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To simulate the dynamics of massless Dirac fermions in curved space-times with one, two, and three spatial
dimensions, we construct tight-binding Hamiltonians with spatially varying hoppings. These models represent
tilted Weyl semimetals where the tilting varies with position, in a manner similar to the light cones near the
horizon of a black hole. We illustrate the gravitational analogies in these models by numerically evaluating the
propagation of wave packets on the lattice and then comparing them to the geodesics of the corresponding curved
space-time. We also show that the motion of electrons in these spatially varying systems can be understood
through the conservation of energy and the quasiconservation of quasimomentum. This picture is confirmed by
calculations of the scattering matrix, which indicate an exponential suppression of any noncontinuous change
in the quasimomentum. Finally, we show that horizons in the lattice models can be constructed also at finite
energies using specially designed tilting profiles.

DOI: 10.1103/PhysRevResearch.4.033237

I. INTRODUCTION

Analogies in physics, between seemingly unrelated sys-
tems, can not only lead to advances in the understanding
of these systems, but also contribute to the development of
new applications. Among the known analogies, a particu-
larly fruitful connection has been made between gravitational
physics and condensed-matter systems. Such an analogy was
first proposed to study the extraordinary consequences of
the curvature of space-time on quantum fields, namely, the
Hawking and Unruh radiations, which are in practice too weak
to be measured [1–5]. This has attracted considerable inter-
est in recent years from various directions, and gravitational
analogies have been considered in many contexts, including
electronic, acoustic, optical, and even magnetic and supercon-
ducting settings [6–29]. Particularly, implementations using
Bose-Einstein condensates have been used to mimic Hawking
and Unruh radiations [30–32].

Recent attempts have been made to exploit developments
in the prediction and synthesis of Weyl semimetals (WSMs),
whose low-energy electronic states can be described by the
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Weyl equation [33]. In particular, it has been shown that a
position-dependent tilting of the Weyl cone in a way to create
neighboring regions with type-I and type-II WSM can lead to
a black hole analog [34–39]. This analogy can be understood
by thinking of the Weyl cones in the material as the light cones
of a curved space-time, thus the boundary of the WSMs of
different types as the horizon. Exactly at the transition point
between type I and type II, the Weyl cones are tangent to
the zero-energy surface, a situation called type-III WSM. One
study has shown that the band structure of Zn2In2S5 has such a
property that makes it promising for the realization of a black
hole horizon [38]. Proposals for tilting the cone as a function
of real space include the use of structural distortions, spin
textures, and external position-dependent driving [36,40–44].
Most works until recently assumed that, given that the tilting
changes smoothly, one can define band dispersions varying as
a function of space. Since WSMs are defined on a lattice, and
the tilting variation implies the lack of translational symmetry,
and therefore of a reciprocal space, this kind of assumption
is imprecise. This was addressed subsequently by study-
ing a class of tight-binding models with position-dependent
nearest-neighbor hopping concentrating on the single-band
one-dimensional (1D) cases [45–47].

Here we go beyond previous works by introducing two-
band tilted Weyl cones defined on lattices, in one, two, and
three spatial dimensions, and investigate their properties. Tak-
ing into account the lattice explicitly is motivated by physical
Weyl semimetals having band structures that are ultimately
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FIG. 1. Energy dispersion of a tilted Weyl Hamiltonian in 1D as
in Eq. (2) for three different tilting parameters t .

defined on discrete lattices, which play an important role near
horizons when wave packets start slowing down exponentially
[45]. Moreover, lattice formulations allow for numerically
tracking wave-packet dynamics with the very efficient Cheby-
shev expansion method [48,49]. We discuss the consequences
of different ways of creating Weyl cones on a lattice, as such
models are not unique. We connect the low-momentum limit
of these models to gravitational physics and show they are
equivalent to Dirac equations in a curved space-time back-
ground. We emphasize that, due to the two-band nature of
our models, the connection to the relativistic Dirac equation is
more explicit than previously studied incarnations. Then we
explore the propagation of wave packets in these models and
compare them to geodesics of gravitational systems. Finally,
we calculate the scattering matrix in the 1D models and dis-
cuss the large quantitative and qualitative differences arising
between the different types of models.

