
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

A framework for efficient dynamic routing under stochastically varying conditions

Levering, N.; Boon, M. ; Mandjes, M.; Núñez Queija, R.
DOI
10.1016/j.trb.2022.04.001
Publication date
2022
Document Version
Final published version
Published in
Transportation Research. Part B: Methodological
License
CC BY

Link to publication

Citation for published version (APA):
Levering, N., Boon, M., Mandjes, M., & Núñez Queija, R. (2022). A framework for efficient
dynamic routing under stochastically varying conditions. Transportation Research. Part B:
Methodological, 160, 97-124. https://doi.org/10.1016/j.trb.2022.04.001

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:15 Apr 2023

https://doi.org/10.1016/j.trb.2022.04.001
https://dare.uva.nl/personal/pure/en/publications/a-framework-for-efficient-dynamic-routing-under-stochastically-varying-conditions(1069e1a4-f4e1-4609-a126-a72da21cd9a8).html
https://doi.org/10.1016/j.trb.2022.04.001

Transportation Research Part B 160 (2022) 97–124

A
0
(

A
v
N
a

b

c

d

e

A

K
R
R
S
S
D

1

i
t
u
B
c
i

h

h
R

Contents lists available at ScienceDirect

Transportation Research Part B

journal homepage: www.elsevier.com/locate/trb

framework for efficient dynamic routing under stochastically
arying conditions✩

ikki Levering a,∗, Marko Boon b,c, Michel Mandjes a,c,d, Rudesindo Núñez-Queija a,e

Korteweg–de Vries Institute for Mathematics, University of Amsterdam, Amsterdam, The Netherlands
Department of Mathematics and Computer Science, Eindhoven University of Technology, Eindhoven, The Netherlands
Eurandom, Eindhoven University of Technology, Eindhoven, The Netherlands
Amsterdam Business School, University of Amsterdam, Amsterdam, The Netherlands
Centrum Wiskunde & Informatica, Amsterdam, The Netherlands

R T I C L E I N F O

eywords:
outing
eal time
hortest path
emi-Markov decision processes
ynamic programming

A B S T R A C T

Despite measures to reduce congestion, occurrences of both recurrent and non-recurrent
congestion cause large delays in road networks with important economic implications. Educated
use of Intelligent Transportation Systems (ITS) can significantly reduce travel times. We focus
on a dynamic stochastic shortest path problem: our objective is to minimize the expected travel
time of a vehicle, assuming the vehicle may adapt the chosen route while driving. We introduce
a new stochastic process that incorporates ITS information to model the uncertainties affecting
congestion in road networks. A Markov-modulated background process tracks traffic events that
affect the speed of travelers. The resulting continuous-time routing model allows for correlation
between velocities on the arcs and incorporates both recurrent and non-recurrent congestion.
Obtaining the optimal routing policy in the resulting semi-Markov decision process using
dynamic programming is computationally intractable for realistic network sizes. To overcome
this, we present the edsger⋆ algorithm, a Dijkstra-like shortest path algorithm that can be used
dynamically with real-time response. We develop additional speed-up techniques that reduce
the size of the network model. We quantify the performance of the algorithms by providing
numerical examples that use road network detector data for The Netherlands.

. Introduction

To reduce congestion in road networks, a wide variety of measures can be thought of. Perhaps the most basic measure is to
ncrease the network’s capacity — the Dutch government for example increased the total road length from 130.446 km in 2001
o 141.361 km in 2020 (CBS, 2020). Alternatively, one may attempt to better exploit the existing resources, examples being the
se of reversible lanes (Wolshon and Lambert, 2006) and the transit lane experiments in various US states (Boriboonsomsin and
arth, 2008; Chang et al., 2008). Despite such measures, recurrent congestion (i.e., congestion during peak hour) and non-recurrent
ongestion (i.e., congestion due to incidents) remain a major concern. Consequences include substantial delay in travel times,
ncreased economic costs, and negative environmental effects.

