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a b s t r a c t

We study the tails of closing auction return distributions for a sample of liquid European
stocks. We use the stochastic call auction model of Derksen et al. [1] to derive a relation
between tail exponents of limit order placement distributions and tail exponents of
the resulting closing auction return distribution and we verify this relation empirically.
Counter-intuitively, large closing price fluctuations are typically not caused by large
market orders, instead tails become heavier when market orders are removed. The model
explains this by the observation that limit orders are submitted so as to counter existing
market order imbalance.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

During the trading day, most securities change hands in continuous double auctions, in which buy and sell orders are
mmediately matched if possible. However, to determine opening and closing prices, call auctions are often conducted. In
call auction, orders are aggregated for an interval of time, after which all possible transactions are conducted against a
ingle clearing price that maximizes trading volume. In this paper we study the tails of closing auction return distributions.
Nowadays it is widely recognized that distributions of (stock) price changes exhibit heavy tails: extreme price changes

of e.g. more than three standard deviations) are much more likely than in a Gaussian model or other models with
xponentially decaying tails. This issue was first addressed by Mandelbrot [2] in his analysis of cotton prices, where
e proposed Lévy stable distributions to model price fluctuations. It is generally assumed that the tails follow a power
aw asymptotically. That is, the distribution of a return X over some time interval satisfies,1

P(X > x) ∼ Cx−a, as x → ∞, (1)

here C > 0 is a constant (sometimes also replaced by a slowly varying factor L(x)) and a > 0 is the tail exponent,
etermining how heavy the tail is. In early work [3], the exponent a was believed to be below 2 for stock prices (in line
ith the stable distributions of Mandelbrot [2]). However, subsequent analyses have shown that the exponent is more

ikely to be around 3 on intraday time scales (see e.g. [4–8], among many others). Although it is generally accepted to
odel the tails as power laws, the exact functional form is also subject of debate. For example, Malevergne et al. [9]
onclude that the tails decay slower than stretched exponential distributions, but somewhat faster than power laws. In
his paper, we do not aim to answer this question, but use power laws because they describe the tails in enough detail
or our analysis. Theoretically, the functional form in Eq. (1) is justified by extreme value theory, in the Fréchet (heavy
ailed) case (see e.g. [10]).

∗ Corresponding author at: Deep Blue Capital B.V., Amsterdam, The Netherlands.
E-mail address: mike.derksen@deepbluecap.com (M. Derksen).

1 Here, ∼ denotes asymptotic equivalence defined as f ∼ g ⇔ lim f (x)
= 1.
x→∞ g(x)
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Although most part of the relevant literature focuses on description of the tails of stock price return distributions,
some effort has gone towards explanations of this tail behaviour. Gabaix et al. [11,12] argue that large price fluctuations
are due to large orders submitted by large market participants. However, Farmer and Lillo [13] study the issue on the
microscopic level and present evidence that fluctuations in volume alone cannot explain large price fluctuations. In the
same direction, Farmer et al. [14] and Weber and Rosenow [15] find that large returns are not due to large transactions, but
instead are caused by big gaps in the order book, i.e. fluctuations in liquidity. Closely related to these ideas is the literature
on price impact, i.e. the relation between volume and price change, see [16] for an exhaustive discussion and [17] for more
recent work on the subject. Finally, several models have been proposed to explain the observed tail behaviour. Mike and
Farmer [18] propose a simulation based model for continuous trading, which suggests heavy tails in return distributions
are caused by market microstructure effects, such as heavy tails in limit order placement and long memory in order flow.
More theoretically, Bak et al. [19] and Cont and Bouchaud [20] propose models linking heavy tails to herd behaviour.

In this paper, we use the model of Derksen et al. [1] to study the distribution of returns in the closing auction. In the
model, limit orders are submitted to the auction randomly, with a limit price that is sampled from an order placement
distribution FA (for sell orders) or FB (for buy orders). We study the closing auctions of liquid European stocks listed
on Euronext exchanges and find that both return distributions and order placement distributions exhibit heavy tails,
with different tail exponents. Zovko and Farmer [21] conclude ‘It seems that the power law for price fluctuations should be
related to that of relative limit prices, but the precise nature and the cause of this relationship is not clear.’ Here, we solve
his problem in the context of the closing auction: we provide analytical relations between the tails of order placement
istributions and the tails of the closing price return distribution. In a version of the model without market orders, the
ails of the closing price distribution behave as the product of the tails of the order placement distributions FA and FB.
hen we incorporate market orders, this relation changes, depending on a proportionality relation between market order

nd limit order imbalances. We empirically verify the relations between tail exponents of order placement and auction
eturn distributions predicted by the model.

In theory, large market orders are a possible cause of large price fluctuations. We show however that this is typically
ot the case in closing auctions, which is our second important result. Somewhat counter-intuitively, the empirical study
hows that closing auction return distributions would have heavier tails if market orders are removed, suggesting that
arket orders have a stabilizing effect on price formation in closing auctions. Theoretically, we show (for the right tail)

hat this (initially perhaps somewhat puzzling) empirical fact can only arise whenever

0 <
MB − MA

NA − NB
≤

aA
aB

, (2)

under the assumption that FB and FA have heavy right tails with tail exponents aB and aA satisfying aB > aA > 0. Here, NA
is the sell limit order volume, NB the buy limit order volume and MA and MB denote the sell and buy market order volume.
This equation poses two conditions that should be fulfilled to make it theoretically possible that tails of closing auction
return distributions are heavier without market orders. First, limit order imbalance and market order imbalance should
be of opposite signs (when MB > MA, it should hold that NA > NB and vice versa) and limit order imbalance NA − NB
should be larger in absolute value than market order imbalance MB − MA, meaning that limit orders overcompensate for
market order imbalance. Second, aB should not be too large, i.e. the right tail of the buy limit order placement distribution
needs to be sufficiently heavy. We show that Eq. (2) is indeed satisfied on average empirically, which is explained by
the chronology of the closing auction: most of the market orders are submitted in the first seconds, revealing early in
the auction the market order imbalance. This leads to strategic behaviour in which limit orders are placed against the
direction of the market order imbalance: when there are more buy than sell market orders, one can submit a (possibly
large) sell order without adversely impacting the price. Our results suggest that large closing price fluctuations are not
caused by large market orders (at least, not directly), but by placement of limit orders, in accordance with the intraday
results of Farmer et al. [14],Weber and Rosenow [15]. Also, our results suggest that heavy tails are market microstructure
effects and that the tail exponents vary between different stocks and different market mechanisms, in line with the view
of Mike and Farmer [18].

The remainder of this paper is structured as follows. Section 2 provides a brief description of the closing auction
mechanism used on Euronext exchanges. In Section 3 the model is described and theoretical results are derived. Then in
Section 4 the empirical results are presented and the relations that are predicted by the model are verified. Concluding
remarks are made in Section 5. Proofs of the mathematical theory are collected in the Appendix.

2. Closing auctions on Euronext

In this section, we will briefly discuss the closing auction mechanism used on Euronext exchanges (see [22] for the
Euronext rulebook). On Euronext, intraday continuous trading stops at 5:30 pm, after which the call phase of the closing
auction starts. During the call phase, market participants can submit orders, which are aggregated without giving rise to
transactions, which is the main difference with continuous trading, where matching orders are executed immediately.
Much as for continuous trading, market participants can basically submit two types of orders: limit orders (orders to
buy/sell a specified quantity of the stock for a price not higher/lower than the specified limit price) or market orders
(orders to buy/sell a specified quantity of the stock against any price). Orders can be entered, modified and cancelled,
2
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hile indicative price and volume imbalance information is being published continuously. The indicative price at time t
ndicates what would be the auction price if the auction would stop at time t , given the orders submitted up to time t .
mbalance information provides the sign and the size of the volume imbalance for the current indicative price, where the
olume imbalance is defined as the volume of transactable buy orders minus the volume of transactable sell orders. The
all phase ends at a randomly selected time between 5:35:00 pm and 5:35:30 pm, after which the system will determine
he closing price, which is the price that maximizes the transacted volume. If several optimal prices can be selected, the
rice closest to the last transaction during continuous trading is taken. After the closing price is determined, the order book
s cleared, meaning that all possible transactions are conducted against the closing price. In this process, market orders
re ranked based on time-priority and have priority over limit orders, which are ranked following price–time priority.

