
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Adaptive space-time BEM for the heat equation

Gantner, G..; van Venetië, R.
DOI
10.1016/j.camwa.2021.12.022
Publication date
2022
Document Version
Final published version
Published in
Computers and Mathematics with Applications
License
CC BY

Link to publication

Citation for published version (APA):
Gantner, G., & van Venetië, R. (2022). Adaptive space-time BEM for the heat equation.
Computers and Mathematics with Applications, 107, 117-131.
https://doi.org/10.1016/j.camwa.2021.12.022

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:15 Apr 2023

https://doi.org/10.1016/j.camwa.2021.12.022
https://dare.uva.nl/personal/pure/en/publications/adaptive-spacetime-bem-for-the-heat-equation(df4d7e41-b4b4-4541-ae76-30868008e868).html
https://doi.org/10.1016/j.camwa.2021.12.022


Computers and Mathematics with Applications 107 (2022) 117–131
Contents lists available at ScienceDirect

Computers and Mathematics with Applications

www.elsevier.com/locate/camwa

Adaptive space-time BEM for the heat equation

Gregor Gantner ∗, Raymond van Venetië

Korteweg-de Vries Institute for Mathematics, University of Amsterdam, P.O. Box 94248, 1090 GE Amsterdam, Netherlands

A R T I C L E I N F O A B S T R A C T

Keywords:

Space-time boundary element method
Heat equation
A posteriori error estimation
Adaptive mesh-refinement
Computation of singular integrals

We consider the space-time boundary element method (BEM) for the heat equation with prescribed initial and 
Dirichlet data. We propose a residual-type a posteriori error estimator that is a lower bound and, up to weighted 
𝐿2-norms of the residual, also an upper bound for the unknown BEM error. The possibly locally refined meshes 
are assumed to be prismatic, i.e., their elements are tensor-products 𝐽 × 𝐾 of elements in time 𝐽 and space 
𝐾. While the results do not depend on the local aspect ratio between time and space, assuming the scaling |𝐽 | ≂ diam(𝐾)2 for all elements and using Galerkin BEM, the estimator is shown to be efficient and reliable 
without the additional 𝐿2-terms. In the considered numerical experiments on two-dimensional domains in space, 
the estimator seems to be equivalent to the error, independently of these assumptions. In particular for adaptive 
anisotropic refinement, both converge with the best possible convergence rate.

1. Introduction

In the last years, there has been a growing interest in simultaneous space-time boundary element methods (BEM) for the heat equation [6,18,
19,17,5,7,9,23,25]. In contrast to the differential operator based variational formulation on the space-time cylinder, the variational formulation 
corresponding to space-time BEM is coercive [3,4] so that the discretized version always has a unique solution regardless of the chosen trial space 
which is even quasi-optimal in the natural energy norm. Moreover, it is naturally applicable on unbounded domains and only requires a mesh of the 
lateral boundary of the space-time cylinder (as well as a mesh of the spatial domain in case of nonhomogeneous initial data) resulting in a dimension 
reduction. The potential disadvantage that discretizations lead to dense matrices due to the nonlocality of the boundary integral operators has been 
tackled, e.g., in [18,19,17,24] via the fast multipole method and -matrices.

Two often mentioned advantages of simultaneous space-time methods are their potential for massive parallelization as well as their potential 
for fully adaptive refinement to resolve singularities local in both space and time. While the first advantage has been investigated in, e.g., [9,25], 
the latter requires suitable a posteriori computable error estimators, which have not been developed yet for the heat equation. Indeed, concerning 
a posteriori error estimation as well as adaptive refinement for BEM for time-dependent problems, we are only aware of the works [13,14] for the 
wave equation in two and three space dimensions, respectively.

In the present manuscript, we generalize the results [10,11] from Faermann for stationary PDEs to the heat equation: Let Ω ⊂ ℝ𝑛, 𝑛 = 2, 3, be a 
Lipschitz domain with boundary Γ ∶= 𝜕Ω and 𝑇 > 0 a given end time point with corresponding time interval 𝐼 ∶= (0, 𝑇 ). We abbreviate the space-time 
cylinder 𝑄 ∶= 𝐼 ×Ω with lateral boundary Σ ∶= 𝐼 × Γ and corresponding outer normal vector 𝐧 ∈ℝ𝑛. With the heat kernel

𝐺(𝑡,𝐱) ∶=
⎧⎪⎨⎪⎩

1
(4𝜋𝑡)𝑛∕2 𝑒

− |𝐱|2
4𝑡 for (𝑡,𝐱) ∈ (0,∞) ×ℝ𝑛,

0 else,

and a given function 𝑓 ∶ Σ →ℝ, we consider the boundary integral equation

(𝒱𝜙)(𝑡,𝐱) ∶= ∫
Σ

𝐺(𝑡− 𝑠,𝐱 − 𝐲)𝜙(𝑠,𝐲) d𝐲 d𝑠 = 𝑓 (𝑡,𝐱) for a.e. (𝑡,𝐱) ∈ Σ. (1.1)
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Here, 𝒱 is the single-layer operator. For given initial condition 𝑢0 ∶ Ω →ℝ and Dirichlet data 𝑢𝐷 ∶ Σ →ℝ, such equations arise from the heat equation

𝜕𝑡𝑢−Δ𝑢 = 0 on 𝑄,

𝑢 = 𝑢𝐷 on Σ,
𝑢(0, ⋅) = 𝑢0 on Ω.

(1.2)

Let  be a mesh of the space-time boundary Σ consisting of prismatic elements 𝐽 × 𝐾 with 𝐽 ⊆ 𝐼 and 𝐾 ⊆ Γ, and let Φ be an associated 
approximation of 𝜙. Typically, Φ is a piecewise polynomial with respect to  . As 𝒱 is an isomorphism from the dual space 𝐻−1∕2,−1∕4(Σ) ∶=
𝐻1∕2,1∕4(Σ)′ to the anisotropic Sobolev space 𝐻1∕2,1∕4(Σ), the discretization error ‖𝜙 − Φ‖𝐻−1∕2,−1∕4(Σ) is equivalent to the norm of the residual ‖𝑓 −𝒱Φ‖𝐻1∕2,1∕4(Σ). We show that the residual norm can be localized up to weighted 𝐿2-terms, i.e.,∑

𝐽×𝐾∈
𝜂 (Φ, 𝐽 ×𝐾)2 ≲ ‖𝑓 −𝒱Φ‖2

𝐻1∕2,1∕4(Σ)
≲

∑
𝐽×𝐾∈

𝜂 (Φ, 𝐽 ×𝐾)2 + 𝜁 (Φ, 𝐽 ×𝐾)2,

where 𝜂 (Φ, 𝐽 ×𝐾)2 measures the 𝐻1∕2,1∕4-seminorm of the residual in a neighborhood of 𝐽 ×𝐾 and 𝜁 (Φ) ∶= (diam(𝐾)−1 + |𝐽 |−1∕2)‖𝑓 −𝒱Φ‖2
𝐿2(𝐽×𝐾). 

The hidden constants depend only on the regularity of the meshes found by fixing either the temporal or the spatial coordinate in  . In particular, 
we do not require any assumption on the relation between the spatial and temporal size of the mesh elements, making anisotropically refined meshes 
possible.

If the elements satisfy the scaling |𝐽 | ≂ diam(𝐾)2 and if Φ is the Galerkin approximation of 𝜙 in a discrete space  that contains at least all 
 -piecewise constant functions, then we can additionally prove that

𝜁 (Φ, 𝐽 ×𝐾) ≲ 𝜂 (Φ, 𝐽 ×𝐾).

Indeed, numerical experiments (with 𝑛 = 2) suggest that this is not the case in general: If the scaling condition is not enforced, we observe situations 
where the weighted 𝐿2-terms 𝜁 do not decay under mesh-refinement.

That being said, the estimator 𝜂 does not only behave efficiently but also reliably in all considered examples. Moreover, anisotropic refinement 
steered by the space- and time-components of the estimator always yields the optimal algebraic convergence rate of both the estimator and the 
error. The source code that we used to generate the numerical results is available at [16].

Outline

The remainder of this work is organized as follows: Section 2 summarizes the general principles of the space-time boundary element method for 
the heat equation. Section 3 recalls the localization argument of [10,11] and applies it to anisotropic Sobolev spaces (Theorem 3.3). This result is 
then invoked in Corollary 3.5 for the residual, resulting in efficient and reliable a posteriori computable error bounds. In particular, a Poincaré-type 
inequality (Lemma 3.4) allows to estimate the weighted 𝐿2-terms that are still present in the upper bound from Theorem 3.3. Finally, Section 4
introduces an adaptive algorithm for 𝑛 = 2 which is based on the derived error estimator. Different marking and refinement strategies are presented. 
The adaptive algorithm is subsequently applied to several concrete examples with typical singularities in space and time. The stable implementation 
is discussed in Appendix A.

2. Preliminaries

2.1. General notation

Throughout and without any ambiguity, | ⋅ | denotes the absolute value of scalars, the Euclidean norm of vectors in ℝ𝑚, or the measure of a set 
in ℝ𝑚, e.g., the length of an interval or the area of a surface in ℝ3. We write 𝐴 ≲ 𝐵 to abbreviate 𝐴 ≤ 𝐶𝐵 with some generic constant 𝐶 > 0, which 
is clear from the context. Moreover, 𝐴 ≂ 𝐵 abbreviates 𝐴 ≲ 𝐵 ≲𝐴.

