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Abstract
We study the generalized hydrodynamics of the one-dimensional classical non
linear Schrödinger equation in the attractive phase. We thereby show that the
thermodynamic limit is entirely captured by solitonic modes and radiation is
absent. Our results are derived by considering the semiclassical limit of the
quantum Bose gas, where the Planck constant has a key role as a regulator
of the classical soliton gas. We use our result to study adiabatic interaction
changes from the repulsive to the attractive phase, observing soliton production
and obtaining exact analytical results which are in excellent agreement with
Monte Carlo simulations.

Keywords: generalized hydrodynamics, attractive non-linear Schrödinger, adi-
abatic interaction changes, integrability

(Some figures may appear in colour only in the online journal)

1. Introduction

The relentless experimental advances in probing strongly correlated quantum matter are hardly
overemphasized [1, 2] and triggered an as much impressive amount of theoretical research.
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The one-dimensional world stands out as a fruitful melting pot for experiments [3–7], numer-
ical methods and analytical expressions: indeed, particles moving on a line cannot avoid each
other, with the consequent enhancement of interactions and correlations. As a consequence,
the fascinating problem of describing nonequilibrium phases of matter in low dimensions is
extremely challenging and often far beyond the comfort zone of perturbative methods. Hence,
other approaches should be envisaged.

Tensor networks [8] are one of the most versatile and powerful numerical methods to access
one-dimensional physics, but they come with their own limitations: the nonequilibrium late-
time behavior of many-body system is extremely hard to capture, due to its highly entangled
nature. If on top of this one also wishes to set aside lattice systems and explore continuous
setups, the problem becomes quickly intractable. Other strategies should then be used, for
example semiclassical methods or exact solutions: this paper lies at the interface between these
two.

A widely known modelling of 1D cold atom experiments is through the interacting Bose
gas Hamiltonian, which in dimensionless units reads

Ĥ =

∫
dx ∂xψ̂

†∂xψ̂ + cψ̂†ψ̂†ψ̂ψ̂ + V(x)ψ̂†ψ̂, (1)

with c describing a local pairwise interaction and V(x) being the shallow confining potential
and [ψ̂(x), ψ̂†(y)] = δ(x − y). This model hardly needs any introduction due to its widespread
use in both experimental [9–19] and theoretical communities.

In experiments, interacting bosons squeezed in elongated traps, either by means of optical
lattices or atom chips, are trustfully described by this Hamiltonian. Remarkably, both the trap-
ping potential and the interactions are highly tunable parameters, also in real time. Particularly
interesting for us, as we discuss later on, is the possibility of manipulating the interaction by
means of Feshbach resonances [20–23].

The ground state and low-energy properties of the repulsive (c > 0) 1D Bose gas can be
efficiently described within bosonization [24, 25], but depending on the question at hand,
the usefulness of this approach is at stake: macroscopic changes of the trap or interactions
will create excitations high in the spectrum, far beyond bosonization applicability. In the
opposite limit, semiclassical methods take the lead: in the case of large mode occupancy,
one can discard the quantum nature of the fields by replacing them with classical variables
ψ̂(x) → φ(x). The system is now described by the classical non-linear Schrödinger (NLS)
equation [26, 27]

i∂tφ = −∂2
xφ+ 2κ|φ|2φ+ V(x)φ(x), (2)

whereφ is a classical complex field andκ the classical interaction strength. This approximation
holds when interactions are weak and curiously emerges in two opposite scenarios. On the one
hand, it can describe a single macroscopically occupied mode (quasicondensate) and within
this setup is often referred as Gross–Pitaevskii equation [28]. Since this description captures a
quasicondensate, it can be interpreted as a low temperature limit.

On the other hand, high temperature limits of the Bose gas can be treated with the NLS
as well, which now describes a fluctuating classical field [29–31]. The fact that cold atoms
can be described by means of a high temperature fluctuating classical field could appear as a
contradiction, but the concept of ‘high temperature’ must be compared with the energy scales
of the 1D experiments, i.e. the interactions and the oscillator frequency of the longitudinal trap,
which can be rather weak. The appeal of semiclassical approximations is self-evident: classical
fluctuating fields can be easily simulated with Monte Carlo methods on very large scales and
for long times. Besides, external perturbations and noise are easy to implement.
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Outside the semiclassical realm, whose applicability is not restricted to the Bose gas, one
can probe the true quantum nature of the system with analytical methods. Indeed, the 1D Bose
gas (in the absence of the trap) is an outstanding example of an integrable model, originally
solved by Lieb and Liniger in 1963 [32, 33] and often referred to as Lieb–Liniger (LL) model
after them. When applicable, integrability is powerful: it gives access to exact results directly in
the thermodynamic limit, ranging from equilibrium physics [34] to out of equilibrium setups
[35]. As a downside, deriving analytical solutions can be challenging and until recently the
effects of soft integrability breaking terms, such as the longitudinal trap, were hard to include
in the theory.

The table turned in 2016 with the proposal of a new hydrodynamic approach to integra-
bility [36, 37] now dubbed as generalized hydrodynamics (GHD), which is built only on the
local and instantaneous integrability of the Hamiltonian, making it the ideal tool to describe
several experimental setups. The interested reader can refer to the recent reviews [38–44].
Shortly after the original papers, inhomogeneities in the Hamiltonian such as external poten-
tials [45] and time-changes of the interactions [46] were readily included. Recently, GHD pre-
dictions have been challenged by real experiments showing a spectacular agreement between
the two [40, 47–49]. Noticeably, the very defining properties of integrability is having an exten-
sive number of local conserved quantities that hinder thermalization and cause relaxation to
generalized Gibbs ensembles (GGE) [50], as probed in early experiments [51, 52], and allows
for novel nonequilibrium phases. Very interestingly, integrability can stabilize quantum mat-
ter in regimes that simply do not exist in its absence: the Bose gas within the attractive phase
c < 0 is an outstanding example of it. At equilibrium, the attractive Bose gas is extremely unsta-
ble [53–55]: in this phase, the gas can form bound states [56–59] and for any finite temperature
the gas collapses in a gigantic molecule consisting of all particles. However, integrability
overturns the rules of the game by stabilizing the few-particles bound states and allowing
stable nonequilibrium phases. This has been already realized and discussed in experiments
[22, 23], but theoretical results are scarce [60, 61] and for a good reason: one should initialize
the system in a far from equilibrium setting and this is extremely difficult to be analytically
addressed.

Fortunately, GHD comes in handy when facing this challenge: in a recent work [62], the
three of us proposed to initialize the gas in the attractive regime by means of a slow interaction
tuning starting from the repulsive phase. Within each phase, GHD describes the interaction
changes [46] and must be supplemented by a description of what happens crossing the non-
interacting point c = 0. When entering the attractive phase, bound states are expected to be
produced and we proposed an educated exact ansatz for this process. However, aside the low-
density limit, its validity is extremely challenging to be tested due to the absence of independent
analytical or numerical computations.

In this work, we address this protocol in the classical NLS equation: the motivations are
multifaceted. First of all, by comparing with large-scale classical simulations we can bench-
mark the analytical predictions, exploring corrections to adiabaticity and due to integrability
breaking corrections, always present in experimental setups. Secondly, the in se-per-se inter-
est in the thermodynamic description of integrable models is fueled by the advances of GHD
studies. In contrast with quantum models, where excitations are of fermionic or bosonic nature,
classical systems feature either solitonic or radiative modes, obeying Maxwell–Boltzmann or
Rayleigh–Jeans statistics. Probably, the simplest example of classical integrability is the hard
rods gas [63], namely an ensemble of hard-core particles of finite length obeying a (dressed)
Maxwell–Boltzmann statistics, thus having solitonic nature. Solitonic modes also appear in
the Toda chain [64, 65] and Landau–Lifschitz spin model [66–68]. In contrast, the thermo-
dynamics of the relativistic sinh-Gordon model [69, 70] and the repulsive NLS [71] is built
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upon radiative modes. The GHD of an integrable discretization of the NLS has been recently
addressed [72] and, unexpectedly, the excitation spectrum has been shown to be described by
solitonic modes in analogy with the Toda chain, but in sharp contrast with the naive expecta-
tion dragged from the continuous case. The soliton-radiation correspondence in the continuum
limit remains yet to be clarified.

Within the attractive phase, the continuous NLS is known [27] to support both radiative
and solitonic modes, hence its thermodynamics can be naively expected to be described by a
mixture of the two. Surprisingly, we show that this is not the case: by accessing the classical
GHD through a semiclassical limit of the quantum model, we recover only solitonic modes.
Benchmarks with ab initio classical simulations confirm the correctness of the procedure.

It is worth mentioning that far before the advent of GHD, the soliton picture (see reference
[73] for a recent review) provides a hydrodynamic framework to study transport in classi-
cal integrable models bearing solitonic excitations. Indeed, the GHD equations describing
inhomogeneous states, but with homogeneous and time-independent dynamics, reduce to the
soliton gas picture when applicable. Nonetheless, passing through the semiclassical limit of the
quantum model bears many advantages, such as describing the effect of interaction changes.
Most importantly for our purposes, with this strategy we recover for free the correct exci-
tations that describe the thermodynamics and hydrodynamics of the classical model. Before
going through the details of our results, we wish to clarify a possible source of confusion: sev-
eral studies have been dedicated to the so-called semiclassical (or weakly dispersive) limit of
the NLS and its hydrodynamic form (see e.g. reference [74]). In our approach, we consider
the semiclassical limit of the quantum Bose gas to access a description of the NLS valid in
arbitrary regimes, albeit in the GHD limit.

The paper is organized as follows. Section 2 reviews the solution of the quantum Bose
gas, its hydrodynamics and slow interaction changes from the repulsive to the attractive phase.
Section 3 presents the classical NLS, discussing the difficulties of obtaining a hydrodynamic
description from purely classical methods and thus building the GHD from semiclassical limits
of the quantum model. Section 4 benchmarks the hydrodynamic treatment against ab initio
Monte Carlo simulations. Finally in section 5 we gather our conclusions followed by two short
appendixes describing the numerical methods.

2. The 1D quantum Bose gas

In this section, we summarize the key points of the exact solution of the Bose gas and its
hydrodynamic treatment, which we use as a stepping stone to access the classical NLS. We start
by reviewing the microscopic solution by means of the coordinate Bethe ansatz and discussing
the strings representing bound-states in the attractive phase. We then turn to the thermodynamic
limit and conclude with a short summary of GHD and its application to slow drives from a
repulsive to an attractive interaction strength.