. Theoretical results

In this section we recall the auction model of Derksen et al. [1] and derive analytical expressions for the tail behaviour
f the return distribution, given the tails of order placement distributions. Section 3.1 discusses briefly the contents
f Derksen et al. [1], while all results in Sections 3.2 and 3.3 are new.

.1. A stochastic model of the call auction

In the standard call auction, orders are aggregated over an interval of time and then matched to transact at a clearing
rice that maximizes the total transacted volume. Suppose NA sell limit orders and NB buy limit orders are submitted
o the auction (all orders have unit size). We assume market participants on both sides of the market formulate their
rders independently, according to certain order placement distributions FA and FB. Here, FA denotes the distribution of
ell orders and FB the distribution of buy orders. That is, we model the sell order prices (A1, . . . , ANA ) as an i.i.d. sample
from FA and the buy order prices (B1, . . . , BNB ) as an i.i.d. sample from FB.2

For convenience we consider the log return axis instead of the real price axis. We assume there is some reference price
x0 (for example the last traded price before the auction starts or a volume weighted averaged version thereof) and all
prices are expressed as log returns relative to this reference price. So FA and FB are distributions on (−∞, ∞) and FA(x)
or FB(x) denotes the probability that a sell or buy order price is below x0ex. Given (NA,NB), we denote by FA and FB the
mpirical distribution functions corresponding to the samples (A1, . . . ANA ) and (B1, . . . , BNB ), meaning

FA(x) =
1
NA

NA∑
i=1

1{Ai≤x}, FB(x) =
1
NB

NB∑
i=1

1{Bi≤x}

Furthermore, we define the (monotone increasing) supply curve,

DA(x) = NAFA(x)

and the (monotone decreasing) demand curve,

DB(x) = NB(1 − FB(x)).

The supply curve denotes for every x ∈ R the number of sell orders below x0ex, the demand curve gives for every x ∈ R
the number of buy orders above x0ex. Given all buy and sell orders, the clearing price is the price that maximizes the
transactable volume in the auction, which is the price where supply and demand curves cross. That is, the clearing price
X is defined as the solution to the market clearing equation,

DA(X) = DB(X). (3)

This definition of X may give rise to problems with uniqueness and existence of solutions to Eq. (3), as illustrated in Fig. 1.
To solve these issues, consider the following definition.

Definition 3.1. For given supply curve DA and demand curve DB, the lower clearing price is defined by

X = inf{x ∈ R : DA(x) ≥ DB(x))} (4)

and the upper clearing price is defined by

X = sup{x ∈ R : DA(x) ≤ DB(x)}

= inf{x ∈ R : DA(x) > DB(x))}. (5)

The interval [X, X) is the interval of all possible clearing prices.

2 Of course these assumptions are not all realistic. In reality, orders have different sizes and market participants may react to each other’s orders.
Despite these simplifying assumptions, the model provides a reliable stochastic description of auction price formation (see [1]).
3
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Fig. 1. Two examples of the supply curve DA(·) (the increasing (red) step function) and the demand curve DB(·) (the decreasing (blue) step function).
eft panel: a situation in which there is no unique point of intersection, but an interval [X, X) of possible clearing prices. Right panel: a situation
in which there is a unique intersection point X = X .

emark 3.2. Euronext’s closing auction rules say that when there are more possible clearing prices, the price closest
o the last traded price is taken ([22], Rule 4401/3, see also Section 2). This means that when there is a large positive
eturn, the closing price is equal to the lower clearing price X . So in order to study the right tail of the closing price
eturn distribution, we should study X . The same reasoning implies that for the left tail we should consider X . Note that
he model is symmetric when the roles of X and X and the sides of the market are interchanged. That is, the left tail
of the distribution of X behaves the same as the right tail of the distribution of X , when FA and FB and NA and NB are
interchanged. So without loss of generality we focus on the right tail of X .

The distribution of the lower clearing price, conditional on (NA,NB), has an analytically tractable distribution function,
given in the following theorem (see [1], theorem 2.3).

Theorem 3.3 (Lower Clearing Price Distribution). The distribution of the lower clearing price X, conditional on (NA,NB), is given
y its survival function,

P(X > x|NA,NB)

=

NA∑
k=0

NB∑
l=k+1

(
NA

k

)(
NB

l

)
(1 − FA(x))NA−kFA(x)k(1 − FB(x))lFB(x)NB−l. (6)

In the situation described above, only limit orders are submitted to the auction. However, market participants also
have the possibility to submit market orders. We define the (possibly stochastic) market order imbalance by ∆ = MB −MA,
where MB is the number of buy market orders and MA is the number of sell market orders. Note that market orders only
play a role through ∆, as matching market orders are executed against each other without affecting the price formation
process. When market order imbalance ∆ is taken into account, the market clearing Eq. (3) becomes

DA(X) = DB(X) + ∆

nd the definitions of X and X change accordingly. A positive (negative) value of ∆ means there is more buy (sell) market
rder volume than sell (buy) market order volume, possibly pushing the price up (down). The market order imbalance
lters the clearing price distribution as in the following proposition (a special case of proposition 2.8 in [1]).

roposition 3.4 (Lower Clearing Price Distribution in Case of Market Order Imbalance). When market order imbalance ∆ plays
role, the lower clearing price distribution as computed in Theorem 3.3 modifies into

P(X > x|NA,NB, ∆)

=

NA∑
k=0

NB∑
l=max(k−∆+1,0)

(
NA

k

)(
NB

l

)
(1 − FA(x))NA−kFA(x)k(1 − FB(x))lFB(x)NB−l.

3.2. Limit order auctions

Next we concentrate on the right tail of the lower clearing price return distribution, as a function of the tails of the
order placement distributions FA and FB, initially without market orders. We make the following assumption on the tails
of F and F .
A B

4
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ssumption 1. Assume FA has a heavier right tail than FB. That is, there exists functions TA, TB such that

1 − FA(x) ∼ TA(x), 1 − FB(x) ∼ TB(x), as x → ∞

and

lim
x→∞

TB(x)
TA(x)

= 0.

This assumption is intuitively reasonable and empirically verified in Section 4.1. Furthermore, we will assume that
NA,NB) follows a distribution PNA,NB on

N = {1, . . . ,N} × {1, . . . ,N},

for some N ∈ N, with probability mass function pNA,NB assigning positive probability to any point in N (we exclude the
possibilities that NA = 0 or NB = 0, which describe failing auctions in which clearing prices do not exist).

In the following proposition we first derive an expression for the right tail of the lower clearing price distribution,
conditional on (NA,NB). Finding an expression for the tail of the clearing price distribution amounts to finding the slowest
decaying term in the double sum of Theorem 3.3. This is made formal in the following proposition, the proof of which is
found in the Appendix.

Proposition 3.5. Under Assumption 1, we have

P(X > x|NA,NB) ∼ NBTB(x)TA(x)NA , as x → ∞. (7)

When the conditional result of Proposition 3.5 is summed with respect to the distribution of (NA,NB), the unconditional
tail of X is discovered again by selecting the slowest decaying term. This leads to the main result of this subsection, a
relation between the tail of the closing price return distribution and the tail of the order placement distributions in a
setting without market orders (its proof is again postponed to the Appendix).

Theorem 3.6 (Right Tail of the Lower Clearing Price Distribution). Under Assumption 1 we have

P(X > x) ∼ CTA(x)TB(x), as x → ∞,

where C =
∑N

n=1 npNA,NB (1, n) = E[NB1{NA=1}] > 0.

