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Abstract

In this note we apply mathematical results for the volume of certain symmetric spaces to the

problem of counting flux vacua in simple IIB Calabi–Yau compactifications. In particular we obtain

estimates for the number of flux vacua including the geometric factor related to the Calabi-Yau moduli

space, in the large flux limit, for the FHSV model and some closely related models. We see that these

geometric factors give rise to contributions to the counting formula that are typically not of order

one and might potentially affect the counting qualitatively in some cases. We also note, for simple

families of Calabi-Yau moduli spaces, an interesting dependence of the moduli space volumes on the

dimension of the flux space, which in turn is governed by the Betti numbers of the Calabi-Yaus.
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1 Introduction

The purview of this note is to re-count flux vacua in certain simple string compactifications. The string

theory landscape, the huge number of vacua arising from string theory, is among the most influential

and controversial concepts in string theory, or even high-energy physics, in the past decade. The

purported existence of such a landscape suggests the possibility that the fine-tuning of fundamental

constants like the cosmological constant or the Higgs boson mass may be explained not by a physical

mechanism but rather by a statistical argument, which is appropriate under the assumption that

many “universes” are equally consistent from the point of view of the fundamental laws of physics

despite looking nothing like ours.

Given the important consequences, in this note we revisit the counting formula and in particular

we focus on a factor, which we will call the geometric factor, that is often taken to be of order one

in the literature. The main question that motivates this note, and which we answer in specific cases,

is whether the geometric factor really is of order one, or not. The answer will be: “Sometimes yes,

sometimes no.” To be precise, the geometric factor is the expression π−m/2
∫

det(R+ω ·1), in equation

(1.5).

This question is a reasonable one because existing computations of volumes of string theory moduli

spaces with respect to the Zamolodchikov metric have yielded numbers that, depending on the context,
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have been prodigious or miniscule. 1 Of course, the answer depends sensitively on the choice of metric

on the space in question. In particular, since the dimensionality of Calabi-Yau complex structure

moduli spaces can be enormous (see [20] for a particularly striking recent example), obtaining the

correct normalisation of the metric is essential: rescaling the metric by a numerical factor λ will scale

the volume by a factor λdimR(M)/2.

It is very hard to analyze the geometric factor for Calabi-Yau threefolds of generic holonomy.

The global form of the Calabi-Yau moduli spaces is not known in general, and the curvature of the

space, present in the geometric factor, is not uniform over moduli space; for instance, the curvature

is known to diverge (albeit remains integrable!) in the vicinity of the conifold point; see [10, 36–38]

for an exploration of the geometric factor in certain IIB vacua in the vicinity of the conifold point,

as well as in the neighborhoods of other tractable regimes in moduli space. Yet for specific, and

indeed quite special Calabi–Yau manifolds, we are able to compute this factor, essentially given by

the volume of the moduli space, exactly, by applying certain recent mathematical results. For these

examples, we see that the answer to the question can be either yes or no. We report on the effect of

the exact geometric factor for the case of the FHSV Calabi-Yau manifold in Table 1, whereupon the

geometric term contributes a factor of 10−8 (significant but still subleading in the limit of large flux).

On the other hand, one can more properly consider orientifolds of this model. The simplest choice

of orientifold action dramatically reduces the dimension of the moduli space, whereupon its volume

corrects the volume estimate by a paltry 10−2.

In Section 4 we make a curious observation: If we consider certain families of moduli spaces of

increasing dimension then the volume is a steeply decreasing and then increasing function of the

dimension and the minimal value can be extremely small. Moreover, the minimum appears at the

dimensions most relevant for string compactification. (A similar phenomenon occurs with (4, 4) sigma

models [5].) While this might well be an artifact of the examples we have considered it might also be

more general. If so, it could have important consequences for the main claim of [20].

We begin by recalling the flux vacua counting formula [8], which builds on the seminal work of [39].

Our exposition will closely follow that of [12]. Consider a region S in a space with real coordinates

xi, i = 1, . . . ,m, equipped with a Kähler structure. For our application this will be (a region of) the

complex structure moduli space of the F-theory fourfold. Let PIi, I = 1, . . . , b be a set of real vector

fields 2 and let AIJ be given by a non-degenerate, symmetric bilinear form. In F-theory, AIJ = −QIJ ,

where the latter is the intersection product on the integral homology lattice of the fourfold. For a

given Lmax, we would like to count the number of pairs (N, x∗) where

N = (N1, . . . , Nb), N
I ∈ Z satisfying 1

2N
INJAIJ ≤ Lmax =

R2
max

2
(1.1)

1We have in mind the computations in [5], which provided some motivation for the present work. The work of [5], related
to a question posed in [23], used these volumes to estimate the likelihood that certain CFTs have a weakly-curved AdS
gravity duals. Moduli spaces associated with superconformal field theories built from products of Hilbn(K3) and Hilbn(T 4)
were considered and the corresponding Zamolodchikov volumes were found to be extremely small in examples relevant to
string compactification.

2Per [12], the derivation is presented assuming xi, PIi are real, but the argument goes through with minor modifications
when xi, PIi are complex. In the F-theory context, they are to be identified, respectively, with the coordinates on complex
structure moduli space and derivatives of the period vector; see [12] for the precise identifications.
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and x∗ ∈ S such that UN ;i :=
∑
I N

IPIi = 0 for all i. It is easy to see that such a number is given by

Nzeros =
∑
N

∫
S

dmx

(∏
i

δ(UN ;i)

)
|det(∂jUN ;k)|, (1.2)

where the sum is taken over fluxes satisfying (1.1). Assuming that there is no large cancellation and

the absolute value |det(∂jUN ;i)| can be replaced by det(∂jUN ;i), in the limit where the discreteness

of N can be ignored the above quantity is approximated by the index

Izeros =

∫
dbN

∫
S

dmx

(∏
i

δ(UN ;i)

)
det(∂jUN ;k), (1.3)

which, in the present context of flux vacua, can be shown to be the same as

Izeros =
1√

detA
volRmax

(Bb)
∫
S

det(R+ ω · 1)

πm/2
, (1.4)

where R is the Ricci curvature of the holomorphic tangent bundle and ω is the Kähler form of the

Weil-Peterson metric on S, and

volRmax(Bb) =
(2πLmax)b/2

(b/2)!

is the volume of the b-dimensional ball of radius Rmax =
√

2Lmax.

Under the above assumptions, and setting aside the question of Kähler moduli stabilisation (by

assuming that the moduli are stabilised by quantum effects), the number of vacua in type IIB flux

compactification is given by

Ivac = volRmax
(Bb)

∫
S

det(R+ ω · 1)

πm/2
, (1.5)

where we have used the fact that the bilinear form A is given by the intersection form and has

determinant 1. In terms of the F-theory data and in particular the fourfold Y , we have in the above

formula b = dimRH, where H ⊂ H4(Y,R) is space of all G ∈ H4(Y,R) satisfying
∫
Y
G ∧D ∧D′ = 0

for all D,D′ ∈ H1,1(Y,R). It is not hard to see that b, being the dimension of the subspace of H4(Y )

orthogonal to intersections of divisors, is equivalent to the dimension of the subspace of fluxes with

exactly one leg in the elliptic fibre. The maximal number of fluxes is given by the tadpole cancellation

condition 3

1

2
AIJN

INJ +ND3 =
χ(Y )

24
⇒ Lmax =

χ(Y )

24
. (1.6)

The vacua counting formula we will use in this note is obtained from the above by making extra

assumptions, as in [8]. Namely, we consider the number of bulk flux vacua in the weakly coupled

type IIB limit and ignore the D7 degrees of freedom. Let X be the Calabi–Yau threefold in the type

IIB orientifold compactification and n = h−2,1(X) to be the dimension of the subspace of H2,1(X,Z)

3Notice that although AIJ is a form of indefinite signature, the restriction to the set of N that admit a supersymmetric
vacuum is positive definite, and therefore the tadpole constraint does bound the region of allowed fluxes N . Furthermore,
though one can reduce the upper bound on flux slightly by adding anti-D3 branes, one cannot add an arbitrary number of
these: a sufficient number of anti-D3 branes in a flux background will decay to a configuration that contains only flux and
D3-branes [24].
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that is anti-invariant under the orientifold action. In this limit the four-fold can be taken to be

Y = (T 2 × X)/Z2 and we have b/2 = 2n + 2, corresponding to the (n + 1) Ramond–Ramond and

(n+ 1) NS–NS fluxes one can turn on. Using this we obtain [10]4

Ivac = volRmax
(B4n+4)

∫
S

det(R+ ω · 1)

π1+n
, (1.7)

where S is now taken to be a region in M = Max−dil ×Mcpx(X), the product of the axion-dilaton

moduli space and the complex structure moduli space of the three-fold X. Again, ω is the Kähler

form on M, in terms of which the volume form on M is given by ωn+1/(n + 1)! and R is the Ricci

curvature.

When the Ricci curvature is ignored, the geometric factor is the moduli space volume up to an

overall multiplicative factor of (n+ 1)!/πn+1:∫
S

det(ω · 1)

πn+1
=

(n+ 1)!

πn+1
vol(S). (1.8)

We briefly review the derivation of the index density, emphasizing the appearance of the Weil-Petersson

metric in its canonical normalisation, following [12], in Appendix A.

