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Beckmann [1] derives bounds on the length of reduction chains of classes of simply typed 
λ-calculus terms which are exact up-to a constant factor in their highest exponent. Afshari 
et al. [2] obtain similar bounds on acyclic higher-order recursion schemes (HORS) by 
embedding them in the simply typed λ-calculus and applying Beckmann’s result. In this 
article, we apply Beckmann’s proof strategy directly to acyclic HORS, proving exactness of 
the bounds on reduction chain length and obtaining exact bounds on the size of languages 
generated by acyclic HORS.

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Given a term of a rewriting system, it is natural to ask if the length of all reduction chains starting from the term can be 
bounded. The literature on this question is most developed with respect to simply typed λ-calculus. Investigations typically 
follow one of two distinct lines of inquiry. The first approach is to derive very precise bounds for any concrete term, often 
by semantic means. Examples can be found in the work of Dal Lago and Laurent [3], de Carvalho et al. [4] or Bernadet 
and Lengrand [5]. However, computing these bounds is as computationally expensive as normalizing the term itself. The 
alternative approach, taken by Schwichtenberg [6], Xi [7], Beckmann [1] and Clairambault [8,9], is to give collective bounds 
for classes of terms parameterized by various simple metrics such as their size, the maximal arity among their subterms 
or the maximal order among the types of their subterms. The bounds arrived at in this manner usually are towers of 
exponentials. Among these, Beckmann’s result is especially noteworthy as it is the first exact bound in the sense that it can 
only be improved by a constant factor in the highest exponent.

Higher-order recursion schemes (HORS) are a rewriting system which can be considered an extension of the simply typed 
λ-calculus with non-determinism and unrestricted recursion. As they provide an accurate model of higher-order functional 
programs, HORS have been studied intensively in the field of Software Verification (see e.g. [10–12]). While the problem 
of bounding reduction chain lengths naturally extends to HORS, the presence of non-deterministic rewriting rules inspires 
another interesting question: Can one bound the language size of a given system, i.e., the number of distinct normal forms it 
has? Such language size bounds can be employed to estimate the number of distinct results of a non-deterministic process, 
as is done in [2]. However, the literature on bounds for HORS is much sparser than that of the simply typed λ-calculus. The 
only result we are aware of is that by Afshari et al. [2]: They restrict themselves to HORS whose call-graph is acyclic. As 
such acyclic schemes can be embedded into the simply typed λ-calculus, Afshari et al. derive reduction chain length bounds 
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as a corollary of Beckmann’s result [1] and extend them to language bounds. However, they do not prove their reduction 
chain length bounds exact in the sense of Beckmann.

In this article, we derive bounds similar to those in [2] by applying Beckmann’s proof strategy directly to acyclic HORS 
and avoiding the detour through simply typed λ-calculus. This allows us to obtain bounds both on reduction chain length 
and language size, which we prove exact in the sense of Beckmann. Furthermore, we derive a result which relates the 
reduction length bounds to the arity of HORS terms, thereby accounting for the differences in the reduction behavior of 
HORS and the λ-calculus. Our analysis is partly motivated by a desire to illustrate the methodology of [1] by applying it to 
other rewriting systems.

Outline We begin this article by sketching the overall proof strategy for obtaining the bounds and proving their exactness 
in Section 2. We continue in Section 3 by formally defining acyclic higher-order recursion schemes and related concepts. The 
article’s technical work is carried out in Sections 4 and 5. In Sections 4.1 and 4.2, respectively, we derive upper and lower 
bound on the length of reduction chains of acyclic HORS. We use these to deduce similarly exact language size bounds in 
Section 5 and close with a discussion on the wider applicability of Beckmann’s method in Section 6.

2. Sketching the proofs

While the details of obtaining reduction length and language size bounds are technical, the general approach, employed 
by Beckmann [1] and Afshari et al. [2], respectively, is strikingly elegant. We thus begin by sketching the results and proof 
strategies to obtain them.

2.1. Reduction chain length bounds

We derive uniform bounds on the lengths of reduction chains for certain classes of terms of acyclic HORS. These classes 
are characterized by the degree deg(t) (the highest order among the recursive subterms of t), the recursive size s(t) or the 
recursive height of the syntax tree h(t) of these terms:

d(t) := max{n | ∃(ti)i≤n. t0 = t and ti � ti+1 for all i < n}
dsn(N) := max{d(t) | deg(t) ≤ n and s(t) ≤ N}
dhn(N) := max{d(t) | deg(t) ≤ n and h(t) ≤ N}

The overall results we arrive at are that, for a fixed degree n,

dsn(N) = 2n(�(N)) dhn(N) = 2n+1(�(N))

where 20(N) = N and 2n+1(N) = 22n(N) . More concretely, this yields

dsn(N) ≤ 2n(N) dhn(N) ≤ 2n+1(N).

The proof of these results is split into two steps.

Deriving the upper bound Following Beckmann [1], the bound is derived using expanded head reduction trees, trees which 
“account for” certain possible future reductions along a term’s reduction chains. More concretely, these trees are formalized 
as a derivation system ⇓α

ρ t , describing a tree of height α which accounts for all future reduction steps of non-terminals 
of an order at least ρ which can occur along any sequence t �∗ t′ . The upper bound is then derived by combining three 
results about such trees:

(i) Any well-typed acyclic HORS t can be trivially embedded into derivations of ⇓s(t)
deg(t)−1 t and ⇓h(t)

deg(t) t .
(ii) We may decrement the index ρ of a derivation at the cost of increasing the height α exponentially. In other words, 

⇓α
ρ+1 t implies ⇓2α

ρ t .
(iii) If ρ = 0, the derivation ⇓α

0 t can be used to estimate d(s) as follows: d(s) ≤ |t| ≤ 2α where |t| denotes the size of the 
tree ⇓α

0 t .

By repeatedly applying (ii) to trees obtained via (i) until we may derive bounds based on (iii), we arrive at

d(t) ≤ 2deg(t)+1(h(t)) and d(t) ≤ 2deg(t)(s(t))

which readily entails

dhn(N) = 2n+1(O (N)) and dsn(N) = 2n(O (N))
2
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Furthermore, when restricting our attention to those terms which only feature terminals and non-terminals of arity at 
least k, we can sharpen the estimate to |t| ≤ 2α

k+1 and thus subsequently

dsn(N) ≤ 2n(N)

k + 1
dhn(N) ≤ 2n+1(N)

k + 1

This is a result unique to higher-order recursion systems which accounts for the fact that higher arity non-terminals are 
unfolded in only one reduction step.