So as to reduce the effects of recurrent congestion, historical data is used to incorporate periodically occurring events (rush
ours, weekly patterns, etc.) into routing algorithms. Regarding non-recurrent congestion, an important role is played by Intelligent

✩ This research project is partly funded by the NWO Gravitation project, Netherlands Networks, grant number 024.002.003.
∗ Corresponding author.

E-mail address: n.a.c.levering@uva.nl (N. Levering).
vailable online 6 May 2022
191-2615/© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
http://creativecommons.org/licenses/by/4.0/).

ttps://doi.org/10.1016/j.trb.2022.04.001
eceived 21 May 2021; Received in revised form 21 November 2021; Accepted 1 April 2022

http://www.elsevier.com/locate/trb
http://www.elsevier.com/locate/trb
mailto:n.a.c.levering@uva.nl
https://doi.org/10.1016/j.trb.2022.04.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.trb.2022.04.001&domain=pdf
https://doi.org/10.1016/j.trb.2022.04.001
http://creativecommons.org/licenses/by/4.0/

Transportation Research Part B 160 (2022) 97–124N. Levering et al.

e
c
p
M

(
v
r
t
n
p
t
l

s
i

Traffic Systems (ITS) capable of providing travelers with real-time information. The availability of data on virtually all thinkable
network characteristics, combined with instant communication to individual travelers, offers the potential for routing with minimal
delay and minimal congestion. A complication, however, lies in the unpredictability of traffic surges and incidents, and in addition
in the computational effort needed to process all available information in real time. Our work provides an approach that handles
both these challenges: providing fast and close-to-optimal routing, using a probabilistic framework that is well suited for modeling
uncertainties that affect congestion.

Routing framework
In this paper we study routing by casting it as a dynamic stochastic shortest path problem. Our objective is to minimize the

xpected travel time of a vehicle pertaining to a given origin–destination pair, assuming that the vehicle is allowed to adapt the
hosen route while driving. A key feature of our setup is that we model the travel-time dynamics using suitably chosen stochastic
rocesses. Specifically, for each road of the network, we let the velocity of a vehicle on that road be determined by the state of a
arkovian background process, describing incidents, weather conditions, etc.

Routing decisions in the proposed dynamic model can be expressed in terms of a semi-Markov decision process (SMDP)
Boucherie and van Dijk, 2017; Puterman, 1994; Sutton and Barto, 2018). The state of the SMDP consists of the location of the
ehicle, which, in a practical context, can be traced by GPS, and the state of the background process, being provided by an ITS. The
oute can be adapted at each intersection along the traveled path. Based on the state of the SMDP at an intersection, a decision is
aken that informs the driver which arc to travel next. Clearly, the use of a Markovian background process facilitates the modeling of
on-recurrent, random events. Perhaps surprisingly, however, we will argue that it also allows us to incorporate the deterministic
atterns corresponding to recurrent, (near-)deterministic events. Importantly, our framework allows for correlation between the
ravel times on the edges and is therefore well capable of modeling the spillback effect: an incident at an arc causes a drop in speed
evels at upstream arcs.

In the context of our model, an optimal routing policy can be evaluated by the use of dynamic programming (DP), as it can be
hown that such a policy satisfies the Bellman optimality equations. DP does however suffer from the curse of dimensionality, making
t prohibitively slow for networks of practical relevance. To cope with this, we have developed the near-optimal edsger algorithm,

as well as its more efficient variant edsger⋆, which are Dijkstra-like shortest path algorithms, but with the additional feature that
the route can be adapted along the way, based on the current state of the background process. We furthermore present speed-up
techniques that greatly reduce the size of the underlying network model and its corresponding state-space. These techniques can
therefore be used as preprocessing steps to make the routing algorithms substantially more efficient.

To make our approach operational, the parameters pertaining to the background process must be estimated. Deterministic
patterns and corresponding transitions in the background process can be identified from historical data. In addition, we need to
estimate the frequency and consequences of non-recurrent events, such as the frequency of incidents or the drop in speed level
under bad weather conditions. Examples of institutions that collect data on traffic flows and traffic speeds are the National Data
Warehouse for Traffic Information (NDW) in The Netherlands, the Mobilitäts Daten Marktplatz (MDM) in Germany; in addition
various US states have such an infrastructure (see for example MITS, the Michigan Intelligent Transportation Systems).