3.3. Market orders

In this subsection we incorporate market orders in the derivation of Section 3.2. First consider the following assumption
for the market order imbalance ∆.

Assumption 2. We assume that ∆ ∈ (−NB,NA) with probability one.

This assumption is necessary, because otherwise the clearing prices attain the values ±∞ with non-zero probability.
nder this assumption, the right tail of the conditional lower clearing price distribution is given by the next proposition
the proof is again postponed to the Appendix and x+ = max(x, 0) and x− = max(−x, 0) denote the positive and negative
part of x ∈ R).

Proposition 3.7. Under Assumptions 1 and 2, we have

P(X > x|NA,NB, ∆) ∼ K (NA,NB, ∆ − 1)TB(x)(∆−1)−TA(x)NA−(∆−1)+ , (8)

as x → ∞, where

K (NA,NB, ∆) =

{(NA
∆

)
if ∆ > 0( NB

−∆

)
if ∆ ≤ 0.

This proposition shows that market orders potentially influence the tails heavily: if ∆ is positive and large (close to
NA) the influence of the faster decaying term TB(M) is erased and only the slower decaying term TA(M) is left, possibly
leading to very heavy tails. On the other hand, if ∆ is negative, the influence of the faster decaying term TB grows, leading
to less heavy tails. However, which combinations are possible depends on the joint distribution of (NA,NB, ∆). Until now,
the tails TA and TB were unspecified and few assumptions were made on the distribution of (NA,NB). To work towards
an empirically testable theory, we will make the following assumptions on the distribution of (NA,NB, ∆) and the tails of
FA, FB. Empirically, these assumptions are verified in Section 4.

Assumption 3. Assume (NA,NB, ∆) follows a distribution P on {1, . . . ,N} × {1, . . . ,N} × {−N, . . . ,N}, with probability
mass function denoted by p, for some N ∈ N. Furthermore, assume that market order imbalance MB −MA is proportional
to limit order imbalance NA − NB (in the opposed direction), that is,

∆ = M − M = c(N − N ), (9)
B A A B

5
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lmost surely for some c ∈ (0, 1) and P(∆ = 0) = 0 (as the case ∆ = 0 is already considered in Section 3.2). Finally,
assume that all possible combinations have positive probability, i.e.

p(n,m, d) > 0, for all n,m ∈ {1, . . . ,N}, d ∈ ±{1, . . . ,N} such that d = c(n − m).

Eq. (9) states that limit order imbalance points in the opposed direction of market order imbalance, which resembles
that limit order submitters adjust their orders to the market order imbalance. This assumption ensures Assumption 2
holds and allows us to incorporate a relation between market and limit order imbalance which is shown in Section 4 to
hold approximately in reality (see Fig. 6). The assumption is ultimately justified by good agreement between resulting
theoretical tail coefficients and the tails of real-world data, cf. Table 3.

Assumption 4. Assume FA, FB both have power law right tails, that is,

1 − FA(x) ∼ TA = LA(x)x−aA , 1 − FB(x) ∼ TB(x) = LB(x)x−aB , as x → ∞,

for tail exponents aB > aA > 0 and slowly varying functions LA, LB : R → [0, ∞).

Under Assumptions 3 and 4, the following theorem (which is proved in the Appendix) describes the tail behaviour
of the clearing price distribution in terms of the parameters c (controlling the relation between market and limit order
imbalance) and aA and aB (controlling the heaviness of the tails of the buy and sell limit order placement distribution).

Theorem 3.8 (Right Tail of the Lower Clearing Price Distribution with Market Orders). Under Assumptions 3 and 4, there exists
a slowly varying function L : R → [0, ∞), such that

P(X > x) ∼ L(x)x−a, as x → ∞,

where

a = min
(
(c + 1)aA

c
, aA + 2aB

)
. (10)

Note that without market order imbalance ∆ we have by Theorem 3.6 a = aA + aB. This theorem makes testable
redictions about the relation between the tails of the closing price return distribution, the tails of the limit order
lacement distributions and the limit and market order imbalance. In the next section we will investigate this relation
mpirically.

. Empirical results

In this section we investigate empirically the relation between the tails of the closing auction return distributions and
he tails of the limit order placement distributions. In order to do so, we obtain detailed order-by-order data over 2018
nd 2019, for 100 liquid European stocks (with market capitalization above EUR 1 bn) listed on Euronext exchanges in
msterdam, Paris, Brussels or Lisbon.
Estimating the tails of a distribution comes with a couple of problems. First, the power law of Eq. (1) is not assumed to

old for all values of x, but only for the tail. This necessarily involves a starting point xmin such that the power law holds
or all x > xmin (see [23] for a discussion). Unfortunately, the eventual estimate for the tail exponent will depend on this
ut-off point: if xmin is taken too small, the bulk instead of the tail will determine the estimates. Then the second problem
rises, because the cut-off eliminates most of the available data, leaving only a small fraction of the data available for
stimation. Finally, models are often designed to describe only ‘generic’ situations well and are not intended to explain
xtreme events. It is a noteworthy advantage of the call auction model of Section 3 that it is suitable to model both the
ulk of the data (as in [1]) and extreme events, as in the current paper.
In the past years, considerable progress has been made regarding the validation of power laws and the estimation of

ail exponents, using methods based on the Hill estimator (see e.g. [24]). These methods are designed to estimate the
ail exponent for real power law behaviour in ideal situations and validation of the power law model through goodness-
f-fit tests is an important part of these methods. Although auction return distributions display almost ideal power law
ehaviour (see Fig. 4), the same cannot be said of order placement distributions for individual stocks (see Figs. 2 and 3).
rder placement distributions are clearly heavy tailed, but do not display the idealized tail behaviour that standardized
stimation methods require. The power law model in its idealized form is misspecified for order placement distributions,
nd consequently, robustness of said estimation methods cannot be guaranteed in these circumstances. Instead, we apply
imple estimation methods for tail exponents based on visual inspection and linear fits on double logarithmic plots, to
ive a reasonable description of the decay of the tails.
Concerning the amount of data relevant for the tails, in every closing auction a large amount of orders is submitted,

o the tails of order placement distributions can be studied per stock. Unfortunately, this is not possible for the closing
uction return distribution: per stock, we have only around 500 trading days (two years of around 250 trading days per
tock) and thus only that many closing auction returns, which is far insufficient to examine the tails. For example, if
e take the 0.05-quantile for the cut-off point x , only about 25 data points reside in the tail, which is too few for
min

6
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Fig. 2. Log–log plots of the tails of the order placement distributions for 4 selected stocks (ASML Holding NV, Compagnie de Saint Gobain SA, Signify
NV, Ubisoft Entertainment SA). The x-axes show the number of ticks above (for the right tail) or below (for the left tail) the reference price x0 .

meaningful statistical analysis. So to investigate the tails of the closing auction return distribution, we merge together the
closing auction returns of all stocks in the sample.

In the entire section, the reference price x0 will be the volume weighted average price over the last five minutes of
continuous trading. Closing auction returns will be measured in log returns with respect to x0. Following [21,25], limit
order prices are measured in the number of ticks a limit order is placed away from the reference price x0.

4.1. Tails of order placement distributions

The mechanism of the call auction makes it possible to study both tails of both order placement distributions. In Fig. 2,
both tails of the sell limit order distribution FA and the buy limit order distribution FB are shown in log–log plots, for four
stocks that are representative for the sample.