2.1. The many-body wavefunction

Already in 1963 Lieb and Liniger provided the exact solution of the homogeneous V(x) = 0 1D
Bose gas [32], which is also referred to as LL model. Integrable models are characterized by the
presence of an extensive number of local conservation laws which greatly affects the dynamics.
Indeed, the Hilbert space can be understood as a collection of particles undergoing pairwise
elastic scatterings. The rapidities λi represent the asymptotic momenta of the particles after a
scattering event. The asymptotic states are common eigenvectors |{λi}N

i=1〉 of the Hamiltonian
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and all the charges, which act additively on the quasiparticles due to their locality

Q̂|{λi}N
i=1〉 =

(
N∑

i=1

q(λi)

)
|{λi}N

i=1〉, (3)

where q(λ) is called charge eigenvalue. Notable examples are the number of particles q(λ) → 1,
the energy q(λ) → ε(λ) = λ2 and the momentum q(λ) → p(λ) = λ.

The many-body wavefunction is explicitly computed via the coordinate Bethe ansatz [32]
and reads

Ψ({xi}N
i=1; {λi}N

i=1) =
∑
P

A(P)
N∏

j=1

eiλP j
x j , x1 � x2 � . . . � xN. (4)

Above, P are the permutations of rapidities and the coefficients A(P) encode the factorized
scattering of the particles. In particular, exchanging two rapidities is equivalent to a scattering
process, hence the state picks up a phase. By definingΠ j, j+1 as the permutation that exchanges
the rapidities in position j and j + 1, it holds that A(Π j, j+1P) = S(λP j − λP j+1 )A(P), with

S(λ) ≡ eiΘ(λ) ≡ λ+ ic
λ− ic

, (5)

where S(λ) andΘ(λ) are the two-body scattering matrix and phase, respectively. Notice, that for
any non zero interaction, one has S(0) = −1: as a consequence, the wavefunction (4) vanishes
if two or more identical rapidities are considered, enforcing a Pauli exclusion principle on
the set {λi}N

i=1. As we will see, the scattering phase fully encodes the interacting nature of
the problem and it is a key ingredient in its thermodynamic description. The first step in this
direction is to consider a finite system of length L: periodic boundary conditions quantize the
allowed rapidities through the Bethe equations

eiLλ j =
∏
k �= j

S(λ j − λk), j, k = 1, . . . , N. (6)

Notice that in the non-interacting limit S(λ) = 1 the standard quantization conditions of non-
interacting models are recovered eiLλ j = 1. In the presence of interactions, the highly non-linear
nature of the Bethe equations make their solution extremely challenging.

In the zero density limit (L →∞ and N fixed) the nature of the solutions can be classified and
strongly depends on the sign of the interaction strength. Within the repulsive phase c > 0, only
real rapidities λ j are admitted, which describe asymptotically free particles. On the contrary, in
the attractive regime c < 0 bound states are possible and are described by complex rapidities.
In fact, complex λ j with the proper imaginary part are associated with a wavefunction that
exponentially vanishes for large particle separation (4).

At the level of the Bethe equation (6), a complex rapidity causes eiλ jL to either diverge or
vanish when L →+∞. The zero or divergence must be counterbalanced by a similar behav-
ior in the product of the scattering matrices and this locks the rapidity differences to either
the zeroes or poles of S(λ), giving rise to regular patterns in the complex plane which are
called strings. Rapidities belonging to the same string have the same real part, but are regu-
larly shifted along the imaginary direction{λ− i c

2 ( j + 1 − 2a)} j
a=1 where j ∈ {1, 2, . . .} is the

length of the string. Physically, a string represents a bound state of j particles traveling together
with momentum λ. The string hypothesis [34] assumes that in the true thermodynamic limit
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(L →∞ with N/L kept fixed), the strings can still be used to classify the state. Hence, by
grouping together the constituents of each string, one can write the Bethe–Takahashi equations

eiLpj(λ
α
j ) =

∏
(k′ ,α′)�=( j,α)

S j j′(λ
α
j − λα′

j′ ), (7)

which constrain the real center of mass λα
j of the strings where j specifies the string species.

The string scattering matrix S j j′(λ) = eiΘ j j′ (λ) is simply defined by the product of the scattering
matrices of all the constituents of the two scattered strings. In terms of the scattering phase, it
reads

Θ jk(λ) = (1 − δ jk)θ| j−k|(λ) + 2θ| j−k|+2(λ) + · · ·+ 2θ j+k−2(λ) + θ j+k(λ) (8)

and θ j(λ) = −2 arctan
2λ
c j

. (9)

Similarly, one defines the charge eigenvalues of a given string by summing the contributions
of its constituents q j(λ) =

∑ j
a=1 q (λ− i c

2 ( j + 1 − 2a ) ). In particular, in the case of energy
and momentum one has

ε j(λ) = jλ2 − c2

12
j( j2 − 1), pj(λ) = jλ. (10)

Particularly relevant is the energy eigenvalue from which one can readily extract important
information on the stability of the attractive phase. In fact, the attractive ground state is a giant
bound state of all its constituents with energy Eg = −c2N(N2 − 1)/12. Remaining in the zero
momentum sector, the first excited state is obtained by removing one particle from the molecule
and placing it infinitely far apart, hence Ee = −c2(N − 1)[(N − 1)2 − 1]/12. Thus, the energy
difference Ee − Eg diverges in the thermodynamic limit, signaling the impossibility of exciting
the system for any finite temperature.

2.2. The Bose gas in the thermodynamic limit

The thermodynamic limit is attained by sending the system size to infinity L →∞ while
retaining a fixed density n = N/L. In this perspective, solving the Bethe equations by ana-
lytical or numerical methods appears a daunting task which, however, can be avoided in the
thermodynamic limit. In the spirit of the thermodynamic Bethe ansatz (TBA) [34], the exact
details of a microstate defined by a set of discrete rapidities |{λi}N

i=1〉 are no longer of impor-
tance. Instead, we pass over to a coarse-grained description of states in terms of the so-called
root densities ρ j(λ). For the sake of a more compact discussion, we consider the repulsive
and attractive case at the same time, hence we introduce a set of root densities {ρ j(λ)}, one
for each string species: the repulsive phase is obtained by retaining only strings with j = 1.
Concretely, Ldλρ j(λ) counts how many solutions to the Bethe–Takahashi equations of the jth
string specie lay within the interval [λ,λ+ dλ], thus equation (3) in the thermodynamic limit
becomes

〈{λi}N
i=1|Q̂|{λi}N

i=1〉 → L
∑

j

∫
dλ q j(λ)ρ j(λ). (11)

The Bethe–Takahashi equation (7) in logarithmic form constrain the allowed set of rapidi-
ties 2πI j,α = Lpj(λα

j ) −
∑

(k′ ,α′)�=( j,α)Θ j, j′ (λα
j − λα′

j′ ), with I j,α an integer. As a consequence,
one introduces the total root density ρt

j(λ) � ρ j(λ) as the maximum allowed occupancy

6



J. Phys. A: Math. Theor. 55 (2022) 134001 R Koch et al

and ϑ j(λ) = ρ j(λ)/ρt
j(λ) � 1 is the filling fraction. Due to the non-linear nature of the

Bethe–Takahashi equations, ρt
j(λ) is explicitly state-dependent and is defined as the Jacobian

of the change of coordinates between the rapidities and the set of integers I j,α. In the thermody-
namic limit, this is compactly expressed as 2πρt

j(λ) = (∂λpj)dr, where the dressing operation
is introduced for an arbitrary test function τ j(λ) → τ dr

j (λ) as

τ dr
j (λ) = τ j(λ) −

∑
k

∫
dλ′

2π
ϕ jk(λ− λ′)ϑk(λ′)τ dr

k (λ′). (12)

Here, the kernelϕ jk(λ) is the derivative of the scattering phaseϕ jk(λ) = ∂λΘ jk(λ). The dressing
operation is ubiquitous in TBA calculations, as we will see. Due to the coarse-grained nature
of the root density representation, many states share the same macroscopic description: the
Yang–Yang entropy

S[{ρ j}∞j=1] =
∫

dλ
2π

∑
j

ρt
j(λ)

(
−ϑ j ln ϑ j − (1 − ϑ j) ln(1 − ϑ j)

)
(13)

counts the degeneracy of the macrostate identified by a given root density, in the sense that
the number of microscopic states sharing the same root density scales as ∼ exp(LS[{ρ j}∞j=1]).
Notice that S is nothing else than the entropy of ‘fermionic particles’ with occupancy ϑ j(λ)
and total phase space distribution ρt

j(λ): the fermionic nature of the Yang–Yang entropy
is due to the Pauli principle exclusions enforced on the rapidities. The entropic contribution is
crucial when aiming to describe an ensemble of states, both in equilibrium and non-equilibrium
setups.

Equilibrium thermodynamics—one of the earliest successes of integrability has been its
ability to exactly describe systems at thermal equilibrium, despite the presence of strong
interactions. Let us focus on a thermal state e−β(Ĥ−μN̂) with β and μ the inverse temperature
and chemical potential, respectively. The grand canonical partition function Z is obtained by
summing over all microscopic states. In the thermodynamic limit, one can coarse grain the
microscopic summation by replacing it with a path integral over the root densities

Z =
∑

N,{λi}N
i=1

e−
∑N

i=1 (β(ε(λi )−μ) →
∫

Dρ j e
L

[
S[ρ j]−

∑
j

∫
dλβ(ε j(λ)−μ)ρ j(λ)

]
. (14)

In the thermodynamic limit L →∞, the path integral localizes on the saddle point solution
obtained by minimizing the free energy F = −S[{ρ j}] +

∑
j

∫
dλ β[ε j(λ) − μ]ρ j(λ). This

minimization procedure determines a unique choice of root densities that fully describes the
thermal state. Within the attractive regime, the ground state’s instability is also present at finite
temperatures, therefore the resulting equations are stable only within the repulsive regime and
read [34]

ε(λ) = β[ε(λ) − μ] −
∫

dλ′

2π
ϕ(λ− λ′) log(1 + e−ε(λ)), (15)

where one conveniently parameterizes the filling fractions through the effective energy ε

ϑ(λ) =
1

1 + eε(λ)
. (16)

7
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Generalized Gibbs ensembles—besides playing a pivotal role at equilibrium, the root den-
sities fully characterize several non-equilibrium protocols. Let us focus on the paradigmatic
example of the homogeneous quantum quench [75]: here, the system is initialized in a cer-
tain state (or ensemble) that is not an eigenstate of the Hamiltonian. Then, the state evolves
under unitary evolution and eventually (local) relaxation is attained. The presence of infinitely
many local conservation laws greatly constrains the dynamics of integrable models and hin-
ders thermalization. Indeed, the steady state reached by integrable models after a quantum
quench is usually not described by thermal ensembles, but rather by GGE [50] e−

∑
i βiQ̂i ,

where in addition to the Hamiltonian, all the relevant charges must be taken into account.
Within the thermodynamic limit, GGEs can be described with minor changes of the thermal
analysis, by modifying the source term in the TBA integral equation (15): however, there are
two major obstructions to this program. The first concerns the charges that need to be included
in the GGE: in continuum models such as the Bose gas, the expectation values of ultra local
charges often feature ultraviolet divergences [76, 77], which must be properly regularized
[78–80]. In addition, also in the absence of ultraviolet divergences as for example in lattice
systems, listing all the charges needed in the GGE is challenging and quasi-local conservation
laws must be considered [81, 82]. Fortunately, the explicit construction of the charges is not
needed for the thermodynamic description of the GGE. Indeed, GGEs are understood to be in
one-to-one correspondence with the root density description [83]: given a set of root densities,
a GGE of the form e−

∑
i βiQ̂i exists from which they can be derived.

