruses and bacteriophages have been shown to 

modulate bacterial metabolism (e.g., amino acid, lipid, and carbohydrate metabolism) and 

to affect signal transduction pathways and transcriptional regulation226,228. 

Modulation of the gut microbial composition and functionality by FMT only partly 

affects the intrinsic and complex pathophysiology of obesity and T2DM. Gut microbiome 

composition and function is influenced by many factors and therefore, it is unlikely 

that a single FMT can cure obesity or T2DM. Nevertheless, a combination of FMT with 

personalized prebiotics or treatment with ‘missing’ intestinal bacterial strains (drugging 

the microbiome) might enhance the effects of conventional treatment strategies54. Further-

more, early intervention in patients who are at risk to develop T2DM or patients who were 

recently diagnosed with these pathologies might benefit from gut microbial modulation in 

a personalized manner, such as a microbiota-based dietary strategies or personalized FMT. 

The human gut microbial community is shaped by a complex interplay between host 

genetics, diet and (history of) medication use. Alterations in gut microbiota composition 

(e.g., reduced diversity) or microbial output (e.g., LPS subtypes, SCFA production or bile acid 

conversion) have been implicated in development of metabolic diseases such as obesity and 

T2DM in humans. Although mechanistic evidence for a causal role of the gut microbiota in 

the pathophysiology of these diseases in humans is scarce, currently available data suggests 

that an altered microbiota composition affects gut barrier function and induces (low-grade) 

inflammatory events, either locally in the intestine or systemically. Furthermore, bacterial 

metabolites including SCFA‘s and secondary bile acids, which serve important regulatory 

roles in energy homeostasis and regulation of peripheral glucose and lipid metabolism, have 

been hypothesized to be drivers of T2DM development. T1DM is generally considered to 

be driven by autoimmune antibodies that specifically destroy insulin-producing Beta cells 

in the pancreas. It has been hypothesized that autoimmune antibody generation is in part 

consequential to removal of microbes -with a crucial role for maturation of the immune 

system- from our living environment (hygiene hypothesis). In addition, some studies have 

observed increased autoimmune antibodies prior to T1DM diagnosis and have suggested 

that altered microbiota composition or microbial output and subsequent initiation of 

inflammatory events accelerates onset of T1DM. Please see text for details. 
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Figure 2. The role of the gut microbiome in the pathogenesis of cardiometabolic disease. The human gut microbial community is
shaped by a complex interplay between host genetics, diet, and (history of) medication use. Alterations in gut microbiota composition
(e.g., reduced diversity) or microbial output (e.g., LPS subtypes, SCFA production, or bile acid conversion) have been implicated in
development of metabolic diseases such as obesity and T2DM in humans. Although mechanistic evidence for a causal role of the gut
microbiota in the pathophysiology of these diseases in humans is scarce, currently available data suggest that an altered microbiota
composition affects gut barrier function and induces (low-grade) inflammatory events, either locally in the intestine or systemically.
Furthermore, bacterial metabolites including SCFAs and secondary bile acids, which serve important regulatory roles in energy
homeostasis and regulation of peripheral glucose and lipid metabolism, have been hypothesized to be drivers of T2DM development.
T1DM is generally considered to be driven by autoimmune antibodies that specifically destroy insulin-producing b cells in the pancreas.
It has been hypothesized that autoimmune antibody generation is in part consequential to removal of particular microbes, with
a crucial role for maturation of the immune system, from our living environment (hygiene hypothesis). In addition, some studies have
observed increased autoimmune antibodies prior to T1DM diagnosis and have suggested that altered microbiota composition or
microbial output and subsequent initiation of inflammatory events accelerates onset of T1DM. Please see text for details.
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Figure 2: The role of the gut microbiome in the pathogenesis of cardiometabolic disease. 

Systems approach potentially holds the key to establish driving role of the gut 

microbiota in obesity and T2DM

The introduction of DNA sequencing technologies significantly boosted the study of 

complex microbial communities and allowed for taxonomic identification of individual 

microbes. Nevertheless, early sequencing technologies were slow and expensive since large 

genomic fragments had to be cloned into plasmid vectors, transformed into suitable hosts 

for amplification prior to being sequenced229. 

PCR-based, massive parallel sequencing now allows for identification of previously 

undetectable bacteria within complex communities229. In addition, shotgun whole-genome 

sequencing (WGS) approaches have significantly enhanced detection of diversity, increased 

prediction of genes and taxa at species level can be identified230. Although WGS is currently 

more expensive and requires more extensive data analysis, this method is preferred above 

PCR based sequencing. 

High through-put amplicon sequencing of isolated DNA samples or PCR amplification 

of regions within universally conserved 16S rRNA genes has generated an enormous 

amount of data on microbiome composition from different environments and conditions. 

Reference metagenomes of microbes were published in 2012 by the Human Microbiome 

Consortium (HMC) and showed that the dominant microbial taxa in the human gut 
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include Bacteroidetes, Firmicutes, and Proteobacteria, and that species including Bacteroides  

fragilis, Bacteroides melaninogenicus, Enterococcus faecalis, and E. coli are present in the 

majority of healthy human subjects231. It is important to note that taxonomic charac teri-

zation of intestinal microbiota is based on relative (and not absolute) abundance and does 

not always translate into function. In order to effectively understand the impact of the 

microbiome on the host, it is critical to connect compositional to functional studies. This 

can be undertaken with a systems biology approach. 

Systems biology approaches can be used to integrate omics data to untangle driving 

factors underlying gut microbiota composition (figure 3). Additionally, these approaches 

can provide insight in the hierarchy of mechanisms underlying the development of 

metabolic diseases. Taxonomic profiling can identify who’s there, and complementary with 

metagenomic profiling: what are they capable of? Nevertheless, it is important to emphasize 

that the vast amount of data generated by high-throughput sequencing currently surpasses 

the ability to analyse those data with currently available bioinformatics tools.

A study in which the overlap between metagenomics (which microbes are there, and 

what genetic potential do they have) and metatranscriptomics (which genes are highest 

expressed) of the human gut microbiome community was systematically compared, revealed 

that only 41% of microbial transcripts corresponds to microbial genomic abundance232. 

This underscores the importance to move beyond metagenomics in order to understand 

‘what the community is really doing’. Moreover, the importance of post-transcriptional and 

translational regulation and the fact that protein abundance does not correspond with gene 

expression in either eukaryotes or bacteria has to be taken into account233,234. Metaproteomics 

and metabolomics might be the solution to better understand the functional capacities of 

the microbiota. The interpretation of metatranscriptomic and proteomic data is challenging 

due to incomplete information on the gut microbial genomes and proteomes and, hence, 

lack of (gut-specific) reference databases229. Moreover, metatranscriptomics provides only a 

snapshot of the dynamic interactions between host, gut microbiota and environment235. 

An example of the question ‘who´s there’ and more important: ‘who’s active’, comes from 

a study where metaproteomics was combined with taxonomic profiles of gut microbiome 

obtained from obese and non-obese individuals236. This study demonstrated that, despite a 

lower abundance, Bacteroidetes had higher metabolic activity in obese individuals than in 

non-obese individuals. In addition, insulin sensitivity, as estimated by homeostasis model 

assessment (HOMA) index, was positively associated with peptides originating from a group 

of proteins derived from bacteria from the genus Ruminococcus236.

Another approach for the study of microbiota functionality and host–microbiota co-

metabolism is provided by metabolomics, which analyses the small-molecule composition 

of host fluids and tissues to detect gut micobial metabolites236. Metabolomics can be grouped 
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in targeted and untargeted methodologies. With untargeted metabolomics, up to 10.000 

independent spectral features can be measured237. Thus far, however, only one third of 

these spectra can be identified, since translating the signals obtained by mass spectrometry 

to a specific/known chemical structure is still low throughput237. Targeted metabolomics 

is a quantitative technology since it measures known metabolites in clusters with similar 

chemical structure238. This approach has revealed the metabolic syndrome and other 

metabolic diseases are associated with microbial metabolites238. Targeted metabolomics 

has also shown that shifts in microbial gene functions are coupled to shifts in community 

functionality, as has been done by profiling SCFAs239 and bile acids240,241 in obesity and after 

bariatric surgery-mediated weight loss162,153. A systems biology approach with combined 

input of different omics data sets will accelerate our understanding of the contribution of 

the microbiome to human health and metabolic disease. 

(which genes are most highly expressed) of the human
gut’s microbiome community was systematically com-
pared revealed that only % of microbial transcripts
corresponds to microbial genomic abundance ().
This underscores the importance to move beyond
metagenomics to understand “what the community is
really doing.” Moreover, the importance of post-
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known metabolites in clusters with similar chemical
structure (). This approach has revealed that
several microbial metabolites are associated with the
metabolic syndrome in humans and experimental
models (). Targeted metabolomics can also be
applied to test whether shifts in microbial gene
functions are coupled to shifts in community func-
tionality, as has been done by profiling SCFAs ()
and bile acids (, ) in obesity and after bariatric
surgery–mediated weight loss (, ). A systems
biology approach with combined input of different

omics data sets will accelerate our understanding of
the contribution of the microbiome to human health
and metabolic disease.

Conclusions

Since the introduction of next-generation sequenc-
ing techniques, a plethora of studies has shown
striking associations between the composition of
the gut microbiota or gut microbial metabolites in
the development of obesity and diabetes. Never-
theless, only a few studies have provided mecha-
nistic or causal evidence of the pivotal role of the gut
microbiota in the development of metabolic diseases
in humans. The complex interplay between eth-
nicity, host genetics, dietary habits, and medication
use all play an important role in shaping the mi-
crobial community and therefore makes it an in-
triguing yet challenging research field. Inconsistent
application or lack of corrective measures for

Figure 3. The role of systems biology approach in gut microbiome research. Systems
biology approaches that combine patient data with microbiome and microbial metabolite
composition in preintervention and postintervention settings and in large prospective cohorts
of initially healthy subjects will reveal crucial insight in the role of the gut microbiome in
metabolic disease development. Moreover, this strategy will allow for development of tools to
predict metabolic disease development and to specify optimal treatment strategies to tackle
these pathologies.
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Systems biology approaches that combine patient data with microbiome and microbial 

metabolite composition in pre- and postintervention settings and in large prospective cohorts 

of initially healthy subjects will reveal crucial insight in the role of the gut microbiome in 

metabolic disease development. Moreover, this strategy will allow for development of tools 

to predict metabolic disease development and to specify optimal treatment strategies to 

tackle these pathologies. 

Concluding remarks 

Since the introduction of NGS techniques, a plethora of studies has shown striking 

associations between the composition of the gut microbiota or gut microbial metabolites 

in the development of obesity and diabetes. Nevertheless, only few studies have provided 

mechanistic or causal evidence of the pivotal role of the gut microbiota in the development 

of metabolic diseases in humans. The complex interplay between ethnicity, host genetics, 

dietary habits and medication use all play an important role in shaping the microbial 

community and therefore makes it an intriguing yet challenging research field. Inconsistent 

or lack of corrective measures for confounding factors that might underlie changes in the gut 

microbial composition is a challenging aspect of data interpretation in humans. It likely is 

one of the main causes for the low reproducibility of research results between studies. Large 

prospective studies will be of critical importance to answer if gut microbial composition 

is a reflection of the disease itself or if the microbial composition was affected prior to 

disease development and hence was a driving factor. Although studies using antibiotic 

therapy or fecal microbiota transplantation are suggestive of causal linkage between the gut 

microbiota and metabolic disease development, effect size and evidence for causality are still 

marginal. Furthermore, these studies do not provide mechanistic insight in the interplay 

between the gut microbiota and host metabolism. Prospective and intervention studies in 

large human cohorts combined with dedicated mechanistic studies in model systems are 

required to understand if and how gut microbiota affects metabolic disease development. 

Using a multi-omics approach, a deeper understanding of host-microbe, microbe-microbe 

and diet-microbe interactions can be achieved. This will provide insight in the hierarchy of 

mechanisms underlying the development of metabolic diseases and lead to identification of 

a personalized intestinal microbiota signature. This will accelerate development of strategies 

to predict cardiometabolic disease development and, importantly, establish means to develop 

personalized, microbiota-based interventions to tackle metabolic pathologies in humans.
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ABSTRACT

Introduction

The gut microbiome may contribute to the development of obesity. So far, the extent of 

microbiome variation in people with obesity has not been determined in large cohorts and 

for a wide range of Body Mass Index (BMI). Here we aimed to investigate whether the fecal 

microbial metagenome can explain the variance in several clinical phenotypes associated 

with morbid obesity. 

Methods

Caucasian subjects were recruited at our hospital. Blood pressure and anthropometric 

measurements were taken. Dietary intake was determined using questionnaires. Shotgun 

metagenomic sequencing was performed on fecal samples from 177 subjects. 

Results

Subjects without obesity (n=82, BMI 24.7±2.9 kg/m2) and subjects with obesity (n=95, BMI 

38.6±5.1 kg/m2) could be clearly distinguished based on fecal microbiota composition and 

microbial metabolic pathways. A total number of 52 bacterial species differed significantly 

in people with and without obesity. Independent of dietary intake, we found that microbial 

pathways involved in biosynthesis of amino acids were enriched in subjects with obesity, 

whereas pathways involved in the degradation of amino acids were depleted. Machine 

learning models showed that about half of the variance in BMI could be explained by the gut 

microbiome composition and microbial metabolic pathways, compared to 6% of variation 

explained in triglycerides and 9% in HDL.

Conclusion

Based on the fecal microbiota composition, we were able to separate subjects with and 

without obesity. In addition, we found strong associations between gut microbial amino 

acid metabolism and specific microbial species in relation to clinical features of obesity.
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INTROUCTION 

Obesity has become one of the most common and costly chronic disorders worldwide. 

Estimates suggest that 44% of the global population is overweight and more than 300 

million individuals are affected by morbid obesity, defined as body mass index (BMI) over 40  

kg/m2 ref 1. Type 2 diabetes (T2D) and Non-Alcoholic Fatty Liver Disease (NAFLD) are driven 

by the global obesity epidemic and their prevalence is proportional to the increase in BMI1. 

Lack of effective options for long-term weight reduction magnifies the burden of obesity, 

making it one of the greatest public health threats of the 21st century. 

The pathogenesis of obesity may seem an issue of energy imbalance: calories consumed 

more than ongoing energy expenditure. However, emerging evidence suggests that the 

mechanism is more complex than passive accumulation of excess calories. In recent 

years, there have been substantial advances in the understanding of the development of 

obesity including genetics variants, epigenetic modifications, hormonal homeostasis, and 

environmental factors3. The gut microbiota has recently been identified as a potential 

contributing factor in the development of obesity and related morbidities4,5. Studies in 

humans have associated gut microbial alterations with moderate obesity and found lower 

bacterial diversity and gene richness in subjects with moderate obesity6,7,8. In an apparently 

healthy, large population cohort, it was shown that the gut microbiome can explain 

approximately 25% of the variance in BMI. Moreover, models using fecal metagenomics 

data showed superior performance in predicting several human phenotypes, such as BMI 

and plasma lipid levels, compared to models using host genetic or environmental data9. 

However, whether these results can be translated to a population with a wide variety in BMI 

(i.e., from lean to morbid obesity) remains to be investigated. 

We therefore established a cohort of individuals with a broad range of BMI (from lean to 

morbidly obese) to determine the variation in gut microbiota composition and functional 

potential as a function of BMI. Shotgun metagenomic sequencing of fecal samples from 177 

subjects and state of the art machine learning models were used to identify novel metabolic 

pathways and link these pathways to specific microbial species. In addition, we developed 

computational models using gut microbiome data to explain the variance in clinical human 

phenotypes such as BMI, lipid levels, and glucose. We show that almost 50% of the variance 

in BMI can be explained by the fecal metagenome. 
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METHODS

Subject recruitment and sample collection

Caucasian subjects with a wide variety in BMI (18.6 – 60.9 kg/m2) were recruited at our hospital. 

Anthropometric measurements including height, weight, waist, and hip circumference were 

taken. In addition, body fat percentage using bioelectrical impedance and blood pressure 

were measured. Blood samples were taken after an overnight fast for hemoglobin, HbA1c, 

glucose, lipid profile, and creatinine levels. Patients with known diabetes were excluded to 

avoid confounding effects of long-term hyperglycemia or medication use (e.g., metformin) 

on the gut microbiome. In addition, individuals on lipid-lowering medication were also 

excluded. In total, 177 subjects were included (see Table 1 for baseline characteristics). The 

study was executed in accordance with the Declaration of Helsinki and was approved by 

the Academic Medical Center Ethics Committee of the Amsterdam UMC. All participants 

provided written informed consent.

Stool sample collection

In brief, subjects were given a stool collection tube and a safety bag for transport. They were 

asked to bring a fresh stool sample to the research unit within 6 hours after production 

and collection. If this was not possible, subjects were instructed to keep the stool sample in 

their -20°C freezer overnight and to bring it on frozen icepacks to the research unit the next 

morning. Stool samples were stored at -80°C. Information regarding the use of probiotics, 

antibiotic use in the past three months and had diarrhea was registered. All participants 

filled out an online nutritional diary (https://mijn.voedingscentrum.nl/nl/eetmeter) to 

monitor daily caloric intake during a week and average carbohydrates, fat, protein and fibers 

amount was calculated.

Profiling of fecal microbiome composition by shotgun sequencing

Fecal genomic DNA was isolated from 100 mg of feces by 6 cycles of bead beating using 

a modification of the IHMS DNA extraction protocol Q (REF: Costea PI, Nat Biotechnol 

2017: https://www.ncbi.nlm.nih.gov/pubmed/28967887). Briefly, fecal samples were extracted 

in Lysing Matrix E tubes (MP Biomedicals) containing ASL buffer (Qiagen). Cell lysis was 

induced by: 1) homogenization by vortexing for 2 minutes, followed by 2) heating at 90C for 

10 minutes, and 3) three cycles of bead beating at 5.5 m/s for 60 s in a FastPrep®-24 Instrument 

(MP Biomedicals). After a bead-beating cycle, samples were placed on ice for 5 minutes. The 

supernatant was collected after the last bead beating cycle following centrifugation at 4C. 

Steps 2) and 3) described above were repeated one more time after addition of fresh ASL 

buffer. Supernatants from the two centrifugations steps were pooled and a 600 µL aliquot 
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from each sample was purified using the QIAamp DNA Mini kit (QIAGEN) in the QIAcube 

(QIAGEN) instrument using the procedure for human DNA analysis. Samples were eluted 

in 200 µL of AE buffer (10 mmol/L Tris·Cl; 0.5 mmol/L EDTA; pH 9.0). Library preparation 

and sequencing was performed by Novogene. Extracted DNA quality was checked by 

agarose gel electrophoresis and Nanodrop (OD260/OD280). DNA was quantified using a 

Qubit 2.0. After fragmentation and index-containing adaptor ligation, samples were paired-

end sequenced on an Illumina HiSeq (2 x 150 bp). Raw reads were checked using FastQC 

(v.0.11.8) and quality filtered using Trimmomatic (v.0.38). Trimmomatic was used to remove 

adaptors, apply sliding window quality trimming (window width 4 bp, threshold Q-score 

15), and remove reads that, after trimming and adaptor removal, were shorter than 70 bp. 

Paired-end reads that passed the quality filtering were then mapped against the human 

genome (GRch37_hg19) using bowtie2 (v.2.3.4.3). Samtools (v.0.1.19), sambamba (v.0.6.8), 

and bedtools (v.2.26.0) were used to remove the reads that successfully mapped to the human 

genome. The remaining high quality, non-human reads were subsampled to 20 million 

paired-end reads per sample (using seqtk v.1.3) and fed to a humann2 pipeline10 (v.0.11.2). 

For each sample, species-level microbial composition was inferred using MetaPhlaAn211 

(v.2.7.7). After mapping the reads (using bowtie2) against the pangenomes selected based 

on inferred composition, unmapped reads were translated and mapped against the full 

Uniref90 protein database (using diamond v.0.8.38). MetaCyc pathway community-level 

abundance was normalized to copies per million (CPM). 

Statistical analyses

Machine Learning (ML) models were constructed using gradient boosted trees12. To control 

overfitting and random sampling bias, a nested cross-validation structure was implemented 

in all models. For each model iteration, subjects were randomly split into a training set (80% 

of subjects) and a test set (20% of subjects). Hyperparameters were optimized within the 

training set using 5-fold cross-validation. The resulting optimized model was then used to 

predict the outcome on the test set, such that no models were ever trained and tested on the 

same data. This procedure was repeated 50 times per analysis, with different random test/

train set splits. The performance of the model on the test set (i.e., R2 / explained variance for 

regression tasks; area under the ROC curve (AUC) for classification tasks) was recorded for 

each iteration. The final performance of the model was calculated as the average of the 50 

iterations. Each analysis also produced a relative feature importance list, ranking the input 

variables by their importance for predicting the outcome. Two random variables were created 

and added as predictors in each analysis to serve as benchmarks (i.e., any predictor that is 

only as good as a random noise is of no interest). The ML workflows were implemented 

in Python (v.3.7.2), using the scikit-learn (v.0.20.3), numpy (v.1.16.2), pandas (v.0.24.2), 
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matplotlib (v.3.0.3), and xgboost (v.0.82) libraries and executed on a Linux workstation 

running Ubuntu 18.02.LTS. Statistical analysis was performed in R (v.3.5.2). Beta-diversity 

analysis was conducted using the vegan package to calculate Bray-Curtis distances and 

the ‘pcoa’ function of the ape package to perform Principal Coordinate Analysis (PCoA). 

The ggplot2 package was used to produce plots and visualizations. Correction of p-values 

to control the false discovery rate and account for multiple testing was done using the 

Benjamini-Hochberg method13 for the Mann-Whitney U tests and the Bonferroni method 

for the microbe-pathways associations (Spearman’s rho tests).

RESULTS

Gut microbiome phenotype for obesity 

We analyzed intestinal microbiota composition of 95 obese subjects (BMI 38.6±5.1 kg/m2, 

age 47.1±10.8 years) and 82 subjects without obesity (BMI 24.7±2.9 kg/m2, age 53.2±2.1 

years). Principal Coordinate Analysis (PCoA) of between-sample Bray-Curtis distances 

based on the fecal microbiome composition at species level (Figure 1A) and on the fecal 

microbial metabolic pathways (Figure 1B) revealed that subjects grouped together based 

on their obesity status (cutoff BMI either higher or lower than 30 kg/m2). There was a small 

but significant negative association between microbial species alpha diversity (assessed by 

the Shannon index), and BMI (r=-0.181, p=0.0154), as well as a significant difference in the 

Shannon index between subjects with and without obesity (t-test p=0.0092), with obese 

individuals showing lower microbial diversity (Supplementary Figure 1). A total number of 

52 bacterial species (out of the 196 species with mean relative abundance higher than 0.01%) 

differed significantly between subjects with and without obesity (Mann-Whitney U tests, 

after adjusting for multiple comparisons) (supplementary Table 1). 

Next, we determined whether fecal microbiota composition could predict obesity status. 

As shown by the receiver operating characteristic (ROC) curve, we were able to predict 

obesity status using microbial composition with an AUC of 0.82 (Figure 2A). The most 

predictive bacterial species were Actinomyces odontolyticus, Streptococcus australis, Streptococcus 

thermophilus, Collinsella aerofaciens, and Ruminococcus torques (Figure 2B and 2C). The species 

enriched in subjects without obesity were Alistipes shahii, Alistipes senegalensis, Butyrivibrio 

crossotus, Coprococcus eutactus, Oxalobacter formigenes, and several Bacteroidales species 

(Figure 2B and 2C).
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Variable All Non-Obese Obese p-value 

BMI (kg/m2) 32.2 (8.16) 24.7 (2.95) 38.6 (5.17) 5,60E-50

Age (years) 50.9 (9.8) 55.2 (6.3) 47.2 (10.8) 1,32E-08

Waist (cm)] 103.9 (17.9) 91.1 (11.7) 118.3 (11.8) 6,20E-30

Waist Hip Ratio 0.917 (0.09) 0.908 (0.09) 0.929 (0.09) 1,73E-01

HbA1c (mmol/mol) 37.6 (5.5) 37.2 (5.5) 38.0 (5.6) 3,35E-01

Glucose (mmol/l) 5.57 (0.82) 5.38 (0.70) 5.73 (0.89) 4,10E-03

Triglycerides (mmol/l) 1.38 (1.02) 1.05 (0.76) 1.67 (1.12) 3,50E-07

LDL-Cholesterol (mmol/l) 3.19 (0.94) 3.20 (0.79) 3.18 (1.06) 8,93E-01

HDL-Cholesterol (mmol/l) 1.39 (0.42) 1.57 (0.43) 1.22 (0.34) 3,81E-08

Smoking (n) 6 0 6

Dietary intake

Energy (kcal/day) 1767 (1189) 2237 (676) 1550 (1311) 9,32E-04

Protein (g/day) 84.5 (134.3) 82.9 (23.8) 85.2 (162) 9,12E-01

Carbohydrates (g/day) 175.3 (78.8) 233.9 (87.6) 148.1 (57.2) 1,12E-05

Fats (g/day) 46.7 (60.1) 30.6 (24.1) 54.2 (69.7) 1,56E-02

Fiber (g/day) 15.7 (8.5) 22.2 (6.3) 12.8 (7.7) 1,866E-08

Table 1. Baseline characteristics of 177 subjects and comparison between 95 subjects with obesity versus 82 
subjects without obesity. Data is expressed as mean (SD). LDL: low density lipoprotein, HDL: high density lipoprotein. 

subjects without obesity (Fig. 3c). In addition,
histidine degradation and tRNA charging pathways
were depleted in obese subjects compared to sub-
jects without obesity (Fig. 3c). Also, several amino
acid biosynthesis pathways, including those for
L-lysine, L-histidine, L-tryptophan, L-arginine,
L-methionine, S-adenosyl-methionine and
homoserine, were highly enriched in subjects with
obesity (Fig. 3c). Furthermore, metabolic pathways
involved in galactose metabolism and purine
degradation were also enriched in subjects with
obesity compared to subjects without obesity.
Correlation analysis revealed multiple significant
correlations between metabolic pathways and BMI
(Fig. 4). We found that metabolic pathways includ-
ing the superpathway of sulphur oxidation, L-
lysine biosynthesis, superpathway of L-methionine
biosynthesis, the superpathway of purine nucleo-
tide salvage and L-histidine degradation were the
best predictors of obesity status (Fig. 3b).

Metabolic pathway association with gut microbial species

By using a machine learning approach, we next
investigated to what extent the alterations in the
gut microbiome in subjects with obesity were
linked to faecal metabolic pathways. After

adjustment for multiple comparisons (Bonferroni),
several significant associations still remained
(Fig. 4), including positive correlations between
R. torques, Ruminococcus obeum and C. aerofa-
ciens with microbial pathways involved in carbo-
hydrate metabolism for sucrose, rhamnose and
galactose metabolism, and negative correlations
between A. shahii and A. senegalensis with these
pathways (Fig. 4). In addition, R. torques and
S. thermophilius were negatively correlated with
histidine degradation, whereas A. shahii, A. sene-
galensis, Bacteroidales bacterium and Eubacterium
eligens were positively correlated with this path-
way. In addition, the histidine biosynthesis path-
way was negatively correlated with A. shahii and
E. eligens, whereas a strong correlation between
this pathway and C. aerofaciens, L. lactis and
S. thermophilius was observed. In line, when com-
paring the gut microbial metabolic pathways
between subjects with an intermediate BMI (28–
35 kg m�2) and subjects with a high BMI
(>35 kg m�2) revealed that 131 metabolic path-
ways were significantly different. Of the 131 micro-
bial pathways significantly different between
subjects with low vs intermediate BMI, 96 were
also amongst the pathways significantly different
between obese vs nonobese (after P-value

Fig. 1 PCoA plots based on between-subjects Bray–Curtis distance of (a) microbial composition at the species level and (b)
microbial functional pathways. Subjects are coloured according to obesity status. Ellipses define an area 1 standard
deviation away from the group centroids. The per cent of variance explained by each principal coordinate is shown between
brackets.
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Figure 1. PCoA plots based on between-subjects Bray-Curtis distance of A) microbial composition at species level, 
and B) microbial functional pathways. Subjects are colored according to obesity status. Ellipses define an area 1 
standard deviation away from the group centroids. The percent of variance explained by each principal coordinate is 
shown between brackets.
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adjustment for multiple comparisons), including
almost all of the top 20 most predictive microbial
pathways in the obese (BMI > 30 kg m�2) versus
nonobese (BMI < 30 kg m�2) classification models
(Table S3).

Microbiome–phenotype associations

Recently, it has been shown that the gut micro-
biome can be associated with host characteristics
using metagenomic data obtained in as little as a

Fig. 2 Results of ML models differentiating obese from nonobese individuals based on microbial composition. (a) ROC-
AUC; (b) top 20 most predictive species; and (c) box plots stratified by obesity status showing relative abundance [%] of the
top 10 microbial species predictors of obesity.

Gutmicrobiota in obese and lean subjects / A.S. Meijnikman et al.

704 ª 2020 The Association for the Publication of the Journal of Internal Medicine

Journal of Internal Medicine, 2020, 288; 699–710

 13652796, 2020, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/joim

.13137 by C
ochrane N

etherlands, W
iley O

nline Library on [22/01/2023]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License

Figure 2. Results of ML models differentiating obese from non-obese individuals based on microbial composition.  
A) ROC-AUC; B) top 20 most predictive species; and C) boxplots stratified by obesity status showing relative 
abundance [%] of the top 10 microbial species predictors of obesity.

Since there were many significant differences in gut microbial species between subjects 

with a BMI over than 30 kg/m2 compared to subjects with a BMI lower than 30 kg/m2, we 

next investigated whether these significant differences could also be observed when we 

compared subjects with an intermediate BMI (28-35 kg/m2) with subjects with a high BMI 

(>35 kg/m2). Using the Mann Whitney U tests (p-values adjusted for multiple comparisons 

using Benjamini-Hochberg FDR corrections), we observed that 15 microbial species were 

significantly different between the 35 subjects with intermediate BMI and the 75 subjects 

with high BMI. Among the 15 microbial species were 5 of the top 6 most predictive species 

in the obese (BMI > 30) versus non-obese (BMI < 30) classification models, including all the 
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top 3 (A. odontolyticus, S. thermophilus, Granulicatella unclassified, Lactococcus lactis, and C. 

aerofaciens) (supplementary Table 2). 

hundred subjects [8]. In the present study,
machine learning models revealed that 45.5% of
variance in BMI can be explained by the composi-
tion of the gut microbiota and 60% by gut microbial
metabolic pathways (Fig. 5a and b). Interestingly,
the gut microbiome and gut microbial metabolic
pathways could explain the percentage body fat (as

measured by bioimpedance) by 48.5% and 65.5%,
respectively. The top three bacteria that were
positively associated with BMI and body fat per-
centage were Ruminococcus species (q = 0.37,
P < 0.001), C. aerofaciens (q = 0.35, P < 0.001)
and Dorea formicigenerans (q = 0.33, P < 0.001).
Amongst the top three bacteria that were negatively

Fig. 3 Results of ML models differentiating obese from nonobese individuals based on microbial metagenomic functional
pathways. (a) ROC-AUC; (b) top 20 most predictive species; and C) box plots stratified by obesity status showing relative
abundance [counts per million – CPM] of the top 10 microbial functional pathway predictors of obesity.
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Figure 3. Results of ML models differentiating obese from non-obese individuals based on microbial metagenomic 
functional pathways. A) ROC-AUC; B) top 20 most predictive species; and C) boxplots stratified by obesity status 
showing relative abundance [counts per million – CPM] of the top 10 microbial functional pathways predictors of 
obesity. 

Metabolic pathways associated with the obese and non-obese microbiome 

We next investigated the role of fecal microbial metabolic pathways for differentiating subjects 

with and without obesity and observed a ROC AUC of 0.87 for this classification (Figure 3A). 

We found that metabolic pathways including the superpathway of sulfur oxidation, L-lysine 

biosynthesis, superpathway of L-methionine biosynthesis, the superpathway of purine 

nucleotide salvage, and L-histidine degradation were the best predictors of obesity status 
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(Figure 3B and 3C). The superpathway of sulfur oxidation was depleted in subjects with 

obesity compared to subjects without obesity (Fig 3C). In addition, histidine degradation 

and tRNA charging pathways were depleted in obese subjects compared to subjects without 

obesity (Figure 3C). Also, several amino acid biosynthesis pathways, including those for 

L-lysine, L-histidine, L-tryptophan, L-arginine, L-methionine, S-adenosyl-methionine and 

homoserine, were highly enriched in subjects with obesity (Figure 3C). Furthermore, 

metabolic pathways involved in galactose metabolism and purine degradation were also 

enriched in subjects with obesity compared to subjects without obesity. Correlation analysis 

revealed multiple significant correlations between metabolic pathways and BMI (Figure 4). 

We found that metabolic pathways including the superpathway of sulfur oxidation, L-lysine 

biosynthesis, superpathway of L-methionine biosynthesis, the superpathway of purine 

nucleotide salvage and L-histidine degradation were the best predictors of obesity status 

(Figure 3B). 

Metabolic pathways association with gut microbial species

By using a machine learning approach, we next investigated to what extent the alterations 

in the gut microbiome in subjects with obesity were linked to fecal metabolic pathways. 

After adjustment for multiple comparisons (Bonferroni), several significant associations 

still remained (Figure 4), including positive correlations between R. torques, Ruminococcus 

obeum, and C. aerofaciens with microbial pathways involved in carbohydrate metabolism 

for sucrose, rhamnose, and galactose metabolism, as well as negative correlations between 

A. shahii and A. senegalensis with these pathways (Fig 4). In addition, R. torques and S. 

thermophilius were negatively correlated with histidine degradation, whereas A. shahii, A. 

senegalensis, Bacteroidales bacterium, and Eubacterium eligens were positively correlated with 

this pathway. In addition, the histidine biosynthesis pathway was negatively correlated with 

A. shahii and E. eligens, whereas a strong correlation between this pathway and C. aerofaciens, 

L. lactis, and S. thermophilius was observed. Comparing the gut microbial metabolic pathways 

between subjects with an intermediate BMI (28-35 kg/m2) and subjects with a high BMI 

(>35 kg/m2) revealed that 131 metabolic pathways were significantly different. Of the 131 

microbial pathways significantly different between subjects with low vs intermediate BMI, 

96 were also among the pathways significantly different between obese vs non-obese (after 

p-value adjustment for multiple comparisons), including almost all of the top 20 most 

predictive microbial pathways in the obese (BMI > 30 kg/m2) versus non-obese (BMI < 30 

kg/m2) classification models (supplementary Table 3).
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associated with BMI were A. shahii (q = �0.35,
P < 0.001), A. senegalensis (q = �0.35, P < 0.001)
and B. bacterium (q = �0.36, P < 0.001). In addi-
tion, the top three pathways that were positively
associated with BMI included L-histidine biosyn-
thesis (q = 0.45, P < 0.001), L-lysine biosynthesis
(q = 0.5, P < 0.001) and galactose degradation
(q = 0.47, P < 0.001). Pathways that were nega-
tively correlated with BMI and body fat percentage
were as follows: L-histidine degradation
(q = �0.51, P < 0.001) and tRNA charging
(q = �0.3, P < 0.001). We next investigated
whether the variance in frequently used clinical
phenotypes could be explained by the gut micro-
biome composition and microbial pathways. In
addition, almost 50% of the variance in waist
circumference could be explained by the gut
microbiome, whereas the variance in triglycerides
and high-density lipoprotein (HDL) could be
explained for 6% and 9%, respectively (Fig. 5). In
contrast, the variance in low-density lipoprotein,

glycated haemoglobin and fasting glucose could
not be explained by the gut microbiome.

Discussion

In this study, we revealed microbial metagenomic
signatures of obesity by using shotgun metage-
nomics for subjects with a wide variety in BMI (i.e.
from lean to morbid obesity). We could accurately
separate subjects with and without obesity based
on faecal metagenomic data. In total, 52 gut
microbial species differed significantly between
subjects with and without obesity, which enabled
a separation of the groups with an accuracy of
0.82. In line with previous studies [5, 7, 13, 14],
species belonging to the phylum Bacteroidetes
(Alistipes shahii and Alistipes senegalensis) were
depleted and species belonging to the phylum
Firmicutes (Ruminococcus torques, Ruminococcus
obeum and Dorea tormicigenerans) were enriched
in subjects with obesity compared to subjects

Fig. 4 Correlation (Spearman’s rho) between the top 20 microbial and the top 20 microbial functional pathways that were
the best predictors of obesity status. Bottom and right-side annotations show the correlations between these microbes/
pathways and BMI. All P-values are adjusted for multiple comparisons using the Bonferroni correction.
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Figure 4. Correlation (Spearman’s rho) between the top 20 microbial and the top 20 microbial functional pathways 
that were the best predictors of obesity status. Bottom and right-side annotations show the correlations between 
these microbes/pathways and BMI. All p-values are adjusted for multiple comparisons using the Bonferroni correction.

 

Microbiome-phenotypes associations 

Recently, it has been shown that the gut microbiome can be associated with host characteristics 

using metagenomics data obtained in as little as a hundred subjects14. In the present study, 

machine learning models revealed that 45.5% of variance in BMI can be explained by the 

composition of the gut microbiota and 60% by gut microbial metabolic pathways (Figure 

5A, 5B). Moreover, the gut microbiome and gut microbial metabolic pathways could explain 

the percentage body (measured by BIA), for respectively 48.5% and 65.5%. The top three 

bacteria that were positively associated with BMI and body fat percentage were Ruminococcus 

species (rho=0.37, p<0.001), C. aerofaciens (rho=0.35, p<0.001) and Dorea formicigenerans (rho 

= 0.33, p<0.001). Among the top three bacteria that were negatively associated with BMI 

were A. shahii (rho=-0.35, p<0.001), A. senegalensis (rho=-0.35, p<0.001) and B. bacterium (rho=-

0.36, p<0.001). In addition, the top three pathways that were positively associated with BMI 

included L-histidine biosynthesis (rho=0.45, p<0.001), L-lysine biosynthesis (rho=0.5, p<0.001) 

and galactose degradation (rho=0.47, p<0.001). Pathways that were negatively correlated with 

BMI and body fat percentage were: L-histidine degradation (rho=-0.51, p<0.001) and tRNA 

charging (rho=-0.3, p<0.001). We next investigated whether the variance in frequently used 

clinical phenotypes could be explained by the gut microbiome composition and microbial 
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pathways. In addition, nearly 50% of the variance in waist circumference could be explained 

by the gut microbiome whereas the variance in triglycerides and high-density lipoprotein 

(HDL) could be explained for respectively 6% and 9% (Figure 5). In contrast, the variance in 

low-density lipoprotein, ycated hemoglobin and fasting glucose could not be explained by 

the gut microbiome. 

without obesity. In contrast, one of the first papers
on microbiota in severe obesity showed that a
cluster of microbial species including Lach-
nospiraceae, Ruminococcaeceae and other Firmi-
cutes indeed decreased with increasing trunk fat,
whereas Ruminococcus was negatively associated
with BMI [14]. Bearing in mind that these bacterial
species have previously been linked to moderate
and even morbid obesity [7, 15], our results indi-
cate a possible robust consensus signature for the
obese microbiome.

Despite contrasting observations at the species
level, a Firmicutes-dominated microbiome has
been linked to increased genetic potential for
nutrient transporters [15]. In addition, this has
been associated with an increased expression of
enzymes involved in complex carbohydrate degra-
dation and fermentation [16]. The latter has been
independently linked to increased energy harvest
from diet [17]. Consistent with previous reports [7,
14], we found that metabolic pathways involved in

carbohydrate metabolism, including sucrose,
galactose and rhamnose metabolism, were highly
enriched in subjects with obesity compared to
subjects without obesity. By using a machine
learning approach, we were able to link faecal
metabolic pathways to gut microbial species.
C. aerofaciencs, R. torques and R. obeum were
strongly correlated with microbial pathways
involved in carbohydrate metabolism, whereas
A. shahii and A. senegalensis were negatively cor-
related with these pathways. Previously, we have
shown that some of these bacterial species (e.g.
R. torques) were altered upon lean donor FMT,
which was associated with improvements in insu-
lin sensitivity upon lean donor FMT underscoring
potential causality [18]. Moreover, our findings are
in line with previous observations and suggest that
the gut microbiome of subjects with obesity may
have a higher capacity for carbohydrate utilization
and derive more energy from diet compared to
subjects without obesity [6]. However, to what
extent these specific microbial species play a

Fig. 5 Explained variance by nested cross-validation ML models in human clinical phenotypes by (a) microbes and (b)
microbial functional pathways.
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Figure 5. Explained variance by nested cross-validation ML models in human clinical phenotypes by A) microbes; 
and B) microbial functional pathways. 

DISCUSSION

In this study, we revealed microbial metagenomic signatures of obesity by using shotgun 

metagenomics for subjects with a wide variety in BMI (i.e., from lean to morbid obesity). We 

could accurately separate subjects with and without obesity based on fecal metagenomics 

data. In total, 52 gut microbial species differed significantly between subjects with and 

without obesity, which enabled a separation of the groups with an accuracy of 0.82. In line 

with previous studies 8,15,16, species belonging to the phylum Bacteroidetes (Alistipes shahii 
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and Alistipess senegalensis) were depleted and species belonging to the phylum Firmicutes 

(Ruminococcus torques, Ruminococcus obeum, and Dorea tormicigenerans) were enriched in 

subjects with obesity compared to subjects without obesity. In contrast, one of the first 

papers on microbiota in severe obesity showed that a cluster of microbial species including 

Lachnospiraceae, Ruminococcaeceae, and other Firmicutes indeed decreased with increasing 

trunk fat, whereas Ruminococcus was negatively associated with BMI17. Bearing in mind that 

these bacterial species have previously been linked to moderate and even morbid obesity8, 

our results indicate a possible robust consensus signature for the obese microbiome.

Despite contrasting observations at the species level, a Firmicutes-dominated micro-

biome has been linked to increased genetic potential for nutrient transporters18. In 

addition, this has been associated with increased expression of enzymes involved in complex 

carbohydrate degradation and fermentation19. The latter has been independently linked 

to increased energy harvest from diet20. Consistent with previous reports8,17, we found that 

metabolic pathways involved in carbohydrate metabolism, including sucrose, galactose, and 

rhamnose metabolism, were highly enriched in subjects with obesity compared to subjects 

without obesity. By using a machine learning approach, we were able to link fecal metabolic 

pathways to gut microbial species. C. aerofaciencs, R. torques, and R. obeum, correlated strongly 

with microbial pathways involved in carbohydrate metabolism, whereas A. shahii and A. 

senegalensis were negatively correlated with these pathways. Previously we have shown that 

some of these bacterial species (e.g., R. torques) were altered upon lean donor FMT, which 

was associated with improvements in insulin sensitivity upon lean donor FMT underscoring 

potential causality21. Moreover, our findings are in line with previous observations and 

suggest that the gut microbiome of subjects with obesity may have a higher capacity for 

carbohydrate utilization and derive more energy from diet compared to subjects without 

obesity22. However, to what extent these specific microbial species play a causal role in 

increased carbohydrate utilization in humans needs to be further investigated. 

We next investigated differences in fecal metabolic pathways between subjects with 

and without obesity. Pathways involving biosynthesis of several amino acids, including 

L-histidine, L-lysine, and L-tryptophan were highly enriched in subjects with obesity, whereas 

pathways involved in the degradation of these amino acids, in particular L-histidine, were 

depleted. Interestingly, these are all essential amino acids, that cannot be synthesized by the 

human body, suggesting that alterations in dietary intake is responsible for these differences. 

Nevertheless, protein intake was only slightly higher in subjects with obesity compared to 

subjects without obesity. This suggests that the microbiome of subjects with obesity has 

a higher potential to produce several amino acids compared to subjects without obesity 

but have reduced capacity of catabolizing specific amino acids. Although, previous reports 

have linked amino acid metabolism to obesity8,17,23, we show very strong associations (i.e., 
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rho up to 0.5) between BMI and fecal microbiota metabolic pathways related to amino 

acid biosynthesis. Interestingly, histidine metabolism has recently been identified as a direct 

contributor to the development of insulin resistance via microbial conversion of this dietary 

amino acid into imidazole propionate24. To further investigate which microbial species are 

linked to fecal metabolic pathways, we used a machine learning approach in and found 

several strong associations between microbial species and microbial amino acid metabolism. 

However, despite these strong associations, to what extent these microbial species are 

capable of increased histidine production or degradation remains to be demonstrated. Thus, 

more insight is needed to clarify the role of these specific microbial species and subsequent 

alterations in histidine catabolism in the development of obesity. 

Fecal metagenomic data was recently shown to improve prediction accuracy for clinical 

features of obesity, including glucose, BMI, and lipid levels, compared to models that use 

only host genetic and environmental data9. In our cohort, 50% of the variance in BMI and 

body fat percentage could be explained by gut microbiota composition, whereas metabolic 

pathways could explain almost 60% of this variance. The explained variance in BMI in our 

study is almost twice as high compared to the study of Rothschild and colleagues9. This 

discrepancy is likely to be explained by differences in inclusion criteria between studies. 

In our cohort, subjects with a wide range in BMI (18-60 kg/m2) were included, whereas 

the Rothschild study included subject with a narrower mean BMI (26 ± 5.2 kg/m2). In 

addition, the gut microbiome was able to explain the variance in triglycerides and HDL 

for respectively 6% and 9%, which is in line with a previous observation that showed that 

the gut microbiome could explain the variance in triglycerides by 6% and HDL by 4%25. 

Nevertheless, we could not explain the variance in glycated hemoglobin and fasting glucose 

by the gut microbiome composition. This observation is in line with a recent study that 

showed that neither taxonomic profiles nor functional capacity is significantly associated 

with fasting glucose levels26. 

Our study has limitations. We note that results regarding gut microbiome alterations 

may be confounded by unmeasured environmental factors. Moreover, the prediction 

models cannot be used to determine causality since gut microbiota composition can 

both affect and be affected by host phenotypes. Another limitation of our study is that we 

included only Caucasian subjects, therefore it is not possible to extrapolate these findings 

to other ethnicities. Nevertheless, our results are in line with a study conducted in China8. 

Despite the strong link between alterations in amino acid metabolism and obesity, we could 

not support these findings with alterations in plasma metabolites since this data was not 

available. Another limitation is the relatively small sample size. However, only recently it has 

been demonstrated that clinical features of obesity can be accurately predicted using fecal 

metagenomics data of only a few hundred subjects. Nevertheless, cohorts including subjects 
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with BMI over 60 kg/m2 and available shot gut microbiota data are scarce. We note that 

according to the dietary questionnaires, subjects with obesity had a lower energy, fiber and 

carbohydrate intake compared to subjects without obesity. Overall, macronutrient intake 

was in line with previous findings of our group27. Nevertheless, it is important to consider 

that subjects with overweight and obesity underreport their dietary intake ranging from 20-

50%, making it therefore a frequently recognized problem28.  Another limitation regarding 

food intake is that we did not obtained any data on the use of food additives such as artificial 

sweeteners. It is well known that next to macronutrients, artificial sweeteners are capable of 

inducing both compositional and functional changes in the gut microbiome29,30. 

In conclusion, we could separate subjects with and without obesity based on their 

microbiome composition and we identified 52 gut microbial species with differential 

abundance in these subjects. We found that gut microbiome composition could explain 

more than 50% of the variance in clinical features of obesity such as BMI, waist, HDL and 

triglycerides. In addition, we observed differences in fecal microbial metabolic pathways 

in people with and without obesity, and particularly strong associations between amino 

acid metabolism, microbial species and obesity. These results identify new bacterial species 

that are altered in subjects with morbid obesity and also contribute to a possible robust 

consensus signature for the obese and lean microbiome.
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ABSTRACT

Prevalence of obesity and associated diseases, including type 2 diabetes mellitus, dysli-

pi daemia and non-alcoholic fatty liver disease (NAFLD), are increasing. Underlying 

mechanisms, especially in humans, are unclear. Bariatric surgery provides the unique 

opportunity to obtain biopsies and portal vein blood-samples. The BARIA Study aims to 

assess how microbiota and their metabolites affect transcription in key tissues and clinical 

outcome in obese subjects and how baseline anthropometric and metabolic characteristics 

determine weight loss and glucose homeostasis after bariatric surgery.

We phenotype patients undergoing bariatric surgery (predominantly laparoscopic 

Roux-en-Y gastric bypass), before weight loss, with biometrics, dietary and psychological 

questionnaires, mixed meal test (MMT) and collect fecal-samples and intra-operative 

biopsies from liver, adipose tissues and jejunum. We aim to include 1500 patients. A subset 

(approximately 25%) will undergo intra-operative portal vein blood-sampling. Fecal-

samples are analyzed with shotgun metagenomics and targeted metabolomics, fasted and 

post prandial plasma-samples are subjected to metabolomics, and RNA is extracted from 

the tissues for RNAseq-analyses. Data will be integrated using state-of-the-art neuronal 

networks and metabolic modeling. Patient follow-up will be ten years. Preoperative MMT 

of 170 patients were analysed and clear differences were observed in glucose homeostasis 

between individuals. Repeated MMT in 10 patients showed satisfactory intra-individual 

reproducibility, with differences in plasma glucose, insulin, and triglycerides within 20% of 

the mean difference. 

The BARIA study can add more understanding in how gut-microbiota affect meta bo-

lism, especially with regard to obesity, glucose metabolism and NAFLD. Identification of 

key factors may provide diagnostic and therapeutic leads to control the obesity-associated 

disease epidemic.
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INTRODUCTION

Obesity is on the rise. At the current pace, more than one billion adults will be obese by 

20301. An increase in obesity-associated diseases will follow in its wake, including type 2 

diabetes mellitus (T2DM), dyslipidaemia, non-alcoholic fatty liver disease (NAFLD) and 

cardiovascular disease. However, it has been challenging to identify underlying molecular 

mechanisms contributing to cardiometabolic diseases, in part because T2DM has several 

subclasses2. Several pathways have been suggested to contribute to obesity and impaired 

glucose control, such as the immune system and gut microbiota3–5. They include short chain 

fatty acids, bile acids, amino acids derived metabolites, neural pathways, and lymphoid cells. 

Interestingly, these have also been shown to be involved in glucose metabolism and the 

development of NAFLD, which illustrates the interconnectivity of cardiometabolic diseases. 

Moreover, a chronic low-grade inflammation can be measured in individuals with obesity, 

possibly caused by a disturbance in the intestinal microbiota composition. Faecal microbiota 

transplantation (FMT) from human subjects to mice transferred adiposity phenotype 

suggesting that, in mice, the microbiota may be a contributing factor6. In humans, the effect 

of FMT is less significant, yet insulin sensitivity can improve for a short while in individuals 

with metabolic syndrome after infusion of intestinal microbiota from lean donors7.

The relative contribution of different organs (liver, adipose tissue and gut) to whole 

body metabolism as well as immunological tone on weight loss in relation to improvement 

of insulin sensitivity is not known. Neither are the mechanisms that trigger the innate and 

adaptive (intestinal) immune system by altered intestinal microbiota, or their effects on 

metabolism. Most interventions aimed at losing weight in individuals with morbid obesity 

have little effect, except for bariatric surgery8. Bariatric surgery is also the most effective 

intervention to reduce obesity-related morbidity and mortality9. In this regard, one of the 

most common and well-studied bariatric procedures is laparoscopic Roux-en-Y gastric 

bypass (LRYGB). The increased insulin sensitivity found shortly after LRYGB, even before 

significant weight loss is obtained, suggests immediate systemic changes in metabolism 

upon surgery, which are long standing, as even ten years after surgery beneficial effects on 

glucose metabolism, lipids and blood pressure can be seen10,11. Although being an important 

treatment for over forty years, the mechanisms behind the beneficial effect of bariatric 

surgery have been elusive. They may include bile flow alteration, reduction of gastric size, 

anatomical rearrangement and altered flow of nutrients, vagal manipulation and enteric 

gut hormone modulation12. Although some studies have demonstrated that intestinal 

microbiota are altered after bariatric surgery as well, the prospective value of (baseline) 

intestinal microbiota composition and the relation with the (diet derived) metabolites that 

these bacteria produce has never been investigated at a larger scale13,14.
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Significant differences in the response to bariatric surgery can be observed, both in 

weight loss, obesity related morbidities and psychological factors, including self-esteem, risk 

of addiction and quality of life15–18. Despite some methodological limitations, psychological 

studies have shown improvements in psychopathology, eating disorders, depressive symptoms, 

body image and social functioning after bariatric surgery19. Systems biology models can 

provide an advanced reconstruction of individuals’ metabolism at different organ levels in 

patients with morbid obesity. They could provide a valuable tool in predicting individuals’ 

outcomes of bariatric surgery and hereby develop a personalized medicine approach for this 

disease. First steps in utilising this technique to study altered metabolism in obesity related 

diseases have produced interesting results20–23. 

patients prospectively in an attempt to identify
mechanisms affecting the surgical outcome.

Methods

Study design

We include subjects that are patients with morbid
obesity scheduled for bariatric surgery. From
September 2016 until the end of 2018, the study
was performed at the former MC Slotervaart (Ams-
terdam) and is now continued, after closure of that
hospital, by the same surgical group and research
team at the Spaarne Gasthuis hospital (Hoofddorp)
in the Netherlands. The study protocols were
approved by the Ethical Review Board of the Aca-
demic Medical Center, Amsterdam, (approval code:
NL55755.018.15), and all patients that have been
(and will be) included provided informed consent.
Preoperative screening, surgery and follow-up are
performed following institutional procedure proto-
cols. All patients are screened preoperatively by a
bariatric surgeon, an internist, a dietician and a

psychologist. We aim to include predominantly
LRYGB procedures. In a shared decision-making
process, surgeon and patient decide for the bariatric
procedure type: LRYGB, laparoscopic omega-loop
gastric bypass (LOGB) or laparoscopic sleeve gas-
trectomy (LSG), which, in our bariatric surgery
centre, has resulted in more than 90% LRYGB of all
surgeries in thepast tenyears.All LRYGBprocedures
are standardized, with approximatedmeasurements
of 4 9 8 cm gastric pouch, 50 cm biliopancreatic
limb,150cmalimentary limb[24]. TheLOGBismade
with a longer gastric pouch and a longer biliopancre-
atic limb of approximately 200 cm. The LSG is
calibrated with a 34 Charri�ere bougie with the staple
line starting at approximately 2 cm from the pylorus.

Study population

Patients are screened at the outpatient clinic (MC
Slotervaart hospital, Spaarne Gasthuis hospital)
after being approved for bariatric surgery. Screening
started in September 2016. We aim to include 1500

Fig. 1 A systems biology approach, identifying gut microbial, immunological and metabolic markers in a large and well-
phenotyped bariatric surgery cohort: the BARIA study.

BARIA longitudinal cohort study / C. C. Van Olden et al.
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Figure 1. A systems biology approach, identifying gut microbial, immunological and metabolic markers in a large and 
well phenotyped bariatric surgery cohort: the BARIA study.

We aim to perform a systems biology approach, as schematically depicted in figure 1,  

identifying gut microbial, immunological and metabolic markers in a large and well pheno-

typed bariatric surgery cohort (BARIA study) to identify signalling pathways that can affect 
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metabolic circuits in humans. Our study aims to identify novel pathways in the pathogenesis 

of obesity, T2DM and NAFLD, taking the gut-brain axis into account as well, which may be 

targets for drug development. Finally, we will follow the patients prospectively in an attempt 

to identify mechanisms affecting the surgical outcome. 

METHODS

Study design

We include subjects that are patients with morbid obesity scheduled for bariatric surgery. 

From September 2016 until the end of 2018 the study was performed at the former MC 

Slotervaart (Amsterdam) and is now continued, after closure of that hospital, by the 

same surgical group and research team at the Spaarne Gasthuis hospital (Hoofddorp) in 

the Netherlands. The study protocols were approved by the Ethical Review Board of the 

Academic Medical Center, Amsterdam, (approval code: NL55755.018.15) and all patients 

that have been (and will be) included provided informed consent. Preoperative screening, 

surgery and follow up are performed following institutional procedure protocols. All 

patients are screened preoperatively by a bariatric surgeon, an internist, a dietician, and a 

psychologist. We aim to include predominantly LRYGB procedures. In a shared-decision 

making process, surgeon and patient decide for the bariatric procedure type: LRYGB, 

laparoscopic omega-loop gastric bypass (LOGB) or laparoscopic sleeve gastrectomy (LSG), 

which, in our bariatric surgery centre, has resulted in more than 90% LRYGB of all surgeries 

in the past ten years. All LRYGB are standardized, with approximated measurements of 4x8 

cm gastric pouch, 50 cm biliopancreatic limb, 150 cm alimentary limb24. The LOGB is made 

with a longer gastric pouch and a longer biliopancreatic limb of approximately 200 cm. The 

LSG is calibrated with a 34 Charrière bougie with the staple line starting at approximately 

2 cm from the pylorus. 

Study Population

Patients are screened at the outpatient clinic (MC Slotervaart hospital, Spaarne Gasthuis 

hospital) after being approved for bariatric surgery. Screening started in September 2016. 

We aim to include 1500 patients. Subjects are considered eligible for participation if they 

meet following criteria: 

Inclusion 

- Male and female patients scheduled for primary bariatric surgery recruited from an 

experienced Dutch bariatric surgery clinic. 
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- Body mass index (BMI) ≥40 kg/m2, or: BMI ≥35 kg/m2 with obesity related  

co-morbidity.

- Recent history of supervised attempts to lose weight.

- Age 18 to 65 years.

- Ability to provide informed consent.

Exclusion

- Primary lipid disorder.

- Known genetic basis for insulin resistance or glucose intolerance.

- Psychiatric conditions. 

- Coagulation disorders (patient reported, or prolonged prothrombin time or activated 

partial thromboplastin time).

- Uncontrolled hypertension (blood pressure > 150/95 mmHg).

- Renal insufficiency (creatinine > 150 umol/L).

- Excessive alcohol intake (> 14 units/week, patient reported).

- Pregnancy, breastfeeding.

Outcome measures

For the characterization of subjects before surgery we have chosen variables that are linked 

to obesity and obesity associated diseases. For clinical follow-up we chose variables that can 

be tested minimally invasive (only venepuncture) and which can be easily reproduced, at 

low cost, without extensive training in a Western hospital. The reason for this is twofold. 

First, we aimed to minimize the demand of our study subjects. Second, our results need to 

be reproducible and applicable in other settings without the need for major investments 

in equipment or logistics. That way our project can benefit the greatest number of people 

while still remain ambitious in aiming to discover new mechanisms.

The included patients undergo the repetitive measurements detailed in table 1. 
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Visit Type of measurement Specific values
Biological samples stored  
in biobank

- baseline
- 1 year
- 2 years
- 5 years*
- 10 years*

demographic age, sex, medical history, medication use, 
history of obesity, history of smoking and 
alcohol, education level, employment 
status, anticonception use, physical 
activity

biometric height, weight, waist- and hip 
circumference, temperature, blood 
pressure, pulse, non-invasive 
haemodynamics (stroke volume, cardiac 
output, systemic vascular resistance), 
bioelectrical impedance measurement, 
electrocardiogram

blood haemoglobin, CRP, leukocytes, platelets, 
HbA1c, glucose, electrolytes, kidney 
function, lipid profile, iron, hepatic 
enzymes, thyroid profile, plasma 
metabolites

stored plasma and DNA 
samples
(-80°c)

mixed meal test glucose, insulin, triglycerides stored plasma samples 
(-80°c)

dietary questionnaire Satiety (visual analogue scale)25, dietary 
intake last 3 days prior to 24h faeces 
collection

psychological 
questionnaire

see table 2.

morning faecal 
samples 
24h faeces 

gut microbiota composition and faecal 
metabolites (scfa),
bile acids and caloric bomb

stored samples
(-80°c)

gingival swab oral microbiota stored samples
(-80°c)

urine albumin and creatinine, metabolites stored samples
(-80°c)

-  primary 
operation

- re-surgery

liver biopsy snap frozen (liquid N2) and formaldehyde stored samples
(-80°c) and paraffin

subcutaneous adipose 
tissue

snap frozen (liquid N2) and formaldehyde stored samples
(-80°c) and paraffin

visceral adipose tissue snap frozen (liquid N2) and formaldehyde stored samples
(-80°c) and paraffin

omental adipose tissue snap frozen (liquid N2) and formaldehyde stored samples
(-80°c) and paraffin

portal vein blood 
(subset)

plasma metabolites and proteomics stored plasma samples 
(-80°c)

small intestine biopsy 
(LRYGB only)

snap frozen (liquid N2) and formaldehyde stored samples
(-80°c) and paraffin

- 6 weeks
- 6 months

biometric weight, waist- and hip circumference, 
blood pressure and pulse

blood haemoglobin, CRP, leukocytes, platelets, 
HbA1c, glucose, electrolytes, kidney 
function, lipid profile, iron, hepatic 
enzymes, thyroid profile, plasma 
metabolites

stored plasma samples 
(-80°c)

- 2 weeks
- 6 weeks
- 6 months

morning faeces gut microbiota composition and faecal 
metabolites (scfa)

stored samples
(-80°c)

urine albumin and creatinine, metabolites stored samples
(-80°c)

Table 1. Overview of visits and measurements. BARIA longitudinal cohort study. * at 5 and 10 years no mixed meal 
test will be performed
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For the physicians and researchers, we made a standard operating procedure. The 

psycho logical measures were assessed with Dutch versions of validated questionnaires, 

presented in table 2. Tissue biopsies are obtained during operation of three adipose 

tissue compartments: subcutaneous (from one of the laparoscopic incisions in the upper 

abdomen), greater omentum, and visceral fat (omental appendices of the transverse colon); 

from the diaphragmatic surface of segment three or five of the liver; and from the jejunum 

at the site of the jejuno-jejunostomy, approximately 50 cm from the Treitz ligament. The 

jejunum biopsy cannot be obtained during LOGB or LSG, as those operation techniques, 

unlike LRYGB, do not involve a jejuno-jejunostomy. Blood sample of the portal vein is taken 

at the beginning of the surgery, only if considered safe by the surgeon, mainly depending 

on the amount of fatty tissue surrounding the hepatoduodenal ligament. Biopsies are 

assessed for histology (paraffin embedded), gene regulation (RNA-sequencing) and protein 

expression (immunoblotting). NAFLD status is determined in histology of liver biopsies 

and individually scored by members of Dutch Liver Pathology Panel, after training sessions, 

while difficult or borderline cases are discussed during panel meetings for consensus. SAF 

scores are determined, separately assessing steatosis (S), activity (A, the sum of hepatocyte 

ballooning and lobular inflammation), and fibrosis (F)26. From the beginning of 2019 we 

added routine preoperative ultrasound of the gallbladder. Hollow needle subcutaneous fat 

aspirate biopsy under local anesthesia (peri-umbilical region) is optional at follow up. Of 

note, the tissues collected during surgery comprise tissue that is thought to play a crucial 

role in glucose metabolism and can be biopsied with minimal risk to the patient being small 

intestine, adipose tissue and liver samples. We assess all liver biopsies for NAFLD/NASH, as 

it is the gold standard for diagnosing liver disease.

Plasma metabolites are studied in portal vein blood (fasted) and in both fasted and two 

hours after mixed meal test (MMT) peripheral blood samples. Intestinal immunological cells 

are looked for in GALT tissue (Peyer’s patches), visceral and subcutaneous adipose tissue, 

liver in relation to inflammation gene expression (IL -1β, IL-6, IL-8, IL-18, CXCR2 TNF-α and 

TLR 1, 2, 4, 5 and 6 and IRX 3 and 5 and RNA-sequencing) and in specific innate lymphoid 

cells (ILC), macrophages, T/B-cells and dendritic cells, and peripheral blood. Immunological 

parameters assessed in small-intestinal tissue and adipose tissue were selected for those that 

are linked in literature to have an effect on glucose metabolism and with which we have 

experience in the analysis. Morning faecal samples obtained at several time points will be 

analysed by shotgun sequencing (NovaSeq). Buffycoat samples of peripheral blood are taken 

at baseline for genomic DNA analyses. Cardiac output and peripheral resistance are assessed 

using the Nexfin system, measuring blood pressure beat-to-beat with a small cuff around 

the index finger27. 
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Questionnaire #

Sociodemographic information: place of birth patient, father, mother; number of children; marital status; 
education; occupation.