Let us first focus on the right tails, i.e. the upper panels (a) and (b) of Fig. 2. The plots of the right tails of FA show
apparent power law behaviour in the range between 10 and 1000 ticks above the reference price. After circa 1000 ticks
the tails decay faster for a while, but starting around 5000 ticks a new part of the distribution seems to start. The plot is
cut-off at 10 000 ticks, but some even reach until 100 000 ticks. These extremes do not contribute to price formation in
the auction at all. We focus on the interval of the price axis where price formation occurs: the intersection of the supports
of FA and FB. For the right tail that means FB provides the effective upper bound (note that the closing price can never take
a value above the highest buy order). The support of FB ranges until around 1000–2000 ticks above the reference price
so that is the region we use in our analysis, roughly in line with the intraday results from [21].3 Power law behaviour
is less clear for FB, but in the range of 100 until 1000 ticks power law behaviour can be recognized for the liquid stocks
ASML and Saint Gobain. For the less liquid stocks Signify and Ubisoft it stops earlier around 500 ticks, but this can also be
due to smaller volumes of available data. The lower panels (c) and (d) of Fig. 2 show the left tails of the order placement
distributions. These are very similar to the right tails, when the roles of FA and FB are switched. Also, on the left side there
s a real cut-off point, corresponding to price 0, which is found somewhere between 2000 and 10 000 ticks. In Fig. 3 we
oom in on the right tails of FB and FA until around 1000 tick sizes above the reference price and provide linear fits as

3 The sell orders (far) above this region can be thought of as coming from another distribution describing patient sellers not relevant to the
auction result. To sketch how irrelevant those orders are: the tick size of a stock is normally between 1 and 5 basis points. Assuming a tick size of
2.5 basis points, 2000 ticks correspond to a return of 50%, while a closing auction return in the order of 1% is already high.
7
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Fig. 3. Log–log plots of the right tails of the order placement distributions for 4 stocks (ASML Holding NV, Compagnie de Saint Gobain SA, Signify
NV, Ubisoft Entertainment SA). The x-axes show the number of tick sizes above the reference price x0 . Linear fits are also plotted, fitted on the
0.05-quantile of FB until the 0.001-quantile of FB , to estimate aB and aA .

estimators for the values of aA and aB (the tail exponents of FA and FB as in Assumption 4). We perform linear least square
fits on the log–log plots of the tails of FB, starting at its 0.05-quantile. Visual inspection shows that in the extreme tails,
available data points are too sparse to form a coherent picture. So we stop the fit at the 0.001-quantile of FB, which seems
reasonable when inspecting the plots and we make fits for FA on the same interval.4 For example for ASML, we obtain
aA ≈ 1.07, aB ≈ 2.37, fitted on the interval of 168 until 862 tick sizes. For all four stocks, FA shows a straight, slowly
decaying line, resembling a power law with exponents around or even below 1. Furthermore, the tails of FB decay faster
than the tails of FA, with exponents between 2 and 4 (more results are discussed in Section 4.4).

4.2. Tails of closing auction return distributions

For every stock i and day 1 ≤ d ≤ n we have a closing auction return Xi,d, defined as

Xi,d = log(C i,d) − log(xi,d0 ),

where C i,d is the closing price of stock i on day d and xi,d0 is the reference price of stock i on day d. Following e.g. [4] we
standardize the returns per stock. That is, we divide for every stock i the return sample {Xi,d : 1 ≤ d ≤ n} by its standard
deviation and obtain a sample of standardized returns of size n ≈ 500. These samples are all merged together into one
large sample to study the tails of the closing auction return distributions. In Fig. 4 the right and left tails of the return
distribution are shown in log–log plots, showing clear power law behaviour from 2 up to 10 standard deviations for both
tails. Linear least square fits are also shown (starting the fit at 2 standard deviations), giving tail exponents a = 5.28 for
the left tail and a = 4.74 for the right tail.

This suggests closing auction returns are less heavy tailed than intraday returns over short time intervals, for which a
tail exponent a ≈ 3 is widely supported in the literature (see e.g. [4]). This difference might be explained in qualitative
terms by the large transacted volumes in the closing auctions. It is known that tails of return distributions become thinner
when longer time intervals are considered, an effect that is known as aggregational Gaussianity (the empirical fact that
return distributions converge to normal distributions when the interval length increases, see e.g. [26]). This is theoretically
supported by the call auction model: the clearing price distribution approaches a normal distribution, when the number
of orders tends to infinity (see [1], theorem 3.1). Moreover, the empirical effect is known to be stronger if time intervals

4 These choices are somewhat arbitrary, but cut-off choices need to be made in any practical tail analysis (see [23]) and moreover, results do
not change substantially when we extend the fit to e.g. the 0.0001-quantile, or e.g. start the fit at the 0.01-quantile.
8
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Fig. 4. Log–log plot of the tails of the closing auction return distribution for all 100 stocks in our sample. Blue dots show the right tail, that is
(X > x), red squares the left tail, that is P(X < −x), the x-axis is in standardized returns. Linear fits are also plotted, giving a tail exponent of
= 4.74 for the right tail and a = 5.28 for the left tail.

re measured in trade time [27]. In Europe nowadays around 30% of the daily volume is transacted in the closing auction,
hich makes the duration of the closing auction in trade time similar to approximately half a day of continuous trading.5
In order to compare auction returns with continuous trading returns, Fig. 5 shows log–log plots of the right tails of

wo different intraday return distributions: the distribution of returns over the last five minutes of continuous trading
for comparison in physical time) and the distribution of returns over the last interval of continuous trading in which
he transacted volume is equal to the auction volume (for comparison in transaction time). As before, returns are first
tandardized per stock and then merged together. Aggregational Gaussianity is indeed observed, as the tail for the volume-
ased interval clearly differs from a clean power law, while the five minute return distribution has a clear power law tail.
omparison with the right tail in Fig. 4 makes clear that the closing auction return distribution has a less heavy tail than the
ast five minute intraday return distribution, but a heavier tail than the distribution of returns over intervals with volume
qual to the auction volume. Hence, the large volumes that are transacted in the closing auction may indeed explain in
art why closing auction return distributions are less heavy tailed than intraday five minute return distributions. However,
he analysis shows that this volume-based explanation cannot account for all differences between closing auction returns
nd continuous trading returns, which are undoubtedly also due to differences in their underlying microstructure.

.3. The effect of market orders

Before we study the influence of market orders on the tail behaviour of closing auction return distributions, we first
nvestigate the relation between the market order imbalance and the limit order imbalance. In Fig. 6 the market order
mbalance ∆ = MB−MA in every closing auction is plotted against the limit order imbalance NA−NB in that closing auction,
or the four stocks that were also studied in Section 4.1 (note that all these quantities are measured in total volume of
rders, not number of orders as in the model, where all orders have unit size). The figure shows that the proportionality
elation between ∆ and NA−NB introduced in Eq. (9) holds approximately, with values of c in the range 0.2–0.4, estimated
sing linear least square regression. This means that limit order imbalance is generally in the opposite direction of market
rder imbalance. An explanation for this lies in the chronology of the closing auction. We observe in auction data that
he vast majority of market orders is submitted in the first seconds of the closing auction, revealing the market order
mbalance early in the auction (during the accumulation phase of the auction, information on the imbalance and an
ndicative price is released, so it is possible to act on this information, see also Section 2). Subsequently, limit orders are
laced against the direction of the market order imbalance, reflecting strategic behaviour: when there is a large positive

5 The fraction of daily transacted volume that is transacted in closing auctions has increased greatly over the past years, especially since the
introduction of MiFID II, see [28].
9
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Fig. 5. Log–log plot of the right tails of continuous trading return distributions for all 100 stocks in our sample. Blue dots show the tail of the
distribution of returns over the last five minutes of continuous trading, red squares show the tail of the distribution over the last interval of
continuous trading in which a total volume is transacted that is equal to the auction volume (in the rare case that the closing auction volume is
higher than the intraday volume, the open-to-close return is taken, to exclude overnight effects). Linear fits are also plotted, giving a tail exponent
of a = 3.96 for the five minute returns and a = 4.93 for the volume-based interval returns.

market order imbalance (more buy market orders than sell market orders), one can submit a (possibly large) sell order
without adversely affecting the price.