2.2. Anisotropic Sobolev spaces

For 𝑛-dimensional 𝜔 ⊆Ω or (𝑛 − 1)-dimensional 𝜔 ⊆ Γ, and 𝜇 ∈ (0, 1], we first recall the Sobolev space

𝐻𝜇(𝜔) ∶=
{
𝑣 ∈𝐿2(𝜔) ∶ ‖𝑣‖𝐻𝜇 (𝜔) <∞

}
associated with the Sobolev–Slobodeckij norm

‖𝑣‖2
𝐻𝜇 (𝜔) ∶= ‖𝑣‖2

𝐿2(𝜔)
+ |𝑣|2

𝐻𝜇 (𝜔), |𝑣|2
𝐻𝜇 (𝜔) ∶=

⎧⎪⎨⎪⎩
∫
𝜔
∫
𝜔

|𝑣(𝐱)−𝑣(𝐲)|2|𝐱−𝐲|dim(𝜔)+2𝜇 d𝐲 d𝐱 if 𝜇 ∈ (0,1),‖∇𝜔𝑣‖2𝐿2(𝜔)
if 𝜇 = 1,

where dim(𝜔) denotes the dimension of 𝜔, i.e., 𝑛 or 𝑛 −1, and ∇𝜔 denotes the (weak) gradient on 𝜔, i.e., the standard gradient or the surface gradient.
Moreover, we define for any subinterval 𝐽 ⊆ 𝐼 , 𝜈 ∈ (0, 1], and any Banach space 𝑋,

𝐻𝜈(𝐽 ;𝑋) ∶=
{
𝑣 ∈𝐿2(𝐽 ;𝑋) ∶ ‖𝑣‖𝐻𝜈 (𝐽 ;𝑋) <∞

}
associated with the norm

‖𝑣‖2
𝐻𝜈 (𝐽 ;𝑋) ∶= ‖𝑣‖2

𝐿2(𝐽 ;𝑋) + |𝑣|2
𝐻𝜈 (𝐽 ;𝑋), |𝑣|2

𝐻𝜈 (𝐽 ;𝑋) ∶=
⎧⎪⎨⎪⎩
∫
𝐽
∫
𝐽

‖𝑣(𝑡)−𝑣(𝑠)‖2
𝑋|𝑡−𝑠|1+2𝜈 d𝑠d𝑡 if 𝜈 ∈ (0,1),‖𝜕𝑡𝑣‖2𝐿2(𝐽 ;𝑋) if 𝜈 = 1,
118
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where 𝜕𝑡 denotes the (weak) time derivative. If 𝑋 = ℝ, we simply write 𝐻𝜈(𝐽 ), ‖𝑣‖𝐻𝜈 (𝐽 ), and |𝑣|𝐻𝜈 (𝐽 ). Finally, we recall the anisotropic Sobolev 
space

𝐻𝜇,𝜈(𝐽 ×𝜔) ∶=𝐿2(𝐽 ;𝐻𝜇(𝜔)) ∩𝐻𝜈(𝐽 ;𝐿2(𝜔))

with corresponding norm

‖𝑣‖2
𝐻𝜇,𝜈 (𝐽×𝜔) ∶= ‖𝑣‖2

𝐿2(𝐽 ;𝐻𝜇 (𝜔)) + ‖𝑣‖2
𝐻𝜈 (𝐽 ;𝐿2(𝜔))

for all 𝑣 ∈𝐻𝜇,𝜈(𝐽 ×𝜔).

We will sometimes use the abbreviation

|𝑣|2
𝐿2(𝐽 ;𝐻𝜇 (𝜔)) ∶= ∫

𝐽

|𝑣(𝑡, ⋅)|2
𝐻𝜇 (𝜔) d𝑡 for all 𝑣 ∈𝐿2(𝐽 ;𝐻𝜇(𝜔)).

For 𝜔 ∈ {Ω, Γ}, we denote by 𝐻−𝜇,−𝜈(𝐼 × 𝜔) the dual space of 𝐻𝜇,𝜈(𝐼 × 𝜔) with duality pairing ⟨⋅ , ⋅⟩𝐼×𝜔. We interpret 𝐿2(𝐼 × 𝜔) as subspace of 
𝐻−𝜇,−𝜈 (𝐼 ×𝜔) via

⟨𝑣 , 𝜓⟩𝐼×𝜔 ∶= ∫
𝐼

∫
𝜔

𝑣(𝑡,𝐱)𝜓(𝑡,𝐱) d𝐱 d𝑡 for all 𝑣 ∈𝐻𝜇,𝜈(𝐼 ×𝜔) and 𝜓 ∈𝐿2(𝐼 ×𝜔).

2.3. Boundary integral equations

It is well-known that for 𝑢0 ∈ 𝐿2(Ω) and 𝑢𝐷 ∈ 𝐻1∕2,1∕4(Σ), the heat equation (1.2) admits a unique solution 𝑢 ∈ 𝐻1,1∕2(𝑄). With the normal 
derivative 𝜙𝑁 ∶= 𝜕𝐧𝑢 ∈𝐻−1∕2,−1∕4(Σ), 𝑢 satisfies the representation formula

𝑢 = ℳ̃0𝑢0 +𝒱𝜙𝑁 −𝒦𝑢𝐷, (2.1)

where

(ℳ̃0𝑢0)(𝑡,𝐱) ∶= ∫
Ω

𝐺(𝑡,𝐱 − 𝐲)𝑢0(𝐲) d𝐲 for all (𝑡,𝐱) ∈𝑄 (2.2)

denotes the initial potential,

(𝒱𝜙𝑁 )(𝑡,𝐱) ∶= ∫
Σ

𝐺(𝑡− 𝑠,𝐱 − 𝐲)𝜙𝑁 (𝑠,𝐲) d𝐲 d𝑠 for all (𝑡,𝐱) ∈𝑄 (2.3)

denotes the single-layer potential, and

(𝒦𝑢𝐷)(𝑡,𝐱) ∶= ∫
Σ

𝜕𝐧(𝐲)𝐺(𝑡− 𝑠,𝐱 − 𝐲)𝑢𝐷(𝑠,𝐲) d𝐲 d𝑠 for all (𝑡,𝐱) ∈𝑄 (2.4)

denotes the double-layer potential. These linear operators satisfy the mapping properties ℳ̃0 ∶ 𝐿2(Ω) →𝐻1,1∕2(𝑄), 𝒱0 ∶𝐻−1∕2,−1∕4(Σ) →𝐻1,1∕2(𝑄), 
and 𝒦0 ∶𝐻1∕2,1∕4(Σ) →𝐻1,1∕2(𝑄). The lateral trace (⋅)|Σ ∶𝐻1,1∕2(𝑄) →𝐻1∕2,1∕4(Σ) of these potentials is given by

(ℳ̃0𝑢0)|Σ =ℳ0𝑢0, (𝒱𝜙𝑁 )|Σ =𝒱𝜙𝑁, (𝒦𝑢𝐷)|Σ = (𝒦 − 1∕2)𝑢𝐷,

where the initial operator ℳ0, the single-layer operator 𝒱, and the double-layer operator 𝒦 are defined as in (2.2)–(2.4) for (𝑡, 𝐱) ∈ Σ. Applying the 
lateral trace to (2.1) thus results in

𝒱𝜙𝑁 = (𝒦 + 1∕2)𝑢𝐷 −ℳ0𝑢0, (2.5)

i.e., (1.1) with 𝑓 ∶= (𝒦 + 1∕2)𝑢𝐷 −ℳ0𝑢0. As the single-layer operator 𝒱 is also coercive, i.e.,

⟨𝒱𝜓 , 𝜓⟩Σ ≥ 𝑐coe‖𝜓‖2
𝐻−1∕2,−1∕4(Σ)

for all 𝜓 ∈𝐻−1∕2,−1∕4(Σ) (2.6)

with some constant 𝑐coe > 0, (2.5) is uniquely solvable and the solution 𝜙𝑁 is just the missing normal derivative 𝜕𝐧𝑢 to compute 𝑢 via the represen-
tation formula (2.1).

Alternatively, one can make the ansatz 𝑢 = ℳ̃0𝑢0 +𝒱𝜙. Indeed, both ℳ̃0𝑢0 and 𝒱𝜙 satisfy the heat equation, where ℳ̃0𝑢0 restricted to {0} ×Ω
coincides with 𝑢0 and 𝒱𝜙 vanishes there. To satisfy the Dirichlet boundary conditions, one has to solve

𝒱𝜙 = 𝑢𝐷 −ℳ0𝑢0, (2.7)

i.e., (1.1) with 𝑓 ∶= 𝑢𝐷 −ℳ0𝑢0. While (2.5) is called direct method as it directly provides the physically relevant quantity 𝜙𝑁 = 𝜕𝐧𝑢, (2.7) is called 
indirect method.

For more details and proofs, we refer to the seminal works [3,20,4], which considered 𝑢0 = 0, and to [7,8] for the general case.
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Fig. 2.1. Prismatic mesh  for Γ = [0, 1] and 𝑇 = 1. The dashed blue and red lines indicate the meshes |𝑡 for 𝑡 = 3
8

and |𝐱 for 𝐱 = 7
8
, respectively, where 

the corresponding elements are limited by crosses. For the elements 𝐽1 × 𝐾1 = [ 1
2
, 3
4
] × [ 1

8
, 1
4
] and 𝐽2 × 𝐾2 = [ 1

4
, 1
2
] × [ 1

2
, 3
4
], the corresponding integration domains ⋃

𝐽×�̃�∈|𝐽1∩𝐽 |>0
𝐾1∩�̃�≠∅

(𝐽1 ∩ 𝐽 ) × (𝐾1 ∪ �̃�) and ⋃ 𝐽×�̃�∈
𝐽2∩𝐽≠∅|𝐾2∩�̃�|>0

(𝐽2 ∪ 𝐽 ) × (𝐾2 ∩ �̃�) from (3.5) are highlighted in (light) red and (light) blue, respectively.

2.4. Boundary meshes

Throughout this work, we consider prismatic meshes  of Σ:

•  is a finite set of prisms of the form 𝑃 = 𝐽 × 𝐾 , where 𝐽 ⊆ 𝐼 = [0, 𝑇 ] is some non-empty compact interval and 𝐾 ⊆ Γ is the image of some 
compact Lipschitz domain1 �̂� ⊂ℝ𝑛−1 under some bi-Lipschitz mapping;

• for all 𝑃 , 𝑃 ∈  with 𝑃 ≠ 𝑃 , the intersection has measure zero on Σ;
•  is a partition of Σ, i.e., Σ =⋃

𝑃∈ 𝑃 .

For arbitrary 𝑡 ∈ 𝐼 and 𝐱 ∈ Γ, we abbreviate the induced sets

|𝑡 ∶= {
𝐾 ⊆ Γ ∶ ({𝑡} × Γ) ∩ (𝐽 ×𝐾) ≠ ∅ for some 𝐽 ×𝐾 ∈ }

and

|𝐱 ∶= {
𝐽 ⊆ 𝐼 ∶ (𝐼 × {𝐱}) ∩ (𝐽 ×𝐾) ≠ ∅ for some 𝐽 ×𝐾 ∈ }

;

see Fig. 2.1 for a visualization. For almost all 𝑡 ∈ 𝐼 , |𝑡 is a mesh of Γ, i.e., a partition of Γ into finitely many compact Lipschitz domains such that 
the intersection of two distinct elements has measure zero on Γ. Similarly, for almost all 𝐱 ∈ Γ, |𝐱 is a mesh of 𝐼 , i.e., a partition of 𝐼 into finitely 
many non-empty compact intervals such that the intersection of two different intervals is at most a point.

