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Abstract
van Doorn et al. (2021) outlined various questions that arise when conducting Bayesian model comparison for mixed effects
models. Seven response articles offered their own perspective on the preferred setup for mixed model comparison, on the
most appropriate specification of prior distributions, and on the desirability of default recommendations. This article presents
a round-table discussion that aims to clarify outstanding issues, explore common ground, and outline practical considerations
for any researcher wishing to conduct a Bayesian mixed effects model comparison.
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Marginality, Interactions, and Defaults

Opening Statement

One of the central topics in this special issue has been
the principle of marginality. Discussion on this principle
dates back to Yates (1935), and has been repeatedly referred
to in the (mixed) linear modeling literature. The main
argument in favor of this principle is that models that
include an interaction are rarely theoretically meaningful
when they do not also include the constituent main effects.
Specifically, it is hard to conceive of plausible cases where
an effect is perfectly balanced, such that the average effect
is 0, while different from 0 for certain covariates. The
principle of marginality implies that the most commonly
used model comparison for factorial designs (i.e., the
Balanced null comparison, or its frequentist analogue type
3 sum of squares) ought to be replaced as the default
option by the more theoretically meaningful Strict null
comparison (or its frequentist analogue type 2 sum of
squares). As noted by Rouder et al. (2022), this does
not release researchers from the obligation of carefully
considering their modeling choices, but the Strict null
comparison may serve as a better starting point. In the
context of mixed effects models, we are already excluding
certain models a priori because they are not considered
meaningful (e.g., a model without random intercepts or
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fixed effect, but with random slopes1), so why not remove
one more model from the mix? The critical issues seem
to be (a) whether or not particular models should be
excluded beforehand; (b) if so, what models these should
be. Has anybody changed their mind on the issues since
reading the other contributions (specifically the Rouder et
al. paper)?

Andrew Heathcote and Dora Matzke

Our objection to adhering to marginality is illustrated in
Fig. 1, which construes the same data set in two different
ways. Despite both construals having two null effects, and
being based on the same data, adhering to marginality
produces a contradictory outcome, licensing interpretation
of the non-null effect in Fig. 1b but not Fig. 1a. One might
object to “fine-balance” required for the null effects, but a
further analogous example described in the figure caption
shows such null effects are plausible in an experiment using
commonplace controls, and again contradictory outcomes
are produced by adhering to marginality. We believe
these examples illustrate why adhering to the principle of
marginality can lead to an unfortunate dependence of the
statistical models one is licensed to test on the intentions
and opinions of the analyst.

In summary, our original commentary found a rigorous
mathematical basis for the principle of marginality only
with continuous covariates, not in ANOVA designs. We
think examples like the foregoing reject the assertion of
Nelder (1977) that marginality-violating ANOVA models
are “of no practical interest” (p. 50) because in general
they clearly do not always correspond to what he claimed
are “unrealistic hypotheses” (p. 51). We do not deny that
there can be situations in which particular models should
be excluded because they do not make psychological sense,
but we believe that marginality does not provide general
guidance on this issue with fixed effects, and it is unclear to
us why that should be different for random effects.

Jeff Rouder

The principle of marginality does not rule out the crossover
interactions in Fig. 1a nor does it prevent the data recoding
in Fig. 1b. What it says is that perfect crossovers are
not likely; instead, crossover interaction likely entails
corresponding main effects. In the current example with

1

Yijm ∼ N(μ + xj θi , σ
2)

θi ∼ N(0, σ 2
θ ),

where θi denotes the random slopes

Democrats and Republicans and hippies and hunters, there
are two main effects. The first is about the favorability
of hippies and hunters averaged across Democrats and
Republicans. Is there a perfect balance here so that the
average favorability is the same? How about hunters vs.
Black-Lives-Matter protesters; would that upset this perfect
balance? Or hippies vs. pro-life protesters? The second
main effect is about Democrats or Republicans. Do we
really believe there is no overall effect of party affiliation
on rating people in general? Maybe Democrats by their
nature are big-city snobs who rate everyone lower; maybe
it is just the opposite. And would it not depend on how
we defined a Democrat/Republican or whether we included
certain regions (say lifelong Democrat vs. recent Democrat;
including Guam and Puerto Rico vs. not)? I suspect that
perfect balance of main effects does not exist conditional on
an interaction.

The principle of marginality is not about the presence of
crossover interactions. It is about the corresponding main
effects. Assuming there are no main effects (of Democrat-
vs-Republican or of hippy-vs-hunter) when testing for an
interaction is dangerous as it implies perfect balance. And
this perfect balance relies on magical levels, that is, just the
right definition of Democrat or Republican and of hippie
and hunter. In science, there is no magic, so include main
effects in models with interactions. It’s not a matter of math
or statistics or rigor; it is just common sense. It would be
helpful if someone could provide a scenario where exact
balance might conceivably hold.

David Kellen

Summarizing Rouder, the marginality principle establishes
that interactions are in all likelihood accompanied by main
effects. An interaction-only model is deemed implausible
because of the perfect balance that it implies.

The example provided by Heathcote and Matzke shows
how main effects and interactions can “switch places”
as a function of how variables are coded (e.g., absolute
vs. relative terms). To make the point clear to everyone,
Tables 1 and 2 show the zero-sum contrast coding associated
with the two scenarios in Fig. 1—notice the swap between
the rightmost two columns (in bold and italics).

What Heathcote and Matzke’s example shows is that the
suspicions being raised by the marginality principle do not
apply to the contrast codes themselves—which is all that the
ANOVA model “knows”—but to the analyst’s thinking; i.e.,
how they are coding their variables. After all, it’s the exact
same model in both cases.

Now, I’m all for developing ways to sharpen or discipline
researchers’ thinking. But I don’t see how that is to
be achieved by issuing a ban on an arguably abstract
model comparison and/or summoning all kinds of thorny
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Fig. 1 The figure depicts results for a design in which raters (Repub-
licans or Democrats) indicate their approval for actions performed by
two groups (Hunters and Hippies). a One researcher analyzes these
data in terms of this literal design and finds no main effects but a strong
interaction. b Another plots it in terms of their theoretical prediction
that approval is higher for groups whose beliefs are more congruent
with those of the raters (Republicans = Hunters, Democrats = Hip-
pies), and finds a strong main effect of this factor without the other
main or the interaction effect. The same outcome could occur when

the rated groups are novel (“Snurgels”/“Wurgels”) with characteristics
and scenarios developed to elicit equal average ratings, and partici-
pants are randomly allocated to provide ratings from the point of view
of someone with “Snurgelish” or “Wurgelish” characteristics. In this
case, both rater and group factors can be reasonably assumed to have
null effects in expectation. Note that these examples are not meant to
imply that theory-based construals can or will always correspond to
non-null main effects rather than interactions, the obverse seems to us
equally plausible

ontological considerations (are point nulls or perfect
cancellations realistic?) based on how we name a vector.
The effort appears to be misplaced. I ammore in favor of the
kind of recommendations found in the social-psychological
literature, which focus on appeals to theory and richer
experimental designs (see Brauer and Judd, 2000).

Henrik Singmann

The argument that model comparison should adhere to the
principle of marginality is in my view a statistical “no true
scotsman” fallacy, essentially an argument about statistical
purity. The question Rouder poses is as follows: Can there
be a cross-over interaction that perfectly cancels out the
main effect? Whereas one can probably come up with
examples where this might be the case, Rouder is right
that it is unlikely. Given this unlikeliness—which seems to
be nothing more than a violation of an imagined statistical

purity—he demands we ban the corresponding models from
our statistical toolbox.

The problem with this argument is that it places statistical
purity before statistical practice. In statistical practice,
models that violate marginality serve a clear purpose; to
test whether a lower-order effect is zero while allowing
the higher-order effect to be accounted for. Even though a
perfect cross-over interaction that cancels out a main effect
is unlikely for factorial ANOVA, we still want to know
whether for our concrete data we have evidence for the main
effect. Likewise, even though a zero fixed effect but non-
zero random slope might be unlikely in a mixed model, we
still want to know whether for our concrete data we have
evidence for the fixed-effect.