Deriving the lower bound We bound the length of reduction chains from below by giving terms of suitable degree, height 
and size which have sufficiently long reduction chains. For example, for the size-based bound, we construct terms Ds

n(N)

such that s(Ds
n(N)) = O (N), deg(Ds

n(N)) = n and d(Ds
n(N)) ≥ 2n(N). Alongside analogous terms Dh

n(N), they witness that

dhn(N) = 2n+1(�(N)) and dsn(N) = 2n(�(N))

2.2. Language size bounds

We derive uniform bounds on the size of the language generated by an acyclic HORS term. For this, we first define size-
and height-based measures. These depend on one additional parameter: the branching-factor bf(t) of a given HORS term t , 
the maximal number of distinct expressions the non-terminals occurring within t may be unfolded to.

l(t) := |{t′ | t �∗ t′ and t′ normal}|
lsk

n(N) := max{l(t) | deg(t) ≤ n and bf(t) ≤ k and s(t) ≤ N}
lhk

n(N) := max{l(t) | deg(t) ≤ n and bf(t) ≤ k and h(t) ≤ N}
The bounds we derive are

lsk
n(N) ≤ k2n(N) lhk

n(N) ≤ k2n+1(N)

which are exact in the sense that, for any fixed k,

lsk
n(N) = 2n+1(�(N)) lhk

n(N) = 2n+2(�(N))

which is again obtained in two separate steps.

Deriving the upper bound The proof follows the approximation given by Afshari et al. [2]. Essentially, as any normal form of 
an acyclic HORS can be derived via the leftmost-reduction strategy, there can only be at most “bf(t) different meaningful 
reduction steps” at any point along the reduction chain. This means that l(t) ≤ bf(t)d(t) and, therefore, using the previous 
results,

lsk
n(N) ≤ k2n+1(N) = 2n+1(O (N)) lhk

n(N) ≤ k2n(N) = 2n+2(O (N))

Deriving the lower bound Our approach directly parallels that for reduction chain length bounds. For the size-based bound, 
we build AHORS terms Ls

n,k(N) with s(Ls
n,k(N)) = O (N), deg(Ls

n,k(N)) = n, bf(Ls
n,k(N)) = k and l(Ls

n,k(N)) ≥ k2n(N) . For the 
height-based bound, analogous terms Lh

n,k(N) are constructed. These terms then witness the lower bounds

lhn(N) = 2n+2(�(N)) and lsn(N) = 2n+1(�(N))

3. Acyclic higher-order recursion schemes

The rewriting system we examine are acyclic higher-order recursion schemes (AHORS). The syntax of (possibly cyclic) 
HORS expressions and their types is given below.

s, t ∈ Tm ::= x | a | s t

σ ,τ ∈ Ty ::= 0 | σ → τ

In addition to variables and applications, HORS expressions can contain letters a, b, c, . . . which are separated into termi-
nals and non-terminals. While terminals, similarly to variables, cannot be reduced further, non-terminals mirror defined 
procedures common to programming languages in that they act as shorthands which unfold into more complex HORS ex-
pressions of ground type 0. In a departure from the behavior of procedures in programming languages, this shorthand 
relation need not be functional, that is, a non-terminal a may be defined as a shorthand for multiple different expres-
sions t1, . . . , tn . In such cases, an application of a may, non-deterministically, unfold a to any expression ti . We write 
3
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“a : τ := x1, ..., xn 
→ ta
1 | . . . | ta

k ” to denote that a is such a shorthand of type τ for the expressions ta
1, ..., t

a
n which 

may refer to the parameters x1, ..., xn . Clearly, some choices of shorthands, such as a : 0 := a, allow for expressions whose 
reduction sequences diverge, trivializing the question of reduction chain bounds. We thus restrict our attention to acyclic 
HORS, meaning those whose call-graph (i.e. the graph tracking which shorthands refer to which other shorthands) is acyclic.

We begin by defining the inductively defined judgment N ; T ; 	 � s : τ which characterizes HORS which are both acyclic 
and well-typed. Here, N is a context of typed non-terminals of the shape a : τ := �x 
→ ta

1 | ... | ta
k as explained above. To 

simplify arguments involving variable binding and substitution, we require that the choices of parameter variables for each 
non-terminal are fully distinct from each other. For example, if some non-terminal b with definition b : σ := �y 
→ tb appears 
in the body ta of a non-terminal a : τ := �x 
→ ta , this ensures that �x /∈ FV(tb). T and 	 list typed terminals and variables 
with the syntax a : τ and x : τ , respectively. We denote the arity of a type τ by aty(τ ) as defined below. We sometimes 
speak of the arity of an expression, in which case we mean the arity of its type.

Var

x : τ ∈ 	

N ;T ;	 � x : τ Term

a : τ ∈ T
N ;T ;	 � a : τ App

N ;T ;	 � s : σ → τ N ;T ;	 � t : σ
N ;T ;	 � s t : τ

Def

N ;T ;args(�x, τ ) � ta
1 : 0 . . . N ;T ;args(�x, τ ) � ta

k : 0 n = aty(τ )

N , (a : τ := x1, ..., xn 
→ ta
1 | . . . | ta

k),N ′;T ;	 � a : τ
args(ε, 0) := ε args(x0�x, σ → τ ) := x0 : σ , args(�x, τ )

aty(σ → τ ) := aty(τ ) + 1 aty(0) := 0

There are multiple things worth noting about these definitions: First of all, observe that N ; T ; 	 � s : τ also asserts the 
acyclicity of s. Whenever the Def-rule is applied, all shorthand definitions before and including the one currently being 
unfolded are removed from N . This ensures that the order in which non-terminals appear in N is a strict linear order 
< such that b < a for any non-terminal b occurring (recursively) in any ta

i . It is well-known that a graph, in this case the 
call-graph, can be linearized in such a fashion if and only if it is acyclic.

Secondly, note that whenever the Def-rule is applied, the variable context 	 is replaced with the argument variables 
of the non-terminal which is being unfolded. This is because an expression associated to a non-terminal must not refer to 
variables outside of its arguments.

Lastly, observe that N ; T ; 	 � s : τ only ensures the well-typedness of all non-terminals occurring recursively in s. It 
is possible that there is some (a : τ := �x 
→ ta

1 | . . . | ta
n) ∈ N with N ; T ; args(�x, τ ) � ta : 0 which simply does not occur 

recursively in s and is thus never “checked” by N ; T ; 	 � s : τ . For our purposes, this does not spell any trouble as only 
those non-terminals which may occur along the reduction sequence of s are of relevance to the question at hand, which are 
precisely those occurring recursively in s.