7

Quality of life (WHO HIV QOL) 2

Change in life 1

Professional support 5

Self-management after Bariatric surgery (BSSQ) 8

TFEQ- hunger scale 9

Center for Epidemiology Studies Depression Scale Revised (CES-D) 20

Impact of Weight on Quality of Life (IWQOL-Lite) 31

Body Image Scale 10

De Jong-Gierveld Loneliness Scale 11

Social Participation Scale 3

SCI Exercise Self-Efficacy 10

Stanford Exercise behaviour 6

Weight Efficacy Lifestyle Questionnaire (WEL-Q) 20

G-Food Craving Questionnaire-Trait (FCQ-T) 21

Quality of Relationship and Relationship ladder 2

Experience in Close Relationships Scale (ECRR-SF) 16

Social Support (SSQSR) 12

Social Support And Diet 10

Social Support And Exercise 13

Personality NEO-FFI (neuroticism and conscientiousness subscales) 12+12

Self-compassion Scale Short Form 12

Rosenberg Self-esteem Questionnaire 10

Chronotype working day 8

Chronotype free day 8

Table 2. Psychological questionnaires. BARIA longitudinal cohort study.

In the case of a non-acute operation more than one month after primary surgery, for 

example for laparoscopic cholecystectomy, new liver and adipose tissue biopsies can be 

obtained, as well as gallbladder and bile from cholecystectomy patients. Gallbladder tissue 

will be assessed for bile acid composition, histology, gene expression (RNA-sequencing) and 

protein expression.

The two hour, seven sample oral MMT, as described by Dalla Man et al. is repeated several 

times over 2 years follow up28. It consists of two Nutridrink compact 125ml (Nutricia®), 

containing 23.3 grams fat, 74.3 grams carbohydrates (of which 38.5 grams sugar) and 24.0 

grams protein. The patients receive this meal after fasting for a minimum of nine hours. 

Time point zero is the moment the patient fully consumed the meal. Blood samples are 

drawn via intravenous line at baseline, 10, 20, 30, 60, 90 and 120 minutes and analysed for 

insulin sensitivity / insulin resistance, plasma metabolites and bile acids. 
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Data handling and analysis

Data are collected on data collecting forms and entered after validation in a computer 

system for subsequent tabulation and statistical analysis. All research and medical data is 

kept strictly confidential and registered under a unique study code. Only the researchers 

that are involved in this study are able to see the data and to identify a participant. Study 

material will be stored for a period of 20 years after study completion. Data from the first 

approximately 100 patients is analyzed to check data quality and logistics (first data-freeze). 

A first interim analysis will be performed on data of the first approximately 300 patients 

and the primary analysis will be performed on data of 500 patients (second and third data- 

freeze). We intend to continue inclusions till 1500 for additional analyses and validation 

of primary findings. The data are analyzed using a range of different techniques, including 

being used as input for metabolic modeling and for phenotyping the patients using machine 

learning algorithms.

Study integrity, monitoring, safety

The BARIA study is conducted according to the principles of the Declaration of Helsinki 

(October 2013) and in accordance with the Medical Research Involving Human Subjects Act 

(WMO). All adverse events reported by the patients or observed by the investigator or staff 

will be recorded. All adverse events will be followed until they have abated, or until a stable 

situation has been reached. Depending on the event, follow up may require additional tests 

or medical procedures as indicated.

Validation of the mixed meal test

Next to the elaborate analysis of data focussing on the aims of the BARIA study, we used the 

results of the preoperative MMT of the patients included and operated in the first two years 

of the study to validate the reproducibility of the MMT-stimulated postprandial glucose, 

triglycerides and insulin curves. We therefore stratified these results by classifications of 

glycaemic control as formulated in the American Diabetes Association (ADA) criteria: 

normoglycemia (fasting glucose (FG) <100mg/dL; <5.6mmol/L), impaired FG (100-125mg/

dL; 5.6-6.9mmol/L) and / or increased haemoglobin A1c (5.7-6.4%; 39-47mmol/mol) and 

diabetes mellitus (FG ≥126mg/dL; ≥7.0mmol/L)29. Of all measurements during MMT in 

these patients there were 2.1% missing values for glucose, 5.5% for insulin and 1.8% for 

triglycerides. We repeated the preoperative MMT after one week in ten randomly selected 

patients. Of all repeat measurements of those ten patients there were 2.9% missing values 

for glucose, 5.7% for insulin and none for triglycerides. For validating the MMT, imputation 

of predictive mean matching was performed for all missing values.
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RESULTS

Inclusion of patients in the BARIA study began in September 2016. During the first two 

years of the BARIA study, portal vein sampling was performed in 32% of the surgeries. Types 

of procedure were 94% LRYGB, 6% LOGB and no LSG. No serious adverse events occurred. 

Baseline characteristics and MMT results of the first 170 patients included in this two 

year period are presented in table 3. 

Healthy IFG IHbA1c Comb T2DM

n 57 21 19 26 47

age (years) 41.4 (11.1) 46.8 (11.7) 44.6 (9.5) 49.2 (9.2) 49.5 (10.2)

sex (female) 45 (78.9) 20 (95.2) 17 (89.5) 16 (61.5) 31 (66.0)

BMI 39.5 (3.9) 39.4 (3.1) 40.6 (7.1) 40.6 (3.6) 39.2 (4.5)

hypertension 8 (14.0) 5 (23.8) 3 (15.8) 8 (30.8) 25 (53.2)

Systolic BP (mmHg) 129.5 (16.6) 130.6 (13.6) 134.2 (15.8) 133.2 (12.0) 132.1 (13.7)

Diastolic BP (mmHg) 80.1 (11.3) 80.5 (8.2) 78.1 (13.2) 84.0 (7.9) 82.6 (9.4)

insulin use 10 (21.3)

glucose (mmol/l) 5.1 (0.4) 5.9 (0.2) 5.2 (0.2) 6.1 (0.4) 7.4 (1.5)

insulin (pmol/l) 84.8 (48.0) 89.4 (46.5) 79.2 (37.2) 111.2 (46.9) 180.2 (222.5)

HbA1c (%) 5.31 (0.23) 5.41 (0.19) 5.79 (0.09) 5.88 (0.17) 7.10 (1.14)

HOMA2 IR 1.60 (0.90) 1.71 (0.83) 1.48 (0.67) 2.14 (0.85) 2.44 (1.24)

HOMA2 Beta (%) 125.4 (50.9) 98.1 (37.2) 112.6 (33.9) 105.8 (38.7) 87.3 (37.2)

AUC glucose (mmol/l) 137.1 (109.5) 122.5 (85.9) 194.6 (112.9) 211.7 (105.0) 386.3 (193.7)

AUC insulin (mmol/l) 42.3 (30.4) 46.0 (29.4) 48.7 (21.4) 50.8 (20.8) 37.6 (31.5)

eGFR (MDRD ml/min/1,73m2) 94.5 (18.0) 92.7 (19.8) 95.6 (21.7) 94.7 (19.7) 95.7 (17.6)

ASAT (U/l) 23.6 (4.9) 23.5 (6.5) 25.1 (5.5) 25.3 (4.9) 29.9 (14.0)

ALAT (U/l) 28.6 (13.4) 28.3 (14.7) 33.7 (18.5) 30.4 (10.1) 42.1 (25.8)

Cholesterol (mmol/l) 4.6 (1.0) 5.1 (1.2) 5.2 (1.0) 4.8 (1.1) 4.1 (0.9)

HDLc (mmol/l) 1.12 (0.29) 1.13 (0.23) 1.16 (0.16) 1.08 (0.29) 1.05 (0.23)

Triglycerides (mmol/L) 1.08 (0.44) 1.58 (0.91) 1.10 (0.42) 1.79 (1.17) 1.40 (0.62)

Table 3. Baseline characteristics and results of mixed meal test in 170 participants in the first two years of inclusion 
in the BARIA longitudinal cohort study, stratified by glycaemic classification, as formulated in the American 
Diabetes Association criteria: normoglycemic (Healthy), impaired fasting glucose (IFG), increased haemoglobin 
A1c (IHbA1c), combination of IFG and IHbA1c (Comb) and Type-2 Diabetes Mellitus (T2DM). Categorical variables are 
displayed as absolute numbers (percentage), continuous variables as means (SD).

MMT curves of ten patients assigned to the category diabetes mellitus were excluded 

because of insulin use. Results of the preoperative MMT of the remaining 160 patients are 

presented in figure 2. 
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and in follow-up. The laparoscopic procedures give
proper access to different adipose compartments,
as well as liver and intestine for biopsy and, if the
hepatoduodenal ligament is not too much

embedded in fatty tissue, to the portal vein for fine
needle blood sample as well. Any haemorrhages
can readily be detected and addressed surgically,
minimizing the expected adverse events. In the

Fig. 2 Glucose, insulin and triglycerides measurements during 2-hour 7-sample mixed meal test, stratified by glycaemic
classification, as formulated in the American Diabetes Association criteria: normoglycemic (Healthy), impaired fasting
glucose (IFG), increased haemoglobin A1c (IHbA1c), combination of IFG and IHbA1c (Comb) and type 2 diabetes mellitus
(T2DM). Values are presented as means with 95% confidence intervals. (a) glucose curves; (b) insulin curves; (c) triglycerides
curves.

BARIA longitudinal cohort study / C. C. Van Olden et al.
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Figure 2. Glucose, insulin and triglycerides measurements during 2-hour 7-sample mixed meal test, stratified by 
glycaemic classification, as formulated in the American Diabetes Association criteria: normoglycemic (Healthy), 
impaired fasting glucose (IFG), increased haemoglobin A1c (IHbA1c), combination of IFG and IHbA1c (Comb) and Type-
2 Diabetes Mellitus (T2DM). Values are presented as means with 95% confidence intervals. A) glucose curves; B) insulin 
curves; C) triglycerides curves.

Individuals with different classifications of glycaemic control showed markedly different 

profiles for MMT-stimulated plasma insulin, glucose and triglycerides. Triglycerides were 

clearly higher at baseline and all following time points in patients with IFG, with or without 

increased Hba1c. HOMA2-IR and HOMA2-B values and correlations with postprandial 

glucose and insulin curves are presented in figure 3. The HOMA2-IR and HOMA2-B values 

showed a good correlation with the AUC postprandial insulin, but not with the AUC 

postprandial glucose. 
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hands of our surgical team, mortality of routine
LRYGB is low (0.03%) and two-year follow-up is
high (71%) [24]. During the first two years of
inclusion, portal vein sampling could be performed
safely in about one out of three cases. Other
studies with similar bariatric surgery cohorts with
invasive assessments showed that a majority of
patients remains interested in participating during
two years of follow-up [29]. Furthermore, up to
10% of bariatric surgery patients need additional

surgery within two years after primary procedure
(for example revision surgery or cholecystectomy),
which opens up the possibility for renewed biopsies
and blood sampling [30].

However, studying bariatric patients has some
limitations intrinsic to the surgical procedure.
Biopsies and portal vein blood are taken under
general anaesthesia and therefore potentially influ-
enced by anaesthesia medication. For example,

Fig. 3 Area under the curve (AUC) of insulin and glucose during mixed meal test and HOMA2 insulin resistance (IR) and
beta cell function (B), stratified by glycaemic classification, as formulated in the American Diabetes Association criteria:
normoglycemic (Healthy), impaired fasting glucose (IFG), increased haemoglobin A1c (IHbA1c), combination of IFG and
IHbA1c (Comb) and type 2 diabetes mellitus (T2DM). Points are individual values, solid line represents linear regression,
banded area is 95% confidence interval. (a) Glucose AUC and HOMA2 IR. (b) Glucose AUC and HOMA2 B (%). (c) Insulin AUC
and HOMA2 IR. (d) Insulin AUC and HOMA2 B. Correlation coefficient (R) and P-values calculated with Spearman’s rank
correlation test.
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Figure 3. Area under the curve (AUC) of insulin and glucose during mixed meal test and HOMA2 insulin resistance 
(IR) and beta cell function (B), stratified by glycaemic classification, as formulated in the American Diabetes 
Association criteria: normoglycemic (Healthy), impaired fasting glucose (IFG), increased haemoglobin A1c (IHbA1c), 
combination of IFG and IHbA1c (Comb) and Type-2 Diabetes Mellitus (T2DM). Points are individual values, solid line 
represents linear regression, banded area is 95% confidence interval. A) Glucose AUC and HOMA2 IR. B) Glucose AUC 
and HOMA2 B (%). C) Insulin AUC and HOMA2 IR. D) Insulin AUC and HOMA2 B. Correlation coefficient (R) and p-values 
calculated with Spearman’s rank correlation test.

Results of the ten patients that underwent repeated (1 week interval) preoperative MMT 

are presented in figure 4. We found a good coefficient of variance (figure 4, blue lines) with 

a mean average of difference between two MMT measurements of 6.3% for area under the 

curve (AUC) postprandial glucose, 13.9% for AUC postprandial insulin and 7.4% for AUC 

postprandial triglycerides, while most of the differences between the two measurements 

were well within the 20% range of the average mean difference underscoring reasonably 

good intra-individual reproducibility.
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these drugs will be found in portal vein plasma and
might accumulate in fatty tissues during surgery
and, most importantly, will be metabolized by the
liver. Furthermore, patients are routinely urged by
their bariatric surgeon to lose as much weight as
possible before the operation to reduce the surgical
risk. It can be expected that such forced weight loss
will influence metabolism, gene expression and gut
microbiota. Although no standardized diet is pre-
scribed, we nevertheless choose to exclude those
patients that lose more than 5% in six months (or
more than 3% in one month) prior to surgery.
Another limitation is the fact that many patients
using medication for obesity-related diseases will
need less or even no medication after bariatric

surgery, which might be a confounder for outcome
measurements.

In a separate analysis of the MMT results in a
subset of included patients, we showed that the
preoperative MMT has a good intraindividual
reproducibility, which makes it a better estimate
for glycaemic regulation than the oral glucose
tolerance test [31]. We also showed that the MMT
is able to represent the underlying metabolic
dysregulation well, evident in the different curves
and the steady state model assessment. The
differences observed in the curves correspond well
with the pathophysiology. First, impaired fasting
glucose (IFG) is consistent with hepatic insulin

Fig. 4 Reproducibility of mixed meal test (MMT). Bland Altman plots of MMT (repeated within 1 week) for glucose, insulin
and triglycerides. Blue line is mean of difference between measurements, red line is � 1.96*SD of mean difference, and
green line is � 20% of mean difference. (a) Glucose area under the curve (AUC) in mmol L�1*time. (b) Glucose AUC per cent
change. (c) Insulin AUC in mmol L�1*time. (d) Insulin AUC per cent change. (e) Triglycerides AUC in mmol L�1*time. (f)
Triglycerides AUC per cent change.

BARIA longitudinal cohort study / C. C. Van Olden et al.
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Figure 4. Reproducibility of mixed meal test (MMT). Bland Altman plots of MMT (repeated within 1 week) for glucose, 
insulin and triglycerides. Blue line is mean of difference between measurements, red line is +/- 1.96*SD of mean 
difference, green line is +/- 20% of mean difference. A) Glucose area under the curve (AUC) in mmol/L*time. B) Glucose 
AUC percent change. C) Insulin AUC in mmol/L*time. D) Insulin AUC percent change. E) Triglycerides AUC in mmol/
L*time. F) Triglycerides AUC percent change. 
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DISCUSSION

The BARIA cohort study will generate a large phenomic database on the systems biology of 

subjects with morbid obesity, both before and after bariatric surgery. Advanced data science, 

including application of machine learning and artificial neural networks data analysis is 

used to select microbiome-produced metabolites and identify their receptors in target tissue. 

It will be the first large bariatric cohort study to include portal vein blood sampling in 

a considerable subset of patients for untargeted metabolites, which, when also studying 

peripheral metabolites, will enable to study the gradient of metabolites filtered by the liver. 

We aim to include 1500 patients undergoing primary laparoscopic bariatric surgery (gastric 

bypass or sleeve gastrectomy). Before surgery, they are subjected to MMT, blood and fecal 

sampling, and questionnaires, including psychology and VAS lists taken at the start of the 

MMT in all patients at all timepoints to minimize variation. During surgery, biopsies are 

obtained from three fat depots, jejunum, liver, and samples from portal and peripheral 

venous blood. Thereafter, further sampling (MMT, blood and fecal samples) is performed. 

In the event of another surgery (revisional surgery, cholecystectomy) further biopsies 

can be obtained, which is included in the ethical protocol. We process tissues for RNA-

sequencing, analyze intestinal microbiota, and perform untargeted (postprandial) plasma 

metabolomics on both fasting and postprandial (MMT) plasma samples. These metabolites 

will be investigated further in vitro and in vivo to determine causality and identify receptors. 

After the primary analysis, the generated database will also allow for additional secondary 

analyses. 

The bariatric patient scheduled for primary bariatric surgery is an interesting model 

for several reasons. All patients suffer from morbid obesity and generally expect to undergo 

examinations, measurements and interviews both prior to surgery and in follow up. The 

laparoscopic procedures give proper access to different adipose compartments, as well as liver 

and intestine for biopsy and, if the hepatoduodenal ligament is not too much embedded in 

fatty tissue, to the portal vein for fine needle blood sample as well. Any haemorrhages can 

readily be detected and addressed surgically, minimizing the expected adverse events. In the 

hands of our surgical team, mortality of routine LRYGB is low (0.03%) and two-year follow-

up is high (71%)24. During the first two years of inclusion, portal vein sampling could be 

performed safely in about one out of three cases. Other studies with similar bariatric surgery 

cohorts with invasive assessments showed that a majority of patients remains interested in 

participating during two years of follow-up30. Furthermore, up to 10% of bariatric surgery 

patients need additional surgery within two years after primary procedure (for example 

revision surgery or cholecystectomy), which opens up the possibility for renewed biopsies 

and blood sampling31.
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However, studying bariatric patients has some limitations intrinsic to the surgical 

procedure. Biopsies and portal vein blood are taken under general anaesthesia and therefore 

potentially influenced by anaesthesia medication. For example, these drugs will be found 

in portal vein plasma and might accumulate in fatty tissues during surgery and, most 

importantly, will be metabolized by the liver. Furthermore, patients are routinely urged by 

their bariatric surgeon to lose as much weight as possible before the operation to reduce the 

surgical risk. It can be expected that such forced weight loss will influence metabolism, gene 

expression and gut microbiota. Although no standardized diet is prescribed, we nevertheless 

choose to exclude those patients that lose more than 5% in six months (or more than 3% 

in one month) prior to surgery. Another limitation is the fact that many patients using 

medication for obesity related diseases will need less or even no medication after bariatric 

surgery, which might be a confounder for outcome measurements.

In a separate analysis of the MMT results in a subset of included patients we showed that 

the preoperative MMT has a good intraindividual reproducibility, which makes it a better 

estimate for glycaemic regulation than the oral glucose tolerance test32. We also showed 

that the MMT is able to represent the underlying metabolic dysregulation well, evident 

in the different curves and the steady state model assessment. The differences observed in 

the curves correspond well with the pathophysiology. First, impaired fasting glucose (IFG) 

is consistent with hepatic insulin resistance as is evident, apart from the increased glucose, 

by increased baseline insulin and a decreased suppression of apo B production, resulting in 

increased triglycerides. An initial quick rise in glucose is followed by a steady decline of both 

glucose and insulin, as peripheral insulin resistance remains largely normal33. Second, the 

increased haemoglobin A1c (IHbA1c) group corresponds with peripheral insulin resistance, 

represented by a steady increase until the 2-hour time point of both glucose and insulin with 

relatively normal triglyceride levels. Finally, the group with a combination of IHbA1c and 

IFG (Comb) and the T2DM group show both characteristics, with the T2DM group reaching 

higher glucose levels. The HOMA2-IR and HOMA2-B values showed a good correlation with 

the AUC postprandial insulin, but not with the AUC postprandial glucose, which reiterates 

the suggestion that they are used best in combination with other clinical parameters34. 

With regard to the use of the MMT in postoperative follow up, it must be noted that the 

anatomical changes affecting gastric emptying and resorption might impede the comparison 

of the MMT before and after surgery. However, the MMT is biologically a more relevant 

test than the glucose tolerance test, as one is rarely solely exposed to glucose without fat 

and proteins. Studies with a similar follow up using intravenous glucose tolerance test 

and euglycaemic- hyperinsulinaemic clamp showed an improvement in insulin sensitivity 

in all patients, with least improvement for TDM2 patients35,36. One other study assessing 

meal response after a follow up of more than one year was cross sectional, but with smaller 
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numbers37. Outcome of the MMT in our BARIA study can provide further insight in the 

metabolic response following a meal after bariatric surgery. Another limitation of the MMT 

in bariatric patients is that the test can provoke early dumping, a well-known side effect of 

LRYGB and LOGB due to loss of pyloric regulation, which makes a heavy caloric MMT hard 

to endure for some patients in the first years of their follow up.

We believe that the different subclasses of T2D are different paths of progression to 

the disease, with, in some individuals, a simultaneous existence of several pathways2. The 

underlying molecular mechanisms that lead to these different trajectories are probably 

different. Similarly, the reversibility and the therapeutic intervention that has the greatest 

effect on their progression may vary. To the best of our knowledge there are no successful 

therapeutic modalities specifically aimed at targeting short chain fatty acids (SCFA’s), 

bile acids, amino acid derived metabolites, neural pathways and lymphoid cells with the 

aim of improving glucose metabolism. There have been several trials using specific SCFA 

as supplements to improve glucose metabolism and weight loss38,39. The effects of the 

intervention in these studies as well as in faecal microbiota transplantation studies are 

usually limited with only few showing great improvement7 where other groups found less 

efficacy of donor FMT (but were also using different FMT applications), but did observe 

the similar relation between FMT efficacy and decreased faecal microbiota diversity at 

baseline40. A better understanding of which molecular mechanisms need to be targeted in 

which patients will lead to a better personalized treatment.

With the comprehensive systems approach of the BARIA longitudinal cohort study, we 

aim to provide more understanding in to how the (small) intestinal microbiota affects our 

metabolism, especially with regard to NAFLD and T2DM. Moreover, we aim to identify leads 

that drive weight loss and psychological improvement upon surgery, thus identifying the 

causal factors connecting beneficial changes in metabolism, microbiota and immunological 

tone that will be of value to find new diagnostic and therapeutic leads to control the obesity 

associated disease epidemic.

Lessons learned so far

During our study we encountered a few learning points, which, we hope, future researches 

planning similar research, can benefit from and not run into the same problems. We based 

the feasibility of our protocol on previous studies detailing MMT after RYGB surgery41,42. 

In our study so far, a relatively large number (38 out of 134 participants) of participants 

exhibited adverse effects during the MMT at the one year after bariatric surgery (nausea, 

diarrhoea, dizziness and weakness). We suspect these adverse effects to be related to dumping 

syndrome. The symptoms were not of a severity that we found a need for extra diagnostic 

tests. None of the subjects experienced loss of consciousness and there was no need for 
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extended stay in the hospital beyond the normal testing time. Another valuable learning 

point was related to subject follow-up. In order to achieve a dropout rate of <20%, extensive 

contact with participants had to be maintained. Many participants needed to be contacted 

via telephone several times, for reminders to schedule every visit. The amount of manpower 

and time necessary for that was greater than we anticipated.

At the 6 weeks and 6 month collection timepoints we collect blood for fasting glucose 

measurement, as well as anthropometric measurements and changes in medication. Our 

initial aim was to also collect blood at the 2 weeks timepoint. During our try-out phase we 

discovered that having these measurements was too demanding for our patients during this 

initial recovery period at 2 weeks. Nutrition questionnaires were also reported as stressful by 

our patients and we have chosen to only include these in the large (1 and 2 year) collection 

timepoints.
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ABSTRACT

Weight loss through bariatric surgery is efficient for treatment or prevention of obesity 

related diseases such as type 2 diabetes and cardiovascular disease. Long term weight loss 

response does, however, vary among patients undergoing surgery. Thus, it is difficult to 

identify predictive markers while most obese individuals have one or more comorbidities. 

To overcome such challenges, an in-depth multi-omics analyses including fasting peripheral 

plasma metabolome, fecal metagenome as well as liver, jejunum, and adipose tissue 

transcriptome were performed for 106 individuals undergoing bariatric surgery. Machine 

leaning was applied to explore the metabolic differences in individuals and evaluate 

if metabolism-based patients’ stratification is related to their weight loss responses to 

bariatric surgery. Using Self-Organizing Maps (SOMs) to analyze the plasma metabolome, 

we identified five distinct metabotypes, which were differentially enriched for KEGG 

pathways related to immune functions, fatty acid metabolism, protein-signaling, and obesity 

pathogenesis. The gut metagenome of the most heavily medi cated metabotypes, treated 

simultaneously for multiple cardiometabolic comorbidities, was significantly enriched in 

Prevotella and Lactobacillus species. This unbiased stratification into SOM-defined meta-

botypes identified signatures for each metabolic phenotype and we found that the different 

metabotypes respond differently to bariatric surgery in terms of weight loss after 12 months. 

An integrative framework that utilizes SOMs and omics integration was developed for 

stratifying a heterogeneous bariatric surgery cohort. The multi-omics datasets described 

in this study reveal that the metabotypes are characterized by a concrete metabolic status 

and different responses in weight loss and adipose tissue reduction over time. Our study 

thus opens a path to enable patient stratification and hereby allow for improved clinical 

treatments.
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INTRODUCTION

Obesity is generally associated with several different comorbidities, with type 2 diabetes (T2D) 

and cardiovascular diseases among the most common, and cross interaction of metabolic 

responses from these co-morbidities makes it difficult to study metabolic alterations 

associated with obesity. Thus, there is an increasing interest to study heterogeneous diseases 

like obesity through the collection of multi-omics data from various cohorts1–3. Due to the 

heterogeneity of phenotypes within obese individuals it is, however, generally difficult to 

stratify cohorts into groups, e.g., individuals with or without the metabolic syndrome, that 

can be compared using traditional statistical methods when omics data are to be analyzed. 

The use of machine learning methods is therefore gaining more attention for understanding 

and deconvoluting multifactorial disease4,5, in particular as it enables stratification of 

individuals in a given cohort, without a priori knowledge of clinical labels.

Obesity is a growing worldwide epidemic, with an estimated 1.9 billion adults being 

overweight and another 650 million being obese6–8, and it is associated with increased risk of 

multiple comorbidities including T2D, hypertension, dyslipidemia, non-alcoholic fatty liver 

disease and various types of cancers9,10. Numerous clinical approaches have been proposed to 

model obesity and predict bariatric surgery outcomes, by using clinical parameters, artificial 

intelligence and comparing predefined patient groups11–14. Another clinical definition 

for describing individuals with multiple dysmetabolic morbidities, including obesity, 

is the metabolic syndrome, where obese individuals fulfill two out of these four criteria: 

1) fasting glucose >100 mg/dl; 2) triacylglycerol > 150 mg/dl; 3) high-density lipoprotein 

(HDL) cholesterol <40 mg/dl for males and <50 mg/dl for females; 4) blood pressure above 

130 systolic or 85 diastolic15. The multitude of co-existing metabolic perturbations may 

also mask associations between metabolic activities in different tissues, including the gut 

microbiota, hence posing a challenge in systematically studying obesity, its’ implications, and 

the outcome of surgical intervention with higher resolution. A systems biology approach on 

the other hand could offer detailed phenotypic profiling possibilities using omics analysis. 

Metabolomics has recently been proposed as an approach to better comprehend obesity and 

linked comorbidities16–18 and identify optimal candidate groups for further interventions19,20. 

The gut metagenome is a contributing factor to the complexity of obesity21–25, although it’s 

causal role has yet to be established26. Recent studies have pinpointed that the production 

and regulation of metabolites of bacterial origin in humans, play an important role in 

metabolic diseases24,27–30. Given these interactions, there is a clear need to propose a systems 

biology framework to obesity population-based studies, to improve the identification of 

distinct sub-populations but also drive the development of personalized interventions31.
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With the objective of getting novel insight into how metabolism in different tissues 

varies in obese individuals and evaluate if grouping of patients according to metabolism is 

related to their weight loss response to bariatric surgery, we generated multi-omics datasets 

from 106 individuals undergoing bariatric surgery. Specifically, we wanted to evaluate if 

the heterogeneity of a bariatric surgery population can be stratified phenotypically using 

metabotyping, i.e., grouping according to the individuals fasting plasma metabolome, that 

captures the functional output of a complex multi-organ system, human hosts and their 

microbes rather than by traditional clinical classifiers, e.g. the metabolic syndrome. For this 

we established a novel workflow that first utilizes metabolomics for unlabeled stratification 

of individuals with several comorbidities and different pharmacological treatment regimens. 

We then analyzed transcriptome data from liver, jejunum, mesenteric and subcutaneous 

adipose tissues along with shotgun metagenomic sequencing from fecal samples to produce 

a discriminatory multi-marker signature of underlying metabolic phenotypes within obesity. 

The framework is solely based on omics data types of representative of various biological 

molecule classes (metabolome, transcriptome, metagenome) and machine learning, instead 

of comorbidities, medications, and disease-specific classifiers, thus making it suitable for 

studying multifactorial metabolic conditions, besides obesity.

METHODS

BARIA Cohort

The recruitment of participants was conducted from the BARIA study32 with a total of 

106 individuals included. The baseline characteristics of BARIA participants in the Self-

Organizing Map (SOM)-defined metabotypes are described in Table 1. 

Individuals underwent a complete metabolic work-up at the start of their bariatric 

surgery trajectory. Anthropometric measurements including height, weight and waist and 

hip circumference were taken. In addition, body fat percentage using bioelectrical impedance 

and blood pressure were measured. Fasting blood samples were used for the determination 

of hemoglobin, HbA1c, glucose, lipid profile, alanine aminotransferase, aspartate amino-

transferase, insulin, and creatinine levels. Within three months before surgery, a 2-hour 

mixed meal tolerance test was performed to assess insulin resistance and investigate 

dynamic alterations in circulating metabolites. Within three months before surgery, a 

2-hour mixed meal tolerance test (MMT) was performed to assess insulin resistance and 

investigate dynamic alterations in circulating metabolites. The MMT consisted of a compact 

125ml drink (Nutricia®) containing in total 23.3 grams fat, 74.3 grams carbohydrates (of 

which 38.5 grams sugar) and 24.0 grams protein. The participants received this meal after 
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fasting for a minimum of nine hours. Time point zero refers to the moment at which the 

participant had fully consumed the meal. Blood samples were drawn via an intravenous line 

at baseline, 10, 20, 30, 60, 90 and 120 minutes. All samples were stored at -80oC until further 

processing.

Clinical Metadata SOM Cluster 1 SOM Cluster 2 SOM Cluster 3 SOM Cluster 4 SOM Cluster 5

Demographic

Participants (%) 17(16%) 29(27.4%) 25(23.6%) 18(17%) 17(16%)

Female  
(% Total Participants, % of 
SOM Cluster)

13 
(12.2%, 76.5%)

25 
(23.6%, 86.2%)

18 
(17%, 72%)

14 
(13.2%, 77.8%)

14 
(13.2%, 82.4%)

Male 
(% Total Participants, % of 
SOM Cluster)

4 
(3.8%, 23.5%)

4  
(3.8%, 13.78%)

7  
(6.6%, 28%)

4  
(3.8%, 22.22%)

3  
(2.8%, 17.6%)

Anthropometric

Age (years) 48(29-60)* 40(20-57)* 53(26-64)* 56(39-64)* 44(22-62)*

BMI (kg/m2) 39.5(34-45.4) 38.2(32.9-60.9) 39.8(33-57.5) 38.3(33.8-47.1) 39.8(34.7-46.4)

Waist circumference (cm) 125.3 ± 12.6 122.6 ± 12.3 123.7 ± 11.5 125.8 ± 12.2 123 ± 9.9

Upper thigh 
circumference (cm)

135(120-149) 133(116-147) 130(103-165) 133(115-139) 136(123-144)

Total Body Fat (%) 53.6(41.6-64.7) 54.1(31.7-94.9) 51.8(39.3-104.8) 56.5(40.6-78.9) 57.6(44-64.5)

Fat Free Mass (kg) 60.9(54.1-93.8) 59.6(50.3-90.6) 59.1(47.5-90.2) 59.8(49.5-85.1) 60.8(54-83.5)

Systolic blood Pressure 
(mmHg)

131.5(116-156) 132(102-155) 133(108-161) 136(115-193) 135(115-157)

Diastolic blood Pressure 
(mmHg)

84.5(59-91) 81(54-99) 82(67-105) 80(45-121) 82(65-94)

Clinical lab values

Fasting glucose (mmol/l) 5.8(4.8-11.4) 5.9(4.6-14.8) 5.7(5-13.8) 5.8(4.6-6.8) 5.6(4.5-8.7)

HbA1c (mmol/mol) 5.7(5.3-9.1) 5.7(4.6-9.8) 5.6(5-9.3) 5.8(5.2-6.9) 5.5(5.2-8.3)

HOMA-IR 1.7(0.6-3.4) 1.6(0.5-6.9) 2.2(0.5-4.7) 1.3(0.8-4.8) 1.5(0.8-4.8)

HOMA2-β 108.7 
(38.3-183.2)

87.9 
(29.1-227.8)

112 
(52.7-226.2)

92.1 
(52.4-357.8)

104.2 
(50.8-185.5)

Total Cholesterol (mmol/l) 5.4 ± 1.1 4.6 ± 1 4.9 ± 1.1 5.3 ± 1.2 4.3 ± 0.9

Triglycerides (mmol/l) 1.5(0.8-3.5) 1.3(0.6-5.8) 1.4(0.8-6) 1.4(0.8-5.9) 1.2(0.6-1.9)

HDL Cholesterol (mmol/l) 1.2(0.8-1.8)* 1.1(0.6-1.9)* 1.1(0.7-2.5)* 1.2(0.7-2.1)* 1.2(1-2.7)*

LDL Cholesterol (mmol/l) 3.6 ± 1.1 2.9 ± 0.9 3.6 ± 0.9 3.4 ± 1.7 2.6 ± 0.8

Creatinine (mmol/l) 68(55-96) 63(46-83) 66(47-112) 75(56-172) 65(58-99)

Glomerular Filtration Rate 
(kl/1.73m2)

85(70-91)* 90(71-91)* 86(62-91)* 78(26-90)* 89(66-91)*

Table 1. Baseline characteristics of 106 BARIA participants included. Data is expressed as mean ± standard deviation. 
Categorical variables are presented as numbers and percentages. Non-normally distributed variables are presented 
as median with interquartile range. For comparison among metabotypes Kruskal-Wallis test (extended Mann-Whitney 
U-test for multiple groups) was used. ‘*’ denotes differentially significant variables among the five metabotypes 
clusters (P<0.05). BMI: Body Mass Index, HbA1c: Hemoglobin A1c, HOMA-IR: Homeostatic Model Assessment of Insulin 
Resistance, HOMA-β: Homeostatic Model Assessment of beta-cell function, LDL: Low-Density Lipoprotein, HDL: 
High-Density Lipoprotein.
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Metabolome Analysis

EDTA plasma samples under fasting conditions were collected from 106 BARIA partici pants. 

Samples were shipped to METABOLON (Morisville, NC, USA) for performing analysis 

using ultra high-performance liquid chromatography coupled to tandem mass spectrometry 

(LC-MS/MS) untargeted metabolomics, as previously described27. The metabolomic 

counts obtained, underwent significant curation via metabolites’ pre-filtering, imputation 

for subsets of metabolites’ missing values and data normalization, in order to minimize 

the effect of artifacts in the downstream analysis. Out of 1345 metabolites measured by 

METABOLON, 652 metabolites were fully detected across all samples, 640 metabolites were 

partially detected across all samples, and 53 metabolites were not detected or failed to reach 

detection limit and therefore had a missing value. Metabolomics prefiltering and imputation 

were performed by utilizing a variation of the Perseus platform33. Essentially, data has been 

pre-filtered to have a maximum of 25% missing values for a metabolite across all samples. 

This was followed by a log transformation of all the measured metabolites’ raw intensities 

across the entire dataset. Then, we calculated the total data mean and standard deviation 

(by omitting missing values). Considering that the metabolite intensities distribution is 

approximately following normality, we chose a small distribution 2.5 standard deviations 

away from the original data mean towards the left tail of the original data distribution, with 

0.5 standard deviations width. This new shrunken range corresponds to the actual lowest 

level of detection by the spectrometer. Here by drawing random values from this mini 

distribution, we filled the missing prefiltered data of choice.

Normalization was conducted to the total signal for each sample, since each sample is a 

separate injection on the mass spectrometer. Effective control for changes in sample matrix 

affects ionization efficiency, hence there can be inevitable differences in how much each 

sample is loaded onto the column with each injection, etc. Therefore, we summed up the total 

ion intensity (i.e. total signal) for each of the samples and identified the sample with the lowest 

total signal. After this we could proceed to calculating the correction factor for each sample by 

dividing the total signal with the lowest total signal. After imputation and normalization, we 

obtained 986 metabolites. All the calculations for imputing and normalizing the metabolomics 

dataset have been conducted with MATLAB_R2018b and the standard built-in packages.

Differential analysis was conducted among the five SOM-defined Clusters in R (version 

3.6.3) and RStudio (version 1.2.5033). Statistical analysis has been performed for fasting 

peripheral plasma with two methods: ANOVA (Analysis of Variance) and Kruskal Wallis 

test, with the use of HybridMTest package34. HybridMTest performs hybrid multiple testing 

using empirical Bayes probability. The significance level and cut-off used for the dataset of 

fasting peripheral plasma was P<0.05 and was applied to metabolites that were significantly 

differential with both ANOVA and Kruskal Wallis methods. 



Self-organized metabotyping for metabolic disease | 107

5

Clustering Metabolome Profiles with Self- Organizing Maps

The fasting peripheral metabolomics were then input to the SOM toolbox35 algorithmic 

setup in MATLAB_R2014b. SOMs conducted unsupervised competitive learning and 

produced low-dimensionality visualizations by employing vector quantization36,37, a topo-

logy preserving projection. SOMs are essentially networks consisting of neurons in a lower 

dimensional space than the initial dataset, visually represented in a 2-dimensional grid. 

Each neuron has d-dimensions, equal to the number of features of the dataset and acts as a 

weight vector. During the SOM training phase, the weight vectors are gradually shifted in 

each iteration of learning, and the map gradually gets organized, so that neurons that are 

neighbors on the grid get similar weight vectors throughout the iterative training.

In our analysis, SOM took as input a set of prototype vectors representing the data. 

Every data item, here BARIA subject’s fasting metabolome, was mapped into one point 

(node or neuron) in the map38. Mapping took place throughout the training phase of the 

SOM. The number of nodes was calculated internally by a heuristic formula, given the 

number of input vectors and their dimensionality, as ~, where is the number of data items 

and the number was slightly altered in order to fit hexagonal (instead of rectangular) nodes. 

The training method deployed in our study was batch training, where instead of taking 

each input vector separately and assigning a weight vector, the dataset was given to the 

SOM as a whole and the new weight vectors are weighted averages of the data vectors. In 

order to assign the prototype vector to the node, the Euclidean distances among prototype 

vectors and each neuron were calculated and set as the metric for the similarity measure. 

The “winner” node in the grid, was the one with the smallest Euclidean distance from the 

input vector. Once the assignment was complete, then the weights of the prototype vector 

along with the weights of the subset of its spatial neighbors in the array, got updated39,40. This 

entailed that all these local re-arrangements would be propagated along the grid, during the 

training epochs. As a result, after learning, more similar data items would be associated with 

nodes that are closer in the array, whereas less similar items would be situated gradually 

farther away in the array. 

When having a very large number of SOM nodes, one cannot easily quantify the 

results, hence the need for further grouping with a partitive approach. The resulting map 

was then subjected into clustering, as a built-in function of the SOM toolbox, for obtaining 

a recommended partition of map nodes. An open question in this case was the number 

of clusters, since in general takes this as a predefined parameter. Since this is sensitive to 

initialization, we ran a cross validation simulation for 100 times for each (starting from ~, 

which corresponds to the number of nodes of the neural network to 1 with step of -1) for each 

with different random initializations. The best partitioning for each number of clusters was 

selected using error criterion and the minimization of the Davies-Bouldin cluster validity 
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index41. Davies-Bouldin index is a metric of the ratio of the within cluster scatter, to the 

between cluster separation. The index’s value is essentially the average similarity between 

each cluster and its most similar one, averaged over all the clusters. This implies that the best 

clustering scheme minimizes the Davies-Bouldin index. Eventually, when all the iteration 

for the potential values of were concluded, the minimum overall Davies-Bouldin index was 

chosen, which resulted in the recommended partition of five clusters.

Transcriptome Analysis

Biopsies from liver (106 samples), jejunum (105 samples), mesenteric adipose fat (104 

samples) and subcutaneous adipose fat (105 samples) were collected at the time of the 

bariatric surgery, as previously described32. RNA was extracted from biopsies using TriPure 

Isolation Reagent (Roche, Basel, Switzerland) and Lysing Matrix D, 2 mL tubes (MP 

Biomedical, Irvine, CA, USAs) in a FastPrep®-24 Instrument (MP Biomedical, Irvine, CA, 

USAs) with homogenization for 20 seconds at 4.0 m/sec, with repeated bursts until no tissue 

was visible; homogenates were kept on ice for 5 minutes between homogenization bursts 

if multiple cycles were needed. RNA was purified with chloroform (Merck, Darmstadt, 

Germany) in phase lock gel tubes (5PRIME) with centrifugations at 4°C, and further purified 

and concentrated using the RNeasy MinElute kit (Qiagen, Venlo, The Netherlands). The 

quality of RNA was analysed on a BioAnalyzer instrument (Agilent), with quantification on 

Nanodrop (Thermo Fisher Scientific, Waltham, MA, USA). Due to degradation of the RNA, 

libraries for RNAseq sequencing were prepared by rRNA depletion; library preparation 

and sequencing were performed at Novogene (Nanjing, China) on an HiSeq instrument 

(Illumina Inc., San Diego, CA, USA) with 150 bp paired-end reads and 10G data/sample. 

The average read count per sample from liver and jejunum tissues were 42 ± 15 million. For 

mesenteric and subcutaneous fat, the average read count per sample were 43.2 ± 20 million. 

The extracted fastq files were analyzed with nf-core/rnaseq42, a bioinformatics analysis 

pipeline used for RNA sequencing data. The workflow processed raw data from FastQ inputs 

(FastQC, TrimGalore!), aligned the reads (STAR) with Homo sapiens GRCh38 as reference 

genome, generates gene counts (featureCounts, StringTie) and performed extensive quality-

control on the results (RSeqQC, dupRadar, Preseq, edgeR, multiQC). The pipeline was built 

using Nextflow.

Differential gene expression analysis for five SOM defined cluster participants has 

been performed for liver, jejunum, subcutaneous adipose and mesenteric adipose tissues, 

respectively, in R (version 3.6.3) and RStudio (version 1.2.5033) with DESeq243 package. 

The statistical analysis method for calculating differential expression rates was the LRT 

test (log-ratio test). After FDR correction with multiple hypothesis testing with IHW44 

package, we analyzed genes with P<0.05 by DEGreport’s45 degPatterns function, so as to 
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identify subgroups of co-expressed genes across the SOM clusters and assign a z score to 

each metabotype. For these differentially significant co-expressed genes we performed 

gene enrichment with Enrichr platform46 using KEGG (Kyoto encyclopedia of genes and 

genomes) metabolic pathways47.

Microbiome Analysis

Fecal samples from 106 participants (108 fecal samples due to having two samples from 

two participants) were collected on the day of surgery and immediately frozen at -80C. 

Total fecal genomic DNA was extracted from 100 mg of feces using a modification of the 

IHMS DNA extraction protocol Q48. Briefly, fecal samples were extracted in Lysing Matrix E 

tubes (MP Biomedical, Irvine, CA, USA) containing ASL buffer (Qiagen), and lysis of cells 

was obtained, after homogenization by vortexing for 2 minutes, by two cycles of heating at 

90°C for 10 minutes followed by three bursts of bead beating at 5.5 m/sec for 60 seconds 

in a FastPrep®-24 Instrument (MP Biomedical, Irvine, CA, USAs). After each bead-beating 

burst, samples were placed on ice for 5 minutes. The supernatants containing fecal DNA 

were collected after the two cycles by centrifugation at 4°C. Supernatants from the two 

centrifugations steps were pooled and a 600 µL aliquot from each sample was purified using 

the QIAamp DNA Mini kit (Qiagen, Venlo, The Netherlands) in the QIAcube (Qiagen, 

Venlo, The Netherlands) instrument using the procedure for human DNA analysis. Samples 

were eluted in 200 µL of AE buffer (10 mmol/L Tris·Cl; 0.5 mmol/L EDTA; pH 9.0). Libraries 

for shotgun metagenomic sequencing were prepared using a PCR-free method; library 

preparation and sequencing were performed at Novogene (Nanjing, China) on an HiSeq 

instrument (Illumina Inc., San Diego, CA, USA) with 150 bp paired-end reads and 6G data/

sample.

MEDUSA49 pipeline was used for pre-processing of raw shotgun metagenomics 

sequence data. MEDUSA is an integrated pipeline for analysis of short metagenomic reads, 

which maps reads to reference databases, combines output from several sequencing runs and 

manipulates tables of read counts. The input number of total reads from the metagenome 

analysis were on average 23.4 ± 2.2 million reads per sample and the total aligned reads 16.6 

± 1.8 million reads per sample. The sequencing runs had high quality with almost 98% of 

the reads passing the quality cut-off (~(20 million reads per sample) . Out of the high-quality 

reads, on average 0.04% aligned to the human genome, although the data had been cleaned 

for human reads. Out of the high quality non-human reads, 78.4% aligned to MEDUSA’s 

software gene catalogue. Quality filtered reads were mapped to a genome catalogue and 

gene catalogue using Bowtie250. Statistical analysis was performed in R (version 3.6.3) and 

RStudio (version 1.2.5033) on rarefied count, (20 million reads per sample). The taxon ids 

were input to taxize51 package, so as to get full taxonomic information and ranking for 
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the species. This dataset was input to DESeq243 and phyloseq52 packages for conducting 

downstream differential statistical analysis. Similar to the BARIA transcriptomics counts, log 

normalization has been conducted based on gene counts geometric distribution. Statistical 

analysis test for calculating differential expression rates was LRT. The IHW package, as part 

of DESeq2 suite, is utilized for multiple hypothesis testing and adjusting the respective P 

values, with alpha significance threshold set at P<0.05. 

DIABLO Correlation Analysis and Biomarkers minimal signature

DIABLO53 stands for Data Integration Analysis for Biomarker discovery using Latent 

cOmponents and performs supervised multi-omics data integration, by maximizing 

the correlation between co-expressed elements in the input datasets. DIABLO algorithm 

extends sparce Generalized Canonical Correlation Analysis54 and by expanding the Partial 

Least Squares (PLS) regression, used singular value decomposition for dimensionality 

reduction and selected co-expressed (correlated) variables that could explain the categorical 

outcome of interest, in our case the five SOM-derived metabotypes. DIABLO analysis 

was conducted in R (version 3.6.3) and RStudio (version 1.2.5033) through the package 

of mixOmics55 (version6.10.9). DIABLO output a set of latent variables (components) 

based on the dimensionality and the importance of the input datasets. All the datasets in 

this study carried the same weight, hence the DIABLO dataset matrix initialization design 

parameter was diagonal. The original input was 289 metabolites, 119 microbial species 

and 776 genes, all the differentially identified components from the omics datasets. This 

chosen number of components could extract sufficient information to discriminate all 

SOM-defined metabotypes. Then, a set of coefficients was attributed to each variable, that 

indicated the importance of each variable in DIABLO. The goal was to have maximization 

of the covariance between a linear combination of the variables from each input dataset 

and each categorical outcome. The algorithm was optimized with a 10-fold validation over 

10 training epochs. After tuning these two hyperparameters (number of variables from 

each dataset, choice of variables that maximize co-variance), DIABLO produced as output a 

minimal signature of total 113 markers that distinguish the given metabotypes.

RESULTS

Metabolomics based stratification of bariatric surgery population via SOM

To create a multi-omics profile of obesity, a total of 106 individuals from the BARIA32 

bariatric surgery cohort were recruited. The multi-omics analysis included metabolomics 

on fasting peripheral blood samples, and we employed this dataset for stratification of the 
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heterogenous group of individuals, independent of traditional clinical indexes, such as Body 

Mass Index (BMI), hypercholesterolemia, hypertension and treatment for T2D. To enable 

stratification based on the metabolomics data we built an unsupervised artificial neural 

network that could group individuals based only on the similarity of their metabolome, a 

SOM. The SOM36 evaluated metabolomic similarity by calculating the Euclidean distances 

between complete metabolomic profiles, and projected BARIA individuals with high inter-

group similarity onto a “map” of lower dimensionality compared to that of the initial dataset. 

The SOM was trained with 106 prototype vectors, where each prototype vector corresponded 

to a BARIA participant’s peripheral plasma metabolite profile, consisting of 986 metabolites 

(see Methods). Iterative training of the SOM resulted in a map of 48 nodes, all projected 

onto a hexagonal grid (Fig 1A). These 48 nodes considerably reduced the dimensionality 

and further within-cluster variance was minimized using, which preserved metabolomic 

distances and identified centroids of core metabolomes56. 
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Figure 1. Self-organizing maps reveal five distinct metabotypes within BARIA cohort. (A) Architecture of a competitive 
artificial neural network. Each individual’s complete metabolomic profile is assigned a weight. The weights are in 
turn assigned to neurons in the competitive layer of the neural network. In the competitive layer, SOM algorithm 
calculates the similarity metric (here Euclidean distance) between each metabolomic profile and the neurons and 
then updates the weights. After training, the network assigns the individual’s metabolomic profile to the “winner” 
output node, the node that is essentially more similar to the input metabolomic profile. Once this step is complete, 
all the nodes are comprising the SOM. Finally, all the nodes of the SOM are subjected to k-means clustering resulting 
in the partitioned topology, the metabotypes (SOM & k-means defined clusters). (B) Clustergram of hierarchical 
cluster analysis depicting the distribution of medically treated cardiometabolic comorbidities of the individuals in 
each of the metabotypes (SOM & k-means defined clusters). The treated comorbidities are: hypertension, T2D, GERD 
and cholesterol. In parallel columns are the gender and metabolic syndrome status of each individual, respectively.  
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(C) Clinical variables associated with obesity and their statistical significance across the metabotypes (SOM & 
k-means defined clusters): age (C. i), BMI (C. ii), HDL cholesterol (C. iii), LDL cholesterol (C. iv), creatinine and (C. v), 
glomerular filtration rate (c. vi); statistical significance among metabotypes is calculated with Kruskal-Wallis test; the 
symbols indicating significance among metabotypes are ‘*’: P<=0.05, ‘**’: P<=0.01, ‘***’: P<=0.001.

SOM and k-means clustering reveal five distinct metabotypes

Clustering the SOM identified five clusters (metabotypes), each with different features 

(Fig 1A, Table 1), including unique distributions of comorbidities and medication usage. 

Polypharmacy is a notable characteristic within this study population, including use of 

medication for T2D (n = 20), hypertension (n = 30), hypercholesterolemia (n = 42) and 

gastroesophageal reflux disease (GERD, n = 16). Medication usage was distributed across 

the five metabotypes and is shown in Fig 1B. Clusters 1 and 3 include most individuals 

simultaneously treated for hypertension and high cholesterol (four and five individuals 

respectively), whereas cluster 2 includes individuals co-treated for hypertension, high 

cholesterol and T2D (four individuals). Nevertheless, the distribution of overlapping 

treated cardiometabolic comorbidities is quite uniform among clusters and not skewed 

towards a particular metabotype. In order to assess the effect of missing values and data 

imputation in SOM clustering, a separate mapping analysis was conducted by using the 

unimputed metabolomics dataset. The final map clustering did not diverge from the 

original prediction. Hence, the ability of the SOM to assign similar items on the same node 

was not affected by the imputation of a minimal set of missing metabolite values. We next 

assessed the biometric features of each metabotype, by performing differential analysis on 

the clinical variables available. BMI, body fat, and waist circumference did not significantly 

differ between clusters, however age, HDL cholesterol and glomerular filtration rate varied 

between clusters (Fig 1C). Given that all BARIA participants are affected by severe obesity, 

the stratification based on their SOM metabolomic profile reveals that BMI and treatment 

of cardiometabolic comorbidities are not the clinical features more accurately describing 

and differentiating the metabotypes, but age, cholesterol and markers associated with 

kidney function are important features. We also evaluated if there is any association within 

the clusters and individuals having the metabolic syndrome and found that there was no 

such association (Fig 1B). Furthermore, if we grouped the individuals according to having or 

not-having the metabolic syndrome, we also found no separation according to age or other 

clinical parameters besides those defining the metabolic syndrome (S1 Fig).

Metabolomic profiles characterized by lipid and amino acid metabolites

Following stratification of the individuals into the five metabotypes we performed diffe-

rential analysis of the metabolome for the five different metabotypes. Statistical analysis 

revealed 289 differentially significant metabolites. In comparison we only identified 3 

differentially significant metabolites when the cohort was grouped according to presence of 
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the metabolic syndrome or not (S2 Fig), which shows that driving grouping of the cohort 

based on the metabolomics data enables more detailed insight into metabolic differences 

among the individuals. KEGG pathway analysis revealed that the most highly enriched 

metabolite classes among the 289 metabolites were lipids, amino acids and xenobiotics, 

followed by cofactors and vitamins, nucleotides, carbohydrates, peptides, energy and 

partially characterized molecules. Clusters 2 and 3 exhibited the highest relative abundance 

of differentially significant metabolites, mainly lipids and amino acids (Fig 2A). 
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Figure 2. Differentially abundant metabolites and metabolic pathways among the five defined SOM clusters 
(meta bo types). (A) Relative abundance and distribution of differentially significant metabolites among SOM and 
k-means defined clusters. Clusters two and three are most abundant in lipids (especially lysophospholipids and 
sphingomyelins) and amino acids (urea, arginine and proline metabolism). (B) Distribution of differentially significant 
metabolic pathways among SOM and k-means defined clusters, where numbers within each dot indicate how many 
metabolites of that particular specific pathway were differentially abundant across clusters. (C) Top 20 differentially 
significant metabolites among the SOM and k-means defined clusters, (P<0.05).

Among the enriched KEGG metabolic pathways that had the highest number of 

differentially significant metabolites were fatty acids (Fig 2B), specifically 19 lysophospholipids, 

16 dicarboxylate fatty acids, 14 sphingomyelins and 12 phosphatidylcholines. The amino 

acid metabolic pathways with the most significant metabolites were arginine and proline 

metabolism with 11 compounds, tyrosine metabolism with 8 metabolites, methionine, 

cysteine SAM and taurine metabolism with 8 metabolites, too, while branched-chain amino 
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acid metabolism for isoleucine and valine had 7 metabolites. The top 20 differentially 

abundant metabolites are a mixture of lipids, partially characterized molecules, peptides 

and amino acids, and some of them, despite being the end product of endogenous 

ketogenesis produced by the liver, also carry the potential of being the result of gut 

microbial metabolism, such as 3-hydroxybutyrate and acetoacetate (Fig 2C). Our analysis 

identified lipid metabolites (especially lysophospholipids and sphingomyelins) and amino 

acid metabolites (urea, arginine and proline metabolism) being significantly altered among 

the clusters.

Hepatic and adipose tissue transcriptomes enriched for immune, amino acid  

and lipid metabolism functions

To better understand the relationship between metabolite levels and gene expression, we next 

sequenced RNA extracted from biopsies taken during bariatic surgery from liver, jejunum, 

mesenteric adipose tissue and subcutaneous adipose tissue. We identified differentially 

expressed genes between clusters and conducted gene set enrichment analysis. This analysis 

revealed 682 hepatic genes differentially expressed across the five metabotypes. In contrast, 

only four genes were differentially expressed in jejunum, whereas 45 and 49 genes were 

differentially expressed in mesenteric and subcutaneous adipose tissue, respectively. These 

liver, mesenteric and subcutaneous adipose tissue gene sets were subjected to enrichment 

analysis for retrieving their functional profiles (S1-4 Tables). Due to the low number of 

differentially expressed genes in jejunum, we were unable to obtain a gene set enrichment 

signature for jejunum tissue. The top represented pathways in the liver included fatty acid 

elongation /saturation reflecting lipids in the plasma, glycan and sphingolipid biosynthesis, 

cell function regulation (ErbB signaling pathway, protein export) and immune responses 

(Fig 3A).

The mesenteric adipose tissue was enriched for amino acid metabolic processes (Fig 3B) 

reflecting amino acids in the plasma, and subcutaneous adipose tissue was found enriched in 

many pathways related to pathogens (Fig 3C) and may reflect increased immune activation 

associated with metabolic disease. To investigate how these pathways are regulated across 

the five metabotypes, we examined the normalized gene expression levels of differentially 

expressed genes among the clusters. The metabolic pathways enriched within the hepatic 

transcriptome exhibited mixed directionality in regulation and were assessed individually, 

for each metabotype (Fig 3D). Amino acid metabolic pathways in mesenteric adipose tissue 

exhibited consistent upregulation in clusters 4 and 5 (Fig 3D). Transcriptome analysis from 

these three tissues showed distinct regulation of lipid, amino acid, immune response and 

pathogenic pathways amongst the metabotypes.
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Metabotypes exhibit distinct microbial community composition

Since the gut microbiota is known to be correlated with development of comorbidities 

linked to obesity57–59, we also generated a gut microbiota profile for the BARIA individuals 

from shotgun metagenomic sequencing of fecal DNA. Statistical analysis revealed 119 

differentially abundant species among the SOM metabotypes, the top 30 of which are 

shown in Fig 4A and are dominated by Bacteroidetes and Firmicutes, especially Lactobacillus. 

Out of the 119 differentially abundant species, 70 belonged to Firmicutes phylum, 22 to 

Bacteroidetes, 11 to Actinobacteria, 11 to Proteobacteria, one to Chloroflexi, one to 

Cyanobacteria, one to Euryarchaeota, one to Spirochaetes and one to Fusobacteria. Within 

Firmicutes, Clostridia are more highly abundant for cluster 2 and Weisella for clusters 2, 4 and 

5. Within Bacteroidetes, Bacteroides and Prevotella species are significantly more abundant 

in clusters 1, 2 and 3. For Actinobacteria, Bifidobacterium are considerably more abundant 

in 1 and 2, whereas species within Enterobacteriaceae family have higher abundance for 

clusters 4 and 5 (Fig 4B, S5 Table). In order to assess if there is a difference in alpha and beta 

diversity among metabotypes, we used a series of metrics (Observed, Chao1, ACE, Shannon, 

Simpson, Inverse Simpson for alpha diversity and Whittaker index along with dispersion 

analysis for beta diversity), shown in S3 Fig and S4 Fig. Our metagenomics pipeline displayed 

that none of the different alpha diversity metrics reach statistical significance. The beta 

dispersion (with centroids) results coupled with a permutational ANOVA (PERMANOVA) 

analysis (for 999 permutations) showed F=0.19 and P=0.9431. As seen in S4 Fig, the SOM-

defined clusters largely spatially overlap but appear to have different centroids and different 

dispersions. Nevertheless, the large inter-individual variation cannot account for the negative 

PERMANOVA results, either. In such cases, there is a need to have a correct specification of 

the mean-variance relationship by means of multivariate extensions of GLM with methods 

such as negative binomials, DESeq243. The DESeq analysis revealed that despite the non-

statistically significant diversities, there are SOM-defined clusters that are enriched in specific 

genera, such as Bacteroides, Prevotella and Lactobacillus.

As comparison, when the patients were grouped after presence or absence of metabolic 

syndrome, we only identified 54 differentially significant species. Similarly, none of the alpha 

diversity or beta diversity metrics or ordination were statistically significant. (S5 Fig, S6 Fig). 

Out of the 54 significant gut microbial species 33 species belonged to Firmicutes phylum, 

10 to Bacteroidetes, six to Actinobacteria, four to Proteobacteria and one to Fusobacteria 

(S7 Fig, S8 Table). Within Firmicutes, there is a trend for Lactobacillus species to be two to 

8 times significantly less abundant in metabolic syndrome BARIA individuals. In contrast, 

statistically significant Streptococcus species are twice as abundant in metabolic syndrome 

diagnosed individuals. The majority of the gut microbial species belonging to Bacteroidetes 

is two to three times depleted in metabolic syndrome diagnosed BARIA individuals, 



Self-organized metabotyping for metabolic disease | 117

5

whereas Actinobacteria levels are elevated in metabolic syndrome. Differentially significant 

Proteobacteria tend to be depleted in metabolic syndrome.
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Figure 4. Differentially significant microbial species and phyla among the five defined SOM clusters (metabotypes). 
(A) Top 30 from 119 differentially significant microbial species among the SOM & k-means defined clusters, after 
differential analysis with DESeq2 (P<0.05). (B) Relative abundance and distribution of differentially significant 
microbial species for the top 4 most abundant phyla for SOM & k-means defined clusters. 

Our analysis showed that metabolic syndrome diagnosis can indeed capture a fraction 

of the microbial variability within obesity. Even so, our suggested metabotyping approach 

can identify more gut microbial species across the spectrum of obesity and its related 

comorbidities.

Individual metabotypes display unique clinical and multi-omics features

Our collective analyses show that the five different metabotypes clearly associate with unique 

gene expression and microbial community composition patterns and hence represents 

groups of individuals having distinct differences in their metabolism. To further explore 

these unique patterns, we next performed a detailed evaluation of the molecular fingerprints 

of each metabotype using the findings from the multi-omics differential analysis.

17 individuals had metabotype 1 (13 women/four men), and they had the highest 

fat free mass 60.9 (54.1-93.8) kg and the highest total cholesterol (5.4 ± 1.1 mmol/L). Of 
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these, four participants were treated for hypertension, three for T2D and four for GERD, 

whereas almost half the cluster’s population (8 participants) was treated for high cholesterol. 

It is noticeable that three out of four male participants were co-treated for hypertension, 

GERD/H. pylori infection and cholesterol (Fig 1B). Isobutyrylcarnitine was at a higher level 

in this metabotype (see S6 Table) compared with the other metabotypes, and the same 

was observed for the tyrosine metabolic pathway intermediate 4-methoxyphenol. When 

associating the differentially significant fasting metabolites with anthropometric features (S8 

Fig, S9 Fig), we observed negative correlations between sphingomyelins, fasting glucose (r=-

0.8, P<0.001), HbA1c (r=-0.6, P<0.01) and age (r=-0.5, P<0.01) specifically for this metabotype. 

In summary, metabotype 1 was characterized by high cholesterol, males using medication, 

downregulation of immune response pathways in the liver, lower abundance in Prevotella 

and higher abundance in Bacteroides (Fig 4B) compared to other metabotypes.

Metabotype 2 was the largest cluster consisting of 29 participants. It was female domi-

nated (25 females/four males) and had the youngest individuals of 40 (20-57) years of average 

age with a BMI of 38.2 (32.9-60.9) kg/m2. The highest number of T2D individuals was noted 

here (n= 8), with the highest mean HbA1c value at 42 ± 12 mmol/mol. The individuals were 

the most heavily medicated, since it contained 11 individuals with treatment for dyslipidemia, 

6 with hypertension along with the individuals affected by T2D, of which four participants 

were treated for all conditions simultaneously. When considering the metabolome, lyso-

phospholipids, 1-arachidonoyl-GPC*(20:4)*, 1-linoleoyl-GPC(18:3)*, 1-linoleoyl-GPE(18:2)*, 

1-oleoyl-GPE(18:1), 1-palmitoyl-GPC(16:0)* and 1-stearoyl-GPC(16:0) were higher in com-

parison to the majority of the clusters. Similarly, branched-chain amino acid (BCAA) meta-

bolites 1-carboxyethylvaline, 1-carboxyethylisoleucine and valine were all at elevated levels. 