The second challenge to be addressed is determining the final GGE from the initial con-
ditions: a major breakthrough in this direction has been the quench action approach [84, 85]
which extracts the root densities from the knowledge of the overlaps between the initial state
and the post quench eigenstates. Thanks to this approach, several quench protocols in inte-
grable models have been exactly solved, but its applicability is limited to those initial states
where the aforementioned overlap can be computed [86].

In the case of the Bose gas, the list of these special states hosts a unique element, namely
the non-interacting ground state (i.e. the homogeneousBose–Einstein condensate). The sudden
quench from the non-interacting ground state to the repulsive case is among the first quenches
in interacting integrable models ever solved [87] and it has been lately generalized to the case of
attractive interactions [60, 61], showing bound state formation. However, despite the appeal of
such an exact solution, the instability of the one-dimensional BEC against thermal fluctuations
makes the realization of this protocol in real-life experiments difficult. In contrast to sudden
quantum quenches, slow time-dependent protocols allows for a much greater flexibility in the
choice of the initial state: these setups fall within the realm of hydrodynamics, which we now
discuss.

2.3. Generalized hydrodynamics and bound state formation

When a many-body system is subjected to slow and smoothly varying external perturbations, it
can be rightfully expected to locally evolve through quasi-stationary states. This is the onset of
hydrodynamics: by invoking a separation of time scales, one assumes the system is locally and
instantaneously described by a homogeneous stationary state, which then evolves on macro-
scopic times through proper continuity equations. For those models that are evolving through a
locally integrable Hamiltonian, stationary states are described by GGEs and the hydrodynam-
ics of GGEs is now known as GHD [36, 37]. Since its introduction in 2016, it has provided
tremendous advances in understanding 1D systems out of equilibrium. Here, we focus on the
hydrodynamic equations at the Euler scale, i.e. we retain only the first order in a gradient
expansion: diffusive corrections are known [88, 89] and play a pivotal role in the late-time
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thermalization due to the trap-induced integrability breaking corrections [90]. The thermaliza-
tion time scale is proportional to the square of the sloshing period and can be neglected for very
smooth traps. At the Eulerian scale, the hydrodynamics is governed by the following continuity
equation

∂tρ j + ∂x(veff
j ρ j) + ∂λ(Feff

j ρ j) = 0, (17)

where the space-time dependent root density describes the local GGE and we suppress the
explicit dependence on rapidities, space and time for the sake of a more compact nota-
tion. We discuss the attractive and repulsive cases again at once, the latter being obtained
by retaining only the first string species ρ j=1 in the forthcoming expressions. The continu-
ity equation describes the phase space density of particles moving with velocity veff

j and
experiencing a force Feff

j : due to the strongly interacting nature of the system. The velocity
and force are suitably renormalized by the presence of the surrounding particles. The form
veff

j = (∂λε j)dr/(∂λpj)dr, where the dressing operation is defined in equation (12), has been
proposed in the original papers and then later rigorously proven in references [91, 92] (how-
ever, see reference [93] for an exception). The effective force undergoes an analogous dressing
operation Feff

j = f dr
j /(∂λpj)dr, where fj is the bare force, which captures the effects of traps

[45] and interaction changes [46]

f j(λ) = − j∂xV + ∂tc
∑

j′

∫
dλ′ ∂cΘ j j′(λ− λ′)ρ j′(λ

′). (18)

Above, we assume for simplicity that the interaction changes in time, but not in space. The
hydrodynamic equation allows for evolving the root density within the repulsive or the attrac-
tive phase, but does not provide a recipe to connect the two. For example, let us initialize
the system in a given state (e.g. thermal) within the repulsive phase c > 0 and then gen-
tly tune the interaction to smaller values until c = 0+ is met. Here, the evolution with the
repulsive GHD stops and continues from c = 0− within the attractive regime with the initial
conditions being determined by the endpoint of the repulsive evolution. This boundary condi-
tion is not contained within the GHD equations presented so far, which must be supplemented
by further considerations: in reference [62], the three of us proposed an analytical ansatz to
accomplish this task (see also [42, 94]). Our reasoning is based on entropic arguments and on
the fact that at c = 0 bound states have purely real rapidities and are indistinguishable from
unbound particles with the same rapidity. This last statement is expressed by the continuity
equation

ρ(λ)|c=0+ =
∑

j

jρ j(λ)|c=0− , (19)

which, besides being diagonal in coordinate space (whose dependence we omit) is also diago-
nal in rapidity space. In the case of an interaction change from attractive to repulsive, the right
hand-side is known and uniquely determines the repulsive root density: physically, a bound
state of j particles traveling with velocity veff

j (λ) melts in j unbound particles traveling with
the same velocity veff(λ′) = veff

j (λ). At the non-interacting point, it is easy to check that the
last identity implies λ = λ′. On the other hand, when the interaction is tuned from repulsive
to attractive, only particles with the same rapidity can form a bound state, since particles with
different velocity would drift apart before having the chance to bind. Notice that in the more
interesting case when the attractive phase is approached from the repulsive one, equation (19)
does not uniquely fix {ρ j(λ)} and further considerations must be made. If bound states at
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c = 0− are indistinguishable from unbound particles, any choice of the bound states popu-
lation is equally probable: therefore, the thermodynamic limit will select the most probable
configuration, obtained by entropy maximization. Maximizing the Yang–Yang entropy (13)
at the free point under the constraint of particle conservation (19) uniquely determines the
attractive root densities through

ε j(λ) = jω(λ) +
∑

k

(2 min( j, k) − δ jk) log(1 + e−εk(λ)), (20)

whereω(λ) is the rapidity-dependentLagrange multiplier whose value must be tuned to enforce
equation (19). The effective energy ε j parameterizes the state through ϑ j(λ) = (1 + eε j(λ))−1.

Similar equations already appeared in the literature [95, 96] in the context of the non-
interacting limit of the sine-Gordon (SG) field theory and can be analytically solved4

ϑ j(λ) = 1 − sinh( jω(λ)/2) sinh(( j + 2)ω(λ)/2)
sinh2(( j + 1)ω(λ)/2)

. (21)

As a last step, the Lagrange multiplier ω(λ) can be connected with the repulsive root density
through ρ(λ) = 1

2π
1

eω(λ)−1
, obtaining an explicit solution for the filling fraction.

The GHD equations together with the ansatz (20) allow one to access the attractive phase in a
controlled manner from a large variety of initial states. Once c is gently tuned to negative values,
the gas enters a highly excited phase featuring bound states of finite size, whose stability is pro-
tected by integrability. In contrast to equilibrium thermal states, GGEs obtained by solving (20)
are stable and the bound state population is exponentially decaying in their sizeϑ j(λ) ∼ e− jω(λ).
Of course, the value of ω(λ) > 0 is fixed imposing equation (19): it decreases monotonously
as ρ(λ)|c=0+ , approaching zero when ρ(λ)|c=0+ diverges and leading to instabilities.
Our ansatz is rooted on physical arguments and well-motivated thermodynamic considerations,
but ab initio checks are extremely difficult. Analytical consistency checks are available only
in the low density limit, while numerical benchmarks are a daunting task. The state-of-the-art
tensor network simulations struggle to capture the dynamics of highly excited and entangled
systems, especially in the case where the model is continuous and of bosonic nature (which
results in an infinite local Hilbert space). In fact, the appeal of GHD is to provide trustful
predictions in a regime beyond any other method. As we will see in the next section, the
same hydrodynamic treatment together with the bound states production ansatz can be trans-
ferred to the classical world: there, efficient numerical simulations will confirm the correctness
of our ansatz.

3. The non-linear Schrödinger equation

After having reviewed the quantum Bose gas and its hydrodynamic description, we now revert
to the classical world and introduce the NLS equation equation (2). The equation of motion
can be derived from a classical Hamiltonian

H =

∫
dx |∂xφ|2 + κ|φ|4 + V(x)|φ|2, (22)

by enforcing the Poisson brackets {φ(x),φ∗(y)} = iδ(x − y). From the comparison between
the Hamiltonian of the 1D quantum model (1) with that of the classical NLS, the similar-
ities between the two appear self-evident. Indeed, the homogeneous NLS (V(x) = 0) is a

4 The analytical solution has been overlooked in reference [62].
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well-known integrable partial differential equation [26, 27]: it features infinitely many local
conservation laws affecting the dynamics. In the absence of a Hilbert space, there is not a
classical analogue of the coordinate Bethe ansatz and the NLS is studied with the inverse
scattering method (ISM). In contrast, the quantum model can also be studied by means of
the quantum ISM [97], but its discussion is beyond the scope of our work. The key point is
noticing that the NLS equation emerges as a compatibility condition of an auxiliary linear
problem

∂xF(t, x) = Uλ(t, x)F(t, x) , ∂tF(t, x) = Vλ(t, x)F(t, x), (23)

where F is an auxiliary two-dimensional vector and Uλ, Vλ are 2 × 2 matrices with an explicit
dependence on φ

Uλ =
√
κ

(
φ∗σ+ + φσ−)+ λ

2i
σz (24a)

Vλ =

(
iκ|φ|2 + λ2 i

2

)
σz − i

√
κ

(
∂xφσ

+ − ∂xφσ
−)− λ

√
κ(φ∗σ+ + φσ−)

(24b)

with σx,y,z the standard Pauli matrices and σ± = (σx ± iσy)/2.
The consistency of the two differential equation (23) requires the zero curvature condi-

tion ∂tUλ − ∂xVλ + [Uλ, Vλ] = 0 to hold, the latter is λ-independent and it is satisfied if and
only if the Schrödinger equation (2) holds. Eventually, we are interested in the emergent ther-
modynamic properties in setups with finite particle number and energy densities, i.e. where
L−1

∫
dx|φ|2 remains constant in the thermodynamic limit. However, it is convenient to start

our discussion within the zero density limit. An extensive discussion can be found in references
[26, 27].