Note that for one fixed prismatic mesh  there exist constants 𝐶nei ≥ 1, 𝐶dist ≥ 1, 𝐶shape ≥ 1, and 𝐶lqu ≥ 1 such that:

• for almost all 𝑡 ∈ 𝐼 , the number of neighbors of an element in |𝑡 is bounded, i.e.,

#
{
�̃� ∈ |𝑡 ∶ 𝐾 ∩ �̃� ≠ ∅

} ≤ 𝐶nei for all 𝐾 ∈ |𝑡. (2.8)

• for almost all 𝑡 ∈ 𝐼 , the elements of |𝑡 are uniformly away from non-neighboring elements, i.e.,

diam(𝐾) ≤ 𝐶distdist(𝐾, �̃�) for all 𝐾, �̃� ∈ |𝑡 with 𝐾 ∩ �̃� = ∅; (2.9)

• for almost all 𝑡 ∈ 𝐼 , the elements of |𝑡 are shape-regular, i.e.,

𝐶−1
shape

|𝐾| ≤ diam(𝐾)𝑛−1 ≤ 𝐶shape|𝐾| for all 𝐾 ∈ |𝑡; (2.10)

• for almost all 𝐱 ∈ Γ, |𝐱 is locally quasi-uniform, i.e.,

|𝐽 | ≤ 𝐶lqu|𝐽 | for all 𝐽 ,𝐽 ∈ |𝐱 with 𝐽 ∩ 𝐽 ≠ ∅. (2.11)

In the remainder of this work, we will always indicate the dependence of estimates on these particular constants.

1 A compact Lipschitz domain is the closure of a bounded Lipschitz domain. For 𝑛 = 2, it is a compact interval with non-empty interior.
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Remark 2.1. If, for 𝑛 = 2, the meshes |𝑡 are found by iteratively bisecting some initial mesh and the level difference of neighboring elements is bounded by 
1, then the constants from (2.8)–(2.10) depend only on the initial mesh; cf. [1]. For 𝑛 = 3, the same holds true if the initial mesh is for instance a conforming 
(curvilinear) triangulation of Γ and one iteratively applies newest vertex bisection. The arguments for (2.8)–(2.9) are found in [2, Section 2.3 and 4.1].

2.5. Boundary element method

Given a prismatic boundary mesh  and an associated finite-dimensional trial space  ⊂𝐻−1∕2,−1∕4(Σ), e.g., the space of all  -piecewise polyno-
mials of some fixed degree in space and time, let Φ ∈  denote the Galerkin discretization of the solution 𝜙 of the boundary integral equation (1.1), 
i.e.,

⟨𝒱Φ , Ψ⟩Σ = ⟨𝑓 , Ψ⟩Σ for all Ψ∈  , (2.12)

which is equivalent to the Galerkin orthogonality

⟨𝒱(𝜙−Φ) , Ψ⟩Σ = 0 for all Ψ∈  . (2.13)

Note that coercivity (2.6) guarantees unique solvability of the latter equations, and the Céa lemma applies

‖𝜙−Φ‖𝐻−1∕2,−1∕4(Σ) ≤ 𝐶cont

𝑐coe
min
Ψ∈ ‖𝜙−Ψ‖𝐻−1∕2,−1∕4(Σ), (2.14)

where 𝐶cont is the operator norm of 𝒱 ∶ 𝐻−1∕2,−1∕4(Σ) → 𝐻1∕2,1∕4(Σ). Suppose  =
{
𝐽 × 𝐾 ∶ 𝐽 ∈ 

𝐼
, 𝐾 ∈ Γ

}
is a full tensor-mesh corresponding 

to a mesh Γ of Γ with uniform mesh-size ℎ𝐱 ≂ diam(𝐾) for all 𝐾 ∈ Γ and a mesh 
𝐼

of 𝐼 with uniform step-size ℎ𝑡 ≂ ℎ𝜎
𝐱 for some 𝜎 > 0. Using 

 -piecewise polynomials of some degree 𝑝𝐱 ∈ℕ0 in space- and some degree 𝑝𝑡 ∈ℕ0 in time-direction as trial space  , then gives the error decay rate

min
Ψ∈ ‖𝜙−Ψ‖𝐻−1∕2,−1∕4(Σ) ≲𝑁

−min{𝑝𝐱+3∕2,(𝑝𝑡+5∕4)𝜎}
𝑛−1+𝜎 for all smooth 𝜙; (2.15)

see [5, Theorem 3.3]. Here, 𝑁 ≂ ℎ
−(𝑛−1)
𝐱 ℎ−1𝑡 = ℎ𝑛−1+𝜎

𝐱 denotes the number of degrees of freedom. The optimal grading parameter is thus given by 

𝜎 = (𝑝𝐱 +
3
2 )∕(𝑝𝑡 +

5
4 ) with resulting rate (𝑁− 𝑝𝐱+3∕2

𝑛−1+𝜎
)
.

3. A posteriori error estimation

As 𝒱 is an isomorphism, it holds that

‖𝜙−Φ‖𝐻−1∕2,−1∕4(Σ) ≂ ‖𝑓 −𝒱Φ‖𝐻1∕2,1∕4(Σ). (3.1)

Here, Φ ∈𝐻−1∕2,−1∕4(Σ) can be an arbitrary approximation of the solution 𝜙 of (1.1). While the right-hand side is in principle a posteriori computable, 
the computation of the Sobolev–Slobodeckij norm over the full space-time boundary Σ is expensive, and it does not provide any information on 
where to locally refine the given mesh to increase the accuracy of the approximation. According to (3.1), it is sufficient to derive suitable estimate 
for the residual 𝑓 −𝒱Φ in the 𝐻1∕2,1∕4(Σ)-norm. Recall that this term is 𝐿2(Σ)-orthogonal to all functions Ψ ∈  provided that Φ is the Galerkin 
approximation of 𝜙 in  ; see (2.13).

3.1. Localization of the anisotropic Sobolev–Slobodeckij norm

The following proposition provides the key argument for our a posteriori error estimation. While the first inequality is trivial, the original version 
of the second one already goes back to [10,11]. We make use of the slightly generalized version from [15, Lemma 4.5]; see [12, Lemma 5.3.2] for a 
detailed proof.

Proposition 3.1. Let 𝜇 ∈ (0, 1) and Γ be a mesh of Γ. Then, there exist constants 𝐶1, 𝐶2 > 0 such that for all 𝑣 ∈𝐻𝜇(Γ), there holds that

𝐶−1
1

∑
𝐾∈Γ

∑
�̃�∈Γ
𝐾∩�̃�≠∅

|𝑣|2
𝐻𝜇 (𝐾∪�̃�) ≤ ‖𝑣‖2

𝐻𝜇 (Γ) ≤
∑

𝐾∈Γ

∑
�̃�∈Γ
𝐾∩�̃�≠∅

|𝑣|2
𝐻𝜇 (𝐾∪�̃�) +𝐶2

∑
𝐾∈Γ

diam(𝐾)−2𝜇‖𝑣‖2
𝐿2(𝐾).

(3.2)

The constant 𝐶1 is given as 𝐶1 = 2(𝐶nei +1)2 with 𝐶nei from (2.8) (with |𝑡 replaced by Γ), and 𝐶2 depends only on the dimension 𝑛, 𝜇, Γ, and the constant 
𝐶dist from (2.9) (with |𝑡 replaced by Γ). □

Note that local quasi-uniformity (2.11) (with |𝐱 replaced by 
𝐼
) of a time mesh 

𝐼
is actually equivalent to

diam(𝐽 ) = |𝐽 | ≤ 𝐶lqudist(𝐽 ,𝐽 ) for all 𝐽 ,𝐽 ∈ 
𝐼

with 𝐽 ∩ 𝐽 = ∅. (3.3)

Moreover, for any element 𝐽 ∈ 
𝐼
, there are at most three 𝐽 ∈ 

𝐼
with 𝐽 ∩ 𝐽 ≠ ∅. In particular, the same reference as before applies and we also 

obtain the following proposition.

Proposition 3.2. Let 𝜈 ∈ (0, 1) and 
𝐼

be a mesh of 𝐼 . Then, there exist constants 𝐶1, 𝐶2 > 0 such that for all 𝑣 ∈𝐻𝜈(𝐼), there holds that

𝐶−1
1

∑
𝐽∈

𝐼

∑
𝐽∈

𝐼
𝐽∩𝐽≠∅

|𝑣|2
𝐻𝜈 (𝐽∪𝐽 ) ≤ ‖𝑣‖2

𝐻𝜈 (𝐼) ≤
∑
𝐽∈

𝐼

∑
𝐽∈

𝐼
𝐽∩𝐽≠∅

|𝑣|2
𝐻𝜈 (𝐽∪𝐽 ) +𝐶2

∑
𝐽∈

𝐼

|𝐽 |−2𝜈‖𝑣‖2
𝐿2(𝐽 )

. (3.4)

The constant 𝐶1 is given as 𝐶1 = 32, and 𝐶2 depends only on 𝜈, |𝐼|, and the constant 𝐶lqu from (2.11) (with |𝐱 replaced by  ). □

𝐼
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The latter two propositions allow to derive the following a posteriori error estimation, which can be employed for arbitrary approximations Φ.