In this note, we will take the region S to be the entire (orientifold) moduli space. As quantified in

[10], using results from [25], for any region S in moduli space there will be corrections to the continuum-

flux approximation. If Lmax is large enough, then the number of lattice points in a corresponding

region in flux space which contains vacua that satisfy equation 1.6 will be well-approximated by the

volume of that region; the leading corrections depend on the surface area of the region. When one

takes S to be the entire moduli space, the validity of the continuum approximation used in this note

translates to the requirement that Lmax > c · b for some order one constant c. We refer to [10,12] for

a more thorough discussion.

Without further input on the corresponding four-fold Euler characteristic, the maximal flux Lmax

is usually chosen by hand to be of order 101∼3. See [14, 19] for a list of Calabi–Yau four-folds that

can be realised as hypersurfaces in toric varieties and their Euler characteristics.

The estimate for the number of flux vacua led to some effort and progress in understanding

the moduli space volume in the Weil–Petersson metric. In particular in [21] it was shown that the

moduli space volume is finite. 5 However, to the best of our knowledge no moduli space volumes of

Calabi–Yau three-folds leading to N = 2, d = 4 compactifications have been computed so far. As a

result, the geometric factor in the counting formula (1.7) is usually taken to be of order one in the

estimates. In particular, the problem is often simplified to that of counting lattice points in a region

in a sphere of radius
√

2Lmax, whose volume accounts for the factor that should be multiplied by

the ‘geometric’ factor coming from the Calabi–Yau moduli space. See for instance [20] where this

simplified estimate (i.e. neglecting the geometric factor) leads to the interesting conclusion that a

4In general, the integral is given by
∫
S
e(∇), the integral of the Euler density derived from the covariant derivative ∇ [12].

5It had previously been conjectured to be finite in [40], based on a number of examples where it could be shown to be
finite. The reason the finiteness of the volume was important to [40] was that a finite volume of moduli space would then
lead to a well-defined probability distribution on moduli spaces of vacua. In particular, potential energy functions generated
by nonperturbative string effects would lead to basins of attraction in moduli space. Then, it was proposed, vacua should
be selected on a statistical basis.
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single fourfold dominates the whole F-theory landscape. The contributions from other F-theory flux

vacua, according to [20], are relatively suppressed by several orders of magnitude.

The geometric factor accounts for the difference between counting fluxes that satisfy the tadpole

constraint and counting (with signs) the actual supersymmetric vacua. If the geometric factor turns

out to be prodigious then we can conclude that at least some fluxes N lead to superpotentials WN

admitting many vacua. (One would expect that the generic flux N would lead to many vacua.) If the

geometric factor turns out to be miniscule then we would be tempted to conclude that for most flux

vacua N , the superpotential WN in fact does not have a supersymmetric vacuum. One cannot arrive

at this conclusion in strict logic because we are computing an index: A miniscule geometric factor

might just indicate that many vacua have cancelling contributions. Indeed, we will see an example

below where the geometric factor is negative.

In this note we compute exactly the volume of the vector multiplet moduli of type IIB compact-

ifications on certain Calabi–Yau threefolds which lead to N = 2, d = 4 theories before turning on

the fluxes. We see that, at least in this specific family of threefolds, it is possible that including the

volume factor can lead to non-negligible effects in the counting of flux vacua. Moreover, at least for

some special threefolds with non-generic holonomy (of the form SU(2) × G ⊂ SU(3) for some finite

group G), we find circumstantial evidence that the volume factor decreases with increasing b3, at least

up to a certain critical value of b3. Note that naively (1.7) suggests that Ivac increases with b when

the geometric factor is ignored 6. Our result hence suggests that further study is needed to arrive at

this conclusion, due to the effect of the geometric factor.

The geometric factor, of course, is not just the volume. For the special Calabi-Yaus we study, we

are able to account for the Ricci curvature explicitly using the simple form of the resulting moduli

spaces (Hermitian symmetric spaces). It would be nice to be able to prove something like boundedness

properties of R+ ω on more general moduli spaces.

We also note in passing that a second application of the Calabi-Yau moduli space volumes relates

to counting attractor black holes in certain string compactifications. For the counting of attractor

points in type IIB compactifications, the asymptotic density of attractor points with large |Z| ≤ Zmax

(corresponding to a bound on the BH entropy) in a region S of the complex structure moduli space

is given by [10]

N (R, |Z| ≤ Zmax) ∼ 2n+1

(n+ 1)πn
Zn+1

max vol(S) (1.9)

where vol(R) is the Weil–Petersson metric of the region R and n is the complex dimension of complex

structure moduli space, and n = h2,1 for a Calabi–Yau threefold.

2 Simple volume formulas

We now turn to the description of the volume formula for certain special Calabi-Yau moduli spaces.

Often in string theory we encounter moduli spaces of string vacua that are certain double coset spaces

6The increase of Ivac with b only persists until b/2 = 2πLmax (recall b/2 := 2n + 2), after which point it decreases
precipitously, as expected for the volume of a sphere of large dimension. However, as explained above, we will focus on the
regime where Lmax & b.
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(or products thereof) of the form

Γ\G/K (2.1)

for some group G, (maximal) compact subgroup K and discrete subgroup Γ. For example, these

are familiar from the Narain moduli spaces of string compactifications on a torus T k, where G =

O(k, k),K = O(k) × O(k) and Γ = O(k, k;Z) is the group of T-dualities. More precisely, for L

the underlying lattice, the group Γ is (a subgroup of) the group of automorphisms of the lattice,

which we will often denote by OZ(L) (or, by slight abuse of notation for brevity O(L)). In this note,

G = OR(Γ) (and K the maximal compact of the latter). The relatively ‘tame’ nature of these spaces

is a consequence of some special properties of the underlying geometry, such as the preservation of

extended supersymmetry; moduli spaces of K3 sigma models and symmetric products thereof, which

possess N = 4 supersymmetry, furnish other famous examples of double coset spaces that find a

natural home in string theory. In this note we aim to understand the volumes of moduli spaces

associated to Calabi-Yau manifolds that preserve only N = 2 supersymmetry but nonetheless enjoy a

moduli space of double coset type.

The moduli spaces we will be interested in are special cases of what are called Shimura varieties.

We will not need the general definition of such spaces here [29, 30] (see [28] for an introduction), but

we note that in the special case that G is of orthogonal type and signature (2, n) the variety is a

(quotient of a) Hermitian symmetric space and may therefore be endowed with a natural complex

structure. One can go further and develop the theory of automorphic forms on such spaces, and much

more. Our primary interest will be in the volume of such spaces, for which explicit formulas have

happily been developed (c.f. Equation (4.1)); see [4,15] for further mathematical applications of these

volumes, such as their appearance in (the leading term of) the growth of the dimension of spaces of

cusp forms.

Here we present and explain some aspects of the formula for volumes of orthogonal Shimura

varieties, following [4,15] (to which we refer the reader for further details), which build off the seminal

work of Siegel [31]. Since several volumes appear in this note, we begin this section with a short

account of the volumes and the various relationships among them. Our primary interest is in the

Weil-Petersson volume volWP and we will determine the appropriate multiplicative factors to convert

to volWP from the other volumes that appear in this note. The definition of the Weil-Petersson

volume, and its appearance in the study of counting flux vacua, is reviewed in Appendix A.

We first introduce the volumes computed by Siegel who computed volumes of quotients of sym-

metric spaces by arithmetic subgroups, volS(Γ\Drs) (see Equation 2.6). Next, we relate the Siegel

volumes to the Hirzebruch-Mumford volume (Equation 2.10) employed by [4], which is given by a

ratio of Siegel volumes: volHM (Γ\Drs) := volS(Γ\Drs)

volS(D(c)
rs )

, where D(c)
rs is the compact dual of Drs, given

below. This is a natural volume from a mathematical perspective and, since we closely follow the

presentation of [4], we take time to introduce it. We also use several computations of volHM in [4] for

interesting classes of spaces, and convert them to computations of volWP , in Section 4.

The Hirzebruch-Mumford volume may be immediately compared to both the canonically nor-

malised Zamoldchikov volume, familiar to physicists, and computed for several interesting classes of

spaces in [5], as well as to the canonically normalised Weil-Petersson volume. The conversion factor

between the Weil-Petersson and Hirzebruch-Mumford volumes appears in Equation 4.2. We also fix
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the relative normalisations between the Weil-Petersson and Zamoldchikov volumes in Appendix C

using standard string theoretic manipulations.

We begin with the Siegel volumes. Siegel began his study with the homogeneous symmetric domain

Drs = O(r, s)/O(r)×O(s) (2.2)

using its realization as a bounded domain:

Drs =
{
X ∈ Mat r×s(R)|Ir −XXt > 0

}
. (2.3)

This proceeds by making use of the natural O(r, s)-invariant metric

ds2 = Tr
(
(Ir −XXt)−1dX(Is −XtX)−1dXt

)
(2.4)

which induces the following volume form on Drs:

dV =
(
det(Ir −XXt)−1

) r+s
2
∏
i,j

dxij . (2.5)

With respect to this volume form, Siegel then computes, for any lattice of signature (r, s):

volS(O(L)\Drs) = 2α∞(L)|detL|(r+s+1)/2γ−1
r γ−1

s (2.6)

where γm :=
∏m
k=1 π

k/2Γ(k/2)−1, α∞(L) is the real Haar measure of L, also known as the Tamagawa

measure, and detL is simply the determinant of the matrix whose (ij)th entry is the inner product of

the ith and jth basis vector with respect to a chosen basis7. We will refer to the above volume as the

Siegel volume.