The recursive size s(t) and height h(t) of a term t is defined on the derivation of N ; T ; 	 � t : τ . This is well-defined 
as long as each of the terminals and non-terminals are distinct and only one shorthand definition for each non-terminal 
is contained in N , which we will assume going forward. Under these circumstances the derivation of N ; T ; 	 � t : τ (if it 
exists) is unique. We thus define

s(t t′) = s(t) + s(t′) h(t t′) = 1 + max{h(t),h(t′)}
s(a) = 1 + max{s(ta

i ) | i ≤ n} h(a) = 1 + max{h(ta
i ) | i ≤ n}

s(b) = 1 h(b) = 0

s(x) = 1 h(x) = 0

where (a := �x 
→ ta
1 | . . . | ta

n) ∈N and b ∈ T .
Furthermore, we define the order ord(τ ) recursively as

ord(σ → τ ) := max{ord(σ ) + 1,ord(τ )} ord(0) = 0

If t : τ is clear from the context, we sometimes write ord(t) for ord(τ ). We write deg(s) for the degree of s which is the 
maximal order ord(σ ) of the types σ occurring in the derivation of N ; T ; 	 � s : τ .

We close this section by defining the reduction steps N � s � s′ of the AHORS expressions. Observe that the context N
of non-terminals is needed to determine which terms ta

i any given non-terminal a may be unfolded to. We usually omit N , 
simply writing s � s′ , if N is clear from the context. Furthermore, note that a non-terminal may only be unfolded when all 
of its arguments are present.

δ
(a : τ := x1, ..., xn 
→ ta

1 | . . . | ta
n) ∈N n = aty(τ )

N � a s ... s � ta[�s/�x]
i ∈ {0,1} N � si � s′

i s1−i = s′
1−i

N � s s � s′ s′

1 n i 0 1 0 1

4
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4. Reduction chain length bounds

4.1. Deriving an upper bound

The key tool for establishing the upper bounds on reduction chains are expanded head reduction trees. These are deriva-
tions of judgments of the form N ; T ; 	 ⇓α

ρ t : τ according to the rules given in Fig. 1. Intuitively, the judgment expresses 
that the term t of type τ is strongly normalizing.1 The parameter α is an upper bound on the depth of the tree deriving 
⇓α

ρ t and ρ restricts which instances of the Cut-rule may be used. Crucially, ρ = 0 indicates a judgment in the Cut-free 
fragment of the derivation system.

Var

x : τ1 → ... → τn → τ ∈ 	
N ;T ;	 ⇓α

ρ t1 : τ1 ... N ;T ;	 ⇓α
ρ tn : τn

N ;T ;	 ⇓α+n
ρ x t1 ... tn : τ

Term

a : τ1 → ... → τn → τ ∈ T
N ;T ;	 ⇓α

ρ t1 : τ1 ... N ;T ;	 ⇓α
ρ tn : τn

N ;T ;	 ⇓α+n
ρ a t1 ... tn : τ

δ

(a : �τ → σ := �x�y 
→ ta
1 | . . . | ta

k) ∈N | �τ | = |�x| = n
N ;T ;	 ⇓α

ρ si : τi for 1 ≤ i ≤ n
N ;T ;	,args(�y, σ ) ⇓α

ρ ta
i [�s/�x] : 0 for 1 ≤ i ≤ k

N ;T ;	 ⇓α+n+1
ρ a s1 ... sn : τ

Cut

ord(σ → τ ) ≤ ρ N ;T ;	 ⇓α
ρ s : σ → τ N ;T ;	 ⇓α

ρ t : σ
N ;T ;	 ⇓α+1

ρ s t : τ
Fig. 1. The rules of N ;T ;	 ⇓α

ρ s : τ .

As the judgments of N ; T ; 	 ⇓α
ρ t : τ are syntactically complex, we omit parts of them which are clear from the context 

wherever possible. Often, we simply write ⇓α
ρ t . Most of this section is concerned with proving various properties of these 

derivations, often the validity of various transformation procedures on them. The choices made in designing these derivation 
rules are justified by the various lemmas we prove in this section. We thus elaborate on these as we go along.

We begin by illustrating the ultimate purpose of the expanded head reduction tree in this proof method: Observe that 
for any well-typed term t , there is one unique derivation of ⇓α

0 t (up-to the choice of α, which does not influence the 
“shape” of the derivation). Derivations ⇓α

0 “account for” every possible future reduction step t can take. To prove this, one 
first defines a size measure on such derivations. Note that the notation |t| is appropriate because of the unique “shape” of 
the derivation ⇓α

0 t .

Definition 1. For ⇓α
0 t we define its size |t| recursively on ⇓α

0 t:

|x t1 ... tn| := �n
i=1 |ti| (Var)

|b t1 ... tn| := �n
i=1 |ti| (Term)

|a t1 ... tn| :=
{

1 + max{|ta
i [�t/�x]| | i ≤ m} + �n

i=1|ti| aty(a) = n

�n
i=1|ti| otherwise

(δ)

where a := x1 . . . xk 
→ ta
1 | . . . | ta

m ∈N in the (δ) case.

The following lemma should be read as a formalizing that ⇓α
0 s “accounts for” all future reductions of s.

Lemma 2. If ⇓α
0 s and s �+ t then ⇓β

0 t for some β and |s| > |t|.

1 Our choice of notation differs from most of the literature, in which the judgment is usually denoted by �α
ρ t . We opt for this break in convention 

to avoid confusion with the typing judgment N ; T ; 	 � t : τ . Our notation ⇓α
ρ t is inspired by the notation for big-step semantics in the programming 

language design community, who denote by s ⇓ t that a term s normalizes to a term t . We believe the notation ⇓α
ρ t is appropriate as ⇓α

ρ t entails strong 
normalization of t .
5



B. Afshari and D. Wehr Information and Computation 290 (2023) 104982
Proof. Observe that the claim can be extended to the case s �∗ t weakening the inequality to |s| ≥ |t|. We prove the claim 
per induction on ⇓α

ρ s.

Case VAR: Then s = x �u. We know that x �u �+ t means that x u1 ... un �+ x u′
1 ... u′

n where ui �∗ u′
i . Per inductive hypothe-

sis, we know that ⇓βi
ρ u′

i , meaning if we take β := max{β1, ..., βn} we have ⇓β
ρ u′

i for 1 ≤ i ≤ n. Thus ⇓β+n
ρ x �u′ . Per 

inductive hypothesis, we know |ui | ≥ |u′
i |. Furthermore, x �u �+ x �u′ means there is u j �+ u′

j for which we have 
|u j| > |u′

j |. This yields the desired inequality:

|x �u| =
n∑

i=1

|ui| >
n∑

i=1

|u′
i| = |x �u′|

Case TERM: Completely analogous to the Var case.
Case δ: Then s = a �u. If aty(a) < |�u| then the case is just analogous to Var. Thus suppose aty(a) = |�u|. There are two 

possibilities how a �u �+ t can be constituted.