The whole line monodromy matrix—in this case, the system is assumed to be infi-
nite with the condition that the wavefunction φ(t, x) vanishes sufficiently fast (e.g. expo-
nentially) for |x| →+∞. Let us define the transfer matrix as the spatial propagator of
equation (23)

T(t, x, y) = Pexp
∫ y

x
dz Uλ(t, z), (25)

where Pexp is the path-ordered exponential. Thanks to the zero curvature condition, the transfer
matrix obeys a simple equation of motion

∂tTλ(t, x, y) = Vλ(t, x)Tλ(t, x, y) − Tλ(t, x, y)Vλ(t, y). (26)

Particularly important is the role of the monodromy matrix, i.e. the extension of the transfer
matrix to the whole line

Tλ(t) = lim
x→∞

e
λx
2i σ

z
Tλ(t,−x, x)e−

λx
2i σ

z
. (27)

Above, the additional oscillating terms are introduced in view of the asymptotic behav-
ior lim|x|→∞Uλ(t, x) = λσz/(2i). Due to the vanishing boundary conditions, one simply has
lim|x|→+∞Vλ(t, x) = iσzλ2/2. From equation (26) it immediately follows ∂t Tr[Tλ] = 0 for any
spectral parameter. As a consequence, an infinite λ-dependent family of conservation laws is
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found. Further insight is gained from the matrix elements of the monodromy matrix, which
can be parameterized as

Tλ =

(
a(λ) sign(κ)b∗(λ)
b(λ) a∗(λ)

)
, (28)

where a(λ), b(λ) are entire functions in the λ-complex plane and play the role of action-angle
variables of the integrable system. They in fact obey a very simple equation of motion

∂ta(λ) = 0 , ∂tb(λ) = −iλ2 b(λ). (29)

Hence, a(λ) is itself a conserved quantity. In principle, the non-linear dynamics of the wave-
function φ(t, x) is solved, albeit in an implicit way. In practice, one should compute the
monodromy matrix from the initial profile, then evolve the scattering parameters according
to equation (29) and finally use them to infer back the scattering potential and thus φ. The
last step is what is referred to as ‘inverse scattering’ and passes through the solution of the
Gelfand–Levitan–Marchenko linear integral equation. In this respect, the analytical properties
of a(λ) are crucial. Indeed, a(λ) can be analytically continued in the complex and a(λ) → 1
when λ is large, leading to the representation

a(λ) =
∏
a=1

λ− λa

λ+ λ∗
a

exp

[∫ ∞

−∞

dλ′

πi
log |a(λ′)|

λ′ − λ− i0+

]
. (30)

Above, (λa) > 0 and the complex zeroes are associated with solitons, i.e. non-dispersive
solutions of the NLS traveling at constant velocity. Solitons are present only for attractive inter-
actionsκ and are instead absent in the repulsive case. In contrast with solitons, radiative modes
(i.e. dispersive solutions) are present for both the repulsive and attractive case. Equation (30)
has a suggestive interpretation: let us consider the repulsive phase where solitons are absent
and expand log(λ) for large values of λ

log a(λ) = i
∞∑

n=0

λ−n−1
∫ ∞

−∞

dλ′

π
(λ′)n log |a(λ′)|. (31)

On the one hand, a(λ) is an integral of motion for any λ in view of equation (29), hence each
term Qn ≡

∫∞
−∞

dλ′
κ

(λ′)n log |a(λ′)| is separately conserved. In addition, it is possible to show
thatQn are local conserved charges [26, 69]. On the other hand, a comparison with the expecta-
tion value of the quantum charges in the thermodynamic limit (11) suggests that log |a(λ)| plays
the role of a classical root density [69, 98]. However, a proper analysis requires to consider the
system in a finite volume, which we now briefly discuss.

The periodic monodromy matrix—when periodic boundary conditions are enforced, the
monodromy matrix is defined as the transfer matrix across the finite system T PBC

λ (t) =
Tλ(t,−L/2, L/2). Equation (26) still holds and by virtue of PBC Vλ(t,−L/2) = Vλ(t, L/2),
hence the trace of the monodromy matrix is still a conserved quantity. There are two main dif-
ferences to the previous case: first, not all choices of the spectral parameter are acceptable. In
fact, by imposing periodic boundary conditions only values of λ such that T PBC

λ (t) = ±Id are
allowed. Secondly, in contrast with the fast decaying case, only the trace of the monodromy
matrix is conserved, while the diagonal entries are not. However, this is due to boundary terms
that are unimportant in the thermodynamic limit if one focuses only on bulk properties: follow-
ing the argument of references [69, 98], let us imagine a configuration of the field φ initially
having support on the restricted interval [−L/2 + �, L/2 − �]. In this case, the monodromy
matrix on the whole line coincides with the PBC case and has the same analytic properties of
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its coefficient. In addition, a(λ) is conserved until the evolving field does not reach the bound-
aries. This suggests that in the thermodynamic limit one can identify [T PBC

λ ]1,1 � e−iλL/2a(λ)
with a(λ) having the same analytic properties of the whole line problem. Focusing on the
repulsive case, this observation led to the identification of the classical analogue of the Bethe
equation (6): indeed, by imposing PBC log [T PBC

λ j
]1,1 = log(±1) = π j and using the represen-

tation equation (30) (where solitons are absent sinceκ > 0), one obtains the set of quantization
conditions

λ j − ⨏ ∞
−∞dλ′ 2κ

λ j − λ′
log |a(λ′)|

κπL
= 2π jL−1, (32)

with ⨏ being the principal value regularization of the integral. These equations have strong
analogies with the quantum Bethe equations in the logarithmic form (6), where the spectral
parameter is identified with the rapidities and the summation over rapidities has already been
replaced with an integral over the root density. In particular, the classical root density ρ(λ) and
scattering phase Θ(λ) can be identified as [69]

ρ(λ) ↔ 1
πκL

log |a(λ)| , Θ(λ) ↔ 2κ
λ

. (33)

The proportionality factor between ρ(λ) and log |a(λ)| is determined comparing the local
charges obtained from equation (31) with the standard normalization of particle density and
Hamiltonian. This correspondence leads to a full characterization of the post-quench GGE in
the repulsive phase [71] in terms of the initial data. In principle, one could attempt the same
strategy in the attractive case as well, but this path appears unpractical or, at least, very chal-
lenging. First, solitonic modes complicate the analytical properties of the scattering coefficient
and must be properly taken into account. Strictly speaking, a sharp distinction between soli-
tons and radiation exists only in the whole line problem and is blurred out in the periodic case:
nevertheless, we still refer to the complex zeroes of a(λ) as solitons. Secondarily, in writing
equation (32) one implicitly assumes only real values of the spectral parameter λ j. However,
in the attractive case one expects complex solutions as well, in analogy with the quantum case
and their classification further complicates the approach. Fortunately, one can avoid a solution
of the classical problem and indirectly access its thermodynamic description through a proper
semiclassical limit of the well-controlled quantum case.

The NLS as the semiclassical limit of the quantum Bose gas—despite the intrinsic quan-
tumness of nature, our daily life experience is based on classical physics: in the large mode
occupation limit, quantum systems are trustfully described by classical equations of motion.
Semiclassical methods have a long lasting success story which is not possible to properly
credit here, therefore we restrict our attention to the interplay between semiclassical limits
and integrability, emphasizing the connection between the NLS and the quantum Bose gas. At
equilibrium, the quantum–classical correspondence has been studied in early days [95, 99], but
it was brought back into focus through recent interest in non-equilibrium problems. In reference
[69] the idea of studying classical GGEs by taking the semiclassical limit of quantum theories
has been put forward, which has been later successfully applied to sudden quench protocols in
the NLS [71]. Following the advent of GHD, the hydrodynamics of classical integrable models
has been successfully derived from their quantum relatives [67, 70], in particular the hydrody-
namics of the repulsive NLS has been proven to be extremely fruitful in benchmarking GHD
predictions against ab initio numerical simulations. Here, we will follow a similar route and
tackle the NLS in its attractive phase κ < 0, which becomes accessible in view of our previous
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results in the attractive quantum Bose gas [62]. The semiclassical limit is most conveniently
accessed by introducing a small parameter h which plays the role of Planck’s constant. The
large occupation limit requires the number of particles to diverge N ∝ h−1, but a finite limit
is attained only if the quantum interaction is rescaled to small values c = hκ. This is readily
seen from a path integral representation of the quantum propagator

〈ψ j|e−iTĤ|ψi〉 =
∫

Dψ ei
∫ T

0 dt′
∫

dx i
2 (∂tψ

†ψ−ψ†∂tψ)−|∂xψ|2−c|ψ|4
∣∣∣∣
ψ(x,T)=ψ f (x),ψ(x,0)=ψi (x)

=

ψ=φ/
√

h
=

∫
Dφ eh−1i

∫ T
0 dt′

∫
dx i

2 (∂tφ
†φ−φ†∂tφ)−|∂xφ|2−κ|φ|4

∣∣∣∣
φ(x,T)=h−1/2ψ f (x),φ(x,0)=h−1/2ψi(x)

.

(34)

In the h → 0 limit, the path integral localizes on the saddle point, enforcing the classical
equations of motion. The whole analysis is then carried out on thermal ensembles and GGEs.
In particular, the limit of large occupation modes must be imposed for each conserved charge,
leading to the scaling

〈Qquantum〉 = h−1〈Qclassical〉. (35)

In the next section, we briefly review the semiclassical limit of the quantum TBA and GHD in
the repulsive case before moving on with the attractive interactions.