II. TILTED WEYL CONE MODELS

In order to simulate horizons in lattice models, we con-
struct inhomogeneous tight-binding models hosting tilted
Weyl cones, whose tilting depends on the position in real
space. The horizon appears at the points where the tilted cone
goes through the Fermi level, i.e., where the WSM goes from
type I to type II. We want the local low-energy effective
Hamiltonian to correspond to the following tilted Weyl con-
tinuum Hamiltonian:

H = σ · k − σ0(t · k), (1)

where k is the quasimomentum, σi are the Pauli matrices
acting on a pseudospin representing different orbitals, and t
is the tilting vector. The energy dispersion of this Hamiltonian
is

E± = ±|k| − t · k. (2)

For t = 0 we get an untilted Weyl cone. In the one-
dimensional case (see Fig. 1), for t > 0 the spectrum is tilted
clockwise, and at t = 1, one of the branches of the cone
becomes completely flat and the group velocity in this branch
becomes zero.

In this section, first we discuss how to construct simple
lattice models in one (1D), two (2D), and three dimensions
(3D) that host one or several tilted Weyl cones. We then show
how these Hamiltonians are connected to the Dirac equation in
a curved space-time when the tilting changes as a function

FIG. 2. Energy dispersion of (a) H1D
1 as in Eq. (5a) and (b) H1D

2

as in Eq. (5b) for three different tilting parameters t . The three tiltings
correspond to the untilted type-I node, the node at the horizon, and
the overtilted type-II node.

of position. With this we get lattice models that describe the
motion of electrons in a curved background.

A. 1D lattice models

We start with presenting 1D models that have tilted Weyl
cones at low energies. In principle, there are many ways to
put the Eq. (1) Hamiltonian on a lattice with the same low-
energy effective Hamiltonian around k = 0 but with different
behavior at |k| � 0. Here, we study the following two models:

H1D
1 =

∑
x

i

2
c†

x+1(σx − tσ0)cx + H.c., (3a)

H1D
2 =

∑
x

c†
x

σz

2
cx + c†

x+1

[
−σz

2
+ i

2
(σx − tσ0)

]
cx + H.c.,

(3b)

where cx = (cx↑, cx↓) is the annihilation operator of an elec-
tron at site x ∈ Z with pseudospin ↑ or ↓.

For a constant position-independent tilt, the Bloch Hamil-
tonians of these after Fourier transformation are given as

H1D
1 = (σx − tσ0) sin k, (4a)

H1D
2 = (σx − tσ0) sin k + σz(1 − cos k), (4b)

which give the following dispersion relations (see Fig. 2):

E1D
1± = ±| sin k| − t sin k, (5a)

E1D
2± = ±

√
sin2 k + (1 − cos k)2 − t sin k. (5b)

Both these models converge to Eq. (1) for k → 0 and
describe the same kind of tilted Weyl cone, but they differ
away from k = 0. In particular, H1D

1 has a second Weyl cone
at the edge of the Brillouin zone, unlike H1D

2 which only has
one cone. In both cases if the tilting parameter is less (more)
than 1 we get type-I (type-II) Weyl nodes. In the overtilted
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FIG. 3. Energy dispersion of (a) H2D
1 in Eq. (6a) and (b) H2D

2 in Eq. (6b) for three different tilting parameters in the x direction tx , and
ty = 0. The three tiltings correspond to the untilted type-I node, the node at the horizon, and the overtilted type-II node.

type-II case there is an electron (hole) pocket forming to the
right (left) of the node.

The main difference between the two models, that will be
relevant in later results, is that the red band in the overtilted
region does not cross zero between k = 0 and k = π in H1D

1 ,
but it does in H1D

2 . In the first model the electron and hole
pockets extend throughout the whole Brillouin zone and they
connect the two Weyl nodes, while in H1D

2 the pockets are
finite and located next to the single node, which is the situation
encountered in the band structure of type-II Weyl semimetals.

B. 2D and 3D lattice models

Similar to the 1D case, there are infinitely many ways
to create 2D and 3D lattice models with a tilted Weyl cone
around k = 0. Generalizing the two systems studied in 1D,
we get the following Bloch Hamiltonians in 2D:

H2D
1 = (σx − txσ0) sin kx + (σy − tyσ0) sin ky, (6a)

H2D
2 = H2D

1 + σz(2 − cos kx − cos ky). (6b)

Their dispersion relations are shown in Fig. 3. H2D
1 has four

Weyl nodes in the entire Brillouin zone, while H2D
2 again only

has a single Weyl node.
In 3D the Hamiltonian corresponding to H1D

2 does not
exist, because the σz Pauli matrix was already used. This is
consistent with the Nielsen-Ninomiya theorem [50], which
does not allow a single Weyl node in a 3D lattice. The 3D
equivalent of H1D

1 is

H3D
1 =

∑
i

(σi − tiσ0) sin ki, (7)

which has eight Weyl nodes. At kz = 0 the dispersion relation
is identical to that of H2D

1 , represented in Fig. 3(a).