3-hydroxyoleoylcarnitine, 3-hydroxydecanoate and 2-hydroxybutyrate-2-hydroxyisobutyrate 

were positively correlated with both glucose and HbA1c (r=0.5, P<0.001) (S8 Fig, S9 Fig). To 

summarize, metabotype 2 represented the youngest individuals, yet the individuals being 

most heavily medicated for comorbidities. The individuals have high abundance of BCAAs 

and hydroxy fatty acids, even though fatty acids biosynthetic pathways were downregulated 

in mesenteric adipose fat. In the gut microbiome Prevotella, Bacteroides and Lactobacillus 

species were found to be highly abundant (Fig 4B).

There were 18 individuals having metabotype 3 and this metabotype had the highest 

percentage of males among the clusters (11 females/7 males). The individuals exhibited the 

highest HOMA2-IR at 2.2 (0.5-4.7) and the highest HOMA2-β at 112 (52.7-226.2). It included 

three individuals with T2D (out of 6 in total treated for T2D), 10 hypertensive (out of 13 

in total treated for hypertension) and 12 individuals treated for dyslipidemia (out of 15 in 

total treated for high cholesterol), whereas three were treated for T2D, hypertension and 

dyslipidemia at the same time. Even though the anthropometrics differed, the individuals 



Self-organized metabotyping for metabolic disease | 119

5

of metabotype 3 had similar metabolome and microbiome profiles as metabotype 2, 

but with varying transcriptome patterns. Similar to metabotype 2, lysophospholipids, 

1-arachidonoyl-GPC* (20:4)*, 1-linoleoyl-GPC (18:3)* , 1-linoleoyl-GPE (18:2)*, 1-oleoyl-

GPE (18:1), 1-palmitoyl-GPC (16:0)* and 1-stearoyl-GPC (16:0) were detected in equally 

high levels in the individuals of metabotype 3. Noticeably, all sphingomyelins were elevated 

for individuals in this metabotype (S6 Table). Cluster 3 appeared to be the most insulin 

resistant and most treated for dyslipidemia, in spite of the highly abundant metabolome 

in lysophospholipids and sphingomyelins. In essence, hepatic upregulation of immune 

responses and subcutaneous adipose tissue upregulation of pathogenic-related pathways 

(Fig 3D), in conjunction with high Prevotella and Lactobacillus abundance (Fig 4B) completed 

the cluster’s multi-omics profile.

18 individuals had metabotype 4, including two individuals with T2D, 7 with hyper-

tension and 8 treated for high cholesterol. The median age was the highest in this cluster 

compared to all others at 56 (39-64) years. Cluster 4 had the highest total body fat at 56.5 

(40.6-78.9) kg. BARIA individuals stratified within this metabotype exhibited the highest 

creatinine at 75 (56-172) mmol/L, and lowest glomelular filtration rate at 78 (26-90) 

kl/1.73m2. The transcriptomics datasets from liver tissues exhibited a very strong negative 

regulation of cortisol synthesis, glutamatergic synapse, cGMP-PKG signaling pathway and 

GABAergic synapse. When focusing on the gut microbial species, individuals of metabotype 

4 had many changes in the microbial composition, and the abundance of some of the species 

correlated with plasma glucose, low-density lipoprotein (LDL) cholesterol and cholesterol 

(S10 Fig). In outline, the individuals of metabotype 4 had potentially impaired kidney 

function, high body fat, downregulation of synaptic pathways in the liver, upregulation of 

fatty acid metabolic process in mesenteric adipose tissue, upregulation of pathogenic-related 

pathways in subcutaneous adipose tissue and increased levels of Clostridium, Streptococcus 

and Klebsiella in the gut microbial metagenome.

17 individuals had metabotype 5, with dominance of females (14 females/three males) 

and the median age of the individuals in this cluster was the second youngest, 44 (22-62) 

years. The participants were relatively treatment naïve, only four were treated for T2D, 

three for hypertension and three participants for dyslipidemia, with very little overlapping 

treatments. 1-carboxyethylvaline, 1-carboxyethylisoleucine and valine positively correlated 

with HbA1c (r=0.4, P<0.01) (S8 Fig, S9 Fig). In conclusion, metabotype 5 corresponded to 

a relatively young cluster, with no striking comorbidity treatment, upregulated fatty acid 

metabolic pathways and immune response pathways in the liver and highly abundant in 

Citrobacter.
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Multi-omics integration elucidates discriminatory signature and associations  

between datatypes

To reveal key interactions between multi-omics data sets, we used DIABLO60 to identify 

how the five metabotypes are associated with altered expression in different tissues and 

an altered gut microbiota. Initially, we provided the differentially abundant metabolites, 

genes from liver, jejunum, mesenteric and subcutaneous adipose tissue, and gut microbial 

species for each BARIA individual, along with their respective metabotype membership, 

as input to the algorithm. DIABLO simultaneously calculates the correlations among all 

input multi-omics datasets and selects a minimal set of input variables that differentiate 

the metabotypes. The computational framework used here for integrating various omics 

datasets successfully identified a highly correlated discriminatory signature for SOM-

defined obesity phenotypes that includes multiple Prevotella species (P. veroralis, P. copri,  

P. multisaccharivorax, P. oulorum, P. denticola, P. sp. oral taxon 299, P. bryantii, P. melaninogenica), 

Intestinibacter bartlettii, Anaerococcus prevotii, lipid metabolites (especially phospatidylcholines), 

liver genes enriched in oxidative phosphorylation, lipid metabolism and cardiomyopathy 

pathways, subcutaneous adipose tissue IL6 and SELE genes involved in inflammatory 

and immune system pathways and mesenteric adipose tissue genes enriched in prolactin 

signaling, T2D and PI3K-Akt signaling pathways (S11 Fig).

Metabotypes are associated with weight loss response to bariatric surgery

In order to define the clinical value of metabotyping, we had to assess the metabotypes’ 

response to bariatric surgery. Hence, we performed a longitudinal biometrics post-operative 

control of the BARIA obese individuals at three time points: three months, six months and 

12 months after surgery, where we monitored the weight, waist circumference and upper leg 

circumference. It is noteworthy that there are no distinct statistically significant responses 

in the weight loss or waist circumference reduction immediately after bariatric surgery (3 

months after surgery), contrary to what would be expected (Fig 5A, B). 

There is a trend that metabotypes 2 and 5 have the highest weight loss one year post-

operatively (35kg and 38 kg in average, respectively). Metabotype 2 exhibits the largest waist 

circumference loss at three months after surgery (12cm) even if this is not deemed statistically 

significant (Fig 5C, D). However, there is a clear pattern in the reduction of adipose tissue in 

the upper leg circumference. Metabotypes 1 and 5 are the best responders when it comes to 

upper leg circumference reduction, with the loss being consistent at all three time points. 

Upper leg circumference loss is significant (P<0.05) when compared to the worst responder 

cluster, metabotype 3 (Fig 5E, F). This trend is the same for weight loss, regardless of being 

confirmed by statistical calculations.
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Surprisingly, when the BARIA individuals were grouped according to having or not-

having metabolic syndrome, there were no notable statistically significant differences in 

weight and adiposity loss in none of the three time points.
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Figure 5. Weight and fat loss progression at distinct time points after bariatric surgery for the five defined SOM 
clusters (metabotypes). (A) Weight (kg) of BARIA individuals at baseline, three months, six months and one year 
after bariatric surgery for each metabotype. (B) Weight loss(kg) of BARIA individuals at baseline, three months, six 
months and one year after bariatric surgery for each metabotype. (C) Waist circumference (cm) of BARIA individuals 
at baseline, three months, six months and one year after bariatric surgery for each metabotype. (D) Reduction of waist 
circumference(cm) of BARIA individuals at baseline, three months, six months and one year after bariatric surgery 
for each metabotype. (E) Upper leg circumference (cm) of BARIA individuals at baseline, three months, six months 
and one year after bariatric surgery for each metabotype. (F) Reduction of upper leg circumference(cm)of BARIA 
individuals at baseline, three months, six months and one year after bariatric surgery for each metabotype. Statistical 
significance among metabotypes is calculated with t-test and adjusted with FDR; the symbols indicating significance 
among metabotypes are ‘*’: P<=0.05, ‘**’: P<=0.01, ‘***’: P<=0.001

DISCUSSION

Here we present a novel unsupervised machine learning framework for stratification of 

individuals in human volunteer cohorts, with a high prevalence and variance of comorbidities. 

This framework enables a naïve to clinical labels stratification based on fasting metabolome 

rather than purely clinical parameters that may fail to accurately encompass the multitude 

of nuances in human population-based studies. The main findings of our study revealed 
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pronounced changes in lysophospholipids, phosphatidylcholines, dicarboxylate fatty acids, 

sphingomyelins, and branched-chain amino acid metabolites among the five different 

metabotypes; KEGG metabolic pathways related to immune functions, fatty acid biosynthesis 

and elongation, protein signaling and pathogenic pathways were regulated in different ways 

for each metabotype; the abundance of Prevotella and Lactobacillus species varied the most 

between the metabotypes, and metabotypes 4 and 5 had a lower abundance compared to 

metabotypes 2 and 3. Multi-omics integration enabled reducing the dimensionality and 

identified a concrete biomarker signature able to differentiate between the five distinct 

metabotypes. The differences in metabolism among the individuals in the five metabotypes 

are associated with different responses in terms of weight loss and reduction of waist and 

upper leg circumference to bariatric surgery.

A considerable advantage of our approach is that SOM and k-means clustering 

effectively reduced the initial omics dimensionality and resulted in a reusable topological 

projection of the metabolome. Given the lack of an external multimodal multi-omics 

dataset for validating our results, establishing a metabolome mapping that can recognize 

or characterize new unknown inputs can be proven useful. New metabolomes can be 

projected into the same map, without the requirement of further algorithmic training. 

That way we can compare metabolic distances among new BARIA inclusions or even 

the potential post-surgical metabolomes of the initial 106 inclusions. Comparing the 

post-operative metabolome with the baseline pre-operative state could provide further 

mechanistic comprehension of the pathophysiological mechanisms of obesity and the 

responses to the bariatric surgery intervention in the future. Also using the multi-parameter 

metabolic syndrome as a classifier was here shown not to enable new insight into what 

drives differences in metabolism within the cohort. Metabotyping identified more gut 

microbial species among BARIA individuals, whereas the metabolic syndrome classification 

captured a fraction of the microbial variability. It has been previously attempted in animal 

studies to model interactions between genes, gut microbiota and the molecular mechanisms 

underlying obesity61–63, but their clinical application to humans has been limited64 so far. 

Increased microbial variability among metabotypes along with the results from the KEGG 

pathways enrichment in liver and adipose tissues could be the effect of gut microbial species 

in the hosts’ gene regulation. In the metabotype comparison, the statistically significant 

anthropometric features of age and glomerular filtration rate along with the differentially 

significant KEGG pathways could plausibly reflect the process of cellular and biological 

senescence65,66. The detection of senescence in the metabolome by our proposed SOM and 

k-means methodology, without prior knowledge of biometric characteristics strengthens 

our claim that the identified metabotypes stand as different representations of human 

metabolism among the BARIA obese individuals.
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A limiting factor that needs to be considered when interpreting our findings is the 

selection of the eligible individuals for bariatric surgery. The significant variability within 

human cohorts is often not possible to capture in a finite number of clinical variables. For 

example, classifiers for obesity-associated comorbidities such as hypertension, T2D, and 

dyslipidemia may be treated as binary variables (present vs. absent)9, however the overall 

wellness of an individual with any of these disorders can vary significantly as a function 

of how well managed each of these conditions are, among many other factors. The BARIA 

exclusion criteria for surgical interventions have to be strictly met for minimizing the risks 

and complications of such an evasive procedure. As a result, the BARIA inclusions might 

not fully represent the obesity spectrum. There is a visible trend in weight loss and leg/

waist circumference reduction among the SOM and k-means defined clusters over time. 

Nonetheless the statistically significant differences among all the identified SOM clusters 

were not conclusive, probably due to statistical power. Despite the 106 BARIA inclusions 

and the high quality of the omics dataset, each cluster contains 17-29 individuals, which 

might account for the values of the statistically significant results.

Conclusions

The principal contribution of this study is the detailed omics dataset for obese individuals, 

that includes metabolome, microbiome and especially transcriptome from multiple tissues. 

Our findings suggested that participants’ stratification based on metabotyping could 

enhance our ability to get molecular insights into the causes of diseases from multi-omics 

integrative analysis. The combination of SOM metabotyping and DIABLO correlation 

analysis highlights the data-driven nature of this approach. DIABLO analysis enabled the 

identification of an underlying common yet discriminatory minimal multi-omics signature 

for the SOM-defined metabotypes, that could lead to predictive markers of the bariatric 

surgery outcome. In this light, use of biologic parameters such as the plasma metabolome, as 

a direct readout of the overall status of an entire multiorgan system host and its microbiome, 

to determine grouping of individuals, offers a unique approach that may more accurately 

classify individuals into distinct disease physiological states11,12,67. Rather than traditional 

clinical disease classifiers, this grouping method may reduce the confounding effects of 

such clinical metadata68,69. The multi-omics dataset’s association framework can be the 

starting point for selecting candidate compounds for a more thorough examination and 

provide mechanistic insight into the causality of pathogenicity originating in the tissues, 

mediated by bacteria and materializing via metabolites and clinical metadata. The multi-

omics integrative framework implemented could also be utilized as a hypothesis generating 

tool for comprehending cardiometabolic disease. Our data suggest that self-organized 

metabotyping, based only on metabolite distribution, with no other prior knowledge on 
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the individuals’ clinical status in combination with DIABLO integrative analysis, constitute 

a valuable computational approach studying multifaceted metabolic disorders.
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ABSTRACT

Individuals with prediabetes and type 2 diabetes mellitus (T2DM) have poor ability to adapt 

to diet-triggered perturbations. We investigated global metabolic responses to a mixed meal 

test (MMT) in morbidly obese individuals with different diabetic status by performing 

plasma metabolomic profiling. Abnormal metabolism of carbohydrates, (branched-

chain) amino acids, fatty acids and acylcholines in individuals with (pre)diabetes was 

observed. Moreover, differences in metabolic responses were associated with altered fecal 

metagenomics and transcriptomes of liver, jejunum and adipose tissues, which revealed 

a modified gut microbiome and multi-tissue metabolism in individuals having insulin 

resistance. Finally, using integrative machine learning models, we built a predictive model 

based on metabolomics data after 2h MMT, and identified possible new signatures for 

glycemic control including N−acetylaspartate and phenylalanine-derived metabolites that 

may be useful for diagnosis, intervention and prevention of T2DM.
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INTRODUCTION

Type 2 diabetes mellitus (T2DM), characterized by hyperglycaemia, is one of the fastest 

increasing diseases worldwide1. Before individuals develop T2DM, they almost always have 

prediabetes (Pre-D). 5-10% of all individuals with Pre-D will annually progress to T2DM, and 

~70% will eventually develop T2DM over the course of their lifetime2,3. These individuals 

are characterized by higher than normal blood glucose levels that have not yet reached 

the threshold for diabetes diagnosis2,3. Individuals with Pre-D and T2D not only manifest 

metabolic disorders at fasting, but also have a reduced ability to adapt to diet-triggered 

perturbations, e.g., the limited control for postprandial glycemic level1,4. Insulin resistance 

and pancreatic beta-cell dysfunction play important roles in the metabolic imbalance5,6. 

Postprandial blood glucose control is important for diabetes management, and mixed meal 

test (MMT) have been often used to assess postprandial responses of glucose and insulin7–9. 

Previous studies have revealed postprandial effects on the metabolism of Pre-D and T2DM 

patients10,11. In addition, early studies reported that postprandial glucose responses were 

predictable based on personal and microbial compositional features using machine learning 

models12. However, few studies have taken a holistic view on how different underlying factors, 

including metabolisms of the gut microbiota and human host, contribute to abnormally 

metabolic responses to a MMT in individuals with (pre)diabetes.

Multi-omics profiling and data integrations have been widely applied in Pre-D and T2DM 

studies13 Especially, untargeted metabolomics technologies have provided an opportunity to 

investigate the global metabolic changes in populations with (pre)dia betes14,15, but the serum 

metabolome in previous studies has almost been examined at fasting condition. Several studies 

have shown that disorders of branched-chain amino acids (BCAAs) metabolism contribute 

to insulin resistance16. Here, we applied a combination of metabolomics profiling and MMT 

to dynamically quantify metabolic processes in response to a MMT, which provides novel 

insights into metabolic imbalance in obese individuals with Pre-D and T2DM. In addition, 

transcriptomics studies have previously suggested potential mechanisms involved in the 

pathogenesis of Pre-D and T2DM17, but the existing studies have focused on single-tissue 

transcriptomic profiling, including subcutaneous adipose tissue, visceral adipose tissue and 

pancreatic islets. Here, we systematically analyzed gene expression profiles of different human 

tissues (liver, jejunum, mesenteric and subcutaneous adipose tissues), which enables us to 

identify differences in multi-tissue metabolisms of individuals with different diabetic status. 

Also, recent studies have shown that the gut microbiota has already significant alterations of 

metabolic capacity in Pre-D and correlates to T2DM progression18,19. Microbial metabolites, 

including BCAAs and histidine-derived imidazole propionate, have been demonstrated to be 

associated with insulin resistance16. To gain further insights into associations between the gut 
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microbiota and the metabolic responses of individuals, here shotgun metagenomics was used 

to determine the microbiota composition and potential microbiome functions. 

Based on these obtained multi-omics data, we finally predicted glucose responses to a 

MMT. Interestingly, the predictive models trained with metabolomics data (especially after 

2h MMT) showed best performance. By integrating different data sets, we were able to reveal 

how metabolic changes in different organs, including the gut microbiome, interplay and 

based on this identify a number of metabolites and gut microbial signatures that may serve 

as novel biomarkers of glycemic control.

METHODS

Study population

We studied 106 individuals with morbid obesity in the BARIA cohort scheduled for bariatric 

surgery20. The study was performed in accordance with the Declaration of Helsinki and was 

approved by the Academic Medical Center Ethics Committee of the Amsterdam UMC. All 

participants provided written informed consent. Firstly, these individuals were classified into 

T2DM group (n=20) and non-T2DM group (n=86) according to the diagnosis information. 

The 86 non-T2DM individuals were further classified by their fasting blood glucose and 

HbA1c levels according to American Diabetes Association (ADA) criteria5,38. 27 Individuals 

were classified into normal glucose tolerance (NGT) group having HbA1c level <39 mmol/

mmol and fasting blood glucose level <5.6 mmol/L; 57 individuals were classified into 

prediabetes (Pre-D) group having HbA1c level 39–47 mmol/mmol or fasting blood glucose 

level 5.6–6.9 mmol/L; Two individuals were de novo classified into T2DM group having 

HbA1c level ≥48 mmol/mmol or fasting blood glucose level ≥7 mmol/L. Finally, the 106 

individuals in the cohort were classified into three groups, including NGT (n=27), Pre-D 

(n=57) and T2DM group (n=22), for further analyses.

Measurements of clinical characteristics

Individuals underwent a complete metabolic work-up at the start of their bariatric surgery 

trajectory. Anthropometric measurements including height, weight and waist circumference 

were taken. In addition, body fat percentage using bioelectrical impedance and blood pressure 

were measured. Fasting blood samples were used for the determination of fasting blood 

glucose, HbA1c, total cholesterol, HDL-cholesterol, LDL-cholesterol, triglycerides, ferritin, 

CRP (C-reactive protein), hemoglobin, leukocyte, creatinine, magnesium, GGT (gamma 

glutamyl transferase), ALT (alanine aminotransferase), AST (aspartate aminotransferase), 

vitamin B12, vitamin D and insulin levels.
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Mixed meal test

Within three months before surgery, individuals in the cohort underwent a 2-hour mixed 

meal test (MMT), which was performed to assess insulin resistance and investigate dynamic 

alterations in circulating metabolites. The MMT consisted of two Nutridrink compact 125ml 

(Nutricia®), containing 23.3 grams fat, 74.3 grams carbohydrates (of which 38.5 grams sugar) 

and 24.0 grams protein. The participants received this meal after fasting for a minimum 

of nine hours. Time point zero refers to the moment at which the participant had fully 

consumed the meal. Blood samples were drawn via an intravenous line at baseline, 10, 20, 

30, 60, 90 and 120 minutes. Glucose, insulin and triglycerides were measured at these seven 

time points.

A number of variables related to insulin resistance, pancreatic β cell function and MMT 

were calculated using previously published methods69. The HOMA2 model (the updated 

HOMA model) was used to estimate insulin resistance (HOMA2-IR index) and pancreatic 

β cell function (HOMA2-B index) for an individual from fasting plasma glucose and fasting 

insulin concentrations measured in a MMT21. To quantify the postprandial responses of 

glucose and insulin to a MMT, total area under the curve (tAUC) and incremental AUC 

(iAUC, subtracting the baseline values) were calculated from their measurements by the 

trapezoidal method. For calculating the AUC, the k-Nearest Neighbors (KNN) method was 

performed for imputation of all missing values using R function knnImputation in DMwR 

with default parameters. Insulin AUC/glucose AUC ratios were calculated to estimate 

glucose-stimulated insulin secretion during 2h MMT. Besides, the insulinogenic index was 

calculated by dividing the insulin iAUC during the first 30 minutes by the glucose iAUC 

during the same period22. 

Metabolomics analysis

106 and 95 EDTA plasma samples were collected from participants at fasting and 2h 

after MMT, respectively. Samples were shipped to METABOLON (Morisville, NC, USA) 

for performing analysis using ultra high-performance liquid chromatography coupled to 

tandem mass spectrometry (LC-MS/MS) untargeted metabolomics, as previously described23. 

The metabolomic abundance obtained, underwent significant curation via metabolites’ pre-

filtering, imputation for subsets of metabolites’ missing values and data normalization, in 

order to minimize the effect of artifacts in the downstream analysis. The abundances of all 

metabolites from fasting and post-meal samples were analyzed together in this study. The 

metabolomics dataset is comprised of 1345 metabolites with 1041 compounds of known 

identity (named metabolites) and 304 compounds of unknown structural identity (unnamed 

metabolites). Metabolomics prefiltering and imputation were performed by utilizing a 

variation of the Perseus platform24. Essentially, data has been pre-filtered so as to have a 
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maximum of 25% missing values for a metabolite across all samples. This was followed by a 

log transformation of all the measured metabolites’ raw intensities across the entire dataset. 

Then, we calculated the total data mean and standard deviation (by omitting missing values). 

Taking into account that the metabolite intensities distribution is approximately following 

normality, we chose a small distribution 2.5 standard deviations away from the original data 

mean towards the left tail of the original data distribution, with 0.5 standard deviations 

width. This new shrunken range corresponds to the actual lowest level of detection by the 

spectrometer. Here by drawing random values from this mini distribution, we filled the 

missing prefiltered data of choice.

Normalization was conducted as previously described23. Out of the 1345 metabolites 

analyzed by Metabolon, we used 998 metabolites in our downstream analysis after 

normalization and imputation.

To identify metabolites differential among the three groups with varied diabetic status 

or between two time points (fasting and 2h after MMT), two main effects (groups and time) 

and their interaction were assessed by multi-factor ANOVA that was adjusted for covariate 

age. Student’s t-test was used for multiple pairwise comparisons between two groups. P 

values were corrected for multiple testing using the false discovery rate method. Adjusted P 

< 0.05 was considered as threshold to identify significantly differential metabolites associated 

with diabetic status or the MMT. Due to the particular interest in (pre)diabetes-related 

metabolites’ responses to a MMT, the metabolites were further classified into three types of 

response patterns, as shown in Supplementary Fig. 6. Type I metabolites have no significant 

main effect for time and no interaction of two main effects time and groups, i.e., no response 

to a MMT. The first plot shows where the time profiles have no change and are parallel for 

the groups (parallel means no interaction). Type II metabolites have significant main effect 

for time but no interaction, i.e. parallel response to a MMT. The middle plots show where 

the time profiles have changes but are still parallel for the groups. Type III metabolites have 

significant interaction of two main effects, i.e., differential response to a MMT. The last plot 

shows where the time profiles have different changes for the three groups. The metabolites 

having differential responses among the three groups were identified by examining the 

significance of the interaction of two main effects (P <0.05). Moreover, to quantify the MMT-

induced metabolic changes of each individual, the ratio of each metabolite abundance at 2h 

post MMT to fasting abundance was calculated.

Transcriptome analysis

Biopsies from liver (106 samples), jejunum (105 samples), mesenteric adipose fat (104 

samples) and subcutaneous adipose fat (105 samples) were collected at the time of the 

bariatric surgery (Supplementary Table 1), as previously described20. RNA was extracted 
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from biopsies using TriPure Isolation Reagent (Roche) and Lysing Matrix D, 2 mL tubes (MP 

Biomedicals) in a FastPrep®-24 Instrument (MP Biomedicals) with homogenization for 20 

seconds at 4.0 m/sec, with repeated bursts until no tissue was visible; homogenates were kept 

on ice for 5 minutes between homogenization bursts if multiple cycles were needed. RNA 

was purified with chloroform (Merck) in phase lock gel tubes (5PRIME) with centrifugations 

at 4°C, and further purified and concentrated using the RNeasy MinElute kit (QIAGEN, 

Hilden, Germany). The quality of RNA was analysed on a BioAnalyzer instrument 

(Agilent), with quantification on Nanodrop (Thermo Fisher Scientific). Due to degradation 

of the RNA, libraries for RNAseq sequencing were prepared by rRNA depletion; library 

preparation and sequencing were performed at Novogene (Nanjing, China) on an HiSeq 

instrument (Illumina Inc.) with 150 bp paired-end reads and 10G data/sample. The average 

read count per sample from liver and jejunum tissues are 42 ± 15 million. For mesenteric 

and subcutaneous adipose tissue, the average read count per sample are 43.2 ± 20 million.

Raw RNA-seq reads data were analyzed using nf-core/rnaseq25, a bioinformatics analysis 

pipeline for RNA sequencing data. Raw RNA-seq reads data was subjected to quality control 

using FastQC and multiQC25. The alignment of sequencing reads to the reference genome 

Homo sapiens GRCh38 was performed using STAR26. Gene counts were generated using 

featureCounts and StringTie. The pipeline was built using Nextflow27.

To identify the differential genes between NGT, Pre-D and T2DM groups, multivariate 

negative binomial generalized linear models were performed by R package DESeq2. The 

models were adjusted for covariates age, BMI and gender. Only genes with the sum of 

counts across all samples ≥10 and existed in at least five samples were considered in the 

analysis. Raw read counts of genes were normalized using the median of ratios method by 

DESeq2. P values were corrected for multiple testing using BH method for per pairwise 

group comparison in each tissue. Adjusted P<0.05 was considered as threshold to identify 

significantly differentially expressed genes. To further explore differences in KEGG functions 

among the three groups, gene set analysis (GSA) was performed using statistics of all genes 

(P value and log2 fold change) and R package PIANO with the reporter algorithm for KEGG 

pathways. The gene sets with a distinct directional P value<0.05 were chosen in this study, 

that is only considering gene sets significantly enriched by distinctly up or down-regulated 

genes.

Microbiome analysis

Fecal samples from 106 participants were collected on the day of surgery and immediately 

frozen at -80C. Total fecal genomic DNA was extracted from 100 mg feces using a 

modification of the IHMS DNA extraction protocol28. Briefly, fecal samples were extracted 

in Lysing Matrix E tubes (MP Biomedicals) containing ASL buffer (QIAGEN), and lysis of 
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cells was obtained, after homogenization by vortexing for 2 minutes, by two cycles of heating 

at 90°C for 10 minutes followed by three bursts of bead beating at 5.5 m/sec for 60 seconds in 

a FastPrep®-24 Instrument (MP Biomedicals). After each bead-beating burst, samples were 

placed on ice for 5 minutes. The supernatants containing fecal DNA were collected after 

the two cycles by centrifugation at 4°C. Supernatants from the two centrifugations steps 

were pooled and a 600 µL aliquot from each sample was purified using the QIAamp DNA 

Mini kit (QIAGEN) in the QIAcube (QIAGEN) instrument using the procedure for human 

DNA analysis. Samples were eluted in 200 µL of AE buffer (10 mmol/L Tris·Cl; 0.5 mmol/L 

EDTA; pH 9.0). Libraries for shotgun metagenomic sequencing were prepared by a PCR-free 

method; library preparation and sequencing were performed at Novogene (China) on an 

HiSeq instrument (Illumina Inc.) with 150 bp paired-end reads and 6G data/sample. 

MEDUSA is an integrated pipeline for pre-processing of raw shotgun metagenomics 

sequence data29, which maps reads to reference databases, combines output from several 

sequencing runs and manipulates tables of read counts. The input number of total reads 

from the metagenome analysis were on average 23.4±2.2 million reads per sample and the 

total aligned reads were 16.6±1.8 million reads per sample (Supplementary Table 6). The 

sequencing runs had high quality with almost 98% of the reads passing the quality cut-off. Out 

of the high-quality reads, on average 0.04% aligned to the human genome, although the data 

had been cleaned for human reads. Out of the high quality non-human reads, 78.4% aligned 

to the MEDUSA’s software gene catalogue that contains more than 11 million genes. Quality 

filtered reads were mapped to a genome catalogue that contains 1747 species genomes and the 

gene catalogue using Bowtie230. Raw read counts at different taxonomy levels were normalized 

by scaling with cumulative sum (i.e. relative abundance). The α-diversity was calculated based 

on species-levels of each sample using Shannon, Simpson and Invsimpson indices via R 

package vegan. To visualize and evaluate differences in gut microbiota composition among 

groups with varied diabetic status, principal coordinates analysis (PCoA) was performed 

based on species-level Bray–Curtis distances, and PERMANOVA was performed using the 

R function adonis in vegan. Microbial taxa at each taxonomical level, including class, order, 

family and genus, were compared by a Kruskal–Wallis test. P values were adjusted by FDR 

for each taxonomical level separately. To identify the differential species and KOs among the 

NGT, Pre-D and T2DM groups, multivariate negative binomial generalized linear models 

were performed by DESeq2 using raw read counts. The models were adjusted for covariates 

age, BMI and gender. P values were corrected for multiple testing using BH method for per 

pairwise group comparison. To further explore differences in KEGG functions among the 

three groups, gene set analysis (GSA) was performed using Piano with the reporter algorithm 

for KEGG pathways and modules. The differentially enriched KEGG pathways and modules 

were identified with a distinct directional P value<0.05.
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Statistical analysis

All statistical analyses were performed in the R software version 3.5. To identify the diffe-

ren tial responses to a MMT, time curves of glucose, insulin and triglycerides concentrations 

for Pre-D and T2DM group were compared to NGT group using two-way ANOVA with 

repeated measures. The significant interaction of two main effects time (MMT) and groups 

(varied diabetic status) was investigated. In addition, Kruskal–Wallis test was used for 

comparisons among the three groups and Wilcoxon rank-sum test was used for multiple 

pairwise comparisons between each two groups. To assess the associations between multi-

omics and clinical variables, Spearman’s rank correlation analysis was performed. P values 

were adjusted by FDR to control for multiple comparisons error in this study. To assess 

correlations between distance matrices of multi-omics, Mantel test was performed using 

the R package ade4 with the permutation number of 9999. The Bray–Curtis dissimilarity 

matrices were calculated by using the R function vegdist in vegan.

To predict glucose response to a MMT (i.e. tAUC), ridge regression models were trained 

based on multi-omics data using R package glmnet. The models were adjusted for covariates 

age, BMI and gender. First, ridge regression model was used to regress the normalized profile 

of gut microbiota, metabolomics, transcriptomics against glucose tAUC, respectively. Then, 

ridge regression model was used to regress the combinational normalized profile of multi-

omics against glucose tAUC. The optimal lambda was chosen using function cv.glmnet (10-

fold cross-validation in package glmnet) based on the minimum Root Mean Square Error 

(RMSE). To evaluate performance of the ridge model with the optimal lambda, 5-fold cross-

validation (106 samples were randomly divided into five equal parts). Four fifths of samples 

were used to train the predicted model, and the remaining samples were used to test the 

fitness of it at each time) was performed by considering the measure RMSE.

RESULTS

Study population

In the present study, we recruited 106 individuals with obesity (BMI≥30 kg/m2) scheduled 

for bariatric surgery and included in the BARIA cohort with either normal glucose tolerance 

(NGT, n=27), Pre-D (n = 57) or T2DM (n = 22) based on the American Diabetes Association 

criteria1 (Fig. 1a). Baseline characteristics are summarized in Table 1. Individuals with 

Pre-D and T2DM (47.3 ± 9.5 and 47.1 ± 10.1 years) were older (P<0.05) than those with 

NGT (41.3 ±10.0 years). Fasting glucose, HbA1c and triglycerides levels were, as expected, 

significantly higher (P<0.05) in the T2DM and Pre-D groups compared with the NGT 

group (Table 1). Similarly, individuals in the T2DM group had elevated insulin resistance 
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index (HOMA2-IR) and decreased magnesium levels compared with the NGT and Pre-D 

groups (P<0.05). Additionally, individuals with T2DM used more medication, including 

insulin, metformin, thiazide, and statin compared with NGT and Pre-D (P<0.05 by Fisher´s 

Exact test; Supplementary Fig. 1). Furthermore, blood samples for the two-hour MMT and 

metabolomics profiling were drawn within three months before the bariatric surgery (Fig. 

1a and Supplementary Table 1). Also, biopsies from liver, jejunum and adipose tissues, and 

fecal samples were collected on the day of the surgery. 
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Figure 1: Experimental design and results from a mixed meal test (MMT). a, Schematic illustration of the experimental 
design. b, The time profiles of blood glucose, c insulin and d triglyceride concentrations during a MMT (Mean ± SEM) in 
the NGT (n=27), Pre-D (n=57) and T2DM (n=22). e, The association between insulin and glucose total AUC in each group. 
Spearman’s rank correlation analysis was performed.
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Characteristics
NGT
(N = 27)

Pre-D
(N = 57)

T2DM
(N = 22)

Demographic

 Age (years) 41.3±10.0 47.3±9.5* 47.1±10.1*

 Female - no. (%) 24 (88.9) 44 (77.2) 16 (72.7)

Anthropometric

 BMI (kg/m2) 39.0 (37.5 to 40.9) 39.8 (37.2 to 41.2) 38.7 (35.9 to 42.7)

 Weight (kg) 113.0 (108.8 to 121.0) 119.0 (104.8 to 128.0) 118.5 (106.9 to 126.6)

 Height (cm) 170.0 (167.0 to 174.5) 172.0 (167.0 to 178.0) 172.5 (165.3 to 179.5)

 Waist circumference (cm) 118.0 (111.0 to 124.0) 126.0 (117.8 to 135.0)* 126.0 (117.0 to 130.0)

 Total body fat (%) 47.9 (46.8 to 50.1) 47.6 (46.3 to 49.9) 42.8 (40.1 to 48.5)*

 Fat free mass (%) 52.3 (50.0 to 52.3) 52.5 (50.1 to 56.7) 57.2 (51.5 to 59.9)*

 Total body water (%) 37.9 (35.6 to 39.9) 39.4 (36.5 to 41.6) 42.3 (38.5 to 46.0)*#

 Systolic pressure (mmHg) 132.0 (118.0 to 135.0) 136.0 (126.0 to 143.0) 130.0 (122.3 to 138.0)

 Diastolic pressure (mmHg) 80.0 (74.0 to 84.0) 82.0 (79.0 to 88.0) 83.0 (77.3 to 86.8)

Clinical lab values

 Fasting glucose (mmol/l) 5.1 (5.0 to 5.4) 5.8 (5.6 to 6)* 7.7 (6.8 to 8.9)*#

 HbA1c (mmol/mol) 34.0 (34.0 to 37.0) 39.0 (37.0 to 40.0)* 52.0 (46.0 to 60.0)*#

 Fasting insulin (pmol/l) 71 (45 to 116) 80.5 (58.9 to 103.3) 119.0 (64.3 to 212.3)*#

 Fasting C-peptide (pmol/l) 0.8±0.3 0.9±0.2 1.0±0.4

 Total cholesterol (mmol/l) 4.6±1.0 5.2±1.1* 4.3±1.0#

 HDL-cholesterol (mmol/l) 1.1 (1.0 to 1.4) 1.2 (1.0 to 1.4) 1.0 (0.9 to 1.2)

 LDL-cholesterol (mmol/l) 3.0±0.9 3.4±1.0 2.7±0.8#

 Triglycerides (mmol/l) 1.0 (0.8 to 1.4) 1.4 (1.1 to 1.9)* 1.6 (1.3 to 1.8)*

 Ferritin (μg/l) 70.0 (55.0 to 118.0) 128.0 (56.0 to 184.0) 85.5 (27.3 to 162.8)

 CRP (mg/l) 5.4 (3.4 to 10.5) 4.9 (2.9 to 7.2) 3.2 (5 to 9.4)

 Hemoglobin (mmol/l) 8.7 (8.1 to 9.0) 9.0 (8.6 to 9.4) 8.7 (8.4 to 9.2)

 Leukocyte, 109/l 6.9 (6.1 to 8.8) 6.9 (5.6 to 8.8) 6.6 (5.6 to 9.4)

 Creatinine (μmol/l) 69.0 (61.0 to 78.0) 66.0 (61.0 to 76.0) 65.0 (56.8 to 76.3)

 Magnesium (mmol/l) 0.84±0.05 0.82±0.05 0.76±0.08*#

 GGT (IU/l) 22.0 (14.0 to 26.5) 25.0 (18.0 to 35.3) 38.0 (23.5 to 52.0)*#

 ALT (IU/l) 22.0 (19.5 to 30.5) 27.0 (22.0 to 41.0) 39.5 (27.0 to 56.0)*#

 AST (IU/l) 22.0 (20.0 to 25.5) 24.0 (20.5 to 28.0) 28.0 (21.3 to 40.8)

 Vitamin B12 (pmol/l) 321.0 (237.5 to 396.0) 282.0 (219.0 to 360.0) 263.0 (220.8 to 348.5)

 Vitamin D (nmol/l) 57.0 (31.5 to 71.5) 48.0 (38.0 to 64.0) 50.0 (30.0 to 71.0)

 HOMA2-IR 1.4 (0.8 to 2.2) 1.6 (1.1 to 2.1) 2.4 (1.5 to 4.5)*#

 HOMA2-B 129.8 (86.7 to 158.5) 97.5 (84.0 to 120.7) 81.0 (60.1 to 126.2)*

Table 1. Baseline characteristics of the obese cohort. Mean±SD. For categorical variables number and percentages 
are presented. Non-normally distributed variables are presented as median with interquartile range. For comparison 
between groups, Fisher´s Exact test was used for dichotomous variables and Student’s t-test or Wilcoxon rank sum 
test were used as appropriate for continuous variables. For comparison among three groups, Kruskal–Wallis test 
was used. ‘*’ denotes significant difference in comparison to NGT group (P < 0.05); ‘#’ denotes significant difference 
between Pre-D and T2DM groups (P < 0.05). BMI: body mass index, CRP: C-reactive protein, GGT: gamma glutamyl 
transferase, ALT: alanine aminotransferase, AST: aspartate aminotransferase, HbA1c: Hemoblobin A1c, HDL: high-
density lipoprotein, LDL: low-density lipoprotein.
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Mixed meal test characteristics

To assess the postprandial glucose response and insulin resistance, all individuals under-

went a standardized MMT. The time profiles of blood glucose, insulin and triglyceride 

concentrations in responses to the MMT are shown in Fig. 1b-d and Supplementary Fig. 2. 

The MMT triggered a temporary increase in plasma glucose and insulin concentrations in 

NGT, Pre-D and T2DM groups (P<0.01 by ANOVA). However, glucose excursions differed 

significantly between the three groups (P<0.01 by ANOVA). This translated into significant 

differences in total area under the curve (tAUC) as well as in incremental AUC (iAUC, 

subtracting the baseline values) between the three groups (P<0.01 by Kruskal–Wallis test; 

Supplementary Fig. 3). T2DM individuals had slightly higher insulin levels at fasting, while 

had decreased insulin AUC/glucose AUC ratios and insulinogenesis index compared with 

NGT and Pre-D individuals (P<0.05 by Wilcoxon rank-sum test; Supplementary Fig. 3). The 

plasma triglyceride levels had an increasing trend over time in the Pre-D and T2DM groups, 

but with large within-group variations in the three groups (Fig. 1d). Overall, the responses 

of plasma glucose, insulin and triglyceride to the MMT were characterized by a prolonged 

elevation in the T2DM group. Interestingly, strong positive correlations between glucose 

AUC and insulin AUC were only observed in the NGT group (Fig. 1e and Supplementary 

Fig. 4; for tAUC, R=0.52 and P=0.0058; for iAUC, R=0.58 and P=0.0015). Thus, our results 

confirmed an abnormal plasma glucose and insulin response during a MMT for the Pre-D 

and T2DM groups.

Metabolic signatures associated with diabetic status and modulated differentially by a MMT

To investigate the global metabolic responses to the MMT in individuals with different 

diabetic status, we used peripheral plasma samples for untargeted metabolomic profiling 

from participants at fasting and 2h post MMT and calculated the Euclidean distances 

between groups with different diabetic status at both time points (Fig. 2a). Interestingly, 

the three groups clustered separately at the two time points, which indicates that MMT 

has a large impact on the metabolomic profiles, with 439 metabolites being differentially 

abundant between the fasting and postprandial conditions (Adjusted P<0.05 by ANOVA; 

Supplementary Table 2). The main metabolic processes that had physiological responses 

to the MMT included lipids (n =183), amino acids (n=72) and xenobiotics (n=36) classes 

(Supplementary Fig. 5). Moreover, the distance between the NGT and T2DM groups at each 

time point shows an increased trend, compared to the distance between the NGT and Pre-D 

groups, or between the Pre-D and T2DM groups (Fig. 2a). This suggests a gradually increased 

difference in metabolomic profiles with progression from NGT to T2DM status. A total of 145 

differential metabolites were associated with diabetic status (Adjusted P<0.05 by ANOVA, 

Supplementary Table 2), mainly composed of metabolites within the classes of lipids (n = 
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83), carbohydrates (n = 4), amino acids (n = 34), xenobiotics (n=6) and nucleotides (n = 7) 

(Fig. 2b). We further identified differentially abundant metabolites between any two groups 

by multiple pairwise comparisons at two time points, respectively (the bar chart in Fig. 2b; 

Adjusted P < 0.05 by t-test; Supplementary Table 3). No metabolites showed significantly 

different levels between the NGT and Pre-D groups at either time point. After 2h MMT, 

139 metabolites differed between the NGT and T2DM groups, whereas only 55 metabolites 

differed at fasting. Consequently, metabolomic profiles were associated with diabetic status 

and showed a larger difference between the NGT and T2DM groups postprandially.

Next, we classified the 145 metabolites associated with diabetes status into three 

response patterns, type I-III (Fig. 2c; Method; Supplementary Fig. 6; Supplementary Table 3). 

Of these, 39 metabolites showed a response pattern with no significant difference between 

the two time points in each group (type I) and 55 metabolites showed a parallel response 

to the MMT, independent of diabetes status (type II). The remaining 51 metabolites showed 

differential responses to the MMT among the three groups (type III) and primarily belonged 

to carbohydrates, amino acids and lipids. As expected, glucose abundance was significantly 

increased, whereas 1,5-anhydroglucitol abundance was decreased in the T2DM group 

compared to the NGT and Pre-D groups at both time points (adjusted P < 0.05; Fig. 2c and 

Supplementary Table 3). Moreover, mannose showed an elevated abundance in the T2DM 

group (adjusted P < 0.05), which is in agreement with previous results31,32. The identified 

metabolites in the carbohydrate class followed the type III response pattern, which indicates 

differential responses of carbohydrate metabolism to a MMT among the three groups.

Amino acid-derived metabolites including BCAAs and aromatic amino acids (AAAs) 

have been reported to be associated with T2DM16,33,34. Here, we identified 34 amino acid-

derived metabolites associated with diabetes status (adjusted P<0.05 by ANOVA). Most 

amino acids in the type I response pattern, including arginine, taurine, N−acetyltaurine, 

C−glycosyltryptophan and hydroxyasparagine, showed reduced abundances in the T2DM 

group compared with the NGT and Pre-D groups at both time points (adjusted P<0.05; Fig. 

2c and Supplementary Table 3). Additionally, amino acids in the type II response pattern, 

including 1−carboxyethylphenylalanine, 1−carboxyethylisoleucine, 1−carboxyethylleucine, 

1−carboxyethylvaline and 2−hydroxybutyrate, were increased in the T2DM group compared 

to the NGT and Pre-D groups at both time points (adjusted P<0.05). Furthermore, amino 

acids with the type III pattern, including creatinine, lysine and N−acetylaspartate (NAA), 

were decreased in the T2DM group compared with the NGT and Pre-D groups at fasting or 

2h post MMT (adjusted P<0.05). Particularly, these metabolites responded differentially to 

the MMT among the three groups, which may reflect the abnormal amino acid metabolism 

in the T2DM group after diet.
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Figure 2: The metabolic changes associated with diabetic status and modulated differentially by the MMT. a, The 
hierarchical clustering of Euclidean distances between groups with different diabetic status at fasting and 2h post 
MMT. b, The donut chart shows pathways distribution of 145 metabolites differed significantly among the NGT (n=24), 
Pre-D (n=50) and T2DM (n=21) groups identified by ANOVA (adjusted P < 0.05). The bar chart shows the metabolites 
differed between the three groups at fasting and 2h post-meal, respectively. c, Heatmap showing the mean 
abundance of the metabolites with three different response patterns in the NGT (n=24), Pre-D (n=50) and T2DM (n=21) 
groups. d, The associations between the metabolomic changes and T2DM-related clinic variables. Only metabolites 
involved in the metabolic processes, including carbohydrates, amino acids, cofactors, nucleotides, xenobiotics, 
peptides, acylcholines, fatty acids, carnitine and sterol metabolism are shown. Spearman’s rank correlation analysis 
was performed. ‘+’ denotes adjusted P < 0.05; ‘*’ denotes adjusted P < 0.01. “biochemical name*” indicates a compound 
that has not been confirmed based on a standard but is confident in its identity.

Many T2DM patients also have dyslipidemia, and our analysis showed that abundances 

of metabolites in the fatty acid subclass were increased in the T2DM group at fasting 

or 2h post MMT (adjusted P<0.05, Supplementary Table 3). Six fatty acids, including 3−

hydroxydecanoate, 3−hydroxyoctanoate, linoleate (18:2n6), linolenate (18:3n3 or 3n6), had 
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differential responses to a MMT among the three groups (i.e., type III pattern). However, 

most metabolites in the lipid class had a decreased trend in the T2DM group compared to the 

NGT and Pre-D groups at both time points (Fig. 2c and Supplementary Table 3), including 

sphingomyelin, carnitine, sterol, hexosylceramides, lactosylceramides and acyl choline  

subclasses. Interestingly, all seven acylcholines, including arachidonoylcholine, linoleoyl-

choline*, palmitoylcholine, responded differentially to a MMT among the three groups.

Associations of metabolomic changes with clinical variables

To assess the links between phenotypic characteristics and the postprandial changes of 

the T2DM-related circulating metabolites, we performed correlation analyses between the 

clinical variables and these metabolites at fasting or 2h post MMT (Fig. 2d). At fasting, most 

metabolites with type I and II response patterns had significant correlations with clinical 

variables glucose tAUC, HbA1c and HOMA2-IR (adjusted P<0.05, Fig. 2d). The carboxyethyl 

derivatives of BCAAs and phenylalanine were positively correlated with glucose tAUC and 

HOMA2-IR at both time points (adjusted P<0.05, R=0.29~0.55). Interestingly, correlations 

between most metabolites and these clinical variables showed an increased trend after 2h 

MMT. For example, NAA only showed significant correlations with glucose AUC (both iAUC 

and tAUC) and HOMA2-IR after 2h MMT (adjusted P<0.05, for tAUC, R= -0.42; for iAUC, 

R= -0.51; for HOMA2-IR, R= -0.36). Furthermore, correlations between the clinical variables 

and the MMT-induced metabolite changes (i.e., ratio of metabolite abundance at 2h post 

MMT to fasting) were investigated (Fig. 2d). The postprandial changes of most metabolites 

with type III pattern had significant correlations with the clinical variables (adjusted P<0.05). 

Especially, the postprandial changes of metabolites in acylcholine subclass were negatively 

correlated with glucose AUC (adjusted P<0.05, R= -0.4~-0.33). In addition, the postprandial 

changes of NAA and lysine correlated negatively with HOMA2-IR (adjusted P<0.05, for 

NAA, R= -0.32; for lysine, R= -0.49), which suggests that the postprandial regulation of these 

metabolites might be associated with insulin resistance. 

Transcriptional changes associated with diabetes status

To identify differences in metabolic functions of individuals with variable diabetic status, 

gene expression profiles in four human tissues, including liver, jejunum, mesenteric and 

subcutaneous adipose tissue, were quantified using RNA-sequencing. As shown in Fig. 3a, the 

first and second principal component analysis (PCA) components clearly separated samples 

from different tissues, which accounted for 34% and 24% of the variability, respectively. 

Differential gene expression analysis by multiple pairwise comparisons between the NGT, 

Pre-D and T2DM groups resulted in identification of 194, 30, 235 and 11 significantly 

differentially expressed genes in liver, jejunum, mesenteric and subcutaneous adipose tissue, 
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respectively (adjusted P<0.05; Supplementary Table 4). These differentially expressed genes 

show tissue-specific (Fig. 3b). Furthermore, gene set analysis (GSA) identified enrichments of 

KEGG pathways in the four different tissues (P<0.05; Fig. 3c). Our results showed differences 

in metabolic pathway related to valine, leucine and isoleucine degradation in liver, jejunum 

and subcutaneous adipose tissue among the three groups. Differential genes involved in 

these pathways are summarized in Supplementary Table 5 (P<0.01). In liver, insulin secretion, 

cAMP signaling pathway and cGMP−PKG signaling pathway were enriched with down-

regulated genes, while steroid biosynthesis, terpenoid backbone biosynthesis and propanoate 

metabolism were enriched with up-regulated genes in the T2DM group compared with 

the NGT and Pre-D groups (P<0.05; Fig. 3c). The ryanodine receptor gene RYR2 related 

to insulin secretion and genes related to cGMP-PKG signaling pathway including IRS2, 

MYLK3, ADRA2C, NPPA, were down-regulated in the T2DM group (P<0.01; Supplementary 

Table 5). In mesenteric adipose tissue, MAPK, TNF and NF-kappa B signaling pathway and 

cellular senescence were enriched with up-regulated genes in the T2DM group (P<0.05; Fig. 

3c). In subcutaneous adipose tissue, the gene NEU4 (encoding neuraminidase 4) related 

to sphingolipid metabolism was up-regulated in the Pre-D group compared with the NGT 

group (P<0.01 and |log2 (fold change)|>1). The gene FASN (encoding fatty acid synthase) 

involved in fatty acid metabolism was down-regulated in the T2DM group compared with 

the NGT group (P<0.01 and |log2 (fold change)|>0.6). In jejunum, genes DGAT2, APOA4, 

MTTP, AGPAT2 related to fat digestion and absorption were up-regulated in the T2DM 

group compared with the Pre-D group (P<0.01; Supplementary Table 5).
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Figure 3: Transcriptional profiles of different human tissues from the NGT, Pre-D and T2DM individuals. a, 
Principle component analysis (PCA) of transcriptomic profiles in liver (n=106), jejunum (n=105), mesenteric(n=104) 
and subcutaneous adipose tissues (n=105). Nodes with circle, triangle, rectangle and crisscross represent samples 
from jejunum, liver, subcutaneous and mesenteric adipose tissue, respectively. b, The Venn diagram depicting the 
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distribution of significantly differentially expressed genes among the three groups in the four tissues (adjusted P < 
0.05). c, The enriched KEGG pathways comparing the NGT, Pre-D and T2DM groups in the four tissues (P < 0.05). The 
red color indicates up-regulated gene sets; the blue color indicates down-regulated gene sets. 

 

Microbiota alterations associated with diabetes status

To determine the role of gut microbiota in the metabolic response to a MMT, the gut 

metagenome of the 106 individuals was quantified using shotgun DNA sequencing 

(Supplementary Table 6). Principal coordinate analysis (PCoA) shows that the second 

principal coordinate separates NGT and T2DM groups, which accounts for 11% of the 

variability (Fig. 4a). PERMANOVA analysis also shows that the diabetic status is associated 

with dissimilarities in gut microbiota composition (R2= 0.027, P <0.05). To identify 

differences in the bacterial composition among the three groups, microbial taxa at each 

taxonomical level, including class, order, family and genus, were compared by the Kruskal–

Wallis test (Supplementary Table 7). Class Epsilonproteobacteria and from within this class, 

order Campylobacterales, family Campylobacteraceae and genus Campylobacter were more 

abundant in the Pre-D group than in the NGT and T2DM groups (adjusted P < 0.1 by Kruskal–

Wallis test; Fig. 4b and Supplementary Fig. 7). In addition, family Peptostreptococcaceae with 

the genus unclassified Peptostreptococcaceae showed significantly decreased abundance in 

the T2DM group compared with the NGT and Pre-D groups (adjusted P < 0.1 by Kruskal–

Wallis test; Fig. 4b and Supplementary Fig. 7), which is in accordance with a recent study35.

Furthermore, 56 differential species were identified by multiple pairwise comparisons 

between NGT, Pre-D and T2DM groups (adjusted P <0.01; Supplementary Table 8), mainly 

belonging to the phylum Firmicutes. A total of 24 species exhibited differential abundance 

in two or three pairwise comparisons between the three groups (Fig. 4c). The abundances 

of nine species of genus Streptococcus, Lactobacillus sanfranciscensis and Lactobacillus 

ruminis were increased, whereas the abundances of seven species of genus Clostridium 

(Clostridium butyricum, Clostridium novyi, etc.), Turicibacter sanguinis, Anaerococcus 

lactolyticus and Paenibacillus polymyxa were decreased in the T2DM group (adjusted P 

<0.01). Moreover, Butyrivibrio crossotus and Anaerococcus vaginalis were enriched in 

the Pre-D and T2DM groups compared to the NGT group (adjusted P <0.01). Especially, 

C. novyi had a significantly negative correlation with glucose iAUC (R=-0.49, P <1.0e-06; 

Supplementary Fig. 8a). Additionally, we investigated correlations between the differential 

species and the metabolites associated with diabetic status at fasting or 2h post MMT 

(Supplementary Table 9). C. novyi was positively correlated with NAA after 2h MMT (R= 

0.46; P <1.0e-05; Supplementary Fig. 8b). Interestingly, the correspondence between the gut 

microbiota composition and postprandial metabolomic profiles had an increased trend 

compared to the fasting condition (Supplementary Fig. 9). The carboxyethyl derivatives of 
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BCAAs and phenylalanine were negatively correlated with several Clostridium species at 

both time points (P<0.01; Supplementary Fig. 9). 
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Figure 4: Alterations in gut microbiota associated with diabetes status. a, PCoA of microbiota community at 
species level based on Bray–Curtis distance (n=106). The centroid for each group is represented as a triangle and 
the ellipse covers the samples belonging to the group with 95% confidence. b, Log10 relative abundances of families 
Campylobacteraceae and Peptostreptococcaceae in the NGT (n=27), Pre-D (n=57) and T2DM (n=22), compared by 
Wilcoxon rank-sum test for multiple pairwise comparisons. ‘ns’ denotes no significance; ‘*’ denotes adjusted P < 0.05; 
‘**’ denotes adjusted P < 0.01; ‘***’ denotes adjusted P < 0.001; ‘****’ denotes adjusted P < 0.0001. c, Heatmap showing 
log2 fold changes of 24 significantly differentially species between the NGT (n=27), Pre-D (n=57) and T2DM (n=22). Only 
species exhibiting differential abundance in two or three pairwise comparisons are shown. ‘+’ denotes adjusted P < 
0.05; ‘*’ denotes adjusted P < 0.01.

By investigating the functional capacity of the gut microbiome, we identified 60 

significantly differential KEGG orthologs (KOs) among the NGT, Pre-D and T2DM groups 

(adjusted P <0.05; Supplementary Table 10). Moreover, we observed alterations in potential 

of phenylalanine and phenylacetate metabolism in the microbiome of individuals with 

Pre-D and T2DM by gene set analysis (P<0.05; Table 2). The microbial genes including 

hcaC, hcaF, tynA, feaB, paaA and paaE involved in phenylalanine metabolism, were more 

abundant in the T2DM group compared to the NGT or Pre-D group (P<0.01 and |log2 (fold 

change)|>3; Table 2). Especially, 1-carboxyethylphenylalanine correlated positively with 

genes feaB, hcaC and paaE (P<0.05 and R>0.2; Supplementary Fig. 10).
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 Differential genes (P < 0.01)

Pre-D vs NGT T2DM vs NGT T2DM vs Pre-D

KEGG pathway

 Phenylalanine metabolism  – tynA, feaB, paaA, paaC, paaD, 
paaE, paaJ

hcaC, hcaF, paaJ

KEGG module

 Phenylacetate degradation  paaE paaA, paaC, paaD, paaE, paaJ –

Table 2. The enriched KEGG pathways and modules in gut microbiome between the NGT (n=27), Pre-D (n=57) and 
T2DM (n=22) groups identified by gene set analysis. ’’ denotes significantly enriched pathway or module comparing 
two groups (P < 0.05). ‘–‘ denotes no differential genes in the pathway or module.

 

Prediction of postprandial glucose response based on omics data

To systematically investigate potential contributing factors for metabolic responses to a 

MMT, we first quantified the associations between multi-omics data by the Mantel test using 

the Bray–Curtis distance (Fig. 5a; Supplementary Table 11). Significant correlations between 

the gut microbiome and metabolomics at fasting and 2h post MMT were observed (Mantel 

r = 0.10~0.16, P < 0.05), which suggests that the gut microbiota is linked to metabolism 

of individuals in this study. Moreover, transcriptomics data correlated significantly in 

the different human tissues (Mantel r = 0.21~0.28, P < 0.01). Interestingly, metabolomic 

changes (i.e., ratio of metabolite abundance at 2h post MMT to fasting) were correlated with 

the metabolomic profile at fasting (Mantel r = 0.084, P < 0.05), as well as transcriptional 

profiles in jejunum and mesenteric adipose tissue (Mantel r = 0.094 and 0.085, P < 0.05). 

This demonstrates that metabolic responses were associated with the metabolic profiles at 

baseline. 

To further investigate possible driving factors for postprandial glucose regulation, we 

predicted glucose tAUC based on multi-omics data using ridge regression models with 5-fold 

cross-validation. The models trained with metabolomics data (especially after 2h MMT) 

performed best with minimum root mean square error (RMSE) (Fig. 5b). The performance 

was improved when the model was trained using taxonomic (species) profiles compared 

to using functional (KOs) profiles and transcriptomics data. The correlation coefficients 

between the predictive and actual glucose tAUC were 0.92, 0.91 and 0.9 when using 

metabolomic profiles at fasting and 2h post MMT, and metabolomic changes as the training 

sets, respectively (Fig. 5c and Supplementary Fig. 11). Using species and KOs profiles of the 

gut microbiota as training sets, correlation coefficients between the predictive and actual 

glucose tAUC were 0.69 and 0.72, respectively (Fig. 5c). At fasting, glutamine, creatinine, 

pseudouridine, arginine, alanine, mannose, phenylalanine and lysine were identified to be 

the most important metabolites for prediction of glucose tAUC (Supplementary Fig. 12a). 

After 2h MMT, mannose, allantoin, phenylalanine, 1−carboxyethylphenylalanine and NAA 

were predicted to be the most important metabolites (Fig. 5d). Moreover, the postprandial 
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changes of metabolites N-acetylalanine, carnitine, lysine, histidine, N-acetylserine and 

mannose were predicted to be important for glucose control (Supplementary Fig. 12b). 

The regression coefficients for species and KOs correlated with glucose tAUC are shown in 

Supplementary Table 12. We found that several Clostridium species, such as Clostridium 

sp. D5, Clostridium sp. SS2 and Clostridium bartlettii were identified to be correlated with 

glucose tAUC. Consequently, our results revealed that glycemic response to a MMT was 

associated with the interaction of the gut microbiota and metabolism of individuals in this 

study.
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Figure 5: Predicting glucose response to a MMT by ridge regression models. a, The correlations between Bray–Curtis 
distance matrices of multi-omics. Mantel test was performed. The size of pie in the circle indicates the absolute value 
of correlation coefficient. Red and green colors represent positive and negative correlation coefficients, respectively. 
b, The performances of the ridge regression models evaluated by 5-fold cross-validation based on multi-omics and 
root mean square error (RMSE). c, The significant correlations between the actual glucose tAUC and the predicted 
glucose tAUC by ridge regression models using microbiota and metabolomics profiles, respectively. Spearman’s rank 
correlation analysis was performed. d, The regression coefficients of the top 30 metabolites for predicting glucose 
tAUC based on post-meal metabolomics data. MGX-species, microbiota composition at species level; MGX-ko, 
microbiota KO function profile; HMB-fasting, metabolomic profile at fasting; HMB-post-meal, metabolomic profile 
after 2h MMT; HMB-R, the ratios of metabolite abundance at 2h post MMT to fasting, which means the postprandial 
metabolic changes; HTX-liver, HTX-jejunum, HTX-mFat, HTX-sFat indicate human transcriptional profiles from liver, 
jejunum, mesenteric and subcutaneous adipose tissues, respectively; MGX-species+HMB-fasting, the combination 
of microbiota composition and metabolomic profile at fasting; MGX-ko+HMB-fasting, the combination of microbiota 
KOs profile and metabolomic profile at fasting; All, the integration of all multi-omics data.
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DISCUSSION

Here, we revealed that the global metabolic responses to a MMT were different in individuals 

with varied glucose tolerance status. From plasma metabolomic profiling we found more 

differential metabolites between the NGT and T2DM groups after the meal intake compared 

to fasting condition, thus enabling us to discover abnormal metabolism related to (pre)

diabetes that did not appear at fasting condition. Furthermore, we identified three different 

types of response patterns in the 145 metabolites that were associated with diabetic status. 

Following the MMT, 39 metabolites were unaltered; these were mainly amino acid-derived 

metabolites including arginine and taurine, that had reduced abundances in the T2DM 

group. 

Another 55 metabolites showed a parallel response to the MMT in the NGT, Pre-D 

and T2DM groups, including the carboxyethyl derivatives of BCAA and phenylalanine that 

increased with elevating glucose level during the MMT. Also, these carboxyethyl derivatives 

were positively correlated with HOMA2-IR. Consistently, several studies in both rodents 

and humans have observed alterations in BCAA and amino acid metabolites in relation 

to insulin resistance16,33,36. Increase in circulating BCAA in cardiometabolic disease are 

considered to result from decreased catabolism in adipose tissue and from inactivation of 

the branched-chain ketoacid dehydrogenase (BCKDH) complex in the liver16. In line, we 

observed alterations in BCAA metabolism (i.e., valine, leucine and isoleucine degradation) 

in liver and subcutaneous adipose tissue by gene set analysis. Previous studies have suggested 

that the gut microbiome of individuals with insulin resistance also has an increased capacity 

to produce amino acids and specifically BCAA13,23. By investigating the functional capacity 

of the gut microbiome, we also observed that amino acid metabolism (i.e., phenylalanine 

and phenylacetate metabolism) was enriched in the microbiome of individuals with insulin 

resistance. Interestingly, 1-carboxyethylphenylalanine correlated positively with microbial 

genes feaB, hcaC and paaE involved in phenylalanine metabolism. Microbial products of 

aromatic amino acid metabolism, in particular phenylacetic acid, has previously been linked 

to insulin resistance and thrombosis risk37,38. Recently it was reported that phenylalanine-

derived metabolites increased after autologous fecal microbiota transplantation (FMT) 

in individuals with liver steatosis39. Through integrative analysis, the carboxyethyl 

derivatives of BCAA and phenylalanine correlated negatively with several Clostridium 

species, indicating that a reduction of this bacterial species might influence changes in the 

circulating metabolites. Another study reported that quantification of 1−carboxyethyvaline 

peptides of beta-hemoglobin can be useful for assessing glycemic status40. Thus, these 

carboxyethyl derivatives of amino acids could be potential biomarkers for (pre)diabetes. 