Next, we decompose the Lie algebra g of O(r, s) as g = k ⊕ p, where k is the Lie algebra of

O(r)×O(s) and p is the orthogonal complement with respect to the Killing form and may be written

as

p =


 0 U

tU 0

 , U ∈ Matr×s(R)

 . (2.7)

This parabolic subspace is isomorphic to the tangent space of Drs at the origin. Indeed, starting from

the Killing form tr(U t1U2) one may produce the O(r, s)-invariant metric by studying the tangent space

at the origin. We also introduce the compact dual of our symmetric space: D(c)
rs = SO(r+s)/SO(r)×

SO(s).8 The tangent space of D(c)
rs at the identity Ir+s is given by

p′ =


 0 U

−tU 0

 , U ∈ Matr×s(R)

 , (2.8)

and the Killing form of SO(r + s) induces the form 2Tr(U t1U2) on p′ [32]. To properly compare

the volumes of Γ\Drs and D(c)
rs , as required to produce the Hirzebruch-Mumford volume, one has to

7This matrix is often called the Gram matrix.
8Note that O(r, s)/O(r)×O(s) = SO(r, s)0/SO(r)×SO(s), where SO(r, s)0 is the component connected to the identity.
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normalise the metrics on Drs and D(c)
rs so that they coincide with the Siegel metric at their common

base point. For instance, when computing the volume of SO(r + s) using the metric induced from

the Killing form one must multiply by an additional factor of 2−(r+s)(r+s−1)/4, using the fact that the

dimension of SO(n) is n(n− 1)/2 [4]. In total, the Siegel volume of the compact dual is volS(D(c)
rs ) =

2γr+sγ
−1
r γ−1

s .

To finish the computation of the volume, we still need to determine the Tamagawa measure α∞(L).

It turns out [4,15] that the Tamagawa measure may be computed in terms of local densities of lattices

L⊗ Zp over the p-adic integers:

α∞(L) =
2

g+
sp(L)

∏
p

αp(L)−1, (2.9)

where g+
sp(L) is the number of proper spinor genera in the genus of L. Importantly for us, the right

hand side is computable for a given lattice L. We record the definitions of the proper spinor genera,

and local factors αp(L), in Appendix B, and refer to [15] for the algorithm with which one may

compute them.

At last, the Hirzebruch-Mumford volume as determined by [4,15] in the notation of [4] is given by

volHM(O(L)\Drs) =
2

g+
sp(L)

|detL|(r+s+1)/2
r+s∏
k=1

π−k/2Γ(k/2)
∏
p

αp(L)−1. (2.10)

When L is a lattice of signature (2, n), n ≥ 1 and contains at least one hyperbolic plane (the primary

case of interest for us), then the formula specializes to [4]

volHM(O(L)\Drs) = 2|detL|(n+3)/2
n+2∏
k=1

π−k/2Γ(k/2)
∏
p

αp(L)−1. (2.11)

This specialization uses the facts that a.) the spinor genus of an indefinite lattice of rank ≥ 3 coincides

with its class and b.) the genus of any indefinite lattice containing a hyperbolic plane contains only

one class [34]. If one wishes to study the volume with respect to a choice of finite index arithmetic

subgroup of O(L), which we denote by Γ, and if we still focus on L of signature (2, n) and containing

a hyperbolic plane, the Hirzebruch-Mumford volume is given by

volHM(Γ\Drs) = 2 [PO(L) : PΓ] |detL|(n+3)/2
n+2∏
k=1

π−k/2Γ(k/2)
∏
p

αp(L)−1, (2.12)

where the notation PG refers to the image of the group in Aut(Drs) (which is isomorphic to the group

modulo its center).

In what follows, we will sometimes denote volumes vol(Γ\Drs) by simply vol(Γ) or vol(O(Γ)), with

the understanding that we are always computing volumes of double coset spaces.

Next, we will determine the factor that converts the Hirzebruch-Mumford volume to the (canoni-

cally normalised) Weil-Petersson metric for our physical applications. To do this, we will first compare

the Hirzebruch-Mumford volume to the Zamolodchikov volume studied in [5] as an intermediate step.

In Appendix C, we will compute the conversion factor between the Zamolodchikov and Weil-Petersson
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metrics. Combining these contributions, we will presently obtain

volWP(Γ) = CWPvolHM(Γ) (2.13)

where

CWP =

(
1√
2

)2n
σ(2 + n)

σ(2)σ(n)
(2.14)

with σ(D) ≡ 2(D+1)/2
∏D−1
j=1

(
(2π)

j+1
2

Γ( j+1
2 )

)
.

We first recapitulate the Zamolodchikov volumes computed in [5]. Consider first the double coset

Na+8b,a = OZ(Qa,b)\OR(Qa,b)/(O(a+ 8b)×O(a)) (2.15)

where Qa,b denotes the quadratic form of the even, unimodular lattices of signature (a + 8b, a). Its

volume, induced from the natural left-right invariant metric on the Lie algebra, is given by

voltr(Na+8b,a) =
σ(2a+ 8b)

σ(a)σ(a+ 8b)
2(d− 1)!

ζ(d)

(2π)d

d−1∏
j=1

|B2j |
4j

, (2.16)

with σ(D) defined as above, and the Zamolodchikov metric is

volZ(Na+8b,a) =

(
1√
2π

)a(a+8b)

voltr(Na+8b,a). (2.17)

If we specialize this result to even, unimodular lattices of signature (2, 2 + 8b), we can compute the

Zamolodchikov/HM conversion directly to be

volZ(N2+8b,2) =

(
1√
2π

)2(2+8b)
σ(4 + 8b)

σ(2)σ(2 + 8b)
volHM (N2+8b,2). (2.18)

More generally, it is derived in [5] that ds2
Z = 1

2π2 ds
2,tr. Notice that for a lattice of signature

(2, n), σ(2+n)
σ(2)σ(n) = 2n γ2+n

γ2γn
, so that, up to the factors of π, the conversion is essentially reinstating the

volume of the compact dual that is divided out in the definition of volHM
9.

Finally, we derive in Appendix C that ds2
WP = π2ds2

Z , which leads to the relation 2.13.

3 Compactification on the Enriques Calabi-Yau

The FHSV model [7] is a particularly simple example of a compactification down to four dimensions

that preserves N = 2 spacetime supersymmetry. First, let us briefly recall its basic properties. Our

presentation will largely follow [3,7]. The FHSV model is obtained via string theory compactification

on the so-called Enriques Calabi-Yau manifold, which is a quotient of K3 × T 2 by a fixed-point-free

involution. More specifically, one considers a free Enriques involution on the K3 factor but allows

the involution on the T 2 to have fixed points. Consequently, the theory possesses N = 2 spacetime

supersymmetry but in some aspects enjoys similar physics to the underlying N = 4 theory. One

9To account for the various factors of 2 that arise in the conversion see the discussion above and [4] and [5]

9



avatar of this is that the Enriques Calabi-Yau manifold has SU(2)×Z2 holonomy, rather than SU(3)

holonomy. In particular, the involution just acts as −1 on the torus coordinate z3, and as −1 on the

holomorphic (2, 0)-form Ω on the K3, giving a natural invariant (3, 0)-form Ω ∧ dz3. The resulting

Enriques surface has nonvanishing Hodge number h(1,1) = 10 and the full Enriques Calabi-Yau has

h(1,1)(X3) = 11. One can also compute that the manifold has h(2,1)(X3) = 11, and is self-mirror up

to a global Z2 discrete torsion. The latter implies that instanton corrections vanish in this model,

meaning the classical moduli spaces, described below, are in fact locally exact.

The complex structure moduli space of the Enrique Calabi-Yau (which in IIB compactification is

part of the vector multiplet moduli space) takes the form

(SL(2,Z)\SL(2,R)/SO(2))×
(
O(Γ2,10)\O(2, 10)/(O(2)×O(10))

)
. (3.1)

The first factor arises from the complex modulus of a complex torus and the second factor from an

Enriques surface. In the second factor, we have

Γ2,10 := Γ1,1 ⊕ Γ1,1(2)⊕ E8(−2). (3.2)

Notice that the perturbative in α′ correction to the prepotential (of order α′3) vanishes for this

Calabi-Yau because the term is proportional to its Euler characteristic, χ = 2(h1,1 − h2,1) = 2(11 −
11) = 0 [11]. In addition, the first, genus zero, non-perturbative corrections to the prepotential vanish

as well.

3.1 Moduli space volume

We will now compute the volumes of the full complex structure moduli space and the orientifold

moduli space. We can directly compute the volume by starting with Equation 2.10, computing the

local densities and other lattice-dependent contributions, and converting it to the Weil-Petersson

normalisation using Equation 2.13.