Literature overview
Routing algorithms have extensively been examined in literature. In a deterministic graph with positive arc costs satisfying the

FIFO property, the shortest path can be obtained by Dijkstra’s algorithm, developed by Edsger W. Dijkstra in the late 1950s (Dijkstra,
1959; Kaufman and Smith, 1993). Throughout the years many variations and speed-up techniques for Dijkstra’s algorithm have been
presented, examples of which are the A⋆-algorithm and the bidirectional Dijkstra algorithm (Fu et al., 2006; Lerner et al., 2009).
Bellman (1958) and Ford Jr. (1956) constructed a shortest path algorithm that allows for both positive and negative arc costs.

The search for optimal routes can complicate considerably as soon as randomness is introduced. The stochastic shortest path
problem is an extension of the deterministic shortest path problem in which uncertainty in travel times is taken into account. Several
variations of this problem exist, each with its own objective. Examples of two well-studied objectives are the minimization of the
expected travel-time and the maximization of the on-time arrival probability. In the present article we focus on the first objective;
for studies on the latter we refer to Fan et al. (2005), Frank (1969), Nie and Wu (2009) and Pedersen et al. (2020) and references
therein. In case of a minimum expected travel-time objective, Dijkstra’s algorithm can still be applied if there is neither correlation
(incidents on specific arcs do not influence travel times on other arcs) nor time-dependency (the travel times do not depend on the
hour of the day) (Loui, 1983; Mirchandani and Soroush, 1986; Murthy and Sarkar, 1996). Recurrent events are well-described by
time-dependent velocities (think of predictable, recurring events such as rush hours), but Hall (1986) showed that classic shortest
path algorithms like Dijkstra’s algorithm fail in stochastic time-dependent networks. Hall additionally argued that it is suboptimal
to solely consider static routing and that it is advantageous to allow travelers to adapt the chosen route while traveling. These
findings resulted in studies on optimal adaptive routing algorithms in stochastic time-dependent networks. Examples of such studies
are Fu and Rilett (1998), Miller-Hooks (2001), Miller-Hooks and Mahmassani (2000). These algorithms do, however, not take ITS
information into account and are therefore limited in their capability to incorporate non-recurrent congestion.

Algorithms that do take ITS information into account can be divided into two categories. The first category consists of algorithms
that assume that ITS provides information on all realized travel times in the network. Without attempting to provide an exhaustive
overview, we refer in this context to the algorithms presented in Bander and White III (2002), Cheung (1998), Davies and Lingras
(2003), Gao and Chabini (2006), Gao and Huang (2012), Polychronopoulos and Tsitsiklis (1996), Provan (2003) and Waller and
Ziliaskopoulos (2002). The second category consists of algorithms that assume that ITS provides information on the state of a
98

background process in the network. Psaraftis and Tsitsiklis (1993) were among the first to work in this setting, presenting a

Transportation Research Part B 160 (2022) 97–124N. Levering et al.

i
r
c
(
c
a
w
i
g
s
c

s
s

t
s
c
a

b
s
d
o

2

d
c
a

i
r
i
o
m

t
o
𝑖
w
i

framework in which the travel time on an arc depends on an environmental variable becoming known once a vehicle arrives at the
attached node. Their setup was extended by Kim et al. (2005a), who work with a Markov process, the state of which state directly
determines the travel time. By ITS, the state of a Markov process of every arc is known while traveling through the network, so that
we can phrase the optimal routing problem in terms of a Markov decision process (MDP). The MDP framework is further explored
in Güner et al. (2012), Sever et al. (2013) and Thomas and White III (2007), under the assumption of independence of the Markov
processes on the arcs. Güner et al. (2012) and Sever et al. (2013) furthermore assume that the travel time on a link is known once
the intersection at the head of the link is reached, whereas in reality the conditions on an arc may still change while traveling on
that arc. Therefore, realized travel times can only take values from a previously chosen discrete collection of values. This is also
the case in Thomas and White III (2007), who assume the link costs to follow a known discrete distribution. In the MDP framework
an optimal policy can be characterized by the Bellman optimality equations and can therefore be evaluated by performing a DP
recursion (Bellman, 1957a,b; Bertsekas, 1976, 2005; Puterman, 1994; Ross, 1983; Sutton and Barto, 2018). DP suffering from the
curse of dimensionality, it may lead to excessive computational costs. Possible solutions are dimensionality reduction, as described
in e.g. Sýkora (2008) and references therein, and approximative procedures from Reinforcement Learning (RL) (Bertsekas, 2012;
Powell, 2007; Sutton and Barto, 2018). In the context of routing, dimensionality reduction is employed in Güner et al. (2012) and
Kim et al. (2005b), while RL techniques are studied in Mao and Shen (2018) and Sever et al. (2013).