Banning certain models for reasons of statistical purity
unduly restricts statistical practice. The alternatives, such as
Rouder’s Strict null comparison, simply do not permit the
type of inference that are of primary interest in an applied

Table 1 Zero-sum contrast coding associated with the scenario in Fig. 1a

Subject group Target group Effect of subject
group

Effect of target
group (absolute)

Interaction

Republican Hippies −1 −1 +1

Republican Hunters −1 +1 −1

Democrat Hippies +1 −1 −1

Democrat Hunters +1 +1 +1
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Table 2 Zero-sum contrast coding associated with the scenario in Fig. 1b

Subject group Target group Effect of subject
group

Effect of target
group (relative)

Interaction

Republican Hippies −1 +1 −1

Republican Hunters −1 −1 +1

Democrat Hippies +1 −1 −1

Democrat Hunters +1 +1 +1

setting. Let’s not throw out the substantive baby with the
statistical bathwater.

RichardMorey

I take it for granted that all discussants agree on the idea
of modeling as an iterative, judgment-laden process, and
likewise that no person (including the authors of the Rouder
et al commentary) believe in a “ban” on particular model
specifications. “Interaction” is an idea that has at least
two senses: there is the mathematical idea, as expressed in
contrast coefficients or the “parallel lines” heuristic; then,
there is the scientific idea, which is less precise. Perhaps,
the clearest way we can see the dissociation between the
mathematical and scientific use of “interaction” is that
we can find spurious interactions from, say, ceiling/floor
effects. These are, mathematically definitely interactions:
there is no way for effects to be additive when there is
an upper/lower bound. There is nothing “spurious” about
these interactions, in a purely mathematical sense. There
is definitely a lack of additivity. Rather, an interaction
depending on a ceiling or floor effect is spurious because it
depends on the representation of the problem, which leads
to a more complicated expression of a data pattern than
necessary. Sometimes if we change the representation of
the problem, we can get a much simpler way of expressing
what’s going on.

Heathcote and Matzke’s example shows another exam-
ple: if we change the representation of the factors, the
interaction “disappears.” This means that the “literal” repre-
sentation of the factors was lacking something. If an inter-
action can be represented as a main effect, then that says
something important about the problem: In the example,
for instance, it means that congruence in identity appears
fundamental.

Any modeling exercise must begin with a choice
of problem representation, and that representation can
be revised. If we can code important insights in the
representation, instead of in a multiplicity of models, we
should.

If we do this, then an interaction can be removed by
a mere recoding. What then? It means we need to revise
what we think an “interaction” is. I’ll leave aside issues

of transformations of the measure for now (though the
need to consider them is a corollary of my view2), but
one might demand that an interaction not be removable by
mere recoding: that is, we need all the available degrees
of freedom to account for the data pattern. This is the best
representation of the idea that “the effect depends on the
factor levels, so something complicated is going on.”

If we can accept that the idea of an interaction requires
all available degrees of freedom, then this implies that we
include all main effects with an interaction, because this
model best represents the “it’s complicated” idea. The pure
crossover implies “let’s rethink this.” Rouder et al’s point
might have better been qualified by “once we’re happy with
the representation of the problem.”

David Kellen

In my view, the second question posed by Van Doorn et al.,
“what are the relevant model comparisons for an interaction
effect in a two-factorial design?” presupposes the existence
of a general answer that can be figured out “in the abstract,”
without any consideration for the substantive matters that
different researchers are dealing with. The appeals to
authority, which Heathcote and Matzke (this issue) criticize
in their response, reinforce this view that we are dealing
with an issue that can be settled from the bench. What
Singmann et al. (this issue) tried to convey is that this is not
the right question to ask: Anything other than encouraging
people to be free to tailor model comparisons to the specific
questions that they are trying to address (along with proper
justification) is an excessively prescriptive move. It creates
a barrier, something that researchers will have to overcome
in case they don’t think that a certain set of pre-specified
comparisons suits their specific problem.

Now, I most certainly sympathize with Richard’s
proposal (if I understand it correctly) of a “metalinguistic
maxim” according to which the construction of variables
should prioritize the characterization of phenomena by
means of main effects. After all, the “talk of variables in

2If we can remove an interaction through transforming the measure,
then that also implies the “interaction” might be trivial. This is why
we don’t like “removable” interactions, because they might not be
scientifically interesting (Loftus, 1978; Wagenmakers et al., 2012).
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Psychology” is a centennial big ol’ mess whose cleaning
is going to need as much attention and intellectual
muscle as it can muster (see Danziger 1997, chap. 9;
see also Menger (1954) and Rozeboom (1956)). However,
I fear that this specific proposal, if strictly enforced
as I predict it to be (just look at all the strict views
on preregistration that are out there these days), will
inhibit researchers from exploring a number of legitimate
alternative hypotheses. As discussed by Brauer and Judd
(2000), different variable codings (absolute vs. relative)
invite substantively different interpretations of the same
data, many of which can be disentangled using tailored
experimental designs. Disallowing certain codings appears
to sweep these legitimate interpretations off the table. I also
note that the aforementioned maxim seems to (at least in
part) draw from the notion that interactions are of a lower
status given that they are often removable, as famously
demonstrated by Geoff Loftus in 1978. I feel compelled to
point out that removability is not intrinsic to interactions—
main effects can also be removable (see Garcia-Marques
et al. 2014).

Michael Kalish

The rule-of-thumb some of us articulated was “don’t do
statistics you don’t understand”—this is vague (we are
all left to decide if we understand) and specific (relative
to an individual’s understanding). The paper proposes a
different rule-of-thumb, based on the experiences of experts
and their views about likely data patterns. The argument
seems to be whether these experiences are sufficiently
general to warrant a rule, or only a corollary to the general
principle (something like “Don’t do statistics you don’t
understand, and you probably don’t understand ANOVA
if you are looking for interactions without main effects”).
I think this corollary is flawed, because it conflates the
statistical concerns about (in this case) removable effects
with substantive concerns about effects—which is, as far
as I can tell, entirely Kellen’s point. A weaker version
(“be extra careful when testing for interactions without
main effects”) is practically tautological (“always be extra
careful” is a good stats tip).

The concern about vanishing interactions strikes me as
related to the notion of coordination, which the response
misses. A latent variable is essentially unobservable; we
attempt, through the process of coordination, to develop
measures of these variables and to understand their
meanings (what the variable is) simultaneously—I take it
that this is the ordinary practice of science. Psychology
is cursed with latent variables whose technical meanings
are cluttered with the residue of our ordinary vocabulary
(e.g., “attention”) so coordination has a harder time getting

going since it requires a technical vocabulary free from pre-
theoretic semantics. The problem of coordination is not one
of reduction; reduction assumes a realist stance about latent
variables that is warranted only by a conceptually confused
metaphysics on which persons don’t really make decisions
etc. but only their brains do. This is irrelevant to the problem
of coordination, which deals with the relationship between
a measurement and its meaning. The critical point about
coordination is that there is no reason to assume it is
linear; some lucky results in the past (see, e.g, temperature)
notwithstanding, linearity might strike some as optimistic
in the realm of psychological measurement (e.g., warmth).
The use of, e.g., drift rate as a measure for the rate at
which a person accumulates evidence is an example of
where coordination has not been established. If the linearity
assumption is questionable, then the best rule-of-thumb
might be “Don’t use linear models.” On the other hand, as
Abelson (2012) puts it, “You can do anything you choose,
and ponder the potential meaning of the results for your
research.”

Clintin Davis-Stober

Much of this discussion can be boiled down to highlighting
the importance of letting substantive concerns drive
modeling decisions, subject to the interpretive limitations of
the modeling framework. As it should be. In an effort to
sharpen these points, I’d like to draw a distinction between
“theory-rich” and “theory-poor” environments. I think this
is where general recommendations become tricky, as these
two environments implicitly set different goals and the same
statistical framework can be applied to both.

In theory-rich environments, the modeling framework
serves as an operationalization of the theory being
tested, with model comparisons driven by substantive
questions (as motivated in Rouder et al., 2022). Functional
relationships can be specified among the variables, with
appropriate choices of coordination functions reflecting
reasonable scientific thought, as argued by Singmann et al.
(2021) and Michael’s comment. Priors can be selected
to help instantiate the theory itself (Lee & Vanpaemel,
2018; McCausland et al., 2020) and are easily set for
unstandardized values. What a bright, lovely world to live
in.

In theory-poor environments, the collection of effects
become things “in and of themselves.” This is a dark, cold
world, but I’m willing to believe that there exist scientifi-
cally informative effects of this kind. The motivation for the
modeling has changed substantially for this case. The effect
is now a thing to be detected and estimated (in and of itself).
The problem has shifted from adjudicating competing sci-
entific theories to one that is almost forecasting: Can we
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reliably detect and estimate this effect, which is a function
of random variables? All of the previous comments on inter-
preting main effects and interactions still apply, in fact, they
are more important - is the effect a “real” thing or simply a
coding artifact?