3.1. The semi-classical limit of the repulsive LL

In this and in the forthcoming sections, it is convenient to introduce an extra label to tell apart
quantum and classical quantities. Therefore, we add the subscript ‘q’ to variables labelling
quantum quantities. For the repulsive phase, we follow references [69, 71] (see also reference
[100] for an alternative derivation). As we anticipated, the classical model features a single root
density describing radiative modes. Let us rewrite the large occupancy scaling of the charges
(35) using the root density representation∫

dλ qq(λ)ρq(λ) = h−1
∫

dλ q(λ)ρ(λ). (36)

The charge eigenvalues of the local charges such as the density or the energy do not bear any
explicit interaction dependence. Hence, one can identify the quantum eigenvalues with the
classical ones qq(λ) = q(λ): assuming this identification holds for a complete set of charges,
imposing equation (36) and at the leading order one is led to the scaling ρq(λ) = h−1ρ(λ), with
possible further corrections in h. Indeed, this quantum–classical correspondence turns out to
give a finite limit of the whole TBA with the already anticipated classical scattering phase (33).
The classical scattering phase is recovered by the quantum one as

Θ(λ) = lim
h→0

1
h

(
Θq(λ) + π sign(λ)

)
. (37)

In order to keep the standard definition of the total root density, the classical root density is con-
sequentially obtained as ρt(λ) = limh→0(ρt

q(λ) − ρq(λ)). With this caveat, the classical dressing
is defined in the usual manner employing the classical scattering phase and the identification
2πρt(λ) = (1)dr(λ) still holds: consistently, the limit of the whole GHD results in the same
equations as equation (17) where the classical scattering phase replaces the quantum one. An
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important difference arises in the integral equations describing thermal states and this is deeply
connected to the different statistical properties of the classical NLS when compared with the
quantum Bose gas, encoded in equation (37). Indeed, the Pauli principle exclusion on the quan-
tum Bethe roots naturally leads to fermionic statistics (13), while the radiative modes of the
repulsive NLS are expected to follow a Rayleigh–Jeans distribution, which can be thought of
as the large occupation limit of bosonic particles. In fact, equation (37) removes the fermionic
component of the scattering phase before sending h → 0: this is strictly connected with the
possibility of reformulating the whole quantum TBA in terms of bosonic degrees of freedom
[101]. By taking the semi-classical limit of the Yang–Yang entropy (13), one finds

Sq �
∫

dλ
2π

{ρt(λ) log ϑ(λ) + (1 − log h)ρt(λ)} , (38)

that still has a divergent term ∝ log h. However, by explicitly using the definition of ρt it is
immediate to see that

∫
dλρt(λ) is a state-independent, since∫

dλ

{
ρt(λ) − 1

2π

}
=

∫
dλ
2π

∂λΘ(λ− λ′)ρ(λ′) = 0. (39)

Hence, it can be neglected, leading to the definition of the classical Yang–Yang entropy within
the repulsive phase

S ≡
∫

dλ
2π

ρt(λ) log ϑ(λ). (40)

Just as in the quantum case, thermal states are obtained by minimizing the free energy, leading
to a Rayleigh–Jeans distribution of the mode occupation ϑ(λ) = 1/ε(λ)

ε(λ) = β [ε(λ) − μ] − ⨏ ∞
−∞

dλ′

2π
∂λΘ(λ− λ′) log ε(λ′). (41)

Thanks to the equipartition theorem, non-interacting waves on thermal states are distributed
according to the inverse of the energy: equation (41) generalizes this expectation to the pres-
ence of interactions. Equation (41) matches the natural expectation inferred by the inverse
scattering solution, from which only radiative modes of a single species are expected. This
must be contrasted with the attractive phase we now discuss.

3.2. The attractive phase

As we have already discussed, tackling the thermodynamics and hydrodynamics of the attrac-
tive phase with the inverse scattering solution appears challenging. Nevertheless, the semi-
classical limit offers a direct path to our goal, whose validity has to be ultimately bench-
mark against numerical simulations. The first point to be addressed is the correspondence
between the quantum and the classical root densities: we start by noticing that in the semi-
classical limit the energy quantization of the strings is expected to merge in a continuum. In
order to understand the correct scaling, let us focus on the expectation value of a given quantum
charge
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L−1〈Q̂〉 =
∞∑
j=1

∫
dλ q j(λ)ρq; j(λ)

=

∞∑
j=1

∫
dλ

j∑
a=1

q(λ− ih( j + 1 − 2a)κ/2)ρq; j(λ) ∼ h−1, (42)

where we explicated the charge eigenvalue using the string hypothesis as well as the cor-
respondence between the quantum and classical interaction strength c = hκ. By requiring
the same scaling ∼h−1 for all the charges and assuming their completeness, the same scal-
ing must be independently enforced on each rapidity λ. Furthermore, the imaginary shifts in
the charge eigenvalue are equispaced on a vanishing step ∼h. This suggests to replace the sum-
mation over the quantum strings with an integral over a continuum variable s = h j. Therefore
we get

∞∑
j=1

j∑
a=1

q(λ− ih( j + 1 − 2a)κ/2)ρq; j(λ)

→
∫ ∞

0
ds
∫ s

0
ds′q(λ− i(s − 2s′)κ/2)h−2ρq;s/h. (43)

Imposing the scaling ∼h−1 of the whole expression suggests the following quantum–classical
correspondence

ρq; j(λ) = hρh j(λ). (44)

Following this argument, the attractive phase accommodates for the semiclassical limit in
a completely different manner when compared with the repulsive case: instead of macro-
scopically populating a single root density, it fills a divergent number of particle species
(i.e. the bound states), but each of them with a population of order O(h). This is a priori not
entirely obvious from equation (43), since the same scaling could have been obtained with a
single non-vanishing and divergent summand. However, equation (43) is not the only require-
ment to be enforced and equation (44) guarantees a finite limit of all the TBA equations, as we
now discuss.

Before turning to the total root density, we can first deduce the semiclassical limit of the
quantum scattering phase (8), which explicitly reads

Θq; jk(λ) = (δ jk − 1)2 arctan

(
2λ

κh| j − k|

)
− 2 arctan

(
2λ

κh( j + k)

)

−
max( j,k)−1∑

a=1

4 arctan

(
2λ

κh(| j − k|+ 2a)

)
. (45)

Notice, that by taking the limit of large strings necessary for attaining the semiclassical
limit, the summation diverges as ∼h−1, while the first two terms remain O(h0). Therefore, we
define the classical scattering phase as Θss′ (λ) = limh→0 hΘq;s/h s′/h(λ): the first two terms in
equation (45) do not contribute in this limit

Θss′ (λ) = −2
∫ s+s′

|s−s′ |
dσ arctan

(
2λ
κσ

)
. (46)
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Using the classical scattering phase, one can write the total root density, the dressing equations
and all the GHD equations. Of course, they coincide with the semiclassical limit of the quan-
tum hydrodynamics. In particular, the quantum total root density scales as ρt

q; j(λ) = hρt
h j(λ),

with the classical total root density defined as the dressed derivative of the momentum
2πρt

s(λ) = (∂λps(λ))dr. The classical dressing for an arbitrary test function τs → τ dr
s is defined

through the usual integral equation

τ dr
s (λ) = τs(λ) −

∫ ∞

0
ds′

∫
dλ′ϕss′ (λ− λ′)ϑs′ (λ

′)τ dr
s′ (λ′), (47)

with ϑs(λ) = ρs(λ)/ρt
s(λ) the classical filling function and ϕss′ (λ) = ∂λΘss′(λ). It is worth to

mention that ϕss′(λ) = ∂λΘss′(λ) can be explicitly written as

ϕss′ (λ) =
2
κ

ln
(s + s′)2

κ
2 + 4λ2

(s − s′)2
κ

2 + 4λ2
. (48)

The scattering kernel ϕss′ (48) is nothing else than the post-scattering displacement of two col-
liding classical solitons [102] and has recently appeared in connection with superdiffusion in
the XXZ spin chain [39, 67], where the exotic transport has been attributed to excitations of
semiclassical nature (see also references [68, 103, 104]). In the semiclassical limit, the XXZ
spin chain is described by the Landau–Lifschitz model, which is gauge-equivalent to the attrac-
tive NLS [27, 105], hence the identical scattering kernels. The energy and momentum eigen-
values are immediately obtained as ps(λ) = limh→0 hpq;s/h(λ) and εs(λ) = limh→0 hεq;s/h(λ) and
read

ps(λ) = sλ , εs(λ) = sλ2 − κ
2

12
s3. (49)

Finally, the GHD equations have the usual form ∂tρs + ∂x(veff
s ρs) + ∂λ(Feff

s ρs) = 0, with the
following effective quantities veff

s = (∂λεs)dr/(∂λps)dr, Feff
s = f dr

s /(∂λps)dr and the bare force

fs(λ) = −s∂xV + ∂tκ

∫ ∞

0
ds′ ∂κΘs,s′ (λ− λ′)ρs′(λ

′). (50)

We now turn to the semi-classical limit of the Yang–Yang entropy, leading to the definition
of the classical entropy within the attractive phase. On the practical side, this will allow us to
access the attractive regime by means of slow interaction changes. Moreover, it will unveil the
nature of the excitations described by ρs(λ).

By using the quantum–classical correspondence in equation (13), one finds

S =

∫ +∞

δ(h)>0
ds

∫
dλ ρt

s(λ) {ϑs(λ)[1 − log ϑs(λ)] − 2 log (h)ϑs(λ)} , (51)

where a ∼ log h term survives and the role of δ(h) will be clarified soon. In contrast with
the repulsive phase, where the entropy was pointing out the radiative nature of the excita-
tions, equation (51) is associated with solitons. Indeed, consider N indistinguishable classical
particles, hence the associated phase space is 1/N! and the entropy reads S = log(1/N!) ∼
N(1 − log N), in striking similarity with equation (51). We stress the absence of explicit radia-
tive modes, as one could have naively expected from the ISM. Let us now analyze the role of
the ∼ log h term: a similar correction appeared in the repulsive case as well, but, as we com-
mented, its contribution was state independent and could be omitted. This is not the case in
equation (51) and, in order for the h → 0 limit to give a finite equation of state through entropy
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maximization, the ∼ log h term should be counterbalanced by another singularity. This is the
role covered by δ(h): indeed, as we now discuss, ϑs develops a power law singularity for small
s and δ(h) must be properly tuned to obtain a finite expression. From the semiclassical limit
perspective, we are summing over string indexes j = {1, 2, 3, . . .} hence s ∈ {h, 2h, 3h, . . .}:
therefore, a cutoff δ(h) ∝ h is expected. We notice that a similar log h term appeared also in
the semiclassical TBA of the XXZ chain [67], further strengthening the connection with the
NLS. In that case, the role of the Planck constant was played by an external magnetic field. In
the following, we determine δ(h) through a bootstrap approach, asking the maximum entropy
approach to guide us towards a finite (and explicitly h-independent) formulation of the bound
state production.