C. Dirac equation in curved space-time

In the long-wavelength limit, the dynamics of the lattice
models can be described by a low-energy continuum model.
In particular, the effective Hamiltonians for the lattice Hamil-
tonians in Eqs. (4), (6), and (7) can be written (using Einstein
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notation) as (see Appendix A for details)

Heff = −i(σi − tiσ0)∂i − σ0

2i
∂iti, (8)

where i runs on the spatial dimensions of the system (d =
1, 2, 3), and ti(x) are position-dependent tilting functions in
different directions. The last term in Eq. (8) is required
to make the Hamiltonian Hermitian. This equation can be
thought of as a Dirac equation in a curved background. To
explore this gravitational analogy in a more precise way, we
introduce the metric [34,51–53]

ds2 = (t2 − 1)dT 2 − 2tidxidT + dx2, (9)

where T denotes the temporal coordinate, t2 = titi, and dx2 =
dxidxi. The massless Dirac equation for this background met-
ric can we written in the form (see Appendix B)

∂T � =
(

γ 0i∂i − ti∂i − 1

2
∂iti − 1

4
(∂it j )γ

i j

)
�, (10)

where γ 0 and γ i are the gamma matrices in flat space-time
and by definition, γ ab = [γ a, γ b]/2 for a, b ∈ (0, 1, · · · , d ).
To link this equation to the Hamiltonian (8), we take the
following representations for the gamma matrices:

in (1+1)D: γ 0 = iσz, γ 1 = σy, (11)

in (1+2)D: γ 0 = iσz, γ 1 = σy, γ 2 = −σx,

while in (1 + 3)D one may choose the Weyl representation

γ 0 =
(

0 σ0

−σ0 0

)
, γ i =

(
0 σi

σi 0

)
. (12)

The Dirac equation on the gravitational background (9) coin-
cides with the low-energy dynamical equation for the lattice
models, provided the last term in Eq. (10) vanishes. In (1 +
1)D, this is always the case. In higher dimensions, we con-
strain the vector ti(x) to have a vanishing curl,

∂it j − ∂ jti = 0, (13)

which cancels the last term in (10). Keeping this term would
produce a spatially varying on-site potential in the tight-
binding model. Since the term is proportional to the derivative
of the tilting, its effect is negligible in systems with slowly
varying tilting.

The region in space described by t2 − 1 = 0 can be thought
of as an event horizon. Notice that Eq. (9) represents a wide
class of metrics, some of which are of particular importance
in the context of gravitational physics (see, e.g., a recent
discussion in [54]).

To simulate different metrics, we introduce spatial inhomo-
geneity in the tilting parameter. In the real-space Hamiltonians
(3) we make the tilting parameter position dependent. This
is different from previous models where the position depen-
dence is in the Fermi velocity [45,47,55]. In this paper we will
only consider effectively 1D horizons, so tx will be a function
of x and ty/z = 0. In all cases the horizon will be defined by
the points where tx = 1.

III. WAVE-PACKET DYNAMICS

Now that we defined the systems of interest, we move on
to study the propagation of wave packets in lattice models

FIG. 4. Propagation of wave packets in a 1D lattice with a hori-
zon. The figure shows the center of mass of the wave packet as
a function of time for different starting momenta in systems H1D

1

and H 1D
2 in Eq. (4). The rescaled position and time are defined as

ξ = 1 − 2x/L and τ = 2T/L. The dashed line shows the geodesic
calculated from Eq. (15). The length of the system is L = 1000.

with horizons. We study the different behaviors for our models
with different horizons. We will show how the world lines of
wave packets in our models match the geodesics of specific
metrics, and we will simulate the propagation of Gaussian
wave packets based on the Chebyshev expansion method.
The details of this method are explained in Appendix C. The
videos for all simulations discussed in the paper are included
in Supplemental Material [56].

A. Linear horizon in 1D

First, we discuss 1D models with linearly changing tiltings
tx = 2x/L, where L is the length of the system. With this we
linearly increase the tilting from t = 0 to t = 2 with the t = 1
horizon exactly at L/2. The systems we study are L = 1000
long. The starting wave packet is localized at x0 = 100 in the
red band of Fig. 2 and propagates to the right towards the
horizon.

The red band becomes more and more flat approaching
the horizon in both H1D

1 and H1D
2 . As a result, the group

velocity of the wave packet gets smaller and smaller. While
the wave packet is slowing down it becomes narrower. The
time dependence of the position of the wave packet is shown
in Fig. 4. For the figures we rescaled the position and time
using ξ = 1 − 2x/L and τ = 2T/L. With this the wave packet
moves from the initial position ξ0 = 0.8 to the horizon ξ = 0.