1. Possibly, a u1 ... un �+ a u′
1 ... u′

n with u j �+ u′
j for at least one j and uk �∗ u′

k for all other j 
= k. Then we 
can obtain ta

i [�u/�x] �∗ ta
i [ �u′/�x] by simply replaying uk �∗ u′

k and u j �+ u′
j at each substituted instance of 

uk and u j , respectively. This then yields ⇓β0
0 ta

i [ �u′/�x] and |ta
i [�u/�x]| ≥ |ta

i [ �u′/�x]| for each i ≤ m per inductive 
hypothesis. For each uk , we obtain ⇓γk

0 u′
k and |uk| ≥ |u′

k| per inductive hypothesis, with |u j | > |u′
j|. Then 

clearly ⇓β+n+1
0 a �u′ with β := max{β1, . . . , βm, γ1, . . . , γn}. Furthermore

|a �u| = 1 + max{|ta
i [�u/�x]| | i ≤ m} +

n∑
k=1

|uk| > 1 + max{|ta
i [ �u′/�x]| | i ≤ m} +

n∑
k=1

|u′
k| = |a �u′|

2. Otherwise, a u1 ... un �∗ a u′
1 ... u′

n � ta
i [ �u′/�x] �∗ t′ with u j �∗ u′

j . Then we can derive ta
i [�u/�x] �∗ ta

i [ �u′/�x] as 
in the case above. Together with ta

i [ �u′/�x] �∗ t′ this yields ta
i [�u/�x] �∗ t′ which allows us to derive ⇓β

0 t′ and 
|ta[�u/�x]| ≥ |t′| per inductive hypothesis on ta

i [�u/�x]. Then

|a �u| = 1 + max{|ta
i [�u/�x]| | i ≤ m} +

n∑
j=1

|u j| > |ta
i [�u/�x]| ≥ |t′|

Corollary 3 (Boundedness). For any ⇓α
0 s we have d(s) ≤ |s|.

Proof. For any (possibly infinite) reduction chain s = s0 � s1 � s2 � ... we know that |si | > |si+1| by Lemma 2. That means 
any chain can be at most of length |s|.

With Lemma 2 in mind, we can motivate the choice of premises for the derivation rules of ⇓α
ρ s. For illustrative purposes, 

we give a simplified variant of the derivation system, in which details irrelevant to this discussion have been omitted, below.

Var

⇓ t1 ... ⇓ tn

⇓ x�t δ

⇓ u1 ... ⇓ un
a : τ := �x 
→ ta

1 | . . . | ta
m

⇓ ta
1[�u/�x] ... ⇓ ta

m[�u/�x]
⇓ a �u

The proof of Lemma 2 relies on the fact that whenever a term ⇓α
0 s takes a reduction step s � t , this reduction step 

is “accounted for” somewhere within the derivation of ⇓α
0 s. Thus each of the (non-Cut) rules has as its premises the 

various “places” a reduction step could lead to or take place in. Simplest of all, the Var- and Term-rules only have to 
account for their argument terms as variables and terminals cannot take reduction steps on their own, so any reduction 
involving them will have taken place in one of their arguments. The more interesting case is that of δ: Clearly, the reductions 
a �t � ta

i [�t/�x] need to accounted for. However, this does not suffice to also account for the non-terminal’s arguments, as 
possibly xi /∈ FV(ta

j ), meaning ui does not occur in ta
j [�u/�x] which would in turn make it impossible to “replay” reduction 

steps in ui on ta
j [�u/�x]. Thus the δ-rule needs to also account for all of the arguments ui individually as well.

We continue by proving that various transformations of derivations ⇓α
ρ s can be carried out. Because the cases for Var

and Term are always analogous, we only detail the case for Var in the following proofs.

Lemma 4 (Weakening). If ⇓α
ρ s, α < α′ and ρ < ρ ′ then ⇓α′

′ s.
ρ

6
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Lemma 5 (Renaming). If N ; T ; 	 ⇓α
ρ s where x : τ , y : τ ∈ 	 then N ; T ; 	 ⇓α

ρ s[y/x].

Proof. [Lemmas 4 and 5] Immediate by induction on N ; T ; 	 ⇓α
ρ s.

Lemma 6 (Appending). If N ; T ; 	 ⇓α
ρ s : σ → τ and y : σ ∈ 	, then N ; T ; 	 ⇓α+1

ρ s y : τ .

Proof. Begin by observing that ⇓α
ρ y for any α via the Var rule and Lemma 4. We proceed via induction on ⇓α

ρ s.

Case VAR: Then s = x �t with ⇓α
ρ ti for 1 ≤ i ≤ n, meaning ⇓α+n+1

ρ x �t y as ⇓α
ρ y as well.

Case δ: Then s = a t1 ... tn with ⇓α
ρ ta

i [�t/�x], meaning ⇓α
ρ ta

i [�t/�x][y/xn+1] via Lemma 5. Together with ⇓α
ρ ti and ⇓α

ρ y this 
yields ⇓α+n+2

ρ a t1 ... tn y.

Case CUT: Then s = t t′ and ord(t) ≤ ρ . But this means that ord(t t′) ≤ ord(t) ≤ ρ as well. We can thus arrive at ⇓α+1
ρ t t′ y

via another Cut.

Note that the proof of Lemma 6 motivates why the δ-rule allows for partial applications of a non-terminal a (those a �t : τ
with τ 
= 0) as this accommodation eases the proof in the δ-case.

Lemma 7 (Substitution). If N ; T ; 	 ⇓α
ρ s and N ; T ; 	 ⇓β

ρ ti : τi where ord(τi) ≤ ρ and xi : τi ∈ 	 for 1 ≤ i ≤ n then 
N ;T ;	 ⇓α+β

ρ s[�t/�x].

Proof. Proof per induction on ⇓α
ρ s. We write s∗ as shorthand for s[�t/�x]

Case VAR: Then s = y �u. Per inductive hypothesis we immediately obtain ⇓α+β
ρ u∗

i . If y /∈ �x then y∗ = y and we may thus 
conclude that ⇓α+n+β

ρ y �u∗ . If y ∈ �x then y∗ = t j . We know that ord(t j) ≤ ρ meaning we may derive ⇓α+n+β
ρ t j �u∗

by n applications of the Cut rule.
Case δ: Then s = a �u with (a : τ := �y, �y′ 
→ ta) ∈N . We know by inductive hypothesis that ⇓α+β

ρ u∗
i and ⇓α+β

ρ ta
i [�u/�y][�t/�x]. 