Given that most psychology investigations lie somewhere
between these two extremes, I think recommendations need
to harmonize with the theory environment. For example,
in theory-poor environments, I might be more interested
in choosing priors that solve forecasting problems (e.g.,
recruiting teams of experts to construct priors), which would
impact how I think about defaults. Perhaps eschewing
direct model comparisons altogether would be better in this
situation (Heck & Bockting, 2021) given that there is not
much theory to motivate them.

Daniel Heck

Davis-Stober’s comment highlights an important distinc-
tion: Only in theory-rich environments, researchers may
have strong prior beliefs about plausible distributions of
parameters. Moreover, and more importantly for the cur-
rent debate, researchers may also have strong expectations
about which statistical models should be considered and
which are implausible a priori. The consequence of the lat-
ter type of prior beliefs becomes especially clear from the
perspective of model selection or model averaging, where it
is unavoidable to specify prior probabilities for all models.
In some contexts, researchers may have sufficient theoreti-
cal arguments to exclude some models a priori (e.g., those
violating the principle of marginality). In other contexts,
this may not be possible given only weak theoretical back-
ground knowledge. However, even in the latter scenario, it
is still infeasible to consider “all possible models,” given
the combinatorial explosion in factorial designs and the fact
that the “number of possible models” is infinite. Hence, one
always has to focus on a certain subset of models, thereby
committing to some (auxiliary) assumptions.

What do such considerations imply for deriving prag-
matic heuristics for applied researchers? From a method-
ological perspective, any recommendation should ensure a
certain robustness across various modeling contexts. Such
robustness can be achieved by regularly considering not
only two competing models, but a set of models. Hence,
one could simply recommend to at least consider whether
it makes sense to include more than two models in the
comparison. This does not imply that one always has to
run model comparisons; sometimes, comparing two models
might be sufficient. However, by highlighting the ambiguity
in selecting some statistical models for the analysis a pri-
ori, the inherent uncertainty in model specification is made
transparent. If more than two models are actually fitted, the

uncertainty will also be reflected by the results of the statis-
tical analysis. As a corollary, such a recommendation would
imply that one has to consider whether specific model ver-
sions are meaningful at all in a certain context (e.g., by
drawing on the present debate).

Regarding the principle of marginality, it appears to be
important to distinguish between interactions of two factors
that represent theoretical constructs (i.e., fixed-effects
interactions) and interactions of a theoretical factor with
person characteristics (i.e., random slopes). It is not clear
whether the arguments supporting the necessity to include
main effects in the presence of interactions generalize
from the former to the latter scenario. Variance in person-
specific effects of the independent variable can emerge
for various reasons that are not theoretically meaningful.
For instance, unsystematic nuisance variables may induce
individual random-effects (e.g., lack of attention, response
bias, fatigue, and testing effects). Such psychological side
effects can be statistically relevant depending on details of
the experimental design (i.e., whether the order of trials
and stimuli is randomized, how many trials are included for
each factorial combination, and whether there are breaks).
Importantly, nuisance variables may not only affect the
average response level of the dependent variable (resulting
in non-zero random-intercept variance) but also result in
differences between the factor levels at the individual level
(resulting in non-zero random-slope variance). Whereas
nuisance effects may cancel out at the group level given a
sufficient number of participants, they do not necessarily
cancel out at the individual level, especially when the
number of responses is small. Hence, it may be difficult
to assign a prior probability of zero to mixed models that
assume the absence of an effect at the group level while
allowing for random slopes (i.e., an interaction of the
theoretical factor and the person).

Greg Cox

The discussion around the principle of marginality is
intended to help researchers decide what their “default”
model should be: “[t]he principle of marginality implies that
the most commonly used model comparison for factorial
designs (i.e., the Balanced null comparison, or its frequentist
analogue type 3 sum of squares) ought to be replaced as the
default option [emphasis mine] by the more theoretically
meaningful Strict null comparison.” I wanted to take a
moment to synthesize some recent comments, think about
what a “default” is, why they are used, and what sorts
of principles might better guide the search for useful
“defaults.”

All technology comes with “default” settings. A new TV
comes with its brightness, contrast, saturation, etc., set to
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particular values. An office chair comes with the seat at
a particular height. Computer programs have parameters
with values that are initially set by their programmers.
Statistics is part of the technology of science, and so it is
natural that there should be “default” statistical approaches
as well. Indeed, statistics has even been called the “science
of defaults.” Why are defaults necessary at all? As the
examples illustrate, a default serves two functions: The first
function is to enable technology to operate at all without
the user needing to set every parameter. You can turn on
your TV and see something without first adjusting its image
quality. You can sit in your chair without first needing
to raise or lower it. You can run an optimization routine
without first needing to set each of its parameters. As
Morey says in regard to statistics, modeling is an “iterative,
judgment-laden process”. A default statistical model is one
that at least works “right out of the box.” The iterative
nature of modeling makes having a starting point valuable
because often it is not even clear what judgments need to be
made at all, let alone what the “right answer” is. Heathcote
and Matzke’s example is a good one in that a researcher
who first plots their data in the form shown in Fig. 1a may
then realize that the recoding in Fig. 1b is more revealing of
a theoretically interesting relationship. Often by seeing our
initial attempts fail are we guided toward a more appropriate
and insightful model. To know how to set the height of the
chair, we first have to sit in it.

The second function of a default is more germane to
the present discussion, and is nicely summarized in Heck’s
comment: “any recommendation [for a default approach]
should ensure a certain robustness across various modeling
contexts.” To paraphrase, a default is meant to do a good-
enough job in the majority of use cases, something that a
user could employ without making any substantive choices,
but which nonetheless performs the desired function to
within some tolerance. The image settings on a TV are
meant to be “good enough” for most people. The height of a
chair is set based on an “average” body size. A programmer
believes that certain parameter values will work most of
the time for their optimization routine. In statistics, the
“default” model is one that “we” (in the royal sense) believe
applies to the majority of research scenarios. As such, many
of the arguments about what is “plausible” or “implausible”
are really arguments about what people believe are more
frequent use cases for different statistical models.

Heck enumerates a number of important concerns that
can help inform which models should be considered plau-
sible or implausible in any particular scenario. But it is
telling that these are theoretically meaningful considera-
tions, regarding latent psychological variables like “lack
of attention, response bias, fatigue, testing effects.” As
Heck says, these theoretical issues are statistically impor-
tant because they help define the set of models that represent

reasonable theories of how the data should be partitioned
so as to be most informative with respect to the causal
mechanisms that produced the data. To then relate this
to Davis-Stober’s remarks regarding “theory-richness,” any
attempt to provide general recommendations or “defaults” is
only feasible when it is possible to enumerate the theoretical
constructs that might profitably explain the data. This is also
the crux of Heathcote and Matzke’s example—theory about
political attitudes suggests a model structure (framed around
the [latent] construct of “congruency”) that aligns with not
just a description, but an explanation of the resulting data.
Attempts to use vague statistical principles like “marginal-
ity” to motivate a default model are quickly overwhelmed
by the need to use theory to guide modeling choices.

To nonetheless advocate for a specific default is
problematic because just as theory can constrain a statistical
model, a statistical model implies a theory. This is the
tail wagging the dog. To be sure, a researcher can pick a
default to start with and then depart from it. If so, then
the default is serving the first function I outlined above,
to just “get things started.” Personally, I see no problem
with this in itself. But if the default is used to serve its
second function, to be “good enough,” then I think this is a
problem. It is a problem because it means either that (a) the
research scenario is not well-specified enough to enumerate
the theoretical concerns that would guide the development
of a more appropriate model, or (b) the researcher is not
critically examining the implicit theoretical assumptions of
the default model as applied to their scenario. The Heathcote
and Matzke example shows a potential case of (b).

So what should guide our choice of default recommen-
dations, if anything? Defaults can be useful in the first
sense (to get things going), but problematic in the sec-
ond (to be “good enough”). So I suggest, half-facetiously
but half-seriously, that our default recommendations lead to
the worst possible model that nonetheless maps onto the
structure of the data. I admit I don’t have a good general
definition of “worst,” but one example of something that
would qualify is given by Davis-Stober et al. (2022). Their
“worst possible model” assumes that effects have random
directions, essentially severing the coordination function
that connects constructs in the model and observable quanti-
ties. The point is to ensure that anyone who adopts a default
model will not stick with it or, if they do, only because they
have critically considered the theoretical concerns they are
trying to address and concluded that the default really does
represent a plausible theory for their data.