Our FHSV lattice Γ2,10 is very close to the unimodular lattice 2Γ1,1⊕E8(−1) and we will show that

its volume differs from its unimodular counterpart by an overall factor 2079/2 ∼ 103, by recomputing

the appropriate local densities and determinant factor. First, we get a contribution of (210)13/2 from

the factor |detΓ2,10|(r+s+1)/2. Additionally, relative to the unimodular case, the rescaling of the

constituent sublattices will change the contribution coming from the local factor α2(Γ2,10)−1, but

none of the other factors.

To compute local densities one should know the Jordan decomposition of the lattice Γ2,10 over

Zp, the p-adic integers; see Appendix B for the definition of the Jordan decomposition and several

examples. We can express a so-called pr-modular lattice L as the appropriate rescaling of a unimodular

lattice N , N(pr), and we will be interested in the decomposition of a general lattice L into pj-modular

lattices Lj of ranks nj which are pj-rescalings of unimodular lattices Nj . In equations, L =
⊕

j∈Z Lj

where Lj := Nj(p
j). With this notation, the local density of interest is given by (see [4] for the most

general definition of these quantities, and for notation; below we already make several simplifications

for our lattice of interest)

α2(L) = 2n−1+wP2(L)E2(L) (3.3)

10



with

w =
∑
j

jnj

nj + 1

2
+
∑
k>j

nk


P2(L) =

∏
j

P2

(
rank(Nj)

2

)
with P2(n) =

n∏
i=1

(1− 2−2i)

E2(L) =
∏

j,Lj 6=0

2

1 + 2−rank(Nj)/2
.

(3.4)

The Jordan decomposition for our lattice over p 6= 2 is given by Γ2,10 ⊗ Zp = 6Γ1,1, so the local

densities for p 6= 2 coincide for those of the unimodular lattice of signature (2, 10) and are given

in [4]. The decomposition for Γ2,10 over Z2, on the other hand, is given by 5Γ1,1(2) ⊕ Γ1,1, which

is the sum of five 21-modular lattices and one unimodular lattice. The corresponding local density

is the only thing we need to compute, and plugging everything in to the previous definitions we

find w = 55, α2(Γ2,10) = 98563190995235635200, and therefore an overall discrepancy, including the

determinant factor, of 2079
2 from the unimodular lattice of the same signature.

If we plug in (a = 2, b = 1) to (2.16) and multiply by our compensatory factor we get

voltrvec1(Γ2,10) =
π10

320820302880000

2079

2
∼ 3× 10−7. (3.5)

The subscript indicates that this is the volume of one factor of the full vector multiplet moduli space.

Next, we need the volume for the first factor of the vector multiplet moduli space (3.1), which

is the familiar modular fundamental domain of the upper half-plane. The volume computed in the

standard Poincaré metric (writing τ = x+ iy) is well-known to be∫
F

dx dy

y2
=
π

3
. (3.6)

Applying our previous formulas, the volume of the fundamental domain with respect to the Weil-

Petersson metric is given by 1
2voltr(F) = 1

2
π
6 :∫
F

dx dy

4y2
=

π

12
. (3.7)

Note that, as a consistency check, our normalisation gives the same volume of the fundamental domain

as that computed in [8].

Putting together the Weil-Petersson-normalised volumes for both factors, we obtain

volWP(Mcpx) =

((
1√
2

)2
π

6
×
(

1√
2

)20

voltrvec1(2, 1)

)

=
π11

3792438558720000
∼ 7.7× 10−11.

(3.8)

Notice that the axio-dilaton moduli space computed with respect to this metric contributes an

additional factor volWP(Max−dil) = π/12 as well (cf. (3.5)):
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volWP(Mr ×Maxio−dil) = volWP(Mcpx)× volWP(Max−dil) =
π12

45509262704640000
∼ 2.0× 10−11.

(3.9)

3.2 Orientifold counting

The orientifold procedure projects out some complex structure moduli, thereby reducing the dimen-

sionality of the complex structure moduli space. Consequently, the volume taken over the whole

moduli space may not be a good approximation to the volume of the remaining moduli space that the

fluxes are allowed to occupy after orientifolding. Indeed, in our particular example, we will presently

see that this is the case.

We will use the orientifold action studied in [11]. We emphasize here that we are making a

particular, tractable choice of orientifold action; other choices of orientifold action may preserve more

complex structure moduli and potentially result in surviving moduli spaces that are symmetric spaces

for O(2, n), n < 10. The involution of [11], as characterized by its action on cohomology, is chosen

to act as an overall minus sign on the E8 lattice factor while leaving the Γ1,1 factor coming from the

parent K3 surface invariant, hence acting by an overall minus sign on the Enriques surface’s top form.

It also acts by a minus sign on the coordinate of the T 2/Z2 factor. This action restricts the complex

structure moduli space to a certain sublocus that has, happily, already been explored in the context

of studying simplifications of the topological string on the Enriques Calabi-Yau [1, 2]. Blowing down

the 8 specified cycles results in the reduced moduli spaceMr of the following local form (suppressing

the axio-dilaton factor, which is untouched by the orientifold)

SL(2,R)

SO(2)
×
(
SL(2,R)

SO(2)

)2

. (3.10)

The first factor, which descends from the torus, is quotiented by the discrete group SL(2,Z) as usual,

while the second factor is quotiented by the discrete group Γ(2) × Γ(2), which is deduced in [2]

by a subtle analysis. This form of the moduli space follows from noticing (as verified by detailed

computations in [2]) that the reduced moduli space has an algebraic realization as a product of Γ(2)-

symmetric elliptic curves:

x2
1 = x4

2 + x4
3 + z−1/4x1x2x3. (3.11)

The volume of the orientifold moduli space, being merely a product of several quotients of the

upper half-plane, is obtained easily. As described earlier, the two factors in (3.10) on the right have a

discrete symmetry group Γ(2), a congruence subgroup of SL(2,Z) of index 6. Therefore, the volume

of the orientifold complex structure moduli space is

volWP(Mr) =
π

12
×
(π

2

)2

(3.12)

which, including another π
12 from the axio-dilaton, gives volWP(Mr ×Maxio−dil) = π4

576 ∼ 0.2: an

order 1 volume after all! Recall also that although the volume is of order 1, the index density is the

Weil-Petersson volume multiplied by a (n− + 1)!/(π)n−+1 factor, and the latter brings the order of
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magnitudes down slightly, as we will now compute.

With the moduli space volumes in hand, we can now ask about their (rough) quantitative impact

on the statistical formulas reviewed in Section 1, subject to the assumptions described therein. The

maximum number of flux quanta allowed by tadpole cancellation is determined by the Euler charac-

teristic of the Calabi-Yau fourfold X4 coming from the F-theory lift (divided by 24). For instance, in

the weakly coupled limit and given an orientifold action like that in [11] we can glean some information

about χ(X4) in terms of the Hodge numbers of the threefold X3 [12, 14]:

χ(X4) = 48 + 6(h(1,1)(X4) + h(3,1)(X4)− h(2,1)(X4))

h(1,1)(X4) = h
(1,1)
+ (X3) + 1

h(2,1)(X4) = h
(1,1)
− (X3)

h(3,1)(X4) = h
(2,1)
− (X3) + 1 + h(2,0)(S)

(3.13)

where the ± subscripts denote the eigenvalues under the orientifold action, and S denotes the surface

in X3 wrapped by D7 branes. Unfortunately, computing its contribution in the perturbative IIB

picture is quite subtle [13] and often yields the lion’s share contribution to χ(X4).

For instance, using the orientifold action chosen in [11] we immediately see that

h
(1,1)
− (X3) = 8, h

(1,1)
+ (X3) = 3, h

(2,1)
+ (X3) = 8, h

(2,1)
− = 3

which gives us the lower bound χ(X4) ≥ 48 + 6(4 + 4− 8) = 48 and hence Lmax = χ(X4)
24 > 2. Again,

since h(2,0)(S) is normally the dominant contribution to χ(X4), we expect this to be a weak lower

bound. Furthermore, the continuous approximation formulas of [8] is strictly speaking not valid when

Lmax is of order one. With these points in mind, we will remain somewhat agnostic about the correct

value of Lmax
10 and test several values, Lmax ∼ 101, 102, 103, representative of contributions from

‘typical’ fourfolds11. For convenience, we reproduce the formula of [8]

Ivac(R,L ≤ Lmax) ∼ (2π)2n−+2

(2n− + 2)!
L2n−+2

max

∫
M

det(R+ ω · 1)

πn−+1
, (3.14)

In our example n := h(2,1)(X3) = 11, we have n− = h
(2,1)
− (X3) = 3, where the subscript again denotes

the anti-invariant part under the orientifold involution. The estimates for the number of flux vacua

at various Lmax, assuming the volume factor is order 1, as well as accounting for the contribution

of volWP(M)cpx using (3.8) are recorded in Table 1. Of course, since the formula is asymptotic we

should take the result obtained by applying (3.14) with a grain of salt when it is of order one.

Accounting for the orientifold action, we also re-compute the quantities of Table 1 using the

volumes of the orientifold sublocus and replacing n → n−; see Table 2. We stress again that there

may be other choices of orientifold action such that n− ∼ n, in which case the estimates of Table 1

would be more indicative of the volume factor corrections.

10A reasonable approximation to Lmax in this model, without constructing an explicit F-theory lift, may be to take the
fourfold to be K3×K3, which gives Lmax = 24; we thank Thomas Grimm for this suggestion.