As N ; T ; args((�y, �y′), τ ) � ta
i : 0 we know that �x /∈ FV(ta

i ) and thus that ta
i [�t/�x] = ta

i . Then ta
i [�u/�y][�t/�x] = ta

i [ �u∗/�y]
which yields ⇓α+β

ρ ta
i [ �u∗/�y], allowing us to conclude ⇓α+n+β+1

ρ a �u∗ as desired.

Case CUT: Then s = t0 t1. Per inductive hypothesis we know ⇓α+β
ρ t∗

i . As furthermore ord(t0) = ord(t∗
0) we conclude 

⇓α+1+β
ρ t∗

0 t∗
1.

Combining these transformations yields the Cut-admissibility lemma. It allows Cuts of order ρ + 1 to be performed in a 
derivation of ⇓α

ρ at the cost of an increase of the height-bound of the resulting derivation.

Lemma 8 (Cut-Admissibility). If ⇓α
ρ s : σ → τ and ⇓β

ρ t : σ such that ord(σ → τ ) ≤ ρ + 1 then ⇓α+β+1
ρ s t : τ .

Proof. Pick x /∈ 	, by Lemma 6 we have N ; T ; 	, (x : σ) ⇓α+1
ρ s x : τ . Then apply Lemma 7 to obtain N ;T ;	 ⇓α+β+1

ρ s t : τ .

By replacing each Cut-application of order ρ + 1 with an application of the Cut-admissibility lemma, one can lower the
Cut-level to ρ at the cost of an exponential blowup of the height-bound α.

Lemma 9 (Cut Reduction). If ⇓α
ρ+1 s then ⇓2α

ρ s.

Proof. We show ⇓2α−1
ρ s per induction on ⇓α

ρ . The claim follows by Lemma 4.

Case VAR: Then s = x �t . We directly obtain ⇓2α+n−1
ρ x �t as ⇓2α−1

ρ ti per inductive hypothesis. As 2α + n − 1 ≤ 2α+n − 1 the 
claim then follows by Lemma 4.

Case δ: Then s = a �t . Analogously to the Var case, we obtain ⇓2α+n
ρ a �t and apply Lemma 4 to derive the claim.

Case CUT: Then s = t t′ . The inductive hypothesis yields ⇓2α−1
ρ t and ⇓2α−1

ρ t′ . Then an application of Lemma 8 yields 
precisely ⇓2α+1−1

ρ t t′ .

We next show that any well-typed acyclic HORS N ; T ; 	 � t : τ can be embedded into ⇓α
ρ t . There are two different 

methods of achieving this. The “naïve” method simply replaces each �-rule with its corresponding ⇓-rule. Notably, this 
means App is replaced with Cut, resulting in a height-bound of h(t) and a Cut-level of deg(t). If one instead opts to 
7
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replace each App of order deg(t) with an application of Lemma 9, one lowers the Cut-level of the resulting derivation to 
deg(t) − 1 while increasing the height-bound to s(t). As s(t) ≤ 2h(t) the bound obtained via this embedding will never be 
worse because one Cut-reduction step and the resulting exponential increase of α is prevented.

Lemma 10 (Embedding). Let N ; T ; 	 � t : τ . Then

1. If deg(t) ≤ ρ then N ; T ; 	 ⇓h(t)
ρ t : τ .

2. If deg(t) ≤ ρ + 1 then N ; T ; 	 ⇓s(t)
ρ t.

Proof. We prove ⇓s(t)−1
ρ t and ⇓h(t)

ρ t per induction on 	; N � t : τ . We combine the handling of both claims when possible.

Case VAR: Then t = x and thus ⇓0
ρ x by the Var rule.

Case TERM: Then t = a with a ∈ T and thus ⇓0
ρ a by the Term rule.

Case DEF: Then t = a with (a := �x 
→ ta
1 | . . . | ta

n) ∈N . Per inductive hypothesis we obtain ⇓s(ta
i )−1

ρ ta
i and thus ⇓s(a)−1

ρ a by 
Lemma 4 and the δ rule because s(a) = 1 + max{s(ta

i ) | i ≤ n}. The claim follows analogously for h(a).
Case APP: Then t = u u′ .

1. Per inductive hypothesis we obtain ⇓h(u)
ρ u and ⇓h(u′)

ρ u′ . As we know ord(u) ≤ ρ we obtain ⇓h(u u)
ρ u u′ via

Cut as h(u u′) = max{h(u), h(u′)} + 1.

2. The inductive hypothesis yields ⇓s(u)−1
ρ u and ⇓s(u′)−1

ρ u′ . Because ord(u) ≤ ρ + 1 we can apply Lemma 8 to 
obtain ⇓s(u u)−1

ρ u u′ as s(u u′) = s(u) + s(u′).

The last lemma of this section provides a method of estimating |s| in terms of α for any given ⇓α
0 s.

Lemma 11 (Estimation). If ⇓α
0 s then |s| ≤ 2α .

Proof. We prove |s| ≤ 2α − 1 per induction on ⇓α
0 s.

Case VAR: Per inductive hypothesis |ti | ≤ 2α − 1. Then

|x�t| = �n
i=1|ti| ≤ �n

i=12α − 1 = n(2α − 1) ≤ 2α+n − 1

Case δ: Per inductive hypothesis |ta
i [�t/�x]|, |ti| ≤ 2α − 1. Then

|a�t| ≤ 1 + max{|ta
i [�t/�x]| | i ≤ m} + �n

i=1|ti| ≤ 1 + (n + 1)(2α − 1) ≤ 2α+n+1 − 1

The upper bounds on the lengths of reduction chains can then be obtained by combining all previous results of this 
section.

Theorem 12 (Upper bounds).

dhn(N) ≤ 2n+1(N) dsn(N) ≤ 2n(N)

Proof. Let N ; T ; 	 � t : τ with deg(t) = n and n > 0. By Lemma 10 we know that

N ;T ;	 ⇓h(t)
n t : τ N ;T ;	 ⇓s(t)

n−1 t : τ
Now we can repeatedly apply Lemma 9 to obtain

N ;T ;	 ⇓2n(h(t))
0 t : τ N ;T ;	 ⇓2n−1(s(t))

0 t : τ
which allows us to estimate, using Lemma 11, that

|t| ≤ 2n+1(h(t)) |t| ≤ 2n(s(t))

Lastly, because of Corollary 3 we know

d(t) ≤ |t| ≤ 2n+1(h(t)) d(t) ≤ |t| ≤ 2n(s(t))

As this can be done for any N ; T ; 	 � t : τ with deg(t) = n > 0 this yields the bounds as desired.
8



B. Afshari and D. Wehr Information and Computation 290 (2023) 104982
For the case of n = 0, observe that we must have N ; T ; 	 � t : 0 where t is a variable, terminal or non-terminal of 
type 0, such non-terminals in turn unfolding to analogous terms of degree 0. For such terms, each step t � t′ guarantees 
s(t) > s(t′) and h(t) > h(t′) as no substitutions take place. Thus we obtain

dh0(N) ≤ N < 21(N) ds0(N) ≤ N = 20(N)

Corollary 13 (Strong Normalization). All reduction chains starting at a term N ; T ; 	 � s : τ are finite.