Although our results are associative in nature, we further strengthen the hypothesis that the 
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gut microbiome is capable of inducing alterations in circulating plasma metabolites. The 

strong correlations between circulating metabolites and insulin resistance, raise the question 

whether these metabolites serve as a biomarker or are causal agents in insulin resistance.

A total of 51 out of the 145 metabolites showed differential responses to the MMT in 

individuals with variable diabetic status. These metabolites might be involved in metabolic 

processes related to impaired adaptive response in (pre)diabetes, which commonly were not 

discovered at fasting. We observed different responses of carbohydrate metabolism (glucose, 

1,5-anhydroglucitol, mannose) to the MMT, which is consistent with an earlier study41. Also, 

mannose has been identified as a biomarker of insulin resistance previously31, which is in 

line with the fact that mannose is the most important metabolite for predicting glucose 

response in this study. Besides, several amino acids including N−acetylaspartate (NAA) 

responded differentially to the MMT. Interestingly, NAA involved in neuronal metabolism, 

was negatively correlated with HOMA2-IR, which is in agreement with a previous report42. 

NAA has been suggested to induce oxidative stress and nitric oxide (NO) production that 

has been reported to be associated with insulin resistance42. Thus, NO synthesis may be 

down-regulated due to the decreased NAA abundance in individuals with insulin resistance. 

Meanwhile, the decreased arginine abundance may explain the reduced NO synthesis 

from arginine in the T2DM group43. In addition, reduced NO/cGMP signaling has been 

demonstrated to contribute to insulin resistance44. Consistently, the cGMP/PKG signaling 

pathway was down-regulated in the T2DM group in the liver, along with the decreased 

abundances of NAA and arginine. Through integrative analysis, C. novyi showed significantly 

positive correlation with NAA and negative correlation with glucose response. Thus, our 

results suggest potential interplay between C. novyi, NAA and insulin resistance via the NO/

cGMP signaling pathway.

Additionally, fatty acids including 3−hydroxydecanoate, 3−hydroxyoctanoate, linoleate 

(18:2n6) and 3−hydroxysebacate, had a higher abundance in the T2DM group and showed 

differential responses to the MMT, which have previously been reported to be associated 

with insulin resistance45. Furthermore, the responses of acylcholines to the MMT were 

different in individuals with insulin resistance and negatively correlated with glucose 

response. Previous studies have reported that acylcholines can act as agonist of muscarinic 

acetylcholine receptors (mAChRs) and play an important role in stimulating insulin 

secretion and maintaining glucose homeostasis46. Overall, the abnormal metabolism of 

carbohydrates, amino acids, fatty acids and acylcholines after a MMT in individuals with 

T2DM were revealed by metabolomic analysis in our study.

Interestingly, our results indicated that metabolic responses were associated with the 

metabolic status at baseline through integrative analysis. Therefore, differences in metabolic 

responses can be traced back to differences in other omics sets, such as liver, adipose tissue 
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and jejunum transcriptomics data. By mapping genes onto KEGG pathways, we observed 

alterations in several pathways involved in crucial metabolic and inflammatory pathways in 

mesenteric adipose tissue, such as MAPK, TNF, NF-kappa B signaling and cellular senescence. 

The MAPK and NF-kappa signaling pathways have been suggested to be activated by TNF-

alpha in adipose tissue, which is associated with insulin resistance46. Moreover, data from 

several human clinical studies has shown a clear correlation between insulin resistance 

and cellular senescence47. Furthermore, a previous study has suggested that RyR2 channels 

regulate insulin secretion and glucose homeostasis48. Our results also showed that the gene 

RYR2 involved in insulin secretion was down-regulated in the T2DM group in liver, which 

is in accordance with the decreased HOMA2-B.

Several limitations of the current study must be acknowledged. Individuals with T2DM 

report a considerably higher number of medications than the NGT and Pre-D groups in this 

cohort, including glucose lowering agents, which may confound the T2DM-related changes 

in the gut microbiome and serum metabolomics (Supplementary Table 13). In addition, the 

discrepancy in sampling time points may influence the results of our integrative analysis, but 

in this study it is no more than three months and has limited effect. To reduce the surgical 

risk, individuals have lost weight before the operation, which might introduce relevant 

biases in particular pre-operative weight-loss. However, in contrast to most bariatric surgery 

trajectories, these individuals did not adhere to a specific diet. Moreover, overfitting may 

happen due to the limited sample number and high number of features when we predicted 

glucose response using multi-omics data. Also, these identified contributing factors for 

postprandial glucose response need to be further validated in a new cohort. Furthermore, 

the heterogeneity of prediabetes or T2DM was insufficiently investigated here, which has 

been demonstrated in previous studies49. 

In conclusion, our study systematically characterized the metabolic response to a 

MMT in individuals with different glucose tolerance, which provides new insights into the 

metabolic imbalance of (pre)diabetes. We first identified the abnormal metabolic processes 

related to (pre)diabetes after meal intake, including carbohydrates, amino acids, fatty acids 

and acylcholines. Further, we revealed that differences in metabolic responses could be traced 

back to other omics sets including fecal metagenomics and transcriptomics data of liver, 

adipose tissue and jejunum. Using machine learning models, we identified possible new 

biomarkers for glycemic control including NAA and phenylalanine derived metabolites. 

However, future studies should test whether these potential biomarkers can be used for the 

early identification of individuals that are at risk of developing T2DM. Also, further studies 

are needed to validate the biological causality of the identified metabolic imbalance of (pre)

diabetes.
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SUMMARY

Non-Alcoholic Fatty Liver Disease (NAFLD) is now the most frequent global chronic liver 

disease. Individuals with NAFLD exhibited an increased risk of all-cause mortality driven 

by extrahepatic cancers and liver and cardiovascular disease. Once the disease is established, 

women have a higher risk of disease progression and worse outcome. It is therefore critical 

to deepen the current knowledge on the pathophysiology of NAFLD in women. Here, we 

used a systems biology approach to investigate the contribution of different organs to this 

disease. We analyzed transcriptomics profiles of liver and adipose tissues, fecal metagenomes 

and plasma metabolomes of 55 women with and without NAFLD. We observed differences 

in metabolites, expression of human genes and gut microbial features between the groups 

and revealed that there is substantial crosstalk between these different omics sets. Multi-

omics analysis of individuals with NAFLD may provide novel strategies to study the 

pathophysiology of NAFLD in humans. 
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INTRODUCTION 

As a consequence of the pandemic spread of obesity, NAFLD is now recognized as the most 

prevalent chronic liver disease worldwide1. In the general population, one in four individuals 

is affected by NAFLD; this prevalence increases to over 80% in individuals with obesity1. 

NAFLD comprises a spectrum of clinical and histopathological abnormalities. These 

include simple steatosis and steatosis with mild inflammation (non-alcoholic fatty liver, 

NAFL) as well as steatosis with ballooning and inflammation (non-alcoholic steatohepatitis, 

NASH). Accumulation of fat in hepatocytes has long been considered a relatively benign 

condition. However, an estimated 30% of people with NAFL will develop NASH, a 

progressive form of liver disease that can lead to liver fibrosis, cirrhosis and hepatocellular 

carcinoma2. Advanced forms of NASH often require liver transplantation and are the main 

cause of liver-related deaths in NAFLD1. A recent report of a large nationwide cohort study 

investigating overall and cause specific mortality in long-term follow up of individuals with 

NAFLD however, showed that individuals with NAFL also exhibited an increased risk of all-

cause mortality driven by extrahepatic cancers and liver and cardiovascular disease (CVD)3. 

Of concern, especially women with NAFLD are more susceptible to develop excess CVD 

events compared to age matched men4. In fact, NAFLD has a cardiovascular aging effect 

of approximately 18 years in women. Moreover, in general, women have a lower risk of 

developing NAFLD, but once the disease is established, women have a higher risk of disease 

progression5. The rapidly growing prevalence of NAFLD and lack of effective treatment 

options to tackle this potentially debilitating disease, will further increase obesity-related 

burden on public health and economies. In order to develop appropriate, sex-specific non-

invasive diagnostic methods and treatment options, it is critical to deeply investigate the 

complex pathophysiology of NAFLD.

The underlying mechanisms that govern hepatic lipid accumulation and the 

predisposition to inflammation and fibrosis are complex and multifactorial, which is 

recapitulated in the multi-hit hypothesis that implicates that a myriad of factors are acting 

in a parallel and synergistic manner6. These factors include: insulin resistance, adipocyte 

dysfunction, genetic variants, bile acid metabolism, the gut microbiome, and lipotoxicity7,8. 

The complexity of the contributing factors can mask different structural associations 

between metabolic activities in different tissues, prohibiting in-depth insight into molecular 

mechanisms underlying disease development. By applying a systems biology approach using 

multi-omics data, it is possible to deep phenotype individuals with or without metabolic 

diseases and, through data integration, identify the crosstalk between different relevant 

biological layers. 
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We here used a global approach to investigate factors that may contribute to NAFL 

development in women. Our systems biology approach allowed for integration of 

transcriptomics, metagenomics and plasma metabolomics datasets from obese women with 

and without NAFL. Analyses of these integrated omics sets revealed a robust NAFL-signature 

and highlight the additive value of a multi-omics approach to study NAFL pathophysiology.

Method details

Ethical approvals and patients’ clinical information

The recruitment of participants was conducted from the BARIA study11 with a total of 55 

individuals included. The baseline characteristics of these participants are described in  

Table 1. The study was performed in accordance with the Declaration of Helsinki and was 

approved by the Academic Medical Center Ethics Committee of the Amsterdam UMC 

(Trialregister: BARIA study NL8983). All participants provided written informed consent.

Material collection

Individuals underwent a complete metabolic work-up at the start of their bariatric surgery 

trajectory. Anthropometric measurements including height, weight and waist and hip 

circumference were taken. In addition, body fat percentage using bioelectrical impedance 

and blood pressure were measured. Fasting blood samples were used for the determination 

of hemoglobin, HbA1c, glucose, lipid profile, alanine aminotransferase, aspartate 

aminotransferase, insulin, and creatinine levels. Within three months before surgery, a 

2-hour mixed meal tolerance test (MMT) was performed to assess insulin resistance and 

investigate dynamic alterations in circulating metabolites. The MMT consisted of two 

Nutridrink compact 125ml (Nutricia®), containing in total 23.3 grams fat, 74.3 grams 

carbohydrates (of which 38.5 grams sugar) and 24.0 grams protein. The participants received 

this meal after fasting for a minimum of nine hours. Time point zero refers to the moment 

at which the participant had fully consumed the meal. Blood samples were drawn via an 

intravenous line at baseline, 10, 20, 30, 60, 90 and 120 minutes. All samples were stored at 

-80oC until further processing.

Liver biopsies and histology 

Liver histological sections were stained with Haematoxylin-Eosin and Sirius red and then 

reviewed by members of the Dutch Liver Pathology Panel after training sessions for NAFLD 

according to the Steatosis, Activity and Fibrosis (SAF) score9. Difficult borderline cases were 

discussed during panel meetings for consensus. NAFLD was categorized into NAFL when 

steatosis was present in >5% of hepatocytes alone or with mild inflammation but without 

ballooning, or NASH when steatosis was present in >5% of hepatocytes and if ballooning 
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and inflammation were both present in the biopsy. In the present study, no individuals were 

diagnosed with NASH based on histology. 

Metabolome processing 

EDTA plasma samples under fasting and two-hours after a MMT postprandial conditions 

were collected from 55 BARIA participants. All EDTA plasma samples were shipped to 

METABOLON (Morisville, NC, USA) for performing analysis using ultra high-performance 

liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) untargeted 

metabolomics. The metabolomic counts obtained, underwent significant curation via 

metabolites’ pre-filtering, imputation for subsets of metabolites’ missing values and data 

normalization, in order to minimize the effect of artifacts in the downstream analysis. 

Metabolomics prefiltering and imputation were performed by utilizing a variation of the 

Perseus platform10. Essentially, data has been pre-filtered so as to have a maximum of 25% 

missing values for a metabolite across all samples. This was followed by a log transformation 

of all the measured metabolites’ raw intensities across the entire dataset. Then, we calculated 

the total data mean and standard deviation (by omitting missing values). Taking into account 

that the metabolite intensities distribution is approximately following normality, we chose a 

small distribution 2.5 standard deviations away from the original data mean towards the left 

tail of the original data distribution, with 0.5 standard deviations width. This new shrunken 

range corresponds to the actual lowest level of detection by the spectrometer. Here by 

drawing random values from this mini distribution, we fill the missing prefiltered data of 

choice. Originally METABOLON measured 1345 metabolites, but after applying previously 

mentioned methodology of imputation and normalization we included 988 metabolites for 

fasting metabolome and 1018 metabolites for postprandial metabolome11. 

Transcriptome processing

Biopsies from liver (55 samples), mesenteric adipose tissue (54 samples) and subcutaneous 

adipose tissue (55 samples) were collected at the time of the bariatric surgery. RNA was 

extracted from biopsies using TriPure Isolation Reagent (Roche, Basel, Switzerland) 

and Lysing Matrix D, 2 mL tubes (MP Biomedical, Irvine, CA, USA) in a FastPrep®-24 

Instrument (MP Biomedical, Irvine, CA, USAs) with homogenization for 20 seconds at 4.0 

m/sec, with repeated bursts until no tissue was visible; homogenates were kept on ice for 5 

minutes between homogenization bursts if multiple cycles were needed. RNA was purified 

with chloroform (Merck, Darmstadt, Germany) in phase lock gel tubes (5PRIME) with 

centrifugations at 4°C, and further purified and concentrated using the RNeasy MinElute 

kit (Qiagen, Venlo, The Netherlands). The quality of RNA was analysed on a BioAnalyzer 

instrument (Agilent), with quantification on Nanodrop (Thermo Fisher Scientific, Waltham, 
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MA, USA). Due to degradation of the RNA, libraries for RNAseq sequencing were prepared 

by rRNA depletion; library preparation and sequencing were performed at Novogene 

(Nanjing, China) on an HiSeq instrument (Illumina Inc., San Diego, CA, USA) with 150 bp 

paired-end reads and 10G data/sample. The average read count per sample from liver was 

42 ± 15 million. For mesenteric and subcutaneous adipose tissue, the average read count 

per sample were 43.2 ± 20 million. The extracted fastq files were analyzed with nf-core/

rnaseq (Ewels et al. 2020), a bioinformatics analysis pipeline used for RNA sequencing 

data. The workflow processed raw data from FastQ inputs (FastQC, TrimGalore!), aligned 

the reads (STAR) with Homo sapiens GRCh38 as reference genome, generates gene counts 

(featureCounts, StringTie) and performed extensive quality-control on the results (RSeqQC, 

dupRadar, Preseq, edgeR, multiQC). The pipeline was built using Nextflow.

Microbiome processing

Fecal samples from 55 participants were collected on the day of surgery and immediately frozen 

at -80C. Total fecal genomic DNA was extracted from 100 mg of feces using a modification 

of the IHMS DNA extraction protocol Q13. Briefly, fecal samples were extracted in Lysing 

Matrix E tubes (MP Biomedicals) containing ASL buffer (Qiagen, Venlo, The Netherlands), 

and lysis of cells was obtained, after homogenization by vortexing for 2 minutes, by two 

cycles of heating at 90°C for 10 minutes followed by three bursts of bead beating at 5.5 m/

sec for 60 seconds in a FastPrep®-24 Instrument (MP Biomedicals). After each bead-beating 

burst, samples were placed on ice for 5 minutes. The supernatants containing fecal DNA 

were collected after the two cycles by centrifugation at 4°C. Supernatants from the two 

centrifugations steps were pooled and a 600 µL aliquot from each sample was purified using 

the QIAamp DNA Mini kit (QIAGEN, Venlo, The Netherlands) in the QIAcube (QIAGEN 

Venlo, The Netherlands) instrument using the procedure for human DNA analysis. Samples 

were eluted in 200 µL of AE buffer (10 mmol/L Tris·Cl; 0.5 mmol/L EDTA; pH 9.0). Libraries 

for shotgun metagenomic sequencing were prepared by a PCR-free method; library 

preparation and sequencing were performed at Novogene (Nanjing, China) on an HiSeq 

instrument (Illumina Inc. San Diego, CA, USA) with 150 bp paired-end reads and 6G data/

sample.

MEDUSA pipeline was used for pre-processing of raw shotgun metagenomics sequence 

data. MEDUSA is an integrated pipeline for analysis of short metagenomic reads, which 

maps reads to reference databases, combines output from several sequencing runs and 

manipulates tables of read counts. The input number of total reads from the metagenome 

analysis were on average 23.4±2.2 million reads per sample and the total aligned reads 

16.6±1.8 million reads per sample. The sequencing runs had high quality with almost 98% of 

the reads passing the quality cut-off. Out of the high-quality reads, on average 0.04% aligned 
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to the human genome, although the data had been cleaned for human reads. Out of the high 

quality non-human reads, 78.4% aligned to the MEDUSA’s software gene catalogue. Quality 

filtered reads were mapped to a genome catalogue and gene catalogue using Bowtie214.

Quantification and statistical analysis

Differential analysis of the plasma metabolome was conducted with two methods: ANOVA 

and Kruskal Wallis, with the use of HybridMTest package, that performs hybrid multiple 

testing using Empirical Bayes Probability (EBP). The cut-off significance level of P<0.1 was 

used for identifying differentially significant metabolites with an adjusted EBP value. 

Differential gene expression analysis for individuals with and without NAFL was 

performed for liver, subcutaneous adipose and mesenteric adipose tissues, respectively, in R 

with DESeq2 package15; log normalization is based on gene counts geometric distribution. 

The statistical analysis method for calculating differential expression rates is the Wald test. 

After False discovery rate (FDR) correction with multiple hypothesis testing with IHW 

package16, we analyzed genes with P<0.1 by DEGreport’s degPatterns function, to identify 

subgroups of co-expressed genes between individuals with and without NAFL. For these 

differentially significant co-expressed genes we performed gene enrichment with Enrichr 

platform17 using KEGG metabolic pathways18. 

Statistical analysis on the metagenomics data was performed on rarefied count, (20 

M reads per sample). The taxon ids were input to taxize package19, to get full taxonomic 

information and ranking for the species. This dataset was input to DESeq2 and phyloseq 

packages20 for conducting downstream differential statistical analysis. Similar to the BARIA 

transcriptomics counts, log normalization based on gene counts geometric distribution has 

been conducted with it. Statistical analysis methods for calculating differential expression 

rates was Wald Test. The IHW package, as part of DESeq2 suite, was utilized for multiple 

hypothesis testing and adjusting the respective P values, with alpha significance threshold 

set at P<0.1. 

Multi-omics integrative analysis has been conducted with DIABLO. DIABLO 

extends sparce Generalized Canonical Correlation Analysis (sGCCA), uses singular value 

decomposition for dimensionality reduction and selects co-expressed (correlated) variables 

that can explain the categorical outcome of interest21, in our case non-NAFL or NAFL. 

DIABLO output a set of latent variables (components) based on the dimensionality of the 

input datasets. The chosen number of components could extract sufficient information to 

discriminate all phenotype groups. Then, a set of coefficients was attributed to each variable, 

that indicated the importance of each variable in DIABLO. The goal was to have maximization 

of the covariance between a linear combination of the variables from each input dataset 

and each categorical outcome. After tuning these two hyperparameters, DIABLO output 
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a list of selected variables from each omic dataset, associated to each component, that could 

distinguish the given phenotypes.

Key resources material

Reagent or Resource Source Identifier

Biological samples

Human fecal metagenomics data BARIA cohort (PI prof M. 
Nieuwdorp)

11

Human liver RNA sequencing data BARIA cohort (PI prof M. 
Nieuwdorp)

11

Human subcutaneous adipose tissue 
sequencing data

BARIA cohort (PI prof M. 
Nieuwdorp)

11

Human visceral adipose tissue sequencing 
data

BARIA cohort (PI prof M. 
Nieuwdorp)

11

Human plasma metabolomics data BARIA cohort (PI prof M. 
Nieuwdorp)

11

Deposited data

Liver and adipose tissue transcriptomics European Nucleotide Archive ENA PRJEB47902

Fecal metagenomics European Genome-Phenome 
Archive

EGAS00001005704

Software and algorithms

MEDUSA pipeline n/a 22

Bowtie2 n/a 14

DESeq2 n/a https://bioconductor.org/packages/
release/bioc/html/DESeq2.html

phyloseq n/a https://bioconductor.org/packages/
release/bioc/html/phyloseq.html

DIABLO n/a http://mixomics.org/mixdiablo/

Other

HiSeq instrument Illumina N/A

DNA extraction kit QIAamp DNA Mini kit N/A

 
RESULTS

To take a comprehensive approach to investigate factors that may contribute to NAFL 

development, we included individuals from our bariatric surgery cohort (the BARIA 

study)11, but excluded type 2 diabetes mellitus (T2DM) patients to avoid confounding effects 

of long-term hyperglycemia or medication use. Since there are strong sex differences in 

hepatocellular and systemic processes in the pathophysiology and progression of NAFLD23,24, 

we focused on women. The study cohort comprised of 55 women for whom a multi-omics 

dataset was available, including fasting and two-hour post mixed meal test (MMT) plasma 

metabolome, liver and adipose tissue (subcutaneous and mesenteric) transcriptome, along 

with gut microbial metagenome. In addition, we analyzed the glucose and insulin response 
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during the MMT before and one year after bariatric surgery to investigate differences in 

glucose metabolism between women with and without NAFL. 

In total, 23 individuals (BMI 39.4 ± 3.0 kg/m2, age 45 ± 11 years) fulfilled the criteria for 

NAFL (biopsy-proven) whereas 32 individuals (BMI 40.2 ± 4.7 kg/m2, age 41 ± 10 years) had 

no NAFL (Table 1). NAFL ranged from grade 1 to grade 2 steatosis; none of our individuals 

had hepatocyte ballooning, a prerequisite for NASH diagnosis according to the SAF criteria9. 

As expected, the ALT levels were increased in the NAFL group, whereas comorbidities such 

as insulin resistance (as assessed by MMT) and medication did not differ between groups, 

indicating a homogenous study population (Table 1, Figure S1 and S2).

Characteristics Non-NAFL = 32 NAFL = 23

Demographic

Age (years) 41 ± 10 45 ± 11

Anthropometric

BMI (kg/m2) 40.2 ± 4.7 39.4 ± 3.0 

Type 2 diabetes mellitus (n) 0 0

Clinical lab values (normal range)

ALP (30-135 U/L) 85 ± 21 84 ± 19 

g-GT (10 – 40 IU/l) 26 (18-26) 28 (18-41)

ALT (0 - 50 IU/l) 25 (18-27) 36 (22-42)*

AST (0 – 35 IU/l) 22 ± 4 26 ± 6

FPG (<5.6 mmol/l) 5.4 ± 0.5 5.6 ± 0.6 

HbA1c (<5.6%) 5.4 ± 0.3 5.6 ± 0.2

HbA1c (mmol/mol) 35 ± 3 37 ± 2

Total cholesterol (1.5 – 6.5 mmol/l) 4.9 ± 1.1 4.9 ± 1.1

Triglycerides (<1.7 mmol/l) 1.4 (0.9-1.5) 1.7 (1.1-1.9)

HDL cholesterol (≥1.0 mmol/l) 1.3 ± 0.4 1.2 ± 0.3

LDL cholesterol (< 3.0 mmol/l) 3.1 ± 1.1 3.2 ± 0.8

Histological parameters (number)

Steatosis grade score (0,1,2,3) 32,0,0,0 0,22,1,0

Lobular inflammation score (0,1,2) 14,17,1 0,21,2

Hepatocyte ballooning score (0,1,2) 32,0,0 23,0,0

Table 1. Baseline characteristics of the 55 women included. Data is expressed as mean ± standard deviation or as 
median (interquartile range) depending on normality of the data. For histological scores, the number of individuals 
with a certain score is shown according to the Steatosis Activity and Fibrosis score (SAF). NAFL: Non-Alcoholic 
Fatty Liver, BMI: body mass index, ALP: alkaline phosphatase, g-GT: gamma glutamyl transferase, ALT: alanine 
aminotransferase, AST: aspartate aminotransferase, FPG: fasting plasma glucose, HbA1c: Hemoglobin A1c, HDL: high-
density lipoprotein, LDL: low-density lipoprotein. *indicate significant (p<0.05) difference. Significance was calculated 
by either independent T test or Mann-Whitney U test depending on normality. 
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The gut microbial communities of individuals with and without NAFL significantly differ 

To characterize the gut microbiome in individuals with and without NAFL we performed 

whole-genome shotgun sequencing of the fecal DNA and used MEDUSA to obtain 

taxonomic information22. In order to assess if there is a difference in microbial alpha-

diversity between individuals with and without NAFL, we used a series of different metrics 

(Observed, Chao1, ACE, Shannon, Simpson, Inverse Simpson). According to the alpha 

diversity metrics, the microbial diversity was similar in the two groups, which is in contrast 

to previous reports25,26, (Figure S3). These previous observations analyzed individuals with 

a more progressive form of NAFLD (i.e., NASH). In agreement with previous studies27–29, 

we observed that the microbiome was dominated by Firmicutes in individuals with NAFL, 

while Bacteroidetes was the most dominant phylum in individuals without NAFL (Figure 

1a). We next assessed the bacterial species composition per individual (Figure S4). Even 

though we observed large inter-individual variation in the gut microbiome composition, 

PERMANOVA and beta dispersion analysis revealed that the two groups largely spatially 

overlap but have different centroids and different dispersions (Figure S5). In total 57 bacterial 

species differed significantly between individuals with and without NAFL (Figure 1a). Three 

bacterial species were at least twice as abundant in individuals with NAFL (Table S1). One 

of these species belonged to the phylum Actinobacteria (Collinsela stercoris) whereas two 

belonged to Firmicutes (Lactobacillus buchneri, Lactobacillus iners). In individuals without 

NAFL, 11 bacterial species were at least twice as abundant compared to individuals with 

NAFL. Of these 11 bacterial species, six belonged to the phylum Bacteroidetes, (Prevotella 

oulorum, Prevotella sp. oral taxon 317, Prevotella sp. Oral taxon 472, Prevotella multisaccharivorax, 

Prevotella dentalis and Prevotella bryantii); two belonged to Firmicutes (Lactobacillus delbrueckii, 

Enterococcus casseliflavus) and three belonged to Proteobacteria (Citrobacter rodentium, 

Yersinia enterocolitica and Haemophilus pittmaniae). In summary, even though alpha diversity 

did not differ significantly between the two groups, 57 bacterial species differed significantly 

and mainly belonged to the Bacteroidetes and Firmicutes phylum. 
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with NAFL. Alterations in amino acids in cardiometabolic disease have been tightly linked to insulin resis-

tance. Since both insulin and glucose levels did not differ during theMMT (Figure S2), our data suggest that

these alterations may be independent of altered glucose metabolism.

Distinct transcriptional profiles in liver, subcutaneous, and mesenteric adipose tissue

Since several studies have demonstrated that (microbial) metabolites exert metabolic actions on distal tis-

sues and organs (Krautkramer et al. 2020), we profiled hepatic, mesenteric, and subcutaneous adipose tis-

sue transcriptomes to improve our understanding of the interrelation between alterations in the plasma

metabolome and gene expression. By using DESeq2 (Love et al. 2014), we identified differently expressed

A C

B

Figure 1. Microbial species and phyla between individuals with and without NAFL

(A) Difference in total abundance of bacterial species indicated at the phylum level between individuals with and without

NAFL.

(B) Relative abundance and distribution within of differentially significant microbial species between individuals with and

without NAFL.

(C) 57 differentially significant microbial species between individuals with and without NAFL, after differential microbial

species analysis with DESeq2 (adjusted p < 0.1) Likelihood Ratio Test for significance.
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Figure 1. Microbial species and phyla between individuals with and without NAFL. (a) Difference in total abundance 
of bacterial species indicated at the Phylum level between individuals with and without NAFL. (b) Relative abundance 
and distribution within of differentially significant microbial species between individuals with and without NAFL. (c) 
57 differentially significant microbial species between individuals with and without NAFL, after differential microbial 
species analysis with DESeq2 (adjusted P < 0.1) Likelihood Ratio Test for significance. 
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The NAFL-associated metabolome is characterized by increased lipid and amino acids in 

postprandial conditions

Since microbiome-associated factors such as microbial metabolites are more and more 

recognized as disease-modifying factors, including in NAFL development8, we performed 

plasma metabolomics analyses on fasting and post MTT samples to reveal metabolite-

based phenotypes of NAFL. Out of 988 metabolites, phosphathidylcholine 1-palmitoyl-

2-arachidonoyl-GPC (16:0/20:4n6) was the only significantly altered metabolite in fasted 

individuals and was lower in individuals with NAFL (Figure 2, Table S2). Since humans 

rarely reside in a fasting state for a long period of time, the liver is continuously exposed 

to nutrients and (microbial) metabolites from the intestine. Thus, postprandial plasma 

samples, might provide a more representative view on circulating metabolites in individuals 

with NAFL. Indeed, seven metabolites differed significantly in the postprandial state. 

Five metabolites were more abundant in NAFL and two were more abundant in non-

NAFL individuals (Figure 2, Table S3). Two sphingomyelin metabolites were decreased 

in individuals with NAFL whereas diacylglycerol, a signaling lipid previously linked to 

hepatic insulin resistance and NAFLD30, was more abundant in individuals with NAFL. In 

agreement with previous studies demonstrating that circulating amino acids are increased 

in individuals with NAFL31,32, the branched-chain amino acids (BCAA) derivatives 1−

carboxyethylisoleucine and 1-carboxyethylvaline were increased in individuals with NAFL. 

Alterations in amino acids in cardiometabolic disease have been tightly linked to insulin 

resistance. Since both insulin and glucose levels did not differ during the MMT (Figure S2), 

our data suggests that these alterations may be independent of altered glucose metabolism.

Distinct transcriptional profiles in liver, subcutaneous and mesenteric adipose tissue

Since several studies have demonstrated that (microbial) metabolites exert metabolic actions 

on distal tissues and organs33, we profiled hepatic, mesenteric and subcutaneous adipose 

tissue transcriptomes to improve our understanding of the interrelation between alterations 

in the plasma metabolome and gene expression. By using DESeq215, we identified differently 

expressed genes between individuals with and without NAFL. Analyses of the hepatic 

transcriptome identified 52 genes that were differently expressed between individuals with 

and without NAFL. Of these genes, 13 were upregulated and 39 were downregulated in 

individuals with NAFL compared to individuals without NAFL (Table S4). KEGG pathway 

enrichment analysis using EnrichR17 identified that pathways involved in several cancers 

were enriched in individuals with NAFL, which may indicate increased cell proliferation. 

Furthermore, the hypoxia-inducible factor 1 (HIF-1) signaling pathway, which has previously 

been linked to NAFLD pathogenesis34, was enriched in the liver of individuals with NAFL. 

The only significant pathway that was enriched in individuals without NAFL was the 
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pathway involved in arginine and proline metabolism (Table 2). Since adipose tissue and the 

liver communicate with each other35,we next investigated the transcriptome of two different 

adipose tissue depots. In subcutaneous adipose tissue, 19 genes were significantly different 

between the groups of which 15 were higher in individuals with NAFL and four were higher 

in individuals without NAFL (Table S5). The mesenteric adipose tissue transcriptome 

revealed that 56 genes differed significantly between individuals with and without NAFL. 

Of these, 34 genes were upregulated, and 22 genes were downregulated in individuals with 

NAFL compared to individuals without NAFL (Table S6). 

genes between individuals with and without NAFL. Analyses of the hepatic transcriptome identified 52

genes that were differently expressed between individuals with and without NAFL. Of these genes, 13

were upregulated and 39 were downregulated in individuals with NAFL compared to individuals without

NAFL (Table S4). KEGG pathway enrichment analysis using EnrichR (Chen et al., 2013) identified that path-

ways involved in several cancers were enriched in individuals with NAFL, which may indicate increased cell

proliferation. Furthermore, the hypoxia-inducible factor 1 (HIF-1) signaling pathway, which has previously

been linked to NAFLD pathogenesis (Semenza 2007), was enriched in the liver of individuals with NAFL. The

only significant pathway that was enriched in individuals without NAFL was the pathway involved in arginine

and proline metabolism (Table 2). Since adipose tissue and the liver communicate with each other (Azzu

et al., 2020), we next investigated the transcriptome of two different adipose tissue depots. In subcutane-

ous adipose tissue, 19 genes were significantly different between the groups of which 15 were higher in

individuals with NAFL and four were higher in individuals without NAFL (Table S5). The mesenteric adipose

tissue transcriptome revealed that 56 genes differed significantly between individuals with and without

NAFL. Of these, 34 genes were upregulated and 22 genes were downregulated in individuals with NAFL

compared to individuals without NAFL (Table S6).

Figure 2. Log scale abundance of differentially significant metabolites between individuals with and without NAFL in fasting and postprandial

plasma metabolomics

Differential metabolite analysis was conducted with the HybridMtest package and p-adjusted based on Estimated Bayesian Probability (p < 0.1).
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Figure 2. Log scale abundance of differentially significant metabolites between individuals with and without 
NAFL in fasting and postprandial plasma metabolomics. Differential metabolite analysis was conducted with the 
HybridMtest package and p-adjusted based on Estimated Bayesian Probability (P<0.1).

According to KEGG pathway analysis, interleukin (IL)-17, advanced glycation end 

products (AGE) and tumor necrosis factor (TNF)-signaling pathways were enriched in 

individuals with NAFL in subcutaneous adipose tissue, whereas response to oxidative 

stress was not enriched underscoring the well-established link between adipose tissue 
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inflammation and NAFL36 (Table 2). In mesenteric adipose tissue, carbohydrate, galactose, 

sucrose and protein metabolism pathways were enriched in mesenteric adipose tissue from 

individuals with NAFL, while pathways involved in infectious disease were not enriched 

(Table 2). Furthermore, pathways associated with fat digestion and absorption were 

enriched in individuals with NAFL. This further strengthens the link between alterations in 

diacylglycerol and adipose tissue dysfunction. Transcriptome analyses from all three tissues 

showed distinct differences in gene expression and pathways relevant for the development of 

NAFL such as HIF-1 signaling, inflammation and fat digestion and absorption. 

Tissue Regulation Pathway P-value

Liver Upregulated in NAFL HIF-1 signalling pathway 0.0019

Bladder cancer 0.026

Endometrial cancer 0.037

Central carbon metabolism in cancer 0.041

Non-small cell lung cancer 0.042

Arginine and proline metabolism 0.089

Downregulated in NAFL Pyrimidine metabolism 0.103

Cortisol synthesis and secretion 0.116

Bile secretion 0.128

Drug metabolism 0.186

Mesenteric adipose 
tissue

Upregulated in NAFL Galactose metabolism 2.119E-7

Carbohydrate digestion and absorption 5.6684E-5

Protein digestion and absorption 4.767E-4

Starch and sucrose metabolism 0.002 

Fat digestion and absorption 0.002

Downregulated in NAFL Prion diseases 0.036

Legionellosis 0.056

Complement and coagulation cascades 0.080

Systemic lupus erythematosus 0.1308

Herpes simplex virus 1 infection 0.407

Subcutaneous 
adipose tissue

Upregulated in NAFL IL-17 signalling pathway 4.253E-5

AGE-RAGE signalling pathway in diabetic 
complications 5.283E-5

TNF signalling pathway 7.019E-5

Prion diseases 3.079E-4

African trypanosomiasis 3.444E-4

Downregulated in NAFL Regulation of response to oxidative stress 0.002

Regulation of response to stress 0.002

Positive regulation of G2/M transition of 
mitotic cell cycle 0.003

Positive regulation of cell cycle G2/M 
phase transition 0.003

Positive regulation of peptidyl-threonine 
phosphorylation 0.005

Table 2: KEGG metabolic pathways up or downregulated in individuals with and without NAFL
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Multi-omics integration creates a signature for NAFL 

The individual omics datasets thus far revealed differences in the fecal metagenome, the 

plasma metabolome and tissue transcriptome between the groups. However, discriminative, 

analyses of these individual omics sets do not provide insight in the interrelation between 

the different biological layers. We therefore constructed a multivariate model to identify 

crosstalk events between these different tissues and metagenomic, metabolomic and clinical 

datasets by fitting a sparse Partial Least Squares discriminant analysis with Data Integration 

Analysis for Biomarker discovery using Latent cOmponents (DIABLO)37. DIABLO 

simultaneously calculates the correlations between all input omics datasets and selects a 

minimal set of input variables that differentiate between individuals with and without 

NAFL. This approach revealed correlations between the different tissues. The correlation 

between liver and mesenteric adipose tissue transcriptomics particularly stands out (r=0.8), 

followed by liver transcriptomics and the fecal metagenome (r=0.67; Figure 3a). 

In addition, the full correlation matrix revealed the interrelation between metabolites, 

bacterial species and genes that can be used to generate biological hypotheses that can 

be used to further unravel the pathophysiology or develop next-generation therapeutic 

strategies for NAFL (Figure 3b). For example, N-acetyl-2-aminooctanoate, Lactobacillus sakei, 

hepatic TRIP6 (Thyroid Hormone Receptor Interactor 6), ERBB2 (Erb-B2 Receptor Tyrosine 

Kinase 2) and MIR34AHG (MIR34A Host Gene affiliated with the lncRNA class), were all 

upregulated in NAFL and correlated positively with each other (r≥0.6). Suggesting that 

this metabolite could be of bacterial origin, or that the circulating levels are influenced 

by the gut microbiome. Moreover, the correlation between this metabolite and TRIP6 

and ERBB2, two genes that were recently identified to play a role in the pathophysiology 

of NAFLD38,39 suggests that upregulation of these genes can be induced via circulating 

metabolites. In addition, N-acetyl-2-aminooctanoate was positively correlated with AADACL 

(Arylacetamide Deacetylase Like 3) in mesenteric adipose tissue, which is a gene involved 

in lipolysis of adipose tissue and thus contributes to hepatic triglyceride accumulation40. To 

which extent these genes are regulated by bacterial strains or metabolites needs to be further 

investigated. 1-carboxyethylvaline was positively correlated with ACAN in subcutaneous 

adipose tissue. Furthermore, diacylglycerol was positively correlated with WFDC1 and ACAN 

in subcutaneous adipose tissue. WFDC1 and ACAN in the subcutaneous adipose tissue were 

highly enriched in gene sets involved in mitochondrial translation/elongation, suggesting a 

strong association between BCAAs and potential regulative signaling from adipose tissue. 
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Figure 3. DIABLO analysis and correlations among multi-omics datasets for individuals with and without NAFL. 
(a) Total correlation matrix for all the different omic datasets after Sparce Principal Least Squares Regression with 
mixOmix DIABLO. Highest correlation is observed for genes from liver and mesenteric adipose tissue. (b) Circular 
correlation plot by Data Integration Analysis for Biomarker discovery using a Latent cOmponents (mixOmics DIABLO), 
for top contributing components to from each omics dataset (metabolites, genes, bacterial species). Correlation cut-
off is r=0.6. Signature involves Prevotella species, branched-chain amino acid metabolites, sphingolipid metabolites, 
diacyglycerols, liver genes highly involved in cancer pathways, renin- angiotensin system, mesenteric adipose tissue 
genes involved in carbohydrate metabolism and subcutaneous adipose tissue genes involved in mitochondrial 
translation/elongation.
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Finally, to quantify the robustness of the individual omics signatures obtained by 

the integrative analysis, the power of every chosen omics subset by DIABLO to predict 

NAFL was assessed (Figure 4). A series of Generalized Linear Models (GLMs) aimed to 

investigate whether the minimal discriminatory signal of the omics could outperform the 

clinical variables capacity to correctly predict NAFL. As anticipated, the performance of 

the signature found in the liver transcriptome was very high with an area under the curve 

(AUC) of 0.98, followed by the visceral adipose tissue and subcutaneous adipose tissue. The 

post prandial metabolites and gut microbial species signatures appear to be more accurate 

prognostic markers of NAFL when compared to the chosen clinical variables. 

individuals with and without NAFLD in glucose and insulin response during the MMT, but one year after

bariatric surgery and massive weight loss, a clear difference was observed between the two groups in in-

sulin but not in glucose during the MMT, which was significant (Figure 5). These results further suggest

that whole body metabolism is indeed different in this early phase of the disease. Given the fact that weight

loss and decrease in liver transaminases were not different, these data suggest that these differences are

due to the inherent differences in whole body metabolism.

DISCUSSION

Here, we used a systems biology approach to identify factors that may contribute to NAFL development

by analyzing six omics datasets of 55 women—who only differed in the presence of hepatic steatosis—

including fecal metagenomics, plasma metabolomics, and liver, subcutaneous, and mesenteric adipose

tissue transcriptomics. NAFLD is a multifactorial disease, which is underscored in the present study by

showing that in each individual omics dataset, differences between women with and without NAFL could

be observed. Suggesting that whole body metabolism is already altered in this early stage of the disease.

The alterations in gut microbial composition are in line with previous work conducted by other indepen-

dent groups showing that in subjects with NAFL, the gut microbiome is dominated by members of Firmi-

cutes (Boursier et al., 2016; Loomba et al., 2017). However, our findings are in contrast with a recent report

where liver steatosis was anticorrelated with Firmicutes (Hoyles et al., 2018). Nevertheless, it is plausible

that there is not one uniquemicrobiome signature for NAFLD, bearing in mind that the human microbiome

is shaped by multiple factors such as age, sex, and disease state (Meijnikman et al., 2018). On species level,

we observed a decrease in Prevotella species in individuals with NAFL. Interestingly, most of the Prevotella

species were of oral origin, which is in contrast to previous findings (Atarashi et al., 2017). However, the

mechanism and clinical significance underlying the increased transfer of oral bacteria to the gut remain

to be elucidated. Subtle changes in the plasma metabolome were observed, especially in the post MMT

samples, emphasizing that early changes in metabolism are more pronounced post meal than in fasting

Figure 4. AUC predictive capacity for each omic dataset from DIABLO analysis

All the transcriptomics datasets and the chosen genes can very accurately predict NAFL. Both DIABLO chosen Metab-

olome and Metagenome datasets outperform the Clinical variables in NAFL predictive capacity, with AUC = 89.1% and

93.8%, respectively, versus AUC = 70.8%.
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Figure 4. AUC predictive capacity for each omic dataset from DIABLO analysis. All the transcriptomics datasets and 
the chosen genes can very accurately predict NAFL. Both DIABLO chosen Metabolome and Metagenome datasets 
outperform the Clinical variables in NAFL predictive capacity, with AUC=89.1% and 93.8% respectively versus 
AUC=70.8%.
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To differentiate if these signatures are driven by hepatic steatosis (the prerequisite for 

NAFLD diagnoses) or lobular inflammation, we performed the same analyses but then 

between women with (n=41) and without lobular inflammation (n=14) and observed no 

distinct differences between al the omics sets suggesting that these signatures are driven 

mainly by the steatosis component (data now shown). In summary, the computational 

framework used here for integrating various omics datasets successfully identified a 

highly correlated discriminatory signature for NAFL that included BCAA metabolites, 

diacylglycerol, liver genes involved in HIF-1 signaling, mesenteric adipose tissue genes 

involved in fat metabolism and subcutaneous adipose tissue genes that are part of mito-

chondrial translation/elongation. 

Women with NAFL have a different response upon MMT after massive weight loss

To further substantiate that the alterations have clinical relevance, we analyzed the mixed 

meal data one year after bariatric surgery. Interestingly, at baseline we did not observe 

significant differences between individuals with and without NAFLD in glucose and insulin 

response during the MMT, but one year after bariatric surgery and massive weight loss, a 

clear difference was observed between the two groups in insulin but not in glucose during 

the MMT, which was significant (Figure 5). These results further suggests that whole body 

metabolism is indeed different in this early phase of the disease. Given the fact that weight 

loss and decrease in liver transaminases were not different, these data suggest that these 

differences are due to the inherent differences in whole body metabolism. 

conditions. Alterations in BCAA composition in individuals with cardiometabolic disease are often ex-

plained to be caused by impaired amino acid metabolism linked to insulin resistance in the liver or muscle

(White and Newgard 2019). Since insulin and glucose levels did not differ during the MMT, this indicates

that these changes are independent of insulin resistance and opens up the prospect that these changes

have been derived from another origin, potentially the gut microbiome (Krautkramer et al., 2020). Diacyl-

glycerol, which is associated with NAFLD (Samuel and Shulman 2018), was increased in postMMTplasma of

individuals with NAFL. Diacylglycerol is synthesized intracellularly from specific lipid precursors such as

phosphatidylcholines, possibly including the metabolite that was increased in fasting conditions in individ-

uals with NAFL.

To further investigate the relation between alterations in microbial composition and metabolites in host

metabolism, we analyzed the transcriptome of liver and two adipose tissue depots obtained during sur-

gery. Pathways previously suggested to play a pivotal role in the development of NAFLD such as the

HIF-1 signaling pathway in the liver, fat and glucose metabolism, and inflammation in adipose tissue

were increased in individual with NAFL. Nevertheless, the exact mechanisms that contribute to these path-

ways, especially in early disease, remain largely unknown. Therefore, we constructed a multivariable model

to objectively quantify the crosstalk between these different omics datasets. We observed strong correla-

tions between omics datasets, especially between mesenteric adipose tissue and liver transcriptomic data

(r = 0.8) and between liver and subcutaneous adipose tissue (r = 0.51). These observations are in line with

the current concept that adipocyte dysfunction plays a pivotal role in the pathophysiology of NAFLD (du

Plessis et al., 2015; Arab et al., 2018). Adipose tissue expansion of both the subcutaneous and the visceral

compartment leads to hypoxia-induced hypersecretion of adipocytokines such as tumor necrosis factor

(TNF) and interleukin (IL) 6 by the adipocytes as well as by the inflammatory immune cells that accumulate

in adipose tissue of individuals with obesity (Fernandez-Real et al., 2001; du Plessis et al., 2015). When

reaching the liver through the portal vein, these mediators, together with increased levels of lipid metab-

olites such as diacylglycerols observed duringmetabolic dysregulation, can contribute to the development

and progression of NAFLD (Arab et al., 2018). Interestingly, KEGG pathway enrichment of the differential

significant genes of both mesenteric and subcutaneous adipose tissue revealed that pathways involved in

fat and glucose metabolism and TNF signaling were upregulated in NAFL, respectively, underscoring the

potential role of the adipose tissue in the development of NAFLD.

Recently, it was shown that there is a considerable link between the liver, the gut microbiome, and gut mi-

crobial metabolites (Hoyles et al., 2018). In this study, postprandial metabolomes and fecal metagenomes

in general did not correlate with each other. A more in-depth view, however, revealed associations among

metabolites belonging to amino acid metabolism, bacterial species, and liver genes. For example,

N-acetyl-2-aminooctanoate, Lactobacillus sakei, and hepatic TRIP6, ERBB2, and MIR34A were all upregu-

lated in NAFL and correlated positively with each other (rR 0.6). Of interest, TRIP6, is an upstream activator

of the transcriptional co-activators YAP (or YAP1) and TAZ and are involved in the pathogenesis of NAFLD

(Machado et al., 2015; Wang et al., 2016). Also, genes involved in the hippo-signaling pathway were asso-

ciated with this metabolite and bacterial strains. Hippo-signaling and downstream effectors are involved in

a multitude of cell and non-cell autonomous functions including metabolism, cell proliferation, and survival

(Machado et al., 2015). Interestingly, in the total correlation matrix, non-coding RNAs (LINC02398 and

MIR34AHG) and clone (AC106882.1; AC109811.1) of liver and mesenteric adipose fat were included. To

what extent these non-coding and clones are associated with transcriptional regulation and are involved

in the pathogenesis of NAFL remain to be investigated. Although our results are of associative nature,

Figure 5. Insulin excursions during the mixed meal test in women with and without NAFL before (A) and one year

after bariatric surgery (B)
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Figure 5. Insulin excursions during the mixed meal test in women with and without NAFL before (A) and one year 
after bariatric surgery (B). 
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DISCUSSION

Here we used a systems biology approach to identify factors that may contribute to NAFL 

development by analyzing six omics data sets of 55 women -who only differed in the 

presence of hepatic steatosis- including fecal metagenomics, plasma metabolomics and liver, 

subcutaneous and mesenteric adipose tissue transcriptomics. NAFLD is a multifactorial 

disease, which is underscored in the present study by showing that in each individual omics 

data set, differences between women with and without NAFL could be observed. Suggesting 

that whole body metabolism is already altered in this early stage of the disease. The 

alterations in gut microbial composition are in line with previous work conducted by other 

independent groups showing that in subjects with NAFL, the gut microbiome is dominated 

by members of Firmicutes27,29. However, our findings are in contrast with a recent report 

where liver steatosis was anti correlated with Firmicutes25. Nevertheless, it is plausible that 

there is not one unique microbiome signature for NAFLD, bearing in mind that the human 

microbiome is shaped by multiple factors such as age, sex and disease state41. On species level, 

we observed a decrease in Prevotella species in individuals with NAFL. Interestingly, most of 

the Prevotella species were of oral origin, which is in contrast to previous findings42. However, 

the mechanism and clinical significance underlying the increased transfer of oral bacteria to 

the gut remain to be elucidated. Subtle changes in the plasma metabolome were observed, 

especially in the post MMT samples, emphasizing that early changes in metabolism are 

more pronounced post meal than in fasting conditions. Alterations in BCAA composition in 

individuals with cardiometabolic disease is often explained to be caused by impaired amino 

acid metabolism linked to insulin resistance in the liver or muscle43. Since insulin and glucose 

levels did not differ during the MMT, this indicates that these changes are independent of 

insulin resistance and opens up the prospect that these changes have been derived from 

another origin, potentially the gut microbiome33. Diacylglycerol, which is associated with 

NAFLD30, was increased in post MMT plasma of individuals with NAFL. Diacylglycerol is 

synthesized intracellularly from specific lipid precursors such phosphatidylcholines, possibly 

including the metabolite that was increased in fasting conditions in individuals with NAFL. 

To further investigate the relation between alterations in microbial composition and 

metabolites in host metabolism, we analyzed the transcriptome of liver and two adipose 

tissue depots obtained during surgery. Pathways previously suggested to play a pivotal role 

in the development of NAFLD such as the HIF-1 signaling pathway in the liver, fat and 

glucose metabolism and inflammation in adipose tissue were increased in individual with 

NAFL. Nevertheless, the exact mechanisms that contribute to these pathways, especially in 

early disease, remain largely unknown. Therefore, we constructed a multivariable model 

to objectively quantify the crosstalk between these different omics datasets. We observed 



178 | Chapter 7

strong correlations between omics data sets, especially between mesenteric adipose tissue 

and liver transcriptomic data (r=0.8) and between liver and subcutaneous adipose tissue 

(r=0.51). These observations are in line with the current concept that adipocyte dysfunction 

plays a pivotal role in the pathophysiology of NAFLD36,44. Adipose tissue expansion of both 

the subcutaneous and the visceral compartment leads to hypoxia-induced hypersecretion of 

adipocytokines such as Tumor Necrosis Factor (TNF) and interleukin (IL) 6 by the adipocytes 

as well as by the inflammatory immune cells that accumulate in adipose tissue of individuals 

with obesity44,45. When reaching the liver through the portal vein, these mediators, together 

with increased levels of lipid metabolites such as diacylglycerols observed during metabolic 

dysregulation, can contribute to the development and progression of NAFLD36. Interestingly, 

KEGG pathway enrichment of the differential significant genes of both mesenteric and 

subcutaneous adipose tissue revealed that pathways involved in fat and glucose metabolism 

and TNF signaling were upregulated in NAFL, respectively, underscoring the potential role 

of the adipose tissue in the development of NAFLD. 

Recently, it was shown that there is a considerable link between the liver, the gut 

microbiome and gut microbial metabolites25. In this study, post prandial metabolomes 

and fecal metagenomes in general did not correlate with each other. A more in-depth view, 

however, revealed associations among metabolites belonging to amino acid metabolism, 

bacterial species and liver genes. For example, N-acetyl-2-aminooctanoate, Lactobacillus 

sakei and hepatic TRIP6, ERBB2 and MIR34A were all upregulated in NAFL and correlated 

positively with each other (r≥0.6). Of interest, TRIP6, is an upstream activator of the 

transcriptional co-activators YAP (or YAP1) and TAZ and are involved in the pathogenesis 

of NAFLD38,39. Also, genes involved in the hippo-signaling pathway were associated with this 

metabolite and bacterial strains. Hippo-signaling and downstream effectors are involved 

in a multitude of cell and non-cell autonomous functions including metabolism, cell 

proliferation and survival38. Interestingly, in the total correlation matrix, non-coding RNAs 

(LINC02398 and MIR34AHG) and clone (AC106882.1; AC109811.1) of liver and mesenteric 

adipose fat were included. To what extent these non-coding and clones are associated with 

transcriptional regulation and are involved in the pathogenesis of NAFL remain to be 

investigated. Although our results are of associative nature, DIABLO full matrix correlation 

highlights the interrelation between metabolites, bacterial species and genes and can be 

used to generate hypothesis to further study the pathophysiology of NAFL in humans.

In conclusion, our study provides a comprehensive multi-omics analysis of women with 

NAFL, providing a different strategy to study the pathophysiology of NAFL in women. Even 

though it is increasingly recognized that NAFL, also referred as “simple steatosis”, is more 

than just the passive accumulation of excessive fat, we further emphasize this by showing 

differences in metabolites, genes and gut microbial species between individuals with and 
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without NAFL. This is important work considering the fact that women with NAFLD have 

a higher change of CVD events, mortality and disease progressions, even in the absence of 

severe hepatic inflammation and scarring4. To what extent these findings are related to the 

severe outcome in women remain to be investigated. Lasty, by building a multivariate model, 

we revealed that there is substantial crosstalk between these different omics sets. Our model 

suggests that in early stages of the disease, adipocyte dysfunction is the predominant factor 

in disease development followed by gut microbial composition and plasma metabolites. 

In conclusion, our study provides a comprehensive multi-omics analysis of women with 

NAFL, providing a different strategy to study the pathophysiology of NAFL in women. Even 

though it is increasingly recognized that NAFL, also referred as “simple steatosis”, is more 

than just the passive accumulation of excessive fat, we further emphasize this by showing 

differences in metabolites, genes and gut microbial species between individuals with and 

without NAFL. This is important work considering the fact that women with NAFLD have 

a higher change of CVD events, mortality and disease progressions, even in the absence of 

severe hepatic inflammation and scarring4. To what extent these findings are related to the 

severe outcome in women remain to be investigated. Lasty, by building a multivariate model, 

we revealed that there is substantial crosstalk between these different omics sets. Our model 

suggests that in early stages of the disease, adipocyte dysfunction is the predominant factor 

in disease development followed by gut microbial composition and plasma metabolites. 

Limitations of the study

We note that the analyses of human omics data sets in our study has some limitations. 

Here, we used tissue and plasma samples obtained from women who underwent bariatric 

surgery, which may introduce relevant biases in particular pre-operative weight-loss with 

a subsequent decrease in liver volume. However, individuals who had lost more than 3% 

of weight in the month prior to surgery or more than 5% six months before surgery were 

excluded. We therefore ensure that the samples were obtained in a relatively stable period. 

The relatively low number of individuals (n=55) in this study could potentially introduce bias 

to this particular modelling approach, especially since we did not have a validation cohort 

available to confirm these signatures. Therefore, external validation of these metabolites is 

warranted or should be further evaluated. Nevertheless, it is considerably challenging to 

come across similar multi-omics datasets in an external cohort, postprandial metabolome 

in particular, that include the same metabolites. Another limitation is that with the current 

study design we were not able to investigate to what extent the robust NAFL signature 

in each omics set contribute to the increased risk of developing CVD or adverse clinical 

outcome. 
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ABSTRACT

To test the hypothesis that the gut microbiota of individuals with non-alcoholic fatty liver 

disease (NAFLD) produce enough ethanol to be a driving force in the development and 

progression of this complex disease, we performed one prospective clinical study and one 

intervention study. Ethanol was measured in fasting and 120-minutes post mixed meal test 

(MMT) in 146 individuals. In a subset of 37 individuals’ and in an external validation cohort, 

ethanol was measured in portal vein blood. In an intervention study, 10 individuals with 

NAFLD and 10 overweight but otherwise healthy controls were infused with the selective 

alcohol dehydrogenase inhibitor (ADH) before an MMT. Median portal vein ethanol 

concentrations increased with disease progression: 2.1mM; NAFL 8.0mM; NASH 21.0mM 

and were 187 (IQR:17-516) times higher compared to fasted peripheral blood. Inhibition 

of ADH induced a 15-fold (IQR:1.6-20) increase in peripheral blood ethanol concentration 

in individuals with NAFLD, though this effect was abolished after antibiotic treatment. 

Specifically, Lactobacillaceae correlated with post prandial peripheral ethanol concentrations 

(spearman rho:0.42; p<10-5) in the prospective study. Our data shows that first pass effect 

obscures the levels of endogenous ethanol production and suggest that microbial ethanol 

could be considered in the pathogenesis of this highly prevalent liver disease.
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INTRODUCTION 

The gut microbiome has the capacity to produce clinically relevant amounts of ethanol, 

which might contribute to development of non-alcoholic fatty liver disease (NAFLD)1,2. 

NAFLD is the most frequent global chronic liver disease affecting one in four individuals 

in the general population3 and comprises a spectrum of clinical and histopathological 

abnormalities4. It is well-known that individuals with NAFLD and alcoholic fatty liver 

disease (ALD) share histologic features including hepatic steatosis and the large number 

and size of Mallory bodies, suggesting common pathophysiology5–7. 

High levels of circulating microbial ethanol have been thought to result from functional 

impairment of hepatic insulin-dependent alcohol dehydrogenase (ADH)8. Overt microbial 

ethanol production in NAFLD per se has, however, also been postulated1,2,9–11. If produced 

chronically in relevant amounts, microbial produced ethanol could have the ability to alter 

lipid and glucose metabolism and induce steatosis and inflammation in the liver12. Yet, 

reported peripheral blood concentrations of microbial-derived ethanol are generally very 

low, which questions its clinical relevance in NAFLD pathogenesis. The liver has a massive 

capacity to metabolize ethanol via the alcohol dehydrogenase and cytochrome P4502E1 

pathways (~3.5mg/kg/day)13. This likely results in a significant first-pass effect, rendering low 

circulating levels of ethanol and explaining the lack of systemic alcohol misuse symptoms14. 

However, there are exceptions, such as patients with auto brewery syndrome or end stage 

liver disease, where microbial ethanol production exceeds the liver’s capacity to clear 

ethanol from the portal circulation2. Besides these exceptions, insight in the production 

of gut microbial ethanol is stagnated by the fact that portal vein blood, which is enriched 

in microbial metabolites and has not been subjected to this first-pass effect, is difficult to 

obtain in humans. The putative role of microbial ethanol in human disease has therefore 

never been demonstrated unequivocally. We here overcome methodological challenges and 

report on gut microbial ethanol production in individuals with and without NAFLD.

METHODS

Study design

We designed and performed one prospective clinical study and one intervention study, which 

were in accordance with the Declaration of Helsinki and were approved by the Academic 

Medical Center Ethics Committee of the Amsterdam UMC (Trialregister BARIA study 

NL8983, ETHANASH study NL7693). All participants provided written informed consent. 

In addition, we used samples from an external observational study as validation cohort, 
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which was collected in accordance with the Declaration of Helsinki and was approved by 

the Ethics Committee of the Antwerp University Hospital (Belgian registration number 

B300201524515) and requiring written informed consent of the patient. 

In the prospective study, we enrolled 146 individuals (Table 1) from our bariatric  

surgery cohort15. All individuals underwent an extensive metabolic work-up prior to their 

bariatric surgery procedure and did not lose more than three to five percent of body weight  

three or six months prior to surgery. Within two months before surgery, a two-hour mixed 

meal test was performed to calculate glucose excursions, deduce insulin resistance and 

measure post prandial circulating microbial metabolites. Excessive ethanol consumption 

(>14 units/week) was an exclusion criterion and was assessed using an ethanol timeline 

followback assessment during the screening and mixed meal test. Overnight fasted 

participants ingested two Nutridrink compact drinks at t=0 (125ml each, Nutricia®). Caloric 

intake totaled to 23.3 grams of fat, 74.3 grams of carbohydrates (of which 38.5 grams sugar) 

and 24.0 grams of protein. Ethanol was measured fasting and at t=120 minutes. In a subset 

of 37 individuals, samples from portal vein blood were drawn on the day of surgery. Fecal 

samples were obtained on the day of surgery and processed as previously described16. All 

samples were stored at -80oC until further processing. 

During surgery, small intestinal biopsies were obtained from the jejunum. Wedge liver 

biopsies were obtained from the diaphragmatic surface of segment three or five of the liver. 

Biopsies were snap-frozen in liquid nitrogen and stored at -80oC until further processing 

and paraffin-embedded for histology. Paraffin embedded liver sections were stained by 

Haematoxylin-Eosin and Sirius Red. Members of the Dutch Liver Pathology Panel, trained 

for NAFLD scoring according to the Steatosis, Activity and Fibrosis (SAF) score17 reviewed 

the sections. Borderline cases were discussed during pathology consensus meetings. NAFLD 

was categorized into NAFL when steatosis was solely present (in >5% of hepatocytes) or 

when in concert with mild inflammation without ballooning. NAFLD was categorized into 

NASH when steatosis was present (in >5% of hepatocytes) in concert with inflammation 

and ballooning. The activity part of the SAF score (SAF-A) that incorporates the scores 

for hepatocellular ballooning and lobular inflammation was also assessed. In addition, 

the Nonalcoholic Fatty Liver Disease Activity Score (NAS), which is the sum of the scores 

for steatosis [range, 0 to 3], ballooning [range, 0 to 2], and lobular inflammation [range, 

0 to 3], with higher scores indicating greater disease activity) was assessed18. The external 

validation cohort consisted of 51 individuals of whom both portal vein blood and liver 

biopsies obtained during bariatric were available. Liver biopsies were subjected to the same 

stains and were scored according to the same criteria17. 

In the intervention study, we enrolled ten individuals with biopsy-proven non-cirrhotic 

NASH according to the SAF score19 from our outpatient visit clinic. Ten overweight but 
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otherwise healthy individuals were recruited via advertisement and were screened for 

cardiometabolic diseases including hypertension, type 2 diabetes and hepatic steatosis 

using an ultrasonography of the liver prior to inclusion. Ethanol consumption of more 

than two units was an exclusion criterium that was assessed similarly as in the prospective 

trial. At baseline, all participants underwent a four-hour mixed meal test consisting of 200 

g of carbohydrates. This meal differed from the one given in the prospective trial where a 

lower amount of carbohydrates was given ensuring that the meal could be repeated during 

the follow-up (i.e., after bariatric surgery) without inducing severe dumping syndrome. 

The meal in the intervention study was a better reflection of the oral challenges routinely 

encountered daily. Blood was drawn at t=0, 30, 60, 90, 120, 180 and 240 minutes. Within 

two weeks after the baseline mixed meal test, individuals underwent a second mixed meal 

test, which was preceded by an infusion with the selective alcohol dehydrogenase inhibitor 

4-methylpyrazole. The first-pass effect of the liver for ethanol is thereby blocked. The total 

amount of 4-methylpyrazole (15mg/kg) was infused within one hour immediately followed 

by a mixed meal test as described above. Nine out of ten individuals with NASH were 

then given a one-week oral antibiotics course (metronidazole, 500 mg two times daily; 

clindamycin, 300 mg three times daily and ciprofloxacin, 500 mg once daily) to deplete the 

gut microbiome. After the antibiotics course, these individuals underwent a third mixed 

meal test preceded by an infusion with 4-methylpyrazole as described for the second mixed 

meal test. Fecal samples were obtained at every site visit. All mixed meal test were conducted 

under permanent medical supervision.