E.-J. Wagenmakers

I agree with much of what was said before. But to place
our initial contribution in context, consider a continuum
of informed analysis. On the one end, we have Nirvana:
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the analyst fully understands the statistical methodology,
has deep theory to guide predictions, and uses expert
background knowledge. On the other end, we have the
methodology that is currently dominant, that is, the
frequentist null-hypothesis significance test in which a
finding is deemed present whenever p < .05 (e.g.,
Singmann et al. 2020, for the afex package in R). With
this continuum in mind, I would like to emphasize that
Nirvana is almost fully out of reach. Psychologists are not
trained to be statisticians, deep theory is absent in 99.9% of
situations in which psychological scientists desire a test, and
expert prior knowledge is virtually never used. This will not
change in the foreseeable future. Our goal should therefore
be modest—we aim for improvement, not perfection. And
when practical researchers wish to apply a Bayesian mixed
model hypothesis test to their data (a move in the direction
of Nirvana, in my opinion), the question immediately arises
what specific models ought to be applied. In this regard
even those who argue against any default method issue
strong opinions. For instance, Singmann et al. (2021) write:
“Therefore, it seems generally appropriate to designate
the model with maximal random-effects as the alternative
model.” This appears to rule out a number of other models,
ones that are taken seriously by other contributors (e.g.,
Rouder et al., 2022; Heck and Bockting, 2021). I believe
that there do exist general statistical arguments over what
models are appropriate in what scenarios. Outlining these
arguments will be helpful to the practitioner (who after all is
not a statistician, lacks any guiding theory whatsoever, and
is unwilling to specify background knowledge). Note that
in our original article we did not advocate for any specific
default—rather we wanted to initiate a discussion among
experts as to what model comparisons were useful.

David Kellen

If I understand E.-J. Wagenmakers correctly, your argument
is that our position is perhaps naively idealistic because it
does not take into consideration the reality of the “practical
researcher,” who “ is not a statistician, lacks any guiding
theory whatsoever, and is unwilling to specify background
knowledge.” Basically, the idea is that these people are
unwilling/unable to change, and they are going to be out
there doing things no matter what. But if we manage to
build this convenient statistical infrastructure around them,
chock-full of good advice and nutritional value, we can at
least try to keep them out of trouble and hope for a better
future.

I apologize for the colorful analogy, but in all seriousness
this reminds of how in the late 1990s, politicians in my
home country (Portugal) realized that instead of penalizing
drug addicts, it was better to treat them as chronic patients
and provide them with clean rooms alongside a steady

supply of syringes and methadone. This way, we could try
to keep them out of trouble and hope for a better future. And
apparently it worked then, so I guess you have a point here.
I sincerely hope that you’re right.

Still, a couple of reactions:

1. I remain skeptical about the ability to automate or
streamline scientific inference by determining “in the
abstract” what models are useful and which ones are
not. If anything, because any such a determination
requires the researcher to establish goals; i.e., useful
for what? It’s like trying to determine the fitness of
an agent without specifying an environment and a loss
function. As an example, let’s take the recommendation
for maximal random effects: it simply states that
researchers should keep in mind that their data are the
outcome of “encounters” between randomly sampled
units, such as people and items. And that ignoring this
aspect can have negative consequences (e.g., inflated
estimates and type-I errors), when assuming certain
goals. But in other cases, ignoring it is perfectly
acceptable (e.g., a given ordinal prediction to be tested
is unaffected by aggregation). As a matter of fact,
even the partitioning of variance into main effects
and interactions is very often a questionable move—
planned contrasts or order constraints are superior
options. Moreover, I don’t think that we can get a lot
of mileage out of deracinated scenarios simply because
the exact same data structure can be interpreted in many
different ways. The 2 × 2 example that Andrew, Dora,
and I discussed shows that what might seem appalling
in some cases is perfectly reasonable in others. And
as Heck and Cox pointed out, even when discussing
general desiderata such as “robustness,” subject-matter
considerations end up being unavoidable. It turns out
that at the end of the day, researchers are going to have
to live up to what is expected from any professional
class, namely knowing something about what they’re
doing and making use of it.

2. Maybe what separates certain communities within
psychology (perhaps the “practical researchers”?) is
not so much a matter of intellectual ability, training
opportunities, or resources but values. More concretely,
the prioritization of showmanship and grand oratory
over careful thinking and a concern for getting things
right. I don’t think that creating the aforementioned
statistical infrastructure will lead to any meaningful
positive change with respect to that target audience.
Quite sadly, I expect it to have the opposite effect:
Namely, the additional patina of sophistication (“did I
mention that our analyses uses Bayes factors?”) and
credentialing (“oh, and as you can see by the badges,
everything is certified!”) is only gonna make things
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harder to change. As the historiography of the discipline
tells us, one of its original sins is the (enduring)
misconception that its foundational challenges can be
solved by methodological and/or technological means
(see Danziger 1990).

Frederik Aust

I want to steer the discussion about the principle of
marginality towards the cases we outlined in our initial
discussion paper, namely, away from fixed effect interac-
tions towards random slopes. My thinking about the relevant
model comparisons has substantially evolved through our
exchange. I think both have their place and I want to offer
some thoughts on two perspectives that I think can guide the
decision.

Rouder et al. argue for adherence to the principle
of marginality with respect to random slopes based on
substantive considerations. They consider the ambiguous
result of the strict null comparison “more a feature than
a limitation”. The maximal Model 6 assumes that the
magnitudes of effects on each individual follow a normal
distribution with some mean (the fixed effect) and variance
(the random slope variance). In essence, Rouder et al. argue
that there is little value in examining the mean of this
distribution in isolation—researchers should examine the
full distribution of effects. The reasoning is that the mean
(expected value) of the distribution is of relevance only to
the degree that it is a fair summary of the population—
that is, when the mean is large relative to the variance.
To illustrate, consider a positive mean effect of 0.5 with
a population standard deviation of 1. In this case, 30%
of individuals have negative effects. If we were to make
a prediction about the direction of the effect in a new
individual based on the positive population mean, we would
be wrong with a probability of 30%. So the benefit of the
ambiguity in the strict null comparison is that it encourages
the analyst to consider the full distribution of individual
effects and to interpret the fixed effect estimate in relation to
the variance of effects. Evidence in favor of Model 6 cannot
be the end result, it simply indicates that there is something
worth investigating further—at least one individual shows
an effect.

And here we get to the heart of the argument: If one is
interested in inference at the level of individuals, I think it
is fair to say that it is of limited interest to test the fixed
effect in the presence of random slopes (the balanced null).
To claim an effect for (the majority of) individuals, it is
most relevant whether the fixed effect is large relative to
the random slope variance, not whether it differs from zero.
Unfortunately, this question is not directly addressed by
the strict null comparison—more sophisticated modeling is
required (e.g., Haaf & Rouder 2017, 2019).

Yet, I think a test of the fixed effect (the balanced null
comparison) is relevant when one is interested in inference
at the population level. Consider the following example:
To address a lack of organ donors, it is prudent to study
the effectiveness of switching from an opt-in to an opt-
out approach: Will there be more organ donors if everyone
defaults to donating? Switching to opt-out may plausibly
cause reactance in some individuals making them less
willing to donate organs. Yet, the success of a change to
public policy is largely determined by whether the new
policy yields an overall increase in the number of donors.
Opposite effects on a minority subset of individuals are of
subordinate interest.

In medicine, an analogous distinction is made between
two targets of inference: conditional and marginal treatment
effects (e.g., Remiro-Azócar et al. 2021), each of which
has their place. Conditional treatment effects are relevant in
clinical practice when a decision is made for a given patient
(conditional on their covariate manifestations3), whereas
marginal treatment effects are relevant to public policy,
which affects the population as a whole.

Based on these considerations it seems that Singman et
al. believe that most researchers are interested in marginal
effects (“they are just interested in the average effect,” p.
5), whereas Rouder et al. think that conditional effects are
of primary concern (“We worry here if the mean is useful
when a sizable proportion of individuals has a true effect in
the opposite direction,” p. 9).

With all this said, my current thinking is that there are two
perspectives on the decision between strict vs. balanced null
comparisons. First, we take the null models seriously as a
theoretical statement (e.g., no individual differences without
non-zero average effect). The substantive appropriateness
of each null must then be carefully considered in each
application anew. Personally, I find this perspective very
satisfying but it can make the decision difficult and
contentious. Second, we consider the null model as an
approximate representation or a useful skeptic’s position.
In this case, the decision should depend on the target
on inference—individuals or population. If the target is
individuals, the strict null comparison seems most relevant
but, when an effect is claimed, should always be followed by
an examination of the population distribution. If the target
is the population, the balanced null seems relevant. Denying
the relevance of the balanced null comparison in this context
would imply denying the relevance of any between-subject
research design.