11It might be interesting to consult the lists of Hodge numbers of Calabi-Yau fourfolds represented as hypersurfaces in
toric varieties. See for example [14,19].
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Lmax volRmax(B4n+4) Ivac,vol

101 1016 108

102 1034 1026

103 1052 1044

Table 1: Estimates of the number of flux vacua in the FHSV model. Here volRmax(B4n+4) denotes the esti-
mate from the (4h2,1 + 4) = 48-ball volume factor, assuming the moduli space volume contribution is of order
1, which has been the strategy employed in the literature so far. Ivac,vol includes the geometric contribution
(12)!volWP(Mcpx)volWP(Max−dil)

π12 .

Lmax volRmax(B4n−+4) Ivac,orient

101 1010 108

102 1018 1016

103 1026 1024

Table 2: Estimates of the number of flux vacua in the FHSV model with a specific choice of orientifold action.
Here volRmax(B4n−+4) denotes the estimate from the (4h−2,1 + 4) = 16-ball volume factor, assuming the moduli

space volume contribution is of order 1. Ivac,orient includes the geometric contribution (4)!volWP(Mr)volWP(Max−dil)
π4 .

Note that the relatively small effect of the geometric contribution can be traced to the fact that n− = 3 in this
case, in contrast to n = 11 before the orientifold.

3.3 The effect of the curvature

We now reinstate the Ricci curvature into the geometric factor in the counting formula (1.7), so that

we are computing the integral of an Euler density of a connection on TS⊗L (see Appendix A for the

derivation), rather than the volume form. Slightly more explicitly, we have

1

πn+1
det(R+ ω · 1) =

1

πn+1
det

(
Rlij̄kdz

i ∧ dzj̄ + δlk
i

2
gij̄dz

i ∧ dzj̄
)

(3.15)

where the curvature two-form is expressed as a Hermitian (n + 1) × (n + 1) matrix and is given in

terms of the Hermitian metric gij̄ as Rl
ij̄k

= −iglm̄Rij̄km̄.

The computation in the index density is particularly simple in the case of the FHSV orientifold.

The curvature matrix decomposes into three 1 × 1 matrices which we denote by R0,1,2 and each of

the three upper half plane enjoys the relation Ra = −2ωa. Explicitly, we have:

det(R+ ω · 1)

π3
=

1

π3
det


R1 +

∑3
i=1 ωi 0 0

0 R2 +
∑3
i=1 ωi 0

0 0 R3 +
∑3
i=1 ωi



=
1

π3
det


−ω1 + ω2 + ω3 0 0

0 ω1 − ω2 + ω3 0

0 0 ω1 + ω2 − ω3


=
−2

π3
(ω1 ∧ ω2 ∧ ω3)

(3.16)

and so the curvature contribution has modified the answer by −2.

More generally, if (X, g) is an Hermitian symmetric space of real dimension d = 2n then, giving
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X a natural complex structure from a choice of positive roots, and letting R denote the curvature

2-form of the holomorphic tangent space and ω the Kähler form, we claim that

det(R+ ω) = (1− 2

d− 1
)ωn (3.17)

To prove this note that

Rµνλρ = κ(gµλgνρ − gµρgνλ) (3.18)

with κ = 2
d−1 . 12 We can choose local coordinates so that the metric is

ds2 = gµνdx
µ ⊗ dxν =

n∑
i=1

λi((du
i)2 + (dvi)2) (3.19)

with complex coordinates

zj = uj + ivj

z̄j = uj − ivj
(3.20)

In these coordinates the curvature 2-form is an outer product of two vectors:

Rij = − iκ

2
dziλjdz̄

j̄ . (3.21)

We now use the identity

det(xδij + viwj) = xn + xn−1

(∑
i

viwi

)
(3.22)

which holds over an arbitrary commutative ring.

The generalization to a product of symmetric spaces is straightforward. Now Rij is a block diagonal

matrix. Consider for instance a produce of two symmetric spaces. Letting κ1, κ2 be the constants for

the two factors, with Kähler forms ω1, ω2, and so forth, we have

det(R+ ω) =
[
(ω1 + ω2)n1 − κ1(ω1 + ω2)n1−1ω1

]
·
[
(ω1 + ω2)n2 − κ2(ω1 + ω2)n2−1ω2

]
= ωn−2

[
ω2 − κ1ω

2
1 − κ2ω

2
2 − (κ1 + κ2 − κ1κ2)ω1ω2

] (3.23)

where ω = ω1 + ω2. We conclude that for products of homogeneous spaces, the inclusion of the two

form R in the geometric factor does not produce a significant difference from the volume.

4 Estimation of other models

In this section, we conduct a similar analysis on related models, and discuss possible lessons one can

learn for a more general class of string compactifications.

12To check the normalisation we compute the Ricci tensor and refer to Proposition 3.6, ch. VIII of [32].
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4.1 Generalities in signature (2, n)

Roughly speaking, lattices of signature (2, n) comprise a family of examples with computable moduli

space volumes that moreover are relevant in string compactifications. We reproduce for convenience

the general formula for the Hirzebruch-Mumford volume for a lattice of signature of (2, n), i.e. the

volume of the double coset moduli space O(L)\O(2, n)/O(2)×O(n) [4, 15]:

volHM(O(L)) =
2

g+
sp
|detL|(n+2+1)/2

n+2∏
k=1

π−k/2Γ(k/2)
∏
p

αp(L)−1 (4.1)

where g+
sp is the number of proper spinor genera in the genus of L and αp(L) are the local factors.

We will also include, at the end, our overall normalisation factor to put the Hirzebruch-Mumford

volumes in the canonical normalisation of the Weil-Petersson metric. Fixing all the constants and

computing the local factors in the formula (4.1) requires specifying some details of the class of lattices

under consideration (e.g. Are the lattices even and unimodular? Do they contain some factors of the

standard hyperbolic lattice Γ1,1?) In this section we will try to study some general expectations for

how the volumes scale with n and ignore as many lattice-dependent subtleties as possible. This crude

approximation can be trusted provided the only lattice-dependent contributions are order 1 factors

(as in the case of g+
sp) or factors that do not scale with the rank.

The normalisation factor we need to convert to Weil-Petersson volumes as above is (see Equation

2.13)

CWP =

(
1√
2

)2n
σ(2 + n)

σ(2)σ(n)
(4.2)

where σ(D) ≡ 2(D+1)/2
∏D−1
j=1

(
(2π)

j+1
2

Γ( j+1
2 )

)
. Recall that the first factor of 1√

2

2n
is the conversion

factor to the Weil-Petersson metric worked out in Appendix C, and the second factor σ(2+n)
σ(2)σ(n) is the

conversion factor derived to go from the Hirzebruch-Mumford volume volHM to the “Lie algebraic”

volume voltr, as in [5].

Now let us examine the behavior of some volumes. If for now we completely ignore the (important-

but-lattice-dependent) factors 2
g+sp
|detL|(n+2+1)/2

∏
p αp(L)−1, we can look at the behavior with n of

β ≡ CWP

∏n+2
k=1 π

−k/2Γ(k/2) numerically. At n = 1 we simply have β = 1
π and it decreases until

n = 17 where it reaches

β =
24329988412181570252900390625

1048576π73
' 10−14, (4.3)

after which it starts increasing dramatically. (As it goes from n = 27 to n = 28, it crosses over from

β < 1 to β > 1). See Figure 1.

Next we turn to the behavior with n of the lattice-dependent factors: 2
g+sp
|detL|(n+2+1)/2

∏
p αp(L)−1.

For illustration, Figure 1 displays the differences between β and volWP(O(L)) for some even unimod-

ular lattices of signature (2, 2 + 8b). Recall that the latter are the lattices of the form L = II2,2+8b =

2Γ1,1 ⊕ bE8(−1) (i.e. two copies of the hyperbolic lattice and b copies of the E8 root lattice), and

the volumes for these have been computed in [4, 5]. In terms of the Bernoulli numbers Bn and the

function (2n)!! ≡ 2.4. . . . 2n they are given by volHM (O(II2,2+8b)) = 2−(4b+1)B2...B8b+2

(8b+2)!!
B4b+2

4b+2 .
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Figure 1: In the left figure, the red curve plots log(β) versus n, and the other curves depict log(volWP(O(L)))
versus n for the lattices L = II2,2+8s (orange), T2,2+8s (green), F 2

2,3+8s(blue), F 7
2,3+8s(purple). In the right figure

each volume is multiplied by an additional factor of n!/πn. This is the analogue of the multiplicative factor
h2,1!/πh2,1 that is relevant for the index density (cf. (1.8)).

b 0 1 2 3 4

β 0.101 1.5× 10−10 1.6× 10−14 1.6× 10−4 3.6× 1025

volWP(O(L)) 0.068 2.8× 10−13 1.1× 10−19 4.3× 10−12 3.8× 1015

We can see the qualitative similarities between the behavior with n of β and the full volWP for

this class of lattices; in fact, the scaling with n is exacerbated by the inclusion of the local factors.

To get a sense of whether this is a generic feature, let us consider the behavior of some of the other

examples computed in [4]. See Figure 1 for plots of their volumes.