Ethanol measurement 

Plasma was deproteinized using perchloric acid (5% v/v) and after centrifugation (5 sec at 

12000g) neutralized with NaOH (5M). Subsequently ethanol was assayed using an enzyme-

based kit from DiaSys (Holzheim, Germany). The presence of ethanol was validated by 

measuring ethanol on HPLC. Separation of ethanol was carried out using a Reprogel H 

column (250 mm × 4.6 mm, 9 µm. Screening Devices, Amersfoort, Netherlands) using 

Jasco pump (PU4285, Jasco Benelux, De Meern, Netherlands) in an isocratic setting with 

demineralized water as mobile phase at a flowrate of 0.6 ml/min. After separation ethanol 

was detected using a refractive index detector at a detection-cell temperature of 30° C 

sample (RI 2031, Jasco Benelux, De Meern, Netherlands). During measurements all samples 

were kept at 4 °C in closed vials in the Jasco autosampler (AS4285, Jasco Benelux, De Meern, 

Netherlands). Finally, the absolute ethanol concentrations were calculated using Chrom-

Nav chromatography software (Version 2.0, Jasco, de Meern, Netherlands).



192 | Chapter 8

Fecal total genomic DNA isolation and microbiome analyses

Total fecal genomic DNA was extracted from 100 mg of feces using a modification of the 

IHMS DNA extraction protocol Q20. Briefly, fecal samples were extracted in Lysing Matrix 

E tubes (MP Biomedicals) containing ASL buffer (Qiagen, Venlo, The Netherlands). Lysis 

was obtained after homogenization by vortexing for 2 minutes, by two cycles of heating at 

90°C for 10 minutes followed by three bursts of bead beating at 5.5 m/sec for 60 seconds 

in a FastPrep®-24 Instrument (MP Biomedicals). After each bead-beating burst, samples 

were laced on ice for 5 minutes. The supernatants containing fecal DNA were collected 

after the two cycles by centrifugation at 4°C. Supernatants from the two centrifugations 

steps were pooled and a 600 µL aliquot from each sample was purified using the QIAamp 

DNA Mini kit QIAGEN, Venlo, The Netherlands) in the QIAcube (QIAGEN Venlo, The 

Netherlands) instrument using the procedure for human DNA analysis. Samples were 

eluted in 200 µL of AE buffer (10 mmol/L Tris·Cl; 0.5 mmol/L EDTA; pH 9.0). Libraries for 

shotgun metagenomic sequencing were prepared by a PCR-free method; library preparation 

and sequencing were performed at Novogene (UK, Cambridge) on an HiSeq instrument 

(Illumina Inc. San Diego, CA, USA) with 150 bp paired-end reads and 6G data/sample.

The MEDUSA21 pipeline was used for pre-processing of raw shotgun metagenomics 

sequence data. MEDUSA is an integrated pipeline for analysis of short metagenomic reads, 

which maps reads to reference databases, combines output from several sequencing runs and 

manipulates tables of read counts. The input number of total reads from the metagenome 

analysis were on average 23.4±2.2 million reads per sample and the total aligned reads 

16.6±1.8 million reads per sample. The sequencing runs had high quality with almost 98% of 

the reads passing the quality cut-off. Out of the high-quality reads, on average 0.04% aligned 

to the human genome, although the data had been cleaned for human reads. Out of the high 

quality non-human reads, 78.4% aligned to the MEDUSA’s software gene catalogue. Quality 

filtered reads were mapped to a genome catalogue and gene catalogue using Bowtie222. The 

taxon ids were input to taxize package23, so as to get full taxonomic information and ranking 

for the species. Fungal composition was determined using the human mycobiome scan24. 

KEGG othologs K00001, K00121, K04072, K11440, K13951, K13953, K13954, and K00132, 

K04072, K04073 were taken to assess the metagenomic potential for alcohol dehydrogenase 

(EC:1.1.1.1) and acetaldehyde dehydrogenase (EC:1.2.1.10).

Small intestinal total genomic DNA isolation and microbiome analyses 

Small intestinal biopsies were expected to be rich in host DNA and therefore a bacterial 

16S targeted method was applied. Small intestinal biopsies were lysed using repeated 

bead beating in STAR buffer (Roche Diagnostics) following Proteinase K treatment. 

Total genomic DNA was isolated from the lysates using a Maxwell device (RSC Blood kit, 
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Qiagen). Bacterial 16S rRNA was amplified using the V3-V4 341F forward primer and the 

805R reverse primer. The PCR was performed in a total volume of 30 µl containing 1× 

High Fidelity buffer (Thermo Fisher Scientific, Waltham, MA, USA); 1 µl deoxynucleoside 

triphosphate (dNTP) mix (10 mM; Promega, Leiden, The Netherlands); 1 U of Phusion 

green high-fidelity DNA polymerase (Thermo Fisher Scientific, Waltham, MA, USA); 500 

nM the forward 8-nucleotide (nt) sample-specific barcode primer containing the Illumina 

adapter, pad, and link (341F [5′-CCTACGGGNGGCWGCAG-3′]); 500 nM the reverse 8-nt 

sample-specific barcode primer containing the Illumina adapter, pad, and link (805R 

[5′-GACTACHVGGGTATCTAATCC-3′]); 100 ng/µl of template DNA; and nuclease-free 

water. The amplification program was as follows: an initial denaturation step at 98°C for 

30 s; 30 cycles of denaturation at 98°C for 10 s, annealing at 55°C for 20 s, and elongation at 

72°C for 90 s; and an extension step at 72°C for 10 min. PCR products (~540 bp) were checked 

on gel (1% wt/vol agarose, containing ethidium bromide, AppliChem GmbH, Darmstadt, 

Germany). Bacterial PCR products were purified using AMPure XP beads (Beckman Coulter, 

Brea, CA, USA). Amplicon DNA concentration was measured using Qubit (Thermo Fisher 

Scientific, Waltham, MA, USA) and DNA quality was addressed on a Agilent Bioanalyzer. 

The purified products were equimolarly pooled and libraries were sequenced on an Illumina 

MiSeq platform (paired-end run, 251 cycles, GATCBiotech, Constance, Germany) using V3 

chemistry. Forward and reverse reads were truncated to 240 and 210 bases, respectively, 

and merged25. Merged reads that did not pass the Illumina chastity filter, had an expected 

error rate higher than 2, or were shorter than 380 bases were filtered. Amplicon sequencing 

variants (ASVs) were inferred for each sample individually with a minimum abundance of 4 

reads with UNOISE326. Unfiltered reads were then mapped against the collective ASV set to 

determine the abundances. Bacterial taxonomy was assigned using the RDP classifier27 and 

SILVA 16S ribosomal RNA gene database V13228. Dataset were rarified down to 500 reads 

before further analysis. 

RNA extraction and transcriptomics analyses

RNA was extracted from liver biopsies using TriPure Isolation Reagent (Roche, Basel, 

Switzerland) and Lysing Matrix D, 2 mL tubes (MP Biomedical, Irvine, CA, USAs) in a 

FastPrep®-24 Instrument (MP Biomedical, Irvine, CA, USAs) with homogenization for 20 

seconds at 4.0 m/sec, with repeated bursts until no tissue was visible. Homogenates were kept 

on ice for 5 minutes between homogenization bursts if multiple cycles were needed. RNA was 

purified with chloroform (Merck, Darmstadt, Germany) in phase lock gel tubes (5PRIME) 

with centrifugations at 4°C, and further purified and concentrated using the RNeasy MinElute 

kit (Qiagen, Venlo, The Netherlands). The quality of RNA was analysed on a BioAnalyzer 

instrument (Agilent), with quantification on Nanodrop (Thermo Fisher Scientific, Waltham, 
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MA, USA). Due to degradation of the RNA, libraries for RNAseq sequencing were prepared by 

rRNA depletion; library preparation and sequencing were performed at Novogene (Nanjing, 

China) on an HiSeq instrument (Illumina Inc., San Diego, CA, USA) with 150 bp paired-end 

reads and 10G data/sample. The average read count per sample was 42 ± 15 million. Obtained 

reads were quality trimmed using Trimmomatic29 with sliding_window_threshold_q_score of 

15. Quality trimmed reads of at least 36 nt length were pseudo aligned against Homo sapiens 

GRCh38 transcriptome release 97 using kallisto30 (0.46.1). One sample was excluded from the 

analysis as it did not conform to the expression profile of the liver. 

Statistical analysis

All statistical analyses were performed in R version 4.0.531. Differences in patient charac-

te ristics were tested using Kruskal-Wallis Rank Sum Test (two sided) or Pearson’s Chi-

squared Test where appropriate. Differences in ethanol concentrations were assessed using 

Wilcoxon test and correlations were tested using Spearman’s rank correlation coefficient. 

The post prandial ethanol increase was tested using a linear mixed model. Differential 

liver gene expression analysis for individuals with and without NAFL, NAFL and NASH 

was performed with DESeq232 package (1.30.1); log normalization was based on gene 

counts geometric distribution. The statistical analysis method for calculating differential 

expression rates is the Wald test. After False discovery rate (FDR) correction for multiple 

hypothesis testing. For these differentially significant co-expressed genes we performed 

gene enrichment with Enrichr platform41 using GO terms (2021), KEGG human pathways42 

(2021) and WikiPathways Human (2019). Statistical analysis for the fecal microbiome was 

performed on rarefied count, (20 M reads per sample). Associations with microbiome alpha 

diversity metrics were determine using Wilcoxon test while beta diversity associations were 

tested using PERMANOVA as implemented in the vegan33 package. Effects of microbiome-

altering medication on ethanol levels were tested using linear models. To test for differential 

abundant taxa DESeq232 packages were used while spearman correlations were calculated 

for ethanol concentrations. Similar to the BARIA transcriptomics counts, log normalization 

based on gene counts geometric distribution has been conducted with it. Statistical analysis 

method for calculating differential expression rates was Wald Test. Obtained p-values were 

corrected per comparison using the Benjamini-Hochberg procedure34. 

Data availability 

Fecal metagenomics and liver transcriptomics is deposited in the European Nucleotide 

Archive (ENA PRJEB47902) and European Genome-Phenome Archive (EGAS00001005704) 

respectively. All relevant clinical data is uploaded in the source data file. A comprehensive 

data analysis report can be found at https://amcmc.github.io/BARIA_ETHANASH/
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RESULTS

Study overview and baseline characteristics 

We designed and performed one prospective clinical study and one intervention study. In 

addition, we used samples from an external observational study as validation cohort. In 

the design of the studies, we did not account for differences in sex due to the nature of 

the studies performed. In the prospective study, we enrolled 146 individuals mean age 45, 

BMI 39±4 kg/m2, female/male 108/38 (Table 1) from our bariatric surgery cohort15. In a 

subset of the prospective study, 37 individuals, samples from portal blood were drawn on 

the day of surgery (Supplementary Table S1). The external validation cohort consisted of 

51 individuals of whom both portal vein blood and liver biopsies obtained during bariatric 

surgery were available (Supplementary Table S2). In the intervention study, we enrolled 

ten individuals with biopsy-proven non-cirrhotic NASH and ten overweight but otherwise 

healthy individuals (Table 2). In both cohorts as well as in the intervention study, NAFLD 

was assessed according to the Steatosis, Activity and Fibrosis (SAF) score17. 

Portal and peripheral vein ethanol concentrations

Gut microbial-produced ethanol was detected in portal vein plasma in the subset of the 37 

individuals from the prospective cohort in three biopsy-proven NAFLD classifications (14 

no steatosis; 18 NAFL; 5 NASH. Portal vein ethanol levels were higher in individuals with 

NAFLD as compared to individuals without steatosis (medians: no steatosis 2.1mM; NAFL 

8.0 mM; NASH 21.0mM (Figure 1A). Assuming a minimal portal flow of 0.3L/min, the 

median hepatic load of ethanol in individuals with NAFL and NASH would amount to 92 

and 241 mg per min, respectively. To validate these findings, we repeated portal vein ethanol 

measurements in 51 individuals (22 no steatosis; 12 NAFL; 17 NASH) in the Antwerp 

bariatric surgery cohort. Indeed, portal vein microbial ethanol concentrations in the NASH 

group were in a comparably high range though ethanol concentrations were not increased 

in the NAFL group (no steatosis 1.7 mM; NAFL 1.7 mM; NASH 11.6mM, Figure 1B). The 

differences in results between cohorts are mainly driven by the association between ethanol 

and steatosis grades (Extended Figure 1). 

We hypothesized that ethanol levels in the fasted state could be an underestimate and 

levels would spike a few hours postprandially. In a larger cohort (146 individuals: 58 no 

steatosis; 73 NAFL; 15 NASH, Table 1), we linked peripheral fasting and post prandial (i.e., 

after a mixed meal test) ethanol concentrations to NAFLD classifications, histological scores, 

hepatic transcriptomics and gut microbiome characteristics. 
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Patient Characteristics 
Prospective Cohort

No Steatosis 
(N=58)

NAFL 
(N=73)

NASH 
(N=15) P-value 

Demographic

Age (years) 43.5 (38.2-50) 50 (42-55) 48 (45-54) 0,0153

Female 51/58 48/73 9/15 0,0069

Anthropometric

BMI (kg/m2) 39 (36.5-40.7) 38.7 (36.1-40.7) 39.1 (37.6-40.3) 0,9200

Type 2 diabetes mellitus (n) 7/58 24/73 5/15 0,0165

Clinical lab values (normal range)

ALP (30-135 U/L) 82 (66-97) 82 (67.5-100.2) 70 (66.5-79) 0,3110

g-GT (10 - 40 IU/l) 22 (18-30) 29.5 (22.8-41.2) 20 (17.5-36.5) 0,0108

ALT (0 - 50 IU/l) 25.5 (19-36) 30 (22-42) 37 (26-42.5) 0,0158

AST (0 - 35 IU/l) 23 (20-25) 23.5 (20.2-28) 27 (26-32.5) 0,0330

FPG (<5.6 mmol/l) 5.6 (5.2-6) 6 (5.5-7.2) 6.1 (6-6.9) 0,0002

HbA1c (%) 5.5 (5.3-5.7) 5.8 (5.5-6.4) 6.0 (5.8-6.3) <0.0001

HbA1c (mmol/mol) 37 (34-39) 40 (37-46) 42 (40-45)

Insulin Fasted (pmol/L) 72 (48.5-101.5) 99.5 (69.6-156) 120.2 (90-151.7) 0,0005

Insulin Post prandial (pmol/L) 366 (248-581.6) 538 (334.6-769.5) 737.9 (670.7-927.5) 0,0007

Triglycerides (<1.7 mmol/l) 1.2 (0.9-1.5) 1.4 (1.1-1.9) 1.6 (1.2-2.2) 0,0148

HDL cholesterol (>1.0 mmol/l) 1.2 (1-1.4) 1.1 (1-1.4) 1.2 (0.9-1.4) 0,3271

LDL cholesterol (< 3.0 mmol/l) 3 (2.4-3.7) 3 (2.4-3.7) 3.4 (3-3.8) 0,2557

Total cholesterol (1.5 - 6.5 mmol/l) 4.7 (4.3-5.6) 4.8 (3.8-5.6) 5.1 (4.4-5.6) 0,4935

Fat free mass (percentage) 58.5 (53.9-62.1) 62.2 (56.8-76.5) 62.7 (58-70) 0,0115

Total body water (L) 42.9 (39.2-47.5) 45.1 (41.3-56.4) 46.4 (43.5-52) 0,0140

Extracellular water (L) 19.1 (17.2-20.8) 20.3 (18.5-26) 20.6 (19.2-23.6) 0,0060

Intracellular water (L) 23.9 (22-26.4) 26.1 (23.5-32.1) 25.8 (24-28.4) 0,0056

Histological parameters (number)

Steatosis grade score (0/1/2/3) 58/0/0/0 0/60/11/2 0/6/7/2 <0.0001

Lobular inflammation score (0/1/2) 25/30/3 12/55/6 0/8/7 <0.0001

Hepatocyte ballooning score (0/1/2) 57/1/0 72/0/0 0/9/6 <0.0001

Fibrosis state (0/1/2/3/4) 7/42/9/0/0 3/55/15/0/0 0/9/6/0/0 0,0394

SAF-Activity (0/1/2/3/4) 25/29/4/0/0 12/55/6/0/0 0/0/4/9/2 <0.0001

NAFLD Activity Score 1 (0-1) 2 (2-2) 4 (4-5) <0.0001

Table 1. Values are denoted as median (IQR1, IQR3). Continuous variables were tested using the Kruskal–Wallis test. 
Categorical variables were tested using the chi-squared test. ALP, alkaline phosphatase; g-GT, gamma-glutamyl 
transferase; ALT, alanine transaminase; AST, aspartate aminotransferase; FPG, fasting plasma glucose. Continues 
variables were tested using Kruskal-Wallis test, Categorical variables were tested using chisq test. 

Peripheral ethanol concentrations were lowest in fasting conditions (means: 0.051 

mM,0.064 mM and 0.098 mM and increased 120 minutes after intake of a mixed meal in 

101 out of 109 individuals (Figure 1C). Although fasting ethanol concentrations differed 

between the no steatosis, NAFL and NASH groups, the post prandial increase in plasma 

ethanol was more profound in the NAFL (+0.039 mM; p<0.01) and NASH (+ 0.073 mM; 

p<0.001) groups as compared to no steatosis (+0.020; p<0.0001). Ethanol in both fasting and 

postprandial conditions increased in a dose dependent matter with an increase in hepatic 
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steatosis score, hepatic ballooning score, fibrosis score but not with lobular inflammation 

(Extended Figure 2). Fasting ethanol concentrations significantly correlated with fasting 

insulin levels (R = 0.23, p = 0.0064). In addition, post prandial insulin concentrations 

correlated significantly with portal vein ethanol (R = 0.43, p = 0.016) and with ethanol in the 

fating state (R = 0.21, p = 0.013) (Extended Figure 3).

Patient Characteristics 
Intervention Study

No Steatosis 
(N=10)

NASH 
(N=10) P-value

Demographic

Age (years) 39 (37.2-47) 51 (48.8-51.8) 0,1385

Female 2/10 2/10 1

Anthropometric

BMI (kg/m2) 29.9 (27.6-31.8) 32 (29.9-34.3) 0,1509

Type 2 diabetes mellitus (n) 0/10 5/10 0,0389

Clinical lab values (normal range)

ALP (30-135 U/L) 65 (61-73) 91 (71-114.5) 0,0190

g-GT (10 - 40 IU/l) 24 (16-31.2) 51.5 (42.2-57) 0,0002

ALT (0 - 50 IU/l) 30 (20.5-35.5) 73.5 (54.5-104.5) 0,0002

AST (0 - 35 IU/l) 25 (21-26) 47 (38-57.8) 0,0011

FPG (<5.6 mmol/l) 5 (4.8-5.3) 6.5 (5.6-8.2) 0,0015

HbA1c (%) 5.4 (5.3-5.5) 6.2 (5.9-7.6) 0,0099

HbA1c (mmol/mol) 36 (34-37) 44 (41-60) 0,0099

Triglycerides (<1.7 mmol/l) 1.4 (1-2) 1.5 (1.3-3) 0,2729

HDL cholesterol (>1.0 mmol/l) 1.2 (1-1.3) 1.2 (1-1.3) 0,8797

LDL cholesterol (< 3.0 mmol/l) 3 (2.6-3.3) 3.3 (2.7-3.9) 0,4961

Total cholesterol (1.5 - 6.5 mmol/l) 4.8 (4.5-5.6) 5.5 (4.9-5.8) 0,3644

Histological parameters (number)

Steatosis grade score (0/1/2/3) 0/4/6/0 n/a

Lobular inflammation score (0/1/2) 0/6/4 n/a

Hepatocyte ballooning score (0/1/2) 0/8/2 n/a

Fibrosis state (0/1/2/3/4) 0/2/6/2/0 n/a

SAF-Activity (0/1/2/3/4) 0/0/5/4/1 n/a

NAFLD Activity Score 4 (3.2-5) n/a

Table 2. Values are denoted as median (IQR1, IQR3). Continuous variables were tested using the Kruskal–Wallis test. 
Categorical variables were tested using the chi-squared test. 

Together, our data show that the liver has a large capacity to metabolize ethanol as 

reflected by the concentration difference between peripheral and portal vein blood. In 

individuals with NAFLD, ethanol concentrations were 187 (IQR:17-516) times lower 

in peripheral compared to portal vein blood (Figure 1). And though taken weeks apart, 

portal and peripheral blood ethanol concentrations correlated significantly (Extended 

Figure 4). Transcriptomic analyses of the liver showed differences between NAFLD classes 

in processes including one carbon metabolism, PPAR signaling and apoptosis, as reported 
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in literature6,35,36. In addition, significant associations between post prandial ethanol 

concentrations with increased levels of mitochondrial encoded cytochrome B and ethanol 

induced epigenetic changes of the liver were observed (Supplementary Table S3, Extended 

Figure 5). Transcripts for ADH1A and CYP2E1 were very highly expressed among all subjects 

and did not differ between groups. ADH1A and CYP2E1 expression did not associate 

with ethanol concentrations suggesting constitutive expression and post-transcriptional 

regulation of these genes.
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concentrations because the peak effect of 4-methylpryazole was 
between 1.5 and 2 hours after the infusion (Supplementary Table 5).

Next, nine out of the ten individuals with NASH were given 
broad-spectrum oral antibiotics for 1 week to show that ethanol is 
indeed produced by gut bacteria. Antibiotics treatment completely 
depleted the gut microbiome, as evidenced by the fact that fecal micro-
bial DNA could not be isolated (data not shown), which was translated 
into a striking near-complete suppression of detectable ethanol dur-
ing an MMT preceded by 4-methylpyrazole infusion. These findings 
support the idea that overt ethanol production in NASH is likely to be 
driven by the gut microbiome (Fig. 1e).

Gut microbiome analyses
Several bacterial species are known to produce relevant amounts of 
ethanol via the fermentation of dietary and nondietary carbohydrates19. 
To identify the main microbial taxa contributing to overt ethanol pro-
duction in NASH, we performed 16S rRNA gene amplicon sequencing 
on small intestinal tissues from individuals in the prospective cohort. 
The most abundant genus in the biopsies, Streptococcus, tended to be 
positively associated with NAFLD (P = 0.018) (Extended Data Fig. 6a), 
although the associations were not significant after correction for multi-
ple testing. For a subset of 11 samples for which portal ethanol concentra-
tions were available, relative Streptococcus abundance was associated 
with blood ethanol concentrations, but this was not significant after 
multiple-testing correction (R = 0.53, P = 0.078) (Extended Data Fig. 6).

Fecal microbial alpha- and beta-diversity metrics (shotgun 
metagenomics) did not differ among the NAFLD classes in the 
prospective cohort nor did these metrics associate with ethanol 

levels (Extended Data Figs. 7 and 8). Nevertheless, differential taxon 
abundance and correlation analyses revealed strong specific taxon 
associations with NAFLD classes (Fig. 2a), and postprandial ethanol 
concentrations (Fig. 2b), with the strongest positive correlations 
observed for Streptococcus and especially Lactobacillus species, 
both belonging to the order of lactic acid bacteria. Although fasting 
ethanol concentrations did not correlate with the fecal proportions 
of Lactobacillaceae (R = 0.097, P = 0.29) (Fig. 2c), postprandial etha-
nol concentrations correlated with this bacterial family (R = 0.42, 
P = 5.6 × 10-6) (Fig. 2d and Supplementary Table 4). The associations 
between lactic acid bacteria and postprandial ethanol remained 
significant when correcting for the use of microbiome-altering 
drugs including metformin, proton pump inhibitors and statins 
(P = 0.0003). Proton pump inhibitor use, a known risk factor for 
NAFLD20, was associated with postprandial ethanol concentra-
tions (increase of 0.030 ± 0.011; P = 0.008), and the association 
was mediated by lactic acid bacteria (P < 10−16). We also assessed the 
abundance of fungi in the metagenomes in the prospective cohort 
but detected only low abundance of Saccharomyces cerevisiae (able 
to produce ethanol19) that was slightly higher in the NAFL group but 
did not correlate with portal (R = 0.13, P = 0.52), fasted (R = 0.098, 
P = 0.3) or postprandial (R = 0.14, P = 0.17) ethanol concentrations 
(Extended Data Fig. 9). No significant associations could be made 
between KEGG orthologous functions and observed ethanol levels 
(Supplementary Table 5).

Diversity and dissimilarity measures in shotgun metagenomics 
data from fecal samples of individuals in the intervention cohort did 
not significantly differ between groups (Extended Data Fig. 10a,b). 
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a,b, Ethanol concentrations in portal blood in the prospective cohort (healthy, 
n = 14; NAFL, n = 18; NASH, n = 5) (a) and validation cohort (healthy, n = 22; 
NAFL, n = 12; NASH, n = 16) (b). c, Fasted and postprandial peripheral ethanol 
concentrations at baseline (fasting) and 120 min into the mixed meal test (MMT) 
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during an MMT following 4-methylpyrazole (4MP) infusion and antibiotics (AB) 

use (healthy, n = 10; NASH, n = 10; AB, n = 9) (e). Box plots feature the median 
(center line), upper and lower quartiles (box limits) and 1.5× the interquartile 
range (whiskers), and points outside of the box plot range are outliers. Gray areas 
around the spline show the standard error. For visualization purposes, samples 
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differences were determined by two-tailed Mann–Whitney test (****P < 0.0001; 
***P < 0.001; *P < 0.05; NS, not significant).

Figure 1. Ethanol concentrations in different blood compartments and studies. Ethanol concentrations in portal 
blood in the a, prospective cohort healthy (n=14, NAFL n=18, NASH n=5) and b, validation cohort (healthy n=22, NAFL 
n=12, NASH n=16). c, fasted and postprandial peripheral ethanol concentrations at baseline (fasting) and 120min into 
the mixed-meal test (healthy n=58,43, NAFL n=73,57, NASH n=15,9). d, ethanol concentrations during a standard 
mixed-meal test (D, Healthy n=10, NASH n=10) and e, during a mixed-meal test following 4-methylpyrazole infusion 
and antibiotics use (healthy n=10, NASH n=10, AB n=9). Box plots feature the median (center line), upper and lower 
quartiles (box limits), 1.5× the interquartile range (whiskers), points outside of boxplot range are outliers. Grey areas 
around the spline show the standard error. For visualization purpose, samples marked with the + in panels D and E were 
above the chosen axis limit. Significant differences were determined by two-tailed Mann–Whitney test (****P < 0.0001; 
***P < 0.001; **P < 0.01; *P < 0.05)

Intervention with 4-methylpyrazole and broad-spectrum antibiotics 

To determine whether microbial ethanol production is increased in patients with NAFLD, 

we designed an intervention study in which we bypassed the first-pass effect of the liver 

for ethanol using the selective alcohol dehydrogenase inhibitor 4-methylpyrazole. Twenty 

individuals were included (ten with NASH; ten age-, BMI- and sex-matched controls without 

NAFLD, Table 2) who, in line with the findings of the prospective study, showed increased 
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ethanol levels 120 minutes post prandially (0.050 ± 0.025; p=0.06). Ethanol levels were 

significantly higher in the NASH group (+0.136±0.064; p=0.047) compared to the control 

group (Figure 1D).

Infusion with 4-methylpyrazole prior to the mixed meal test strongly increased 

peripheral microbial ethanol levels (Figure 1E). In individuals without steatosis, ethanol 

concentrations increased at a rate of 0.09 (0.02-0.17) mM per hour and at a rate of 0.9 

(0.07-1.70) mM per hour in the NASH group in the first 120 minutes after start of the 

infusion (Figure 1E). The decrease in microbial ethanol concentrations in the second half 

of the experiment is assumed to be a result of decreasing 4-methylpyrazole concentrations 

because the peak effect of 4-methylpryazole is between 1.5-2 hours after the infusion 

(Supplementary table S5). Next, nine out of the 10 individuals with NASH were given 

broad-spectrum oral antibiotics for one week to show that ethanol is indeed produced by 

gut bacteria. Antibiotics treatment completely depleted the gut microbiome, as evidenced 

by the fact that fecal microbial DNA could not be isolated (data not shown), which 

translated in a striking near-complete suppression of detectable ethanol during a mixed-

meal test preceded by 4-methylpyrazole infusion. These findings support that overt ethanol 

production in NASH is likely to be gut microbiome driven (Figure 1E).

Gut microbiome analyses 

Several bacterial species are known to produce relevant amounts of ethanol via the 

fermentation of dietary and non-dietary carbohydrates37. To identify the main microbial 

taxa contributing to overt ethanol production in NASH, we performed 16S rRNA gene 

amplicon sequencing on small intestinal tissues from individuals in the prospective cohort. 

The most abundant genus Streptococcus in the biopsies tended to be positively associated with 

NAFLD (p=0.018) (Extended Figure 6A), although the associations were not significant 

after correction for multiple testing. For a subset of 11 samples, for which portal ethanol 

concentrations were available, relative Streptococcus abundance was associated with blood 

ethanol concentrations but was not significant after multiple testing correction (R = 0.53, p 

= 0.078) (Extended Figure 6). 

Fecal microbial alpha and beta diversity metrics (shotgun metagenomics) did not differ 

between the NAFLD classes in the prospective cohort, nor did it associate with ethanol 

levels (Extended Figure 7 and 8). Nevertheless, differential taxa abundance and correlation 

analyses revealed strong specific taxa associations with NAFLD classes (Figure 2A), and 

post prandial ethanol concentrations (Figure 2B), with the strongest positive correlations 

observed for Streptococcus and especially Lactobacillus species, both belonging to the order 

of lactic acid bacteria. Although fasting ethanol concentrations did not correlate with 

the fecal proportions of Lactobacillaceae (R = 0.097, p = 0.29) (Figure 2C), post prandial 
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ethanol concentrations correlated with this bacterial family (R = 0.42, p = 5.6e-06) (Figure 

2D, Supplementary Table S4). The associations between lactic acid bacteria and post-

prandial ethanol remained significant, when correcting for the use of microbiome-altering 

drugs including metformin, proton pump inhibitors and statins (p=0.0003). Proton-pump 

inhibitor use, a known risk factor for NAFLD38, was associated with post prandial ethanol 

concentrations (+0.030±0.011; p=0.008) and the association was lactic acid bacteria mediated 

(p<10-16). We also assessed the abundance of fungi in the metagenomes in the prospective 

cohort but detected only low abundances of Saccharomyces cerevisiae (able to produce 

ethanol37) that were slightly higher in the NAFL group but did not correlate with portal 

(R = 0.13, p = 0.52), fasted (R = 0.098, p = 0.3) or post prandial (R = 0.14, p = 0.17) ethanol 

concentrations (Extended Figure 9). No significant associations could be made between 

kegg orthologous functions and observed ethanol levels (Supplementary Table S5).
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The microbiome composition and the rates of ethanol accumulation 
after 4-methylpyrazole infusion also did not correlate. Differential 
abundance analysis, however, revealed that several taxa from the order 
Clostridiales had decreased abundance in the NASH group (Extended 
Data Fig. 10d and Supplementary Table 6). Various taxa from multiple 
families had increased abundance in the NASH group, including Lac-
tobacillaceae and Streptococcaceae (Extended Data Fig. 10d). These 
results are in line with the microbiome data obtained from our prospec-
tive cohort and support our hypothesis that lactic acid bacteria might 
be implicated in NAFLD etiology via production of ethanol.

Discussion
The putative role of ethanol microbially produced in the gut in the etiol-
ogy of NAFLD has been proposed previously1,2,9–11. Gut microbial produc-
tion of ethanol per se, however, has not been convincingly measured in 
individuals with and without NAFLD. Here, we show in two independent 
cohorts that ethanol concentrations in portal vein blood were signifi-
cantly higher in individuals with NAFL and NASH than in individuals 
with no hepatic steatosis. Peripheral ethanol concentrations could 
be induced during a standardized MMT in all participants, with the 
highest concentrations in those with more advanced disease (that is, 
NASH). Inhibition of hepatic ethanol clearance using 4-methylpyrazole 
infusion indicated that individuals with NASH may have an increased 
microbial capacity to produce ethanol compared to healthy individuals. 
This finding was further supported by the demonstration of complete 
abrogation of MMT-induced ethanol production in patients with NASH 
following broad-spectrum antibiotics treatment. Our data suggest that 
the livers of some individuals with NAFLD could be chronically exposed 
to increased amounts of ethanol of gut microbial origin.

Blood from the gastrointestinal tract drains directly into the por-
tal vein and is enriched in microbial metabolites21. Because the portal 
circulation can only be sampled under invasive conditions such as 
abdominal surgery, it is rarely studied in diseases associated with the 
gut microbiome including NAFLD. Because the liver clears the vast 
majority of metabolites from the portal circulation (first-pass effect), 
there is a black box in our knowledge of ‘true’ gut microbial metabolite 
load on the liver. This includes microbially produced ethanol.

Median ethanol concentrations in portal vein blood were low in 
individuals with no steatosis (mean, 2.1 mM), whereas in individuals 
with NAFL and NASH, median ethanol concentrations ranged from 
8.0 mM to 21.0 mM, respectively, which is higher than the federal legal 
driving limit in the United States22. The lack of systemic alcohol misuse 
symptoms could be due to the large ethanol clearance capacity of the 
liver, explaining the 187 times lower peripheral ethanol concentrations 
in our cohorts and implying that liver functional capacity to clear the 
portal influx of ethanol is intact. This assertion is supported by our RNA 
sequencing analyses, which did not reveal differences in pathways of 
relevance for ethanol clearance despite the observation that ADH and 
CYP2E1 were among the most abundantly expressed genes in the liver 
in all individuals independently of disease state.

Peripheral ethanol concentrations could be induced by admin-
istration of a standardized mixed meal. The postprandial increase in 
plasma ethanol was most profound in the NAFL and NASH groups, 
which is in line with previous observations1,2,9–11. This suggests that 
ethanol concentrations are strongly linked to dietary stimuli, which 
is of particular relevance for individuals with obesity and who are at 
increased risk to develop NAFLD. Although peripheral ethanol con-
centrations were lower compared to portal ethanol concentrations, 
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Fig. 2 | Gut microbiome analyses of the studies. a, Differentially abundant taxa 
between healthy individuals (n = 47) and individuals with NAFLD (n = 75) of the 
prospective cohort represented by a volcano plot. b, Spearman’s rho correlation 
coefficients of postprandial peripheral ethanol concentrations and the most 
abundant species. The horizontal blue line marks the boundary for which the 
Benjamini–Hochberg-adjusted P value = 0.05. Only taxa with mean abundance 

above 0.1% and belonging to the top 13 families are shown. c,d, Correlation of 
Lactobacillaceae abundance with fasting (healthy, n = 47; NALF, n = 64; NASH, 
n = 11) (c) and postprandial (healthy, n = 42; NALF, n = 57; NASH, n = 9) (d) ethanol 
concentrations. Lines in c and d represent a linear fit, with gray areas being the 
standard error with a 0.95 confidence interval.

Figure 2. Gut microbiome analyses of the studies. a, differentially abundant taxa between healthy (n=47) and NALFD 
subjects (n=75) of the prospective cohort represented by a volcano plot. b, Spearman’s Rho correlation coefficients of 
post-prandial peripheral ethanol concentrations and the most abundant species. The horizontal blue line marks the 
boundary for which the Benjamini & Hochberg adjusted p-value=0.05. Only taxa with mean abundances above 0.1% 
and belonging tothe top 13 families are shown. c, Lactobacillaceae abundance correlations with fasting (Healthy n=47: 
NALF n=64, NASH n=11) and d, post-prandial ethanol concentrations (healthy n=42: NALF n=57, NASH n=9). Lines in C 
and D represents a linear fit, with grey areas the standard error with a 0.95 confidence interval.

Diversity and dissimilarity measures in shotgun metagenomics data from fecal samples 

of individuals in the intervention cohort did not significantly differ between groups 
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(Extended Figure 10A and B). The microbiome composition and the rates of ethanol 

accumulation after 4-methylpyrazole infusion also did not correlate. Differential abundance 

analysis, however, revealed that several taxa from the order Clostridiales were decreased 

in the NASH group (Extended Figure 10D, Supplementary Table S6). Various taxa 

from multiple families were increased in the NASH group including Lactobacillaceae and 

Streptococcaceae (Extended Figure 10D). These results are in line with the microbiome data 

obtained from our prospective cohort and support our hypothesis that lactic acid bacteria 

might be implicated in NAFLD etiology via production of ethanol. 

DISCUSSION

The putative role of gut microbial produced ethanol in the etiology of NAFLD has been 

proposed previously1,2,9–11. Gut microbial production of ethanol per se, however, has never 

been convincingly measured in individuals with and without NAFLD. Here, we show in two 

independent cohorts that ethanol concentrations in portal vein blood were significantly 

higher in individuals with NAFL and NASH compared to individuals with no hepatic 

steatosis. Peripheral ethanol concentrations could be induced during a standardized mixed 

meal test in all participants, with highest concentrations in those with more advanced 

disease (i.e., NASH). Inhibition of hepatic ethanol clearance using 4-methylpyrazole 

infusion implicated that individuals with NASH have an increased microbial capacity to 

produce ethanol compared to healthy individuals. This finding was further supported by the 

demonstration of completing abrogation of mixed-meal test-induced ethanol production in 

patients with NASH upon broad spectrum antibiotics treatment. Our data suggest that the 

livers of some individuals with NAFLD could be chronically exposed to increased amounts 

of ethanol of gut microbial origin. 

Blood from the gastrointestinal tract drains directly into the portal vein and is enriched 

in microbial metabolites39. Because the portal circulation can only be sampled under invasive 

conditions such as abdominal surgery, it is rarely studied in diseases associated with the gut 

microbiome including NAFLD. Because the liver clears the vast majority of metabolites 

from the portal circulation (first pass effect), there hence is a black box in our knowledge on 

‘true’ gut microbial metabolite load on the liver. This includes microbial produced ethanol. 

Median ethanol concentrations in portal vein blood were low in individuals with no 

steatosis (mean 2.1 mM) whereas in individuals with NAFL and NASH median ethanol 

concentration ranged from 8.0 mM to 21.0 mM, respectively, which is in higher than 

the federal legal driving limit in the United States40. The lack of systemic alcohol misuse 

symptoms could be explained by the large ethanol clearance capacity of the liver, explaining 
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the 187 times lower peripheral ethanol concentrations in our cohort and implies that liver 

functional capacity to clear the portal influx of ethanol is intact. This assertion is supported 

by our RNA sequencing analyses which did not reveal differences in pathways of relevance 

for ethanol clearance despite the observation that ADH and CYP2E1 were among the most 

abundantly expressed genes in the liver in all individuals independent of disease state.

Peripheral ethanol concentrations could be induced by administration of a standardized 

mixed meal. The post-prandial increase in plasma ethanol was most profound in the NAFL 

and NASH groups, which is in line with previous observations1,2,9–11. This suggests that 

ethanol concentrations are strongly linked to dietary stimuli, which is of particular relevance 

for individuals with obesity and who are at increased risk to develop NAFLD. Although 

peripheral ethanol concentrations were lower compared to portal ethanol concentrations, 

the concentrations in these compartments correlated significantly. We therefore speculate 

that peripheral ethanol concentrations, measured in mixed meal test settings, could be used 

as proxy for portal ethanol supply to the liver.

Microbial ethanol concentrations in plasma were undetectable during mixed meal test 

(preceded by 4-methylpyrazol infusion) in NASH participants treated with broad-spectrum 

antibiotics, in whom the gut microbiota was completely depleted. This observation 

indicates a causal role for gut bacteria in overt ethanol production in the individuals with 

NASH included in the present study. Both gram-negative and gram-positive bacteria are 

capable of producing ethanol in high concentrations41–44. The fecal gut microbiome has 

been shown to shift towards a more gram-negative community with disease progression 

(e.g., from NAFL to NASH)26. Bacterial species belonging to the phylum Proteobacteria 

and family Enterobacteriaceae have been associated with fasting ethanol levels in NAFLD1,45. 

In our cohorts, next to Proteobacteria, species belonging to the lactic acid bacteria were 

higher in NAFLD and correlated significantly with ethanol in each blood compartment. 

Recently, Klebsiella pneumoniae was identified as a high ethanol producer in NAFLD2. K. 

pneumoniae contributed only little to the overall microbial load signature and was 20 times 

less abundant than the Lactobacillaceae. Furthermore, it did not correlate with ethanol levels 

in any compartment. Contributions of these lineages may vary depending on ethnicity, 

genetics, and other demographic factors46,47. 

There are several limitations of this study. The prospective study was limited by the 

use of tissue and plasma samples from individuals with severe obesity who underwent 

bariatric surgery, which might introduce bias in reproducibility of the findings in cohorts 

with less severe obesity and who have not had bariatric surgery. Furthermore, the cohort was 

sex-biased due to the skew towards females seeking surgical treatment for severe obesity48. 

Although ADH is constitutively active, CYP2E1 can be induced by ethanol on transcriptional 

and protein levels49. Despite varying portal ethanol levels, in our study, CYP2E1 expression 
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did not differ between individuals with and without NAFLD. We cannot rule out that the 

surgical procedure, when the liver is subjected to hemodynamics, stress and hormonal 

changes, altered (or blunted) CYP2E1 expression. We used an enzyme-based kit to measure 

ethanol which is known to have activity towards other low molecular weight alcohols as well. 

Nevertheless, the kinetics of these side reactions are different because the turnover time is 

much slower comparing ethanol for instance with methanol. In 25% of the portal samples, 

we used an HPLC approach to show that the alcohol detected by the kit is in fact ethanol. 

In the intervention study we assessed hepatic steatosis in the healthy volunteers using an 

ultrasound and not with the gold standard (i.e., a liver biopsy), which could potentially 

falsely classify an individual as healthy controls. Although we obtained casual evidence that 

the gut microbiome can produce large amounts of ethanol, the impact on the disease course 

of NAFLD was not assessed. Further prospective and intervention studies in large human 

cohorts combined with dedicated mechanistic studies are required to obtain causal evidence 

that microbial produced ethanol affects NAFLD development. Also. metagenomic data 

analysis approaches were limited by multiple testing burden and were not fully exhaustive. 

In addition, despite the correlations, we have not identified the specific bacterial strains 

that produce ethanol. Although it has been shown that a multitude of bacterial strains can 

produce ethanol, including species belonging to lactic acid bacteria, the specific conditions 

that trigger this fundamental but dynamic pathway along the human digestive tract, require 

further research. 

We conclude that the human gut microbiota produces large amounts of ethanol that 

might be clinically relevant for the pathogenesis of NAFLD. Ethanol production during a 

mixed meal test should be considered as a non-invasive diagnostic approach for the detection 

of high ethanol producing gut microbiomes and NAFLD risk. In our prospective cohort, 

high post prandial plasma ethanol concentrations correlated particularly with high relative 

fecal abundance of lactic acid bacteria. Clinical trials targeting the gut microbiome have not 

yielded any meaningful outcome in NAFLD thus far. To what extent persistent endogenous 

ethanol production is causally involved in the highly complex pathogenesis of NAFLD 

where a combination of environmental factors, genetic variants, obesity and disturbed 

lipid homeostasis interact, remain to be elucidated. Nevertheless, our findings suggest that 

further attention aiming to target the gut microbiota to reduce ethanol production and 

thereby lower additional risk for NAFLD is justified.
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ABSTRACT 

Introduction

The intestinal microbiota has been linked to development and prevalence of steatohepatitis. 

Interestingly, steatohepatitis is significantly lower in individuals taking a plant-based, low 

animal protein diet which is thought to be mediated by gut microbiota. However, data on 

causality between these observations in humans is scarce. In this regard, fecal microbiota 

transplantation (FMT) using healthy donors is safe and is capable of changing microbial 

composition in human disease. 

Design and Results

We thus performed a double-blind randomized controlled proof-of-principle study in which 

individuals with hepatic steatosis on ultrasound were randomized to two study arms; lean 

vegan donor (allogenic n=10) or own (autologous n=11) FMT, which were performed three 

times at eight-week intervals. A liver biopsy was performed at baseline and after 24 weeks 

in every subject to determine histopathology (NASH-CRN) classification and changes in 

hepatic gene expression based on RNA sequencing. Secondary outcome parameters were 

changes in intestinal microbiota composition and fasting plasma metabolomics. We observed 

a trend towards improved necro-inflammatory histology, and found significant changes in 

expression of hepatic genes involved in inflammation and lipid metabolism upon allogenic 

FMT. Intestinal microbial community structure changed upon allogenic FMT, which was 

associated with changes in plasma metabolites as well as markers of .

Conclusions

Allogenic FMT using lean vegan donors in individuals with hepatic steatosis shows an effect 

on intestinal microbiota composition, which associated with beneficial changes in plasma 

metabolites and markers of steatohepatitis. 
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INTRODUCTION

As a consequence of the pandemic spread of obesity and type 2 diabetes (T2DM), non-

alcoholic fatty liver disease (NAFLD) is now recognized as the most prevalent chronic liver 

disease worldwide (1). NAFLD represents a spectrum of liver disease, with clinical and 

histological abnormalities ranging from simple steatosis (NAFL) to steatohepatitis (NASH), 

with the latter being diagnosed when the liver biopsy shows hepatocyte ballooning and 

inflammation, in addition to steatosis. The current estimated global prevalence of NAFLD 

is 25 – 30% and reaching staggering numbers up to 80% in individuals with metabolic 

syndrome and T2DM (1). Although it has been showed that individuals with NAFLD can 

progress towards NASH (2,3), the presence of steatosis has little prognostic value for disease 

development (4). Increasing evidence suggest that disease activity also known as the necro-

inflammation score (i.e. inflammation and hepatocyte ballooning) independent of steatosis 

is clinically the most relevant parameter of NAFLD(5) (6). This relatively new concept in 

steatohepatitis describes and measures inflammation and liver cell injury and builds on the 

evidence that disease activity is highly associated with fibrosis progression (5) (6). In line, 

individuals with a high necro-inflammation score, thus high active inflammation, have a 

considerably higher risk of developing hepatic (cirrhosis, hepatocellular carcinoma, liver 

transplantation) and extrahepatic (mainly atherosclerotic cardiovascular) complications (1). 

As annual medical costs directly attributable to NAFLD keep increasing per year, this under-

scores the need of interventions to alleviate or even prevent an adverse disease course (1).

In search of potential new and effective treatment options, the gut microbiome has 

gained a lot of interest, mainly based on human observational studies and animal experi-

ments. Indeed, alterations in gut microbial composition have frequently been observed in 

individuals with NAFLD (8–10). Accordingly, alterations in plasma metabolites derived 

from gut microbiota as well as from diet have been linked to NAFLD development (9). 

Compared to omnivorous diets, plant-based low animal protein diets, as practiced by 

vegans, are associated with reduced NAFLD incidence (11). Compared to omnivores, vegans 

have an altered gut microbiota composition (12) with concomitant alterations in plasma 

metabolites such as carnitine derivatives (13). This has previously been linked to a lower 

incidence of NAFLD in Chinese (14) and Western subjects (11). Although causality of these 

gut microbiota alterations on liver disease has been suggested in mice, in humans this 

remains to be elucidated. To find cause-and-effect relations between the gut microbiome 

and human disease in general, feces from affected individuals have been transplanted into 

rodents (15). Interestingly, in a recent systematic review, it was shown that 95% of published 

studies described the successful transfer of the pathological phenotype of human NAFLD 

into rodents, indicative of substantial publication bias as many studies were underpowered 
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(16). Combined with the complexity of causal relations, these findings suggest that this 

high success rate of inter-species transferable pathologies overestimates the role of the gut 

microbiome in human disease (16). Lessons from studies performing fecal microbiota 

transplantation (FMT) in humans have shown that FMT is relatively safe when performed 

in a clinical setting and capable of changing gut microbial composition with concomitant 

(modest) effects on human metabolism. For example, transfer of healthy donor feces was 

found to improve insulin sensitivity, alter short chain fatty acid (SCFA) production and 

affect plasma metabolite levels in individuals with metabolic syndrome (17). Nevertheless, 

not all FMT change metabolic traits or microbiota composition in treated individuals 

(17) and the effect seems to be modulated by donor’s metabolic status as well as by the 

recipient’s microbiota composition (18). This underscores the complexity of the relation 

between human diet, metabolism, composition and function of the gut microbiome in 

relation to cardiometabolic diseases and NAFLD. It also suggests that (diet specific) personal 

characteristics of both donor and acceptor determine the individual’s response upon donor 

FMT (19). To date, dissecting causality of intestinal microbiota in NAFLD using FMT from 

donors on a plant-based, low animal-protein diet has not been performed. Therefore, the 

aim of our pilot randomized controlled trial study was to investigate a potential causal role 

of intestinal microbiota on NAFLD in humans.

METHODS

Design

This study was a single-center, double-blind, randomized controlled proof-of-principle pilot 

study comparing the effect of three eight-weekly lean vegan donor FMT versus autologous 

FMT on the severity of NAFLD, using liver biopsies in individuals with hepatic steatosis 

on ultrasound (Supplemental figure 1). The study was conducted in the Amsterdam 

University Medical Centers, location Academic Medical Center (AMC METC 2013_207), in 

compliance with the principles of the declaration of Helsinki and CONSORT guidelines. 

The protocol was reviewed and approved by the institutional review board of the AMC and 

was registered in the Dutch Trial Register (registration number NTR4339). All participants 

provided written informed consent. 

Participants and donors

Caucasian, overweight, treatment-naïve, omnivorous individuals with hepatic steatosis 

on ultrasound were included. The main inclusion criteria were age 21-69 years, male or 

postmenopausal female, BMI > 25 kg/m2 with hepatic steatosis on previous ultrasound 
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with suspicion of NAFLD (based on elevated liver enzymes, impaired glucose tolerance, 

severity of steatosis on ultrasound). Exclusion criteria were any medication use, history of 

cardiovascular disease, T2DM, renal disease, cholecystectomy; compromised immunity; 

use of proton-pump inhibitors, antibiotics or anticoagulants in the past three months, 

any current use of medication, a history of moderate to heavy alcohol use (>12 grams per 

day), or other causes of liver disease besides NAFLD (e.g. hemochromatosis, auto-immune 

hepatitis, cirrhosis, hepatitis B or C, hemochromatosis, alpha-1 antitrypsin deficiency and 

alcoholic liver disease). None of the participants underwent bariatric surgery. Fecal donors 

were healthy, lean (BMI < 25 kg/m2), treatment naïve, male or female Caucasian individuals 

on a stable (>3 months) plant-based low animal-protein (vegan) diet. They completed 

questionnaires on dietary and bowel habits, travel history, comorbidity including family 

history of diabetes mellitus and medication use. Donors were screened for the presence of 

infectious diseases as recommended (18,19).

Study visits

All participants were advised to retain their usual dietary habits during the study and 

were asked to fill out an online nutritional diary for the duration of one week before the 

baseline visit and the 24 weeks visit to monitor caloric intake including total calories, dietary 

carbohydrates, fat, proteins and fibers. Blood pressure, body weight and changes in health 

status were documented.

Intervention

All visits took place after an overnight fast with plasma samples taken and partly stored at 

-80°C for later analyses. Participants were randomized to treatments with either lean donor 

or autologous FMT performed according to the previously described procedure (19) at eight-

week intervals (baseline gastroduodenoscopy whereas at 8 and 16 weeks a duodenal tube 

was placed by means of CORTRAK enteral access). This as we have previously observed that 

gut microbiota composition in the recipient is affected up to 8-12 weeks after donor FMT 

(18-19), we chose this time-window to ensure a stable donor gut microbiota composition 

over this 24 weeks period. The fecal samples received from the donors were collected 

approximately 6 hours before infusion into the recipients. Donors were not specifically 

matched with recipients based on histological or clinical characteristics. We preferred to use 

duodenal infusion for FMT administration over infusion via colonoscopy, because of the 

potential role of the duodenum in metabolism, combined with our established experience 

with, and the low complication rate of this method at our institution (18-20).
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Randomization and blinding

Subjects were randomized using computerized block randomization, using blocks of four 

individuals. At the day of FMT, the independent physician provided the trial physician with 

the fecal material with the intended treatment from either the assigned donor or NAFLD 

individual. The study participants (e.g. vegan donors and NAFLD individuals) and all trial 

physicians (including all authors) were blinded for the treatment until completion of the 

trial.

Liver biopsy

Percutaneous liver biopsies were performed in the recruiting center on the basis of clinical 

indications according to local standard procedure. All histologic specimens were scored by a 

liver pathologist (J.V.) who was blinded to any other results. The NASH-CRN classification 

(20) was assessed with use of hematoxylin-eosin stained slides for steatosis, inflammation 

and ballooning and with a Sirius red stained slide for evaluation of fibrosis. The NAFLD 

activity score (NAS) is the unweighted sum of steatosis (0-3), lobular inflammation (0-3) 

and hepatocellular ballooning (0-2). RNA for RNA sequencing analysis was isolated using 

an RNA isolation protocol optimized for (very small) percutaneous liver biopsies directly 

frozen in liquid nitrogen after biopsy and stored at -80˚C (see supplemental data). RNA 

sequencing raw data (raw reads) were processed using Kallisto (v0.43.1) (21) to obtain gene 

counts. The R package tximport (22) and as a first step, the sequencing reads must be used as 

the basis for abundance quantification of transcriptomic features of interest, such as genes or 

transcripts. Several different quantification approaches have been proposed, ranging from 

simple counting of reads that overlap given genomic regions to more complex estimation 

of underlying transcript abundances. In this paper, we show that gene-level abundance 

estimates and statistical inference offer advantages over transcript-level analyses, in terms of 

performance and interpretability. We also illustrate that while the presence of differential 

isoform usage can lead to inflated false discovery rates in differential expression analyses on 

simple count matrices and transcript-level abundance estimates improve the performance in 

simulated data, the difference is relatively minor in several real data sets. Finally, we provide 

an R package ( tximport was used to import gene counts into R (v3.4), where differential gene 

expression analysis was performed using DESeq2 (v1.16)(23). Differential gene expression 

was aimed at finding genes that showed a statistically significant interaction between the 

change in gene expression in time (between baseline and 24 weeks) and treatment allocation 

(autologous FMT versus allogenic vegan donor FMT). P-values for the interaction effects 

were adjusted using the Benjamin-Hochberg correction. Genes with adjusted p-values < 0.1 

were considered significant (i.e. their expression levels changed differently in subjects that 

received autologous FMT compared to subjects that received allogenic vegan donor FMT).
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Biochemistry

Glucose and C-reactive protein (CRP, Roche, Switzerland) were determined in fasted plasma 

samples. Also, alkaline phosphatase, gamma-GT, AST, ALT, total cholesterol, high density 

(HDLc) and low density (LDLc) cholesterol and triglycerides (TG) were determined in EDTA-

containing fasted plasma samples using commercially available assays (Randox, Antrim, UK 

and DiaSys, Germany). All lipid analyses were performed using a Selectra autoanalyzer 

(Sopachem, The Netherlands). Low-density lipoprotein cholesterol (LDLC) was calculated 

using the Friedewald formula.

Plasma metabolites

Fasting plasma metabolites were measured at the University of Copenhagen. Plasma 

samples were centrifuged at 2000 x g for 15 min at 4oC from full blood mixed with EDTA, 

then stored at -80oC. The order of the samples was randomized within the analytical batch. 

Sample processing was performed at 4oC using an ice bath. The plasma samples were thawed 

on ice and subjected to protein precipitation using a 96-well SiroccoTM plate. 180 µl of solvent 

B (acetonitrile : methanol (50:50, v/v)) was added to plasma samples (40 µl) and spiked with 

an internal standard mixture of 7 compounds (10 µl) after which analyses were performed 

as previously described (24) (also see supplemental methods and Supplemental Table 1).

Fecal microbiota profiling

Fecal samples of donors and participants were taken at 0 and 24 weeks after initiation of 

study and analyzed for microbiota composition using 16S rRNA amplicon sequencing 

(25)”type”:”article-journal”,”volume”:”70”},”uris”:[“http://www.mendeley.com/

documents/?uuid=12b779a4-f6bd-4635-bbc4-777bbc553114”,”http://www.mendeley.com/

documents/?uuid=d7943a9f-f3c4-4f77-9338-4259dd9ac970”]}],”mendeley”:{“formattedCi

tation”:”(25. DNA extraction from fecal samples was performed using the repeated bead 

beating protocol as previously described (26). At baseline and 24 weeks, NAFLD individuals 

underwent gastro-duodenoscopy and uodenal biopsies were immediately collected in sterile 

tubes, snap-frozen in liquid nitrogen and stored at -80°C. DNA was isolated from duodenal 

biopsies using a slightly modified protocol and 16S sequencing was performed for small 

intestinal microbiota profiling as described previously (27) (also see supplemental methods)

Power and study endpoints

Based on previous intervention studies in NAFLD, for instance the study of Belfort et al. 

(28) in which treatment with pioglitazone in individuals with NASH led to a 54% reduction 

of steatosis compared to placebo, we performed a power analysis to calculate the number 

of participants necessary to detect a 25% reduction in our primary outcome parameter, 
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reversal of steatosis and necro-inflammation upon donor FMT. For a desired alpha of 0.05 

and a desired power of 0.8, a sample size of 27 per arm was needed. Hence, 54 individuals 

were needed in total. A data safety and monitoring board (DSMB) was appointed for safety 

monitoring. The primary endpoint parameters of this study were histological change in 

NAFLD parameters including steatosis and hepatic necro-inflammatory activity (ballooning 

and lobular inflammation following NASH-CRN classification), without worsening of 

fibrosis in lean vegan donor versus autologous FMT treatment. To assess these outcome 

parameters, histopathological evaluation of a percutaneously obtained liver biopsy sample 

was performed at baseline and after 24 weeks (8 weeks after the third FMT) in combination 

with changes in hepatic gene expression (using RNA sequencing in the liver biopsy taken 

at baseline and after 24 weeks). Secondary outcome parameters comprised the change in 

intestinal microbiota composition between baseline and after 24 weeks. Other secondary 

outcome parameters included change in fasting plasma targeted metabolites, , plasma 

markers of fatty liver disease (ALT/AST) and inflammation (monocytes) at these time points.

Machine learning and follow-up statistical analyses

For baseline differences between groups, unpaired Student’s t-test or the Mann-Whitney U 

tests were used dependent on the distribution of the data. Accordingly, data are expressed 

as mean ± the standard deviation or the median with interquartile range. The change in 

hepatic steatosis and hepatic necro-inflammatory activity (lobular inflammation and 

ballooning) following lean vegan donor FMT versus autologous FMT was tested using a 

Mann-Whitney U-test. Changes in plasma biochemistry derived outcome parameters 

between both treatment groups were tested using a student T-test or Mann-Whitney U-test, 

respectively for normal and non-parametrically distributed data. For correlation analyses, 

Spearman’s rank test was used (as all parameters were non-parametric). A p-value < 0.05 was 

considered statistically significant. An Elastic Net machine learning classification algorithm 

in combination with a stability selection procedure (29) was used to identify biological 

features that changed differently between the two treatment groups as previously published 

(19) (also see supplemental data). 

RESULTS

Between 2014 and 2017, 26 treatment-naïve obese individuals with metabolic syndrome 

and hepatic steatosis on ultrasound were included. In total, four of the included NAFLD 

individuals were excluded before randomization due to the diagnosis of new onset T2DM 

(n=3) or loss-of follow-up (n=1). After randomization, one individual had to be excluded due 
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to the diagnosis new onset T2DM. Due to slow recruitment, after 21 subjects were enrolled 

and completed the study, the trial was prematurely stopped. Baseline characteristics of the 

participants are shown in Table 1. Daily dietary intake, divided in four macronutrients 

and caloric content, did not significantly differ between the allogenic and autologous FMT 

recipients and remained stable over the course of the study (data not shown). Feces from 

four healthy lean vegan donors (two donated three times and five times respectively, the 

other two donated only once) were used for allogenic gut microbiota transfer to NAFLD 

individuals. The same donor was used for the three consecutive FMT’s in each participant. 

There were no (serious) adverse events or adverse changes in plasma biochemistry and none 

of the study subjects used any medication (including no antibiotics) during the study. 

Autologous FMT (n=11) Allogenic FMT (n=10)

Age, y 48.5 ± 10.2 51.2 ± 6.6

Male gender, % 96 86

BMI, kg/m2 31.5 ± 4.8 31.7 ± 3.5

Glucose, mmol/L 5.7 ± 0.5 5.8 ± 0.7

AST, IU/L 29.0 [26.5-33.0] 39.5 [37.0-49.5]

ALT, IU/L 48.1 ± 16.5 70.8 ± 23.4

ALP, IU/L 83.0 [54.0-120.5] 71.0 [58.8-76.8]

g-GT, IU/L 41.1 ± 21.4 45.1 ± 19.3

Cholesterol, mmol/L 5.8 ± 1.6 6.0 ± 0.8

HDL-C, mmol/L 1.2 [1.0-1.4] 1.2 [1.0-1.4]

LDL-C, mmol/L 4.0 ± 1.3 4.2 ± 0.7

Triglycerides, mmol/L 1.2 ± 0.6 1.4 ± 0.5

CRP, mg/mL 2.2 [0.8-4.3] 1.5 [0.9-3.2]

Leucocytes, 109/L 6.8 ± 1.8 5.8 ± 1.3

Monocytes, 109/L 0.56 ± 0.18 0.54 ± 0.18

Calories, kcal/day 1811.2 ± 376.3 2024.7 ± 499.3

Fat, g/day 68.6 ± 19.0 80.1 ± 19.6

Carbohydrates, g/day 191.8 ± 53.9 203.7 ± 64.3

Protein, g/day 82.9 ± 19.0 91.2 ± 27.1

Fiber, g/day 22.5 ± 6.2 18.4 ± 8.2

Steatosis, % 35.0 ± 20.7 34.1 ± 20.4

NAS score 2.45 ± 0.82 3.0 ± 0.94

Necroinflam. score 0.91 ± 0.30 1.4 ± 0.52

Fibrosis score 0.91 ± 0.70 1.2 ± 0.92

Table 1. Baseline characteristics of 21 individuals with biopsy-proven NAFLD. Data is expressed as mean ± standard 
deviation or median [interquartile range], depending on the distribution of the data. BMI: body mass index, ALP: alkaline 
phosphatase, g-GT: gamma glutamyl transferase, ALT: alanine aminotransferase, AST aspartate aminotransferase, 
HDLc: high-density lipoprotein cholesterol, LDLc: low-density lipoprotein cholesterol, CRP: C-reactive protein, NAS 
score: NAFLD activity score.
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Primary outcomes

Liver histology and gene expression alterations after FMT 

Analyzing paired liver biopsies for histology (Supplemental table 3), we found no 

statistically significant change in the overall NAFLD activity score (NAS) (Figure 1a), and 

steatosis grade (Figure 1d). We however did observe a trend towards improvement of the 

necro-inflammation score (comprising both lobular inflammation and hepatocellular 

ballooning) (Figure 1b) upon allogenic FMT approaching significance. Finally, fibrosis 

scores (Figure 1c) did not change over the period of 24 weeks in both groups. 
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while remaining unchanged in the autologous treated 
individuals (mean delta 0.7 ± 15.4, P = 0.883) (Table 2). 
Furthermore, ALT levels tended to decrease more in 

the allogenic-treated group (mean delta −14.3  ±  24.6, 
P = 0.099) compared with the autologous treated group 
(mean delta −3.1 ± 20.2, P = 0.639).

Fig. 1. Changes in liver histology and gene expression. Error bars show SEMs. (A) NAS score. (B) Necro-inflammation score.  
(C) Fibrosis score. (D) Steatosis score. (E) Liver gene expression. HIST2H2AA3, Histone H2A type 3-A; RASGRF2, Ras Protein 
Specific Guanine Nucleotide Releasing Factor 2; SDS, Serine Dehydratase; RECQL5, RecQ Like Helicase 5; ARHGAP18, Rho GTPase 
Activating Protein 18; GLB1L, Galactosidase Beta 1 Like protein; HSPA12A, Heat Shock Protein Family A (Hsp70) Member 12A; 
SF3B3, Splicing Factor 3b Subunit 3.
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Figure 1. Changes in liver histology and gene expression. Error bars show standard errors of the means. a) NAFLD 
activity score (NAS-score); b) Necro-inflammation score; c) Fibrosis score; d) Steatosis score; e) Liver gene expression.
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In line, there were significant changes in gene expression in liver biopsies in the allogenic 

FMT group, compared to the autologous FMT (Figure 1e). For example, ARHGAP18 

expression, a protective gene that maintains endothelial cell alignment, increased upon 

allogenic FMT (p = 0.002). Furthermore, serine dehydratase (SDS) expression was significantly 

increased upon allogenic FMT (p = 0.049). SDS catalyzes the conversion of serine into 

pyruvate and ammonia and is found to be decreased during liver damage (30). In contrast, 

hepatic expression of RECQL5 (p = 0.014), a gene that is implicated in DNA double strand 

break (DSB) repair (31) and is thus linked to the DNA damage response signaling pathway 

(32) and SF3B3 (splicing factor 3b subunit 3) (p = 0.004), a gene promoting cell proliferation 

and known to be an early stage driver in the development of liver cancer (33,34) both 

increased upon autologous FMT. 