Crossing κ = 0 and soliton production—when crossing over from the repulsive to the
attractive phase, the classical problem can be tackled in the same spirit as the quantum Bose gas.
One can proceed in two different but equivalent ways, either by taking directly the semiclassical
limit of the exact quantum solution (21) or through maximization of the classical entropy.
We start by addressing the first case, then we turn back to the classical entropy maximization
and discuss the role of the log(h) term appearing in equation (51). The semiclassical limit
of equation (21) is extremely simple to be taken: by enforcing the h-scaling discussed in the
previous section, one reaches the simple expression

ϑs(λ) =
1

(2πρ(λ))2

1

4 sinh2
(

s
4πρ(λ)

) . (52)

Notice that the filling fraction diverges for small s as ϑs(λ) ∼ 1/s2, regardless of the value of
ρ(λ). This divergence is the reason behind the appearance of log(h) in the classical entropy,
as we now discuss. By enforcing that the two phases should be indistinguishable when
approaching the non-interacting point, one reaches the semiclassical analogue of (19)

ρ(λ)|
κ=0+ =

∫ ∞

0
ds sρs(λ)|

κ=0− . (53)

This continuity equation does not suffice to determine the population of each string, which
is in turn determined by the constrained maximization of the classical entropy. In the limit
κ → 0−, the kernel of the dressing equation becomes diagonal in rapidity space

lim
κ→0−

ϕs,s′ (λ) = lim
κ→0−

2
κ

ln
κ

2
(
s + s′

)2
+ 4λ2

κ
2(s − s′)2 + 4λ2

= −4π min(s, s′)δ(λ). (54)

As a consequence, the definition of the total root density is also diagonal in rapidity space and
the entropy can be maximized for each rapidity independently leading to the equation

εs(λ) = sω(λ) + 2 log h +

∫ ∞

δ(h)
ds′2 min(s, s′)e−εs′ (λ), (55)

where we used the natural parameterization ϑs(λ) = e−εs(λ). The λ-dependent Lagrange mul-
tiplier ω(λ) is of course determined by enforcing equation (53). These integral equation can
develop singular solutions for s → 0: this is precisely what happens in equation (52) and the
divergence must be singled out before taking the h → 0 limit. In view of equation (52), it is
useful to introduce the reparameterization

εs = 2 log s + sε̄s, (56)
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where ε̄s remains finite as s → 0. Then, the domain [δ,+∞] in the integral of equation (55) is
split into two parts [δ, C] ∪ [C,+∞]. The constant C will be later sent to zero and it is meant to
be small enough such that sε̄s � 0 for s ∈ [δ, C]. In equation (55) we now focus on s ∈ [δ, C]
and use equation (56)

2 log s + sε̄s = sω(λ) + 2 log h +

∫ C

δ(h)
ds′2

min(s, s′)
s′2

+

∫ C

δ(h)
ds′2 min(s, s′)

e−s′ε̄s′ (λ) − 1
s′2

+ s
∫ ∞

C
ds′2

e−s′ε̄s′ (λ)

s′2
. (57)

In the above, the last integral is obviously finite. The first integral on the second row is not only
finite, but it vanishes as C → δ → 0. Hence, the singularity is entirely due to the integral in the
first row

∫ C
δ(h)ds′2 min(s,s′ )

s′2 = 2 log(s/δ) + 2s
(

1
s −

1
C

)
= 2 log(s/δ(h)) + 2 +O(s). By match-

ing the singular and O(s0) terms in equation (57), we are lead to log δ(h) = log h + 1. The
next natural question concerns the effects of the singular filling ϑs on the behavior of the total
root density and, in general, of dressed quantities. A similar analysis of the s ∼ 0 behavior can
be performed, showing that the total root density is not only finite, but it also quadratically
vanishes (see next subsection) as s → 0: this is crucial, since it guarantees the root density
ρs(λ) = ρt

sϑs(λ) to remain finite, thus giving finite expectation values of the charges. Using
the identity log δ = log h + 1, one can obtain a finite integral equation for ε̄ and explicitly
take the h → 0 limit. Indeed, by using

∫∞
δ(h)ds′2 min(s,s′)

s′2 = 2 log(s/δ(h)) + 2, we can rewrite
equation (55) as

ε̄s(λ) = ω(λ) +
∫ ∞

δ(h)
ds′

2 min(s, s′)
s

e−s′ε̄s′ (λ) − 1
s′2

. (58)

The integrand is now finite in zero and the limit δ(h) → 0 can be safely taken. As in the quantum
case, this integral equation admits an exact analytical solution which, with the identification
ρ(λ) = 1

2πω(λ) , is equivalent to the result (52) derived as the semiclassical limit of the quantum
filling.

In figure 1 we compare the semiclassical scaling with the quantum result for small values
of h and study the convergence. In the case of the filling fractions, we compare the analytical
solutions while the correspondent root densities are obtained by numerically solving the dress-
ing equations. Overall, we experience that a large number of quantum strings are needed to
reproduce the classical result, especially in the case of the filling function. In contrast, the clas-
sical dressing equations can be efficiently discretized with a far lower number of points (in this
example, excellent convergence is already obtained with ∼20 points). This stresses the need of
solving directly the classical GHD rather than numerically considering the semiclassical limit
of the quantum case.

A non-singular reparameterization—the analysis of the singularities we provided sug-
gests to redefine the total root density and filling by singling out the small s behavior. The
same procedure is also extremely useful for computing quantities appearing in the GHD
equations. Hence, we introduce the following definitions that are also valid for finite inter-
actions κ < 0.

ϑ̄s(λ) ≡ s2ϑs(λ) , ρ̄t
s(λ) ≡ s−2ρt

s(λ). (59)
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Figure 1. We compare the solution of the classical filling and root densities against the
quantum case for finite h. We proceed as follows. Since the bound state production is
diagonal in rapidity space, we fix a certain rapidity and give the value of ρ(λ)|

κ=0+ as
an input, setting it to 0.1 in this figure. Then, the quantum root density is initialized as
ρq(λ)|c=0+ = h−1ρ(λ)|

κ=0+ and filling functions are shown for different values of h.
Panel (a): the non singular part of the classical filling ϑ̄s (59) (solid line) is compared
against the quantum data (h j, h2ϑq; j) (symbols). Panel (b): the classical root density ρs
(solid line) is compared against the quantum data (h j, h−1ρq; j) (symbols, obtained by
numerically solving the quantum and classical dressing equations).

Furthermore, we define the regularized dressing on a test function ts(λ) → tdr
s (λ) as the solution

of the following integral equation

stdr
s (λ) = ts(λ) −

∫ ∞

0
ds′

∫
dλ′s−1ϕss′ (λ− λ′)ϑ̄s′(λ

′)tdr
s′ (λ′). (60)

Notice that the limit lims→0 s−1 ϕss′ (λ) is finite and non-vanishing for any interactions. As
a consequence, if the source term does not have singularities ts(λ) ∼ O(s0) as s → 0, then
tdr
s (λ) is expected to be finite as well, which is easily numerically checked. The definition

equation (60) leads to the following correspondence between the regularized and standard
dressing (47)

τ dr
s (λ) = s2(s−1τs)dr (61)

In particular, this implies ρ̄t
s(λ) = (1/(2π))dr

s (λ), hence ρ̄t
s(λ) remains finite as s → 0, while

ρt
s(λ) quadratically vanishes, as anticipated. Due to the ∼s behavior of the energy and bare

force, (s−1∂λεs)dr and (s−1 fs)dr are finite as well. Hence, the effective velocity and force can
now be conveniently computed in terms of a ratio of non-singular functions.

4. Hydrodynamics and microscopic simulations

One of the major advantages that classical field theories have in contrast to quantum ones is
the possibility of numerically accessing arbitrarily long times, hence we are in the perfect posi-
tion to test our hydrodynamic predictions and quantify the corrections. In particular, classical
simulations can be performed through Monte Carlo methods: the initial field configurations are
randomly sampled from a known probability distribution. Then, the initial conditions are deter-
ministically evolved through the equations of motion and the desired observables are computed.
Finally, the average over the initial conditions is taken. Thermal states within the repulsive
phase are probably the most natural choice for the initial conditions and can be efficiently sim-
ulated by means of metropolis-hasting methods [106–108]. However, as we will discuss in the
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following, other choices of initial GGEs are also plausible and easy to simulate. We perform
the standard microscopic numerical simulations following references [71, 90]. For the inter-
ested reader, a short summary is reported in appendix A. When numerically solving the GHD
equations, it turns out that the root density is not the most convenient variable. Already in the
seminal papers [36, 37] the GHD equations have been rewritten in terms of the filling fraction
where convective form is recovered. Within the attractive phase, the GHD equations in terms
of the filling fraction are

∂tϑ̄s + veff
s ∂xϑ̄s + Feff

s ∂λϑ̄s = 0, (62)

and an analogous expression is reached within the repulsive phase, where of course the string
index is absent. Notice that, importantly, it is convenient to use the rescaled filling fraction
defined in equation (59) to ensure the regularity of the expression for s → 0. Similarly, in the
attractive phase the effective velocity and force are computed using the modified definition of
the dressing introduced in equations (60) and (61). Showing the equivalence between the GHD
equation (62) and the canonical version in terms of the root density requires to manipulate the
integral equations defining the dressing operation. We choose to not report here these lengthy,
but standard calculations: the interested reader can find them in the seminal papers [36, 37] (see
also reference [46] for the presence of forces) and straightforwardly apply them to our classi-
cal case as well. Once the GHD equations are written in the form equation (62), they can be
seen as infinitesimal translations in the (x,λ) plane and solved by the method of characteristics
[46, 109]: we provide a short summary in appendix B. In principle, the GHD equation (62)
can be used to study interaction changes in fully inhomogeneous settings, that are for example
given by trapping potentials. In practice, we experience that the need of discretizing the contin-
uum set of strings of the attractive phase places a major hurdle on the numerical simulations.
For this reason, and since we are mostly interested in observing the bound state production due
to time-dependent interaction changes, we focus here on the homogeneous case. Nevertheless,
a more careful optimization of the GHD code would make the fully inhomogeneous case acces-
sible as well. Notice that, within the homogeneous case, the ∂tκ term appearing in the effective
force can be singled out and absorbed with a change of variables. Therefore, the GHD evolution
can be parameterized in terms of the interaction only. In the following, we use this conven-
tion. The comparison between hydrodynamics and microscopic simulations passes through
the expectation value of observables. As we discussed, in integrable models the expectation
values of conserved quantities are the most easy ones to be accessed, leading to the density of
particles and energy as the natural choices. However, the particle density is trivially conserved
throughout the protocol and is thus not informative at all. On the other hand, the expectation
value of the energy density diverges on classical thermal states: this is due to the well known
ultraviolet catastrophe of black body radiation, which led to the discovery of quantum mechan-
ics. Indeed, at very high momenta one can discard the role of interactions in equation (41)
obtaining ρ(k) ∼ (βε(k))−1 and causing the energy density to diverge