The Lattices L = T2,2+8b:

Consider now the lattices of signature (2, 2 + 8b) that are of the form T2,2+8b ≡ Γ1,1 ⊕ Γ1,1(2) ⊕
bE8(−1). Notice that one of the hyperbolic lattices has been rescaled relative to the other. It turns

out that these volumes are those of the even unimodular examples, multiplied by an additional factor

(24b+1 + 1)(24b+2 − 1), following logic similar to that which we employed in Section 3:

b 0 1 2 3 4

volWP(O(L)) 0.617 5.9× 10−10 5.8× 10−14 5.8× 10−4 1.3× 1026

The Lattices L = F d2,3+8b:

As a final example, consider the set of lattices of signature (2, 8b + 3) of the form F d2,3+8b =

2Γ1,1 ⊕ bE8(−1)⊕ 〈−2d〉. When b = 2, this moduli space is (almost) that of polarized K3 surfaces of

degree 2d [4]. For d > 113 the answer is

volHM(O(L)) =

(
d

2

) 8b+4
2 ∏

p|d

(1 + p−
8b+4

2 )
|B2 . . . B8b+4|

(8b+ 4)!!
. (4.4)

The volumes after normalising are given for low-lying b and several values of d below:

Notice that if d is large and has many prime factors, the volumes start out fairly large, in contrast

13The d = 1 case is identical up to an additional factor of 2.
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b 0 1 2 3 4

volWP(d = 2) 0.036 2.8× 10−11 6.6× 10−14 0.097 1.1× 1031

volWP(d = 7) 0.359 5.1× 10−8 1.8× 10−8 4.0× 106 7.0× 1040

volWP(d = 100) 93 0.43 6440 5.9× 1022 4.3× 1061

to the other examples. In general, any contribution from the lattice-dependent factors that scales with

the rank (e.g. the factor |detL|(3+n)/2 for lattices that are not unimodular) can have a pronounced

quantitative effect.

From the above numbers, plotted in Figure 1, we can see the qualitative similarities between the

behavior with n of β and the full volWP for these lattices. This provides some evidence that the

behaviours of β with n is indicative of how the volumes depend on the lattice ranks. Given the

decrease in β in the range n < n∗, below some minimum n∗, it is tempting to conclude that moduli

space volumes (at least for lattices of this signature) are tiny for the ranks of relevance to string theory.

More precisely, the volumes reach their minimum value when the ranks of the lattices approximately

coincide with known ranks of complex structure moduli spaces in threefold compactifications with

non-generic holonomy, based on quotients of K3 × T 2 or T 6. In particular, as mentioned above,

lattices of these signatures govern the moduli space of certain polarized K3 surfaces.

In other words, in the case when the Calabi-Yau moduli space is of this form (of symmetric

spaces), our computation suggests an increase of the importance of the damping effect coming from the

geometric factor as the relevant Hodge number (governing the dimension of the flux space) increases.

Extrapolating this effect to more general Calabi-Yaus, it suggests that the previously ignored geometric

factor could be a cause for caution when drawing the conclusion that the landscape is dominated by

Calabi-Yaus with extremely large Hodge numbers. See for instance [20]. This said, our analysis does

not provide strong evidence that the possible damping effect of the geometric factor is generically

more dominant than the growth effect from the flux counting factor as the Hodge number increases.

4.2 Self-Mirror Calabi-Yaus

The special form of the FHSV moduli space makes it an ideal intermediate case for studying moduli

space geometry between the compactifications preservingN = 4 supersymmetry and compactifications

on more generic (simply connected) Calabi-Yaus with SU(3) holonomy. Recall that the self-mirror

property of the Enriques Calabi-Yau makes it possible to perform perturbatively exact computation

on the moduli space geometry. In the spirit of exploring simpler N = 2 compactifications, it is

therefore amusing to note the existence of other self-mirror Calabi-Yaus. This property implies that,

just as for the FHSV model, their moduli space geometries are protected from certain quantum

corrections and could therefore furnish examples of Shimura varieties which are amenable to exact

volume computations.

Two interesting and natural classes of self-mirror Calabi-Yaus have been recently studied in [16,17]
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following the work of [18]. These are the 14 Calabi-Yaus 14 (8 of the so-called type K [16,17] and 6 of

type A [18]) with infinite fundamental group and so enjoy holonomy further reduced from SU(3). The

former are realized as free quotients of K3 × T 2 while the latter are realized as quotients of abelian

threefolds. Of course, the FHSV model is the most well-studied representative of the type K varieties.

Focusing on the three-folds of type K, we expect that the type K moduli spaces in most cases will be

of the form

H/ΓE ×
(
O(Γ2,n)\O(2, n)/(O(2)×O(n))

)
(4.5)

In the above, ΓE denotes an appropriate congruence subgroup of SL(2,Z) depending on the quotient

group. If we denote the Calabi-Yau by (S×E)/G where S is a K3 surface and E an elliptic curve, we

have n = rankH2(S,Z)G and Γ2,n ' H2(S,Z)G, the G-invariant part of the integral K3 cohomology

lattice. See Section 3.4 of [16] for details.

The upshot is that, given the detailed description of these manifolds given in [16, 17], one can

re-do the volume computation of the previous section by computing the appropriate local factors

associated to the (even but not unimodular) lattices H2(S,Z)G; we expect such a computation would

yield numerics comparable to those of the previous subsection.
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A The index density and the Weil-Petersson metric

In this appendix, we will briefly review the derivation of the index density in [8] following the method

of [12] to emphasize the appearance of the (canonically normalised) Weil-Petersson metric in the

final formula. In Appendix C we will subsequently compare the canonical normalisations of the

Weil-Petersson and Zamolodchikov metrics to fix the numerical constants appearing in the volume

formula. We begin by recalling the Weil-Petersson metric for a Calabi-Yau n-fold X. Denote by

H → M the first Hodge bundle over the Calabi-Yau complex structure moduli space. It has fiber

Hn(X) of complex dimension 2(hn−1,1 + 1). The n-form Ω is a local, nonzero holomorphic section of

14up to deformation equivalence
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the projectivization of H. The Kähler potential is

K = − log

(
i

∫
M

Ω ∧ Ω̄

)
(A.1)

and the corresponding Hermitian metric is given by

GWP,AB̄ = − ∂2

∂A∂B̄
log

(
i

∫
M

Ω ∧ Ω̄

)
. (A.2)

To account for the overall scaling ambiguity of Ω, we introduce a line bundle L with metric eK

and first Chern class15

ωWP

π
:= c1(H) =

i

2π
∂∂̄K. (A.3)

One can thus view Ω as a local, nonzero holomorphic section of H⊗L.

The index density arises from a parallel with the following simple expression for the number of

zeros of a function f(x) in one real variable x:

# {x|f(x) = 0} =

∫
dx δ(f(x))|f ′(x)|. (A.4)

Analogously, the number of flux vacua in the complex structure moduli space of an Calabi-Yau fourfold

Z is given by

Nvac =
∑
N

∫
M
d2hz δ2h(DWN ) |detD2WN |, (A.5)

where h := dimC(M), WN is the flux superpotential determined by N , and the sum is taken over

fluxes satisfying (1.1). The index density is then given by the following approximate quantity:

Ivac =

∫
dbN

∫
M
d2hz δ2h(DWN ) detD2WN , (A.6)

which is a good approximation in the large flux limit (see [10] for a discussion about subleading

corrections).

In the F-theory context, we have DµWN,µ = N IΠIµ where the periods in a fixed homology basis

are, as usual, ΠI =
∫

ΣI ∧ Ω4 and ΠIµ := eK/2(∂µ + ∂µK)ΠI(z) = eK/2DµΠI(z). Note that here W

denotes the rescaled superpotential. See (2.1)-(2.2) of [10].

To evaluate the corresponding index density it is useful to define, as a computational tool, an (a

priori) auxiliary metric on the moduli space Gµν := −PIµQIJPJν with QIJ = Q−1
IJ the inverse of

the intersection matrix on H4(Z,Z). Here µ, ν are to be understood as indices for real coordinates

µ, ν = 1 . . . 2h. We also have, following the prescription of [12], PIµ = ΠIµ for µ = 1, . . . , h and PIµ =

Π̄I(µ−h) for µ = h+ 1 . . . 2h. In complex coordinates one can compute, using Griffiths transversality,

that the metric components are GAB = 0 = GĀB̄ and GAB̄ = −eK
∫
DAΩ ∧DB̄Ω̄ = ∂A∂B̄K and G is

Hermitian. Note that this is precisely the Weil-Petersson metric (A.2), namely G = G.

15Here, we follow the conventions of [8]. It is also common to include the factor of 1
π

directly into the normalisation of
ωWP, as in [44]. We will leave this factor explicit. In particular, it will reemerge in the index density as ∼ det(ω/π).
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A covariant derivative ∇ with respect to this auxiliary metric must satisfy the condition

PIµQ
IJ∇νPJρ = 0. (A.7)

We can rewrite this equation using the definition of PIµ and passing to complex coordinates as

eK/2DAΠI(z)Q
IJ∇µ

(
eK/2DB̄Π̄I(z)

)
= 0. (A.8)

We stress that such a covariant connection is a connection on TM⊗L, where L is the line bundle on

M of which the supergravity potential is a section: in our conventions, c1(L) = [ω
WP

π ], the curvature

form of L, and so the Weil-Petersson volume may be expressed as16

volWP(M) =
(ωWP)h

h!
=
πh

h!
c1(L)h. (A.9)

Expanding Equation (A.7) and applying Griffiths transversality, following [12], shows that the covari-

ant connection on TM⊗L is exactly the standard Levi-Civita Kähler connections, i.e. the auxiliary

metric recovers the Weil-Petersson metric on moduli space.