Secondary outcomes

Biochemistry results 24 weeks after FMT

Upon FMT, the gamma-GT levels in the allogenic FMT group decreased (mean delta -6.4 ± 

8.3, p = 0.038), while it remained unchanged in the autologous treated individuals (mean 

delta 0.7 ± 15.4, p = 0.883) (Table 2). Furthermore, ALT levels tended to decrease more in 

the allogenic treated group (mean delta -14.3 ± 24.6, p = 0.099) compared to the autologous 

treated group (mean delta -3.1 ± 20.2, p = 0.639). 

Autologous FMT – 24 weeks P Value Allogenic FMT – 24 weeks P Value

Glucose, mmol/L 5.6 ± 0.8 0.241 5.8 ± 0.6 0.945

AST, IU/L 31.5 [18.8-41.3] 0.553 36.0 [29.0-42] 0.116

ALT, IU/L 46.6 ± 23.3 0.639 56.5 ± 19.2 0.099

ALP, IU/L 86.0 [66.8-112] 0.611 70.0 [57.3-83] 0.358

g-GT, IU/L 40.7 ± 28.5 0.883 38.7 ± 21.2 0.038

Cholesterol, mmol/L 5.5 ± 1.5 0.055 5.8 ± 0.8 0.139

HDL-C, mmol/L 1.2 [0.9-1.3] 0.280 1.1 [1.0-1.2] 0.308

LDL-C, mmol/L 3.7 ± 1.2 0.099 4.0 ± 0.8 0.378

Triglycerides, mmol/L 1.2 ± 0.6 0.796 1.4 ± 0.4 0.603

 CRP, mg/mL 3.5 [0.6-6.3] 0.721 1.5 [0.7-4.4] 0.678

Leucocytes, 109/L 6.6 ± 1.7 0.643 6.0 ± 1.2 0.643

Monocytes, 109/L 0.53 ± 0.18 0.425 0.59 ± 0.25 0.460

Steatosis, % 30.5 ± 25.5 0.316 36.5 ± 25.3 0.527

NAS score 2.64 ± 1.36 0.553 2.8 ± 1.23 0.343

Necroinflam. Score 1.09 ± 0.54 0.341 1.10 ± 0.57 0.081

Fibrosis score 1.18 ± 0.75 0.391 1.60 ± 0.70 0.104

Table 2. Metabolic and histologic parameters after FMT treatment. Data is expressed as mean ± standard deviation 
or median [interquartile range], depending on the distribution of the data. BMI: body mass index, ALP: alkaline 
phosphatase, g-GT: gamma glutamyl transferase, ALT: alanine aminotransferase, AST aspartate aminotransferase, 
HDLc: high density lipoprotein cholesterol, LDLc: low density lipoprotein cholesterol, CRP: C-reactive protein, NAS 
score: NAFLD activity score.
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FMT alters gut microbial composition 

There was no difference in fecal microbiota alpha diversity (Shannon index) at baseline 

between NAFLD individuals and allogenic FMT donors (Shannon index: NAFLD 4.7 ± 0.4 

vs donor 4.8 ± 0.1, ns.). Redundancy analysis showed a trend towards distinction in fecal 

microbiota composition between donors and NAFLD subjects (Supplemental figure 2) 

together with a significant difference of fiber intake in vegan donors (Supplemental table 4). 

Amongst others, bacteria related to Prevotella were associated with a plant-based diet, whereas 

several groups belonging to the Lachnospiraceae were related to the NAFLD individuals. 

Upon FMT, no significant changes in fecal microbiota diversity (Shannon index p = 0.84 

for the allogenic FMT; p = 0.32 for the autologous FMT) were observed between baseline 

and week 24, however a change in gut microbiota composition, although not significant, 

was found upon allogenic FMT (Supplemental figure 2). Compared to autologous FMT, 

increases in fecal microbiota abundance upon allogenic FMT were seen in bacteria related 

to Ruminococcus, Eubacterium hallii, Faecalibacterium and Prevotella copri (Figure 2a). In 

contrast, autologous FMT resulted in minor shifts in microbiota composition, and was 

primarily associated with changes in the abundance of bacteria related to Lachnospiraceae. 

There was no difference in duodenal microbiota diversity and composition before and after 

24 weeks in either FMT group (data not shown). 
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Fmt alters gut microbial 
Composition

There was no difference in fecal microbiota alpha 
diversity (Shannon index) at baseline between individu-
als with NAFLD and allogenic FMT donors (Shannon 
index: NAFLD 4.7 ± 0.4 vs. donor 4.8 ± 0.1, not sig-
nificant). Redundancy analysis showed a trend toward 
distinction in fecal microbiota composition between 
donors and subjects with NAFLD (Supporting Fig. 
S2), together with a significant difference of fiber intake 
in vegan donors (Supporting Table S4). Among oth-
ers, bacteria related to Prevotella were associated with 

a plant-based diet, whereas several groups belonging 
to the Lachnospiraceae were related to the individuals 
with NAFLD. Following FMT, no significant changes 
in fecal microbiota diversity (Shannon index P = 0.84 
for the allogenic FMT; P  =  0.32 for the autologous 
FMT) were observed between baseline and week 24; 
however, a change in gut microbiota composition, 
although not significant, was found following allogenic 
FMT (Supporting Fig. S2). Compared with autol-
ogous FMT, increases in fecal microbiota abundance 
following allogenic FMT were seen in bacteria related 
to Ruminococcus, Eubacterium hallii, Faecalibacterium, 
and Prevotella copri (Fig. 2A). In contrast, autologous 

taBle 2. metaBoliC anD HistologiC paRameteRs aFteR Fmt tReatment

Autologous FMT, 24 Weeks P Value Allogenic FMT, 24 Weeks P Value

Glucose, mmol/L 5.6 ± 0.8 0.241 5.8 ± 0.6 0.945

AST, IU/L 31.5 [18.8-41.3] 0.553 36.0 [29.0-42] 0.116

ALT, IU/L 46.6 ± 23.3 0.639 56.5 ± 19.2 0.099

ALP, IU/L 86.0 [66.8-112] 0.611 70.0 [57.3-83] 0.358

GGT, IU/L 40.7 ± 28.5 0.883 38.7 ± 21.2 0.038

Cholesterol, mmol/L 5.5 ± 1.5 0.055 5.8 ± 0.8 0.139

HDL-C, mmol/L 1.2 [0.9-1.3] 0.280 1.1 [1.0-1.2] 0.308

LDL-C, mmol/L 3.7 ± 1.2 0.099 4.0 ± 0.8 0.378

Triglycerides, mmol/L 1.2 ± 0.6 0.796 1.4 ± 0.4 0.603

CRP, mg/mL 3.5 [0.6-6.3] 0.721 1.5 [0.7-4.4] 0.678

Leucocytes, 109/L 6.6 ± 1.7 0.643 6.0 ± 1.2 0.643

Monocytes, 109/L 0.53 ± 0.18 0.425 0.59 ± 0.25 0.460

Steatosis, % 30.5 ± 25.5 0.316 36.5 ± 25.3 0.527

NAS score 2.64 ± 1.36 0.553 2.8 ± 1.23 0.343

Necro-inflam. score 1.09 ± 0.54 0.341 1.10 ± 0.57 0.081

Fibrosis score 1.18 ± 0.75 0.391 1.60 ± 0.70 0.104

Note: Data are expressed as mean ± SD or median [interquartile range], depending on the distribution of the data.

Fig. 2. Radar plots of significantly altered biological features following either autologous (red) or allogenic (blue) FMT. (A) Fecal 
microbial strains. (B) Plasma metabolites.
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Figure 2. Radar plots of significantly altered biological features upon either autologous (red) or allogenic (blue) FMT; 
a) Fecal microbial strains; b) Plasma metabolites.

 

FMT alters plasma metabolite composition 

Fasting plasma metabolites of both the autologous and the allogenic treated group 

significantly changed between baseline and 24 weeks after FMT (Figure 2b). Both plasma 

levels of the amino acids isoleucine (p = 0.039) and phenylacetylglutamine (p = 0.027) 

increased in plasma upon allogenic FMT (supplemental Table 2). In contrast, plasma 

phenyllactic acid, which is an adverse microbial product of aromatic amino acid metabolism, 
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was increased upon autologous FMT (p = 0.008). Also, plasma levels of desaminotyrosine, 

a microbial metabolite known to trigger type I interferon signaling (IFN1) were increased 

upon autologous FMT (p = 0.008). Finally, we found correlations between liver gene 

expression, fecal gut microbiota composition and plasma metabolite levels upon either 

autologous or allogenic FMT, as given in Figure 3 and further described in the discussion. 
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FMT resulted in minor shifts in microbiota composi-
tion, and was primarily associated with changes in the 
abundance of bacteria related to Lachnospiraceae. There 
was no difference in duodenal microbiota diversity and 
composition before and after 24 weeks in either FMT 
group (data not shown).

Fmt alters plasma metabolite 
Composition

Fasting plasma metabolites of both the autolo-
gous and the allogenic treated group significantly 
changed between baseline and 24 weeks after FMT 
(Fig. 2B). Both plasma levels of the amino acids 
isoleucine (P  =  0.039) and phenylacetylglutamine 
(P = 0.027) increased in plasma following allogenic 
FMT (Supporting Table S2). In contrast, plasma 
phenyllactic acid, which is an adverse microbial 
product of aromatic amino acid metabolism, was 

increased following autologous FMT (P  =  0.008). 
Also, plasma levels of desaminotyrosine, a microbial 
metabolite known to trigger type I interferon sig-
naling (IFN1) were increased following autologous 
FMT (P  =  0.008). Finally, we found correlations 
among liver gene expression, fecal gut microbiota 
composition, and plasma metabolite levels following 
either autologous or allogenic FMT, as given in Fig. 3  
and further described in the Discussion.

Discussion
In this study we show the effect of lean vegan 

donor (allogenic) versus own (autologous) FMT on 
obese treatment-naïve individuals with metabolic 
syndrome and biopsy-proven NAFLD, in whom 
NAFLD is typically observed. Although the present 
study was underpowered, allogenic FMT from vegan 
donors on a plant-based, low-animal-protein diet 
decreased the necro-inflammation score in paired liver 
biopsies. In addition, allogenic FMT showed an effect 
on intestinal microbiota composition, which was asso-
ciated with both beneficial changes in plasma metab-
olites and the expression of liver genes involved in 
inflammation and lipid metabolism after donor FMT. 
Using differences in histology data in both treatment 
groups between baseline and 24  weeks after treat-
ment, we calculated that 21 participants per treatment 
arm would have been needed to detect a significant 
beneficial effect of allogenic FMT in the necro- 
inflammation score, whereas 120 participants per 
group are needed to detect a significant difference 
on overall NAS. Therefore, our study could serve as 
a blueprint for sample sizes and specific FMT donor 
selection of future microbiota-based intervention tri-
als in individuals with liver biopsy-proven NAFLD.

inteRaCtions BetWeen 
CHanges in miCRoBiota 
anD liVeR genes/Histology 
FolloWing Fmt

As donor metabolic characteristics can be trans-
ferred by FMT,(18) in this study we opted for FMT 
donors on a plant-based low-animal-protein diet, 
known to have less NAFLD.(11) In line with a 
recent paper that assessed the effect of donor FMT 
on magnetic resonance spectroscopy–derived proton 

Fig. 3. Correlation plot showing significant correlations 
among liver genes, fecal bacteria, and plasma metabolite levels 
(Spearman’s rho); blue, increased in allogenic FMT/decreased in 
autologous FMT; red, increased in autologous FMT/decreased in 
allogenic FMT. Liver histology scores are included in black font. 
HIST2H2AA3, Histone H2A type 3-A; RASGRF2, Ras Protein 
Specific Guanine Nucleotide Releasing Factor 2; SDS, Serine 
Dehydratase; RECQL5, RecQ Like Helicase 5; ARHGAP18, 
Rho GTPase Activating Protein 18; GLB1L, Galactosidase Beta 
1 Like protein; HSPA12A, Heat Shock Protein Family A (Hsp70) 
Member 12A; SF3B3, Splicing Factor 3b Subunit 3.
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Figure 3. Correlation plot showing significant correlations between liver genes, fecal bacteria and plasma metabolite 
levels (Spearman’s rho). Blue: increased in allogenic FMT/decreased in autologous FMT; red: increased in autologous 
FMT/decreased in allogenic FMT. Liver histology scores are included in black font. 
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DISCUSSION

We here show the effect of lean vegan donor (allogenic) versus own (autologous) fecal 

microbiota transplantation (FMT) on obese treatment naïve individuals with metabolic 

syndrome and biopsy-proven NAFLD, which are the subjects in whom one typically observes 

NAFLD. Although the present study was underpowered, allogenic FMT from vegan donors 

on a plant-based, low animal protein diet decreased the necro-inflammation score in 

paired liver biopsies. In addition, allogenic FMT showed an effect on intestinal microbiota 

composition, which was associated with both beneficial changes in plasma metabolites and 

the expression of liver genes involved in inflammation and lipid metabolism after donor 

FMT. Using differences in histology data in both treatment groups between baseline and 24 

weeks after treatment, we calculated that 21 participants per treatment arm would have been 

needed to detect a significant beneficial effect of allogenic FMT in the necro-inflammation 

score, whereas 120 participants per group are needed to detect a significant difference on 

overall NAFLD activity score. Therefore, our study could serve as a blueprint for sample 

sizes and specific FMT donor selection of future microbiota-based intervention trials in liver 

biopsy-proven NAFLD individuals.

Interactions between changes in microbiota and liver genes/ histology upon FMT

As donor metabolic characteristics can be transferred by FMT (18) in this study we opted 

for FMT donors on a plant-based low animal protein diet, known to have less NAFLD 

(11). In line with a recent paper, assessing the effect of donor FMT on MR-spectroscopy-

derived proton density fat fraction signal in NAFLD, we did not find changes in steatosis 

grade upon allogenic FMT as determined by liver biopsy (35), however we did find that 

liver necro-inflammation score improved, which was aligned by significant changes in 

several hepatic genes (Figure 1). In this regard, the ARHGAP18 gene is a protective gene 

that maintains endothelial cell alignment and loss of ARHGAP18 may predispose to 

atherosclerosis development (36). Liver endothelial cells play a pivotal role in maintaining 

liver homeostasis and endothelial cell dysfunction (i.e. loss of fenestrations) occurs early 

in the pathogenesis of NAFLD, promoting steatosis, inflammation and liver fibrosis (37). 

Moreover, a mutual relation between gut microbiota composition and liver endothelial 

cell fenestration has been described (38)there is a loss of fenestrations. LSECs are uniquely 

exposed to gut-derived dietary and microbial substrates delivered by the portal circulation 

to the liver. Here we studied the effect of 25 diets varying in content of macronutrients and 

energy on LSEC fenestrations using the Geometric Framework method in a large cohort of 

mice aged 15 mo. Macronutrient distribution rather than total food or energy intake was 

associated with changes in fenestrations. Porosity and frequency were inversely associated 
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with dietary fat intake, while fenestration diameter was inversely associated with protein 

or carbohydrate intake. Fenestrations were also linked to diet-induced changes in gut 

microbiome, with increased fenestrations associated with higher abundance of Firmicutes 

and reduced abundance of Bacteroidetes. Diet-induced changes in levels of several fatty acids 

(C16:0, C19:0, and C20:4, with a positive relation between the abundance of Firmicutes and 

endothelial integrity. Upon allogenic FMT, ARHGAP18 was positively correlated with E. 

hallii, suggesting a protective role of this bacterial species in maintaining liver endothelial 

cell function. Moreover, ARHGAP18 was inversely correlated with plasma desaminotyrosine 

levels, a microbial metabolite that is known to trigger type I interferon signaling (IFN1) (39). 

Recently it was shown that a high-fat diet induces an IFN1 response, which via metabolically 

activated intrahepatic T cell pathogenicity, results in NAFLD progression (40). 

Finally, we observed that after allogenic FMT, hepatic serine dehydratase (SDS) expression 

was significantly increased and showed an inverse relation with necro-inflammation and 

steatosis in liver histology (Figure 3). In human liver biopsies, SDS resides predominantly in 

the perivenous region of the hepatocyte (41) and expression decreased during liver damage 

(30). SDS catalyzes the conversion of serine into pyruvate and ammonia and previous studies 

have linked these metabolites to specific microbiota composition, like P. copri abundance 

(42). With regard to the latter, in our study NAS scores were inversely related with P. copri, 

which is in line with data reported by Boursier et al (10), but conflict with other publications 

that have linked an increased abundance of this species to NAFLD (43). Hepatocyte injury 

and inflammatory cell infiltration in the perivenous (efferent) areas of the liver are a 

hallmark of NASH and this area is involved in glycolysis, lipogenesis, ureagenesis from 

ammonia, and biotransformation of plasma compounds, including metabolites (44). In 

line, plasma phenyllactic acid levels, which is a microbial product of aromatic amino acid 

metabolism and already linked to NAFLD in humans (45), were inversely related to hepatic 

SDS expression upon allogenic FMT. As phenyllactic acid is produced by lactic acid bacteria, 

the observed inverse relation between phenyllactic acid and E. hallii is interesting to note, as 

this bacterial species can use lactic acid for butyrate production and has beneficial metabolic 

effects in humans (46). Taken together, our data point towards a beneficial role of vegan 

donor FMT on prevention of NAFLD by reducing specific gut microbiota derived plasma 

metabolites that are toxic to the liver.

Interactions between changes in plasma metabolites and liver genes/ histology upon FMT

The linear correlation of the SDS gene with isoleucine and phenylacetylglutamine (both 

increased in plasma upon allogenic FMT) is of interest, as a recent paper using genome-scale 

models indicated that individuals with NAFLD have altered metabolism of these amino 

acids (47). Alterations in circulating amino acids and branched chain amino acids are often 
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explained to be the result of impaired amino acid metabolism linked to insulin resistance, 

especially in the muscle (48). Only recently it has been revealed that the gut microbiome 

is associated with plasma metabolite alterations of amino acids and branched chain amino 

acids(42). Our results strengthen the observation that the gut microbiome contributes to 

plasma amino acids and branched chain amino acid composition. The inverse relation 

between plasma phenylalanine with the fibrosis score corroborates with older literature 

that phenylalanine metabolism is decreased in individuals with hepatopathy, with plasma 

phenylalanine values decreasing with relatively early liver fibrosis (49). 

However, only recently it was shown that metabolic pathways involved in the biosynthesis 

of phenylalanine are increased in the gut microbiome of individuals with NAFLD (9)we 

combine shotgun sequencing of fecal metagenomes with molecular phenomics (hepatic 

transcriptome and plasma and urine metabolomes. Despite the enhanced capacity of the gut 

microbiome to produce phenylalanine, plasma levels are dependent on the liver to catabolize 

this metabolite. Under normal circumstances and homeostasis, phenylalanine is converted 

in the liver to tyrosine and when the liver is not capable of metabolizing phenylalanine, 

phenyllactic acid and/or phenylacetylglutamine is produced, products that are negatively 

(phenylacetylglutamine) (9) we combine shotgun sequencing of fecal metagenomes with 

molecular phenomics (hepatic transcriptome and plasma and urine metabolomes or 

positively (phenyllactic acid) (45) associated with NAFLD according to recent findings. 

Although phenylalanine and downstream metabolites are highlighted in this study, it is 

most likely part of a much broader multifactorial process, only partly orchestrated by the 

gut microbiome. Thus, further research to prove causality of the gut microbiome in the 

development of NAFLD and NASH is warranted.

Study limitations

First, due to slow recruitment, our study was underpowered as we prematurely had to 

terminate our trial. Second, although we observed no significant differences in baseline 

liver histology (NAFL-NASH classifications) between autologous and allogenic FMT groups 

(Table 2), differences in baseline AST and ALT levels were observed. As participants were 

randomized this difference occurred by chance but could have influenced the outcome of 

our study. However, if this would be the case, this baseline difference would have led to an 

underestimation of the allogenic donor effect as all parameters were increased in that group. 

A third limitation is the use of untargeted analysis of hepatic gene expression, since the genes 

found to be differentially expressed are not classical markers of hepatic inflammation in 

NAFLD. Another limitation is our choice of FMT donors, as donor metabolic characteristics 

can be transferred by FMT (18). We therefore chose FMT donors consuming a plant-based 

low animal protein diet who are known to have less NAFLD (11). Yet, we did not compare 
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the effect of lean FMT from donors on either an omnivorous or plant-based diet. Finally, 

our population is relatively healthy and does not fully reflect the typical NAFLD individual 

who is often affected by multiple diseases besides NAFLD and thus treated with multiple 

medications. This is reflected by the relatively low necro-inflammation score found. However, 

numerous medications, not limited to proton pump inhibitors and antibiotics, dramatically 

alter gut microbial composition, even with inter-individual differences (50,51). In order to 

demonstrate causality between the gut microbiome and the development of NAFLD, the 

use of medication was an exclusion criterion for participation in this study. Bearing these 

limitations in mind, the question to what extent the gut microbiome plays a significant role 

in the development of NAFLD and especially in individuals with a more progressive form 

(i.e. higher necro-inflammation score) remains to be answered. 

In conclusion, our study shows that repetitive allogenic donor FMT in individuals with 

NAFLD affects hepatic gene expression and plasma metabolites involved in inflammation 

and lipid metabolism, highlighting the crosstalk between gut microbiota composition and 

NAFLD. Therefore, our work does not only further validate previous associative studies on 

the relation between NAFLD and gut microbiota, but also provides future sample sizes for 

microbiota-based intervention trials aimed at treating NAFLD in humans. 
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ABSTRACT 

Cellular senescence is a state of irreversible cell cycle arrest with important physiological 

functions. However, cellular senescence is also a hallmark of ageing and has been associated 

with several pathological conditions. A wide range of factors including genotoxic stress, 

mitogens and inflammatory cytokines can induce senescence. Phenotypically, senescent 

cells are characterized by short telomeres, an enlarged nuclear area and damaged genomic 

and mitochondrial DNA. Secretion of proinflammatory proteins, also known as senescence-

associated secretory phenotype, is a characteristic of senescent cells that is mainly held 

accountable for their disease-inducing properties. 

In the past decade, cellular senescence gained significant interest due to its putative role 

in the development of Non-Alcoholic Fatty Liver Disease (NAFLD) and the progression 

towards Non-Alcoholic Steatohepatitis (NASH). Until recently, it was suggested that 

hepatocyte cellular senescence is a mere consequence of the metabolic dysregulation and 

inflammatory phenomena in fatty liver disease. However, recent work in rodents has 

suggested that senescence may be a causal factor in NAFLD development. Although causality 

is yet to be established in humans, current evidence suggests that targeting of senescent cells 

has novel treatment potential for NAFLD

We aim to provide insight in the quality of the evidence supportive of a causal role of 

cellular senescence in the development of NAFLD in rodents and humans. We will elaborate 

on key cellular and molecular features of senescence and discuss the efficacy and safety of 

novel senolytic drugs to treat or even prevent this disease. 
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KEY POINTS

- Cellular senescence has been put forward as an augmenting factor in the development 

of NAFLD

- Senescent cells exhibit the following four hallmarks 1) prolonged and generally 

irreversible cell cycle arrest, 2) macromolecular damage, 3) secretory features and 4) 

deregulated metabolism which are all present in hepatocytes of both humans and 

rodents with NAFLD

- Data from studies in rodents and humans have shown that NAFLD is accompanied 

by an increase in senescent cells in the liver, and that the number of senescent cells is 

associated with disease progression

- Under normal circumstance, around 3-7% of hepatocytes are senescent and this 

percentage can increase to 50-100% in end stage liver disease

- Only a few markers reliably detect senescent cells at this moment in time and novel, 

non-invasive analyses tools are much needed to better understand the role of senescent 

cells in NAFLD

- Causal evidence of cellular senescence in the development of NAFLD originates from 

studies in rodents

- Targeting senescence has emerged as an attractive therapeutic target for NAFLD since 

senescence might be involved in the full spectrum of the disease 

- Senolytic drugs can be administrated intermittently, thereby minimizing potential 

toxic effects and increasing adherence in the individual often affected by multiple 

morbidities and thus treated with multiple medications
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INTRODUCTION 

Accompanying the obesity pandemic, Non-Alcoholic Fatty Liver Disease (NAFLD) is rapidly 

increasing with prevalence exceeding 80% in morbidly obese individuals1. NAFLD represents 

a spectrum of liver diseases with clinical and histological abnormalities ranging from Non-

Alcoholic Fatty Liver (NAFL) in case of isolated steatosis to Non-Alcoholic steatohepatitis 

(NASH), fibrotic NASH, advanced fibrosis, liver cirrhosis, and hepatocellular carcinoma 

(HCC)2. Accumulation of fat in hepatocytes has long been considered a relatively benign 

condition3,4. However, around 30% of individuals with NAFL progress to well-defined 

NASH with clinically significant fibrosis5–7. Advanced forms of NAFLD often require a 

liver transplantation and are the main cause of liver-related deaths8. The rapidly growing 

prevalence of NAFLD and lack of effective treatment options to tackle this potentially 

debilitating disease, will further increase the obesity-related burden on public health and 

economies. In order to develop appropriate, non-invasive diagnostic methods and treatment 

options, it is critical to deeply investigate the complex pathophysiology of NAFLD. 

The underlying mechanisms that govern hepatic lipid accumulation and the pre-

disposition to inflammation and fibrosis are complex and multifactorial. In the past 

decades, a multitude of disease-inducing factors have been unveiled resulting in the multi-

hit hypothesis, which integrates parallel and synergistically operating disease promoting 

factors2,9. Insulin resistance10, adipocyte dysfunction11, genetic variants12, bile acid meta-

bolism13, the gut microbiome14, and lipotoxicity15 are intensely studied players in NAFLD 

pathophysiology. These players are unified by the metabolic dysregulation accompanying 

obesity. Metabolic dysregulation refers to a complex range of metabolic alterations often 

induced by insulin resistance. Insulin resistance for example increases circulating FFA 

levels via reduced insulin-mediated suppression of lipolysis in the visceral adipose tissue 

compartment16. This increases hepatocellular influx of FFAs which may subsequently 

be stored as triglycerides. Increased fat storage in the liver is strongly linked to reduced 

hepatic insulin sensitivity and a consequential increase in hepatic gluconeogenesis, a major 

contributor to the hyperglycemia observed in diseases associated with NAFLD17. Moreover, 

de novo lipogenesis is increased due to the constant high levels of insulin, producing even 

more triglycerides and further enhancing hepatic gluconeogenesis18,19. Thus, hepatic insulin 

resistance in individuals with NAFLD is considered to be limited to the pathway involving 

suppression of hepatic glucose production and not the lipogenic pathway, which is referred 

to as selective insulin resistance20. Accumulating evidence obtained in the past decades 

revealed that this pathogenic paradox plays a pivotal role in the development of NAFLD21,22. 

Triglyceride accumulation is not hepatotoxic per se and could even represent a de-

fen sive mechanism to balance FFAs excess. However, high levels of free fatty acids (FFA), 
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free cholesterol and other lipid metabolites can lead to lipotoxicity15. Lipotoxicity causes 

mitochondrial dysfunction, resulting in the formation of reactive oxygen species, endo-

plasmatic reticulum (ER) stress, inflammation and cell damage15,23. As a consequence of 

the overload of FFAs, proinflammatory pathways such as c-jun terminal kinase (JNK) via 

apoptosis signal-regulating kinase 1 (ASK-1), and nuclear factor kappa-light-chain-enhancer 

of activated B-cells (NF-κB) are activated leading to hepatic inflammation and eventually 

fibrosis24,25. Expansion of subcutaneous and visceral adipose tissue compartments in obesity 

leads to hypoxia-induced hypersecretion of adipocytokines such as tumor necrosis factor 

(TNF)α, interleukin (IL) 6 and monocyte chemoattractant protein-1 (MCP-1/CCL2) by the 

adipocytes26,27. In addition, the inflammatory immune cells that accumulate in adipose tissue 

of individuals with obesity further perpetuates the low-grade inflammatory state26,27. These 

proinflammatory mediators are secreted into the circulation and contribute to activation 

of inflammatory signaling pathways in the liver, thereby contributing to development and 

progression of NAFLD26,27. 

Recently, cellular senescence has been put forward as an augmenting factor in the 

progression of NAFLD. Cellular senescence is one of the hallmarks of aging and is defined 

as a stable arrest of the cell cycle coupled to specific phenotypic changes28. Senescent cells  

secrete a collection of proteins called the senescence-associated secretory phenotype 

(SASP)29,30. This pro-inflammatory secretome has been suggested to drive age-related tissue 

dysfunction. Interestingly, metabolic dysregulation is thought to favor cellular senescence in 

several tissues involved in the pathogenesis of NAFLD such as the liver, pancreas and adipose 

tissue, further perpetuating metabolic dysregulation. The number of senescent cells is 

particularly increased in adipose tissues and liver of individuals with obesity31–33. Hepatocytic 

senescence has been shown to impair mitochondrial β-oxidation34. Concomitantly, SASP 

components are abundantly present in adipose tissues of individuals with obesity and 

may promote insulin resistance and inflammation32. Senescence has also been linked to 

the hyperinsulinemic state often observed in individuals with obesity. Senescence in 

pancreatic beta cells induces greater glucose uptake and mitochondrial activity, leading to 

increased insulin secretion35. This observation suggests that beta cell senescence enhances 

the insulin secreting capacity of the pancreas. This is in contrast to the general dogma 

that cellular senescence deteriorates cell and organ function36. Indeed, animal studies have 

shown that clearance of senescent cells regains tissue function including liver metabolism34. 

Targeting senescence might therefore be an interesting future therapeutic option to tackle 

cardiometabolic diseases, including NAFLD. 

In this review, we aim to provide insight in the quality of the evidence that supports a 

causal role of cellular senescence in the development of NAFLD in rodents and humans. We 

will elaborate on defining and discussing key cellular and molecular features of senescence. 
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Finally, we will discuss the effectiveness and safety of novel senolytic (senescence destroying) 

drugs to treat this disease. 

Hallmarks of cellular senescence 

Cellular senescence, originally described by Hayflick and Moorhead37, is a cellular state 

implicated in various physiological processes. Senescent cells exhibit the following four 

hallmarks 1) prolonged and generally irreversible cell cycle arrest, 2) macromolecular 

damage, 3) secretory features and 4) deregulated metabolism (Figure 1)38,39. Senescence is 

driven by a variety of factors such as genotoxic stress, mitogens and inflammatory cytokines. 

Also, metabolic factors including high glucose levels, ceramides, fatty acids, prostanoids and 

reactive oxygen species (ROS) are capable of inducing cellular senescence. Furthermore, 

signals originating from senescent cells have been shown to be able to transfer the senescent 

phenotype to neighboring cells40. In addition, senescence is also linked to the age-associated 

loss of the regenerative capacity in the liver after severe liver injury41,42. Following acute 

liver damage, senescence occurs in hepatocytes as well as nonparenchymal cells in the livers 

of adult but not young mice, leading to impaired regeneration. Recently, Ritschka et al.43 

showed that treatment with the senolytic drug agent ABT-737 (a BCL-2 family inhibitor) 

decreased the senescence markers in hepatocytes and reduced inflammation, which was 

associated with an improvement in liver function and regeneration following partial 

hepatectomy in adult mice. 

Cell cycle withdrawal and macromolecular damage

These senescence-inducing signals activate transcriptional cascades which culminates in the 

activation of the cyclin-dependent kinase inhibitors p21 or p16, resulting in an irreversible 

cell cycle arrest44. This will eventually lead to specific phenotypic changes such as telomere 

shortening, nuclear area enlargement and genomic and mitochondrial DNA damage45. There 

are two major mechanisms of cellular senescence; one is replicative senescence and the other 

is stress-induced premature44,46. Replicative senescence depends on telomere shortening 

or erosion, predominantly upon aging, whereas stress-induced premature senescence is 

telomere-independent and refers to intracellular or environmental stress factors leading 

to macromolecular damage (i.e. DNA damage, protein damage, lipid damage)44,46,47. Both 

mechanisms induce a complex multigenic pathway known as DNA damage response 

(DDR)48. DDR can inhibit the cell cycle progression and prevent the propagation of 

corrupted genetic information to neighboring cells48. Some factors involved in the DDR, 

such as the phosphorylation of histone H2AX (yH2AX), the associated proteins, including 

MDC1, 53BP1 and the activated form of the kinase ataxia telangiectasia mutated (ATM) 

accumulate at sites of DNA damage. The factors form cytologically detectable nuclear foci 
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and mark the individual sites of DNA damage and subsequently contribute to checkpoint 

enforcement and cell cycle arrest, until damage has been repaired. If DNA damage persists, 

the tumor suppressor p53 will be phosphorylated via activation of ATM and stimulates the 

expression of p21, an essential mediator of senescence-associated cell cycle arrest49. After 

the early activation of p21, p16 is activated and is also suggested to play a role in several 

types of senescence. P16 inhibits cyclin-dependent kinase-4 (CDK4) and cyclin-dependent 

kinase-6 (CDK6), thus maintaining the senescence phenotype50. Activation of either p21 or 

p16 results in the inhibition of retinoblastoma factor (Rb) phosphorylation, allowing it to 

bind to the E2F transcription factor which prevents cell division51. 

arres.43 This will eventually lead to specific phenotypic changes
such as telomere shortening, nuclear area enlargement and
genomic and mitochondrial DNA damag.44 There are 2 major
mechanisms of cellular senescence; one is replicative senescence
and the other is stress-induced premature senescenc.43,45

Replicative senescence depends on telomere shortening or
erosion, predominantly upon aging, whereas stress-induced
premature senescence is telomere-independent and refers to
intracellular or environmental stress factors leading to macro-
molecular damage (i.e. DNA damage, protein damage, lipid
damage).43,45,46 Both mechanisms induce a complex multigenic
pathway known as the DNA damage response (DDR).47 The DDR
can inhibit cell cycle progression and prevent the propagation of
corrupted genetic information to neighbouring cell.47 Some fac-
tors involved in the DDR, such as the phosphorylation of histone
H2AX (yH2AX) and its associated proteins, including MDC1,
53BP1 and the activated form of the kinase ataxia telangiectasia
mutated (ATM), accumulate at sites of DNA damage. These fac-
tors form cytologically detectable nuclear foci and mark the in-
dividual sites of DNA damage, which subsequently contribute to
checkpoint enforcement and cell cycle arrest, until damage has
been repaired. If DNA damage persists, the tumour suppressor
p53 will be phosphorylated, via activation of ATM, stimulating
the expression of p21, an essential mediator of senescence-
associated cell cycle arrest.48 After the early activation of p21,
p16 (which is also suggested to play a role in several types of
senescence) is activated. p16 inhibits cyclin-dependent kinase-4
(CDK4) and cyclin-dependent kinase-6 (CDK6), thus maintaining
the senescent phenotype.49 Activation of either p21 or p16 re-
sults in the inhibition of retinoblastoma factor (Rb) phosphory-
lation, allowing it to bind to the E2F transcription factor which
prevents cell division.50

Senescence-associated secretory phenotype
Another hallmark of senescence is the SAS28,29,39 This proin-
flammatory secretome is a hallmark of senescent cells and con-
tributes to tissue dysfunction in both an autocrine and paracrine
fashio.39 Interestingly, the SASP stimulates the immune system
to clear senescent cells but can also reinforce or even maintain
the senescent cell state.51–53 Furthermore, it has been suggested
that the SASP contributes to persistent chronic inflammation,
which is often observed in cardiometabolic diseases including
NASH, and can explain some of the deleterious pro-aging effects
of senescent cells.54,55 The SASP is regulated by various mecha-
nisms. For example, remodelling of enhancer regions of genes
results in changes in the phenotype of senescent cells and in-
duces qualitative and quantitative changes in their secretome. In
addition, transcription factors such as GATA4 (an upstream
regulator of NF-kB) and mammalian target of rapamycin (mTOR)
as well as p38MAPK signalling pathways have been strongly
implicated in the regulation of the SASP.56–58 Interestingly,
GATA4 has been reported to be involved in autophagy, which is a
highly regulated cellular programme involved in recycling of
intracellular proteins and damaged/non-functional organelles.59

GATA4 is degraded by p62-mediated selective autophagy under
normal circumstances. Interestingly, during senescence, this
regulation is suppressed, which may initiate and maintain the
SASP and thereby facilitate senescence.57 Recently, GATA6 has
been implicated in the induction of senescence. When GATA6
accumulation is not decreased by autophagy, the expression of
p53 and p16 is enhanced, while knocking down GATA6 reduces
the upregulation of p53 and p16, and thereby hepatic senes-
cence.60 In vitro data showed that the SASP is produced in a p16-
independent manner as a result of DDR-dependent and inde-
pendent signalling through p38MAPK and NF-kB. Whereas the
early SASP is dominated by growth factors such as transforming
growth factor-b (TGF)b which triggers senescence in an auto-
crine fashion,56,61 a switch towards a more pro-inflammatory
SASP is established through the activation of NOTCH1, where
secreted and membrane bound IL-1a acts in an autocrine fashion
to reinforce the production of IL-6 and IL-8.62,63

Dysregulated metabolism
Accumulating evidence suggests a bidirectional link between
cellular senescence and mitochondria.64 Senescent cells are
capable of deregulating metabolism by altering mitochondrial
function, dynamics and morphology. In the early stages of
senescence, deterioration of mitochondrial oxidative phosphor-
ylation increases production of ROS.65,66 ROS can maintain and
enhance senescence through feedback loops that replenish the
DDR.67,68 Of interest, mitochondrial DNA is highly vulnerable to
ROS due to its close proximity to the generation site, while
damage to mitochondrial DNA further impairs oxidative phos-
phorylation. Several DNA repair mechanisms exist within a cell
to restore DNA integrity. While these pathways have been
extensively studied in the nucleus, current knowledge on, and
evidence for, DNA repair pathways in the mitochondria are more
limited.69 Furthermore, mitochondrial ROS accelerates telomere
shortening and triggers senescence in a paracrine fashion68,70

In vitro data have shown that senescent cells induce consider-
able metabolic changes on the cellular level, related to mito-
chondrial metabolites (i.e. decrease in NAD+/NADH ratio and
tricarboxylic acid cycle metabolites68,71). Also, changes in mito-
chondrial dynamics such as biogenesis, fusion, fission and
mitophagy have been described in senescent cells.67,72

STOP

Cell cycle 
withdrawal Macromolecular 

damage

Deregulated 
Metabolism

Secretory 
phenotype

Senescence 
phenotype 

in NASH

Fig. 1. Senescent cells in general and in NASH exhibit 4 hallmarks. 1) pro-
longed and generally irreversible cell cycle arrest, 2) macromolecular damage,
3) secretory features and 4) deregulated metabolism. NASH, non-alcoholic
steatohepatitis.
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Figure 1. senescent cells in general and in NASH exhibit the following four hallmarks 1) prolonged and generally 
irreversible cell cycle arrest, 2) macromolecular damage, 3) secretory features and 4) deregulated metabolism. 

 

Senescence-associated secretory phenotype

Another hallmark of senescence is the SASP29,30,40. This proinflammatory secretome is a 

hallmark of senescent cells and contributes to tissue dysfunction in autocrine and paracrine 

fashion40. Interestingly, the SASP stimulates the immune system to clear senescent cells but 

can also reinforce or even maintain the senescent cell state52–54. Furthermore, it has been 

suggested that the SASP contributes to persistent chronic inflammation often found in 

cardiometabolic diseases including NASH and can explain some of the deleterious pro-

aging effects of senescent cells55,56. The SASP is regulated via various mechanisms. For 
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example, remodeling of enhancer regions of genes results in changes of the senescent cell 

phenotype and induces qualitative and quantitative changes in their secretome. In addition, 

transcription factors such as GATA4 (an upstream regulator of NF-kB) and mammalian 

target of rapamycin (mTOR) as well as p38MAPK signaling pathways have been strongly 

implicated in regulation of the SASP57–59. Interestingly, GATA4 has been reported to be 

involved in autophagy, which is a highly regulated cellular program involved in recycling of 

intracellular proteins and damaged/non-functional organelles60. GATA4 is degraded by p62-

mediated selective autophagy under normal circumstances. Interestingly, during senescence 

this regulation is suppressed and thus may initiate and maintains SASP facilitating 

senescence58. Recently, GATA6 has been suggested to be involved in the induction of 

senescence. When GATA6 accumulation is not decreased by autophagy, the expression of 

p53 and p16 is enhanced, while knocking down GATA6 reduces the upregulation of p53 

and p16, and thereby hepatic senescence61. In vitro data showed that the SASP is produced 

in a p16-independent manner as a result of DDR-dependent and independent signaling 

through p38MAPK and NF-kB. Whereas the early SASP is dominated by growth factors such 

as TGFbeta which triggers senescence in an autocrine fashion57,62, a switch towards a more 

pro-inflammatory SASP is established through the activation of NOTCH1, where secreted 

and membrane bound IL-1a acts in an autocrine fashion to reinforce the production of IL-6 

and IL-863,64. 

Dysregulated metabolism

Accumulating evidence suggests a bidirectional link between cellular senescence and mito-

chondria65. Senescent cells are capable of deregulating metabolism by altering mito chondrial 

function, dynamics and morphology. In the early stages of senescence, deterioration of 

mitochondrial oxidative phosphorylation increases production of ROS66,67. ROS can maintain 

and enhance senescence through feedback loops replenishing the DDR68,69. Of interest, 

mitochondrial DNA is highly vulnerable to ROS due to its close proximity to the generation 

site and damage to mitochondrial DNA further impairs oxidative phosphorylation. Several 

DNA repair mechanisms exist within a cell to restore DNA integrity and while these pathways 

have been extensively studied in the nucleus, the current knowledge and evidence for DNA 

repair pathways located in the mitochondria is more limited70. Furthermore, mitochondrial 

ROS accelerates telomere shortening and triggers senescence in a paracrine fashion69,71. In 

vitro data have shown that senescent cells induce considerable metabolic changes on the 

cellular level, related to mitochondrial metabolites (i.e. decrease in NAD+/NADH ratio and 

tricarboxylic acid (TCA) cycle metabolites69,72. Also, changes in mitochondrial dynamics 

such as biogenesis, fusion, fission and mitophagy have been described in senescent cells68,73. 

Interestingly, recently mitochondrial dysfunction was shown to induce a distinct type of 
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senescence termed MiDAS (mitochondrial dysfunction-associated senescence), as a result of 

a decreased NAD+/NADH ratio74. The authors showed that altered AMP/ATP and ADP/ATP 

ratios activate AMPK which may induce senescence by phosphorylating p53 or stabilizing 

p1674. 

The above-described hallmarks of cellular senescence are observed in hepatocytes of 

both humans and rodents with NAFLD. Nevertheless, it has been suggested that hepatocytic 

senescence is a mere consequence of the metabolic dysregulation and inflammatory 

phenomena observed in fatty liver disease instead of a causal player. This chicken-egg 

situation can be clarified in large, prospective studies, which will provide insight in the 

timeline of disease development linked to the presence of cellular senescence. A causal 

contribution (i.e., cellular senescence as driving factor for disease development) can only be 

substantiated from results of highly targeted intervention studies. To successfully identify, 

characterize and pharmacologically eliminate senescent cells, one of the major limitations 

of the field needs to be overcome: robust, cell-and pathway-specific biomarkers for cellular 

senescence should be developed. Driven by the non-specificity of many current senescence 

markers and the existence of distinct senescence programs, the scientific community has 

struggled to identify universal and unequivocal signatures characterizing the senescence 

state75. 

Markers and detection of cellular senescence

Development and optimization of sensitive and specific assays to track senescent cells are 

challenged by the complex and cell-specific senescence phenotype. Of importance, numerous 

non-senescent cells, especially proinflammatory cells such as macrophages, precancerous and 

cancer cells, share features with senescent cells and impair specificity of currently available 

assays76. Hence, only a few markers reliably detect senescent cells at this moment in time 

and novel (combined) analysis tools are urgently needed to better understand the role of 

senescent cells in NAFLD. 

The first tool to successfully identify senescent cells arose from observations that 

senescent cells display β-galactosidase enzymatic activity at pH 6, whereas more common 

β-galactosidase isoforms show peak enzymatic activity at pH 4–4.5. This is referred as 

senescence-associated beta-galactosidase (SA- β gal)77,78. Shortly thereafter, the cyclin-

dependent kinase inhibitor p16 that serves as a master regulator of cell cycle arrest, was 

discovered to play a role in senescence79. In the past decade, numerous other senescence 

markers such as increased cell size and intracellular protein content, accumulation of 

lipofuscin, increased expression of p21, epigenetic profiles and SASP factors have been 

identified and linked to distinct senescence pathways40,75. An overview of currently used 

markers of senescence is provided in Table 1. 
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Unfortunately, these markers have their limitations. For example, SA- β gal activity can 

be high in macrophages and even p16, which is considered to be one of the most specific 

senescence markers, is also expressed in certain non-senescent cells76,80. Moreover, p16 is not 

expressed by all senescent cells. To overcome these challenges, a multi-marker approach 

based on immunohistochemistry and quantitative polymerase chain reaction (qPCR) 

or transcriptomic analyses was proposed to identify senescent cells75. Cells would first be 

screened for SA- β gal or lipofuscin staining. Initial senescence leads would then be verified by 

additional markers such as p16 or p21 and further specified into specific types of senescence 

by characterizing SASP or DDR (Figure 2)75. 

senescent cells, senescence-specific micro-RNAs or epigenetic
profiles are currently being evaluated as novel composite assays
to detect senescence.82 Of interest, recently, Saif et al.83 were able
to non-invasively measure the accumulation of lipofuscin in the
liver using near infrared and shortwave infrared auto-
fluorescence. This technique might serve as a diagnostic medical
tool or could be used in clinical trials targeting senescence in the
liver. Several ongoing studies are aiming to discover novel
markers using “omics” techniques to quantify various macro-
molecules, even at the single cell level (to account for intra-
population variability).74

Insights obtained from studies in rodents on the role
of senescence in NAFLD
Hepatocytic senescence can induce remarkable changes in tissue
homeostasis and the hepatic microenvironment. Under normal

circumstances, hepatocytes are considered to be reversed post-
mitotic cells that preserve their proliferating potential. Yet,
natural aging correlates with loss of proliferating potential, func-
tionality and thus regenerative capacity of the hepatocyte.84 Of
interest, cellular senescence is considered one of the hallmarks of
aging27 and indeed aging itself is a major risk factor for NAFLD
development and progression.43 Increased oxidative stress and
age-related mitochondrial dysfunction have been shown to
contribute to NAFLD development in old mice fed a high-fat diet
(HFD).85 Indeed when young and old mice were treated with the
sameprofibrotic regimen, oldmicedevelopedmore severefibrosis
in their liver compared to their younger counterparts.86,87 Also,
aging is associated with upregulation of CDK4 in the liver.
CDK4 phosphorylates CCAAT- enhancer-binding protein (C/EBPa)
which facilitates formation of C/EBPa-p300 complexes leading to
NAFLD in the presence of a metabolic driver (i.e. overnutrition).
Vice versa, pharmacological inhibition of CDK4 reduces
NAFLD.88,89

Age-independent hepatocytic senescence has also been
described in rodents. In 2000, Rudolph and DePinho revealed
that progressive and repetitive liver damage in mice induces
hepatocytic cellular senescence and subsequently cirrhosis.90

Other studies in rodents have shown a clear relation between
senescence, NAFLD and liver fibrosis. Obesity-prone rats fed a
HFD developed NAFLD after 13 weeks with a concomitant in-
crease in hepatic gene expression of p16 and p21 compared to
age-matched lean controls. Subsequently, the increased p16 and
p21 resulted in a significant decrease in the phosphorylation of
retinoblastoma protein (Rb), thereby inducing cell cycle arrest.91

p53-deficient mice fed a methionine- and choline-deficient diet
(a widely used diet to induce NAFLD in rodents), had slower
disease progression compared to wild-type mice.92

Although previous studies have provided insights into the
putative role of cellular senescence in the development of
NAFLD, data pointing towards causality was only recently pub-
lished by Ogrodnik et al..33 First, NAFLD was associated with
several markers of senescence in hepatocytes, such as increased
senescence-associated damage foci, as determined by the pres-
ence of yH2AX, increased senescence-associated distention of
satellites and larger nuclear areas.33 Second, hepatocytic senes-
cence was shown to impair hepatic mitochondrial b-oxidation,
thereby hindering fatty acid elimination and promoting triglyc-
eride accumulation.33 Finally, a causal link between hepatocytic
senescence and hepatic steatosis was unravelled using INK-
ATTACK mice and a senolytic drug cocktail. INK-ATTACK trans-
genic mice (INK-linked apoptosis through targeted activation of
caspase) contain an inducible suicide gene in the CDKNA2 locus,
which encodes p16, a key molecule in senescent cells.93 By using
this elegant rodent model, it is possible to selectively eliminate
p16-expressing cells in vivo following the administration of a
specific molecule that dimerises the FKBP-CASP8 fusion protein
and induces apoptosis. Following the systemic clearance of p16-
expressing cells, hepatocytic senescence decreased, which was
accompanied by the amelioration of hepatic steatosis. The
administration of the senolytic drug cocktail dasatinib and
quercetin to db/db mice reduced the number of senescent cells
and led to clearance of triglycerides from the hepatocytes.33

However, it is important to note that the authors did not ac-
count for the possible pleiotropic effects of the senolytic drug
cocktail. Moreover, to what extent these results can be translated
to the entire spectrum of NAFLD (i.e. hepatocyte ballooning,
lobular inflammation and fibrosis) remains to be investigated.
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additional markers
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Proliferation  markers
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DNA damage and DDR
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Fig. 2. The proposed multi-marker workflow approach.74 Cells would first
be screened for SA-b gal or lipofuscin staining. Initial senescence leads would
then be verified by additional markers such as p16 or p21 and further specified
into specific types of senescence by characterizing SASP or DDR. For the
detection of the senescent cells several tools can be used such as immuno-
histochemistry, qPCR or transcriptomic analyses. DDR, DNA damage response;
qPCR, quantitative PCR; SA-b gal, senescence-associated beta-galactosidase;
SASP, senescence-associated secretory phenotype.
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Figure 2. The proposed multi-marker workflow approach75. Cells would first be screened for senescence-associated 
beta-galactosidase (SA- β gal) or lipofuscin staining. Initial senescence leads would then be verified by additional 
markers such as p16 or p21 and further specified into specific types of senescence by characterizing Senescence 
Associated Secretory Phenotype (SASP) or DNA damage response (DDR). For the detection of the senescent cells 
several tools can be used such as immunohistochemistry, quantitative polymerase chain reaction (qPCR) or 
transcriptomic analyses. 

This multi-marker approach enables the detection of senescent cells in various 

experimental settings and tissues. The first clinical trials targeting cellular senescence 

in humans are currently performed or all already finished with promising results81,82. 

Therefore, it is of critical importance to develop, implement, test, and harmonize methods 
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and standard operating protocols (SOPs) for translational early phase trials of agents that 

target fundamental aging processes. New, effective and low-cost assays are needed to detect 

and trace senescence in blood, cells and biopsies of the targeted organ for use in clinical 

trials. Circulating microvesicles originating from senescent cells, senescence-specific micro-

RNAs or epigenetic profiles are currently evaluated as novel composite assays to detect 

senescence83. Of interest, recently, Saif et al.84 were capable to measure the accumulation 

of lipofuscin in the liver non-invasively using near infrared (NIR) and shortwave infrared 

(SWIR) autofluorescence. This technique might serve as a diagnostic medical tool or can 

be used in clinical trials targeting senescence in the liver. Also, there are several studies 

ongoing aiming to discover novel markers using “omics” techniques to quantify various 

macromolecules, even at the single cell level to include intrapopulation variability75. 

Senescent cell hallmark Class Markers

Cell cycle arrest Lack of DNA synthesis BrdU, EdU

Lack of proliferation Ki67

Activation of p16‐pRB axis p16INK4a, pRB, phospho‐pRb

Activation of p53‐p21 axis p21, p53, phospho‐p53, DEC1 (BHLHB2), PPP1A

Structural changes Morphology, cell size Morphology, cell size

Increased lysosomal compartment 
and activity

SA‐β‐galactosidase, SA‐α‐Fucosidase, Lipofuscin 

DNA damage γH2AX, 53BPI, Rad17, ATR, ATM, MDC1, TIF. 

Telomere shortening Telomeres

SAHFs formation DAPI/Hoechst 33342, HIRA, H3K9‐methylation, 
PML bodies, HP1‐gamma

Nuclear membrane Lamin B1

Pro‐survival Apoptosis exclusion Annexin V, Cleaved PARP, Cleaved caspase 2/3/9, 
TUNEL staining

SASP Chemokines IL-8; GRO-a, -b, -g; MCP-2; MCP-4; MIP-1a; MIP-
3a; HCC-4; eotaxin; eotaxin-3; TECK; ENA-78; 
I-309; I-TAC

Growth factors; regulators Amphiregulin; epiregulin; heregulin; EGF; bFGF; 
HGF; KGF (FGF7); VEGF; angiogenin; SCF; SDF-1; 
TGFb; PIGF; NGF; IGFBP-2, -3, -4, -6, -7

Insoluble factors Amphiregulin; epiregulin; heregulin; EGF; bFGF; 
HGF; KGF (FGF7); VEGF; angiogenin; SCF; SDF-1; 
TGFb; PIGF; NGF; IGFBP-2, -3, -4, -6, -7

Interleukins IL-6; IL-7; IL-1; IL-1b; IL-13; IL-15

Non-protein molecules PGE2; nitric oxide; ROS

Other inflammatory molecules GM-CSE; G-CSE; IFN-g; BLC; MIF

Proteases and regulators MMP-1, -3, -10, -12, -13, -14; TIMP-1; TIMP-2; PAI-1, 
-2; tPA; uPA; cathepsin B

Receptors; ligands ICAM-1, -3; OPG; sTNFRI; sTNFRII; TRAIL-R3; Fas; 
uPAR; SGP130; EGF-R

Table 1. Overview of senescence markers.
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Insight obtained from studies in rodents of a role of senescence in NAFLD

Hepatocytic senescence can induce remarkable changes in tissue homeostasis and 

microenvironment of the liver. Under normal circumstances, hepatocytes are considered to 

be reversed post-mitotic cells that preserve their proliferating potential. Yet, natural aging 

correlates with loss of proliferating potential, functionality and thus regenerative capacity of 

the hepatocyte85. Of interest, cellular senescence is considered one of the hallmarks of aging28 

and indeed aging itself is a major risk factor for NAFLD development and progression44. 

Increased oxidative stress and age-related mitochondrial dysfunction have been shown to 

contribute to NAFLD development in old mice fed a high-fat diet (HFD)86. Indeed when 

young and old mice were treated with the same profibrotic regimen, old mice developed 

more severe fibrosis in their liver compared to their younger counterparts87,88. Also, aging is 

associated with upregulation of CDK4 in the liver. CDK4 phosphorylates CCAAT- enhancer-

binding protein (C/EBPα) which facilitates formation of C/EBPa-p300 complexes leading to 

NAFLD in the presence of a metabolic driver (i.e. overnutrition). Vice versa, pharmacological 

inhibition of CDK4 reduces NAFLD89,90.

Age-independent hepatocytic senescence has also been described in rodents. In 2000, 

Rudolph and DePinho revealed that progressive and repetitive liver damage in mice induces 

hepatocytic cellular senescence and subsequently cirrhosis91. Other studies in rodents 

have shown a clear relation between senescence, NAFLD and liver fibrosis. Obesity-prone 

rats fed a HFD developed NAFLD after 13 weeks with a concomitant increase in hepatic 

gene expression of p16 and p21 compared to age-matched lean controls. Subsequently, 

the increased p16 and p21 resulted in a significant decrease in the phosphorylation of 

retinoblastoma protein (Rb), thereby inducing cell cycle arrest92. P53 deficient mice fed a 

methionine- and choline-deficient diet (a widely used diet to induce NAFLD in rodents), 

had slower disease progression compared to wild type mice93. 

Although previous studies have provided insight in the putative role of cellular 

senescence in the development of NAFLD, data pointing towards causality was only 

recently published by Ogrodnik et al34. First, NAFLD was associated with several markers of  

senescence in hepatocytes such as increased senescence-associated damage foci, as determined 

by the presence of yH2AX, increased senescence-associated distention of satellites and larger 

nuclear areas34. Second, hepatocytic senescence was shown to impair hepatic mitochondrial 

β-oxidation, thereby hindering fatty acid elimination and promoting triglyceride 

accumulation34. Finally, a causal role between hepatocytic senescence and hepatic steatosis 

was unraveled using INK-ATTACK mice and via the administration of a senolytic drug 

cocktail. INK-ATTACK transgenic mice (INK-linked apoptosis through targeted activation of 

caspase) contain an inducible suicide gene in the CDKNA2 locus, which encodes p16, a key 

molecule in senescent cells94. By using this elegant rodent model, it is possible to selectively 
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eliminate p16-expressing cells in vivo following the administration of a specific molecule 

that dimerizes the FKBP-CASP8 fusion protein and induces apoptosis. After clearing of 

p16-expressing cells systemically hepatocytic senescence decreased accompanied by the 

amelioration of hepatic steatosis. Also the administration of the senolytic drug cocktail 

Dasatinib and Quercetin, to db/db mice reduced the number of senescent cells and clearance 

of triglycerides from the hepatocytes34. However, it is important to note that the authors did 

not account for the possible pleiotropic effects of the senolytic drug cocktail. Moreover, to 

what extent these results can be translated to the entire spectrum of NAFLD (i.e. hepatocyte 

ballooning, lobular inflammation and fibrosis) remains to be investigated. 

Epigenetic modifications have been observed in senescence cells. These modifications 

resemble a DNA methylation profile similar to those observed in cancer and aging95,96. 

A global loss of DNA methylation at CpG sites is characteristic of replicative senescence. 

This loss is followed by a focal increase in DNA methylation at certain CpG islands96,97. 

Senescence-associated DNA methylation patterns have been shown to alter expression of 

genes typically involved in hepatic lipid metabolism in mice fed a choline- and folate-deficient 

diet98. Alterations in the methylome profile of hepatocytes could therefore determine the 

severity of NAFLD. Individual histone modifications are also altered during senescence and 

NAFLD97. Certain histone modifications such as elevation of H4K20me3 and H3K9me3 are 

in fact crucial for induction of proliferation arrest97,99 whereas elevation of H3K27ac in gene 

enhancers promotes the SASP75. Increased expression of p21 was associated with increased 

acetylation of both histone H3 and H4 and decreased trimethylation of H3K27 at the p21 

promotor was observed92. 

Senescence beyond the hepatocyte

Importantly, senescence in the liver is not limited to hepatocytes. Obesity associated 

senescence has for example been observed in hepatic stellate cells (HSC)100. In healthy livers, 

HSCs are in quiescent state and are activated following liver injury and play an important 

role in liver fibrosis. Indeed, liver fibrosis is accompanied with excessive deposition of 

extracellular matrix by the HSC. Interestingly, when HSC become senescent, they could limit 

the extent of fibrosis. Indeed, HSC deficient in the key senescence genes p53 or Rb pathways 

continued to proliferate and contributed to excessive extracellular matrix deposition. These 

findings suggest that senescence in HSC could be beneficial. Moreover, senescent HSC 

secrete matrix metalloproteases that digest matrix metalloproteins (MMP’s) and collagens 

such as CollA. In contrast, Yoshimoto and colleagues100 showed in a mouse model that the 

gut microbial metabolite deoxycholic acid (DCA), a metabolite that has been associated with 

insulin resistance and NAFLD provokes the SASP phenotype in HSCs13,101. This phenotype 

subsequently facilitates the development of HCC via the secretion of inflammatory and 
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tumor promoting factors100. Moreover, fibroblasts and non-tumoral HSCs demonstrated 

increased expression of senescence and SASP markers in NASH-related HCC compared to 

other chronic liver induced HCC102. However, patients with NASH-HCC were significantly 

older, had a higher BMI and more metabolic diseases such as diabetes compared to patients 

with other chronic liver induced HCC, thus these data should be interpreted with caution. 

Therefore, more in-depth studies are needed to understand the balance between fibrogenic 

and non-fibrogenic SASP in senescent HSC.

Senescence has also been observed in cholangiocytes and may have potential deleterious 

effects in biliary diseases such as PBC and PSC103,104. In addition, cholangiocyte senescence has 

also been demonstrated in other chronic parenchymal liver diseases including NAFLD104,105. 

Recently, an in vivo model was introduced to study the detailed mechanism of cholangiocyte 

mediated biliary senescence in the liver106. The activation of senescence in cholangiocytes 

induced profound alterations in cellular and signaling microenvironment, resulting in 

the deposition of collagen and TGFbeta production and the induction of senescence in 

neighboring cholangiocytes and hepatocytes106. 

Liver sinusoid endothelial cells (LSECs) are fenestrated endothelial cells that form 

the lining of the hepatic sinusoids. The structure and function of LSEC’s change upon 

aging, which in turn impact liver functions. Age induced morphological changes in LSECs 

are characterized by defenestration (defined by the decrease in the number and size of 

fenestrae), endothelial thickening, and basal lamina and collagen deposition in LSECs and 

have been described in rodents as well as in humans. Of recent, it was shown that senescence 

markers increase in older mice, followed by an enhanced ability to clear macromolecular 

waste107. However, this enhanced ability rapidly declines with further aging probably due to 

increased endothelial thickness and senescence induced silencing of scavenger receptors and 

endocytosis genes. Of importance, age-dependent changes in LSEC’s were recently confirmed 

in liver from aged humans underscoring that aging and senescence is accompanied by 

significant liver sinusoidal dysregulation108. 

Kupffer cells (KC), the resident macrophages of the liver are located within the lumen of 

the liver sinusoids. KC’s are the key detector of commensal or pathogenic microbial signals, 

danger signals, and tumor cells moving through the hepatic circulation and produce soluble 

cell mediators such as TNFα and IL-6 as part of the innate immune response. While there 

have been many studies on the effects of aging and senescence on macrophages, the effect on 

KC’s has not been well characterized on a cellular and molecular level. The effects of aging 

on macrophages include reduced phagocytosis and autophagy and increased production 

of cytokines such as IL-6, suggesting that KCs might be one source of elevated IL-6 that is 

characteristic of old age108. 
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Although the abovementioned studies imply that senescence is variously involved in 

NAFLD pathogenesis and progression, it is of interest whether data from animal studies can 

be translated to humans. In the next paragraph, we will elaborate on the evidence of a role 

of cellular senescence in NAFLD in humans.

Clinical evidence linking ageing and senescence processes to NAFLD

Under normal circumstance, around 3-7% of hepatocytes are senescent. This percentage can 

increase to 50-100% in end stage liver disease109,110. As mentioned above, senescence in the 

liver can have protective as well as deleterious effects on liver function and metabolism. 

Interestingly, hepatocytic senescence is considered to act as a protective mechanism against 

the development of hepatocellular carcinoma (HCC)111. Data obtained from studies in 

humans revealed that several hallmarks of cellular senescence are present in biopsies of 

individuals with NAFLD and that the number of senescent cells increases with disease 

progression. Relative nuclear size of hepatocytes in individuals with NAFLD was significantly 

larger than the normal value of healthy controls, independent of telomere length112. 