3The distinction is typically made in the context of fixed effects,
but the same considerations apply to the random slopes case. Note
that random slopes can represent individual differences that could be
explained if the right fixed effect covariates were to be included.
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Effect Size Standardization

Frederik Aust and Julia Haaf

Although it is common to report standardized effect sizes
in psychological research (and recommended by the APA
guidelines, American Psychological Association (2010,
2020); but see Wilkinson 1999), the merits of standardized
effect sizes continue to be subject of debate (Baguley, 2009;
Cheung, 2009; Kline, 2013; Pek & Flora, 2018). Proponents
of standardized effect sizes argue that they facilitate across-
study comparisons, interpretation of the magnitude of an
effect when the measure is arbitrarily scaled, and meta-
analyses. In contrast, opponents argue that standardized
effect sizes do more harm than good—standardized effect
sizes obfuscate the true magnitude of the effect, depend
on the research design, and discourage researchers from
developing meaningful dependent variables. As pointedly
put by Tukey (1969):

Why then are correlation coefficients so attractive?
Only bad reasons seem to come to mind. Worst of all,
probably, is the absence of any need to think about
units for either variable. [. . . ] [W]e think we know
what r = −.7 means. Do we? How often? Sweeping
things under the rug is the enemy of good data
analysis. [. . . ] Being so disinterested in our variables
that we do not care about their units can hardly be
desirable.

The issue of standardization is relevant to the current
discussion for two reasons. First, we brought up the issue
in van Doorn et al. (2021) because standardization of effect
sizes in mixed models is generally difficult as it is unclear
which variance should be used for standardization. Vasishth
et al. (2022) argue that “effect sizes should generally not be
standardized”. Relatedly, Rouder et al. (2022) caution that
the average population effect is only interesting if it is a
good summary of the population distribution, that is, if it
is large relative to the population standard deviation, which
implies that an effect size standardized by the random slope
variance would be most meaningful. The critical issues
here appear to be (1) whether to standardize effect sizes
or not and, if so, (2) how to construct an effect size that
is meaningfully standardized, i.e., what variance should we
standardize by? Has anybody changed their mind on these
issues since reading the other contributions?

The second reason to discuss standardization is a bit
more subtle. The influential approach to Bayesian mixed
models and ANOVA developed by Rouder et al. (2012)
uses a parameterization that standardizes model parameters
by the residual error variance. Consequently, all priors
distributions are specified in standardized effect size units.

Singmann et al. (2021) critique the standardized model
parameterization as difficult to interpret and reason about.
In addition, they note that the specification of prior
distributions is difficult in many contexts. On the other
hand, these default Bayes factors developed by Rouder
et al. (2012) have many desirable statistical properties such
as scale invariance and consistency. Given the critique by
Singman et al., however, we may discuss (3) whether the
benefits of the standardized parameterization outweigh the
drawbacks, and/or (4) whether it needs adjustments.

Henrik Singmann

Standardized effect sizes are an instance of what I like
to call pretend science; by moving from the concrete and
easy to understand unit of the dependent variable to the
standardized unit, we pretend to become more scientific
or objective, when in reality we just add another layer
of abstraction that hides the actual research from proper
scrutiny. The reasons for why this additional layer of
abstraction obscures rather than objectifies research are
well known and aptly summarized by Aust and Haaf
above.

In addition to the substantive arguments for why
standardized effect sizes should be avoided, I feel there
is another more nefarious issue looming. Standardized
effect sizes give a piece of research the veneer of being
generalizable beyond the methodology that is employed,
inviting the type of broad theoretical conclusions that are
so common in the field, but hardly justifiable given the
evidence provided. To be more blunt, standardized effect
sizes are one cause of the theoretical storytelling that stunts
actual cumulative progress in psychology.

The question this perspective leaves open is whether
there is a place for standardized effect sizes in Bayesian
statistics, where they are necessary to enable the calculation
of default Bayes factors. This issue can be discussed on two
levels, once in general and once in the particular case of
mixed models.

For the specific case of mixed models, we (Singmann
et al., 2021) have argued that there are several problems
with the current solution of using the residual variance
term as the standardization constant (e.g., the correspond-
ing standardized effect sizes are in many cases even more
difficult to interpret than “regular” standard effect sizes).
However, we also mentioned the related problem that within
a mixed model framework, no other variance term can be
used for standardization because of a fundamental prob-
lem. The defining feature of a mixed model, partial pooling
across the levels of a grouping factor, leads to shrinkage—a
downward bias—on all variance terms, with the exception
of the residual variance (e.g., Gelman & Pardoe 2006).
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Using such biased terms as standardization constants would
lead to inflated standardized effect size estimates. Clearly,
an undesirable feature for any widely used default Bayes
factor.

Nevertheless, Aust and Haaf still ask, “what variance
should we standardize by?”. Maybe they believe the argu-
ment above is purely theoretical, without any relevance in
practice. In other words, maybe they believe that in practice
shrinkage is not too large and variance estimates are usu-
ally well estimated. Unfortunately, nothing would be further
from reality. Random variance terms that are estimated as
approximately zero and the resulting convergence problems
that appear in a frequentist framework are so common that
they are discussed in virtually all important (i.e., well cited)
applied mixed model introductions of the last years (e.g.,
Barr 2013; Matuschek et al. 2017; Brauer & Curtin 2018,
see also Bates et al. 2015). So even if we really wanted to
use a different variance term for standardization, anything
but the residual variance will lead to inflated effect sizes
in practice. So for mixed models, there is simply no good
solution.

This leaves the general question of using standardized
effect sizes for default Bayes factors. Are there situations
where the benefits of using default Bayes factors outweigh
the problems associated with standardized effect sizes? I
do not believe so. If we are in a situation in which the
standardized effect size is meaningful—that is, we have
such a good understanding of the design and dependent
variable that the we have a good intuition regarding the
magnitude of the variance, the standardization constant—
we are in a situation where we could calculate an
equivalent unstandardized Bayes factor. If we do not have
a good enough understanding of design and dependent
variable, calculating the default Bayes factor based on the
obfuscating standardized effect size just produces more
pretend science. We just add another layer of abstraction,
in this case the default Bayes factor, that hides the actual
results.

Shravan Vasishth

Standardizing effect sizes seems to me to move us further
away from the details of the research question we are
studying. For example, when we record reading times
in an eyetracking study, we usually work with several
different dependent measures, on the millisecond scale.
We use first-pass reading time, the proportion of leftward
eye movements (regression probability), re-reading time,
regression path duration, and total reading time (among
others). All of these dependent measures are generated from
different latent processes that can be modeled at a pretty

low level (see, e.g., Engbert et al. 2005; Rabe et al. 2021).
Psycholinguists already (mistakenly) try to interpret these
different measures as if they are telling us the same thing
about the underlying cognitive processes of interest (e.g.,
syntactic or semantic processing). What will happen with
measures like first-pass reading time is that the effects will
be tiny on the ms scale because first-pass reading times are
relatively short. By contrast, total reading time differences
between conditions can be huge in comparison; this is just
because total reading time includes possibly many revisits
and refixations on a word after passing it to the right.
Standardizing these estimates adds a layer of abstraction
that takes us even further away from the underlying latent
process, which is what we really want to model. It would be
comparing apples and oranges to think about the effect sizes
of early vs. late measures by standardizing them, but that is
what will happen if we start standardizing. Regarding Bayes
factors, we have written about using informative priors on
the variance components and effect sizes in the paper by
Schad et al. (2022). In all the Bayes factors-based work we
do, we use this approach and it works really well, in the
sense that the conclusions are realistic. Currently, I don’t
understand why I would need to switch to standardizing
effect sizes to do my Bayes factors calculations. Modeling
the dependent variable that is of interest, and defining
the latent processes that we think produced the observed
values seems to me to be the most reasonable way forward.
Maybe there are some scientific fields out there in which
standardization makes sense, but not in the work I have
encountered in cognitive psychology and psycholinguistics.