Theorem 12 is completely analogous to the result for the simply typed λ-calculus obtained by Beckmann [1]. As we prove 
in Section 4.2, the bounds are also exact. Nonetheless, the bounds can be improved when considering another parameter: 
the arity of non-terminals. This result is motivated by the difference in reduction behavior between the λ-calculus and 
HORS. If a λ-abstraction over multiple variables is applied to multiple arguments, the arguments are substituted one-at-
a-time (as pictured below). On the other hand, non-terminals in HORS (such as a := x, y 
→ s below) receive all of their 
arguments in one reduction step.

(λx.λy.s) u v � (λy.s[x/u]) v � s[x/u, y/v] a u v � s[x/u, y/v]
This means that high-arity HORS expressions should reduce “faster” than the equivalent λ-terms in some way. The result 
below makes this intuition concrete.

Lemma 14 (Estimation II). Let s be an AHORS expression such that all non-terminals (recursively) occurring in s are of arities at least 
k. Then |s| ≤ 2α

k+1 whenever ⇓α
0 s.

Proof. We prove that |s| ≤ 2α−1
k+1 per induction on ⇓α

0 s

Case VAR: Per inductive hypothesis |ti | ≤ 2α−1
k+1 . Then

|x�t| = �n
i=1|ti| ≤

n∑
i=1

2α − 1

k + 1
= n(2α − 1)

k + 1
≤ 2α+n − 1

k + 1

because n(2α − 1) ≤ 2α+n − 1 always.
Case δ: Per inductive hypothesis |ta

i [�t/�x]|, |ti| ≤ 2α−1
k+1 . The only interesting case is that of aty(a) = |�t| = n. Then

|a�t| = 1 + max{|ta
i [�t/�x]| | i ≤ m} + �n

i=1|ti| ≤ 1 + n + 1

k + 1
(2α − 1)

= (k + 1 − n − 1) + (n + 1)2α

k + 1
≤ (n + 1)2α

k + 1
≤ 2α+n+1 − 1

k + 1

because n ≥ k and thus k − n ≤ 0.

Corollary 15. When restricting our attention to AHORS expressions which contain only non-terminals of arity at least k, we obtain the 
following upper bounds.

dhn(N) ≤ 2n+1(N)

k + 1
dsn(N) ≤ 2n(N)

k + 1

4.2. Deriving a lower bound

In this section, we show that the upper bounds from Section 4.1 are exact in the sense of Beckmann [1]. More concretely, 
we prove that

dsn(N) = 2n(�(N)) dhn(N) = 2n+1(�(N))

from which we can conclude that the bounds from Section 4.1 can only be improved to something of the shape

dsn(N) ≤ 2n (�rs N� + cs) dhn(N) ≤ 2n+1 (�rh N� + ch)

for constants 0 < rs, rh < 1 and cs, ch ∈R.
To derive this result, we follow Beckmann in defining terms Ds

n(N) and Dh
n(N) of suitable degrees, sizes and heights 

which have reduction chains of at least length 2n+1(N) and 2n(N), respectively. For this, fix a terminal B : 0 → 0 → 0. For 
terms t : 0 we define b-trees of height K with t at each leaf as follows
9
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T0(t) := t T K+1(t) := B T K (t) T K (t)

Such trees are of interest as they allow for exponential replication of reduction steps, as proven in the following lemma:

Lemma 16. For any t, s : 0 with t �n s we have T K (t) �n∗2K
T K (s).

Proof. Observe that T K (t) has 2K copies of t as its nodes. Then each copy can take n steps, leading to n ∗ 2K steps from 
T K (t) to T K (s) overall.

Now, with a non-terminal b : 0 → 0 := x 
→ b x x and writing [ f ]n(v) for the n-fold application of f to v as defined below

[ f ]0(v) := v [ f ]n+1(v) := f ([ f ]n(v))

we can derive the following result.

Fact 17. For any t : 0 we have [b]K t �∗ T K (t)

Proof. Simple induction on K .

The majority of this section is concerned with “compressing” these trees into terms s(S N
n (t)) = O (N) and h(H N

n (t)) =
O (N) with S N

n (t) �∗ T2n−1(N)(t) and H N
n (t) �∗ T2n(N)(t), respectively.

Beckmann [1] achieves this with the help of Church encodings of natural numbers, an approach that we parallel in HORS. 
Unfortunately, the reduction behavior of HORS Church encodings of different orders applied to each other is somewhat 
erratic, as often only reduction steps in the outer-most application may be taken. We thus first develop a theory of n-
repeaters, which can be seen as a semantic characterization of Church encodings and which helps us control this behavior 
in our proofs. Writing τi for the types

τ0 := 0 τi+1 := τi → τi

and tower(n0, ..., nm) for the tower of exponentials

tower(n) := n tower(n, �m) := ntower( �m)

we inductively define n-repeaters below.

Definition 18.

0. We call an expression f n
0 : τ2 an n-repeater of order 0 if n > 0 and for any m : τ1 and v : τ0 we have f n

0 m v �∗ [m]n(v)

i. We call an expression f ni
i : τi+2 an ni -repeater of order i if ni > 0 and for any family ( f

n j

j ) j<i of n j -repeaters of order j

and any m : τ1 and v : τ0 we have that f ni
i f

ni−1
i−1 ... f n0

0 m v �∗ [m]k(v) where k = tower(n0, n1, ..., ni).

This definition allows us to state and prove the following crucial lemma. It is needed for proving both the well-
definedness of our HORS Church encodings and the correctness of S N

n (t) and H N
n (t).

Lemma 19. For a family ( f
n j

j ) j≤i of n j-repeaters of order j, N > 0 and any m : τ1 and v : τ0 we have [ f ni
i ]N( f

ni−1
i−1 ) ... m v �∗ [m]k(v)

with k = tower(n0, ..., ni, N).

Proof. We proceed by induction on the maximum order i.

i = 0: We proceed by induction on N .

N = 1: Then [ f n
0 ]1(m) v = f n

0 m v �∗ [m]n(v) = [m]n1
(v).