Theorem 3.3. Let 𝜇, 𝜈 ∈ (0, 1) and  be a prismatic mesh of Σ. Then, there exist constants 𝐶 ′
eff

, 𝐶 ′′
rel

> 0 such that for all 𝑣 ∈𝐻𝜇,𝜈(Σ), there holds that∑
𝐽×𝐾∈

( ∑
𝐽×�̃�∈|𝐽∩𝐽 |>0
𝐾∩�̃�≠∅

|𝑣|2
𝐿2(𝐽∩𝐽 ;𝐻𝜇 (𝐾∪�̃�)) +

∑
𝐽×�̃�∈
𝐽∩𝐽≠∅|𝐾∩�̃�|>0

|𝑣|2
𝐻𝜈 (𝐽∪𝐽 ;𝐿2(𝐾∩�̃�))

) ≤ (𝐶 ′
eff
)2‖𝑣‖2

𝐻𝜇,𝜈 (Σ) (3.5)

as well as

(𝐶 ′
rel
)−2‖𝑣‖2

𝐻𝜇,𝜈 (Σ) ≤
∑

𝐽×𝐾∈

( ∑
𝐽×�̃�∈|𝐽∩𝐽 |>0
𝐾∩�̃�≠∅

|𝑣|2
𝐿2(𝐽∩𝐽 ;𝐻𝜇 (𝐾∪�̃�)) +

∑
𝐽×�̃�∈
𝐽∩𝐽≠∅|𝐾∩�̃�|>0

|𝑣|2
𝐻𝜈 (𝐽∪𝐽 ;𝐿2(𝐾∩�̃�))

)
+

∑
𝐽×𝐾∈

(
diam(𝐾)−2𝜇 + |𝐽 |−2𝜈)‖𝑣‖2

𝐿2(𝐽×𝐾);
(3.6)

see Fig. 2.1 for a visualization of the involved integration domains. The constant 𝐶 ′
eff

is given as 𝐶 ′
eff

= max(2(𝐶nei + 1)2, 32) with 𝐶nei from (2.8), and 𝐶 ′
rel

depends only on 𝑛, 𝜇, 𝜈, Γ, |𝐼| and the constants 𝐶dist from (2.9) as well as 𝐶lqu from (2.11).

Proof. We split the proof into four steps.
Step 1: In this step, we bound ‖𝑣‖𝐿2(𝐼 ;𝐻𝜇 (Γ)) from below. Proposition 3.1 gives that

‖𝑣‖2
𝐿2(𝐼 ;𝐻𝜇 (Γ)) = ∫

𝐼

‖𝑣(𝑡, ⋅)‖2
𝐻𝜇 (Γ) d𝑡 ≳ ∫

𝐼

∑
𝐾∈|𝑡

∑
�̃�∈|𝑡
𝐾∩�̃�≠∅

|𝑣(𝑡, ⋅)|2
𝐻𝜇 (𝐾∪�̃�) d𝑡.

Note that 𝐾 ∈ |𝑡 is equivalent to 𝐽 ×𝐾 ∈  for some 𝐽 with 𝑡 ∈ 𝐽 . With the indicator function 1𝑆 of a set 𝑆, the last term thus is equal to

∫
𝐼

∑
𝐾∈|𝑡

∑
�̃�∈|𝑡
𝐾∩�̃�≠∅

|𝑣(𝑡, ⋅)|2
𝐻𝜇 (𝐾∪�̃�) d𝑡 = ∫

𝐼

∑
𝐽×𝐾∈

1𝐽 (𝑡)
∑

𝐽×�̃�∈
𝐾∩�̃�≠∅

1𝐽 (𝑡)|𝑣(𝑡, ⋅)|2𝐻𝜇 (𝐾∪�̃�) d𝑡

=
∑

𝐽×𝐾∈
∑

𝐽×�̃�∈|𝐽∩𝐽 |>0
𝐾∩�̃�≠∅

|𝑣|2
𝐿2(𝐽∩𝐽 ;𝐻𝜇 (𝐾∪�̃�)).

Step 2: In this step, we bound ‖𝑣‖𝐿2(𝐼 ;𝐻𝜇 (Γ)) from above. Proposition 3.1 gives that

‖𝑣‖2
𝐿2(𝐼 ;𝐻𝜇 (Γ)) = ∫

𝐼

‖𝑣(𝑡, ⋅)‖2
𝐻𝜇 (Γ) d𝑡

≲ ∫
𝐼

∑
𝐾∈|𝑡

∑
�̃�∈|𝑡
𝐾∩�̃�≠∅

|𝑣(𝑡, ⋅)|2
𝐻𝜇 (𝐾∪�̃�) +

∑
𝐾∈|𝑡 diam(𝐾)−2𝜇‖𝑣(𝑡, ⋅)‖2

𝐿2(𝐾) d𝑡. (3.7)

The first term in (3.7) has already been treated in Step 1. As 𝐾 ∈ |𝑡 is equivalent to 𝐽 ×𝐾 ∈  for some 𝐽 with 𝑡 ∈ 𝐽 , the second term reads

∫
𝐼

∑
𝐾∈|𝑡 diam(𝐾)−2𝜇‖𝑣(𝑡, ⋅)‖2

𝐿2(𝐾) d𝑡 = ∫
𝐼

∑
𝐽×𝐾∈

1𝐽 (𝑡) diam(𝐾)−2𝜇‖𝑣(𝑡, ⋅)‖2
𝐿2(𝐾) d𝑡

=
∑

𝐽×𝐾∈
diam(𝐾)−2𝜇‖𝑣‖2

𝐿2(𝐽×𝐾).

Step 3: In this step, we bound ‖𝑣‖𝐻𝜈 (𝐼 ;𝐿2(Γ)) from below. The Fubini theorem, Proposition 3.2, and the same argument as in Step 1 give that

‖𝑣‖2
𝐻𝜈 (𝐼 ;𝐿2(Γ))

= ∫
Γ

‖𝑣(⋅,𝐱)‖2
𝐻𝜈 (𝐼) d𝐱 ≳ ∫

Γ

∑
𝐽∈|𝐱

∑
𝐽∈|𝐱
𝐽∩𝐽≠∅

|𝑣(⋅,𝐱)|2
𝐻𝜈 (𝐽∪𝐽 ) d𝐱

= ∫
Γ

∑
𝐽×𝐾∈

1𝐾 (𝐱)
∑

𝐽×�̃�∈
𝐽∩𝐽≠∅

1�̃� (𝐱)|𝑣(⋅,𝐱)|2𝐻𝜈 (𝐽∪𝐽 ) d𝐱

=
∑

𝐽×𝐾∈
∑

𝐽×�̃�∈
𝐽∩𝐽≠∅|𝐾∩�̃�|>0

|𝑣|2
𝐻𝜈 (𝐽∪𝐽 ;𝐿2(𝐾∩�̃�)).

Step 4: In this step, we bound ‖𝑣‖𝐻𝜈 (𝐼 ;𝐿2(Γ)) from above. The Fubini theorem and Proposition 3.2 give that

‖𝑣‖2
𝐻𝜈 (𝐼 ;𝐿2(Γ))

= ∫
Γ

‖𝑣(⋅,𝐱)‖2
𝐻𝜈 (𝐼) d𝐱

≲ ∫
Γ

∑
𝐽∈|𝐱

∑
𝐽∈|𝐱
𝐽∩𝐽≠∅

|𝑣(⋅,𝐱)|2
𝐻𝜈 (𝐽∪𝐽 ) +

∑
𝐽∈|𝐱 |𝐽 |−2𝜈‖𝑣(⋅,𝐱)‖2𝐿2(𝐽 )

d𝐱. (3.8)

The first term in (3.8) has already been treated in Step 3. The second term reads
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∫
Γ

∑
𝐽∈|𝐱 |𝐽 |−2𝜈‖𝑣(⋅,𝐱)‖2𝐿2(𝐽 )

d𝐱 = ∫
Γ

∑
𝐽×𝐾∈

1𝐾 (𝐱) |𝐽 |−2𝜈‖𝑣(⋅,𝐱)‖2𝐿2(𝐽 )
d𝐱

=
∑

𝐽×𝐾∈
|𝐽 |−2𝜈‖𝑣‖2

𝐿2(𝐽×𝐾).

This concludes the proof. □

3.2. Poincaré-type inequality

Assuming the grading |𝐽 | ≂ diam(𝐾)𝜇∕𝜈 as well as 𝐿2(Σ)-orthogonality of 𝑣 to piecewise constants, the following local Poincaré-type inequality 
allows to get rid of the weighted 𝐿2-terms in (3.6); see Corollary 3.5. The proof works essentially as in [4, Proposition 5.3], where a global version 
on uniform meshes is considered.

Lemma 3.4. Let 𝜇, 𝜈 ∈ (0, 1) and  be a prismatic mesh of Σ. Then, there holds for all 𝑣 ∈𝐻𝜇,𝜈(Σ) and all 𝐽 ×𝐾 ∈  with ⟨𝑣 , 1⟩𝐿2(𝐽×𝐾) = 0 that

‖𝑣‖2
𝐿2(𝐽×𝐾) ≤ 𝐶shape

(
diam(𝐾)2𝜇|𝑣|2

𝐿2(𝐽 ;𝐻𝜇 (𝐾)) + |𝐽 |2𝜈 |𝑣|2
𝐻𝜈 (𝐽 ;𝐿2(𝐾))

)
. (3.9)

Here, 𝐶shape ≥ 1 is the constant from (2.10).

Proof. Let Π𝐽 , Π𝐾 , and Π𝐽×𝐾 denote the 𝐿2-orthogonal projection onto the space of constants on 𝐽 , 𝐾 , and 𝐽 × 𝐾 , respectively. Note that 
Π𝐽×𝐾 =Π𝐽 ⊗Π𝐾 and thus

‖𝑣‖𝐿2(𝐽×𝐾) = ‖(1 − Π𝐽×𝐾 )𝑣‖𝐿2(𝐽×𝐾)

≤ ‖(1 − Π𝐽 ⊗ Id)𝑣‖𝐿2(𝐽×𝐾) + ‖(Π𝐽 ⊗ Id − Π𝐽 ⊗Π𝐾 )𝑣‖𝐿2(𝐽×𝐾). (3.10)

As Π𝐽 has operator norm 1, a standard Poincaré-type inequality, see, e.g., [11, Lemma 3.4] for the elementary proof, shows for the second term in 
(3.10) that

‖(Π𝐽 ⊗ Id − Π𝐽 ⊗Π𝐾 )𝑣‖2𝐿2(𝐽×𝐾) ≤ ‖(1 − Id⊗Π𝐾 )𝑣‖2𝐿2(𝐽×𝐾)

= ∫
𝐽

‖(1 − Π𝐾 )𝑣(𝑡, ⋅)‖2𝐿2(𝐾) d𝑡

≤ diam(𝐾)𝑛−1+2𝜇

2|𝐾| ∫
𝐽

|𝑣(𝑡, ⋅)|2
𝐻𝜇 (𝐾) d𝑡

≤ 𝐶shape

2
diam(𝐾)2𝜇|𝑣|2

𝐿2(𝐽 ;𝐻𝜇 (𝐾)).