Next, we will investigate the effect of market orders on the tail exponents. Consider Fig. 7, where two auction results
are shown. Supply and demand curves are represented by the solid lines and the point of intersection is the closing price,
indicated by the black star. When market orders are removed, translated supply and demand curves (plotted by the dashed
lines) lead to an alternative closing price, represented by the black square. The upper panel shows a situation in which a
large positive closing auction return is caused by a high market order imbalance. When the market order imbalance would
be removed, the closing price would be much lower (black square). The lower panel shows a very different situation: a
small positive closing auction return, but a strongly negative market order imbalance. If in this case the market order
imbalance would be removed, the closing auction return would get much higher (black square).

The two scenarios presented in Fig. 7 raise the question which is more common: are large closing auction returns
caused by large market order imbalances or is this potential effect cancelled by limit order imbalance and are limit orders
usually the driver of large returns? To answer this question, we also investigate the tails of the return distribution of the
alternative closing price, defined as the intersection point of the supply and demand curves when the market orders are
removed (black squares in Fig. 7). So, for every stock i and day d we have an alternative closing auction return X̃i,d, defined
as

X̃i,d = log(C̃ i,d) − log(xi,d0 ),

where C̃i,d is the alternative closing price of stock i on day d. We again standardize these returns per stock, giving for
every stock around 500 alternative closing auction returns, which are merged to study the tails. In Fig. 8 the tails of the
alternative closing price return distribution are shown, together with the tails of the real closing price return distribution
from Fig. 4. The figure shows that the tails become heavier when market orders are removed. For the right tail we
document a tail exponent a = 3.75 without market orders, compared to a = 4.74 with market orders. For the left
tail, the tail exponent becomes a = 3.9 when market orders are removed, compared to the value a = 5.28 when market
orders are included.

It is thus concluded that large closing price fluctuations are in general not caused by a large market order imbalance
(at least, not directly). The explanation for this counter-intuitive result lies in the chronology of the auction and the
placement of limit orders: when the market order imbalance is positive (negative), there are more sell (buy) limit orders
submitted (cf. Fig. 6). Theorems 3.6 and 3.8 give the model’s view on the matter and state that without market orders
the tail exponent is equal to a + a and with market orders it is equal to min( (c+1)aA , a + 2a ). This means that tails get
A B c A B
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Fig. 6. The difference NA − NB plotted against the market order imbalance ∆, showing limit order imbalance goes against the direction of market
rder imbalance. The dashed red line is the result of linear least square regression, to estimate the value of c in Eq. (9), which is the slope of the
ashed red line (outliers of more than four standard deviations away from the mean are removed).

eavier without market orders, whenever

c ≤
aA
aB

. (11)

his equation in fact resembles two conditions that should be fulfilled to make it possible that tails are heavier without
arket orders (see also Eq. (2)). First, c should be small and positive, reflecting that the abovementioned strategic
ehaviour is strong: when there is a large market order imbalance, in general the limit order difference overcompensates
or this. Second, aB should not be too large compared to aA. This is a condition on the right tail of the buy limit order
istribution. Without market orders, the highest buy limit order serves as an upper bound for the closing price. So to
btain heavier tails without market orders, the right tail of FB should be sufficiently heavy (small aB). It turns out that
ondition (11) is indeed satisfied for most of the stocks: for example, for ASML we obtained estimators aB ≈ 2.37, aA ≈

1.07, c ≈ 0.329 (cf. Figs. 3 and 6), satisfying the condition in Eq. (11). Indeed, Theorems 3.6 and 3.8 imply that the tail
exponent for closing auction returns of ASML is aA + aB = 3.44 without market orders and (c+1)aA

c = 4.32 with market
rders. In the next subsection we will verify the theoretical results on the whole sample consisting of 100 stocks.

.4. Model-predicted and realized tail exponents compared

In this subsection the relations predicted by the model are tested over the whole sample of 100 stocks. For every stock
e estimate the tail exponents of the order placement distributions (aA and aB) and the value of the parameter c (as

n Eq. (9)). The results are shown in Table 1 (for 50 stocks with the lowest market capitalizations) and Table 2 (for 50
tocks with the highest market capitalizations). To estimate the parameter c , we use linear least squares regression and to
stimate the values of aA and aB we use the method described in Section 4.1: for every stock, we make linear least square
its on double logarithmic plots as in Fig. 3, on the interval between the 0.05- and 0.001-quantiles of FB. The absolute
values of the resulting slopes are the estimators for a and a . For example, for ASML we obtain in this way estimators
A B
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Fig. 7. Two closing auction results. Solid lines are the supply (red) and demand (blue) curves of the particular closing auction, including market
orders (for convenience sell (buy) market orders are placed just below (above) the lowest sell (highest buy) limit order). Dashed lines show the
supply and demand curves without market orders. The black dot denotes the reference price x0 , the black star denotes the closing price and the
black square denotes the alternative price when only limit orders are considered.

aB ≈ 2.37, aA ≈ 1.07 and for Ubisoft we find aB ≈ 3.63, aA ≈ 0.58, cf. Fig. 3. In Tables 1 and 2 the results are shown for
all stocks in the sample, the columns aB(r) and aA(r) give the estimated tail exponents for the right tails of FB and FA. For
the left tails, the same method applies when the roles of FB and FA are interchanged. On the left side, FB has a heavier tail
and FA provides the effective lower bound.

In Fig. 9 the left tails of the order placement distributions are shown for ASML and Ubisoft, as well as the linear least
square fits, showing that for the left tails aA ≈ 2.50, aB ≈ 1.17 for ASML and aA ≈ 2.81, aB ≈ 0.87 for Ubisoft. In Tables 1
and 2 the columns aB(l) and aA(l) give the estimated tail exponents for the left tails of FB and FA. Estimates for aA, aB and
c give rise to an estimate for the tail exponent a for the return distribution of that particular stock. With market orders
a = min( (c+1)aA

c , aA + 2aB) (cf. Theorem 3.8) and without market orders a = aA + aB (cf. Theorem 3.6).6 Ideally, we would
test these predictions against the realized tail exponents of the return distribution for every stock. However, as noted in
the beginning of this section, this is not possible, because we only have around 500 closing auction returns per stock.
Instead, we can verify the predictions over groups of stocks, by comparing estimated tail coefficients with the model’s
average predicted values.

6 Note that for the left tails the roles of a and a need to be interchanged (see also Remark 3.2).
A B
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Fig. 8. Log–log plots of the tails of the closing auction return distribution for all 100 stocks in the sample. Blue dots show the tails for the real
closing auction return distribution, red dots the tails for the alternative closing auction returns that emerge when market orders are removed.

Fig. 9. Log–log plots of the left tails of the order placement distributions for ASML Holding NV and Ubisoft Entertainment SA. The x-axis shows
the number of tick sizes above the reference price x0 . Linear fits are also plotted, fitted on the 0.05-quantile of FA until the 0.001-quantile of FA , to
estimate aB and aA .

First, consider the whole sample of 100 stocks. In Fig. 8 it was shown that the right tail of the closing price return
distribution has an estimated tail exponent of a = 4.74, which changes to a = 3.75 if market orders are removed. If we
take the average of the model’s predictions over all 100 stocks, we find an average predicted tail exponent of 4.89 with
market orders (column ‘a(r) MO’ in Tables 1 and 2) and 3.89 without market orders (column ‘a(r) no MO’ in Tables 1 and
). Furthermore, Fig. 8 shows that the left tail of the closing price return distribution has an estimated tail exponent of
= 5.28, which changes to a = 3.90 if the market orders are removed. For the left tail, the average predicted tail exponent

over all 100 stocks equals 5.01 with market orders (column ‘a(l) MO’ in Tables 1 and 2) and 3.72 without market orders
column ‘a(l) no MO’ in Tables 1 and 2). The predicted tail exponents vary a lot between the different stocks, suggesting
that the heaviness of the tails depends on the stock. To additionally test if these per stock predictions give information
about the real tail exponents, we split our sample into 50 stocks with the lowest market caps (those in Table 1) and 50
stocks with the highest market caps (Table 2). In that way, the groups are kept large enough to examine the tails of the
closing auction return distributions.