∫
dkε(k)ρ(k) →∞. For

this reason, we focus on the expectation value of the correlated density 〈|φ(x)|4〉, which is finite
and undergoes a non-trivial evolution. In the quantum case, its expectation value can be com-
puted on arbitrary GGEs by means of a generalization of the Hellmann–Feynmann theorem
(see e.g. [62]). From this point onwards, the semiclassical limit is readily taken leading to the
classical expressions. In particular, one has
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〈|φ|4〉 =
∫

dλ
2π

2λϑ(λ) f dr(λ), κ > 0 (63)

〈|φ|4〉 =
∫

dsdλ

{
−ρs(λ)

κ

6
s3 +

2sλ
2π

ϑs(λ) f dr
s (λ)

}
κ < 0. (64)

In the second line we can use the non-singular parameterization we introduced by notic-
ing ϑs(λ) f dr

s (λ) = ϑ̄s(λ)(s−1 fs)dr. The amount of information of the evolving state captured
by the correlated density is of course limited and a better characterization of the state though
further measurement is desirable. Within the repulsive case, close analytical expression for
the exact probability distribution of the density |φ|2 have been recently derived [71]. Conse-
quentially, all the momenta 〈|φ|2n〉 can be computed on arbitrary GGEs (see also references
[110, 111] for the quantum case). Moreover, the root density itself could be determined from
the microscopic simulations thanks to the correspondence (33). However, to the best of our
knowledge, analogous results are not available within the attractive realm, hence we turn our
attention to different observables in the form of two-point correlation functions. Indeed, GHD
allows for an exact computation of two-point correlation functions 〈O(t, x)O(t′, y)〉 on the
Eulerian scale (i.e. leading order in the large space and time separation limit), provided the
expectation value of 〈O〉 on arbitrary GGEs is known. This result has first been obtained for
the time independent and homogeneous GGEs [112] and was tested for the first time on the
classical Sinh Gordon model [70]. Later, expressions for inhomogeneous and time dependent
GGEs became available [113] (see also [38]). For simplicity, here we focus on the two-point
correlation of the density on constant GGEs

t〈O(t, x)O(0, 0)〉c =

∫
ds dλ δ

(
x/t − veff

s (λ)
)
ρs(λ)σs(λ)[VO

s (λ)]2, (65)

where 〈. . .〉c stands for the connected part of the correlator and the integration over the string
variable is obviously omitted in the repulsive case κ > 0. Equation (65) holds for large space-
time separations and after averaging over mesoscopic fluid cells. Notice the scaling form of the
right hand term as a function of the ray ζ ≡ x/t. The function VO carries the information of
the observable of interest and it is defined as ρt

s(λ)VO
s (λ) = δ〈O〉

δϑs(λ) . Notably, in the case where

O is the local density of a conserved charge, the simple result VO
s (λ) = qdr

s (λ) holds true.
Lastly, σs(λ) is a statistical factor determined by the nature of the excitations and it is different
if quantum particles (bosons or fermions) or classical radiation or solitons are considered [112].
In our case, one has

σ(λ) = ϑ(λ) , κ > 0 ; σs(λ) = 1 , κ < 0. (66)

Of course, the Eulerian correlation functions can also be accessed by first writing the quan-
tum expression and then taking the semiclassical limit, consistently obtaining the same result.
We now benchmark our analytical predictions against microscopic simulations. For numerical
reasons clarified later on, rather than starting from a repulsive thermal state and drive the inter-
actions in the attractive phase, we start by engineering suitable GGEs at the non-interacting
point κ = 0 of the form

ρ(λ)|
κ=0+ =

1
w
√
π

e−λ2/w2
. (67)

With this convention, the total density of particles is fixed to unity and the parameter w is
tuned to address different initial states. Notice that the root density is decaying fast for λ→∞:
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Figure 2. We initialize GGEs in the form of equation (67) at the noninteracting point
κ = 0− and drive it into the attractive regime. Top: filling fraction (left) and sρs at
κ = 0− for w = 2.5 in equation (67). For comparison, ρ(λ)|

κ=0+ (black curve) is also
provided. Panel (a): corrections to adiabaticity to g2 = 〈|φ|4〉/(〈|φ|2〉)2 are considered
for w = 2.5 (inset, scaling of the microscopic data to GHD as a function of Tmax). Panel
(b): g2 for different initial states (microscopic simulation with Tmax = 20). In (a) and
(b): solid line: GHD; markers: Monte Carlo. Panel (c): density–density Eulerian corre-
lation functions at the endpoint of the protocol (i.e. κ = −1) for different initial states
(thick curves: GHD; thin curves: Monte Carlo). The correlator is measured at the end of
the interaction ramp (Tmax = 20), by holding constant the interaction for a time t before
measuring. Here, we already attained a good Eulerian scaling by choosing t = 2. See
the main text for further comments, appendices A and B for Monte Carlo and GHD
simulations respectively.

this is not the case for thermal ensembles, which makes the discretization of the GHD equations
more difficult. GGEs in the form equation (67) are easy to be implemented in the microscopic
simulations, see appendix A. In figure 2 we investigate several protocols obtained by gently
driving the system within the attractive phase κ < 0 starting from states (67). We consider lin-
ear ramps of the interactionκ(t) = −t/Tmax and start by investigating the convergence to GHD
as Tmax is increased (figure 2(a)). We focus on the correlated density g2 = 〈|φ|4〉/(〈|φ|2〉)2

and observe a linear convergence in the ramp time 1/Tmax, within the numerical error (see
inset). Corrections to adiabaticity are of different nature: higher derivative terms in the GHD
equation (62) are expected and a second order contribution ∼∂2

t would lead to ∼T−1
max cor-

rections. Besides, finite-time protocols affect the bound state recombination happening at
κ = 0−. Also in this case, one can envisage ∼T−1

max corrections in view of the forthcoming
argument. Following the quantum case discussed in reference [62], immediately after cross-
ing κ = 0−, bound state recombination is allowed as long as the typical size of the bound state
∝ |κ|−1 exceeds the typical correlation length ζcorr. In dimensionless units, this sets a recombi-
nation time tBS ∝ Tmax ζ−1

corr. Physically, only particles that remained close by during this time
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Figure 3. We initialize the system in a non-interacting GGE of the form equation (67)
with w = 2.5 and adiabatically drive it within the repulsive and attractive phase
(Tmax = 20 in microscopic simulations). Panel (a): g2 is measured (solid line: GHD;
markers: Monte Carlo). Panels (b) and (c): Eulerian correlation function in the attractive
and repulsive phase respectively (thick curves: GHD; thin curves: Monte Carlo; holding
time t = 2). See main text for further comments.

window are allowed to bind: let us consider two particles of rapidities λ and λ′: on a timescale
tBS they drift apart by a distance tBS(2λ− 2λ′) (we neglect the interaction on this time scale
and approximate the effective velocity with the bare velocity 2λ). Imposing the drift to be
smaller than the bound state size at tBS, i.e. ζcorr, we obtained a coarse-grained resolution in
rapidity space Δλ ∼ ζ2

corr/Tmax . Thus, the Dirac deltas in rapidity space appearing in the max-
imum entropy ansatz will be broadened on a scale ∼Δλ, inducing overall ∝ T−1

max corrections.
After having studied the approach to adiabaticity, we consider the protocol for different ini-
tial states focusing on g2 (figure 2(b)) and on the density–density correlation function (65)
(figure 2(c)), where we find excellent agreement. As expected, the gas is much more sensi-
tive to attractive rather than repulsive interactions, as depicted in figure 3. There, we initialize
the system at the non-interacting point and alternatively drive it within the attractive or repul-
sive phase. By retaining the same initial state, we explore the effects of the interactions. In
particular, it is worthwhile to contrast the density correlation functions in the attractive phase
with the repulsive phase (figures 3(b) and (c)). By increasing κ to negative values, the parti-
cles feel stronger attraction and convert part of their kinetic energy into interactions. Hence,
a strong signal appears at small rays (i.e. small velocities). On the contrary, repulsive interac-
tions accelerate the particles to larger velocities and reduce the peak of the correlation function.
Finally, we address the original proposed protocol: in figure 4 we initialize the system in
a thermal ensemble within the repulsive phase and adiabatically drive it to attractive inter-
actions. Ideally, thermal states are simply a different initial state which can be captured by
our method, but in practice the discretization of the GHD equations appears more challeng-
ing. The reason is in the shape of ρ(λ)|

κ=0+ , which features polynomially decaying tails
at large rapitidities ∼λ−2, while it is very peaked at small rapitidies. As a consequence, a
very large cutoff in the rapidity space must be used, while in the attractive phase the cutoff
along the s direction greatly depends on λ. These features, in addition to the need of a fine
discretization in rapidity space to correctly capture the integration kernels and the Eulerian
shift of the GHD equation, worsen the convergence. We experienced that a λ-dependent dis-
cretization of the s space improves the convergence of the integral equations, but negatively
affects the interpolation used in solving the GHD equation. Hence, we compromise with an
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Figure 4. We initialize a thermal ensemble in the repulsive phase κ = 1 with inverse
temperature β = 1 and chemical potential μ = −0.1, resulting in a density � 0.40.
The interaction is slowly ramped to κ = −1 on a time Tmax = 40. The phase space
is independently discretized within the λ and s space in an inhomogeneous fash-
ion {s j}Ns

j=1 = S(20( j/Ns)2 + ( j/Ns))/21 with S = 12 and {λ j}Nλ
j=1 = Λ(50( j/Nλ)15 +

( j/Nλ))/51 withΛ = 150. The non-linear discretization is tuned to compromise between
the fat tails in rapidity space (which populates only small values of s) and the peak at
λ = 0 which extends up to large values of s. To further reduce the number of
points, we tossed away those coordinates at which filling is basically zero during the
whole evolution. We consider three sets of data (Nλ, Ns) = {(αi100,αi15}3

i=1 with
α = {1, 6/5, 7/5} and linearly extrapolate in 1/α. Left: Monte Carlo data (markers)
against extrapolated GHD data. Inset: GHD data at fixed interactions as a function of
the extrapolation parameter α. Right: sρs is plotted at κ = 0−, for comparison we show
ρ(λ)|

κ=0+ (black line) and the points used for the best discretization (purple markers).

independent, but inhomogeneous discretization of the λ and the s space: a judicious discretiza-
tion choice is crucial to boost the convergence (see caption of figure 4). Overall, a much denser
discretization in the λ space compared with the string space is needed for correctly describing
the derivatives and integration kernels. In figure 4 we obtained a good agreement by considering
different discretizations and then extrapolating (see caption for more details), while in figures 2
and 3 convergence was obtained without the need of any extrapolation and by employing
a flat discretization in the λ and s space (roughly ∼800 points have been used in the
discretization).