The first term in (3.10) can be estimated similarly

‖(1 − Π𝐽 ⊗ Id)𝑣‖2
𝐿2(𝐽×𝐾) ≤ 1

2
|𝐽 |2𝜈 |𝑣|2

𝐻𝜈 (𝐽 ;𝐿2(𝐾)),

which concludes the proof. □

3.3. A posteriori error estimators

For arbitrary prismatic meshes  of Σ with some associated trial space  ⊂𝐻−1∕2,−1∕4(Σ) and Φ ∈  , we define the following error indicators for 
all 𝐽 ×𝐾 ∈  ,

𝜂𝐱 (Φ, 𝐽 ×𝐾)2 ∶=
∑

𝐽×�̃�∈|𝐽∩𝐽 |>0
𝐾∩�̃�≠∅

|𝑓 −𝒱Φ|2
𝐿2(𝐽∩𝐽 ;𝐻1∕2(𝐾∪�̃�))

,

𝜂𝑡 (Φ, 𝐽 ×𝐾)2 ∶=
∑

𝐽×�̃�∈
𝐽∩𝐽≠∅|𝐾∩�̃�|>0

|𝑓 −𝒱Φ|2
𝐻1∕4(𝐽∪𝐽 ;𝐿2(𝐾∩�̃�))

,

𝜁𝐱 (Φ, 𝐽 ×𝐾)2 ∶= diam(𝐾)−1‖𝑓 −𝒱Φ‖2
𝐿2(𝐽×𝐾),

𝜁 𝑡 (Φ, 𝐽 ×𝐾)2 ∶= |𝐽 |−1∕2‖𝑓 −𝒱Φ‖2
𝐿2(𝐽×𝐾).

The corresponding error estimators read as

𝜂 (Φ)2 ∶=
∑

𝐽×𝐾∈
𝜂 (Φ, 𝐽 ×𝐾)2 with 𝜂 (Φ, 𝐽 ×𝐾)2 ∶= 𝜂𝐱 (Φ, 𝐽 ×𝐾)2 + 𝜂𝑡 (Φ, 𝐽 ×𝐾)2,

𝜁 (Φ)2 ∶=
∑

𝐽×𝐾∈
𝜁 (Φ, 𝐽 ×𝐾)2 with 𝜁 (Φ, 𝐽 ×𝐾)2 ∶= 𝜁𝐱 (Φ, 𝐽 ×𝐾)2 + 𝜁𝑡 (Φ, 𝐽 ×𝐾)2.

With (3.1), we overall obtain the following a posteriori estimates.
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Corollary 3.5. Let 𝜙 be the solution of (1.1) and  be a prismatic mesh of Σ with some associated discrete trial space  ⊂𝐻−1∕2,−1∕4(Σ). Then, there exist 
constants 𝐶eff, �̃�rel > 0 such that for arbitrary Φ ∈ , there holds that

𝐶−1
eff

𝜂 (Φ) ≤ ‖𝜙−Φ‖𝐻−1∕2,−1∕4(Σ) ≤ �̃�rel
(
𝜂 (Φ)2 + 𝜁 (Φ)2

)1∕2
. (3.11)

If the space  contains all  -piecewise constant functions and Φ ∈  is the Galerkin approximation of 𝜙, there further holds that

𝜁 (Φ, 𝐽 ×𝐾)2 ≤ 𝐶shape
(
diam(𝐾)−1 + |𝐽 |−1∕2)(diam(𝐾) + |𝐽 |1∕2)𝜂 (Φ, 𝐽 ×𝐾)2 (3.12)

for all 𝐽 ×𝐾 ∈  . If 𝐶−1
grad

diam(𝐾) ≤ |𝐽 |1∕2 ≤ 𝐶graddiam(𝐾) is satisfied for all 𝐽 ×𝐾 ∈  and a uniform constant 𝐶grad ≥ 1, this implies the existence of a 
constant 𝐶rel > 0 such that

‖𝜙−Φ‖𝐻−1∕2,−1∕4(Σ) ≤ 𝐶rel𝜂 (Φ). (3.13)

The constants 𝐶eff and �̃�rel are given as 𝐶eff = 𝐶 ′
eff

𝐶cont and 𝐶rel = 𝐶 ′
rel
∕𝑐coe with 𝐶 ′

eff
and 𝐶 ′

rel
from Theorem 3.3, the operator norm 𝐶cont of 𝒱, and 𝑐coe

from (2.6). The constant 𝐶rel is given as 𝐶rel = �̃�rel

√
2𝐶shape(1 +𝐶grad). □

Remark 3.6. According to (2.15), the required scaling |𝐽 | ≂ diam(𝐾)2, i.e., 𝜎 = 2, is the optimal scaling for approximating smooth solutions 𝜙 if the 
polynomial degrees of  satisfy 𝑝𝐱 = 2𝑝𝑡 + 1.

4. Numerical experiments

In this section, we employ the error estimator 𝜂 within an adaptive algorithm using different refinement strategies, and investigate the resulting 
convergence rates. We restrict ourselves to the case 𝑛 = 2, with Γ = 𝜕Ω being the boundary of a polygonal domain Ω ⊂ℝ2, and set the time domain 
to be 𝐼 = (0, 1). In all considered examples, we employ the indirect approach (2.7) (coinciding with the direct approach (2.5) in Section 4.3 and 4.6
due to homogeneous Dirichlet data).

For  a prismatic mesh of the space-time boundary, i.e., a quadrilateral mesh as 𝑛 = 2, we consider the trial space  of piecewise constants with 
respect to  . In particular, this allows us to perform integration in time analytically for all integrals that are involved in the computation of the 
Galerkin matrix and the evaluation of the single-layer operator 𝒱; see, e.g., [4]. The remaining integrals over Γ have a logarithmic singularity, for 
which we use the quadrature rules from [22]. For the computation of the Sobolev–Slobodeckij seminorm in the Faermann estimator 𝜂 (Φ), we use 
Duffy transformations and Gauss quadrature for the regularized integrands. Further details on the numerical computation of the involved singular 
integrals are found in Appendix A. The source code that we used to generate the numerical results is available at [16].

4.1. Adaptive algorithm

In our numerical experiments below, we employ the following adaptive algorithm with 𝜃 = 0.9.

Algorithm 4.1. Let 0 < 𝜃 ≤ 1 be a marking parameter and  =
{
𝐽 ×𝐾 ∶ 𝐽 ∈ 

𝐼
, 𝐾 ∈ Γ

}
be an initial tensor-mesh corresponding to a mesh Γ of Γ and a 

mesh 
𝐼

of 𝐼 = [0, 𝑇 ]. For each 𝓁 = 0, 1, 2, … , iterate the following steps:

(i) Compute Galerkin approximation Φ𝓁 of 𝜙 in the space 𝓁 of all 𝓁 -piecewise constant functions on Σ.

(ii) Compute indicators 𝜂𝐱𝓁
(Φ𝓁 , 𝐽 ×𝐾) and 𝜂𝑡𝓁

(Φ𝓁 , 𝐽 ×𝐾) for all elements 𝐽 ×𝐾 ∈ 𝓁 .

(iii) Determine two minimal sets of marked elements 𝐱
𝓁 , 𝑡

𝓁 ⊆ 𝓁 such that

𝜃2𝜂𝓁
(Φ𝓁)2 ≤

∑
𝐽×𝐾∈𝐱

𝓁

𝜂𝐱𝓁
(Φ𝓁 , 𝐽 ×𝐾)2 +

∑
𝐽×𝐾∈𝑡

𝓁

𝜂𝑡𝓁
(Φ𝓁 , 𝐽 ×𝐾)2. (4.1)

(iv) Refine at least all marked elements to obtain a new mesh 𝓁+1 .

We will focus on isotropic and anisotropic adaptive strategies:

• In isotropic refinement, we require 𝐱
𝓁 =𝑡

𝓁 in the marking step (iii), so that (4.1) simplifies to 𝜃2𝜂𝓁
(Φ𝓁)2 ≤∑

𝐽×𝐾∈𝓁
𝜂𝓁

(Φ𝓁 , 𝐽 ×𝐾)2. In 
the refinement step (iv), we iteratively mark additional elements to ensure that, after subdividing all marked elements into four congruent 
rectangles, the new mesh 𝓁+1 has only one hanging node per edge.

• In anisotropic refinement, we bisect the elements 𝐱
𝓁 ⧵𝑡

𝓁 in space, bisect the elements 𝑡
𝓁 ⧵𝐱

𝓁 in time, and subdivide all elements 𝐱
𝓁 ∩𝑡

𝓁
into four congruent rectangles. Then, we iteratively bisect additional elements in space and/or time to ensure that the level difference in space 
and in time between elements sharing an edge in the new mesh 𝓁+1 is bounded by 1. Here, the level in space and the level in time of elements 
are defined as the number of bisections in space and time, respectively, to obtain the element from the initial mesh 0 .

For comparison, we also include uniform refinement, where 𝓁+1 is obtained from 𝓁 by subdividing each element into four congruent rectangles. 
For all considered refinement strategies, it is easy to see that the mesh constants from (2.8)–(2.11) corresponding to (𝓁)𝓁∈ℕ0

depend only on the 
initial mesh 0.
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Fig. 4.1. Error estimators for the smooth problem of Section 4.3 plotted double-logarithmically over the degrees of freedom 𝑁 = # : uniform refinement (left), 
isotropic refinement (middle), and anisotropic refinement (right).

4.2. Reference for exact error

As the exact error ‖𝜙 −Φ‖𝐻−1∕2,−1∕4(Σ) cannot be readily computed in the examples below, we compare the error estimator 𝜂 and the weighted 
𝐿2-terms 𝜁 from Section 3.3 with the following (ℎ − ℎ∕2)-estimator: For a mesh  , define the uniformly refined mesh as ̂ . With the Galerkin 
approximation Φ̂ from the refined trial space, we define the (ℎ − ℎ∕2)-estimator as

‖Φ− Φ̂‖2𝒱 ∶= ⟨𝒱(Φ − Φ̂) , Φ− Φ̂⟩Σ.
Under the saturation assumption ‖𝜙 −Φ̂‖𝒱 ≤ 𝑞sat‖𝜙 −Φ‖𝒱 , the triangle inequality shows that this estimator is equivalent to ‖𝜙 −Φ‖𝒱 , and therefore 
to the error ‖𝜙 −Φ‖𝐻−1∕2,−1∕4(Σ) by coercivity of 𝒱. Note that the saturation assumption is indeed satisfied under the realistic (asymptotic) assumption 
that ‖𝜙 −Φ‖𝒱 = ((#)−𝑠) for some arbitrary rate 𝑠 > 0.