The wave-packet dynamics results can be understood with
a philosophy similar to that of the WKB approximation.
Since the tilting parameter varies continuously and slowly
with position, we can think of the system as being locally
the infinite H1D

1/2(k). Since the tilting is proportional to σ0,
the eigenvectors at different tiltings are all the same, from
which it follows that states in the red or blue bands will stay
eigenstates at whatever point of the chain. This means that a
wave packet that is initially in the red (blue) band will stay in
the red (blue) band. The system is not strictly homogeneous,
and thus the momentum is not a conserved quantity; but since
the inhomogeneity comes from a slow change in space, large
jumps of the momentum are exponentially suppressed (this
will be further clarified in Sec. IV). The quantity that is strictly
conserved is the energy of the wave packet. By using the
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FIG. 5. Schematic representation for the propagation of wave
packets with E = 0.5 in systems (a) H1D

1 and (b) H1D
2 . The local

dispersion relation is shown at three points along the trajectory of
the wave packets. The red dot represents the momentum of the
wave packet, and the red arrow indicates the direction of change in
this momentum. The black arrow shows the direction of the group
velocity of the wave packet.

above-mentioned rules together with the dispersion relations
in Fig. 2, the results of the 1D simulations can be explained.

First we discuss the H1D
1 system. Focusing on the red

band, we see that it becomes completely flat at the horizon.
If we take a packet with a small energy E > 0, the horizon
is invisible for it since after a certain tilting there is no point
in the red band that is at this energy. With a continuous slow
change of the momentum, the state with energy E will go from
k = 0 to k = π , and the group velocity will go from positive to
negative while the wave packet bounces back from the horizon
[see Fig. 5(a)]. The closer the energy is to 0, the closer the
wave packet reaches the horizon, and in the limiting case of
E = 0, the wave packet gets pinned to the horizon. On longer
timescales, because of the lattice length scale that unavoidably
comes into play [45], the wave packet slowly disintegrates and
the center of mass will go towards the left. The behavior of the
wave packets at different energies can be seen in Fig. 4 with
the green curves.

The H1D
2 system is qualitatively very different from the

H1D
1 system. Here, at every position there is an E > 0 state in

the red band. This means that a finite-energy wave packet will
go through the horizon with a continuous change in momen-
tum [see Fig. 5(b)]. The zero-energy wave packet will slowly
approach the horizon because of the zero group velocity at the
horizon but eventually it will go through it. The behavior of
the wave packets at different energies can be seen in Fig. 4
with the purple curves.

The time dependence of the wave packet approaching the
horizon is consistent with the results in Ref. [45]. There, a
one-band model with nearest-neighbor hopping was studied,
where the hopping varies with the position. This can be under-
stood, by coarse-graining, as a model with a linear dispersion
close to zero energy, whose slope varies with position. The
slope was set to zero at the origin of the lattice and finite
away from it, thus mimicking the evolution of a light cone
when moving away from a horizon. Since it has only one
band, the hopping is exactly zero where the horizon is meant
to be, meaning that the right and left side of the lattice are
completely disconnected. In our two-band model this is not

the case, and as we saw in the H1D
2 system, the wave packet

can propagate through the horizon.
It was shown in Refs. [45,46], both using numerical calcu-

lations and an analytical derivation based on a semiclassical
approximation, that zero-energy wave packets propagating in
the one-band model precisely follow the geodesics of a (1 +
1)D dilaton gravity. In the case where the hopping evolves
linearly with position, these geodesics can be expressed as

1 − αx(T ) = e−α(T −T0 ), (14)

where in our case α = 2/L. Using the previously defined
scaled position and time, this simply reads as

ξ (τ ) = ξ0e−τ . (15)

As we can see in Fig. 4, this dependence is present for our
models, too, with deviations only at larger timescales due to
finite-size effects, when the size of the wave packet becomes
comparable to the lattice constant.

B. Linear horizon in 2D and 3D

In 2D and 3D, wave packets propagate qualitatively differ-
ently from the 1D case. To understand the difference, we first
consider a 2D system where tx = 0 and ty = 0 everywhere.
A Gaussian wave packet centered at a large enough k will
propagate based on the group velocity at k and will maintain
its Gaussian shape. But getting closer to k = 0, this is no
longer true. A wave packet with finite size in real space will
also have a finite size in momentum space. This means that
at low enough momenta the wave packet encapsulates the
Weyl node and thus it will have components propagating in
all directions radially. This behavior of the wave-packet prop-
agation is shown in Fig. 6 with snapshots (in Supplemental
Mateial the full animations are available).