One can then follow the derivation in [12], by constructing the generating function

Z(t) =

∫
d4h+4N e−t/2N

IQIJN
J

∫
M
d2hx δ2h(N IPIµ) det(∇µ(NJPJν))µν (A.10)

and expressing the index density as Ivac(Qc) = 1
2πi

∫
dt
t e
−tQcZ(t) with the contour passing the pole

t = 0 on the left; recall − 1
2N

IQIJN
J = Qc. We sum over the repeated I, J indices, with I, J =

1, . . . b = 4h + 4. Notice that the integral over fluxes in Z(t) is now taken over the full (4h + 4)-

dimensional Euclidean space, with the Laplace transform enforcing the bound on fluxes. Rewriting

the delta function and determinant factors as integrals over extra Grassmann variables leads to the

integral over continuous fluxes to become a Gaussian integral. The series of simplifications outlined

in [12] then results in the final expression

Ivac =
1√

detQIJ

(2πQc)
2h+2

(2h+ 2)!

∫
M
e(∇) (A.11)

where e(∇) = Pf
(
Rµν/2π

)
= 1

πh det(R+ ω · 1). The first equality is in terms of the Pfaffian of the

curvature form on M in an orthonormal frame (represented by underlined indices) with respect to

Gµν . Its appearance follows from identifying the Grassmann integral representation of the Pfaffian

directly in the aforementioned manipulations after performing the
∫
d4h+4N integral.

Crucially, the auxiliary metric appearing in the derivation coincides precisely with the physical

metric on moduli space, including the proper normalisation for the Weil-Petersson metric: L, with

metric eK, captures the scaling ambiguity of the top-degree form Ω and its first Chern class is unam-

biguously defined17 and gives the metric associated to the Kähler connection. If we drop the curvature

16In contrast to [8], we choose conventions to work with dimensionless quantities from the outset. Therefore, the factors
of −1/M2

pl required in [8] to render quantities like c1(L) dimensionless do not appear in our formulas.
17Recall that the first Chern class map produces a certain, fixed constant multiple of the trace of the curvature operator

associated to a chosen connection on L, via Chern-Weil theory.
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term in the index density, then we find (ωWP)h/πh = h!
πh volWP (M) as claimed.

It is frequently stated that the Weil-Petersson and Zamolodchikov metrics coincide. We claim that

in fact, these metrics differ in their canonical (constant) normalisations. In Appendix C we quantify

this discrepancy and thereby fix the scale of the metric.

B Some number theoretic objects

In this appendix, we elaborate on the definition and computation of the remaining ingredients in the

lattice volume formula.

First, we recapitulate the definition of proper spinor genus in [41], which is a definition particularly

suitable for computations [15]. The reader who wants to learn more about these quantities is also

advised to consult [42,43] for more conceptual definitions and further references.

Recall that the spinor norm θ : O(V ) → F×/(F×)2 where V is a quadratic space over F . The

map is explicitly given by θ(σ) := Q(v1)Q(v2) . . . Q(vn) where σ = τv1τv2 . . . τvn ∈ O(V ) is written

as a product of elementary reflections τvi with respect to basis elements vi ∈ V , and Q denotes the

quadratic form.

The genus gen(L) of a lattice L on a quadratic space V is the set of lattices M on V such that for

some σp ∈ O(Vp)

Mp = σp(Lp) for every prime p.

A genus is called proper if one replaces O(Vp) with O+(Vp), the subgroup of elements that preserve

the orientation of all positive-definite planes. The spinor genus gsp(L) of L is the set of lattices M

such that for some η ∈ O(V ) and some σp ∈ O′(Vp) we have

η(M)p = σp(Lp) for every prime p.

The group O′(Vp) is the kernel of the spinor norm from O+(Vp) to (Q×p )/(Q×p )2. Finally, the proper

spinor genus uses the same definition except with η ∈ O+(V ).

Cor 6.3.1 of [41] establishes that g+
sp(L), which appears in the volume formula, is always a power of

2. Cor 6.3.2 of [41] further establishes how the numerical value can be obtained by a finite computation.

For our purposes, we note that for a lattice L of rank (2, n) containing at least one copy of the

hyperbolic plane as a direct summand, one can prove that 1
g+sp

= 1 using results of [34] (see [4]).

The definition of a local density αp(S) of a quadratic form over a number field F given by a matrix

S ∈ Matn×n(F ) is

αp(S) :=
1

2
limr→∞p

−rn(n−1)/2|
{
X ∈ Matn×n(Zp) mod pr;XtSX ≡ S mod pr

}
|. (B.1)

As before, Zp denotes the p-adic integers. In general, such representation densities serve to assign

a volume to sets of isometric embeddings Isom(L1, L2) for lattices over a ring R. To compute these

local densities, one needs to know the Jordan decomposition of L over Zp. Let us elaborate on this.

We call a lattice L over a ring R a-modular, where a is an invertible fractional ideal of R, if
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HomR(L,R) = a−1L or, equivalently, HomR(L, a) = L. Theorem 4.3.5 in [15] tells us that every

lattice L over a p-adic ring R may be written as L = ⊕iLi where Li are ai-modular lattices and

each ai is distinct. This is referred to as a Jordan decomposition of L. Jordan decompositions are in

general not unique, and one must in general have a method to determine all Jordan decompositions of

a given lattice to compute the local densities. However, let us say we have two Jordan decompositions

of a lattice over a p-adic ring R: L = ⊕r1i=1Li = ⊕r2j=1Kj , such that Li are ai-modular and Kj are

bj-modular. Let us also suppose that ai1 |ai2 for i1 < i2 and bj1 |bj2 for j1 < j2. Then there is a

uniqueness result for Jordan decompositions (see Theorem 4.3.14 of [15] for the precise statement)

that in particular tells us r1 = r2, ai = bi, rk(Li) = rk(Ki) and Li ' Ki if p 6= 2.

The algorithm for computing local densities goes as follows [15,41].

1. Any Jordan decomposition of a lattice expresses the lattice in terms of a-modular summands.

One can relate the local density of an a-modular lattice to that of a unimodular lattice.

2. One can relate the local density of a unimodular lattice to the local densities of certain lattices

that have rank at most 4.

3. Computing the local densities for the low-rank lattices in the previous item may be done explic-

itly.

4. Finally, the computation of local densities for an arbitrary lattice requires enumeration of all

Jordan decompositions of the lattice and the computation of the local factors for the correspond-

ing a-modular pieces as above. In this work, we work with simple lattices with simple, unique

Jordan decompositions and refer to [15] for discussions of the more general case.

Many local densities of interest in this paper have already been computed in [4] and [5] to which

we refer for the precise formulas; we only modify their results slightly using the recipe of [15] when

needed.

For example, for every prime p, the even unimodular lattices of signature (2, 2 + 8b) over Zp
are given by direct sums of hyperbolic planes. For another example, consider the lattice T2,2+8b =

U ⊕ U(2) ⊕ bE8. When p = 2, we have T2,2+8b ⊗ Z2 = (4b + 1)Γ1,1 ⊕ Γ1,1(2) and for p 6= 2 we have

T2,2+8b ⊗ Z2 = (4b+ 2)Γ1,1 [4].

C Relation Of The Weil-Petersson And Zamolodchikov Met-

rics

For the calculation in the main text it is crucial that we carefully compare the normalisation between

the Hirzebruch–Mumford metric and the Weil–Petersson metric that leads to the pre-factor in (2.13).

To do so, we compare the canonical normalisations of the Weil–Petersson and Zamalodchikov metrics,

where the latter is determined using the arguments of [5].

C.1 Zamolodchikov Metric vs Weil–Petersson Metric

We revisit the original computation of [35], keeping careful track of overall normalisations. Although

we focus on the complex structure moduli space, the derivation is completely analogous for the
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complexified Kähler moduli.

First consider the WP metric for the moduli space of complex structures of the Calabi-Yau three-

fold M . We use l,m to denote indices for real coordinates X l. Using the normalisation of [35] the

natural metric on the space of metrics on M is

1

V

∫
M

√
GGll

′
Gmm

′
δGlmδGl′m′d

6x (C.1)

Here V is the volume of M . If we choose a complex structure we let µ, ν denote indices of the complex

coordinates. We also denote by Gµν̄ the Hermitian metric such that

ds2 =
1

2
Gµν̄(dXµ ⊗ dX ν̄ + dX ν̄ ⊗ dXµ). (C.2)

We denote the inverse to Gµν̄ as

Gµν̄G
µρ̄ = δρ̄ν̄

Gµν̄G
ρν̄ = δρµ

(C.3)

Now, the tangent space to the complex structure moduli space can be associated with first order

deformations of the metric of the form

ds2 → ds2 +
(
hµν(x)dXµ ⊗ dXν + h̄µ̄ν̄(x)dX µ̄ ⊗ dX ν̄

)
+O(h2) (C.4)

where h̄µ̄ν̄(x) = (hµν(x))∗, and the associated Beltrami differential Gµρ̄h̄ρ̄σ̄ is harmonic. Evaluating

(C.1) on such deformations gives the metric:

GWP(h1, h̄2) =
4

V

∫
M

d6x
√
G(x)h1

µν(x)h̄2
ρ̄σ̄(x)Gνσ̄(x)Gµρ̄(x). (C.5)

and the other components vanish because it is of type (1, 1) on the complex structure moduli space.