Interestingly, telomere length correlated negatively with nuclear size in both individuals 

with NAFLD as well as in healthy controls, while the average nuclear size of the hepatocyte 

correlated with age only in the healthy controls. This suggests that nuclear enlargement 

proceeds independently of age in individuals with NAFLD. Other studies also showed 

that average telomere length in livers of individuals with NAFLD is shorter compared to 

age-matched healthy controls112,113. Moreover, in a longitudinal study of six years, it was 

shown that individuals who developed NAFLD had shorter telomeres in peripheral blood 

leukocytes at the end of the follow-up period compared to the individuals who did not 

develop NAFLD114. Despite this observation, individuals who developed NAFLD were 

metabolically already more challenged compared to the individuals without NAFLD. Also, 

Laish et al.115 observed shorter telomeres in peripheral lymphocytes accompanied with a 

higher expression of telomerase reverse transcriptase messenger RNA compared to healthy 

controls. To what extent the telomere length in peripheral blood corresponds to telomere 

length in liver cells remain to be investigated. Nevertheless, these results support a role for 

telomere dysfunction in the development of NAFLD. 

Bearing this evidence in mind, one might ask the question: how do telomeres signal 

senescence? It has been hypothesized that a protein complex that shapes and safeguards 

human telomeres, also called the “shelterin”, destabilizes with each cell division116,117. This 

destabilization results in exposure of the telomere, which is subsequently recognized as a 

double-strand DNA break. This triggers recruitment of proteins belonging to the DDR such 

as ATM and H2A.X and Rad 17118. As mentioned above, the DDR activates transcription 

factors such as p53, which is a positive regulator of p21. Both in vivo and in vitro studies 
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have shown that p21 plays a key role in telomere-induced senescence47,119. Although the 

majority of the studies provide evidence that senescence is a result of telomere shortening, 

several other reports now suggest that telomere dysfunction can also occur in a length-

independent manner47,49,120,121. For example, chronic mild inflammation is able to induce 

telomere gene damage in hepatocytes and enterocytes of the small intestine, irrespectively 

of telomere length120,121. Moreover, it has been suggested that DNA damage is more likely to 

occur at long telomeres as they represent a more abundant target for lesion formation which 

can explain length-independent DDR activation49. Interestingly, the link between telomere-

induced senescence and the p16 pathway is less clear and the link between p16 expression 

and NAFLD in humans is not that robust compared to p2133. 

Several studies revealed a link between DNA damage in hepatocytes, hepatocytic 

senescence and NAFLD33,113 Aravinthan and colleagues113, first showed that there is increased 

DNA damage in livers of individuals with NAFLD which increased with disease progression 

(i.e. NASH and NAFLD with advanced fibrosis). Moreover, by using paired biopsies from 

35 individuals, hepatocyte p21 expression was shown to increase with disease progression, 

whereas subjects with disease improvement, had decreased expression of hepatocyte p21. 

Thus, hepatocytic senescence is a marker for disease progression. Also, hepatocytic senescence 

was positively correlated with progression of liver fibrosis110. 

Recently, a prediction model based on epigenetic DNA methylation was introduced 

to measure human chronological and biological age. Using this model, it is possible 

to predict normal aging rate based on methylation patterns122–125. One of the algorithms 

for this model is the so-called Horvath Clock, which represents an epigenetic profile 

comprising methylation levels of 353 CpG dinucleotide sites123. Of these 353 CpG sites, 193 

positively correlate with age when hypermethylated whereas 160 negatively correlate with 

age when hypomethylated. To illustrate the time frame of the Horvath clock, the DNA 

methylation score of embryonic stem cells is approximately zero and increases rapidly 

during normal development. The validity of peripheral DNA methylation to accurately 

predict chronological age of different tissues including the liver has been confirmed in 

multiple studies123,126,127. Moreover, the intrinsic rate of the epigenetic clock can be altered by 

metabolic diseases. Obesity for example is able to alter the epigenetic clock for the liver, but 

not of other tissues127. Recently, Loomba and colleagues have shown by using the Horvath 

Clock that individuals with NASH demonstrate significant acceleration in their biological 

age126. An enrichment analyses of the genes associated with differentially methylated CpG 

islands revealed significant enrichment of senescence pathways such as p53 signaling, 

suggesting that, in line with other reports, a specific pattern of DNA methylation is another 

senescence marker associated with NAFLD and its progression to NASH126,128. Murphy et 

al showed that individuals with NAFLD with mild fibrosis could be distinguished from 
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individuals with NAFLD with advanced fibrosis based on different methylation patterns129. 

Individuals with advanced fibrosis had more hypomethylated genes in their liver biopsies 

resulting in overexpression of tissue repair genes, whereas metabolism associated genes were 

hypermethylated resulting in down regulation of these genes. Another study found that 

alterations in methylation patterns in genes involved in the cell cycle are closely related to 

oxidative DNA damage in the liver of individuals with NAFLD130. Collectively, these data 

indicate that NAFLD may induce altered methylation profiles in a plethora of cells, apart 

from the hepatocytes, even in peripheral blood cells. However, in this view, senescence is 

a consequence of the metabolic dysregulation and inflammatory phenomena occurring 

within the liver instead of a causal player. 

Treatment options for targeting senescence

Usually, NAFLD is accompanied by other obesity-induced age-related diseases. This 

inevitably leads to polypharmacy because most treatment strategies are disease specific. 

Unfortunately, polypharmacy can lead to adverse events, unpredictable drugs interactions 

and poor adherence83. Bearing in mind that senescent cells are present in several metabolic 

diseases, targeting senescence cells has therefore emerged as an attractive therapeutic strategy 

to simultaneously treat these diseases. 

Targeting senescence could be performed via inhibiting the SASP or by selectively 

eliminating senescent cells using senolytics. SASP inhibitors, also known as senomorphics, 

target signaling pathways that are involved in the regulation or exacerbation of the SASP 

such as target of rapamycin complex 1 (mTORC1), JAK1/JAK2, STAT3, and mitochondrial 

dysfunction83. Senomorphics include rapamycin, ruxolitinib, glucocorticoids and metfor-

min131–133. However, most of the senomorphics do not reduce the entire range of SASP factors 

and have many other effects in addition to being a senomorphic. Disentangling effects on 

age-related phenotypes due to SASP modulation from other off-target age related processes 

is therefore challenging. In addition, senomorphics would need to be administrated 

continuously to maintain SASP suppression, which limit the applicability. 

Senolytic agents were first discovered in 2015. Although already in 1995 it was discovered 

that senescent cells are resistant to apoptosis134, the authors hypothesized that senescent cells 

depend on senescence-associated antiapoptotic pathways (SCAPs), which permit senescent 

cells to survive their own SASP135. Using a combination of bioinformatic tools and in vitro 

RNA interference studies, it was verified that senescent cells rely on the SCAPs. Hence, SCAPs 

were identified as the Achilles heel of senescent cells. Since this discovery, considerable 

progress has been made in identifying small molecules, peptides and antibodies that 

selectively induce apoptosis in senescent cells. The combination of Dasatinib, which is an 

FDA-approved tyrosine kinase inhibitor and the antioxidant quercitin, which is a flavonol 
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present in many fruits and vegetables, successfully induce apoptosis in senescent cells in vitro 

and rodent models134. According to in vitro data, a brief disruption of pro-survival pathways is 

adequate to83,136 suggest that senolytics could be administrated intermittently, which reduced 

the risks of adverse effects compared to continuous treatment. 

As mentioned previously, administration of Dasatinib plus quercitin successfully 

eliminated both adipocyte and hepatocytic senescence and decreased lipid accumulation34. 

So far, no studies in individuals with NAFLD using Dasatinib plus quercitin have been 

performed. However, several clinical trials addressing the efficacy of Dasatinib plus quercetin 

to treat metabolic diseases are currently ongoing137. Combining results from two human 

clinical trials using Dasatinib plus quercitin for the treatment of diabetic chronic kidney 

disease and idiopathic pulmonary fibrosis -two diseases characterized by accumulation of 

senescent cells- revealed that eliminating senescent cells, which was shown by analyzing 

adipose tissue, improved clinical outcomes138,139. These clinical investigations have proven 

that the risks of using Dasatinib plus quercitin in combination were minimal in relation to 

the clinical benefits. However, several senolytic drugs, including Dasatinib, have been used 

for cancer treatment and often exhibit adverse effects such as nausea, vomiting, diarrhea 

and skin rashes when taken continuously. Moreover, senolytics also have other effects. For 

example, the antioxidant quercetin inhibits ferroptosis and can decrease inflammation and 

lipid metabolism, all pathways that are associated with NAFLD81,82. Although it has been 

suggested that senolytics could be administrated intermittently, thereby reducing the risks 

of adverse events, large clinical trials are needed to define the benefits and potential risks of 

these drugs. 

CONCLUSIONS 

Data from studies in rodents and humans have shown that NAFLD is accompanied by an 

increase in senescent cells in the liver, and that the number of senescent cells is associated 

with a more advanced disease state . Despite the strong associations between senescence and 

NAFLD in humans and the work derived from in vitro studies and rodents, it remains to 

be investigated if hepatic senescence is a mere consequence of the metabolic dysregulation 

and inflammatory phenomena in NAFLD or a causal player in the development of this 

disease. Although a causal role of cellular senescence has to be further substantiated first 

and subsequently established in humans, this pathophysiological process holds great 

potential bearing in mind that there is currently no effective treatment for NAFLD. 

Targeting senescence has emerged as an attractive therapeutic target for NAFLD since 

senescence might be involved in the full spectrum of the disease (i.e. from early steatosis 
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to liver cirrhosis). Moreover, senolytic drugs can be administrated intermittently, thereby 

minimizing potential toxic effects and increasing adherence in the individual often affected 

by multiple morbidities and thus treated with multiple medications. Nevertheless, clinical 

trials conducted in individuals with NAFLD using senolytics have not been performed. 

Such trials are needed to better define the benefits and potential risks of these drugs. To 

increase efficacy and accuracy of these clinical trials, new or composite assays are needed, 

and development of these assays should be a top priority for the field. 
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ABSTRACT

Cellular senescence is an essentially irreversible growth arrest that occurs in response 

to various cellular stressors and may contribute to development of type 2 diabetes and 

Non-Alcoholic Fatty Liver Disease (NAFLD). Here, we investigated whether chronically 

elevated insulin levels are associated with cellular senescence in the human liver. In 107 

individuals undergoing bariatric surgery, hepatic senescence markers were assessed by 

immuno histochemistry as well as transcriptomics. A subset of 180 participants from the 

ongoing Finnish Kuopio OBesity Surgery (KOBS) study was used as validation cohort. We 

found plasma insulin to be highly associated with various markers of cellular senescence 

in liver tissue. The liver transcriptome of individuals with high insulin revealed significant 

upregulation of several genes associated with senescence: p21, TGFβ, PI3K, HLA-G, IL8, p38, 

Ras, and E2F. Insulin was associated with hepatic senescence independently of NAFLD and 

plasma glucose. By using transcriptomic data from the KOBS study, we could validate the 

specific association of insulin with senescence in the liver. Our results support an important 

role for hyperinsulinemia in induction of cellular senescence in the liver. These findings 

emphasize the importance of lowering insulin levels in obese individuals with insulin 

resistance.
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INTRODUCTION

Cellular senescence is one of the hallmarks of aging1. It is defined as a stable arrest of the 

cell cycle coupled to specific phenotypic changes1. Senescent cells can secrete a collection of 

proteins and other factors termed the senescence-associated secretory phenotype (SASP)2,3. 

It is now generally accepted that cellular senescence contributes to aging phenotypes and 

accumulating evidence shows that senescence is associated with age-related diseases, such as 

type 2 diabetes and Non-Alcoholic Fatty Liver Disease (NAFLD)4–6. Although causality is yet 

to be established in humans, current evidence suggests that targeting of senescent cells has 

novel treatment potential for the treatment of several age-related diseases, including type 2 

diabetes and NAFLD7,8. 

In search of mechanisms that drive cellular senescence, the focus has been on factors 

associated with insulin resistance such as chronic inflammation and elevated glucose and 

lipid levels9. Although, studies investigating the role of insulin itself in the development 

of cellular senescence are scarce, a causal role in inducing cellular senescence in adipose 

tissue was recently established10. Since hyperinsulinemia is one of the shared key features 

of aging, obesity, type 2 diabetes, as well as NAFLD11–13, we hypothesized that chronically 

elevated insulin levels may be associated with cellular senescence in liver tissue in humans, 

independent of NAFLD.

In this study, we investigated the relationship between plasma insulin levels and markers 

of senescence in a cohort of obese patients scheduled for bariatric surgery. The main results 

were validated in an independent cohort. 

MATERIALS AND METHODS

Participants were recruited from our bariatric surgery cohort as previously described14. In 

brief, 107 individuals underwent a complete metabolic work-up prior to their bariatric surgery 

procedure between September 2016 and the end of 2018. Within two months before surgery, 

a two-hour mixed meal test (MMT) was performed. The MMT consisted of two Nutridrink 

compact 125ml (Nutricia®), in total containing 23.3 grams fat, 74.3 grams carbohydrates 

and 24.0 grams protein. Blood samples were drawn at baseline and then 10, 20, 30, 60, 90, 

and 120 minutes after ingestion of Nutridrink. In a subset of 23 individuals, samples from 

both portal and peripheral venous blood were drawn on the day of surgery. All samples 

were stored at -80oC until further processing. The study was performed in accordance with 

the Declaration of Helsinki and was approved by the local Ethics Committee (approval code: 

NL55755.018.15). All participants provided written informed consent.
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Diabetes definitions

Normal glucose tolerance and prediabetes definitions were in accordance with the American 

Diabetes Association (ADA) criteria15. Type 2 diabetes was defined as individuals who 

fulfilled the ADA criteria for diabetes, those who were treated with glucose-lowering agents, 

and/or who had a history of T2DM.

Liver and biopsies and histology

Biopsies were taken from segment three or five of the liver. All biopsies were snap frozen 

in liquid nitrogen and stored at -80oC. Paraffin-embedded histological sections were stained 

with Haematoxylin-Eosin and Sirius red and scored according to the Steatosis Activity and 

Fibrosis score (SAF) score16 by the Dutch Liver Pathology Panel. NAFLD was categorized into 

NAFL when steatosis was present in >5% of hepatocytes alone or with mild inflammation 

but without ballooning or NASH when steatosis was present in >5% of hepatocytes and 

if ballooning and inflammation were both present in the biopsy. p21, BCL-2 and p53 

immunohistochemistry was performed on formalin-fixed sections using Mouse anti-p21, 

(Zymed, 18-0401 Clone EA10), DAKO/M0887 clone 124 subclass IgG1 and Thermo Scientific/ 

Ms 738-P clone DO-7+BP53-12 subclass IgG2a/2b, respectively, both with secondary staining 

with Benchmark Ultra, Ventana. As positive controls for p21 and p53 tonsil and p53 positive 

tumor with overexpression (supplemental Figure 1). Ten blinded, consecutive, non-

overlapping fields were acquired at × 400 magnification and counted manually.

Transcriptomics

RNA from the liver biopsies was extracted using the TriPure Isolation Reagent (Roche). The 

extracted RNA was purified using RNeasy MinElute spin columns and libraries for RNA 

sequencing were prepared using a r-RNA depletion method and sequenced at NOVOGENE. 

After ribosomal RNA depletion the RNA was fragmented using fragmentation buffer. 

Double-stranded cDNA was then synthesized using mRNA template and random hexamer 

primers (for the first strand), followed by second-strand synthesis buffer, dNTPs, RNAse H, 

and DNA polymerase I for the second strand. After a series of terminal repair, A ligation, 

and sequencing adaptor ligation, the cDNA library was size-selected and PCR-enriched. 

Library quality control was performed using Qubit 2.0 (library concentration), Agilent 2100 

(insert size), and qPCR (for precise effective library concentration). 

Validation cohort

A subset of 180 participants with liver mRNA sequencing data available from the ongoing 

Finnish Kuopio OBesity Surgery (KOBS) study17 were included in the validation cohort. All 

participants provided informed consent and the study protocol was approved by the local 
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ethics committee. Liver histology was evaluated by one experienced liver pathologist and 

the study population was divided into those with normal liver, those with NAFLD, and 

those with NASH, as described above for the discovery cohort. RNA-sequencing of strand-

specific Ribo-Zero libraries was performed on the HiSeq 2500 (Illumina) with 50 bp paired-

end reads. The reads mapped to exons (GRCh38 assembly, release 29) were counted with the 

Rsubread R package and normalized with the TMM method using edgeR. Normalized read 

counts were converted to log2-counts-per-million (logCPM). Expression data were corrected 

for previously identified technical cofactors18. 

Statistics

Data are expressed as mean ± SD for normally distributed variables or as median (interquartile 

range) when distributions were skewed. The normal distribution of continuous variables 

was assessed using the Kolmogorov-Smirnov method. To gain normality, variables with 

skewed distribution were log transformed. When the distribution was not normal, a 

Wilcoxon test was performed. For more than two groups, Kruskal-Wallis test was performed. 

Correlation tests were performed using Pearson correlation coefficient and p-values were 

calculated using t-test when the distribution was normal and Spearman’s rank-order 

correlation and p-values via the asymptotic t approximation when the distribution was not. 

Two-tailed significance was set at 0.05. Regression analyses were performed using multiple 

linear regression. For baseline variables only participants with complete baseline variables 

were included. For missing data in the mixed meal test, missing values were imputed using 

predictive mean matching using the MICE package (version 3.11.0). Transcriptomic data 

were analysed using the following methods: abundances of transcripts were quantified using 

Kallisto. Counts were normalized and differential expression calculated using DESeq2. For 

analyses of senescence genes, subjects were stratified in two groups of quintiles. These groups 

were based on baseline insulin values. Differential expressions were calculated between the 

highest and lowest quintiles. Analysis of genes was limited to genes in the KEGG senescence 

pathway. P-values of differentially expressed genes were adjusted using the Benjamini and 

Hochberg method and significance for false discovery was set at p<0.05 

Data and Resource

Data available upon request.
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RESULTS 

The recruited participants were stratified based on glucose tolerance parameters according 

to ADA criteria15. Thirty-five individuals had normal glucose tolerance (NGT), 48 had pre-

diabetes, while 24 had type 2 diabetes. The clinical characteristics of the 107 individuals 

selected are summarized in Supplemental Table 1.

Variables No steatosis n = 22 NAFL n = 24 NASH = 10

Sex (male/female) 3/19 10/14 2/8

Age (years) 43 [34 - 47] 49 [44 - 53] 51 [46 - 56]

BMI (kg/m2) 39 [37 - 43] 40 [37 - 42] 40 [39 - 43]

T2DM (%) 1 (5) 5 (21) 3 (30)

ALP (30-135 U/L) 88 [78 - 100] 79 [65 - 101] 72 [66 - 80]

g-GT (10–40 IU/l) 22 [18 - 26] 32 [24 - 48] 19 [16 - 37]

ALAT (0-50 IU/l) 24 [19 - 31] 38 [25 - 50] 33 [24 - 49]

ASAT (0–35 IU/l) 23 [20 - 26] 26 [22 - 30] 28 [26 - 34]

Ferritin (24–336 ug/l) 99 [37 - 130] 144 [61 - 215] 126 [82 - 192]

FPG (<5.6 mmol/l) 5.3 [5.0 - 5.5] 5.6 [5.1 - 6.6] 5.8 [5.6 - 6.7]

HbA1c (<5.6%) 5.7 [5.4 - 5.8] 5.8 [5.4 - 6.0] 6.0 [5.7 - 6.4]

HbA1c (mmol/mol) 39 [36 - 40] 40 [40 - 42] 42 [39 - 46.4]

Fasting insulin (18-48 pmol/l) 62 [48 - 81] 113 [71 - 141] 108 [82 - 155]

Total cholesterol (1.5–6.5 mmol/l) 4.7 [4.0 - 5.8] 4.8 [4.0 - 5.6] 5.1 [4.3 - 5.2]

Triglycerides (<1.7 mmol/l) 1.0 [0.8 - 1.4] 1.2 [1.0 - 1.7] 1.2 [1.0 - 1.3]

Table 1: Comparison between individuals with no steatosis, Non-Alcoholic Fatty Liver (NAFL), and Non-Alcoholic 
Steatohepatitis (NASH). Data are expressed as median [interquartile range] and parentheses after variable name, 
depict units and, if applicable, reference values. BMI: body mass index, AF: alkaline phosphatase, g-GT: gamma 
glutamyl transferase, ALAT: alanine aminotransferase, ASAT: aspartate aminotransferase, FPG: fasting plasma glucose, 
HDL: high-density lipoprotein, LDL: low-density lipoprotein.

Liver biopsies of 56 patients were available for histological analysis. The robust sene-

scence biomarker, p21 (cyclin-dependent kinase inhibitor 1A) was used as a first screening 

marker: p21 protein levels were quantified by immunohistochemistry (Figure 1A-C). Next, 

we quantified p53 to ensure robustness of the hepatocytic senescence signature (Figure 1D-

F). BCL-2 (anti-apoptosis marker) was also quantified (supplemental Figure 2). To assess 

insulin resistance, we analysed MMT data, in which glucose, insulin, and triglycerides were 

measured at seven time points. Hepatic p21 expression correlated significantly with glucose 

area under the curve (AUC) (r = 0.33, p = 0.009), peripheral insulin (r = 0.49, p < 0.001), and 

insulin AUC (r = 0.46, p <0.001) during the MMT (Figure 1G-I). In line with this, BCL-2 

significantly correlated with glucose AUC (r = 0.54, p = 0.033), peripheral insulin (r = 0.58, p = 

0.018), and insulin AUC (r = 0.53, p = 0.036) (supplemental Figure 3). For p53, a significant 

correlation was observed with peripheral insulin (r = 0.52, p = 0.039) (Supplemental  

Figure 3). Fasting glucose did not correlate with BCL-2 or p53 expression. Bearing in mind 
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that the pancreas drains into the portal vein, highest concentrations of insulin are likely to 

be found in this blood compartment. In a subset of 23 individuals, we collected portal vein 

blood and observed a strong correlation between p21 expression and insulin levels in the 

portal vein (r = 0.74, p < 0.001) (Figure 1J). 

Figure 1. A-C: Representative images of immunohistochemistry staining of liver tissue with p21 with respectively 100-, 
200- and 400-times magnification. D-F: Representative images of immunohistochemistry staining of liver tissue with 
p53 with respectively 100-, 200- and 400-times magnification. G-J: Scatterplot depicting the percentage of p21 on 
the y-axis and respectively, glucose AUC, peripheral fasting insulin, insulin AUC, and portal insulin on the x-axis. The 
blue line is linear regression prediction line, grey is the 95% confidence interval of the regression, rho is the Spearman 
correlation coefficient, and p-value is the significance level. K: Volcano plot showing genes in the KEGG senescence 
pathway identified by RNA sequencing of liver tissue biopsies, respectively, red genes are those that are significantly 
upregulated in patients with highest quintile peripheral insulin. RNA sequencing data were adjusted for age and 
individuals with type 2 diabetes were excluded from this analysis.
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To further investigate the relationship between insulin and hepatocytic senescence, 

we performed RNA sequencing in liver biopsies derived from the 107 individuals. 

Transcriptomic analyses revealed differential expression in senescence-related genes between 

groups stratified for peripheral fasting insulin (Figure 1K). The key cell cycle inhibitors 

CDKN1A (coding for p21) and MAPK11 as well as genes encoding SASP factors, including 

TGFB1 and CXCL8, were upregulated in the high insulin group. In addition, the transcription 

factors E2F1 and E2F3, which control progression from the G1 to S phase of the cell cycle19, 

were higher in the high insulin group. 

Next, we investigated if cellular senescence is associated with NAFLD. According to the 

SAF score, 22 individuals had no steatosis, 24 had NAFL, and 10 had NASH (Table 1). p21 

protein expression was significantly higher in individuals with NASH compared to NAFL 

and individuals without steatosis (Figure 2A). According to the MMT data, fasting insulin 

and insulin AUC increased with disease progression substantiating that hepatic insulin 

resistance plays an important role in NAFLD pathogenesis (Figure 2B, C). This is further 

demonstrated by the increased concentration of plasma triglycerides in individuals with 

NAFL and NASH (Figure 2D), which may indicate a loss of suppression of Apolipoprotein 

B expression by insulin and hence increased VLDL-triglyceride production20. Interestingly, in 

patients with high portal vein insulin, increased expression of p21 was observed suggesting 

that insulin is associated with senescence independent of NAFLD. 

To further investigate interrelations among hyperinsulinemia, senescence, and NAFLD, 

we performed regression analysis. The regression model predicting p21 percentage, using 

either fasting peripheral insulin or the NAFLD classification, had an adjusted R2 of 0.18, 

F(1,58) = 14, p<0.001 and 0.39, F(1,61) = 40, p < 0.001, respectively. When using both insulin 

and NAFLD classification to predict p21 percentage, the adjusted R2 was 0.45, F(2,57) = 24.8, 

p<0.001 and both variables were significant predictors, indicating that insulin, independently 

from NAFLD, is associated with hepatocytic senescence. Neither fasting glucose or glucose 

AUC were significant predictors when combined with fasting peripheral insulin and 

NAFLD. Adding insulin AUC to the model with NAFLD and fasting peripheral insulin did 

not improve the R2 or the Akaike information criterion. 

To validate our findings, we analyzed data from 180 individuals from an independent 

cohort from whom clinical data, liver histology, and liver transcriptomics data were available 

(supplemental Table 2). In line with outcomes from our study, hepatic CDKN1A (p21) 

expression correlated with insulin resistance and NAFLD in the KOBS study (r = 0.38, p 

<0.001) (Figure 3). Moreover, stratifying individuals from the validation cohort by insulin 

levels revealed a strong cellular senescence signature. In addition, we used the same regression 

model and found that insulin was associated with hepatocytic senescence independently of 

NAFLD. Predicting CDKNIA using fasting peripheral insulin and NAFL classification had 
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an adjusted R2 of 0.10, F(1,115) = 14 (p<0.001) and 0.18, F(1,119) = 28 (p<0.001), respectively. 

The combined model had an adjusted R2 of 0.22, F(2,114) = 17 (p<0.001), with both variables 

being significant predictors, validating the findings in our other cohort.

Figure 2. A-C: Boxplots showing p21 percentage, peripheral fasting insulin, and insulin AUC on the y-axis and the 
different categories of NAFL displayed on the x-axis (n=56). D: Glucose, insulin, and triglyceride, excursions during a 
2-hour mixed meal tolerance test comparing individuals with no steatosis, with Non-Alcoholic Fatty Liver (NAFL), and 
Non-Alcoholic Steatohepatitis (NASH). Data are means +/- 95% confidence intervals.
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Figure 3. Results from the validation cohort (n=180). A: Hepatic CDKN1A expression in individuals with normal glucose 
tolerance, impaired fasting glucose, or type 2 diabetes (T2DM) B: Boxplot of hepatic CDKN1A expression in individuals 
with no steatosis, Non-Alcoholic Fatty Liver (NAFL), and Non-Alcoholic Steatohepatitis (NASH). C: Peripheral fasting 
insulin concentrations in individuals without NAFL, NAFL, and NASH: individuals with T2DM were excluded from this 
analysis. D: Scatterplot displaying the relation between peripheral insulin and CDKN1A expression. Blue line is linear 
prediction regression lines, grey area is 95% confidence intervals. Rho is Spearman correlation coefficient; p is the 
significance level; individuals with T2DM were excluded from this analysis. E: Volcano plot showing genes in the KEGG 
senescence pathway identified by RNA sequencing of liver biopsies. Genes in red indicate that the gene is significantly 
upregulated in individuals with fasting insulin levels in the highest quintile group. Adjusted for age; and individuals with 
type 2 diabetes were excluded from this analysis. 

 
DISCUSSION

The major finding of this study is the strong association between plasma insulin and the 

presence of senescence markers in liver tissue derived from individuals undergoing bariatric 

surgery, suggesting that insulin might play a role in the induction of senescence. 

Cellular senescence has been implicated in the development of type 2 diabetes and 

NAFLD21. It has long been considered to be a consequence and not the cause of hepatic 

steatosis. However, studies in mice revealed a causal role for cellular senescence in development 

of hepatic steatosis7,8. Removal of the senescent cells induced attenuation of hepatic lipid 

accumulation. Indeed, our data show a clear association between plasma insulin levels and 

hepatic steatosis (Figure 2B,C). Furthermore, our data also open the possibility that the role 

of insulin may be more complex than just its role in controlling lipid accumulation. Protein 

expression of the senescence markers p21, p53, and BCL-2 in the liver increased with plasma 
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insulin concentration. Moreover, at the transcriptional level, expression of the cell cycle 

regulators CDKN1A and MAPK11 as well as multiple genes encoding SASP proteins were 

enhanced in individuals with high plasma insulin levels. Interestingly, multiple regression 

analysis showed that insulin correlated with senescence independently from NAFLD 

indicating that insulin-induced senescence indeed may precede NAFLD. In line with this 

hypothesis, we noted that individuals without NAFLD with a relatively high expression of 

p21 also had high concentrations of insulin in their portal blood. Although our results are 

associative, we speculate that insulin rather than glucose might be an important factor for 

inducing cellular senescence in hepatocytes. To validate our results, we performed similar 

regression analyses in 180 individuals from the ongoing KOBS study17. In line with data 

from our study, hepatic CDKN1A (p21) expression correlated with insulin resistance and 

NAFLD in the KOBS study (r = 0.38, p <0.001). Also in this data set, multiple regression 

analysis revealed that insulin correlated independently from NAFLD and glucose with 

hepatic senescence markers. This suggests that, at least partly, insulin-induced senescence 

is upstream in the pathogenesis of NAFLD. This is in line with current evidence showing 

that insulin resistance precedes NAFLD22. Also, our studies are in line with the recent paper 

showing that insulin induces senescence in adipose tissue10. 

Limitations

We note that the analyses of human data sets in our study have some limitations. Here, we 

used liver and plasma samples obtained from individuals who underwent bariatric surgery, 

which may introduce bias due to pre-operative weight-loss. However, individuals who had 

lost more than 3% of their body weight in the month prior to surgery or more than 5% 

during the six months before surgery were excluded. Last, we used transcriptomics data to 

validate our findings. To what extent the senescence signature found in the transcriptomics 

data reflect a “true” senescent signature remains to answered. 

In summary, we have shown by using two independent cohorts that plasma insulin 

levels correlate with markers of cellular senescence in liver tissue. Further studies are needed 

to investigate to what extent insulin is causally involved in inducing senescence in the liver. 
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ABSTRACT

Insulin resistance is a key feature of type 2 diabetes and is detectable in early stages of disease 

progression, i.e., before blood glucose elevation. Recent work has convincingly shown that 

adipocyte senescence is a driver of peripheral insulin resistance. The emergence of senescent 

adipocytes is linked to chronic hyperinsulinemia and is modulated by metformin. These 

mechanistic insights are derived from cell culture and animal experiments but supporting 

data in humans are scarce. Here we report a strong association between plasma insulin 

levels after mixed meal test and levels of p16 protein, a marker of cellular senescence, in 

mesenteric adipose tissue (MAT) of 103 individuals from our bariatric surgery cohort. 

P16 protein levels were increased irrespective of glucose concentrations. Several genes 

associated with senescence: CHKN2A, E2F3, TGFB1, MAPK12 and CHEK2, were upregulated 

in MAT of individuals with high insulin levels. Furthermore, we observed that p16 protein 

levels were significantly lower in individuals using metformin. These results confirm the 

recently proposed link between hyperinsulinemia and cellular senescence in adipocytes and 

demonstrate that senescent adipocytes are present in MAT in insulin resistance prior to the 

onset of type 2 diabetes in humans. 
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INTRODUCTION 

It is now widely accepted that cellular senescence contributes to several aging phenotypes. 

The numbers of senescent cells increase in several organs and tissues with aging while 

genetic or pharmacological clearance of senescent cells can alleviate multiple age-related 

diseases and increase health span in animal models1–3. Despite this clear link, aging and 

cellular senescence are not synonymous: cells can enter a senescent state regardless 

of organismal age. This process is driven by a variety of factors, such as genotoxic stress, 

mitogens and inflammatory cytokines. Currently available evidence supports the idea that 

anabolic signalling via the insulin/insulin-like growth factor 1 (IGF-1) pathway accelerates 

aging. In fact, the insulin/IGF-1 signalling pathway is the most conserved aging-controlling 

pathway in evolution4,5. Genetic downregulation of the insulin/IGF-1 signalling pathway 

has been shown to extend lifespan in worms, flies and mice5–7. Only recently, it was shown 

that reducing circulating insulin levels improves metabolic homeostasis, health span and 

longevity in mice8.

In obesity, the number of senescent cells is particularly increased in adipose tissues9,10. 

Recent work establishes that clearance of cells high in p16 and p21 expression alleviates 

insulin resistance in obese mice models11,12. In addition, mature human adipocytes, despite 

generally considered to be postmitotic, are able to activate a cell cycle program in association 

with obesity and hyperinsulinemia which results in a pro-inflammatory senescent 

phenotype13. Li et al.13 further demonstrated that targeting the adipocytic cell cycle program 

with metformin modulates the extent of senescence.

Here, we use data from the Bariatric Surgery in Amsterdam (BARIA) cohort study14 

to evaluate the association between hyperinsulinemia and adipose tissue senescence in 

humans. Insulin levels after a mixed meal test (MMT) positively correlated with p16 levels in 

mesenteric adipose tissue (MAT) but not in subcutaneous adipose tissue (SAT). We further 

found that metformin-treated individuals exhibit lower p16 protein levels in their MAT.

METHODS

Participant’s recruitment and sample collection 

The study was performed in accordance with the Declaration of Helsinki and was approved 

by the Academic Medical Center Ethics Committee of the Amsterdam UMC. All participants 

provided written informed consent. Individuals were recruited from our bariatric surgery 

cohort (the BARIA study) as previously described14. In brief, 103 individuals underwent 

a complete metabolic work-up prior to their bariatric surgery procedure. Anthropometric 
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measurements including height, weight, waist and hip circumference were taken. In addition, 

body fat percentage using bioelectrical impedance and blood pressure were measured. 

Fasting blood samples were used for the determination of hemoglobin, HbA1c, glucose 

and lipid profile. Within two months before surgery, a two-hour mixed meal test (MMT) 

was performed to assess insulin resistance. The MMT consisted of two Nutridrink compact 

125ml (Nutricia®), in total containing 23.3 grams fat, 74.3 grams carbohydrates (of which 

38.5 grams sugar) and 24.0 grams protein. The individuals received this meal after fasting for 

a minimum of nine hours. Time point zero refers to the moment at which the participant 

had fully consumed the meal. Blood samples were drawn via an intravenous line at baseline, 

10, 20, 30, 60, 90 and 120 minutes. Insulin and glucose were measured at these seven time 

points. All samples were stored at -80oC until further processing. The study was performed 

in accordance with the Declaration of Helsinki and was approved by the Academic Medical 

Center Ethics Committee of the Amsterdam UMC (approval code: NL55755.018.15). All 

participants provided written informed consent. 

Diabetes and prediabetes definitions

We stratified individuals by classifications of glycaemic control according to plasma glucose 

and glycated haemoglobin (HbA1c) levels formulated in the American Diabetes Association 

(ADA) criteria: normoglycemia = fasting plasma glucose (FPG) <100mg/dl (<5.6mmol/l), 

hyperglycaemia = FPG >100 mg/dl (>5.6 mmol/l) and / or HbA1c >5.7% (>39mmol/mol) or 

metformin use. All subjects using metformin were also self-reported diagnosed with type 2 

diabetes mellitus.

Adipose tissue biopsies and histology 

Tissue biopsies were obtained during surgery. Two adipose tissue compartments were 

analysed in the present study and biopsies were obtained as follows: subcutaneous adipose 

tissue from one of the laparoscopic incisions in the upper abdomen and mesenteric adipose 

tissue from the appendices of the transverse colon. All biopsies were snap frozen in liquid 

nitrogen and stored at -80oC until further processing and paraffin-embedded for histology. 

For mesenteric adipose tissue 48 biopsies and subcutaneous 47, met the quality criteria for 

histological analysis. The p16 immunohistochemistry was performed on formalin-fixed 

sections using Anti-CDKN2A Mouse Monoclonal Antibody, (Immunologic, ILM 0632-

C1). Six blinded consecutive non-overlapping fields were acquired per biopsy at × 400 

magnification. Area of antibody staining was measured using ImageJ. The mean of the six 

images was used to determine the level of expression.
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Transcriptomics

RNA from the mesenteric and subcutaneous adipose tissue biopsies, that were collected 

during the surgery were extracted using the TriPure Isolation Reagent (Roche) and 

homogenization in a FastPrep-24 instrument using Lysing Matrix D tubes (MP Biomedicals). 

The extracted RNA was purified using RNeasy MinElute spin columns and libraries for RNA 

sequencing were prepared using a r-RNA depletion method and sequenced at NOVOGENE, 

using a dUTP-based strand-specific protocol. After ribosomal RNA depletion using Ribo-

Zero kits, the RNA was fragmented using fragmentation buffer. Double-stranded cDNA was 

then synthesized using mRNA template and random hexamer primers (for the first strand), 

followed by second-strand synthesis buffer, dNTPs, RNAse H, and DNA polymerase I for the 

second strand. After a series of terminal repair, A ligation and sequencing adaptor ligation, 

the cDNA library was size-selected and PCR-enriched. Strand-specificity was achieved by the 

incorporation of dUTPs instead of dTTPs in the second-strand synthesis. Digestion of dUTPs 

by uracil-DNA glycosylase (UGDase) prevents the second strand from being amplified. 

Library quality control was performed using Qubit 2.0 (library concentration), Agilent 2100 

(insert size) and qPCR (for precised effective library concentration). Raw RNA sequencing 

reads were quality trimmed with Trimmomatic, removing adaptors, the first 6 bp from the 

5’ end, applying a sliding window quality trimming (window width 4, threshold Q-score 15), 

and removing reads that were shorter than 50 bp post-processing. Remaining high-quality 

reads were pseudoaligned to the human transcriptome (GRCh38) using kallisto (v.0.46.0) 

with 100 bootstraps and using the “-rf-stranded” and GC-bias correction options15.

Statistical analyses 

Data are expressed as median (interquartile range). The normal distribution of continuous 

variables was assessed with the Kolmogorov-Smirnov method. To gain normality, variables 

with a skewed distribution were log transformed. Correlation tests were performed using 

Pearson correlation coefficient and p-values were calculated using a t-test. Two-tailed 

significance was set at 0.05. Transcriptomic data was analysed using the following methods: 

abundances of transcripts were quantified using Kallisto15. Counts were normalized and 

differential expressions calculated using DESeq216. For analyses of senescence genes, non-

metformin using subjects were stratified in two groups of quintiles. One, for peripheral insulin 

resistance based on area under the curve of insulin during the mixed meal test. Second, for 

hepatic insulin resistance based on baseline insulin values. Differential expressions were 

calculated between the highest and lowest quintile. Analyses of genes was limited to genes 

in the KEGG senescence pathway, total of 149 genes. P-values of differentially expressed 

genes were adjusted using the Benjamini and Hochberg method for false discovery rate, 

significance for false discovery was set at p<0.117. Data analyses were performed in R version 
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4.0.2 with RStudio version 1.3.1073 using packages, Tidyverse (version 1.3.0), Tableone 

(version 0.10.0), cowplot (version 1.0.0), ggpubr 0.4.0. 

RESULTS 

A total of 103 individuals underwent a complete metabolic work-up prior to their bariatric 

surgery procedure. Within two months before surgery, MMT was performed to assess insulin 

resistance (IR)14. Blood samples were drawn via an intravenous line at baseline, 10, 20, 30, 

60, 90 and 120 minutes after ingestion of the meal. Insulin and glucose were measured 

at these 7 timepoints and areas under the curves (AUC) were calculated using trapezoidal 

integration. We stratified individuals in groups based on normoglycaemia, hyperglycaemia 

as formulated in the ADA criteria or metformin use. The baseline characteristics of the 

participants can be viewed in Table 1. 

Normoglycaemia Hyperglycaemia metformin use

n 35 53 15

age (years) 42.0 [37.5, 50.0] 47.0 [41.0, 54.0] 47.0 [43.0, 52.0]

female (%) 27 (77.1) 43 (81.1) 10 (66.7)

BMI 39.0 [37.4, 40.9] 39.8 [37.5, 41.3] 38.9 [36.3, 42.1]

FPG (mmol/l) 5.1 [5.0, 5.3] 5.8 [5.4, 6.3] 7.1 [6.3, 8.5]

fasting insulin (pmol/l) 69.4 [46.2, 111.7] 83.4 [69.0, 116.0] 96.6 [51.0, 153.5]

glucose AUC (mmol/l*120 min) 723 [657, 804] 881 [817, 953] 1189 [1108, 1433]

insulin AUC (nmol/l*120 min) 35 [27, 64] 57 [46, 71] 40 [22, 67]

HbA1c NGSP (%) 5.4 [5.3, 5.5] 5.8 [5.6, 5.9] 6.8 [6.3, 7.4]

HOMA2 IR 1.3 [0.9, 2.1] 1.6 [1.3, 2.2] 1.9 [1.0, 3.4]

Total cholesterol (mmol/l) 4.6 [4.1, 5.5] 5.2 [4.6, 5.8] 4.0 [3.5, 4.6]

HDL cholesterol (mmol/l) 1.1 [1.1, 1.4] 1.2 [0.9, 1.4] 1.0 [1.0, 1.2]

LDL cholesterol(mmol/l) 2.9 [2.4, 3.5] 3.3 [2.7, 4.0] 2.5 [2.0, 2.9]

triglycerides (mmol/l) 1.0 [0.9, 1.4] 1.3 [1.0, 1.8] 0.9 [0.8, 1.4]

Table 1. Baseline characteristics of all participants. All values are displayed as median with inter quartile range. FPG = 
fasting plasma glucose. AUC = area under the curve

 

Figures 

During surgery, biopsies were taken from mesenteric (MAT) and subcutaneous adipose 

tissue (SAT) compartments and were snap frozen and paraffin-embedded for histological 

examination. A total of 48 and 47 biopsies for MAT and SAT, respectively, met the quality 

criteria for histological analysis and p16 protein immunohistochemistry was performed using 

Anti-CDKN2A Mouse Monoclonal Antibody (Immunologic, ILM 0632-C1). Six blinded 

consecutive images at x400 magnification were taken and area of staining was quantified 

using ImageJ. Individuals with hyperglycaemia trended towards increased staining of p16 



Insulin is associated with adipocyte senescence  | 279

12

protein in MAT compared with normoglycaemia (t(25)=-1.78, p-value=0.085). Interestingly, 

metformin usage was associated with reduced levels of p16 protein staining (t(25)=2.66, 

p-value=0.014), comparable to normoglycemic controls. P16 protein was differentially 

expressed in SAT (Figure 1A).

Hyperglycaemia can be classified into different categories such as increased fasting 

plasma glucose or increased postprandial glycaemia, represented by glucose tolerance or 

HbA1c. We used a MMT to investigate which facet of glycaemic disturbance represents the 

most likely driver of hyperglycaemia in our cohort18. We used four different parameters of 

the MMT, i.e., fasting insulin, fasting glucose, insulin AUC and glucose AUC, to evaluate the 

consequences of the different facets of glycaemic disturbance14. Fasting insulin represents the 

amount of insulin needed in the fasting state to maintain normal glucose levels: an increase 

in fasting insulin is associated with hepatic IR and inability to supress gluconeogenesis in 

the liver19. Elevated fasting glucose shows that the body is no longer able to maintain proper 

glucose levels in the fasting state. Insulin AUC represents the insulin response to ingestion 

of a meal, where peripheral IR will result in higher postprandial levels of insulin to maintain 

glucose levels. A high glucose AUC can be caused by peripheral IR when the increased 

amounts of insulin are not sufficient to maintain normal glucose levels or in situations with 

inadequate insulin sensing or production.

Of these different parameters measured we found no association levels for glucose, 

either fasting or AUC, and for fasting insulin regardless of metformin use (Figure 1B-D). In 

contrast, we did find a significant correlation between p16 protein expression and insulin 

AUC (r=0.39, p=0.015) in individuals not using metformin (Figure 1E). No such correlation 

was observed in individuals using metformin (Figure 1E). In SAT no differences in protein 

expression of p16 were found (data not shown). To obtain additional proof for differences in 

cellular senescence between adipose tissue depots, transcriptomics analysis were performed 

on RNA isolated from snap frozen biopsies of all participants. Abundances of transcripts 

were quantified using Kallisto15. Counts were normalized and differential expression was 

calculated using DESeq216. For analyses of senescence genes, subjects were stratified in 

groups of quintiles based on insulin AUC during the MMT. Differential expressions were 

calculated between the highest and lowest quintile and adjusted for age. Analysis of genes 

was limited to genes in the KEGG senescence pathway. We found 7 of the genes in the KEGG 

senescence pathway to be significantly upregulated in the highest quintile of insulin AUC 

compared with the lowest quintile in MAT. These genes included the cell cycle inhibitor 

CDKN2A (encoding p16) and TGFB1. In addition, significant upregulation of the HLA-A 

was observed (Figure 1F). In agreement with the observation that p16 only was associated 

with hyperglycaemia in MAT, we did not observe regulation of senescence genes in the SAT 

transcriptome (Figure 1F).
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Figure 1. A: Boxplot of log transformed p16 area percent on the y-axis in mesenteric and subcutaneous adipose 
tissue from individuals divided in normal normoglycemic subjects, subjects with hyperglycaemia, and subjects using 
metformin displayed on the x-axis. In both boxplots, numbers are p-values calculated using Welch two sample t-test. 
B-E: Scatterplot of log transformed p16 area percent and fasting glucose, fasting insulin, glucose area under the 
curve (AUC) and insulin AUC during a 2-hour mixed meal test. Facets are divided in metformin use and not metformin 
use. Blue line is linear regression prediction line, grey area is the 95% confidence interval of the regression, rho is the 
Pearson correlation coefficient, and p-value is the significance level computed using a t-test. F. Volcano plot showing 
genes in the KEGG senescence pathway identified by RNA sequencing of mesenteric and subcutaneous adipose 
tissue biopsies, respectively in subjects not using metformin; blue genes are significantly upregulated in patients with 
highest quintile insulin AUC. RNA sequencing data were adjusted for age and individuals with T2DM were excluded 
from this analysis.
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DISCUSSION

The marjor finding of this study is the strong association between plasma insulin levels after 

MMT and levels of p16 protein. In addition, P16 protein levels were increased irrespective 

of glucose concentrations. According to transcriptomics analyses of MAT, several genes 

associated with senescence: CHKN2A, E2F3, TGFB1, MAPK12 and CHEK2, were upregulated 

in MAT of individuals with high insulin levels. Furthermore, we observed that p16 protein 

levels were significantly lower in individuals using metformin. These results are in line 

with a recent article showing an increase in adipocytic senescence exhibiting increased p16 

protein contents in subjects with high insulin levels13. Also, our results indicate an effect 

of metformin treatment on senescence in humans in vivo. This is in line with reported 

in vitro effects of metformin on senescence markers in adipocytes. Metformin was shown 

to block mTOR-mediated mitogenic signalling20, to supress the expression of senescent  

transcriptional programs and to induce expression of genes associated with quiescence. Our 

study design does not enable us to identify the causality of the lower senescence burden 

in metformin-treated subjects. It should be noted that the insulin AUC of those treated 

with metformin was in the mid to lower range, which may be a consequence of metformin 

treatment. This insulin lowering could have subsequently led to less senescence. It will be of 

interest to compare metformin vs. senolytics on IR and senescence in humans11,12,21.

Interestingly, Li et al.13 showed changes in adipocytic senescence in SAT whilst our 

study showed only differences in MAT. The methods used by Li et al. for processing of 

adipose tissues differed greatly from ours, i.e., use of isolated cell fractions or whole tissue 

biopsies, respectively. The use of isolated cells probably enabled Li et al. to pick up more 

subtle changes. Systemic insulin resistance is linked to changes in both subcutaneous and 

mesenteric adipose tissue depots with some studies suggesting a larger role for mesenteric 

adipose tissue22–24. Future studies should employ isolated cell analysis on MAT to assess the 

presence of cellular senescence more accurately.

Our observations are in agreement with a recent study showing that cellular senescence 

precedes hyperglycaemia9. Individuals with a genetic predisposition for T2DM (defined as 

first degree relative of an individual with T2DM) but without impaired glucose tolerance 

showed increased expression of senescence markers in SAT9. Unfortunately, insulin 

concentrations were not measured in this study. We can therefore only speculate on the 

presence of hyperinsulinemia, as is often the case in individuals with a genetic predisposition 

for T2DM even in the absence of obesity25.

In summary, by using clinical, immunohistochemistry, and transcriptomics data derived 

from non-diabetic individuals with obesity, we have shown that peripheral IR is highly 

correlated with markers of cellular senescence in MAT prior to the presence of glycaemic 
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dysregulation. Our results confirm previous studies indicating that adipocytic cellular 

senescence may play an important role already in the earliest stages of IR, i.e., before the 

onset of T2DM. Furthermore, our findings confirm a potential role for metformin in 

decreasing senescence in adipose tissue. It is worth investigating the triggers of this early-

stage senescence and whether there is a role for senolytics in its prevention and subsequent 

metabolic dysregulation. These findings emphasize the importance of preventive strategies 

and early intervention to halt progression of IR in obese individuals.
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Supplemental figure 1. Representative images of adipose tissue immunohistochemistry. A shows high 
levels of P16 and B shows low levels of P16. Scale bar is shown in the lower left corner. 
 
Supplemental tables  

NGT HYPERGLYCAEMIA METFORMIN USE 
N 20 19 9 
AGE (YEARS) 40.0 [33.8, 49.2] 45.0 [38.0, 55.5] 47.0 [44.0, 51.0] 
FEMALE (%) 17 (85.0) 15 (78.9) 6 (66.7) 
BMI  39.5 [38.3, 40.8] 40.0 [37.3, 42.2] 38.5 [35.0, 40.2] 
FPG (MMOL/L) 5.2 [5.0, 5.3] 5.6 [5.3, 6.1] 7.1 [6.4, 8.6] 
FASTING INSULIN (PMOL/L) 66.0 [45.8, 108.0] 85.0 [67.0, 145.2] 96.6 [47.7, 138.0] 
GLUCOSE AUC (MMOL/L*120 
MIN) 

713 [648, 785] 837 [776, 1019] 1189 [1113, 1384] 

INSULIN AUC (NMOL/L*120 
MIN) 

32 [27, 67] 63 [39, 92] 40 [26, 57] 

HBA1C NGSP (%) 5.3 [5.3, 5.5] 5.8 [5.7, 6.0] 7.0 [6.6, 7.6] 
HOMA2 IR 1.3 [0.8, 2.0] 1.6 [1.3, 2.8] 1.9 [0.9, 2.6] 
TOTAL CHOLESTEROL 
(MMOL/L) 

4.6 [4.1, 5.0] 5.0 [4.6, 5.8] 4.0 [3.5, 4.4] 

HDL CHOLESTEROL (MMOL/L) 1.1 [1.1, 1.4] 1.1 [0.9, 1.4] 1.2 [1.0, 1.2] 
LDL CHOLESTEROL(MMOL/L) 2.9 [2.5, 3.4] 3.3 [2.5, 3.9] 2.7 [2.2, 2.9] 
TRIGLYCERIDES (MMOL/L) 0.9 [0.7, 1.2] 1.4 [1.1, 1.9] 0.9 [0.9, 1.2] 

Supplemental Table 1: Baseline characteristics of participants with biopsies taken. All values are 
displayed as median with inter quartile range. Weight loss = weight loss in the period between mixed 
meal test and surgery FPG = fasting plasma glucose. AUC = area under the curve 
  

Supplemental figure 1. Representative images of adipose tissue immunohistochemistry. A shows high levels of P16 
and B shows low levels of P16. Scale bar is shown in the lower left corner.
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SUMMARY

Part 1. Systems biology in metabolic disease 

Chapter 1 is an introduction to this thesis. In this thesis we used a systems biology approach  

to integrate panomics data to detect which pathway are dominant and which one are proxi-

mal in metabolic disease development. To move from association to causation, we performed 

intervention studies in humans with to manipulate the gut microbiota composition and 

functionality with the overarching aim to find new treatment targets for nonalcoholic 

fatty liver disease (NAFLD). Finally, we aimed to identify potential new drivers of cellular 

senenscence in metabolic disease. 

Chapter 2 is a review, which summarizes the quality of the evidence of a causal role of 

the gut microbiome in the development of obesity and type 2 diabetes (T2D) at that time. 

Since the introduction of affordable next generation sequencing techniques, a plethora of 

studies have shown striking associations between the composition of the gut microbiome 

and obesity and T2D. Studies in humans using antibiotic therapy or fecal microbiota 

transplantation are suggestive of a causal relationship between the gut microbiome and 

metabolic disease development. However, effects size and evidence for causality are still 

marginal. Furthermore, these studies do not provide mechanistic insight into the interplay 

between the gut microbiome and host metabolism. Large prospective studies will be of 

critical importance to answer whether gut microbial composition is a reflection of the 

disease itself or the microbial composition was affected prior to disease development and 

hence was a driving factor. Thus, both prospective and intervention studies in large human 

cohorts combined with dedicated mechanistic studies in model systems are required to 

understand if and how gut the microbiome affects metabolic disease development. 

In Chapter 3 we aimed to reveal a microbial metagenomic signatures of obesity by  

using shotgun whole genome sequencing of individuals with a wide variety in BMI (i.e.,  

from lean to morbid obesity). A total number of 52 fecal bacterial species differed signifi-

cantly in individuals with and without obesity. Moreover, we found that gut microbiome 

composition could explain more than 50% of the variance in clinical features of obesity 

such as BMI, waist, HDL and triglycerides. In addition, we observed differences in fecal 

microbial metabolic pathways in individuals with and without obesity, and particularly strong 

associations between amino acid metabolism, microbial species and obesity. Path ways 

involving biosynthesis of several amino acids, including histidine, lysine, and tryptophan 

were highly enriched in individuals with obesity, whereas pathways involved in the 

degradation of these amino acids, in particular histidine, were depleted. This suggests that 

the microbiome of individuals with obesity has a higher potential to produce several amino 

acids compared to subjects without obesity but have reduced capacity of catabolizing specific 



290 | Chapter 13

amino acids. We thus, identified new bacterial species that are altered in individuals with 

obesity and also contribute to a possible robust consensus signature for the obese and lean 

gut microbiome.

Research into the role of the gut microbiome in the development of metabolic diseases is 

hampered by difficulties in obtaining biopsies from human tissues from the affected organs. 

Bariatric surgery provides the unique opportunity to obtain biopsies from several adipose 

tissue depots, small intestine, liver and even portal vein blood samples. In Chapter 4 we 

describe the design and the aims of the BARIA study. Using this longitudinal bariatric surgery 

cohort, we aim to perform a systems biology approach identifying novel pathways in the 

pathogenesis of obesity, T2D and NAFLD which may be targets for future drug development. 

The aim of the BARIA study is to include 1500 individuals undergoing primary laparoscopic 

bariatric surgery. Before surgery, they are subjected to a 2-h mixed meal test (MMT) to assess 

insulin resistance and investigate dynamic alterations in circulating metabolites, blood 

and fecal sampling, and questionnaires, including psychology lists taken at the start of the 

MMT in all individuals at all time-points to minimize variation. During surgery, biopsies 

are obtained from three fat depots, jejunum, liver and samples from portal and peripheral 

venous blood. Thereafter, further sampling (MMT, blood and faecal samples) is performed. 

In the event of another surgery (revisional surgery, cholecystectomy) further biopsies can be 

obtained, which is included in the ethical protocol. We process tissues for RNA-sequencing, 

analyse gut microbiota and perform untargeted (postprandial) plasma metabolomics on 

both fasting and postprandial MMT plasma samples. By using a systems biology, we aim 

to integrate all the omics data to gain insight into the hierarchy of mechanisms underlying 

the development of metabolic diseases. In the next three chapters we used both clinical and 

omics data of the first 106 participants from the BARIA study of whom a complete omics 

data set was available. 

In Chapter 5, we developed a novel concept for stratification of individuals with 

obesity based on fasting plasma metabolome data. This framework enables a non-biased 

stratification of individuals with obesity rather than purely clinical parameters that may 

fail to accurately encompass the multitude of nuances in human population-based studies, 

particularly when studying complex and multigenic diseases such as obesity and T2D. For 

example, classifiers for obesity-associated comorbidities such as hypertension, T2D, NAFLD 

and dyslipidemia may be treated as binary variables (present vs. absent), however the overall 

wellness of an individual with any of these disorders can vary significantly as a function of 

how well managed each of these conditions are, among many other factors. Metabolomics, 

in the context of obesity and cardiometabolic disease, is consistently being used as a means 

of evaluating metabolic health, measuring the effect of dietary intervention strategies and 

to identify predictive biomarkers characterizing a specific condition. In this light, use of 
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biologic parameters such as the plasma metabolome, as a direct readout of the overall 

status of an entire multiorgan system host and its microbiome, to determine grouping 

of individuals, rather than traditional clinical disease classifiers, offers a unique approach 

that may more accurately classify individuals into distinct disease physiological states. 

This method generated five distinct metabotypes for the BARIA bariatric surgery cohort. 

Grouping participants into five metabotypes reduced the dimensionality and enabled us 

to reveal associations and links between specific microbes, metabolites and transcriptome 

signatures of adipose and liver tissue. Our findings suggested that participants’ stratification 

based on metabotyping could enhance our ability to get molecular insights into the causes 

of diseases from panomics integrative analysis

In Chapter 6, we performed plasma metabolomic profiling on both fasting and post-

prandial samples and investigated global metabolic responses to an MMT. In contrast to 

chapter 5, we grouped the individuals based on their glucose tolerance in normal glucose 

tolerance (NGT), pre-diabetes and T2DM groups. The plasma metabolome revealed that the 

number of metabolites that differ significantly between these groups was most pronounced 

between the NGT and T2DM groups in the post prandial plasma samples compared to 

fasting condition, thus enabling us to discover abnormal metabolism related to (pre)diabetes 

that did not appear at fasting condition. Furthermore, we traced the differences in metabolic 

responses back to other omics sets including fecal metagenomics and transcriptomics data 

of liver, adipose tissue and jejunum. Finally, to further investigate possible driving factors 

for postprandial glucose regulation, we predicted glucose area under the curve (AUC) 

based on panomics data using ridge regression models with 5-fold cross-validation. Both 

fasting and post-prandial metabolomics data performed best to predict the actual glucose 

AUC. Amongst the most important metabolites for the prediction of glucose AUC were 

phenylalanine and 1−carboxyethylphenylalanine. The performance of the gut microbiome 

to predict glucose AUC was modest. We thus, identified possible new biomarkers for glycemic 

control including phenylalanine derived metabolites and show that that there is a metabolic 

imbalance in individuals with (pre)diabetes. 

Chapter 7 focusses on the most prevalent chronic liver disease worldwide, NAFLD. In 

the general population, one in four individuals is affected by NAFLD, but the prevalence 

increases to over 80% in individuals with obesity. The rapidly growing prevalence of NAFLD 

and lack of effective treatment options to tackle this potentially debilitating disease, will 

further increase obesity-related burden on public health and economies. In order to 

develop appropriate, non-invasive diagnostic methods and treatment options, it is critical 

to deeply investigate the complex pathophysiology of NAFLD. Here, we used a systems 

biology approach to investigate the contribution of different organs to this disease. We 

analyzed transcriptomics profiles of liver and adipose tissues, fecal metagenomes and 
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plasma metabolomes of 55 women with and without early stage NAFLD. We observed 

significant differences in metabolites, expression of human genes and gut microbial features 

in individuals with and without NAFLD. In addition, by developing a multivariate model, 

we revealed that there is substantial crosstalk between these different omics sets. Our 

study provides a comprehensive panomics analysis of individuals with early stage NAFLD, 

providing a novel strategy to study the pathophysiology of NAFLD in humans. 

Part 2. From association to causation

In this part, we used the steppingstones provided in part 1 to move from association to 

causation by performing interventions studies that manipulate the gut microbiome in 

individuals with NAFLD. In Chapter 8 we showed that the human gut microbiota produces 

large amounts of ethanol that might be clinically relevant for the pathogenesis of NAFLD 

by performing four distinct different experiments. We obtained portal vein blood, which is 

the most relevant blood vessel to study microbial produced metabolites because blood from 

the gastrointestinal tract drains directly into this vein. High concentrations of ethanol were 

found in the portal vein and significantly correlated with NAFLD parameters. In addition, 

we also observed that ethanol in the peripheral circulation increased during a mixed meal. 

Therefore, ethanol production during a mixed meal test should be considered as a non-

invasive diagnostic approach for the detection of high ethanol producing gut microbiomes 

and NAFLD risk. High post prandial plasma ethanol concentrations correlated particularly 

with high relative fecal abundance of lactic acid bacteria. By circumventing the first pass-

effect by inhibiting alcohol dehydrogenase an almost 15 times increase in peripheral 

ethanol was observed in patients with NAFLD. This effect was abolished after treatment 

with broad spectrum antibiotics. Hence, we obtained causal evidence that the human gut 

microbiota can produce large amounts of ethanol. To what extent persistent endogenous 

ethanol production is causally involved in the highly complex pathogenesis of NAFLD 

where a combination of environmental factors, genetic variants, obesity and disturbed lipid 

homeostasis interact, remain to be elucidated. 

In Chapter 9 we describe the results of a double-blind randomized controlled proof-of-

principle study in which individuals with NAFLD on ultrasound were randomized to two 

study arms; lean vegan donor (allogenic n=10) or own (autologous n=11) fecal microbiota 

transplantation (FMT), which were performed three times at eight-week intervals. A 

liver biopsy was performed at baseline and after 24 weeks in every subject to determine 

histopathology (NASH-CRN) classification and changes in hepatic gene expression based 

on RNA sequencing. Although the study was underpowered, allogenic FMT from vegan 

donors on a plant-based, low animal protein diet decreased the necro-inflammation score, 

also known as disease activity (i.e. hepatocyte inflammation and ballooning) independent 
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of steatosis is clinically the most relevant parameter of NAFLD in paired liver biopsies. In 

addition, allogenic FMT showed an effect on intestinal microbiota composition, which was 

associated with both beneficial changes in plasma metabolites and the expression of liver 

genes involved in inflammation and lipid metabolism after donor FMT. 

Part 3. Cellular senescence, an old but new player in metabolic disease

Here, we report on an old but new player in metabolic disease; cellular senescence. Cellular 

senescence is a state of irreversible cell cycle arrest with important physiological functions. 

However, cellular senescence is also a hallmark of ageing and has been associated with 

several pathological conditions. Chapter 10 is a review which summarizes the quality of 

the evidence of a causal role of cellular senescence in the development of NAFLD. In this 

review, we provide insight in the quality of the evidence that is supportive of a causal role of 

cellular senescence in the development of NAFLD in rodents and humans. We also elaborate 

on defining and discussing key cellular and molecular features of senescence. Finally, we 

discussed the efficacy and safety of novel senolytic drugs to treat or even prevent this disease. 

In Chapter 11, we used clinical data, portal vein plasma, immunohistochemistry, and 

transcriptomics data derived from individuals with obesity to establish a link between 

insulin and senescence in the liver. We found strong correlations between markers of 

cellular senescence in the liver with circulating levels of insulin. Of specific interest, a very 

strong correlation between portal vein insulin and hepatocytic senescence was found. In 

addition, these correlations were independent of NAFLD. This observation suggests that 

hepatocytic senescence, driven by prevailing insulin concentrations, precedes NAFLD. 

By using a validation cohort consisting of 180 individuals, we were able to replicate the 

findings that markers of cellular senescence in the liver are strongly associated with fasting 

plasma insulin concentrations. In Chapter 12, we used the same approach as in the previous 

chapter by using clinical, immunohistochemistry, and transcriptomic data derived from 

non-diabetic individuals with obesity, we have shown that peripheral insulin resistance is 

highly correlated with markers of cellular senescence in mesenteric adipose tissue prior to 

the presence of glycaemic dysregulation. These results confirm previous studies indicating 

that adipocytic cellular senescence may play an important role already in the earliest stages 

of insulin resistance before the onset of T2DM Collectively, these chapters suggest that 

insulin might be inducing cellular senescence in different organs via distinct pathways, 

an observation that underscores the importance of lowering insulin secretion in obese 

individuals with insulin resistance.
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GENERAL DISCUSSION AND PERSPECTIVES 

The research in this thesis has tried to gain new insight into the pathogenesis of obesity, 

insulin resistance and nonalcoholic fatty liver disease (NAFLD). As appetizer, we used a 

systems biology approach with emphasis on the putative role of gut microbiota and 

observed remarkable associations between gut microbial composition, plasma metabolites 

and human genes and metabolic diseases. For the main course, we used the steppingstones 

that were provided by the comprehensive panomics analyses to move from association 

to causation by performing interventions studies that manipulate the gut microbiome in 

humans. For dessert, we investigated a new but old player in metabolic disease, cellular 

senescence. In contrast to the current paradigm, we revealed that insulin rather than glucose 

is associated with cellular senescence in metabolic disease. 