In all simulations we choose the pseudospin components
corresponding to the eigenvector of the infinite Hamiltonian
with the average momentum of the wave packet. Because
the eigenvectors are momentum dependent and because the
wave packet includes multiple momenta, a zero-momentum
wave packet includes a superposition of positive and negative
energy states, which leads to Zitterbewegung of the electrons
[57–60].

The world lines of the wave packets in 2D and 3D are
shown in Figs. 7 and 8. Here we only focus on the center of
mass of the wave packets on the x axis. As we can see, the
results are very similar to the 1D results in Fig. 4. The main
difference are the oscillations due to the Zitterbewegung at
small times.

C. Power-law horizons in 1D

So far the tilting was always linearly dependent on the
position; now we consider more generic cases and study how
the different choices affect the wave-packet propagation. We
only discuss the H1D

1 system, and for the H1D
2 model similar

results can be obtained.
We consider models that follow a power law close to

the horizon where t = 1. For the position dependence of the
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FIG. 6. Propagation of wave packets in the 2D systems without
tilt. The figure shows snapshots of the wave packet for different
starting momenta in the system H2D

1 . The length and width of the
system are L = 500 and W = 500, and the initial wave packet has a
width of 40 sites. The anisotropy in the top row is due to the specific
pseudospin configuration of the initial wave packet.

tilting parameter we use

t (x) = 1 + sgn(2x − L)

∣∣∣∣2x

L
− 1

∣∣∣∣
γ

, (16)

where γ is the exponent. At γ = 1 we recover the model
studied in the previous sections. This tilting dependence is
shown in Fig. 9(a).

FIG. 7. Propagation of wave packets in a 2D lattice with a hori-
zon. The figure shows the center of mass of the wave packet along
the x axis as a function of time for different starting momenta in
the systems H2D

1 and H2D
2 in Eq. (6). The rescaled position and time

are defined as ξ = 1 − 2x/L and τ = 2T/L. The dashed line shows
the geodesic calculated from Eq. (15). The length and width of the
system are L = 500 and W = 500.

FIG. 8. Propagation of wave packets in a 3D lattice with a hori-
zon. The figure shows the center of mass of the wave packet along
the x axis as a function of time for different starting momenta in
systems H2D

1 and H2D
2 in Eq. (6). The rescaled position and time

are defined as ξ = 1 − 2x/L and τ = 2T/L. The dashed line shows
the geodesic calculated from Eq. (15). The length, width, and height
of the system are L = 400 (we only simulated the left half of the
system), W = 300, and H = 300.

The world lines of the wave packet for different γ pa-
rameters are shown in Fig. 9(b). For linear and supralinear
dependencies (γ � 1) we get wave packets that infinitely
approach the horizon. The higher the exponent the slower

FIG. 9. Propagation of wave packets in a 1D lattice with different
types of horizons using the H1D

1 system in Eq. (4). Panels (a, b)
show the results for the tilting profile with different power laws as
in Eq. (16) for three different γ exponents. Panels (c, d) show the
results for the artificial horizons at finite momenta as in Eq. (20)
for three different k0 values. Panels (a) and (c) show the position
dependence of the tilting parameter in the different horizon models.
Panels (b) and (d) show the center of mass of the wave packet as a
function of time for the models corresponding to panels (a) and (c). In
panel (b) solid lines are with k = 0 and dashed lines with k = 0.1. In
panel (d) solid lines are at tilting profiles and momenta corresponding
to panel (c), while dashed lines are at momenta corresponding to
panel (c) but with the linear tilting profile. The rescaled position and
time are defined as ξ = 1 − 2x/L and τ = 2T/L. The length of the
system in all panels is L = 1000.

033237-6
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the approach is. For sublinear dependencies (γ < 1) the wave
packet goes very close to the horizon but ultimately bounces
back from it. These results are consistent with the results
obtained for the single-band model in Ref. [45].

D. Horizons for finite energy in 1D

In Secs. III A we saw that in the H1D
1 model, for the linear

profile a wave packet at finite energies always deviates from
the exponential time dependence and bounces back from the
horizon. This happens because the effective horizon at finite
energies is no longer at t = 1 but at lower values, and thus the
wave packet cannot reach the center of the chain. Focusing
on the red band in Fig. 2(a), the dispersion relation and group
velocity are

E = (1 − t ) sin k, (17a)

v = (1 − t ) cos k, (17b)

which implies v2 = (1 − t )2 − E2. Hence, for a wave
packet of energy E , this means that there is an effective
horizon at

1 − t (xeff ) = ±E . (18)

Knowing this, we can construct a tilting profile that has
a horizon at finite energy similar to the zero-energy one. In
order to reproduce the zero-energy world line we want a
linearly decreasing group velocity:

v(x) = 1 − 2x

L
. (19)