Contributions
This paper has two main contributions. First, we present the Markovian background process and corresponding SMDP framework

n detail. To our knowledge, this is the first study that uses a continuous-time Markovian background process to develop an adaptive
outing algorithm. Although the approaches of Ferris and Ruszczyński (2000) and Kharoufeh and Gautam (2004) also work with
ontinuous-time Markovian processes, there are important differences with our proposal. In the setup of Ferris and Ruszczyński
2000), the travel times are directly modeled relying on a continuous-time Markov process. In Kharoufeh and Gautam (2004), a
ontinuous-time Markov background process is considered to model the velocities, but it only describes the dynamics on a single
rc and does not consider routing. With our continuous-time Markovian background process, applying to the network as a whole,
e overcome the drawback of the discrete MDP framework that we mentioned above, as the continuity of the background process

mplies continuity in arrival times (i.e., travel times are a continuous function of the departure epoch). Moreover, our framework
uarantees the FIFO-property (i.e., the arrival epoch is an increasing function of the departure epoch). In addition, we explicitly
how how to exploit the fact that our setup allows for correlation and is capable of incorporating both recurrent and non-recurrent
ongestion.

As a second contribution, after having presented a way to evaluate the optimal policy, which suffers from the curse of dimen-
ionality, we propose efficient approximating alternatives. The evaluation, through DP, of the optimal policy being prohibitively
low due to dimensionality issues, we propose the highly efficient edsger⋆ algorithm. Our numerical examples demonstrate that our

approach is well capable of incorporating both recurrent and non-recurrent congestion. Notably, it clearly outperforms deterministic
Dijkstra-type algorithms in which the per-arc travel times are replaced by their expected values. Comparison of the edsger⋆ algorithm
o DP shows that edsger⋆ is orders of magnitude faster. Indeed, the computational costs of DP grow exponentially with the network
ize, while edsger⋆ provides essentially real-time response, performing just slightly below optimal. The considered examples all
oncern specific parts of the Dutch road network, with instances that are based on the data provided by NDW to make sure they
re representative for real traffic scenarios.

The organization of the paper is now as follows. Section 2 contains a motivational example. The example demonstrates the
ackground process and the performance of the routing algorithms DP and edsger⋆ in this low-complexity setting. The general
tructure of the background process and SMDP framework are presented in Section 3. Section 4 considers routing in this framework,
escribing the optimal routing algorithm, heuristic algorithms and speed-up techniques. Numerical examples to show the usefulness
f the model and to assess the efficiency of the routing algorithms are presented in Section 5. Section 6 contains concluding remarks.

. Motivational example

This section provides a motivational example that illustrates the proposed framework and the various routing algorithms
eveloped for it. For transparency we consider a relatively small network, and describe the structure of a typical background process
orresponding to this network. We briefly describe the expected travel time and the run-time resulting from our routing algorithm
s well as competing algorithms, so as to provide an indication of the gain that can be achieved by our proposed routing scheme.

Consider the road network of Fig. 1(b), depicting the roads that can be used to travel from Almere (A) to Dronten (D), two cities
n the Netherlands. As in the rest of this paper, the goal is to minimize the expected travel time. Fig. 1(a) shows the corresponding
outing graph in which each node represents an intersection in Fig. 1(b), and each link represents the road between two of these
ntersections. The Dutch government has imposed maximum velocities on the 16 roads (8 bidirectional arcs, that is) in the network
f Fig. 1. However, due to e.g. bad weather conditions and traffic incidents vehicles may not always be able to drive at these
aximum velocities.