4.3. Smooth problem

Let Ω = (0, 1)2 and consider the (smooth) solution 𝑢(𝑡, 𝑥1, 𝑥2) ∶= exp(−2𝜋2𝑡) sin(𝜋𝑥1) sin(𝜋𝑥2) with initial condition 𝑢0(𝑥1, 𝑥2) ∶= sin(𝜋𝑥1) sin(𝜋𝑥2) and 
Dirichlet data 𝑢𝐷 ≡ 0. We choose 0 ∶=

{
[0, 1] ×𝐾 ∶ 𝐾 ∈ Γ

}
with the uniform mesh Γ of Γ being aligned with the corners and consisting of four 

elements, as initial mesh of the space-time boundary Σ.
Fig. 4.1 displays the results in double-logarithmic plots so that the slopes of the lines indicate the corresponding convergence rates. With the 

number of degrees of freedom 𝑁 = # , we see the expected rate (𝑁−5∕8) = (𝑁−0.625) from (2.15) for both uniform refinement and isotropic 
refinement (with still slightly worse rate for the weighted 𝐿2-terms 𝜁 (Φ) for uniform refinement), albeit adaptive isotropic refinement offers 
quantitively better results. For anisotropic refinement, the rate is improved to (𝑁−15∕22) ≈ (𝑁−0.68). According to (2.15), this coincides with the 
best possible rate that can be achieved with uniform tensor-meshes, where the optimal scaling parameter in ℎ𝑡 ≂ ℎ𝜎

𝐱 is given by 𝜎 = 6∕5. Note that 
we do not require setting an explicit scaling in our anisotropic adaptive algorithm, it recovers the optimal rate automatically.

4.4. Mildly singular problem

Let Ω = (0, 1)2, with initial condition 𝑢0 ≡ 0 and Dirichlet data 𝑢𝐷(𝑡, 𝑥1, 𝑥2) ∶= 𝑡2. We expect the solution here to be only singular in the four corners 
of the unit square as the initial condition is compatible with the Dirichlet data. The initial mesh 0 is chosen as in Section 4.3. Fig. 4.2 displays the 
results. The asymptotic decay rate for all estimators under uniform refinement seems to be (𝑁−1∕3), which is improved to (𝑁−1∕2) for isotropic 
refinement, and finally, under anisotropic refinement this becomes the optimal rate (𝑁−15∕22).

4.5. Singular problem

Let Ω = (0, 1)2 with initial condition 𝑢0 ≡ 0 and Dirichlet data 𝑢𝐷 ≡ 1. The solution to this problem is known to have a strong singularity for 𝑡 = 0
due to the incompatibility of initial and boundary conditions, in addition to singularities in the four corners of the unit square. The initial mesh 0
is chosen as in Section 4.3.

Fig. 4.3 displays the results. The Faermann estimator 𝜂 (Φ) and the (ℎ − ℎ∕2)-estimator ‖Φ − Φ̂‖𝒱 show both the same sensible convergence 
behavior for this problem. For uniform refinement, they display the rate (𝑁−1∕8), which is then improved by isotropic refinement to (𝑁−1∕4). 
Finally, for anisotropic refinement, they achieve the best possible rate (𝑁−15∕22), recovering the rate for a smooth problem. Looking at Fig. 4.4, 
we see strong anisotropic refinement towards 𝑡 = 0 with elements of size ℎ𝐱 = 1, ℎ𝑡 = 2−18, and some mild refinement towards the corners of the unit 
square.

On the other hand, the weighted 𝐿2-terms 𝜁 (Φ) do not seem to decay for uniform or isotropic refinement, and seem to degenerate for anisotropic 
refinement. This is problematic for the reliability bound in Corollary 3.5. Further inspection suggests that this is a theoretical shortcoming rather 
than a practical one. This is hinted by the (ℎ − ℎ∕2)-estimator, which one generally assumes to be reliable. Note that this does not contradict the 
theoretical results from Corollary 3.5, which states 𝜁 (Φ) ≲ 𝜂 (Φ) ≲ ‖𝜙 −Φ‖𝐻−1∕2,−1∕4(Σ) only under the additional parabolic scaling assumption ℎ𝑡 ≂ ℎ2𝐱
for all space-time elements.
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Fig. 4.2. Error estimators for the mildly singular problem of Section 4.4 plotted double-logarithmically over the degrees of freedom 𝑁 = # : uniform refinement 
(left), isotropic refinement (middle), and anisotropic refinement (right).

Fig. 4.3. Error estimators for the singular problem of Section 4.5 plotted double-logarithmically over the degrees of freedom 𝑁 = # : uniform refinement (left), 
isotropic refinement (middle), and anisotropic refinement (right).

Fig. 4.4. Mesh with 𝑁 = 1391 elements, generated by anisotropic refinement for the singular problem of Section 4.5.

Under this parabolic scaling assumption, the optimal error decay rate for smooth problems becomes (𝑁−1∕2); see (2.15). Fig. 4.5 displays the 
results of uniform and adaptive refinement, with meshes that satisfy this scaling constraint,2 providing convergence rates (𝑁−0.18) and (𝑁−0.4), 
respectively, for all considered estimators.

2 For uniform refinement, all elements are split into eight new elements by bisecting once in space-direction and three times in time-direction. For adaptive 
refinement, we assume 𝐱

𝓁 =𝑡
𝓁 . All these marked elements are subdivided into four congruent rectangles, where we use additional bisections in space and/or 
time to guarantee that the level differences between elements sharing an edge are bounded by 1 and that 1
2
ℎ2
𝐱 ≤ ℎ𝑡 ≤ 2ℎ2

𝐱 .
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Fig. 4.5. Error estimators for the singular problem of Section 4.5 plotted double-logarithmically over the degrees of freedom 𝑁 = # : uniform refinement (left) and 
adaptive refinement (right) with parabolic scaling ℎ𝑡 ≂ ℎ2

𝐱 .

Fig. 4.6. Error estimators for the singular L-shape problem of Section 4.6 plotted double-logarithmically over the degrees of freedom 𝑁 = # : uniform refinement 
(left), isotropic refinement (middle), and anisotropic refinement (right).

4.6. Singular L-shape problem

We consider the L-shaped domain Ω ∶= (−1, 1)2 ⧵ [−1, 0]2 with data 𝑢0 ≡ 1 and 𝑢𝐷 ≡ 0. The solution has a strong singularity for 𝑡 = 0, in addition 
to a singularity at the re-entrant corner (0, 0). We choose 0 ∶=

{
[0, 1] ×𝐾 ∶ 𝐾 ∈ Γ

}
, with the uniform mesh Γ of Γ being aligned with the corners 

and consisting of eight elements, as initial mesh of the space-time boundary Σ. Fig. 4.6 displays the results, which are similar to those of Section 4.5
with a better behavior of the weighted 𝐿2-terms 𝜁 (Φ) for anisotropic refinement.

Enforcing the parabolic scaling ℎ𝑡 ≂ ℎ2𝐱 as in Section 4.5, all estimators converge again with the same rates, being (𝑁−0.18) for uniform refinement 
and (𝑁−0.45) for adaptive refinement (not displayed).
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Appendix A. Numerical computation

Let Ω ⊂ ℝ2 be a simply connected Lipschitz domain and 𝛾 ∶ [0, 𝐿] → Γ be a parametrization of its boundary Γ = 𝜕Ω. For a given prismatic mesh 
 , i.e., a quadrilateral mesh, of the space-time boundary Σ, we briefly explain how to numerically compute the corresponding Galerkin solution Φ
of (2.12) in the trial space of piecewise constants with respect to  as well as the corresponding error estimator 𝜂 (Φ) and the weighted 𝐿2-terms 
𝜁 (Φ). For all 𝑡 ∈ 𝐼 , we assume that 𝛾 is piecewise smooth with respect to the corresponding spatial mesh |𝑡, where for simplicity |𝛾 ′| = 1.

We start with the following analytic observations which will be used to integrate the involved integrals in time: With the exponential integral 
Ei(𝑥) ∶= − ∫ ∞

−𝑥 𝑦−1𝑒−𝑦 d𝑦 and

𝔤𝑡(𝐱) ∶=
{

1
4𝜋 Ei

(
− |𝐱|2

4𝑡

)
for (𝑡,𝐱) ∈ (0,∞) ×ℝ2,

0 else,

it holds that
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�̃�

∫̃
𝑎

𝐺(𝑡− 𝑠,𝐱) d𝑠 = 𝔤𝑡−�̃�(𝐱) − 𝔤𝑡−�̃�(𝐱) for all 0 ≤ �̃� < �̃� and (𝑡,𝐱) ∈ [0,∞) ×ℝ2. (A.1)

With

𝔊𝑡(𝐱) ∶=
⎧⎪⎨⎪⎩

1
4𝜋

(
𝑡𝑒

− |𝐱|2
4𝑡 + 𝑡(1 + |𝐱|2

4𝑡 )Ei
(
− |𝐱|2

4𝑡

))
for (𝑡,𝐱) ∈ (0,∞) ×ℝ2,

0 else,

it further holds that

𝑏

∫
𝑎

�̃�

∫̃
𝑎

𝐺(𝑡− 𝑠,𝐱) d𝑠d𝑡 =𝔊𝑏−�̃�(𝐱) −𝔊𝑏−�̃�(𝐱) +𝔊𝑎−�̃�(𝐱) −𝔊𝑎−�̃�(𝐱); (A.2)

for all 0 ≤ 𝑎 < 𝑏, 0 ≤ �̃� < �̃�, and 𝐱 ∈ℝ2; see, e.g., [4] or [21] for more details. As Ei(⋅) − log | ⋅ | is smooth, 𝔤𝑡 as well as 𝔊𝑡 have a logarithmic singularity 
for 𝐱→ 0 (provided they are not identically 0).

A.1. Galerkin discretization

To compute the Galerkin discretization (2.12) for the trial space  of piecewise constants with respect to  , we have to compute

⟨𝒱1𝐽×�̃� , 1𝐽×𝐾⟩Σ and ⟨𝑓 , 1𝐽×𝐾 ⟩Σ for all 𝐽 ×𝐾,𝐽 × �̃� ∈  .

Let 𝐽 = [𝑎, 𝑏], 𝐽 = [�̃�, ̃𝑏], 𝐾 = 𝛾([𝑐, 𝑑]), and �̃� = 𝛾([𝑐, 𝑑]). We abbreviate 𝛾𝐾 (�̂�) ∶= 𝛾(𝑐 + �̂�(𝑑 − 𝑐)) and 𝛾�̃� ∶= 𝛾(𝑐 + �̂�(𝑑 − 𝑐)).