In Fig. 10 the tails of the closing auction return distribution for the 50 small caps and the 50 large caps are shown in
double logarithmic plots, again with and without market orders (similar to Fig. 8). The linear fits to the double logarithmic
plots are the realized tail exponents for the both groups, which can again be compared to the average predicted values
in Tables 1 and 2. The results are summarized in Table 3, showing first of all that the model’s predicted exponents are
13
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Table 1
Table of results, for the 50 stocks in our sample with the lowest market cap. The column Exch. displays the exchange the stock is traded on
(Amsterdam, Paris, Brussels or Lisbon) and the column Mcap shows the market capitalization of the stock in billions of euros (in October 2020).
Then, aA and aB are the estimated tail exponents of sell and buy limit order distributions, for the left (l) and right (r) tail. c is the estimator for the
onstant in Eq. (9) and a = aA + aB without market orders (no MO), and a = min( (c+1)aA

c , aA + 2aB) with market orders (MO), both displayed for left
l) and right (r) tails.
Stock Exch. Mcap aA(l) aB(l) aA(r) aB(r) c a(l) no MO a(l) MO a(r) no MO a(r) MO

ASM INTL AMS 6.7 3.312 1.154 0.717 3.377 0.127 4.466 7.778 4.094 6.357
AALBERTS AMS 3.8 3.178 0.763 1.207 3.301 0.174 3.941 5.135 4.508 7.808
WDP REIT BRU 5.2 3.142 3.279 1.739 3.032 0.113 6.421 9.562 4.771 7.804
REXEL PAR 3.2 2.105 1.782 1.465 2.626 0.184 3.887 5.992 4.091 6.718
EURONEXT PAR 6.8 3.319 1.943 1.918 3.229 0.164 5.262 8.582 5.146 8.375
IMCD GROUP AMS 6.0 3.328 0.972 1.859 3.016 0.158 4.300 7.118 4.875 7.892
SIGNIFY AMS 4.6 3.485 1.181 0.888 3.690 0.252 4.666 5.866 4.579 4.413
ALTEN PAR 2.8 3.443 1.476 1.017 2.420 0.137 4.919 8.362 3.437 5.857
BIC PAR 1.9 3.025 1.644 0.916 3.820 0.324 4.669 6.720 4.736 3.746
EUTELSAT COM PAR 1.9 2.969 0.993 0.677 3.752 0.201 3.962 5.972 4.429 4.068
INGENICO GROUP PAR 8.5 1.534 0.970 0.740 2.996 0.129 2.504 4.038 3.735 6.461
EURAZEO PAR 3.3 4.512 1.953 1.536 3.928 0.134 6.464 10.976 5.464 9.393
AEGON AMS 5.0 1.552 0.801 0.421 2.561 0.15 2.353 3.905 2.982 3.220
KPN KON AMS 10.0 2.363 1.011 0.584 3.942 0.207 3.373 5.736 4.526 3.413
RANDSTAD AMS 8.4 3.071 1.130 0.939 3.603 0.291 4.201 5.016 4.541 4.166
KLEPIERRE REIT PAR 3.5 3.242 1.016 0.503 3.317 0.371 4.259 3.754 3.820 1.858
SUEZ PAR 9.9 1.416 0.866 0.724 2.588 0.250 2.281 3.697 3.312 3.613
GALP ENERGIA LIS 6.8 4.467 2.173 1.438 3.977 0.484 6.640 6.663 5.415 4.410
ARKEMA PAR 7.2 4.292 1.231 1.354 4.441 0.278 5.522 5.659 5.795 6.225
COVIVIO PAR 5.2 3.400 3.485 2.230 3.279 0.304 6.884 10.284 5.509 8.788
ICADE REIT PAR 3.4 4.179 1.649 1.371 3.499 0.231 5.828 8.798 4.870 7.314
IPSEN PAR 6.5 2.515 1.463 0.844 2.594 0.200 3.978 6.493 3.439 5.072
ORPEA PAR 5.9 1.605 0.786 0.987 1.683 0.126 2.391 3.997 2.671 4.354
SCOR PAR 4.5 3.363 1.475 0.941 3.944 0.378 4.837 5.372 4.885 3.427
GETLINK PAR 6.4 1.910 1.341 1.166 3.294 0.148 3.251 5.161 4.460 7.753
J.MARTINS SGPS LIS 9.2 4.043 1.022 1.027 3.621 0.276 5.065 4.730 4.648 4.752
DASSAULT AVIAT PAR 6.3 4.021 1.155 0.764 4.088 0.282 5.176 5.247 4.852 3.471
EDENRED PAR 10.1 3.832 2.070 2.352 3.763 0.282 5.902 9.419 6.115 9.879
PUBLICIS GROUPE PAR 7.6 2.600 1.251 0.704 3.221 0.390 3.851 4.462 3.925 2.509
ATOS PAR 7.5 2.323 0.834 0.499 2.449 0.267 3.157 3.959 2.948 2.368
JCDECAUX PAR 2.9 3.682 1.578 1.177 3.845 0.229 5.260 8.482 5.022 6.323
EIFFAGE PAR 6.9 4.086 1.324 1.785 4.083 0.248 5.410 6.656 5.868 8.973
GECINA PAR 7.8 2.988 2.394 2.004 2.928 0.321 5.382 8.370 4.932 7.860
NATIXIS PAR 6.5 0.763 0.513 0.524 1.672 0.155 1.276 2.040 2.196 3.868
SES FDR PAR 3.0 3.138 0.649 0.905 3.218 0.186 3.786 4.132 4.123 5.768
SEB PAR 7.6 3.998 1.284 0.998 3.807 0.215 5.282 7.246 4.805 5.629
UBISOFT PAR 10.2 2.814 0.870 0.578 3.635 0.204 3.684 5.136 4.213 3.409
ALSTOM PAR 9.4 1.988 0.715 0.866 2.955 0.279 2.703 3.280 3.821 3.975
TECHNIPFMC PAR 2.6 1.113 0.729 0.552 2.478 0.217 1.842 2.955 3.029 3.097
ACCOR PAR 5.9 2.384 0.677 0.645 3.079 0.251 3.061 3.374 3.724 3.215
VEOLIA PAR 9.8 1.476 0.838 0.484 2.598 0.267 2.314 3.791 3.083 2.296
COLRUYT BRU 7.3 3.340 1.373 1.245 3.390 0.318 4.713 5.689 4.635 5.159
AGEAS BRU 6.7 2.408 1.115 1.254 2.735 0.321 3.524 4.585 3.989 5.155
SOLVAY BRU 8.0 1.866 0.856 0.440 1.241 0.193 2.722 4.589 1.681 2.725
UMICORE BRU 8.9 2.428 0.834 0.486 2.003 0.314 3.262 3.490 2.489 2.033
PROXIMUS BRU 5.2 2.618 0.845 0.666 2.820 0.271 3.463 3.964 3.486 3.126
ABN AMRO BANK AMS 6.9 1.989 1.216 0.627 3.004 0.195 3.205 5.194 3.631 3.838
CNP ASSURANCES PAR 7.3 3.899 1.615 2.046 2.756 0.381 5.514 5.855 4.802 7.418
UNIBAIL RODAMCO AMS 5.7 1.983 1.368 1.052 1.947 0.390 3.351 4.876 2.999 3.750
SODEXO PAR 8.8 3.559 1.852 1.696 3.668 0.245 5.411 8.970 5.364 8.629