For 2x � L this can be satisfied by choosing

t (x) = 1 −
√(

2x

L
− 1

)2

+
(

2x0

L
− 1

)2

tan2 k0, (20)

where k0 is the initial momentum and x0 is the initial position
of the wave packet. For 2x > L we can choose an arbitrary tilt-
ing profile, since that part of the chain will not be accessible by
the wave packet. For simplicity we use the same dependency
but flipped. The tilting parameter as a function of position
is shown in Fig. 9(c). Using these horizons, the wave-packet
world lines are shown in Fig. 9(d). As we can see, the world
lines that were bouncing back with the linear profile at finite
momenta now are approaching the horizon similarly to the
k = 0 wave packet. Close to the horizon because of lattice
effects we get the disintegration of the wave packet similarly
to the k = 0 case.

IV. SCATTERING MATRIX

To characterize the different possible scenarios in the mod-
els discussed above, we turn to scattering theory. Taking the
same systems studied in Sec. III A, we attach two semi-infinite
leads on both ends. We restrict the discussion to 1D systems,
because with the change in tilting always being in one direc-
tion only, we can always choose periodic boundary conditions
in the other directions to get effectively 1D systems. The
leads are made using the same model as the system with fixed
tilting t = 0 (t = 2) for the left (right) lead. For the scattering
region we take a 1000-sites-long chain. We then calculate

FIG. 10. Propagating modes and scattering matrix of the H1D
1 (a,

c) and H 1D
2 (b, d) lattice models with a horizon. In panels (a) and

(b) the dispersion relations in the left and right leads are shown. At
the energy indicated by the dashed line, the possible propagating
modes are indicated by the filled circles. In panels (c) and (d), the
scattering probabilities between the modes at zero energy are shown.
The length of the scattering region is L = 1000.

the scattering matrix between the two leads numerically us-
ing the KWANTpackage [61]. The scattering matrix (S) encodes
the probability amplitudes of scattering from incoming modes
(i) into outgoing modes (o):

om =
∑

n

Smn(ε)in, (21)

where ε is the energy of the considered modes.
First, we discuss the H1D

1 system. The propagating modes
at a given ε > 0 energy in this system are shown in Fig. 10(a).
There are two incoming and two outgoing modes in each side
of the scattering region, resulting in a scattering matrix that is
4 × 4. The scattering matrix at ε = 0 is shown in Fig. 10(c).
We can see that each incoming mode is scattered into an
outgoing mode with probability 1. Incoming modes from the
red bands are totally reflected into outgoing modes in the red
band of the same lead. Incoming modes of the blue bands
are completely transmitted into outgoing modes in the blue
band of the opposite lead. This behavior is consistent with
the reasoning of the previous section: the red band becomes
completely flat so states in this band cannot cross the horizon,
while the blue band stays qualitatively the same and the states
in this band can go through the horizon. The same is valid for
all energies, as long as there are propagating modes in both
leads.

Then we study the H1D
2 system. The propagating modes at a

given ε > 0 energy in this system are shown in Fig. 10(b). The
left lead has one incoming and one outgoing mode while the
right lead has two and two, resulting in a scattering matrix that
is 3 × 3. The scattering matrix at ε = 0 is shown in Fig. 10(d).
The incoming mode in the blue band is totally transmitted
into the outgoing mode in the blue band. At zero energy the
incoming modes in the red band are equally split between
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FIG. 11. Energy dependence of the scattering probability from
the incoming mode il to the outgoing modes or1 and or2 from
Fig. 10(b). The colored lines show the numerical results for different
system lengths. The solid black lines show the analytic formulas in
Eq. (22).

the two outgoing modes in the red band. In this system there
is a big difference between the red incoming mode on the
left and right sides. Starting from the left side we get total
transmission, while starting from the right side we get total
reflection.

In the H1D
2 system the energy dependence of the scattering

amplitudes is more complicated than the H1D
1 system. The

zeros and ones are unaffected, but the equal splitting between
the red bands is only valid at ε = 0. Let us consider the il in-
coming mode. At a large enough positive energy, if we follow
the same energy modes throughout the scattering region we
see that they appear at continuously increasing momenta until
we reach a large enough tilting at the other side of the horizon,
where a second same energy mode appears at a very different
negative momentum. Since large momentum changes are not
allowed because of the slow varying of the tilting, the il mode
will be totally transmitted into the or1 mode at large enough
positive energies. The closer we go to zero energy we see
that at the point of the appearance of the second mode with
the same energy, the difference between the two momenta is
decreased, and at ε = 0 it is equal to zero. This means that the
il mode can scatter into both the or1 and or2 with continuous
momentum change, and thus they have equal scattering prob-
abilities. In between the zero and the high enough energies,
the scattering probabilities show an exponential behavior (see
Fig. 11)