We model the variability in velocities by a Markovian background process. This background process records the events that affect
hese speeds. In this example, the only events discussed are incidents and rain showers, but it can be extended to include various sorts
f other events in an obvious manner. To model traffic accidents we let {𝑋𝑖(𝑡), 𝑡 ⩾ 0} be a Markov process that denotes whether arc
is blocked by an incident at time 𝑡. Specifically, we choose to set 𝑋𝑖(𝑡) = 1 if the arc is not blocked, and 2 otherwise. Furthermore,
e let {𝑌 (𝑡), 𝑡 ⩾ 0} be a Markov process that describes whether it rains at time 𝑡 or not: 𝑌 (𝑡) = 1 indicates it is dry whereas 𝑌 (𝑡) = 2
99

ndicates it rains. The Markovian background process can then be written as the vector 𝐵(𝑡) ∶= (𝑌 (𝑡), 𝑋1(𝑡),… , 𝑋16(𝑡)), having a state

Transportation Research Part B 160 (2022) 97–124N. Levering et al.
Fig. 1. Road network Almere-Dronten.

space of dimension 217. The state of 𝐵(𝑡) describes the velocities on each of the arcs: we let 𝑣𝑖(𝑠) be the velocity on arc 𝑖 when
𝐵(𝑡) = 𝑠.

In the sequel we impose the natural assumption that the processes 𝑋1(𝑡),… , 𝑋16(𝑡) are independent, which effectively means that
the occurrence of an incident on a specific link has no impact on the occurrence of an incident on other links. This assumption does
not imply that there is no correlation between travel times on the arcs, as the velocity on an arc depends on the state of 𝐵(𝑡).

We let the transition rate matrix for 𝑋𝑖(𝑡), for 𝑖 = 1,… , 16, be written as

𝑄𝑖 =
[

−𝛼𝑖 𝛼𝑖
𝛽𝑖 −𝛽𝑖

]

,

with 𝛼𝑖 the incident rate and 𝛽𝑖 the clearance rate of an incident at arc 𝑖. The structure of this transition rate matrix, in which the
rows sum to zero, arises from the theory on continuous-time Markov chains, which is described in detail in the works of Norris
(1997) and Ibe (2013). The 216 × 216-dimensional transition rate matrix of the vector process (𝑋1(𝑡),… , 𝑋16(𝑡)) is now given by
𝑄0 ∶= 𝑄16⊕𝑄15⊕⋯⊕𝑄1; here the operation ‘⊕’ denotes the Kronecker sum (Pease III, 1965), which, given ‘⊗’ denotes the direct
product and 𝐼dim(𝐶) denotes the identity matrix with the same dimensions as the matrix 𝐶, is defined as

𝐴⊕ 𝐵 = 𝐴⊗ 𝐼dim(𝐵) + 𝐼dim(𝐴) ⊗𝐵, (1)

for two square matrices 𝐴 and 𝐵. For example, the Kronecker sum for the two matrices 𝑄2 and 𝑄1 is given by

𝑄2 ⊕𝑄1 =

⎡

⎢

⎢

⎢

⎢

⎣

−𝛼1 − 𝛼2 𝛼1 𝛼2 0
𝛽1 −𝛽1 − 𝛼2 0 𝛼2
𝛽2 0 −𝛼1 − 𝛽2 𝛼1
0 𝛽2 𝛽1 −𝛽1 − 𝛽2

⎤

⎥

⎥

⎥

⎥

⎦

,

which can be interpreted as the transition rate matrix of (𝑋1(𝑡), 𝑋2(𝑡)) that lives on the state space (1, 1), (2, 1), (1, 2), (2, 2). Regarding
𝑌 (𝑡), we denote the transition rate from 1 to 2 as 𝜆 and from 2 to 1 as 𝜇. This means that 1∕𝜆 represents the mean time between
showers, and 1∕𝜇 the mean shower duration. Combining the above, the 𝑄-matrix for the full vector 𝐵(𝑡) can be written as

𝑄 =
[

𝑄0 − 𝜆𝐼 𝜆𝐼
]

.