The human gut microbiome, more than just a filter between the gut and host 

Over the past decades, numerous studies reported associations between the gut microbiome 

and numerous diseases ranging from metabolic to psychiatric disorders1,2. High-throughput 

sequencing combined with machine learning methods such as mendelian randomization 

and mediation analyses, suggest causal relations between the gut microbiome and 

(metabolic) diseases, without performing an intervention trial. Yet, is it real? Or are the 

expectations distilled from the thousands of publications per year inflated, and is the truth 

still hidden in the shadow? 

The gut microbiome is an extraordinarily complex ensemble, containing organisms that 

span several kingdoms3. Tremendous amount of research has been performed since Antony 

van Leeuwenhoek reported “small animalcules very swiftly moving” in his stools and dental 

plaque when looking through his microscope more than three centuries ago4. However, 

simple, and obvious questions frequently asked by patients (and researchers themselves) such 

as which microbes are good and which are bad, cannot be answered as straightforward as 

one would expect. Many researchers have struggled to define a “healthy gut microbiome”5,6. 

What is healthy? There is no universally accepted definition of health, and health can thus 

be considered as a relative condition. Moreover, according to studies in large human cohorts 

progressively including “healthy” participants, it became clear that variation in the gut 

microbiome is extensive7. However, most of the variance of the human gut microbiome 

is still unaccounted for8–10. To define a healthy but also an unhealthy gut microbiome, this 

challenge must be overcome. The term “dysbiosis”, frequently used when the gut microbiome 

composition is associated with metabolic disease, implies that there is an understanding of a 

normal or healthy gut microbiome, and should therefore not be used11. As of to date, novel 

high-throughput sequencing methods can detect approximately 100-200 bacterial species12, 



298 | Chapter 14

whereas the human gut may represent up to 2000 bacterial species13. Part of the variance in 

the gut microbiome may be stochastic, yet several intrinsic and extrinsic factors such as host 

genetics, disease state, immune health, diet, socio-economic status, location, and medication 

are known to determine individual gut microbiomes3. Medication history should therefore 

be accounted for in any reference norm for the gut microbiome11. In part 1 of this thesis, we 

found alterations in the gut microbiome composition between individuals affected by either 

one or a combination of obesity, insulin resistance and NAFLD. So far, although of value, 

we only demonstrated differences. As customary for microbiome papers, reviews but also 

science in general, we concluded in these papers that we should move from correlation to 

causation, from observation to mechanism and from cross-sectional to longitudinal studies. 

It is noteworthy, that most human gut microbiome studies are limited to use fecal 

rather than intestinal bacteria. The gastrointestinal tract is very heterogenous, and although 

limited studies are performed with upper gastrointestinal tract samples (i.e., small intestine), 

it is known that gut microbial diversity increases towards the colon14. Even in the colon, the 

diversity varies depending on the studied segment14. The fecal microbiome is an end-product 

that is a result of a dynamic process along the gastrointestinal tract3. Certainly, it provides 

insights into the general shifts within the gut microbiome, but species that are dominant 

throughout the gastrointestinal tract are not always detected in the feces15, underscoring 

the need to sample along the gastrointestinal tract. Bearing in mind that laxatives have 

profound influence on gut microbiome composition, should gastroenterologists go for the 

dark (or brown) matter while we wait for ingestible devices that facilitate sampling from 

sites along the gastrointestinal tract? 

Another customary ending of papers and reviews in the microbiome field is that we 

should focus on functionality instead of composition. Metabolic actions on distal tissues 

and organs by the gut microbiome are exerted amongst others via microbial metabolites16. 

Human plasma serves as a liquid conveyor for molecules inside the body. The thousands of 

circulating small molecules, collectively called the plasma metabolome provides a unique 

insight into the interactions of genetics, lifestyle, environment, medication use and microbial 

activity17. Notably, according to recent reports using rather sophisticated statistical analyses 

approximately 60% of the variance in the plasma metabolome can be explained by the gut 

microbiome9. The plasma metabolome can thus be used as a read-out of the functionality 

of the gut microbiome. Upon ingestion of nutrients, the gut microbiome determines which 

metabolites are formed and absorbed18. Microbial metabolites modulate many key features 

of metabolic diseases such as insulin resistance19, platelet hyperreactivity20, thrombosis 

potential21 and atherogenic lipid profile22, suggesting that the gut microbiome contributes 

to different metabolic diseases. The significance in disease development, progression or 

outcome nevertheless is still subject of debate. A key example is our ethanol paper described 



General discussion and perspectives | 299

14

in this thesis23. Although we obtained casual evidence that the gut microbiome can produce 

large amounts of ethanol, the direct impact of microbial ethanol on NAFLD was not 

assessed. According to our calculations, the daily amount of ethanol produced in the gut 

should be sufficient to induce profound alterations in hepatic metabolism including fatty 

acid oxidation, gluconeogenesis, and inflammation24. However, the paper has not identified 

the specific bacterial strains responsible for the ethanol production, nor has it unraveled 

under which conditions these strains switch to ethanol production. Nevertheless, it was 

already shown almost a decade ago that several bacterial strains can switch from ethanol to 

other microbial metabolites depending on the environments’ redox balance and available 

substrate25. This suggests that ethanol production by bacterial strains can be altered and 

shifted towards less harmful or even beneficial metabolites. These exciting observations 

underline the opportunities of identifying therapeutic targets within the gut. 

Targeting the gut microbiome

Considerable advances in gut microbial science have been made over the past decades 

including relationships between Helicobacter pylori and peptic ulceration26, treating 

recurrent Clostridioides difficile infection via fecal microbiota transplantation (FMT)27, and 

more recently the relationship between responsiveness to checkpoint inhibitors and gut 

microbiome composition in cancer28. For several other diseases, the microbiome seems an 

attractive and feasible target as the effects are restricted to the gut lumen, with beneficial 

systemic effects but with minimal risk of systemic off target effects. 

Roughly, interventions can be divided into targeted and untargeted therapies. 

Untargeted therapies include FMT, fecal filtrate transplant (FFT) or oral administration of 

probiotics. The aim of FMT is to change a recipient’s microbiome for therapeutic purposes29. 

In Part 2 of this thesis, we performed a proof of principle trial in patients with NAFLD 

whom either received an autologous or an allogenic FMT30. A trend towards improvement 

of lobular inflammation and hepatocyte ballooning in the liver biopsy was observed after 

treatment with allogenic FMT. Considering that from a clinical perspective, an FMT trial is 

successful if improvement or remission of a disease is induced, this trial was negative. From 

an ecological perspective, however, the extent to which the donor’s microbiota can colonize 

the recipient microbiome is more important31. A recent study, reanalyzing 316 FMTs derived 

from a wide range of indications, suggest, however, that clinical success is not dependent 

on colonization of donor strains, displacement of recipient species or the reinstatement of 

specific bacterial functions31. This is line with the success of the autologous FMT, in both 

type 1 diabetes and inflammatory bowel disease32,33. Predicting the outcome of FMT, from 

a clinical and ecological view remains difficult. Recent advances suggest that recipient 

factors are more important than donor factors, which is in contrast to the concept of super-
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donor’s, representing individuals with a highly diverse microbiome that were considered 

most effective FMT donors34. Complementarity of donor and recipient microbiomes on 

community level and to specific strain population similarity are crucial to colonization and 

by proxy, clinical success. Matching donor-recipient microbiomes on community, species 

and strain levels could increase the success of colonization and hence clinical success and is 

therefore warranted31. In addition, there is little focus on the mycobiome and virome, which 

represent non-microbial inhabitants of the gut with significant impact on bacteria, which 

complicated the understanding of interactions between the different ecosystems in the gut 

and host35,36. To further increase progress in facilitating the implementation of microbiome-

based interventions, focus should be on unraveling these unknown factors. 

Probiotics are defined as “live microorganisms that, when administered in adequate 

amounts, confer a health benefit on the host”37. Probiotics come in a range of complexities 

but traditionally, probiotics consisted of single strains38. Advances in anaerobic culturing, in 

combination with improved sequencing technologies, enabled the production of strains for 

specific conditions and have resulted in a wider availability of strains and have been termed 

‘next generation probiotics’39. Strains derived from Faecalibacterium prausnitzii40, Bacteroides 

fragilis41, Anaerobutyricum soehngenii42 and Akkermansia muciniphilia43 are abundantly studied 

using next generation probiotics, the latter being the most dominant player in the field. 

Nevertheless, so far, human studies have failed to show a clinically relevant benefit of next 

generation probiotics use. Considering that most of these strains are strictly anaerobic, the 

lack of clinical success is often explained by failure of engraftment because the viability is 

reduced in the small intestine44. To overcome these challenges, the production of multiple 

bacterial strains into a single probiotic, whereby interactions can be directed to increase the 

success of engraftment or production of the desired metabolite44,45. These so-called multi-

strain consortia or engineered microbes thereof increases the likelihood of achieving a 

specific clinical target. 

Targeted therapies include bacteriophages (or phages) and post-biotics, which can 

influence microbiota-host, trans-kingdom, and inter-bacterial interactions35,38. Phages 

are viruses that target bacteria and might aid in depletion of a certain species within the 

ecosystem35. This strategy has shown beneficial effects in patients with Alcoholic Fatty liver 

disease by reducing the circulation of the detrimental protein cytolysin, via targeting the 

cytolysin producing bacteria Enterococcusus feacalis46. Most phages have a narrow host range, 

meaning they infect closely related strains within (related) species, limiting collateral damage 

to the microbiome of the recipient, via infecting other species35. Nevertheless, this narrow 

range might also be a reason why the ability of phages to modulate the gut microbiome is 

limited35. 
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Postbiotics are bioactive molecules produced by bacteria and are now formally defined 

as a “preparation of inanimate micro-organisms and/or their components that confer a 

health benefit on the host”47. The preparation, however, is not alive or viable, preventing 

the chance of colonization. Hence, the possible health benefits conferred by the postbiotics 

depend on the regular intake to maintain the presence of the functionally bioactive 

molecules. Examples of postbiotics are short-chain fatty acids, secondary bile acids, but also 

pasteurized A. muciniphila44. All have shown their benefit on human metabolism in varying 

degrees, but none of them is the holy grail to cure metabolic diseases. Of interest, especially 

for individuals affected by or prone to develop NAFLD, the end products of the mixed 

acid fermentation are examples of postbiotics. The mixed acid fermentation pathway is the 

biological process in which under anaerobic conditions sugars are converted into a complex 

and variable mixture of acids including lactate, acetate, succinate, formate and ethanol25,48. 

This metabolic pathway is common in bacteria including Gram-negative (members of 

Enterobacteriaceae) and Gram-positive including members belonging to lactic acid bacteria 

(LAB)25,48. The formation of these gut microbial metabolites depends on the presence of 

certain key enzymes in the gut microbiota and the amount of oxidized Nicotinamide 

adenine dinucleotide (NAD). The first step is a glycolysis reaction where glucose is converted 

into pyruvate and where NAD is reduced to NADH. Pyruvate is then converted into acetyl-

CoA and subsequently via the enzyme Alcohol Dehydrogenase (ADH) and oxidation of 

NADH to NAD, ethanol is produced. The variety in end products, dependence on NAD and 

that the balance between end products is not “fixed”, suggests that the process can be altered 

and thus shifted towards different end products when the environment or redox potential 

is changed. Finding the right postbiotic to alter the redox balance and thereby reducing 

ethanol production is an interesting approach and warrants further research. 

I predict that in the coming decades an explosion of so-called personalized microbiome 

companies will arise that promises to beneficially alter and individuals’ microbiome. This 

is rather amusing, because at first, we still don’t know what a healthy microbiome is, as 

explained previously but secondly, diet is the most successful intervention to change the gut 

microbiome composition49,50. Certainly, the correct dietary advice should be given preferably 

via a personalized microbiome medicine approach49,51. However, patients don’t like to diet, 

and diet is notorious for not persevering. I wonder, will patients use any of the above-

mentioned therapies just because scientist claim it is good for their microbiome and proxy, 

their health, just like diet? Nevertheless, in the already affected individuals or as secondary 

prevention, I expect that it will be difficult to find a one-size fits all treatment strategy 

because metabolic diseases are heterogenic, and the natural history and clinical features are 

different between patients18. Focus should therefore be first on identifying and secondly on 

validating mechanisms that contribute to the pathophysiology of the disease in humans and 
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adopt treatments in a personalized fashion. Therefore, in-depth phenotyping using omics 

data of patients before and after intervention is needed, that can be used to predict the 

response to a specific intervention18. For example, individuals with a deficiency in butyrate 

producing bacteria who are insulin resistant, could benefit from supplementation with the 

missing microbrobes in the form of probiotics or the metabolite itself18. Whereas individuals 

with elevated levels of harmful metabolites such as ethanol or phenylacetylglutamine, 

might respond better from supplementation with inhibitors, specifically designed to target 

microbial enzymes involved in the production of these metabolites18. 

The therapeutic landscape of nonalcoholic fatty liver disease 

The prevalence of NAFLD have reached pandemic proportions, underscoring the need to 

unravel its pathophysiology and the risks associated with the condition. The presence of 

steatosis in the liver in the absence of significant fibrosis has long been considered a relative 

benign condition. It is now widely accepted that liver fibrosis as a result of liver injury 

secondary to NAFLD, is a major prognostic predictor for liver-related and overall morbidity 

and mortality52,53. Our understanding of the factors that determine disease progression has 

evolved, but we are still not able to identify those patients who will progress to a more 

advanced stage in the disease and those who will not54. In line with other metabolic diseases, 

it is becoming increasingly apparent that the molecular and cellular processes driving 

NAFLD are highly heterogenous from one patient to the next55. I expect therefore that it will 

be difficult to find a one-size fits all treatment strategy for NAFLD. This understanding raises 

the question; why are we searching for the one and only predictive core signature, as we also 

tried in this thesis? We should put aside the aim to find the holy grail among signatures 

and biomarkers for NAFLD and embrace the heterogeneity of the disease. If there is one 

metabolic disease that is a suitable target for a precision medicine approach, identifying 

subpopulations and eventually raising the possibilities to match the therapeutic strategy 

to the disease drivers specific for the affected individual, it is NAFLD. The development of 

such precision medicine approaches will require a large amount of panomic data to create a 

‘Liver Atlas’, that is likely to have a transformative effect on the NAFLD field like the Cancer 

Genome Atlas project56. To create such an atlas, we should regularly perform biopsies, not 

because gastroenterologists like to perform biopsies, but because it is necessary to better 

classify affected individuals. Obtained liver biopsies can be used to deeply phenotype patients 

on single cell or spatial resolved omics level, before and after an intervention, which can be 

used to predict the response to a specific intervention. Therefore, I believe that the liver 

biopsy will not be replaced in the coming decades for a certain biomarker for the diagnoses 

and thus molecular pattern, specific for the patient. It is however undeniable that we need 

biomarkers to track changes over time and to evaluate the impact of specific interventions57. 
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Obviously, this is crucial when we are trying to target appropriate therapies to those who are 

most likely to benefit57. 

Although there is no registered treatment, the future therapeutic landscape is enriched 

with an impressive range of agents with mechanisms of action that target different factors of 

the pathogenesis of NAFLD57. In parallel with the current treatment strategies for hyper-

tension and T2D, the future of NAFLD pharmacotherapy will certainly include combination 

therapies54. Unfortunately, this inevitably will lead to polypharmacy and thereby decreases 

treatment adherence and increases the risk of adverse events and interactions with 

other drugs. Finding a cure that targets different elements or the disease itself instead of 

controlling concomitant metabolic diseases is therefore warranted. Homeostasis and the 

microenvironment of the liver in NAFLD is remarkably different compared to healthy 

livers. In the whole spectrum of the disease (i.e., from steatosis to cirrhosis), the hepatocyte 

exhibits one or more of the following hallmarks: prolonged and generally irreversible cell 

cycle arrest, macromolecular damage, secretory features and deregulated metabolism58. 

Hence, part of the hepatocytes in individuals with NAFLD are considered to be senescent. 

Many of the human cells that have a role in metabolic disease are postmitotic, and the 

repercussions of postmitotic cellular senescence on tissue and health function are ill-

defined59. The role of cellular senescence, however, is specifically relevant for liver disease 

because hepatocytes are considered to be reversed postmitotic cells that preserve their 

proliferating potential enabling that damaged hepatocytes can be replaced by healthy 

cells58. However senescent cells depend on senescence-associated pathways (SCAPs), which 

makes senescent cells resistant to apoptosis60. SCAPs were thus identified as the “Achilles 

heel” of senescent cells and since this discovery, intense research has focused on identifying 

molecules that selectively induce apoptosis in senescent cells61. This has been successful and, 

it is now possible to specifically target senescent cells. Remarkably, according to in vitro data, 

a brief disruption of pro-survival pathways is sufficient to clear senescent cells,61,62. Because 

senescent cells take weeks to reaccumulate, treatment aimed at clearing senescence cells 

(senolytics) can be administrated intermittently, which reduces the risk of adverse effects 

compared to continuous treatment61,62. 

Multiple senolytic candidates have been discovered and are among currently available 

drugs to target senescent cells in a multitude of diseases. Dasatinib, which is an EMA-approved 

oral tyrosine kinase inhibitor and the antioxidant quercetin, which is a flavonoid; present 

in many fruits and vegetables, successfully induce apoptosis in senescent cells in rodent 

and human studies improving meaningful clinical outcomes in patients with idiopathic 

lung fibrosis and diabetic associated kidney disease63,64. The combination of dasatinib 

and quercetin acts on multiple SCAP network nodes and thereby increases the potency 

towards clearing senescent cells, including in the liver62. Despite these exciting translational 
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findings, we must wait for the results of studies assessing the safety and efficacy of this drug 

combination in humans. A proof-of-principle trial with the senolytic combination dasatinib 

and quercetin in patients with liver fibrosis is already on its way. While we wait, the key to 

significantly improve the care of patients with NAFLD lies in adopting a multidisciplinary 

approach combining skills and expertise of multiple (para) medical professions combined 

with dedicated research to find the right treatment for the right patient. 
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NEDERLANDSE SAMENVATTING 

Deel 1. Systeembiologie in metabole ziekten 

Hoofdstuk 1 is een introductie van dit proefschrift. Dit proefschrift beschrijft eerst de 

rol van een systeem biologische benadering om grote hoeveelheden data (hierna omics 

genoemd) te integreren met als doel de hiërarchie in de metabole paden die betrokken zijn 

in de ontwikkeling van metabole ziekten te ontdekken. Gebruikmakend van de opgedane 

kennis in het eerste deel van dit proefschrift, veranderden wij in deel 2 de samenstelling en 

functionaliteit van de darmmicrobiota door middel van interventie studies in mensen met 

als overkoepelend doel om nieuwe behandelmogelijkheden te vinden voor niet alcoholische 

leververvetting (NAFLD). Tot slot hebben wij geprobeerd om nieuwe drijvers van cellulaire 

senescence te identificeren in het laatste deel. 

Hoofdstuk 2 is een overzicht van de kwaliteit van het toenmalige bewijs voor een 

causale rol van de darmmicrobiota in de ontwikkeling van obesitas en type 2 diabetes 

(T2D). Sinds de opkomst van betaalbare “next generation sequencing-technieken” heeft een 

groot aantal studies intrigerende verbanden aangetoond tussen de samenstelling van de 

darmmicrobiota, obesitas en T2D. Studies uitgevoerd in mensen waarin de samenstelling 

van de darmmicrobiota werd veranderd, bijvoorbeeld door antibioticabehandeling of een 

fecestransplantatie (FMT), wijzen op een causaal verband tussen de darmmicrobiota en 

de ontwikkeling van metabole ziekten. Echter is het bewijs voor een causale rol nog erg 

klein. Bovendien bieden deze studies geen mechanistisch inzicht in de wisselwerking tussen 

de darmmicrobiota en het humane metabolisme. Grote prospectieve studies zullen van 

cruciaal belang zijn om bewijs te vinden voor de veronderstelling dat de samenstelling van 

de darmmicrobiota een weerspiegeling is van de ziekte, of dat anderzijds de samenstelling 

van de darmmicrobiota vóór de ontwikkeling van de ziekte al veranderd was en dus 

een drijvende factor is. Om dit bewijs te leveren zijn er dus zowel grote prospectieve- 

als interventie-studies in mensen nodig, in combinatie met mechanistische studies in 

proefdieren en modelsystemen. 

In hoofdstuk 3 valt te lezen dat wij hebben geprobeerd om een darmmicrobiota-

signatuur te ontrafelen voor obesitas, door middel van ‘whole genome shotgun sequencing’ 

van feces van mensen met een grote variatie in de body mass index (BMI). Het BMI van de 

personen varieerde van slank tot morbide obesitas. Uit deze analyses bleek dat een totaal 

van 52 fecale bacteriesoorten significant verschillend waren tussen mensen met en zonder 

obesitas. Ook vonden wij dat de samenstelling van de darmmicrobiota meer dan 50% van 

de variantie in klinische kenmerken van obesitas kon verklaren, zoals BMI, middelomtrek, 

High-Density Lipoprotein en triglyceriden. Daarnaast observeerden wij verschillen in 

metabole paden, potentieel aanwezig in de darmbacteriën bij personen met en zonder 
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obesitas en vonden wij bijzonder sterke associaties tussen aminozuurmetabolisme, diverse 

darmbacteriesoorten en obesitas. Metabole paden die betrokken zijn bij de biosynthese 

van verschillende aminozuren (waaronder histidine, lysine en tryptofaan) waren sterk 

verhoogd bij personen met obesitas, terwijl paden die betrokken zijn bij de afbraak van deze 

aminozuren, met name histidine, waren uitgeput. Dit suggereert dat de darmmicrobiota 

van personen met obesitas meer potentie heeft om verschillende aminozuren te produceren 

in vergelijking met personen zonder obesitas, maar een verminderde capaciteit heeft om 

specifieke aminozuren af te breken. 

Onderzoek naar de rol van de darmmicrobiota in de ontwikkeling van metabole 

ziekten is uitdagend omdat het moeilijk is om biopten te verzamelen van de aangetaste 

organen zoals lever, darm en vetweefsel. Bariatrische chirurgie biedt de unieke mogelijkheid 

om biopten te verkrijgen uit verschillende vetweefseldepots, de dunne darm, lever en zelfs 

bloed uit de poortader. 

In hoofdstuk 4 beschrijven wij de opzet en de doelstellingen van de BARIA-studie. Met 

behulp van dit longitudinale bariatrische chirurgie cohort, wilden we een systeembiologische 

benadering uitvoeren om nieuwe pathogene paden in de pathogenese van obesitas, T2D en 

NAFLD te identificeren. Deze nieuwe paden zouden een target kunnen zijn voor nieuwe 

toekomstige geneesmiddelenontwikkeling. Om genoeg power te hebben om deze nieuwe 

paden te identificeren hebben wij als doel om in de BARIA-studie 1500 personen te includeren 

die een primaire laparoscopische bariatrische operatie ondergaan. Voor de operatie krijgen 

de deelnemers een twee uur durende maaltijdtest (MMT) om de insulineresistentie te 

beoordelen en de dynamische veranderingen in circulerende metabolieten te onderzoeken. 

Ook worden er bloed- en fecale samples afgenomen en worden er vragenlijsten ingevuld, 

waaronder psychologische vragenlijsten. Tijdens de operatie worden biopten genomen van 

drie vetdepots, jejunum, lever en in een deel van de patiënten wordt ook portaal bloed 

afgenomen. 

Als een patiënt opnieuw geopereerd moet worden (revisieoperatie, cholecystectomie) 

kunnen wederom biopten worden afgenomen. De verzamelde feces samples, bloed en 

biopten van de verschillende weefsels kunnen worden gebruikt voor darmmicrobiota 

analyses, RNA-sequencing, en plasma metabolomics (nuchter alsook in de postprandiale 

fase). Door gebruik te maken van systeembiologie beschikken we over de mogelijkheid om 

alle omics-data te integreren om inzicht te krijgen in de hiërarchie van de mechanismen 

die ten grondslag liggen aan de ontwikkeling van metabole ziekten. In de volgende drie 

hoofdstukken beschrijven we zowel klinische als panomics data van de eerste 106 deelnemers 

va de BARIA-studie. 

In hoofdstuk 5 staat beschreven dat wij een nieuw concept hebben ontwikkeld voor 

de stratificatie van personen met obesitas. Dit nieuwe concept maakt geen gebruik van 
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klinische parameters zoals leeftijd, geslacht, aanwezigheid van bepaalde aandoeningen, 

maar stratificeert alleen op de verhouding in plasma metabolieten. Het plasma metaboloom 

geeft een uniek inzicht van de algehele fysiologische conditie van de mens en de interactie 

tussen genetica, leefstijl, medicijngebruik en de activiteit van het darmmicrobioom. In de 

context van obesitas en cardiometabole ziekten wordt metabolomics gebruikt als middel om 

de metabole gezondheid te evalueren, het effect van dieetinterventiestrategieën te meten 

en voorspellende biomarkers te identificeren die een specifieke aandoening karakteriseren. 

Op deze manier hoopten wij kleine nuances tussen personen te kunnen onderscheiden 

omdat deze vaak niet accuraat worden weergegeven door het gebruik van louter klinische 

parameters in complexe aandoeningen zoals obesitas en T2D. Het is namelijk zo dat 

aandoeningen zoals obesitas en daarbij horende comorbiditeiten zoals hypertensie, T2D, 

NAFLD en dyslipidemie als binaire variabelen worden weergegeven (aanwezig of afwezig), 

maar dit geeft de complexiteit van de aandoening en het individu niet goed weer. Zo kan 

het zijn dat de aandoening van een persoon goed, of juist niet goed is gereguleerd. En zo zijn 

er nog tal van andere factoren die niet goed worden weergeven als een aandoening enkel 

als binair wordt geclassificeerd. Deze nieuwe methode leverde vijf verschillende clusters 

in het BARIA-cohort op die we “metabotypes” noemden. Het classificeren van patiënten 

door middel van deze metabotypes stelde ons in staat om associaties en verbanden bloot 

te leggen tussen verschillende darmbacteriën, metabolieten en het transcriptoom van vet 

en leverweefsel. Onze bevindingen suggereren dat stratificatie van patiënten op basis van 

metabotyping, ons nieuwe moleculaire inzichten kan opleveren. 

In hoofdstuk 6 beschrijven we de resultaten van plasma metabolomics analyses op 

zowel nuchtere als postprandiale bloedsamples. We hebben de globale metabole reacties 

onderzocht op een maaltijdtest. We stratificeerden de proefpersoenen op basis van hun 

glucosetolerantie in normale glucosetolerantie (NGT), pre-diabetes en T2D groepen. 

Deze analyses toonden aan dat het aantal metabolieten dat significant verschilden tussen 

deze groepen het grootst was tussen de NGT- en T2D-groepen in de post prandiale fase in 

vergelijking met de nuchtere fase. Hierdoor kregen we nieuwe inzichten in het verstoorde 

metabolisme bij patiënten met insuline resistentie wat niet naar voren zou zijn gekomen als 

we alleen de nuchtere fase plasma metabolomics hadden geanalyseerd. Verder konden we 

de verschillen in plasma metabolieten terug herleiden naar andere omics sets, waaronder 

fecale metagenomics en transcriptomics van lever, vetweefsel en jejunum. We vonden sterke 

associaties tussen metabolieten en genen in de lever, vet en darm. Door het voorspellen 

van de glucose oppervlakte onder de curve (AUC) met omics data, waren we in staat om 

nieuwe drijvers en mogelijke biomarkers voor insuline resistentie te identificeren. Plasma 

metabolomics, zowel in de nuchtere als post prandiale fase voorspelden de glucose AUC het 

beste. Belangrijkste metabolieten in deze machine learning analyses waren fenylalanine en 
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1-carboxyethylfenylalanine, welke mogelijk gebruikt kunnen worden als biomarkers voor 

glycemische controle. De darmmicrobiota samenstelling was minder goed in staat om de 

glucose AUC te voorspellen. 

In hoofdstuk 7 wordt ingegaan op de wereldwijd meest voorkomende chronische 

leverziekte, NAFLD. Naar schatting heeft één op de vier personen in de algemene 

bevolking NAFLD. Deze prevalentie neemt toe tot meer dan 80% bij personen met 

obesitas. De drastische toenemende prevalentie van NAFLD en het gebrek aan effectieve 

en geregistreerde behandelingsmogelijkheden om deze ziekte aan te pakken, zorgt voor een 

grote druk op de gezondheidszorg en economie. Om geschikte, niet-invasieve diagnostische 

methoden en behandelingsopties te ontwikkelen, is het van cruciaal belang om de complexe 

pathofysiologie van NAFLD grondig te onderzoeken. In dit hoofdstuk maakten we gebruik 

van een systeembiologische benadering om zo de bijdrage van verschillende organen aan 

deze ziekte te onderzoeken. We analyseerden transcriptomics data van lever- en vetweefsel, 

fecale metagenoom en plasmametaboloom van 55 vrouwen met en zonder NAFLD. 

Significante verschillen in metabolieten, expressie van genen in de lever en vetweefsel en 

darmmicrobiota tussen vrouwen met en zonder NAFLD werden geobserveerd. Door een 

multivariaat model te ontwikkelen toonden we bovendien aan dat er een aanzienlijke 

interactie is tussen deze verschillende omics-sets. Deze studie biedt een uitgebreide 

panomics-analyse van personen met NAFLD in een vroeg stadium en laat daarnaast een 

nieuwe strategie zien om de pathofysiologie van NAFLD in mensen te bestuderen. 

Deel 2: Van associatie naar causaal bewijs 

Deel 2 laat zien hoe de opgedane kennis beschreven in deel 1 de mogelijkheid bracht om 

van associatie tot causaliteit te komen door middel van het uitvoeren van interventiestudies 

waardoor de samenstelling en functionaliteit van de darmmicrobiota veranderde in 

patiënten met NAFLD. 

In hoofdstuk 8 staat dat wij door vier verschillende experimenten uit te voeren aan 

konden tonen dat de darmbacteriën van mensen grote hoeveelheden ethanol kunnen 

produceren die klinisch relevant kunnen zijn voor de pathogenese en progressie van 

NAFLD. Wij gebruikten hiervoor onder andere bloed uit de poortader. Dit is het meest 

relevante bloedvat om microbieel geproduceerde metabolieten te bestuderen, omdat bloed 

uit het maagdarmkanaal rechtstreeks in deze ader wordt afgevoerd naar de lever. In de 

poortader werden hoge ethanolconcentraties aangetroffen, die significant correleerden met 

NAFLD-parameters. Bovendien zagen wij dat het ethanol in de perifere circulatie toenam 

tijdens een maaltijd. Hoge postprandiale plasma ethanol concentraties correleerden met 

name met een hoge relatieve aanwezigheid van lactic acid bacteriën in de feces. Door het 

remmen van alcoholdehydrogenase, werd het “first-pass effect” van de lever omzeild en steeg 
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de ethanol concentratie met een factor 15 in het perifere bloed bij patiënten met NAFLD. 

Dit effect werd volledig tenietgedaan na behandeling met breedspectrumantibiotica. Wij 

verkregen hiermee causaal bewijs dat de darmbacteriën van mensen grote hoeveelheden 

ethanol kunnen produceren. In hoeverre de aanhoudende endogene ethanolproductie 

causaal betrokken is bij de zeer complexe pathogenese van NAFLD, waarbij een combinatie 

van omgevingsfactoren, genetische varianten, obesitas en een verstoorde lipidenhomeostase 

een rol spelen, moet echter nog verder worden onderzocht. 

In hoofdstuk 9 beschrijven wij de resultaten van een dubbelblind gerandomiseerd 

gecontroleerd onderzoek waarin personen met NAFLD, werden gerandomiseerd naar 

twee studiearmen; slanke veganistische donor (allogeen n=10) of eigen (autoloog n=11) 

FMT. Elke deelnemer kreeg na randomisatie driemaal een FMT met tussenpozen van acht 

weken. Bij elke proefpersoon werd twee keer een leverbiopsie verricht. Een keer voor de 

start en een keer 24 weken na de start van de behandeling om de histopathologie (NASH-

CRN) classificatie en veranderingen in levergenexpressie op basis van RNA-sequencing te 

bepalen. Hoewel de studie niet genoeg power had, werd er een trend in verbetering van de 

necroinflammatie score (lobulaire inflammatie en hepatocyte ballooning) gevonden, ook 

wel bekend als ziekteactiviteit geobserveerd de allogene FMT-groep. Deze FMT bestond 

uit feces afkomstig van veganistische donoren welke een plantaardig dieet met weinig 

dierlijke eiwitten hadden. Bovendien had de allogene FMT een effect op de samenstelling 

van de darmmicrobiota, welke geassocieerd was met zowel gunstige veranderingen in 

plasmametabolieten als de expressie van levergenen die betrokken zijn bij ontsteking en 

lipidenmetabolisme. 

Deel 3: cellulaire senescence, een oude maar nieuwe speler in metabole ziekten 

Dit deel gaat over een zowel een oude als nieuwe speler bij metabole ziekten: cellulaire 

senescence. Cellulaire senescence is een phenomeen dat wordt gekenmerkt door een 

onomkeerbare stop van de celcyclus welke belangrijke fysiologische functies voor de cel 

heeft. Cellulaire senescence is echter ook een kenmerk van veroudering en wordt in verband 

gebracht met verschillende metabole ziekten. 

Hoofdstuk 10 is een overzicht waarin de kwaliteit van het bewijs voor een causale rol 

van cellulaire senescence in het ontstaan van NAFLD wordt samengevat. We bespreken hier 

onder andere studies in proefdieren en mensen waaruit zou blijken dat cellulaire senescence 

een causale rol speelt in de ontwikkeling en progressie van NAFLD. Wij gaan ook dieper 

in op de definitie van cellulaire senescence en bespreken de belangrijkste cellulaire en 

moleculaire kenmerken van senescence in de lever. Tenslotte bespreken we de effectiviteit 

en veiligheid van nieuwe senolytische geneesmiddelen die mogelijk in de toekomst gebruikt 

kunnen worden om NAFLD te behandelen of te voorkomen. 
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In hoofdstuk 11 beschrijven wij het verband tussen insuline en senescence in de lever. 

Dit verband konden wij leggen door gebruik te maken van klinische gegevens, bloed uit de 

poortader, immunohistochemische en transcriptomics data van patiënten met obesitas. Wij 

vonden sterke correlaties tussen markers van cellulaire senescence in de lever met insuline. 

Daarnaast observeerden wij een zeer sterke correlatie van insuline in de poortader en 

senescence in de lever, onafhankelijk van NAFLD. Dit suggereert dat senescence in de lever, 

gedreven door hoge concentraties van insuline, optreedt voordat NAFLD is ontwikkeld. Met 

behulp van een valideringscohort van 180 personen konden wij deze bevindingen valideren. 

In hoofdstuk 12 hebben wij dezelfde aanpak gebruikt als in het vorige hoofdstuk. Hier 

gebruikten we klinische gegevens, immunohistochemische en transcriptomics data van 

patiënten zonder T2D en toonden wij aan dat perifere insulineresistentie sterk gecorreleerd 

is met markers van cellulaire senescence in visceraal vetweefsel. Deze resultaten bevestigen 

eerdere studies die erop wijzen dat cellulaire senescence in vetweefsel een belangrijke rol 

kan spelen in een vroeg stadium van insulineresistentie.
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de manier waarop jij het hoogleraarschap, promovendi, hoofd van drie afdelingen en 

gezinsleven combineert. Je ongekende efficiëntie en doelmatigheid is een inspiratiebron, 

vooral omdat je in de drukte rekening blijft houden met de mensen waarmee je samenwerkt. 

Je probeert het beste uit mensen te halen en dat gaat verder dan enkel de wetenschap en 

carrière. Veel dank voor alle mooie momenten, dat er nog maar vele mogen volgen. 

Beste Bert, wat ben ik dankbaar dat ik jou heb mogen ontmoeten. Ondanks dat je het 

zelf vaak ontkent is je kennis ongeëvenaard. Ontelbaar vaak dacht ik dat ik iets slims en 

innovatiefs had bedacht maar dan kwam jij toch weer met een nieuwe invalshoek, die dan 

vaak weer bleek te kloppen. Wetenschap op zijn mooist. Ooit, zal ik de metabole processen 

in de lever volledig begrijpen en hoef jij me niet meer te corrigeren. Je bent dan ook een 

geweldige supervisor en mentor. Je brengt zoveel rust en laat mij zweven wanneer het kan 

(ethanol na 4-methylpyrazol experiment) en zet me daarna weer met beide benen op de 

grond. Naast de supervisie op het wetenschappelijke gebied ben je er ook op andere vlakken 

voor mij geweest (en nog steeds). Door jou kon ik verder groeien. Mijn dankbaarheid en 

gevoel is moeilijk uit te drukken in woorden maar ik zie het als een zegen dat iemand zoals 

jij er altijd voor me wil zijn. 

Beste Victor, dit hele proefschrift zou er niet geweest zijn als jij het niet in mij zag zitten om 

in jouw ziekenhuis de BARIA-studie op te zetten. De vrijheid die je me gaf om “lekker te 

klussen” greep ik van harte aan, wetende dat als ik er echt niet uitkwam ik terug kon vallen 

op jou. Soms trapte je wel eens op de rem, bijvoorbeeld toen we op een gegeven moment 

een hele afdeling voor het onderzoek hadden geclaimd. Zelfs jij vond dit een beetje te veel 
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van het goede. Ik heb bewondering voor je hoe je om bent gegaan met het faillissement 

van het Slotervaart Ziekenhuis en in alle tumult de rust bewaarde. Wetenschappelijk heb 

ik er bewondering voor dat je echt helemaal niks om impact factors geeft en enkel zuivere 

wetenschap wil bedrijven. 

Beste Hilde, met stip op één heb jij de meeste whatappjes en mailtjes van mij ontvangen. 

Ooit aangeschoven bij een overleg over zonering in de lever en daarna was je niet meer weg 

te denken uit mijn promotieteam. Dank voor al je input, kritische blik en dat je bereid was 

om je fantastische schrijfkunst los te laten op mijn stukken. Ik waardeer je tomeloze inzet 

voor het laboratorium en als moeder van de groep waar iedereen zijn hart kan luchten, 

inclusief ikzelf. Bovenal ben je gewoon echt een lief mens. Aan je wetenschappelijke kennis 

en kunde twijfelt niemand. Toch blijven die bacteriofagen een beetje vaag in metabole 

aandoeningen. Ik wacht ongeduldig totdat je deze gaat linken aan levermetabolisme. 

Dear colleagues from the University of Gothenburg and Copenhagen. Fredrik, it was a 

pleasure and honor working with you on the BARIA cohort in the NNF consortium. Thue, 

your scientific mind still amazes me, your twitter capacities are mind blowing. Jens, I still 

don’t know how you can perform cutting edge science and be CEO of the BioInnovation 

institute, and this with drinking coffee only until 12:00. Valentina, Louise, Annika, Siv 

and Kimberley, thank you for the fruitful collaboration. Your microbiome expertise is 

unparalleled. 

Beste Christophe en Sven, in 2016 verliet ik de stad waar ik mijn hart aan heb verpand, 

Antwerpen. Ik ben dankbaar dat we na al die jaren nog samenwerken. Veel dank daarvoor. 

Geachte leden van de promotiecommissie, prof. dr. Kuipers, prof. dr. Rensen, prof. dr. Beuers, 

prof. dr. De Jonge, prof. dr. Bergman, prof. dr. Houtkooper. Dank voor het zitting nemen in 

mijn promotiecommissie en de kritische beoordeling van dit proefschrift. 

Het BARIA-team. Casper, Hanneke, Ömrüm, Anne-Sophie, Jacqueline, Kadriye en Nienke. 

Wat hebben wij een hoop bloed afgenomen en poep verstouwd. Af en toe leek het net goede 

tijden slechte tijden en gelukkig bestaat er zoiets als relatietherapie, maar dan voor collega’s. 

De goede tijden overheersten gelukkig en waren ook echt goed. We konden ook genieten 

van onze samenwerking. Casper, je hebt delegeren tot kunst verheven maar hard werken ga 

jij ook niet uit de weg. Ik heb veel respect voor je hoe jij je moeilijk analyses en kleuringen 

eigen maakt zodat je dan toch ook weer onafhankelijk kan zijn van zo’n beetje iedereen. 

Ik ben er dan ook van overtuigd dat je buiten het ziekenhuis een prachtige succesvolle 
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carrière tegemoet gaat. Hanneke, waar zou de BARIA-studie zijn gebleven zonder jou? Van 

elke patiënt ken jij de voorgeschiedenis en de grote levensgebeurtenissen. De persoonlijke 

benadering en oprechte interesse in de mens achter de patiënt is de reden dat we zo weinig 

loss to follow-up hebben. De BARIA zou jouw laatste relaxte baan zijn om je carrière af te 

sluiten. Het liep iets anders maar wat heb ik van jouw tomeloze inzet en passie genoten. 

Je bent een geweldig mens met een groot hart en ik ben blij dat ik je heb leren kennen! 

Nienke, onze chirurg in spe, wat kan jij lekker beuken, hopelijk mag je binnenkort officieel 

aan je snijkunsten werken. Jacqueline, karaoke met jou was fantastisch en wat ben je een 

sociaal en lief mens. Kadriye, welkome versterking voor het BARIA-team, je pragmatisme 

wordt op prijs gesteld, succes met de echo’s. Anne-Sophie, wat hebben we heerlijke gelachen 

en ook heerlijk ruzie gemaakt. Ik ben blij voor je dat je zo je draai hebt gevonden in Brabant. 

Hoe dan ook komen onze gezamenlijke stukken ooit nog een keer af. Daniko en Max, jullie 

zijn waardige opvolgers. 

Collega’s uit het Slotervaart en Spaarne Gasthuis. Thomas, de vader van de groep. Vaak 

heb ik dubbel gelegen om je grappen en originele blik op de dagelijkse gang van zaken. 

Je bent degene die zijn zaakjes altijd keurig op orde heeft en daar was je promotie een 

voorbeeld van. Een boekje vol met retrospectief onderzoek van soms twijfelachtig allooi 

(citaat uit je eigen dankwoord) maar dan wel weer een ZonMw beurs binnenhalen waar 

uiterst klinisch relevante onderzoeksvragen mee beantwoord zijn. Wel beetje jammer dat 

microbioom onderzoek na bariatrische chirurgie totaal verwoest gaat worden dankzij de 

inname van UDCA. Godzijdank is Nederland zo bureaucratisch dat het nog jaren duurt 

alvorens UDCA opgenomen wordt in de richtlijn. Floris, jij was altijd wel in voor een 

praatje, een koffietje of een potje tafeltennis. Je bent de rust hemzelf en eigenlijk een veel 

geschiktere vader voor de groep. Dat nam je ook wel letterlijk en plots was je vader van twee 

kinderen. Het was nog gepland ook. Ik heb veel respect voor je hoe je alle ballen hooghoudt 

en gestaag verder werkt als voorzitter van onze stichting. Je integriteit en je zelfbeheersing 

om compromitterende foto’s van bepaalde personen niet te delen waardeer ik (en Thomas) 

enorm. Laten we die wintersport nog een keer overdoen! Paula, toen ik jou leerde kennen 

was je net met je “green happiness” sapjes bezig. Eigenlijk best goed voor je darmflora. Je 

sapjes mochten dan wel groen en happy zijn, de discussies over een der welk onderwerp 

waren altijd vol passie. Op het handbalveld was je meer van de kleur geel en rood, natuurlijk 

altijd onterecht. Ik vind het bijzonder knap dat al die kasten vol vragenlijsten toch gewoon 

zijn geanalyseerd en je vorig jaar bent gepromoveerd. Daarnaast heb ik veel waardering 

voor je inzet en collegialiteit. 
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Karin, mijn allereerste kamergenoot. Een groter verschil in persoonlijkheden bestaat er 

eigenlijk niet en dat is zo’n beetje het enige waar wij het volledig met elkaar over eens zijn. 

Ik heb dan ook veel van je geleerd. Maimoena, mede cola drinker, dank dat ik af en toe op 

je polikamer op de onderzoeksbank kon neerploffen op vrijdagmiddag. Ik heb bewondering 

voor je collegialiteit en verantwoordelijkheidsgevoel. Sylke, de meest gestructureerde en 

doelgerichte collega van de groep met als levensmotto: “work hard, play hard”. Als enige 

collega had je een kamer alleen en dat kwam goed van pas want dan kon je tenminste beetje 

doorwerken. Op borrels, wintersport, skiweekend of congressen was dat wel anders en was je 

altijd de gangmaker met als hoogtepunt de UEG in Barcelona. Het lot heeft bepaald dat je 

niet in het ziekenhuis gaat werken maar ik weet zeker dat je ook buiten het ziekenhuis een 

mooie toekomst tegemoet gaat samen met Koen en Gosse. 

Mijn dank gaat ook uit naar de internisten van het Slotervaart. Marcel, Jan-Willem, Hans-

Martin, Saskia, Fanny, Roeland en Eelco. Een groep zo uiteen zien vallen is niet niks maar 

gelukkig (en vanzelfsprekend) zijn jullie allemaal goed terecht gekomen. Dees, dank voor 

je steun en geloof in mijn projecten. Nico, dank voor alle papers die ook maar iets met 

ethanol te maken hadden. Verder gaat mijn dank uit naar alle doktersassistenten van de poli 

bariatrie Jantien, Crista, Jorinde en Simone. 

Zonder chirurgen geen bariatrie dus ook geen proefschrift. Maurtis, Sjoerd, Arnold, Yair en 

Rutger, veel dank voor het meehelpen om een half mens in de vriezer te stoppen. Maurits, 

levensgenieter, ik benijd je levenswijze. Wanneer gaan we nu eens samen kiten? Sjoerd, 

toch mooi hoe je van “hoezo zoveel biopten” naar “wil je nog wat meer?” bent gegaan. 

De reden hierachter is dat je je zorgen maakte over de gezondheid van jouw patiënten en 

dat kan ik alleen maar waarderen. Patiënten zijn in meer dan goede handen bij BARIA 

Nederland met jou als hoofd. Arnold, wat kun je heerlijk kritisch zijn en de vinger op de 

zere plek leggen, maar wat verwacht je anders van iemand die is opgeleid in Leuven, de 

twee na beste universiteit van België. Yair, de onvoorwaardelijke steun die jij voor de groep 

hebt is noemenswaardig en is een voorbeeld voor mij. Rutger, nieuwe aanwinst, heerlijk 

pragmatisch en je gaat nog promoveren ook. Als dat geen bier drinken wordt. 

G1 boyz: Ilias, Koen, Torsten, wat een wilde rit was dit mannen. De avondjes weg met jullie 

waren nooit saai en liepen eigenlijk altijd uit de hand. Details zal ik de lezers besparen, 

maar het was goed. Ilias, ik snap nog steeds niet helemaal waarom we elkaar blindelings 

vertrouwden om infusen bij elkaar te prikken na een avondje stappen. Dank voor de 

vriendschap mannen.
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Collega’s van het vasculaire lab op G1. Wat is het toch fijn om de dag te starten met een 

bakje koffie in de koffiekamer rond 08:00 uur. Ondanks dat de werkdag pas echt begon rond 

09:00 uur had je toch altijd het idee dat je al lekker bezig was geweest. Maar leg me nu toch 

nog een keer uit waarom je niet met een witte jas in de koffiekamer mag komen, en dat je 

bij overtreding koekjes moet trakteren. Ik denk dat ik er persoonlijk verantwoordelijk voor 

ben dat iedereen 1k g per jaar gewicht is aangekomen. Dit alles onder streng toeziend oog 

van Wil. Zo streng als op de koekjes was je ook in het netjes pipeteren. Nogmaals en alvast 

mijn excuses voor het laten aanstaan van de computers. Stefan, dank voor de hulp met de 

kleuringen. Is het nu Texas Red, Fitch of toch Cy-3, irritant hè die TAF kleuringen, maar wel 

leuk. Hans, ongelooflijke held, veel dank voor de magic mix en de eerste bepalingen van 

ethanol. Maaike, je bent een vrouw om van te houden en je vriezerindeling is beter dan 

die van mij maar toch houden we het lekker zo. Veel dank voor al het werk wat je voor de 

BARIA doet ondanks alle andere werkzaamheden die je hebt. Han, onze HPLC-, tennis-, 

en niet te vergeten, op de skipiste “carvende” held. Dank voor al je werk. Miranda, Jorge en 

Alinda, het lab is niet compleet zonder jullie. Geesje, eindelijk hebben we een metaboliet 

volledig uitgewerkt, en kijk eens naar het resultaat. Misschien hadden we wat eerder naar je 

moeten luisteren. Dank voor de fijne introductie die je me hebt gegeven op het lab. Aldo, 

stille kracht met een bak aan kennis en ervaring, je innovatieve manier van werken vind ik 

mooi. Jef, je onderzoek is minstens net zo goed als je bierbrouw kunsten. Dank voor de vele 

koffie momentjes. Nu ik erover nadenk hebben we te weinig bier gedronken, hint. Elena, 

dank voor al je support. Agnes, Tanja en Silvia, onze afdeling zou gewoon niet kunnen 

draaien zonder jullie, dank voor al jullie support. Ook veel dank aan Jorn en Xanthe van het 

Microbiota Center Amsterdam voor jullie tomeloze inzet en de strakke regie op de klinische 

data. 

Alle onderzoekers van het lab: Kim, alleskunner en doener, dank voor alle gezelligheid 

tijdens de koffie momentjes. Ik weet zeker dat je het gaat maken in de States. Moritz, wat ben 

je een fijne collega die bovenal gewoon hard werkt. Ik heb bewondering voor je inzet en je 

collegialiteit. Anne-Linde, als dokter muizenproeven doen is geen sinecure maar toch doe je 

het met ogenschijnlijk weinig moeite. De meest indrukwekkende congressen heb ik samen 

met jou meegemaakt en wat hebben we een plezier gehad. Dank voor de fijne tijd. Coco, de 

definitie van hard werken. In twee jaar tijd heb je een cohort van 500 patiënten opgebouwd 

en rond je succesvol twee interventie studies af. Ongelooflijk knap en wat heb ik een respect 

voor je. Nog zo’n harde weker, Madelief, grootgebruiker van de MRI in het weekend. Naast 

het harde werken kun je ook heel hard feesten en dat is precies waarom je zo’n leuk mens 

bent. Barbara, je bent goed in pipeteren, werken met grote datasets en interventiestudies, 

de combinatie om het te maken in de onderzoekswereld. Veera, toch knap dat je een 
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Nederlandse PIF geschreven hebt in het begin van je promotietraject zonder een woord 

Nederlands te spreken. Om dan ook nog een studie succesvol af te ronden vind ik erg knap. 

En dan de nieuwelingen: Merel, Melany, Mia, Katie, Q en Bas, er wordt ogenschijnlijk heel 

erg hard gewerkt en zelfs mijn tv-scherm en pocket super Nintendo zijn weg gedaan, ga zo 

door. Charlotte T, wat fijn dat we weer samenwerken maar dan in het AMC.

De oude Max-minions, Guido, Annefleur, Nicolien en Julia een voor een zijn jullie bijzondere 

mensen en ik dank jullie voor de fijne samenwerking en warme ontvangst in de groep. Guido, 

ik genoot van de momenten dat we probeerden samen patiënten in de Ralstonia studie te 

includeren, wat een opgave was dat zeg. Blijf het bijzonder vinden dat jij zo positief bleef en ook 

bleef geloven in de studie. Anne-Fleur ik heb bewondering voor hoe jij met alle tegenslagen 

in korte tijd bent omgegaan en nog altijd positief en vrolijk bent. Nicolien, dank voor alle 

tips variërend van wetenschap tot het vaderschap, ik heb er veel van opgestoken. Andere 

onderzoekers van het oude F4/M0/1 en VU, Floris, Frits, Eva, Kristien, Nick, Shirin, Tycho, 

Anne-Marieke, Valerie, Hanke, Arjen, Silvia, Rens en Lotte dank voor alle leuke momenten. In 

het bijzonder nog Renate voor alle leuke uitstapjes. Was toch een ander tijdperk he. 

Zonder data scientists en machine learning experts geen boekje. Mark, wat was het mooi om 

samen helemaal op te gaan in het ethanol stuk. Zonder jouw advies om voor clindamycine te 

gaan weet ik niet of de studie zo succesvol zou zijn geweest. Je inzet daarnaast is ongeëvenaard 

en daar ben ik je enorm dankbaar voor. Andrei, veel dank voor de analyses en je geduld. 

Vaker wel dan niet moest de onderzoeksvraag toch net weer even anders. Ulrika, ongekend 

talent, wat jammer dat je net nu het leuk begint te worden weer teruggaat naar Scandinavië. 

De man/vrouw paper komt af, ik beloof het. Patrick, als faagspecialist breng je ongekend 

veel expertise mee en dat is hard nodig om de dark-matter puzzel een beetje lichter van 

stof te maken. Manon en Eduard, ik heb er geen actieve herinnering aan dat ik jullie heb 

lastiggevallen om informatie te krijgen over analyses. Ik heb wel een actieve herinnering dat 

het altijd gezellig was als ik jullie even kwam storen. 

Toen het Slotervaart failliet ging konden we ons onderzoek voortzetten mede omdat we 

zo hartelijke zijn ontvangen op de clinical trial unit (CTU) van de afdeling vasculaire 

geneeskunde van het AMC. Veel dank gaat dan ook uit naar Diona, Hans, Liesbeth, Linda, 

Marianne, Nanet, Petra, Sandra en Tanja. In het bijzonder wil ik Daniela bedanken. Je bent 

nagenoeg altijd positief en geeft op een hele fijne manier leiding aan het CTU. Zelfs toen je me 

met 130 km/uur over de vluchtstrook naar het ziekenhuis in Leiden bracht omdat Charlotte 

daar opgenomen was bleef je positief. Ik hoop dat we nog lang kunnen samenwerken. We 

gaan iets ontzettends moois maken van alle epigenetica projecten! Ook wil ik de Spaarne 

academie, onder bezielende leiding van Greetje bedanken voor de hartelijke ontvangst. 
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Beste bazen van de vasculaire, Harry, Erik, Bert-Jan, Danny, Kees, Nordin en Onno, wat 

legden jullie de lat altijd hoog, zowel tijdens de journal club meetings als tijdens het 

onderzoeksproces zelf. Vanzelfsprekend sijpelde dit door, ook naar mijn onderzoek. Veel 

dank daarvoor. Nordin, de Amsterdamse branie had je als geboren Limburger altijd al. Geen 

wonder dat je helemaal op je plek zit in het AMC. Ik kijk uit naar onze verdere samenwerking. 

Daniël, veel dank voor je scherpe en kritische blik en je bereidheid om mee te denken, zelfs 

als je daar eigenlijk helemaal geen tijd voor hebt. Je vergelijking met Narcos zal me altijd 

bijblijven. 

Joanne, die ballooning van die hepatocyten blijft lastig. Dank dat je me zo kritisch hebt 

leren kijken naar leverweefsel. Gelukkig hebben we nog zo’n kleine duizend biopten te gaan 

dus als het aan mij ligt, werken we nog lang samen. 

Collega’s uit het Groene Hart Ziekenhuis. Ik kan me geen fijnere plek bedenken waar ik 

mijn vooropleiding had willen doen. Na een lang promotietraject was het spannend om 

weer te beginnen in de kliniek maar het GHZ voelde als thuiskomen. Annewieke en Ted 

wat zijn jullie fijne opleiders die echt staan voor “hun” assistenten. Ted, je bent er altijd 

voor mij geweest wanneer ik je nodig had en dat waardeer ik ontzettend. De fijne en veilige 

sfeer wordt mede gecreëerd door alle andere internisten, longartsen, cardiologen en MDL-

artsen. Het warme welkom dat ik voelde was ook te danken aan de arts-assistenten. Marvyn, 

Suzanne, Nicky, Roos, Friso, Wouter, Cynthia, Jarieke, Michiel, Robert, Marjella, Lars, Fleur, 

Sharisa, Charlotte, Maria, Marlot, Jesse, Nina, Marloes, Kevin, Renske, Laurien en alle andere 

assistenten. Bedankt voor de collegialiteit en goede sfeer. 

Maarten, dank voor het vertrouwen om bij jullie te mogen starten met de opleiding en veel 

dank dat je altijd meedenkt met onderzoek en meehelpt om patiënten te werven. 

Ruud, je flexibiliteit en omgang met patiënten is voor mij een groot voorbeeld. Veel dank 

dat ik vaak tussendoor even naar het Alrijne kon komen voor een oogcheck. 

Lieve paranimfen, lieve Ömrüm, duizendpoot. Wat ben ik blij dat jij bij mijn verdediging 

naast mij staat. Als er iemand mij uit de brand kan helpen dan ben jij het wel met je 

fabelachtige manier van presenteren en overtuigingskracht. Je verzet ontzettend veel werk 

en bent erg succesvol in wat je doet en blijft daarbij bescheiden. Het mag best wat Hollandser 

zo af en toe. Veel dank dat we vrienden zijn geworden. My dearest Torsten, what a crazy ride. 

We had so much fun and I’m grateful to have shared this journey with you. You were there 
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for me when I needed you. Let’s drive to Heidelberg together, one more time. Thank you for 

your support throughout the years and for being a friend. 

Kevin, Rogier, Onno, ik beschouw het als een groot voorrecht om zo’n hechte vriendengroep 

te hebben. Vanzelfsprekend zien we elkaar wat minder dan voorheen maar als we elkaar 

zien is het gevoel nagenoeg hetzelfde als tijdens onze studententijd. Dat het nog lang zo 

moge blijven. 

Lieve Rob en Gerda, ik prijs mij gelukkig met jullie als schoonouders. Veel dank voor alle 

etentjes en uitjes. Vanaf het begin was het altijd een feestje om bij jullie te komen eten. Het 

op de juiste waarde weten te schatten van wijn in combinatie met goed eten hebben jullie 

mij dan ook bijgebracht. Bovenal ben ik dankbaar dat jullie er altijd zijn wanneer we jullie 

nodig hebben.

Lieve Joppe, mijn grote broer. Je bent onbaatzuchtig en je probeert altijd het goede te doen 

voor je medemens. Ik ken weinig mensen die als doel in hun werk hebben om zichzelf 

overbodig te maken in plaats van onmisbaar. Hierdoor ben je dan juist van onschatbare 

waarde. Samen met Marlies en je dochters bouw je verder aan de toekomst op een plek waar 

al zo’n lange geschiedenis ligt van onze familie. Ik hou van je. 

Lieve mama, ik heb altijd jouw onvoorwaardelijke liefde en steun ervaren en mijn kinderen 

ervaren die nu ook. Je bent altijd positief en probeert altijd iets moois van het leven te 

maken. Vanaf mijn derde jaar gingen we elk half jaar met de trein naar het AMC voor mijn 

diabetescontrole. Je maakte er een leuk uitje van en leerde mij vanaf jongs af aan te kijken 

naar wat wel kan in plaats van te denken in belemmeringen. Deze positieve en creatieve 

insteek helpt mij nog elke dag. Lieve papa, ik mis je nog elke dag. Kon je me nu maar zien. 

Wat had ik graag een colaatje met je willen drinken op het eindresultaat en een knuffel van 

je gehad. Ik hoop dat je trots op me bent. Weet dat ik van je hou. 

Lieve Charlotte, voor jou heb ik nog de meest bewondering. Ik zou niet weten welke andere 

vrouw ter wereld het uit zou houden met een man zoals ik waar “ik kom over 5 minuten 

naar bed” eigenlijk betekent, tot over 3,5 uur. Ik zal in ieder geval bij deze beloven dat ik 

nooit meer zal zeggen dat het hierna rustiger gaat worden. Wat ik ook beloof is dat ik er 

altijd voor jou en de kinderen zal zijn. Het is moeilijk in woorden uit te leggen hoeveel ik 

van je hou. Je bent de moeder van onze kinderen, het allermooiste geschenk. 

Lieve Hugo en Louise, jullie vervullen mijn dag met vrolijkheid, liefde en plezier (en snot). 

Wat is het genieten om jullie op te zien groeien, elke dag weer. 
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PHD PORTFOLIO
 

Name PhD student:  A.S. Meijnikman 
PhD period:  June 2016 – March 2021 
Names of PhD supervisor(s) & co-supervisor(s):  Prof. dr. M. Nieuwdorp, Prof. dr. A.K. Groen, dr. V.E.A. Gerdes,  

dr. H.J. Herrema

1. PhD training

Year ECTS

General courses 
BROK (basiscursus regelgeving klinisch onderzoek) 2016  1.0

Seminars, workshops and master classes
- Weekly journal club, department of vascular medicine
- Weekly clinical education, department of vascular medicine
- Monthly research meeting, Spaarne Gasthuis
- Two weekly Diabetes AMC/VUMC meeting
- Monthly Microbiota journal club

2016-2021
2016-2021
2016-2021
2016-2021
2016-2021

5.0
5.0
1.0
2.0
2.0 
1.0

Presentations (oral)
- EASL ILC 2022: microbiome produced ethanol: an underestimated burden on the liver. 
- Digestive Disease Days: microbiome derived ethanol and non-alcholic fatty liver disease 
- AG&M: Treating NASH 
- Student en leefstijl symposium: Non-Alcoholic Fatty Liver disease
- NNF challenge symposium 2021: Eat before you drink
- Keystone symposia: hyperinsulinemia, a key player in hepatic and adipose tissue cellular 

senescence 
- NNF challenge symposium: looking beyond the fecal bias
- UEG week: Geographic and ethnicity effects on microbiome
- DSMBS Does Mini Gastric Bypass beat Roux-en-Y Gastric Bypass in glycemic control? 

2022
2022
2022
2022
2021
2020

2019
2019
2017

0.5
0.5
0.5
0.5
0.5
0.5

0.5
0.5
0.5

(Inter)national conferences
- EASL ILC, London, England
- Digestive Disease Days
- Keystone symposia: obesity and NAFLD mechanisms and therapeutics, Banff, Canada
- EASL ILC, Vienna, Austria
- UEG week, Barcelona, Spain
- EMBO | EMBL symposium: The human microbiome, Heidelberg, Germany
- Amsterdam symposium on vascular & metabolic disease, Amsterdam, The Netherlands
- NNF challenge symposium, Copenhagen, Denmark
- World obesity week, Washington DC, USA 
- DSMBS, Netherlands 

2022
2022
2020
2019
2019
2018
2018
2019, 2021
2017
2017

1.0
0.5
1.0
1.0
1.0
1.0
0.5
1.0
1.0
0.5

2. Teaching

Year ECTS

Tutoring, Mentoring
Keuze onderwijs Cardiovasculaire Research and Care, Bachelor year 2 medicine 2018, 2019  1.0 

Supervising 
- Master student Eline Bakker
- Master student Natasha Bosma

2017
2018

2.0
2.0 

Other
Consultation at the outpatient department for bariatric surgery Spaarne Gasthuis,  
0.4 fte per week 

2016-2020 96
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3. Parameters of Esteem

Year

Grants
- ZonMw Rubicon
- Niels Stensen Fellowship 
- ZonMw leren van elkaar 
- ZonMw Goed Gebruik Geneesmiddelen Rediscovery 
- Phoenix Foundation
- EFSD young investigator grant
- Subsidie Commissie Stimulering Wetenschap Spaarne Gasthuis (REFER trial)

2023
2022
2022
2022
2021
2021
2020

Awards and Prizes
- EASL ILC young investigator bursary 
- EFSD young investigator award 
- EASL NAFLD summit: young investigator bursary
- Krom Fund exchange program with Mayo Clinic Rochester

2022
2021
2019
2018
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