N + 1:

[ f n
0 ]N+1(m) v = f n

0 ([ f n
0 ]N(m)) v �∗ [[ f n

0 ]N (m)]n(v)

= [ f n
0 ]N(m)(...([ f n

0 ]N(m)︸ ︷︷ ︸
n times

v)...)

IH�∗ [m]nN
(...([m]nN︸ ︷︷ ︸(v))...) = [m]nN+1

(v)
n times

10
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i + 1: Again, we perform an induction on N .

N = 1: Analogous to the case for i = 0.

N + 1: Then [ f ni
i ]N+1( f

ni−1
i−1 ) ... m v = f ni

i ([ f ni
i ]N( f

ni−1
i−1 )) ... m v �∗ [m]k(v) with k = tower(n0, ..., ni−2, n

nN
i

i−1, ni)

because, per inductive hypothesis, the expression [ f ni
i ]N ( f

ni−1
i−1 ) is an n

nN
i

i−1-repeater of order i − 1. Now, 

as (nnN
i

i−1)
ni = n

ni∗nN
i

i−1 = n
nN+1

i
i−1 , we can conclude that k = tower(n0, ..., ni−1, ni, N + 1).

We now define the HORS Church encoding en
i : (τi → τi) → τi → τi of n specialized to values of order i as follows

en
i : τi+2 := f xi �x 
→ [ f ]n(xi) �x

where �x = xi−1 ... x0.

Lemma 20. The term en
i : τi+2 is a n-repeater of order i.

Proof. Proof per induction on i.

i = 0: en
0 m v = [m]n(v) per definition.

i + 1: If ( f
n j

j ) j<i are n j-repeaters of order j then

en
i f

ni−1
i−1 f

ni−2
i−2 ...m v � [ f

ni−1
i−1 ]n( f

ni−2
i−2 ) ...m v �∗ [m]k(v)

with k = tower(n0, ..., ni−1, n) by Lemma 19. Observe that for i = 1 we have f
ni−2
i−2 = m which does not cause any 

issues.

Combining all previous results allows us to define the terms

S N
n (t) := [e2

n−2]N(e2
n−3) e2

n−4 ... e2
0 B t

We parameterize S N
n (t) over a term t because we employ it to derive both the lower bound on reduction chain length and 

on language size.

Lemma 21.

1. We have S N
n (t) �∗ T2n−1(N)(t).

2. For a fixed n, we have s(S N
n (t)) = O (N).

3. We have deg(S N
n (t)) = n.

Proof.

1. As the e2
i are all n-repeaters of order i by Lemma 20, we know by Lemma 19 that

S N
n (t) = [e2

n−2]N (e2
n−3) ... B t �∗ [B]2n−1(N)(t)

and furthermore by Fact 17 that [B]2n−1(N)(t) �∗ T2n−1(N)(t).
2. Observe that for arbitrary m and v we have s([m]N(v)) = s(v) + N(s(m) + 1) and thus that s(en

i ) = n + i + 1 and 
s([e2

n−2]N (e2
n−3)) = n + N(n + 1) = O (N). Together, this yields

s(S N
n (t)) = s(t) + s(B) + 2 +

j<n−3∑
j=0

(s(e2
j ) + 1)

︸ ︷︷ ︸
constant for fixed n

+ s([e2
n−2]N(e2

n−3))︸ ︷︷ ︸
O (N)

= O (N)

3. Observe that deg(S N
n (t)) = ord(e2

n−2) = n as e2
i : τi+2.

Corollary 22. dsn(N) = 2n(�(N))
11
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Proof. Fix some terminal off ∈ T and non-terminal on with (on 
→ off) ∈ N . By Lemma 21, the terms Ds
n(N) := S N

n (on)

have s(Ds
n(N)) = O (N) and deg(Ds

n(N)) = n. Furthermore, Ds
n(N) �∗ T2n−1(N)(on) and by Lemma 16 d(T2n−1(N)(on)) ≥ 2n(N), 

meaning d(Ds
n) ≥ 2n(N) overall, yielding the desired lower bound.

Unfortunately, this approach does not extend directly to the definition of H N
n (t). If we were to take H N

n (t) := S2N

n (t)
this would yield the desired d(Hn

N ) �∗ T2n(N)(t) however, we would also have h(Hn
N) = O (2N ). We thus have to take an 

additional “compression step”, squeezing [e2
n−2]2N

(·) into a term h(cN
i ) = O (N). For this, we take advantage of the fact a 

binary tree of height N may have 2N nodes.

c1
i : τi+2 := e2

i cN+1
i : τi+2 := f �x 
→ [cN

i ]2( f ) �x

Lemma 23. The term cN
i : τi+2 is a 22N

-repeater of order i.

Proof. Denote by ( f
n j

j ) j<i a family n j -repeaters of order j. Proof per induction on N .

N = 1: Follows directly from Lemma 20 as 220 = 2.
N + 1: Then

cN+1
i f

ni−1
i−1 ...m v � [cN

i ]2 ( f
ni−1
i−1 ) ...m v � [m]k(v)

with k = tower(n0, ..., ni−1, 22N
, 2) by Lemma 19 and the inductive hypothesis. As (22N

)2 = 22N+1
we then obtain 

k = tower(n0, ..., ni−1, 22N+1
) as desired.

Now we may simply take H N
n (t) := cN

n−2 e2
n−3 ... e2

0 B t .

Lemma 24.

1. We have H N
n (t) �∗ T2n(N)(t).

2. For a fixed n, we have h(Hn
N(t)) = O (N).

3. We have deg(Hn
N(t)) = n.

Proof.

1. We obtain

H N
n (t) = cN

n−2 e2
n−3 ... B t �∗ [B]2n(N)(t) �∗ T2n(N)(t)

by Lemma 23 and Fact 17.
2. Inductively we can see h(cN

i ) ≤ N(i + 1) = O (N) and thus

h(H N
n (t)) = max{h(cN

i )︸ ︷︷ ︸
O (N)

, h(x e2
n−2 ... B t)︸ ︷︷ ︸

constant for fixed n

} = O (N)

3. Simply observe that deg(H N
n (t)) = ord(cN

n−2) = n.

Corollary 25. dhn(N) = 2n+1(�(N))

5. Language size bounds

To be able to state the language size bounds as a closed expression, one needs2 to separate terms into classes according 
to one further parameter.

Definition 26. For any sequence N of non-terminal assignments, we define its branching factor bf(N ) as the least n such 
that all non-terminal mappings (a := �x 
→ ta

1 | . . . | ta
m) ∈N have m ≤ n.