David Kellen

It’s worth highlighting that the problem identified by
Henrik—decontextualized effect sizes—is an almost logical
implication of a much bigger issue in psychology, namely
the questionable ways in which we tend to write (and think)
about our objects of inquiry. Texts are often completely
devoid of people engaging in concrete actions/behaviors.
Instead, they are almost entirely populated by “fictional
objects” created through nominalization; e.g., “people cate-
gorizing X in context C” is replaced with “categorization”
(Billig, 2011). Now, there is nothing wrong with nomi-
nalization per se, in fact it plays a very important role in
theoretical development (see Gilbert et al., 1984; Halliday
2004). But if we are not careful enough, it can lead to all
sorts of problems and confusions; e.g., the reification of
“parameters” or “effects” as “things out there in the world”
(e.g., Maraun & Gabriel, 2013; Maraun et al., 2009). The
reason why talking/thinking about standardized effect sizes
feels so comfortable to many, and why the criticisms made
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by Henrik, myself, and others can be so hard to swallow, is
that we as a field have accumulated a number of intellectual
bad habits.

Don van Ravenzwaaij

This may seem like a cop-out to some, but in my opinion
there’s no need to be prescriptive about whether or not to
go with standardized effect sizes, as long as it’s clear from
the reporting what variance was used in standardization.
Zooming out a bit: A lot of what has come up in all
discussions here has reminded me of the slew of many-
analyst papers we have seen (e.g., Silberzahn et al., in press;
Hoogeveen et al., 2022; Dongen et al., 2019). Some may
feel there’s a “best” approach in these kinds of papers, but
to me it seems that as long as the analytical strategy is
clearly reported and well-argued, there can be many feasible
strategies (even if the outcomes are very different).

Sometimes these strategies can be ridiculously simple,
such as for instance in the many-RT-model paper by Dutilh
et al. (2019), where the analytical strategy of Evans and
Brown was to “. . . inspect[ed] the joint cumulative density
function (CDF; method explained below) plots, as well
as plots of the median reaction time (RT) and accuracy
for each condition and response option, averaged over
participants. This approach sounds subjective, but we think
it is an important and often-overlooked element of most
researchers’ inference.” At the time, this strategy was
unusual in a field of formal cognitive modelers, but I do not
believe it was “wrong” or “inferior” because of that. The
strategy was well argued, and in terms of performance it
did just fine (see supplementary material of Dutilh et al.,
available at https://osf.io/egrnn).

What does this have to do with the reporting of
standardized effect sizes? In my opinion, every reported
statistical analysis is a balancing act between being (1)
(as) appropriate (as possible); and (2) (as) interpretable (as
possible). The latter includes familiarity through common
usage and digestibility for different levels of statistical
literacy. So yes, I think standardized effect sizes have their
place, but their utility stands or falls with the clarity of
reporting (how was standardization achieved?). The more
statistically literate reader can parse what’s going on and
the less statistically literate reader can at least attempt to
compare to other papers that have reported similar metrics.

João Verı́ssimo

The comments above (by Singmann, Vasishth, and Kellen)
all make compelling points against the use of standard-
ized effects, but I found the arguments about the particular
difficulties with standardization in mixed-effects models
to be less convincing. Singmann (comment above) and

Singmann et al. (2021) view partial pooling as a “fundamen-
tal problem” for standardization. They argue that shrinkage
produces biased estimates of random-effect variance com-
ponents (downward) and can “contaminate” the estimates of
residual variance (upward), so that neither should be used as
a basis for standardization.

I doubt that the scenario they describe is a common
one. The purpose of partial pooling is precisely to separate
the between—and within—cluster variances, so that less
biased estimates of the different variance components can
be obtained. As I see it, the shrunken random effects have
actually been “decontaminated” from residual variance
(and vice-versa).

A simple simulation can illustrate this point (code at
https://osf.io/x9h2g). I sampled data for 50 participants in
two conditions, with a true random slope SD of 0.5. True
residual SD was either 1 or 5 and there were either 50
observations per participant/condition or only 5. Table 3
shows the mean estimates across 10 Bayesian mixed-
effects models and 1000 frequentist models. The results
showed that (a) the residual SD was very well-recovered
throughout, even when data were sparse and in the presence
of substantial shrinkage of the observed effects; (b) random
slope SDs were also well-recovered, at least when the
residual variance was small (but still 4 times larger than
the between-participant variance); and (c) when the residual
variance was much larger than the between-participant
variance (100 times larger) and data were sparse, estimates
of the random-effect SD were indeed biased. . . but upward,
not downward! (one could say that, in these cases, shrinkage
has failed to apply enough.)

Residual variances thus seem to be resilient to even high
shrinkage and, in that respect, could serve as an appropriate
quantity for standardization; often, random slope variances
will also be appropriately estimated. Moreover, if there are
indeed cases in which the variance components show “con-
tamination” between them (as claimed by Singmann et al.),
the problem might be ameliorated by using the total vari-
ance as a basis for standardization rather than any individual
variance (at least for some common research designs; see
Brysbaert and Stevens, 2018; Westfall et al., 2014).

To be clear, I am not arguing for the broad use of
standardized effect sizes. My point is that the issues raised
by Singmann et al. with regards to partial pooling may be
less problematic than they claim they are.

Henrik Singmann

João’s thoughtful analysis is a perfect example of how
nuanced these issues are and how easy it is for technical
concepts to be blurred by ordinary discourse (mea culpa).4

4I am thankful to David Kellen for detailed comments and feedback
on a previous version of this comment.
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Table 3 Mean estimates across 10 (Bayesian mixed-effects models) and 1000 data sets (frequentist mixed-effects models)

Random
slope SD

Residual
SD

n Estimate Frequentist
models (mean)

Bayesian models
(mean/CrI)

0.5 1 50 Observed SD: 0.54 0.54

Random SD: 0.50 0.52 [0.48, 0.56]

Residual SD: 1.00 1.00 [0.99, 1.01]

0.5 1 5 Observed SD: 0.80 0.77

Random SD: 0.50 0.46 [0.38, 0.54]

Residual SD: 1.00 1.01 [0.99, 1.03]

0.5 5 50 Observed SD: 1.11 1.10

Random SD: 0.57 0.51 [0.37, 0.64]

Residual SD: 5.00 4.99 [4.96, 5.02]

0.5 5 5 Observed SD: 3.19 3.16

Random SD: 0.94 0.94 [0.60, 1.30]

Residual SD: 4.97 4.97 [4.87, 5.07]

The n column denotes the number of data points per participant in each condition

The random slope variance estimate in a mixed model
is of course not biased compared to the true value, when
the data generating process is the very same mixed model
being fit (the inability to recover itself would be a pretty
disastrous outcome for mixed models). When talking about
a “downward bias” of the random slope estimates, we5 used
the term “bias” in a more liberal sense and not in the proper
technical sense of the “bias of an estimator”.

What we meant was that the random slope estimate
shows a downward bias compared to the SD of the observed
effects. With “SD of the observed effects,” we mean
the sample SD of the individual-participant effects in a
within-subject design. Usually, standardized effect sizes
are directly calculated using observed quantities, such as
the SD of the observed effect. But in the case of mixed
models, we are dealing with a model-based SD estimate
that is different from the observed estimate in two ways:
it is smaller and subjected to shrinkage (i.e., “downward
biased”). Consequently, effect-sizes calculated with the
latter will be greater.6

This understanding of “downward bias” can already
be seen in João’s table (compare “Observed SD” with
“Random SD”), but becomes clearer in Fig. 2 below,
which shows distributions of different SD estimates based
on João’s simulation code.7 Each row shows results from

5More specifically, me. None of the co-authors of Singmann et al.
(2021) is to blame for the irregular use of the term “bias.” I take full
responsibility for this terminological sloppiness.
6To be clear, I am not suggesting that the “classic & direct”
computation of effect sizes is somehow a gold standard. All that I
am saying is that it is an important reference point when trying to
understand the consequences of our modelling decisions.
7 Code at: https://osf.io/ctjh6

1000 simulations for one sample size (10, 25, or 50
participants). The left column shows the distribution of the
SDs of the observed effects, the central column shows the
distribution of the random slope SD estimates from the data
generating maximal model (with random intercept, random
slopes, and correlation between both random terms), and
the right column shows the distribution of the random slope
SD estimates from the mixed model without correlation
between random intercept and random slope (I added this
model to his simulation). The true (data generating) random
slope SD value of 0.5 is shown as the vertical black line.

Figure 2 shows several interesting and relevant patterns.
Firstly, as shown in the second column, the random slope
estimator is indeed not biased when the fitting model is
identical to the data generating model. However, as soon as
there is even a small amount of model misspecification—
fitting the mixed model without correlation (third column)
to the data generated with correlation—we see a bias in the
random slope estimator.8 In this case, this is an upward bias
compared to the true value, but it seems conceivable that in
other cases of model misspecification this might also be a
downward bias (although this is immaterial to the current
issue).