Average – 6.4 2.84 1.30 1.06 3.12 0.24 4.14 5.76 4.17 5.19

quite close to the realized exponents. Given that estimation of tails (and tail exponents in particular) is generally thought
of as a difficult statistical problem, the congruence is quite remarkable. Second, based on the modelling assumption
in Eq. (9), the model predicts correctly that the tails get heavier if market orders are removed, and by how much. The
theoretical predictions are especially accurate for the case without market orders, which is not surprising: Theorem 3.6
holds very generally and follows directly from the mechanics of the closing auction. For the case with market orders,
more assumptions were made (see Assumption 3). Most importantly, we assumed Eq. (9) holds true, which of course in
reality holds only approximately (see also Fig. 6). When looking at Tables 1 and 2, the predictions for the case with market
orders vary strongly between the stocks. We do not claim that the most extreme values that are predicted are close to
reality, but we have shown that, on average, model predicted and realized tail exponents match remarkably well.
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Table 2
Table of results, for the 50 stocks in our sample with the highest market cap. The column Exch. displays the exchange the stock is traded on
(Amsterdam, Paris, Brussels or Lisbon) and the column Mcap shows the market capitalization of the stock in billions of euros (in October 2020).
Then, aA and aB are the estimated tail exponents of sell and buy limit order distributions, for the left (l) and right (r) tail. c is the estimator for the
onstant in Eq. (9) and a = aA + aB without market orders (no MO), and a = min( (c+1)aA

c , aA + 2aB) with market orders (MO), both displayed for left
l) and right (r) tails.
Stock Exch. Mcap aA(l) aB(l) aA(r) aB(r) c a(l) no MO a(l) MO a(r) no MO a(r) MO

AMUNDI PAR 12.3 2.066 1.544 0.816 2.496 0.110 3.610 5.676 3.311 5.807
BIOMERIEUX ORD PAR 16.4 2.815 1.595 2.294 3.312 0.247 4.410 7.225 5.606 8.917
NN GROUP AMS 10.9 3.187 1.051 1.010 3.797 0.376 4.238 3.847 4.807 3.698
SARTORIUS PAR 28.9 2.928 1.069 1.449 2.474 0.280 3.997 4.892 3.923 6.397
WORLDLINE PAR 13.2 2.386 1.001 1.131 2.902 0.241 3.386 5.146 4.034 5.819
EDP LIS 18.0 3.236 0.710 1.043 3.683 0.341 3.946 2.793 4.727 4.106
TELEPERFORMANCE PAR 16.1 3.869 1.862 1.256 4.010 0.134 5.731 9.601 5.266 9.276
BOUYGUES PAR 11.7 2.302 1.124 0.953 2.452 0.331 3.425 4.518 3.405 3.833
AHOLD DEL AMS 26.6 1.334 0.727 0.875 2.234 0.326 2.061 2.960 3.108 3.562
AKZO NOBEL AMS 17.7 2.678 1.921 1.190 2.669 0.292 4.599 7.276 3.859 5.268
ASML HOLDING AMS 138.3 2.497 1.165 2.369 1.073 0.329 3.662 4.704 3.442 4.334
DSM KON AMS 24.9 3.283 1.333 1.158 3.381 0.312 4.616 5.601 4.539 4.866
HEINEKEN AMS 45.4 3.917 1.101 1.146 3.833 0.270 5.018 5.177 4.979 5.391
ING GROEP AMS 24.7 1.344 1.067 0.419 2.333 0.139 2.411 3.755 2.752 3.428
PHILIPS KON AMS 37.5 3.129 0.498 0.884 3.566 0.318 3.626 2.063 4.450 3.666
UNILEVER AMS 138.7 2.929 0.619 1.417 2.879 0.322 3.548 2.543 4.297 5.818
WOLTERS KLUWER AMS 19.3 3.473 1.417 1.823 2.997 0.244 4.891 7.235 4.820 7.817
DANONE PAR 34.6 2.195 1.112 0.761 2.312 0.404 3.307 3.862 3.073 2.642
BNP PARIBAS ACT.A PAR 40.2 1.326 0.771 0.636 2.133 0.223 2.098 3.424 2.769 3.496
AXA PAR 36.1 0.740 0.698 0.548 1.878 0.321 1.438 2.178 2.426 2.253
SOCIETE GENERALE PAR 10.2 0.815 0.923 0.383 2.051 0.160 1.738 2.553 2.434 2.777
L’OREAL PAR 163.0 3.201 0.685 1.209 2.552 0.270 3.886 3.222 3.760 5.683
SANOFI PAR 108.1 1.245 0.741 0.790 2.080 0.411 1.986 2.544 2.869 2.712
SAINT GOBAIN PAR 20.0 1.242 0.936 0.402 2.014 0.237 2.178 3.420 2.416 2.099
LEGRAND PAR 18.6 4.179 1.304 1.790 3.851 0.328 5.482 5.283 5.641 7.254
TOTAL PAR 74.8 0.592 0.632 0.549 0.534 0.308 1.224 1.816 1.082 1.616
HEINEKEN HOLDING AMS 20.2 3.198 1.244 2.004 3.506 0.333 4.442 4.982 5.509 8.025
ESSILORLUXOTTICA PAR 50.8 2.433 0.555 1.040 2.691 0.347 2.988 2.155 3.731 4.037
AB INBEV BRU 93.5 1.800 0.809 0.499 2.441 0.210 2.610 4.410 2.940 2.879
DASSAULT SYSTEM PAR 41.4 3.381 1.439 1.144 2.779 0.341 4.819 5.653 3.923 4.495
CHRISTIAN DIOR SE PAR 74.0 3.482 1.585 1.860 4.092 0.095 5.068 8.550 5.952 10.044
ARCELORMITTAL AMS 13.4 0.450 0.610 0.566 2.015 0.138 1.060 1.511 2.580 4.595
SAFRAN PAR 38.7 2.944 1.467 1.154 2.380 0.386 4.411 5.267 3.534 4.141
ENGIE PAR 28.3 0.485 0.652 0.269 1.846 0.138 1.136 1.621 2.114 2.220
EDF PAR 31.9 0.789 0.872 0.906 2.429 0.234 1.662 2.451 3.335 4.780
CREDIT AGRICOLE PAR 21.2 0.642 0.780 0.670 1.729 0.193 1.422 2.065 2.399 4.128
CAPGEMINI PAR 18.5 2.622 0.754 0.747 2.987 0.256 3.377 3.701 3.735 3.667
AIRBUS PAR 50.4 2.921 1.232 1.320 3.268 0.116 4.153 7.075 4.588 7.856
ORANGE PAR 25.3 0.480 0.925 0.515 2.162 0.250 1.405 1.885 2.676 2.577
THALES PAR 13.9 2.656 1.241 0.865 2.351 0.317 3.897 5.161 3.216 3.598
MICHELIN PAR 16.6 2.360 0.740 0.416 2.724 0.320 3.100 3.050 3.139 1.713
KERING PAR 73.7 2.572 0.864 0.684 2.463 0.332 3.436 3.466 3.146 2.742
PERNOD RICARD PAR 37.1 2.740 1.090 1.153 2.256 0.297 3.829 4.761 3.409 5.036
SCHNEIDER ELECTRIC PAR 58.2 2.644 1.534 1.058 2.594 0.326 4.178 6.240 3.652 4.304
PEUGEOT PAR 14.2 1.725 0.888 0.805 2.248 0.128 2.613 4.339 3.053 5.301
ROYAL DUTCH SHELL AMS 83.0 0.677 0.529 0.350 0.753 0.137 1.206 1.883 1.103 1.856
GBL BRU 11.9 2.952 1.323 1.095 2.457 0.194 4.275 7.227 3.552 6.009
KBC BRU 18.5 2.124 0.702 0.716 2.881 0.217 2.826 3.944 3.597 4.018
UCB BRU 17.9 2.607 0.760 1.136 3.077 0.228 3.367 4.101 4.213 6.126
VIVENDI PAR 27.9 1.968 0.936 0.733 2.806 0.318 2.904 3.874 3.539 3.033