5. Conclusions and discussion

In this work, we constructed the integrable hydrodynamics of the one-dimensional
attractive non linear Schrödinger equation. We then applied these findings to adiabatic inter-
action changes from the repulsive to the attractive phase, observing soliton production and
engineering a strongly excited nonequilibrium phase of matter. The integrability of the NLS
stabilizes the attractive phase out of equilibrium, which would be highly unstable in the pres-
ence of thermalization. We constructed the GHDs of the classical model by considering the
proper semiclassical limit of the quantum Bose gas: the excellent agreement with ab initio
microscopic simulations confirms the correctness of the procedure, but this strategy leaves
open some interesting questions.
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The first one concerns the absence of radiative modes, as one could have naively expected
from the inverse scattering analysis. Let us stress that in statistical ensembles in the thermody-
namic limit the distinction between solitons and radiations is blurred since one can accommo-
date for an arbitrary number (divergent in the thermodynamic limit) of zeroes in the imaginary
plane of the scattering data (30). In this perspective, one could interpret radiation as a conden-
sation of light solitons (small binding energy) on the real axis of the spectral parameter. Within
the (λ, s) phase-space, this means that modes at s → 0 should be macroscopically occupied,
which is not the case within our protocol. In fact, when κ = 0 is crossed over in an adiabatic
manner, solitons of arbitrary size s are created with equal probability and s = 0 does not stand
out as a special point. It is natural to wonder if radiative modes can be excited by different
protocols.

A second question concerns the classical interpretation of the Planck constant h. Indeed, in
contrast with the repulsive phase, we showed that the Planck constant does not completely dis-
appear after having taken the semiclassical limit and plays an important role as a regulator in
the entropy of the soliton gas. Interestingly, the h → 0 limit can be explicitly taken on the TBA
equations obtained after entropy maximization (58), but not for the entropy itself. Indeed, by
replacing the non-singular parameterization (59) in the semiclassical Yang–Yang entropy (51),
at most ∼ log s singularities (and thus are integrable) appear. As a consequence, the ∼ log h
term is not counterbalanced by a divergence in δ(h). Since it does not seem possible to explicitly
remove the Planck constant from the semiclassical Yang–Yang entropy, the same term should
be recovered from a pure classical construction of the thermodynamics. Retrospectively, we
can give a phenomenological interpretation of the Planck constant as a infrared regularization
of the classical theory. Indeed, NLS solitons have a width ∼(s|κ|)−1: when addressing the
thermodynamics of a large, but finite system of length L, large solitons should be removed
from the spectrum giving a cutoff s|κ|� L−1. In our results, this role is taken by the cutoff
δ(h) ∝ h appearing in equation (51). However, notice that the validity of this crude argument
is harmed by the need of taking the non-interacting limit and furthermore it does not explain
the appearance of the ∼ log h in the entropy. A complete understanding of these points passes
through a complete classical analysis of the attractive phase. We leave this interesting ques-
tion open for the future. Lastly, it would be interesting to extend our analysis to the SG model
[27, 114–116]. This relativistic field theory is integrable both at the quantum and classical
level and its spectrum is understood in terms of topological excitations (kinks) and bound
states of them (breathers). The interest is twofold: first, by changing the interaction one
forms or destroys kink’s bound states, in strict analogy with the NLS case. Secondly, the
thermodynamics of the classical SG, which in contrast to the NLS is stable also at equilib-
rium, has been thoroughly addressed in the literature also by means of semiclassical analysis
[95, 99, 117]. On the other hand, the SG model and the NLS are closely connected, since the
second can be obtained as the non-relativistic limit of the first [118–120]. However, to the best
of our knowledge, an analogue ∼ log h regulator does not appear in the SG literature. It would
be interesting to further investigate this point.

Acknowledgments
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Appendix A. The microscopic numerical simulations

The microscopic simulations are performed by discretizing the NLS φ(x) → φ j on N lattice
sites and lattice space a, thus the system’s length is L = aN. The limit of small lattice spacing
is then numerically taken. In this respect, one discretize the NLS Hamiltonian as

H → a
∑

j

{
a−2|φ j+1 − φ j|2 + κ|φ j|4

}
, (A1)

which results in the equation of motion

i∂tφ j = − 1
a2

(φ j+1 + φ j−1 − 2φ j) + 2κ|φ j|2φ j. (A2)

Periodic boundary conditions are assumed. The evolution of the observables of interest is
performed in two steps

(a) We randomly sample the initial conditionφ j(t = 0) from a known probability distribution.
We consider two cases which are sampled in different ways:

1. For initial values κ > 0 we consider thermal initial states of inverse tem-
perature β and chemical potential μ. Therefore, the target probability is

P[{φ j}] ∝ exp
[
−β(H − μa

∑
j|φ j|2)

]
. Boltzmann distributions of this form are effi-

ciently sampled by means of metropolis-hasting algorithms: basically, one builds a
stochastic random walk on the field configuration {φ j} → {φ′

j}, where the proposed
update is accepted or rejected depending on P[{φ′

j}]/P[{φ j}]. This process is ergodic
in the phase space and, after a sufficient number of initial steps, the average over
the probability P can be replaced with an average over the metropolis time. These
techniques are standard and the reader can refer to references [106–108] for further
details.

2. By choosing κ = 0 as the initial point of the time evolution, we can conveniently
initialize the state in arbitrary GGEs. Indeed, non-interacting GGEs are Gaussian
states diagonal in the Fourier space

〈φ̃ j〉 = 0 〈φ̃∗
j φ̃ j′ 〉 =

2π
L
δ j, j′ρ

(
2π
L

jmod(N,−N/2)

)
, (A3)

where φ̃ j is the field in the discrete Fourier space

φ j =
∑

j′
ei2π j j′/Nφ j′ (A4)

and jmod(N,−N/2) is the periodic repetition of j modulus N computed within the interval
[−N/2, N/2]. Above, ρ(k) sets the initial root density in the limit κ → 0+ and can
be set at will.
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(b) Each random initial field configuration φ j(t = 0) is then evolved according to the deter-
ministic equation of motion (A2). In order to achieve stability, we trotterize the evolution
on the time intervalΔt in two steps. In the first step, we diagonally evolve in the real space
according to

φ j(t +Δt/2) = e−iΔtκ(t)|φ j(t)|2φ j(t). (A5)

In the second step, we instead evolve in the Fourier space

φ̃ j(t +Δt) = e−i 2Δt
a2 [1−cos(2π j)]

φ̃ j(t +Δt/2). (A6)

This strategy explicitly enforces the particle number conservation. For a given lat-
tice spacing a, we chose Δt by checking energy conservation of an initial random
configuration in the case of a constant interaction κ. A posteriori, the convergence
of the simulation is checked by considering different discretizations in space and
time.

Appendix B. The numerical solution of the GHD equations

We start with discretizing the rapidity space and in case of attractive interactions the string
space, additionally. We here choose a possibly inhomogeneous, but independent discretiza-
tion in the rapidity and string spaces [{λi}Nλ

i=1, {sα}Ns
α=1] which gives enough flexibility to

compromise between numerical effectiveness and a sufficient resolution (further details on
the concrete discretizaton can be found in the caption of figure 4). We moreover toss away
points of the grid in the (λ, s)-plane where the filling fraction drops to zero. Within the
attractive case, we use the non-singular reparameterization discussed in equation (59) and
below.

Next, several integral equations need to be discretized for which we take the dressing (60)
as an example in order to illustrate our proceedings. We use the grid in order to discretize
equation (60) and get

sαtdr
sα (λi) = tsα (λi) −

Ns∑
β=1

Nλ∑
j=1

Φsα ,sβ (λi,λ j)ϑ̄sβ (λ j)tdr
sβ

(λ j). (B1)

Here,Φsα ,sβ (λi,λ j) is the integration kernel analytically integrated over the domain surrounding
(λ j, sβ)

Φsα ,sβ (λi,λ j) =

1
2 (sβ+sβ+1)∫
1
2 (sβ+sβ−1)

ds′

1
2 (λ j+λ j+1)∫
1
2 (λ j+λ j−1)

dλ′s−1
α ϕsαs′ (λi − λ′). (B2)

The integral above can be analytically performed. Notice that the integrand becomes singu-
lar for small interactions, pointing out the necessity of the discretization equation (B2) when
compared with a more naive midpoint rule. A similar strategy is used in computing the force
term and in the repulsive phase as well.

To start the time evolution determined by the GHD equations, we need to compute the
initial state characterized by a root density. Within the repulsive phase, we initialize the sys-
tem in a thermal state which we obtain upon solving the TBA equation (41) with a fixed
chemical potential μ. Alternatively, we can construct a root density in form of a Gaussian
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(67) at the free point κ = 0+ which comes in handy to control the fat tails in rapidity
space that appear in the thermal state. To enter the attractive phase, we use the root den-
sity at κ = 0+ as an input and maximize the entropy. We found that discretizing the inte-
gral equation (58) and then numerically solving them to yield exactly the input root density
provides better accuracy rather than discretizing the analytical exact solution. The integral
appearing in equation (58) is computed by a similar discretization strategy as the one used
for the κ �= 0 dressing. In view of the constant cutoff in the string space employed in our
discretization, we directly solve (58) by restricting the integral on a interval [0, S] and then
discretize it on a finite grid. This strategy, compared with discretizing directly (52), allows
to obtain an exact particle number conservation also on a finite discretization grid. The GHD
equations are then solved in the filling space with the methods of characteristics. First, one
observes that the GHD equation for the filling fraction (62) can be exactly recast as an implicit
translation

ϑs(t +Δt,λ) = ϑs

(
t,λ−

∫ t+Δt

t
dτFeff

s (λ, τ )

)
, (B3)

where, for simplicity, we consider the homogeneous case. The time integral of the force is
computed with a midpoint rule, obtaining a second order algorithm in the time displacement.
For details see references [46, 109].
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