A.1.1. Galerkin matrix

The Fubini theorem and (A.2) show that

⟨𝒱1𝐽×�̃� , 1𝐽×𝐾⟩Σ = ∫
𝐾

∫̃
𝐾

𝔊𝑏−�̃�(𝐱 − 𝐲) −𝔊𝑏−�̃�(𝐱 − 𝐲) +𝔊𝑎−�̃�(𝐱 − 𝐲) −𝔊𝑎−�̃�(𝐱 − 𝐲) d𝐲 d𝐱.

To compute terms of the form ∫
𝐾
∫
�̃�
𝔊𝑡(𝐱 − 𝐲) d𝐲 d𝐱 for 𝑡 > 0, we first use the transformation formula

∫
𝐾

∫̃
𝐾

𝔊𝑡(𝐱 − 𝐲) d𝐲 d𝐱 = (𝑑 − 𝑐)(𝑑 − 𝑐)

1

∫
0

1

∫
0

𝔊𝑡

(
𝛾𝐾 (�̂�) − 𝛾�̃� (�̂�)

)
d�̂�d�̂�.

If 𝐾 ∩ �̃� = ∅, the integrand 𝐹 (�̂�, �̂�) ∶=𝔊𝑡(𝛾𝐾 (�̂�) − 𝛾�̃� (�̂�)) is smooth and we can use standard Gauss quadrature in both directions.
If 𝐾 ∩ �̃� ≠ ∅, we assume without loss of generality that 𝐾 = �̃� or that 𝐾 and �̃� intersect only in one point, i.e., #(𝐾 ∩ �̃�) = 1, otherwise we can 

just split 𝐾 and �̃� .
If 𝐾 = �̃� , the integrand has a logarithmic singularity along the diagonal �̂�= �̂�. More precisely, it has the form 𝐹 (�̂�, �̂�) = 𝑓1(�̂�, �̂�) +𝑓2(�̂�, �̂�) log(|�̂�− �̂�|2)

with smooth functions 𝑓1 and 𝑓2. We employ the Duffy transformations 𝜏1(�̂�, �̂�) ∶= (�̂�, ̂𝑥�̂�) and 𝜏2(�̂�, �̂�) ∶= (�̂��̂�, ̂𝑥), which both map the (open) unit 
square bijectively onto some (open) triangle, where [0, 1]2 =⋃2

𝑖=1 𝜏𝑖([0, 1]2) with intersection of measure zero between the sets. As | det(𝐷𝜏𝑖(�̂�, �̂�))| = �̂�

for 𝑖 = 1, 2, the integral can be written as

1

∫
0

1

∫
0

𝐹 (�̂�, �̂�, �̂�) d�̂�d�̂� =

1

∫
0

1

∫
0

�̂�

2∑
𝑖=1

𝐹
(
𝜏𝑖(�̂�, �̂�)

)
d�̂�d�̂�.

The final integrand of the form 𝑓1(�̂�, �̂�) + 𝑓2(�̂�, �̂�) log(�̂�) + 𝑓3(�̂�, �̂�) log(�̂�) with smooth functions 𝑓1, 𝑓2, and 𝑓3, and we can use the quadrature from 
[22] in both �̂�- and �̂�-direction.

Finally, if #(𝐾 ∩ �̃�) = 1, the integrand has a logarithmic singularity at (�̂�, �̂�) = (0, 1) or (�̂�, �̂�) = (1, 0). Without loss of generality, we suppose that the 
singularity is at (�̂�, �̂�) = (0, 1) so that the integrand has the form 𝐹 (�̂�, �̂�) = 𝑓1(�̂�, �̂�) +𝑓2(�̂�, �̂�) log(|1 + �̂�− �̂�|2) with smooth functions 𝑓1 and 𝑓2. We rotate 
the integration domain by 𝜋∕2, i.e., (�̂�, �̂�) ↦ (�̂�, 1 − �̂�), which transforms the singularity to (�̂�, �̂�) = (0, 0), and then employ the same transformations as 
for the case 𝐾 = �̃� . Similar as before, the final integrand is of the form 𝑓1(�̂�, �̂�) + 𝑓2(�̂�, �̂�) log(�̂�) with smooth functions 𝑓1 and 𝑓2, and we can use the 
quadrature from [22] in �̂�-direction and standard Gauss quadrature in �̂�-direction.

We remark that ∫
𝐾
∫
�̃�
𝔊𝑡(𝐱 − 𝐲) d𝐲 d𝐱 can even be computed exactly if 𝐾 and �̃� lie both on one straight line.

A.1.2. Right-hand side vector

We consider the indirect boundary element method from Section 2.3 so that 𝑓 = 𝑢𝐷 −ℳ0𝑢0. Provided that 𝑢𝐷 is  -piecewise smooth, the term ⟨𝑢𝐷 , 1𝐽×𝐾⟩Σ can be easily computed by first transforming 𝐽 × 𝐾 onto [0, 1]2 and subsequently applying Gauss quadrature in both directions. For 
ℳ0𝑢0 we employ the Fubini theorem and (A.1),

⟨ℳ0𝑢0 , 1𝐽×𝐾 ⟩ = ∫
𝐾

∫
Ω

(
𝔤𝑎(𝐱 − 𝐲) − 𝔤𝑏(𝐱 − 𝐲)

)
𝑢0(𝐲) d𝐲 d𝐱.

The integrand has a logarithmic singularity for 𝐲 ∈ 𝜕Ω.
Let 𝐾 be a partition of Ω into curvilinear triangles of the form 𝑇 = 𝛾𝑇 (�̂� ) with the reference triangle �̂� =

{
(�̂�, ̂𝑧) ∈ [0, 1]2 ∶ �̂� ≤ 1 − �̂�

}
and some 

smooth diffeomorphism 𝛾𝑇 ∶ �̂� → 𝑇 such that for all 𝑇 , �̃� ∈ 𝐾 with 𝑇 ≠ �̃� ∈ 𝐾 , the intersection has measure zero. Moreover, we suppose that there 
exists a unique element 𝑇 ∈ 𝐾 with 𝐾 ∩ 𝑇 =𝐾 . With 𝑡 ∈ {𝑎, 𝑏} and the abbreviation �̃�0,𝑇 ∶= (𝑢0◦𝛾𝑇 )| det(𝐷𝛾𝑇 )|, we have that
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∫
𝐾

∫
Ω

𝔤𝑡(𝐱 − 𝐲)𝑢0(𝐲) d𝐲 d𝐱 = (𝑑 − 𝑐)
∑

𝑇∈𝐾

1

∫
0

∫̂
𝑇

𝔤𝑡
(
𝛾𝐾 (�̂�) − 𝛾𝑇 (�̂�, �̂�)

)
�̃�0,𝑇 (�̂�, �̂�) d�̂�d�̂�d�̂�.

Remark A.1. To construct 𝐾 in our examples from Section 4, we start from some initial mesh of Ω consisting of one square for Ω = (0, 1)2 and three squares 
for Ω ∶= (−1, 1)2 ⧵ [−1, 0]2, and proceed as follows: First, we dyadically refine the element that contains 𝐾 until 𝐾 becomes the edge of one of the resulting 
squares. We use further dyadic refinements to ensure that there is at most one hanging node per edge. To obtain a triangular mesh 𝐾 , we finally bisect the 
elements along one diagonal. Note that the resulting 𝐾 is not conforming. The number of elements in 𝐾 is proportional to the level of 𝐾 .

If 𝐾 ∩ 𝑇 = ∅, the integrand 𝐹 (�̂�, �̂�, ̂𝑧) ∶= 𝔤𝑡(𝛾𝐾 (�̂�) − 𝛾𝑇 (�̂�, ̂𝑧)) ̃𝑢0,𝑇 (�̂�, ̂𝑧) is smooth and we can use standard Gauss quadrature in all three directions.
If 𝐾 ∩ 𝑇 =𝐾 , we suppose that 𝛾𝐾 = 𝛾𝑇 (⋅, 0) so that the integrand has a logarithmic singularity for (�̂�, ̂𝑧) = (�̂�, 0). More precisely, it has the form

𝐹 (�̂�, �̂�, �̂�) = 𝑓1(�̂�, �̂�, �̂�) + 𝑓2(�̂�, �̂�, �̂�) log(|𝐅(�̂�, �̂�, �̂�)(�̂�− �̂�, �̂�)⊤|2)
for some smooth functions 𝑓1, 𝑓2 with values in ℝ, and 𝐅 with values in ℝ2×2 and det 𝐅 ≠ 0. We employ the following transformations

𝜏1(�̂�, �̂�, �̂�) ∶=
(
�̂�, �̂�(1 − �̂�), �̂��̂��̂�

)
,

𝜏2(�̂�, �̂�, �̂�) ∶=
(
�̂�(1 − �̂�), �̂�(1 − �̂��̂�), �̂��̂��̂�

)
,

𝜏3(�̂�, �̂�, �̂�) ∶=
(
�̂�(1 − �̂�+ �̂��̂�), �̂�(1 − �̂�), �̂��̂�

)
,

which all map the (open) unit cube bijectively onto some (open) tetrahedron, where [0, 1] × �̂� =
⋃3

𝑖=1 𝜏𝑖([0, 1]3) with intersection of measure zero 
between the sets. As | det(𝐷𝜏𝑖(�̂�, �̂�, ̂𝑧))| = �̂�2�̂� for 𝑖 = 1, 2, 3, the integral can be written as

1

∫
0

∫̂
𝑇

𝐹 (�̂�, �̂�, �̂�) d�̂�d�̂�d�̂� =

1

∫
0

1

∫
0

1

∫
0

�̂�2�̂�

3∑
𝑖=1

𝐹
(
𝜏𝑖(�̂�, �̂�, �̂�)

)
d�̂�d�̂�d�̂�.

Note that the vector (�̂�− �̂�, ̂𝑧)⊤ from the definition of 𝐹 is transformed under 𝜏1, 𝜏2, and 𝜏3 to �̂��̂�(1, 𝑧)⊤, �̂��̂�(𝑧 − 1, 𝑧)⊤, and �̂��̂�(𝑧, 1)⊤, respectively. We 
infer that we can use the quadrature from [22] in �̂�- and �̂�-direction, and standard Gauss quadrature in �̂�-direction.