The same was observed for the H1D
2 Hamiltonian for a

similar tilting dependency in Refs. [27,28]. The energy de-
pendence of the scattering rate can be expressed as

|Sor1,il |2 = 1

1 + eπLε
, (22a)

|Sor2,il |2 = 1 − 1

1 + eπLε
. (22b)

We see that the momentum jumps are exponentially sup-
pressed. Increasing the system size makes the change of tilting
smoother, which in turn makes the quasiconservation of mo-
mentum stricter and causes the probability amplitudes to reach
their asymptotic behavior faster. The Hawking fragmentation
coined in Ref. [27] can thus be understood as intermode

scattering between multiple states at the same energy with
different momenta. Increasing the energy of the incoming
mode increases the momentum difference between the scat-
tered modes, which leads to the energy dependence shown in
Fig. 11.

V. DISCUSSION AND CONCLUSIONS

We introduced lattice models for tilted WSMs where the
tilting varies smoothly with position. These models at small
momenta effectively correspond to the massless Dirac equa-
tion in a curved space-time background. To understand the
role of high momenta and inter-Weyl-node effects, we studied
two different types of systems: the first type (H1) has 2d nodes
where d is the dimension of the system, while the second type
(H2) only has a single Weyl node.

Using these models, we simulated wave-packet propaga-
tions for three types of tilting profiles in 1D, 2D, and 3D using
the Chebyshev expansion method. When the tilting varies
linearly with position, and in the zero-energy limit of both H1

and H2, the wave packets follow the geodesics of (1 + 1)D de
Sitter space-time, as found previously in a single-band model
[45]. At finite energies (E > 0) though, H1 and H2 give very
different behaviors. H1 causes wave packets to bounce back,
similarly to the single-band model, while H2 causes wave
packets to be transmitted. This is explained by the differences
in the band structure at large momenta, which allow for scat-
tering to same-energy states in H2 but not in H1. When the
tilting varies as a power law with position, we found that the
transition between models with and without a horizon found
in the single-band model is also present in two-band models.
Finally, we designed a specific tilting profile that moves the
horizon away from zero energy and can be tuned to obtain
eternal slowing down for any initial wave packet.

We showed that these results can be understood using the
local dispersion relations, the conservation of energy, and
only allowing continuous change for the quasimomentum. To
further show the validity of this approach, we computed the
scattering matrix for 1D systems, which corresponds well to
this analysis. In H2, due to the presence of multiple states at a
single energy, intermode scattering occurs, in agreement with
scattering amplitudes obtained in a related model [27,28],
which we now relate directly to wave-packet trajectories. In
the H1 system, though, we only found fully transmitted or
reflected modes without any scattering taking place.

The models studied in this paper are simplified versions
of more realistic systems where one might observe horizon
physics experimentally. In real materials such as the pre-
viously mentioned Zn2In2S5 [38], disorder and interactions
should be taken into account to have a complete description.
Such calculations are still an open problem, and the effects
they might have on the phenomena discussed in this paper
require further studies. On the other hand, effective systems
that have horizons can be created using metamaterials such as
in Refs. [62–67]. The advantage of these systems is the better
control over the tilting parameter, which can be engineered by
inhomogeneously creating the metamaterial.

In summary, our results bridge the gap between the single-
band description and concrete proposals for the experimental
realization of Weyl gravitational analogs. Indeed, they point
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to the rich physics arising from the presence of a second band
and the presence or absence of other Weyl nodes at large
momenta. These can in some cases dominate the observed
phenomena and therefore indicate limitations of the analogy
between tilted WSMs and gravitational systems, which should
be taken into account in experimental setups. Finally, we
identified the possibility of tuning the tilting profile to provide
horizons for finite-energy wave packets, thus expanding the
possibilities offered by this type of gravitational analog.
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APPENDIX A: CONNECTION BETWEEN TIGHT-BINDING
AND CONTINUUM MODELS

In this section we show how the tight-binding Hamilto-
nians in Eq. (3) become the Eq. (8) continuum model when
going to vanishing lattice constants. We only show H1D

1 in
detail; H1D

2 and higher dimensions can be derived similarly.
The single-particle tight-binding eigenvalue problem can be
written as

Eψn = (σx − tnσ0)
ψn+1

2i
− (σx − tn−1σ0)

ψn−1

2i
. (A1)

We can regroup terms in the same equation as

E

a
ψn = (σx − tnσ0)

ψn+1 − ψn−1

2ia
− tn − tn−1

2ia
ψn−1, (A2)

where we divided the equation with the lattice constant a.
Approximating derivatives with finite differences as