If we compare the distribution of the SD of the observed
individual effects with the random slope estimates, we see
a shift in the mean between both distributions. Whereas the
mean random slope is at the true value of 0.5, the mean
SD of the observed effect is around 0.8. In other words, the
two SDs are on a different scale. Standardized effect sizes

8Interestingly, the BayesFactor package only supports mixed models
without correlation. So if there is a non-negligible correlation between
random intercept and slopes in reality, the random slope SD estimator
from the BayesFactor package will likely be biased.
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Fig. 2 Distribution of three SD estimates for the within-subjects con-
dition effect when simulating from a mixed model with (true) random
slope SD of 0.5 (shown as vertical line) across 1000 simulations per
sample size (one row per sample size). The left column shows the dis-
tribution of the SDs of observed individual effects, the central column
shows the random slope SD estimates from the maximal model (i.e.,
the true data-generating model), and the right panel shows the random

slope SD estimates from the no-correlation (NC) model. The other
parameters of the simulation are: random intercept SD of 0.5, cor-
relation between random slope and random intercept of 0.5, residual
SD of 1, and 5 observations per participant and condition. Each panel
also shows the mean (M), median (Md), standard deviation (SD), and
skewness (skew) of each distribution

calculated with one or the other SD would not be directly
comparable. This difference in scale is likely a consequence
of the difference in variance partition between the mixed
model and the SD of the observed effect. Hence, I can
imagine that it is possible (for someone with the skills in
mathematical statistics) to derive a formula bringing these
two SD estimates on the same scale.

But even if the two SD variants are brought onto the same
scale, the main problem with the random slope estimates
is not their mean, but the shape of their distributions,
which show a “downward bias.” Across the board we see
that the random slope distributions are negatively skewed,
whereas a negative skew is absent in the distribution of
the observed SDs. In some cases, especially with small
N, the random slope estimates are even approaching zero
which would lead to impossibly large standardized effect
sizes. This negative skew is a consequence of the defining
feature of a mixed model, hierarchical shrinkage (or partial
pooling), which ensures that extreme individual level effects
are shrunk towards the group mean.Whereas such shrinkage
is generally a desirable statistical property (e.g., Efron and
Morris, 1977), it makes the random slope SD estimates
simply unsuitable as standardization constants. As soon as

the N is somewhat on the smaller side, one would risk
having dramatically inflated standardized effect sizes when
the random slope estimates approach zero.

Lastly, we also argued against using the residual standard
deviation as the standardization constant. The main thrust
of our argument was that in many situations the meaning
of the residual standard deviation is unclear, which leads to
standardized effect sizes that are not clearly interpretable.
However, we also argued that the residual standard deviation
can be contaminated by shrinkage. To be clear, there is no
shrinkage being directly applied on the residual standard
deviation (the distribution of which shows neither negative
nor positive skew). The specific problem here is that the
variance decomposition is a zero-sum operation. Because
the total variance has to be distributed across all variance
components, it follows that if one variance takes a smaller
share, the other components need to take a larger share.
This means that, if shrinkage is applied to the random
slope estimate, then the residual variance is contaminated
as a consequence. One way to understand this zero-sum
relationship is by looking at the correlation between the
proportions of random slope variance and residual variance
of the total variance, which is shown in Fig. 3. We see an
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Fig. 3 Relationship between
the ratio of random slope
variance and total variance and
the ratio of residual variance and
total variance across the
simulation results. Individual
data points are shown semi-
transparently so that overlapping
points appear darker. The blue
line shows the linear regression
line for each panel
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obvious negative relationship (r between −.22 and −.37)
showing a contamination of the residual variance when
shrinkage affects the random slope estimate.

Taken together, this extended look at João’s simulation
results hopefully clears up two points. Firstly, I explain
in more detail what we meant with “biased,” a bias
compared to the SD of the observed effect. Furthermore,
the simulation results show that the random slope estimator
of the mixed model is not biased (in the technical sense) if
fitted model matches the data generating model. But as soon
as the fitting model is misspecified (a condition that likely
holds in all real mixed model applications), we can expect a
bias in the technical sense with unknown consequences for
subsequent effect size estimates.

Secondly, I explained why any SD estimate in a mixed
model is unsuitable for standardization of effect sizes.
Although the residual variance term is largely unaffected
by shrinkage itself, it is often unclear what it means and
can be contaminated if other variance terms are estimated
poorly (which is one reason for using mixed models in
the first place). Furthermore, compared to the observed
SDs the random slope estimates are affected by shrinkage
which leads to a downward bias, making them completely
unsuitable as standardization constants.

As argued in Singmann et al. (2021), the consequence of
these issues is that it seems better to abandon standardized
effect sizes in mixed models altogether. Which also means
abandoning default Bayes factors for mixed models.

João Verı́ssimo

I appreciate Henrik’s clarification, which truly illustrates
how taking a position on the larger issues often requires
a discussion of the finer points. I found the demonstration
of random-slope bias in models without a correlation
parameter particularly striking. I will only point out that
the consequences of model misspecification are not specific
to variance components or standardized effects, and that
all sorts of misspecification (e.g., inclusion/exclusion of
covariates) can result in bias of the unstandardized effects
as well.

Daniel Schad, Shravan Vasishth, and Bruno
Nicenboim

The original target article by van Doorn et al. (2021)
illustrates (some aspects of) the use of aggregated data for
Bayes factor analyses in Bayesian mixed effects models.
The van Doorn et al article seems to suggest in several
places that, when carrying out Bayes factor analyses with
hierarchical models, aggregating data has the advantage
that one can remove the variance associated with the
grouping factor that is aggregated over (e.g., in a by-subjects
aggregation, each subject’s repeated measures frommultiple
items in each condition can be reduced to one data point
per condition). For example, the authors write: “a benefit of
aggregation is that it greatly reduces the impact of random
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slopes in the inference for a fixed effect and therefore
eliminates the inflation of Type 1 and Type 2 error rates
that ignoring random slopes typically entails”; and in their
discussion section, they write “The data can be aggregated,
which minimizes the impact of the random effects in the
inference for a fixed effect.” As we also pointed out in our
response article (Vasishth et al., 2022), aggregation should
in general never be done. One reason is that hiding a source
of variance is not an advantage but a disadvantage, because
one is losing information about one source of variability.
Another reason is the one we outline below and discuss in
detail in another article (Schad et al., 2022).

A second issue with aggregation is that potential biases
that may arise during data aggregation. To perform data
aggregation in a repeated measures design, the mean of
the dependent variable is computed for each condition for
each subject. A Bayesian mixed effects model is then fit to
these aggregated data. We argue that in this case (for the
balanced null comparison), if the sphericity assumption is
violated, data aggregation can lead to biased estimates for
the resulting Bayes factors, and should therefore in general
be avoided. We outline the details of this argument in a
recent arXiv paper (Schad et al., 2022), and we summarize
the key points here.

It is well-known from frequentist repeated measures
ANOVA that aggregating data to the by-subject level
confounds random slope variances with residual noise.
Indeed, repeated measures ANOVA, as well as mixed
effects models fit to aggregated data, assume sphericity. In
mixed effects model terms, they assume that the variances
of all random slopes are equal. For frequentist tools, it has
been shown that a violation of the sphericity assumption
leads to anti-conservative test statistics (inflated alpha error;
Box, 1954). It is therefore common practice to test for
violations of sphericity (Mauchly, 1940) and—if violation is
detected—to perform corrections of the degrees of freedom
(Greenhouse & Geisser, 1959; Huynh & Feldt, 1976) to
obtain adequate test statistics. An alternative (and arguably
better) solution to this problem is to fit (frequentist) mixed
effects models to unaggregated data, and to explicitly
estimate the variance of each random slope term, which
is then taken into account when computing test statistics.
We think that this issue is of practical relevance: a quick
citation analysis suggests that violations of the sphericity
assumption seem to occur often in data sets in cognitive
science and psychology (Greenhouse & Geisser, 1959, have
been cited 5520 times in Google Scholar, and 3220 of these
citations contain the word “cognitive”).

What we argue here (see Schad et al., 2022, for details) is
that these problems and biases are also present when using
aggregated data to perform Bayes factor tests (based on the
balanced null comparison) using Bayesian mixed effects

models. We recently showed that the accuracy versus bias of
Bayes factor estimates can be determined using simulation-
based calibration (Schad et al., 2022). In simulation-based
calibration for Bayes factors, models and parameters are
sampled from their priors, are then used to simulate data,
and Bayes factors are estimated from the simulated data.
If the average posterior model probability is equal to the
prior model probability, then this indicates that the Bayes
factor is unbiased. If the average posterior model probability
deviates from the prior model probability (i.e., if it is
larger/smaller than the prior probability), then this indicates
a (liberal/conservative) bias in the Bayes factor estimate.