If #(𝐾 ∩𝑇 ) = 1, we suppose that 𝛾𝐾 (0) = 𝛾𝑇 (0, 0). We further suppose that 𝐾 and 𝑇 can be parametrized via one smooth diffeomorphism 𝛾𝐾∪𝑇 : The 
parameter domain of 𝛾𝐾∪𝑇 should contain at least the line 

{
�̂�(�̂�, �̂�) ∶ �̂� ∈ [0, 1]

}
for some (�̂�, �̂�) ∈ℝ2 ⧵ [0, ∞)2 and �̂� . Moreover, 𝛾𝐾 (�̂�) = 𝛾𝐾∪𝑇 (�̂�(�̂�, �̂�))

for �̂� ∈ [0, 1] and 𝛾𝑇 (�̂�, ̂𝑧) = 𝛾𝐾∪𝑇 (�̂�, ̂𝑧) for (�̂�, ̂𝑧) ∈ �̂� . Then the integrand has a logarithmic singularity for (�̂�, �̂�, ̂𝑧) = (0, 0, 0). More precisely, it has the 
form

𝐹 (�̂�, �̂�, �̂�) ∶= 𝑓1(�̂�, �̂�, �̂�) + 𝑓2(�̂�, �̂�, �̂�) log(|𝐅(�̂�, �̂�, �̂�)(�̂��̂�− �̂�, �̂��̂�− �̂�)⊤|2)
for some smooth functions 𝑓1, 𝑓2 with values in ℝ, and 𝐅 with values in ℝ2×2 and det 𝐅 ≠ 0. Applying the transformations 𝜏𝑖 from before, the vector 
(�̂��̂�− �̂�, ̂𝑥�̂�− �̂�)⊤ from the definition of 𝐹 is transformed to �̂�((�̂�, �̂�)⊤−(1 − �̂�, �̂��̂�)⊤), �̂�((1 − �̂�)(𝑣, 𝑤)⊤−(1 −𝑦𝑧, 𝑦𝑧)⊤), and �̂�((1 − �̂�+ �̂��̂�)(𝑣, 𝑤)⊤−(1 −𝑦, 𝑦)⊤), 
respectively. Due to our assumption on (𝑣, 𝑤), up to the factor �̂�, each of these terms is uniformly away from (0, 0)⊤ for all (�̂�, ̂𝑧) ∈ �̂� . Thus, we can 
again use the quadrature from [22] in �̂�-direction, and standard Gauss quadrature in �̂� and �̂�-direction.

A.2. Evaluation of residual

To compute the error estimator 𝜂 (Φ) as well as the weighted 𝐿2-terms 𝜁 (Φ), we have to evaluate the residual 𝑓 −𝒱Φ.

A.2.1. Single-layer operator

To evaluate the single-layer operator for piecewise constants with respect to  , we have to compute

(𝒱1𝐽×�̃� )(𝑡,𝐱) = ∫̃
𝐽

∫̃
𝐾

𝐺(𝑡− 𝑠,𝐱 − 𝐲) d𝐲 d𝑠 for all 𝐽 × �̃� ∈  and all (𝑡,𝐱) ∈ Σ.

Let 𝐽 = [�̃�, ̃𝑏] and �̃� = 𝛾([𝑐, 𝑑]), and abbreviate again 𝛾�̃� ∶= 𝛾(𝑐 + �̂�(𝑑 − 𝑐)). The Fubini theorem and (A.1) show that

(𝒱1𝐽×�̃� )(𝑡,𝐱) = ∫̃
𝐾

𝔤𝑡−�̃�(𝐱 − 𝐲) − 𝔤𝑡−�̃�(𝐱 − 𝐲) d𝐲.

To compute terms of the form ∫
�̃�
𝔤𝑠(𝐱 − 𝐲) d𝐲 for 𝑠 > 0, we first use the transformation formula

∫̃
𝐾

𝔤𝑠(𝐱 − 𝐲) d𝐲 =
1

∫
0

𝔤𝑠
(
𝐱 − 𝛾�̃� (�̂�)

)
d�̂�.

If 𝐱 ∉ �̃� , the integrand is smooth and we can use standard Gauss quadrature.
If 𝐱 ∈ �̃� , we assume without loss of generality that 𝐱 = 𝛾(𝑐) or 𝐱 = 𝛾(𝑑), otherwise we can just split �̃�. The integrand is of the form 𝑓1(�̂�) +

𝑓2(�̂�) log(�̂�) with smooth functions 𝑓1 and 𝑓2, and we can use the quadrature from [22].
We remark that ∫ ̃ 𝔤𝑠(𝐱 − 𝐲) d𝐲 can even be computed exactly if 𝐱 and �̃� lie both on one straight line.
𝐾
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A.2.2. Initial operator

We consider the indirect boundary element method from Section 2.3 so that 𝑓 = 𝑢𝐷 − ℳ0𝑢0. To evaluate 𝑓 at (𝑡, 𝐱) ∈ 𝐽 × 𝐾 with 𝑡 > 0 and 
𝐽 ×𝐾 ∈  , let 𝐾 be again a curvilinear triangulation of Ω as in Appendix A.1.2. With the abbreviation �̃�0,𝑇 ∶= (𝑢0◦𝛾𝑇 )| det(𝐷𝛾𝑇 )|, we have that

(ℳ0𝑢0)(𝑡,𝐱) =
∑

𝑇∈𝐾

1

∫
0

1

∫
0

𝐺
(
𝑡,𝐱 − 𝛾𝑇 (�̂�, �̂�)

)
�̃�0,𝑇 (�̂�, �̂�) d�̂�d�̂�.

As 𝐱 ≠ 𝛾𝑇 (�̂�, ̂𝑧), the integrand is smooth and we can use standard Gauss quadrature in both directions.

A.3. Error estimator and 𝐿2-terms

Now that we can evaluate the residual 𝑟 ∶= 𝑓 −𝒱Φ, we explain how to compute the estimator 𝜂 (Φ) as well as the weighted 𝐿2-terms 𝜁 (Φ). We 
assume that 𝑟 is, at least  -piecewise, sufficiently smooth. In particular, 𝜁 (Φ) can be easily computed via the transformation formula and standard 
Gauss quadrature in both directions.

For 𝜂 (Φ), we need to compute terms of the form |𝑟|𝐿2(𝐽 ,𝐻1∕2(𝐾∪�̃�)) and |𝑟|𝐻1∕4(𝐽∪𝐽 ,𝐿2(𝐾)) with 𝐾 ∩ �̃� ≠ ∅ and 𝐽 ∩ 𝐽 ≠ ∅.
The first term reads as

|𝑟|2
𝐿2(𝐽 ,𝐻1∕2(𝐾∪�̃�))

= ∫
𝐽

|𝑟(𝑡, ⋅)|2
𝐻1∕2(𝐾)

+ 2∫
𝐾

∫̃
𝐾

|𝑟(𝑡,𝐱) − 𝑟(𝑡,𝐲)|2|𝐱 − 𝐲|2 d𝐲 d𝐱 + |𝑟(𝑡, ⋅)|2
𝐻1∕2(�̃�)

d𝑡.

We consider the integrand for fixed 𝑡. The first and last term can be transformed as in the case 𝐾 = �̃� of Section A.1.1 and subsequently be computed 
by standard Gauss quadrature in both directions. Similarly, the middle term can be transformed as in the case #(𝐾 ∩ �̃�) = 1 of Section A.1.1 and 
subsequently be computed by standard Gauss quadrature in both directions. Finally, we use standard Gauss quadrature in 𝑡-direction for all three 
terms.

Now, we consider

|𝑟|2
𝐻1∕4(𝐽∪𝐽 ,𝐿2(𝐾))

= ∫
𝐾

|𝑟(⋅,𝐱)|2
𝐻1∕4(𝐽 )

+ 2∫
𝐽

∫̃
𝐽

|𝑟(𝑡,𝐱) − 𝑟(𝑠,𝐱)|2|𝑡− 𝑠|3∕2 d𝑠d𝑡+ |𝑟(⋅,𝐱)|2
𝐻1∕4(𝐽 )

d𝐱.

The first and last term can be transformed as in the case 𝐾 = �̃� of Section A.1.1. With 𝛾𝐽 defined analogously as 𝛾𝐾 , this shows for the first one that

|𝑟(⋅,𝐱)|2
𝐻1∕4(𝐽 )

= 2|𝐽 |2 1

∫
0

1

∫
0

|𝑟(𝛾𝐽 (𝑡),𝐱) − 𝑟(𝛾𝐽 (𝑡�̂�),𝐱)|2|𝛾𝐽 (𝑡) − 𝛾𝐽 (𝑡�̂�)|3∕2 𝑡d�̂�d𝑡

= 2|𝐽 |1∕2 1

∫
0

1

∫
0

|𝑟(𝛾𝐽 (𝑡),𝐱) − 𝑟(𝛾𝐽 (𝑡(1 − �̂�)),𝐱)|2
�̂�

�̂�−1∕2 𝑡−1∕2 d�̂�d𝑡.

As 𝑟 is piecewise smooth, the quotient is smooth and we can use Gauss quadrature with weight 𝑡−1∕2 in 𝑡-direction and with weight �̂�−1∕2 in �̂�-
direction. Similarly, the second term can be transformed as in the case #(𝐾 ∩ �̃�) = 1 of Section A.1.1 so that for 𝐽 left from 𝐽 and 𝛾𝐽 , 𝛾𝐽 defined 
analogously as 𝛾𝐾 , 𝛾�̃� , we get that

∫
𝐽

∫̃
𝐽

|𝑟(𝑡,𝐱) − 𝑟(𝑠,𝐱)|2|𝑡− 𝑠|3∕2 d𝑠d𝑡 = |𝐽 | |𝐽 | 1

∫
0

1

∫
0

|𝑟(𝛾𝐽 (�̂�𝑡),𝐱) − 𝑟(𝛾𝐽 (1 − 𝑡),𝐱)|2|𝛾𝐽 (�̂�𝑡) − 𝛾𝐽 (1 − 𝑡)|3∕2 𝑡d�̂�d𝑡+ |𝐽 | |𝐽 | 1

∫
0

1

∫
0

|𝑟(𝛾𝐽 (𝑡),𝐱) − 𝑟(𝛾𝐽 (1 − �̂�𝑡),𝐱)|2|𝛾𝐽 (𝑡) − 𝛾𝐽 (1 − �̂�𝑡)|3∕2 𝑡d�̂�d𝑡.

We can apply Gauss quadrature with weight 𝑡−1∕2 in 𝑡-direction and with weight 1 in �̂�-direction. Finally, we use the transformation formula and 
standard Gauss quadrature in �̂�-direction for all three terms.
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