2 An alternative approach, as taken by Afshari et al. [2], is to fix a global upper bound on the branching factor in the HORS under consideration.
12
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Overall, we obtain the bounds

lsk
n(N) ≤ k2n(N) lhn(N) ≤ k2n+1(N)

where k is the branching factor of the terms under consideration.
The strategy for obtaining the upper bound on language size follows that employed by Afshari et al. [2] to derive such 

upper bounds from their reduction chain length bounds.

Lemma 27. Let N ; T ; 	 � s : τ then l(s) ≤ bf(N )d(s) .

Proof. Per induction on d(s). If d(s) = 0 then s is normal and thus L(s) = {s} meaning l(s) = 1 = bf(N )0. Thus let d(s) > 1. 
Then let s1, . . . , sn be the set of expressions arrived at by reducing the left-most redex in s. It is well known that L(s) =⋃{L(si) | i ≤ n}. By the inductive hypothesis, we know that l(si) ≤ bf(N )d(si ) for each i. Thus we obtain

l(s) ≤
n∑

i=1

l(si) =
n∑

i=1

bf(N )d(si) ≤ bf(N )d(s)

because n ≤ bf(N ) and d(s) ≥ d(si) − 1 for each i ≤ n.

Corollary 28. We obtain the bounds

lsk
n(N) ≤ k2n(N) = 2n+1(O (N)) and lhn(N) ≤ k2n+1(N) = 2n+2(O (N)).

The strategy to obtaining the lower bounds is very similar to that in Beckmann [1] and Section 4.2: Define terms which 
“blow up” to a sufficient degree and many copies of a non-deterministic non-terminal, which in turn generate a large 
language. The proof also requires a result relating binary tree expressions with their resulting language size, similar to 
Lemma 16 for the reduction chain length bounds.

Lemma 29. Let n ≤ l(s) then n2K ≤ l(T K (s)).

Proof. Proof per induction on K . The case for K = 0 is trivial. For the K + 1 case,

l(Tk+1(s)) ≥ l(T K (s))2 IH≥ (n2K
)2 = n2K+1

because L(T K+1(s)) ⊇ {b t t′ | t, t′ ∈ L(T K (s))}.

Theorem 30. There exist terms Ls
n,k(N) and Lh

n,k(N) of branching-factor k with s(Ls
n,k(N)) = h(Lh

n,k(N)) = O (N) and deg(Ls
n,k(N)) =

deg(Lh
n,k(N)) = n. Furthermore,

l(Ls
n,k(N)) ≥ k2n(N) and l(Lh

n,k(N)) ≥ k2n+1(N).

Proof. Fix distinct terminals 1, . . . , k : 0 and a non-terminal a : 0 := 1 | . . . | k. Then take Ls
n,k(N) := S N

n (a) and observe the 
fact that Ls

n,k(N) �∗ T2n−1 (a) and thus l(Ls
n,k(N)) ≥ k2n(N) by Lemma 29. Similarly, take Lh

n,k(N) := H N
n (a).

Corollary 31.

lsk
n(N) = 2n+2(�(N)) lhk

n(N) = 2n+1(�(N))

and thus

lsk
n(N) = 2n+2(�(N)) lhk

n(N) = 2n+1(�(N)).

6. Discussion

We have obtained bounds on the lengths of reduction chains and the sizes of the languages generated by classes of 
acyclic HORS and have proven their exactness in the sense of Beckmann [1]. Key to these results was adapting Beckmann’s 
method of expanded head reduction trees to acyclic HORS. A similar undertaking can be found in the work of Clairam-
bault [8,9] who adapts Beckmann’s method to obtain bounds on the length of plays in game semantics for higher-order 
programming languages.
13
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A drawback of Beckmann’s method, as he presents it in [1] and our adaptation, is that it does not easily apply to basic 
extensions of the systems presented. In cut-free derivations, the next applicable rule is always determined by the left-most 
syntactic element of the term. In contrast, consider the following rewriting rule for the projections on pairs, added to either 
the simply typed λ-calculus or HORS:

πi (s1, s2) � si

With this definition, an expression πi s, with s not being of the form (s1, s2), cannot take the π -reduction step. This means 
there is no expanded head reduction tree derivation rule which applies to all expressions of the form πi s �t , at least not 
in the style employed by Beckmann in [1]. This problem was addressed by Beckmann and Weiermann in [13] where they 
give bounds for terms of Gödel’s T, including the recursion combinator, which raises the same problems as the projections 
πi . Instead of applying rules based on the left-most syntactic element, the applicability of these rules is determined by the 
term’s “head redex”, which may occur deep inside the term under consideration.

In [2], Afshari et al. translate derivations in the classical first-order sequent calculus with Cut into AHORS whose gen-
erated language are the derivation’s Herbrand expansions. To estimate the number of Herbrand expansions which may be 
generated in this manner, they derive reduction chain length and language size bounds for AHORS by embedding AHORS 
into the λ-calculus and applying Beckmann’s result [1]. To express their bound, they employ a notion of expression size 
which does not recurse on non-terminals. That is, for an expression N ; T ; 	 � t : τ their size function s′(t) is defined as 
below:

s′(b) = 0 b a terminal

s′(x) = 1 x a variable

s′(a) = 1 a a non-terminal

s′(t t′) = s′(t) + s′(t′)

For a given expression3 N ; T ; 	 � t : 0, they then derive a reduction chain length bound of 2(|N |+1)(k+1)

deg(t)+1 where

k = max{max{s′(ti) | 0 < i ≤ k} | a : τ := �x 
→ ta
1 | . . . | ta

k ∈ N } ∪ {s′(t)}
which, at face value, is exponentially larger than our bound of 2s(t)

deg(t) . However, this difference can be attributed to the fact 
that our notion of size can be exponentially larger than theirs. To illustrate this, fix terminals b : 0 → 0 → 0 and I : 0 as well 
as the non-terminals below and consider t := an I .

a0 x : 0 → 0 
→ b x x an+1 x : 0 → 0 
→ (an x) (an x)

For an N which contains the definitions for a0, . . . , an we have |N | = n + 1 and k = s′(b (am x) (am x)) = 4, meaning (|N | +
1)(k + 1) = 5(n + 2). On the other hand, s(t) = 2n+3 − 2. Thus, in the worst-case scenario of “exponentially growing” AHORS, 
both bounds can be seen to agree as the exponential “saved” in our bound is reintroduced by our notion of size. It should 
be noted that for the application of the bounds in [2], our bounds are tighter than those derived by Afshari et al. because 
the size of the AHORS under consideration is linear in the size of the sequent calculus derivation for both notions of AHORS 
size, meaning the exponential worst-case illustrated above does not occur.
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