∂xψ ↔ ψn+1 − ψn−1

2a
, (A3)

∂xt ↔ tn − tn−1

a
, (A4)

and rescaling the energy with the lattice constant we get the
Hamiltonian in Eq. (8),

Eψ (x) = −i(σi − tiσ0)∂xψ (x) − σ0

2i
[∂xt (x)]ψ (x). (A5)

APPENDIX B: DERIVATION OF THE DIRAC EQUATION

Here we will derive Eq. (10) explicitly. In what follows,
we use the conventions for representation of the Dirac equa-
tion and the exterior algebra technique, which can be found,
e.g., in Ref. [68]. The general expression of the massless Dirac
equation in a curved background is given by

γ aea
μ
(
∂μ + 1

4ωμ
abγab

)
� = 0, (B1)

where ea
μ is the inversed frame field and ωμ

ab is the spin
connection. Any metric can be written in terms of frame
fields, ea

μ, as gμν = ηabea
μeb

ν , where ηab is the Minkowski
metric ηab = diag(−,+, . . . ,+). Given the metric (9), the
corresponding frame field one-forms are

e0
μdxμ = dT, ei

μdxμ = dxi − t idT, (B2)

while the inversed frame fields ea
μ, contributing to Eq. (B1),

read

e0
μ∂μ = ∂T + ti∂i, ei

μ∂μ = ∂i. (B3)

Thus the first term in Eq. (B1) is

γ aea
μ∂μ = γ 0(∂T + ti∂i ) + γ i∂i. (B4)

In order to find the second term in Eq. (B1), we need to
calculate the spin connection ωμ

ab. The spin connection one-
form ωab has to satisfy the torsion-free condition

dea + ωa
b ∧ eb = 0, (B5)

where ∧ stands for the wedge product, while d denotes the
exterior derivative. Taking into account the explicit form of ea

given in Eq. (B2) for our metric, the equations above can be
written as

ω0i ∧ ei = 0, (B6)

∂ jt
idx j ∧ dT − ω0i ∧ dT − ωi j ∧ e j = 0.

Note that i, j are raised and lowered by the Euclidean metric
and, as before, the summation is assumed over repeating in-
dices. Considering these relations as a set of algebraic linear
equations for components of the spin connection ωab, one
finds

ωμ
0idxμ = 1

2

(
∂ it j + ∂ jt

i
)
e j, (B7)

ωμ
i jdxμ = 1

2

(
∂ it j − ∂ jt i

)
dT,

where e j are given in Eq. (B2). Now we are ready to find the
second term of Eq. (B1) in the explicit form

1
4γ aea

μωμ
abγab = 1

2γ 0∂iti + 1
4γ i jγ 0∂it j . (B8)

Putting Eqs. (B4) and (B8) together and multiplying the re-
sulting expression by γ 0, one finds Eq. (10).

APPENDIX C: CHEBYSHEV EXPANSION METHOD

The time evolution of wave packets was performed using
the Chebyshev expansion method [48,49]. The method is
based on the following expansion of the exponential function:

e−itx = J0(t ) + 2
∞∑

m=1

(−i)mJm(t )Tm(x), (C1)

where Jm are the Bessel functions of the first kind, and Tm are
the Chebyshev polynomials of the first kind. This formula is
valid in the range x ∈ [−1, 1]. The Chebyshev polynomials
can be obtained using the following recurrence relation:

Tm+1(x) + Tm−1(x) = 2xTm(x), (C2a)

T0(x) = 1, (C2b)

T1(x) = x. (C2c)
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This expansion can be used to calculate the time evolution of
|ψ (0)〉:

|ψ (t )〉 = e−itH |ψ (0)〉 . (C3)

Using Eq. (C1) we get

|ψ (t )〉 = J0(t ) |ψ (0)〉 + 2
∞∑

m=1

(−i)mJm(t )Tm(H ) |ψ (0)〉 .

(C4)
In order for the Chebyshev expansion to be convergent, the
Hamiltonian has to be normalized such that each eigen-

value is in the range [−1, 1]. Using the recurrence relation
in Eq. (C2),

T0(H ) |ψ〉 = |ψ〉 , (C5a)

T1(H ) |ψ〉 = H |ψ〉 , (C5b)

Tm+1(H ) |ψ〉 = [2HTm(H ) − Tm−1(H )] |ψ〉 . (C5c)

This algorithm does not require the eigenvalue problem of
the Hamiltonian to be solved. By using sparse matrices, the
recurrence relation can be evaluated efficiently, allowing us to
study much larger systems than those accessible with methods
that require the diagonalization of the Hamiltonian.
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