According to [35] (C.1) is precisely the normalisation that gives the canonically normalised Weil-

Peterson form which explains the subscript WP.

Now we turn to the Zamolodchikov metric. As in [5], we denote a CFT C as a point in the moduli

space M of CFTs and study the map from the space V 1,1 of exactly marginal operators of C to the

tangent space to M at C: Ψ : V 1,1 → TCM. If our CFT’s are defined by an action (as is the case

here) then a path in M is determined by a path of actions S[t]. If 18 d
dt |t=0S[t] =

∫
Od2z then

Ψ(O) = ∂
∂t |t=0 is the tangent vector to the path in moduli space. If a tangent vector v = Ψ(O) toM

corresponds to the exactly marginal operator O then we define the Zamolodchikov metric by:

〈O(z1)O(z2)〉 :=
gZ(v, v)

|z1 − z2|4
(C.6)

where the LHS is the correlation function on the complex plane C with the unique SL(2,C) invariant

vacuum at z = 0,∞.

18 We denote the real worldsheet coordinates by σ1, σ2 and the corresponding derivatives by ∂1,2, and also define the
complex worldsheet coordinates z := σ1 + iσ2, z̄ := σ1 − iσ2 with ∂ = 1

2
(∂1 − i∂2), etc. In particular d2z := i

2
dz ∧ dz̄ =

dσ1 ∧ dσ2.
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Now specialize to a supersymmetric non-linear sigma model on a Calabi-Yau threefold M . For

simplicity we consider background with vanishing B-field. Then the bosonic part of the action reads:

S0 =
1

2`2

∫
Glm(X)(∂1X

l∂1X
m + ∂2X

l∂2X
m) dσ1 ∧ dσ2

=
1

2`2

∫
Gµν̄(X)(∂1X

µ∂1X
ν̄ + ∂2X

µ∂2X
ν̄) dσ1 ∧ dσ2

=
1

`2

∫
Gµν̄(X)(∂Xµ∂̄X ν̄ + ∂̄Xµ∂X ν̄) dσ1 ∧ dσ2

(C.7)

where `2 ≡ 2πα′. Because we are considering the metric to leading order in α′ it suffices to consider

only the bosonic part of the action. The reason for this is that one can check that the contribu-

tions of the fermionic terms to the exactly marginal operator lead to terms in the expression for the

Zamolodchikov metric that are all higher order in α′. One way to prove this is to show that all the

fermionic contributions involve integrals over M with extra insertions of curvature tensors and/or

covariant derivatives acting on h1 and/or h̄2. The fermionic terms certainly would need to be taken

into account if one computed the α′ corrections to the Weil-Peterson metric.

Metric deformations of the form (C.4) will preserve the CY property and the corresponding defor-

mation of the action is associated with the exactly marginal operator:

O(h) :=
1

2`2
hµν(X(σ))(∂1X

µ∂1X
ν + ∂2X

µ∂2X
ν) + · · ·

=
2

`2
hµν(X(σ))∂Xµ∂̄Xν + · · ·

(C.8)

with a similar formula for O(h̄). Here + · · · indicates the fermionic contributions.

We can now compare the Zamolodchikov metric (C.6) with the Weil-Peterson metric, at least in

the leading order in the α′ → 0 limit. Note that this is sufficient for us since the metric for the

Enriques Calabi-Yau does not receive α′-corrections.

We write

Xµ(σ) = xµ + X̃µ(σ); X µ̄(σ) = xµ̄ + X̃ µ̄(σ). (C.9)

and subsequently

Gµν̄(X) = Gµν̄(x) +O(X̃).

The bosonic part of the action in this limit for the sigma model with vanishing B-field is

S̃0 = Gµν̄(x)
1

2`2

∫
(∂1X̃

µ∂1X̃
ν̄ + ∂2X̃

µ∂2X̃
ν̄) dσ1 ∧ dσ2. (C.10)
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In this free field limit, we have 19

〈X̃µ(σ1, σ2)X̃ ν̄(σ′1, σ
′
2)〉S̃0

=

∫
[DX̃]X̃µ(σ1, σ2)X̃ ν̄(σ′1, σ

′
2)e−S̃0∫

[DX̃]e−S̃0

= −`
2

π
Gµν̄(x) log((σ1 − σ′1)2 + (σ2 − σ′2)2) +O(α′)

= −`
2

π
Gµν̄(x) log |z − z′|2 +O(α′).

(C.11)

where we recall (C.3). Moreover

〈X̃µ(σ1, σ2)X̃ν(σ′1, σ
′
2)〉S̃0

= 〈X̃ µ̄(σ1, σ2)X̃ ν̄(σ′1, σ
′
2)〉S̃0

= O(α′).

Hence

〈∂X̃µ(σ1, σ2)∂X̃ ν̄(σ′1, σ
′
2)〉S̃0

= −`
2

π
Gµν̄(x)

1

(z − z′)2
+O(α′)

〈∂̄X̃µ(σ1, σ2)∂̄X̃ ν̄(σ′1, σ
′
2)〉S̃0

= −`
2

π
Gµν̄(x)

1

(z̄ − z̄′)2
+O(α′)

(C.12)

and

〈∂X̃µ(σ1, σ2)∂̄X̃ ν̄(σ′1, σ
′
2)〉S̃0

= 〈∂̄X̃µ(σ1, σ2)∂X̃ ν̄(σ′1, σ
′
2)〉S̃0

= O(α′). (C.13)

From this we conclude

〈O(h1)(σ)O(h2)(σ′)〉 = 〈O(h̄1)(σ)O(h̄2)(σ′)〉 = O(α′).

Using again the expansion and writing∫
[DX].... =

∫
d6x
√
G(x)

∫
[DX̃].... (C.14)

(cf. (17) of [35]), we obtain

〈O(h1)(z1, z̄1)O(h̄2)(z2, z̄2)〉 :=

∫
[DX]O(h1)(z1, z̄1)O(h̄2)(z2, z̄2)e−S∫

[DX]e−S

=
1

V

∫
M

d6x
√
G(x)

(
2

`2

)2

h1
µν(x)h̄2

ρ̄σ̄(x)〈∂X̃µ∂̄X̃ν(z1, z̄1)∂̄X̃ ρ̄∂X̃ σ̄(z2, z̄2)〉S̃0

=
4

π2

1

|z1 − z2|4
1

V

∫
M

d6x
√
G(x)Gµρ̄(x)Gνσ̄(x)h1

µν(x)h̄2
ρ̄σ̄(x)

(C.15)

Using the definition (C.6) and comparing with (C.5) we conclude that the Zamolodchikov metric

19The essential fact is that, on the Euclidean plane (∂2
x + ∂2

y) log |z|2 = 4πδ(2)(0). Adding source terms to the action∫
(jµX

µ + jµ̄X
µ̄)dσ1 ∧ dσ2 we cancel them by shifting

Xµ(1)→ Xµ(1) +Gµρ̄
∫

`2

2π
log |z1 − z2|2jρ̄(2)d2σ.
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in the leading order of α′ is simply given by

ds2
Z =

1

π2
ds2

WP. (C.16)

C.2 Consistency check for square tori

The Zamolodchikov metric for a periodic scalar of radius R was computed in [5] to be 1
π2 (dRR )2 and

the metric for a 2d-dimensional square torus was similarly given to be 1
π2

∑2d
i=1(dRi

Ri
)2. As a test of our

proposed normalisation, we will consider the moduli space of a complex abelian variety and consider

the pullback of the metric to the sublocus of products of square tori with zero B-field. The Kähler

deformations of the metric are [35]

GAB̄δw
AδwB̄ =

1

V

∫
M
d6z
√
GGµτ̄Gρν̄ (δGµν̄δGρτ̄ + δBµν̄δBτ̄ρ) (C.17)

and one may follow the arguments of the previous subsection identically to obtain the same relative

normalisation between the metric on the space of complexified Kähler moduli and the Zamolodchikov

metric:

ds2
Z =

1

π2
ds2
K (C.18)

so that for a threefold given by a square abelian variety we expect to obtain

ds2
K =

6∑
i=1

(
dRi
Ri

)2

. (C.19)

The components of the canonically normalised Kähler metric are defined for threefolds as [35]

GAB̄ = − ∂2

∂wA∂wB̄
log

(∫
M
J ∧ J ∧ J

)
. (C.20)

We restrict our manifold T 6 to be the product T 2 × T 2 × T 2 and plug the factorised Kähler form

into C.20. Restricting to the locus of square tori with zero B-field, each T 2 factor has Kähler modulus

T = T1 + iT2 = iR1R2, where T1 = 0 and T2 = R1R2 is the volume of T 2. Plugging this form into

the result and labeling the moduli/radii as Ri immediately gives equation C.19.
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