Average – 39.7 2.27 1.02 1.00 2.61 0.26 3.29 4.25 3.61 4.59

5. Conclusions

In this paper we study the tails of closing auction return distributions, both from a theoretical and empirical point of
iew, focusing on large closing price fluctuations. Using the stochastic call auction model of Derksen et al. [1], we relate tail
xponents of order placement distributions and tail exponents of the return distribution. Empirical analysis supports the
odel’s predictions. In theory, large market orders could be a cause of large closing price fluctuations, but this potential
ffect is cancelled by limit orders that are submitted against the direction of the market order imbalance. Instead, limit
rder placement appears to be the primary cause of observed heavy tails in closing auction return distributions.
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Fig. 10. Log–log plots of the tails of the closing auction return distributions for the 50 small cap stocks of Table 1 (upper panel) and 50 large cap
tocks of Table 2 (lower panel). Blue dots show the tails for the real closing auction return distribution, red dots the tails for the alternative closing
uction returns that emerge when market orders are removed.
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Table 3
Average predicted tail exponents compared to realized tail exponents. Predicted exponents are averages over Tables 1 and 2, realized
exponents are the results of the linear fits in Figs. 8 (all stocks) and 10 (small and large caps), for the cases with (MO) and without
(No MO) market orders.

Left tails Right tails

MO No MO MO No MO

Predicted Realized Predicted Realized Predicted Realized Predicted Realized

All stocks 5.01 5.28 3.72 3.90 4.89 4.74 3.89 3.75
Small caps 5.76 5.26 4.14 4.11 5.19 4.95 4.17 4.10
Large caps 4.25 5.39 3.29 3.75 4.59 4.60 3.61 3.48

Appendix. Proofs

Proposition 3.5. Under Assumption 1, we have

P(X > x|NA,NB) ∼ NBTB(x)TA(x)NA , as x → ∞. (7)

Proof. The expression for the conditional distribution of X in Eq. (6), implies

lim
x→∞

P(X > x|NA,NB)
TB(x)TA(x)NA

=

NA∑
k=0

NB∑
l=k+1

lim
x→∞

(
NA

k

)(
NB

l

)(
1 − FA(x)
TA(x)

)NA

(1 − FA(x))−k

×

(
1 − FB(x)
TB(x)

)
(1 − FB(x))l−1

=

NA∑
k=0

NB∑
l=k+1

lim
x→∞

(
NA

k

)(
NB

l

)(
1 − FB(x)
1 − FA(x)

)k

(1 − FB(x))l−1−k

=

NA∑
k=0

NB∑
l=k+1

lim
x→∞

(
NA

k

)(
NB

l

)(
TB(x)
TA(x)

)k

(1 − FB(x))l−1−k

= NB,

where the last line follows because all terms are 0, except when l = 1, k = 0. □

Theorem 3.6 (Right Tail of the Lower Clearing Price Distribution). Under Assumption 1 we have

P(X > x) ∼ CTA(x)TB(x), as x → ∞,

where C =
∑N

n=1 npNA,NB (1, n) = E[NB1{NA=1}] > 0.

Proof. The result of Proposition 3.5 implies

lim
x→∞

P(X > x)
CTA(x)TB(x)

= lim
x→∞

ENBTB(x)TA(x)NA

CTA(x)TB(x)

= lim
x→∞

∑N
i=1

∑N
j=1 pNA,NB (i, j)jTB(x)TA(x)

i

CTA(x)TB(x)

=

N∑
i=1

N∑
j=1

jpNA,NB (i, j)
C

lim
x→∞

TA(x)i−1

=

∑N
j=1 jpNA,NB (1, j)

C
= 1,

where the last line follows by the fact that all terms in the sum are 0, except for i = 1. □
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P

P

roposition 3.7. Under Assumptions 1 and 2, we have

P(X > x|NA,NB, ∆) ∼ K (NA,NB, ∆ − 1)TB(x)(∆−1)−TA(x)NA−(∆−1)+ , (8)

as x → ∞, where

K (NA,NB, ∆) =

{(NA
∆

)
if ∆ > 0( NB

−∆

)
if ∆ ≤ 0.

Proof. Suppose first that ∆ − 1 > 0. Then

lim
x→∞

P(X > x|NA,NB, ∆)
TA(x)NA−(∆−1)

=

NA∑
k=0

NB∑
l=max(k−∆+1,0)

lim
x→∞

(
NA

k

)(
NB

l

)(
1 − FA(x)
TA(x)

)NA−(∆−1)

× (1 − FA(x))∆−1−k(1 − FB(x))l

=

NA∑
k=0

NB∑
l=max(k−∆+1,0)

lim
x→∞

(
NA

k

)(
NB

l

)
TB(x)l

TA(x)k−∆+1

=

(
NA

∆ − 1

)
,

where the last line follows because all terms are 0, except when k = ∆ − 1, l = 0.
Now let ∆ − 1 < 0, then

lim
x→∞

P(X > x|NA,NB, ∆)
TA(x)NATB(x)1−∆

=

NA∑
k=0

NB∑
l=k+1−∆

lim
x→∞

(
NA

k

)(
NB

l

)(
1 − FA(x)
TA(x)

)NA−k

× TA(x)−k
(
1 − FB(x)
TB(x)

)l

TB(x)l+∆−1

=

NA∑
k=0

NB∑
l=k+1−∆

lim
x→∞

(
NA

k

)(
NB

l

)
TB(x)l+∆−1

TA(x)k

=

(
NB

1 − ∆

)
,

where the last line follows because all terms are 0, except when k = 0, l = 1 − ∆. □

Theorem 3.8 (Right Tail of the Lower Clearing Price Distribution with Market Orders). Under Assumptions 3 and 4, there exists
a slowly varying function L : R → [0, ∞), such that

P(X > x) ∼ L(x)x−a, as x → ∞,

where

a = min
(
(c + 1)aA

c
, aA + 2aB

)
. (10)

roof. Under Assumptions 3 and 4, Proposition 3.7 transforms into,

P(X > x) ∼

N∑
n=1

N∑
m=1

N∑
d=−N

[
K (n,m, d − 1)LB(x)(d−1)−LA(x)n−(d−1)+

x−(aA(n−d+1)+(aB−aA)max(−d+1,0))p(n,m, d)
]
,

as x → ∞. Here, we used that max(−x, 0) − max(x, 0) = −x, for all x ∈ R. By noting that K (n,m, d) is bounded from
above and below (by

( N
N/2

)
and 1) and that LB(x)(d−1)−LA(x)n−(d−1)+ is slowly varying for every possible combination of n, d,

we see that the statement of the theorem holds true, for

a = min (aA(n − d + 1) − (d − 1)(aB − aA)1{d<1}),

n,d: p(n,d)>0
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w
a
p

R

here the minimum is taken over all n, d such that p(n, d) =
∑

m p(n,m, d) > 0. Now note that the function F (n, d) :=

A(n − d + 1) − (d − 1)(aB − aA)1{d<1} is increasing in n, for every d. So the minimum is attained for the lowest n with
ositive probability. Recall that we assumed ∆ = c(NA − NB) and NB ∈ {1, . . . ,N}, so p(n, d) = 0 for n < d

c + 1, so the
lowest n with positive probability is n̂(d) = max( dc + 1, 1), for given d. Inserting into F leads to

F (n̂(d), d) =

{
aA − (d − 1)aB if d ≤ −1
aA(( 1c − 1)d + 2) if d ≥ 1,

which is minimal for d = ±1, proving that

a = min
(
aA

(
1
c

+ 1
)

, aA + 2aB

)
= min

(
(c + 1)aA

c
, aA + 2aB

)
. □
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