We (Schad et al., 2022) performed simulation-based
calibration for Bayesian mixed models, while assuming
the sphericity assumption is violated. We implemented a
repeated measures design with one factor with 3 factor
levels, which were modeled using treatment contrasts. One
contrast was assumed to have a small random slope variance
(SD = 10), and the other was assumed to have a large
random slope variance (SD = 90). We performed null-
hypothesis Bayes factor tests on the simulated data to test
each contrast estimate to a null model where the contrast
was excluded. For details concerning the simulations, see
Schad et al. (2022). The results (see Fig. 4, left panel) show
that for aggregated analyses, for the contrast with a large
random slope variance (SD = 90), Bayes factor estimates
have a liberal bias (i.e., Bayes factor estimates are too large),
and for the contrast where the random slope variance is
small (SD = 10), Bayes factor estimates have a conservative
bias (i.e., the Bayes factor estimates are too small). These
biases can be avoided by running Bayesian mixed effects
models on the non-aggregated data, and by estimating a
maximal random effects structure (see Fig. 4, right panel):
in this situation, the average posterior model probabilities
didn’t differ from the prior model probability, suggesting
absence of bias.

Based on these simulation results, we suggest that using
aggregated data for the analysis of Bayesian mixed effects
models can be risky: when the sphericity assumption is
violated, this may lead to biased Bayes factor estimates.
Instead, we suggest that the default approach to Bayes
factors should be to estimate Bayesian mixed effects models
on non-aggregated data and to estimate the maximal (Barr,
2013) or parsimonious (Matuschek et al., 2017) random
effects structure. If one wants to perform analyses on
aggregated data, then evidence should be provided that the
sphericity assumption is not violated for the given data set.

Richard Shiffrin

There are hints in these various commentaries of what I
believe is the fundamental underlying issue: Should we

155Computational Brain & Behavior  (2023) 6:140–158



1 3

Aggregated Non−aggregated

10 90 10 90

0.44

0.48

0.52

0.56

Random slopes
[Standard deviation]

Po
st

er
io

r p
ro

ba
bi

lit
y 

of
 H

1

Fig. 4 Results from simulation-based calibration for model inference
when sphericity is violated. The average posterior model probability
together with 95% confidence intervals is shown for effects with a
small (10) versus a large (90) standard deviation of the random slopes,
reflecting small or large variation of the effect across subjects. The
horizontal solid line is the prior probability for the H1, and deviations
from this line indicate estimation bias in Bayes factor estimation.
Results are shown for null hypothesis Bayes factor analyses based
on aggregated data (left panel) versus on non-aggregated data (right
panel). They show that aggregating data for null hypothesis tests can
lead to biased Bayes factors, which deviate from the true Bayes factor.
Bayes factors are more accurate for non-aggregated analyses, where
the posteriors do not deviate from the prior probability

be using statistical inference to govern scientific decision
making, or should we be careful to use statistics sparingly so
as not to distort what scientists in their best judgment would
infer from the data? I believe the primary goal of scientists,
statisticians and methodologists should be drawing the best
possible inference concerning the processes producing the
observed data, based in good part on the history of relevant
empirical findings and theories. In the kinds of studies being
discussed, data are aggregated over numerous variables such
as participants, stimuli, trials, and much more. How best to
draw scientific conclusions from such data is not a purely
statistical matter. Making a case for this assertion would
require a long article or a book, not a brief commentary.
I will simply state my belief that scientific inference and
statistical inference are not the same, and we should be
careful not to confuse the two.

Concluding Thoughts

When we started this special issue, the plan was simple:
compose three hypothetical examples, pose several ques-
tions that arise, and have teams of experts debate about the
answer. When they reach a final consensus, a neat set of
guiding principles could be produced, aiding any researcher
interested in Bayesian mixed model comparison. Reality

has proven that last part to be very much wishful think-
ing and has underscored statistical inference as an inher-
ently subjective process. However, we prefer to celebrate
this subjectivity, since the disagreement has urged further
dissemination of information and has demonstrated the lim-
itations of certain default options. While few questions from
the target article have received a definitive answer, the dis-
cussion unveiled crucial elements of statistical inference,
and mixed model comparison specifically.9 Simply put, the
current format has illuminated the components that require
consideration when the researcher is told to “carefully think
about their stuff.”
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Remiro-Azócar, A., Heath, A., & Baio, G. (2021). Conflating marginal
and conditional treatment effects: Comments on “assessing the
performance of population adjustment methods for anchored
indirect comparisons: A simulation study”. Statistics in Medicine,
40, 2753–2758.

Rouder, J. N., Morey, R. D., Speckman, P. L., & Province, J.M.
(2012). Default Bayes factors for ANOVA designs. Journal of
Mathematical Psychology, 56, 356–374.

Rouder, J. N., Schnuerch, M., Haaf, J. M., & Morey, R.D.
(2022). Principles of model specification in ANOVA designs.
Computational Brain & Behavior.

Rozeboom, W. W. (1956). Mediation variables in scientific theory.
Psychological Review, 63, 249–264.

157Computational Brain & Behavior  (2023) 6:140–158



1 3

Schad, D. J., Nicenboim, B., Bürkner, P. C., Betancourt, M., &
Vasishth, S (2022). Workflow techniques for the robust use of
Bayes factors. Psychological Methods.

Schad, D. J., Nicenboim, B., & Vasishth, S. (2022). Data aggregation
can lead to biased inferences in Bayesian linear mixed models.
arXiv:2203.02361.

Silberzahn, R., Uhlmann, E. L., Martin, D. P., Anselmi, P., Aust,
F., & Awtrey, E. (in press). Many analysts, one dataset: Making
transparent how variations in analytical choices affect results.
Advances in Methods and Practices in Psychological Science.

Singmann, H., Bolker, B., Westfall, J., Aust, F., & Ben-Shachar,
M. S. (2020). afex: Analysis of factorial experiments [Computer
software manual. Retreieved form https://CRAN.R-project.org/
package=afex (R package version 0.26-0).

Singmann, H., Cox, G. E., Kellen, D., Chandramouli, S., Davis-Stober,
C., & Dunn, J. C. (2021). Statistics in the service of science: Don’t
let the tail wag the dog. Computational Brain & Behavior.

Tukey, J. W. (1969). Analyzing data: Sanctification or detective work?
American Psychologist, 24, 83–91.

Vasishth, S., Yadav, H., Schad, D. J., & Nicenboim, B (2022). Sample
size determination for Bayesian hierarchical models commonly
used in psycholinguistics. Computational Brain & Behavior.

Wagenmakers, E. J., Krypotos, A. M., Criss, A. H., & Iverson, G.
(2012). On the interpretation of removable interactions: A survey
of the field 33 years after Loftus. Memory & Cognition, 40,
145–160.

Westfall, J., Kenny, D. A., & Judd, C.M. (2014). Statistical
power and optimal design in experiments in which samples
of participants respond to samples of stimuli. Journal of
Experimental Psychology: General, 143, 2020.

Wilkinson, L. (1999). Statistical methods in psychology journals:
Guidelines and explanations. American Psychologist, 54, 594.

Yates, F. (1935). Complex experiments. Supplement to the Journal of
the Royal Statistical Society, 2, 181–247.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

158 Computational Brain & Behavior  (2023) 6:140–158

http://arxiv.org/abs/2203.02361
https://CRAN.R-project.org/package=afex
https://CRAN.R-project.org/package=afex

	Bayes Factors for Mixed Models: a Discussion
	Abstract
	Marginality, Interactions, and Defaults
	Opening Statement
	Andrew Heathcote and Dora Matzke
	Jeff Rouder
	David Kellen
	Henrik Singmann
	Richard Morey
	David Kellen
	Michael Kalish
	Clintin Davis-Stober
	Daniel Heck
	Greg Cox
	E.-J. Wagenmakers
	David Kellen
	Frederik Aust

	Effect Size Standardization
	Frederik Aust and Julia Haaf
	Henrik Singmann
	Shravan Vasishth
	David Kellen
	Don van Ravenzwaaij
	João Veríssimo
	Henrik Singmann
	João Veríssimo
	Daniel Schad, Shravan Vasishth, and Bruno Nicenboim
	Richard Shiffrin

	Concluding Thoughts
	Declarations
	References