100

𝜇𝐼 𝑄0 − 𝜇𝐼

Transportation Research Part B 160 (2022) 97–124N. Levering et al.

t

F

Table 1
Results example Almere-Dronten.

Average expected travel time Weighted average expected travel time Run-time (s)

DS 0.510 0.433 1.35 ⋅ 10−3

edsger⋆ 0.443 0.410 1.13 ⋅ 10−2

DP 0.442 0.410 4.26 ⋅ 10−1

Remark 1. For this example we have assumed that 𝑋𝑖(𝑡) is independent of 𝑌 (𝑡), which informally means that rain does not affect
the occurrence of incidents. This may sound unnatural, but, importantly, our model can be adapted in a straightforward manner
to make sure that weather conditions do affect the rate of incidents. The general setup will be introduced in full detail in the next
section. ◊

In the model introduced above the travel time on any arc is completely determined by the proposed velocity dynamics. This
means that for any given arc, if the state of the background process when leaving the origin node is given, the expected travel
time to the destination node can be computed (jointly with the state of the background process when arriving at the destination
node). This in principle allows the computation of the optimal routing policy. Below we will argue that this optimal policy can
be found relying on dynamic programming (DP) methods. DP-based methods, however, are typically prohibitively computationally
demanding in case the underlying state space is large (the curse of dimensionality). Focusing on our specific routing objective, it is
clear that such computational issues will arise, since, as we saw above, the number of background states is large, even in a small
network.

The edsger⋆ algorithm, that will be presented in Section 4, succeeds in overcoming the high computation complexity of DP-based
methods. The idea behind edsger⋆ is inspired by the A⋆-algorithm, a speed-up version of Dijkstra’s algorithm. We assess edsger⋆ on
wo criteria, namely:

◦ distance-to-optimality, i.e., the difference between the objective function value and the optimal value.
◦ efficiency, i.e., the run-time of the algorithm.

To provide an impression of the achievable performance of edsger⋆, we conducted an experiment on the network presented in
ig. 1. We define the 17-dimensional background process 𝐵(𝑡) as above. We chose 𝛼𝑖 = 0.1 h−1, 𝛽𝑖 = 2 h−1 for 𝑖 = 1,… , 16 and
𝜆 = 𝜇 = 0.25 h−1, meaning that the expected time between two incidents is 10 hours and the expected clearance time of an incident
30 minutes, whereas both the expected duration of a rain shower and the expected duration of a dry period equal 4 hours. These
parameter values were chosen merely for illustrative purposes; in all later experiments we base ourselves on historical data. In case
that it does not rain and there is no incident on the arc we let the vehicle speed be 120 km/h if there is no incident on the directly
adjacent arcs, and 100 km/h otherwise. Regarding the case that it does not rain and there is an incident on the arc, we let the
vehicle speed be 50 km/h if there is no incident on the directly adjacent arcs, and 20 km/h otherwise. In case it does rain the
velocities on this arc, in the four situations discussed above, are 100 km/h, 80 km/h, 20 km/h and 10 km/h, respectively.

The results pertaining to this example are shown in Table 1. The performance of the edsger⋆ algorithm is compared with a
deterministic Dijkstra-type algorithm that assumes that a vehicle can always drive at the maximum speed level and thus does not
take any stochasticity into account (‘DS’, being an abbreviation of ‘Deterministic Static’). We in addition implemented a competitive
DP algorithm for determining the policy that minimizes the expected travel time (‘DP’).

◦ The first column shows the expected travel time from A to D under the different policies, averaged (evenly) over all
possible initial background states.

◦ The second column provides a weighted average of the expectations corresponding to all possible initial background
states; for a given initial background state, the weight is chosen equal to its limiting probability.

◦ The last column contains the run-time of the three algorithms.

A first conclusion is that the objective function achieved by edsger⋆ is close to its minimal value (as provided by DP). Secondly, even
in this small network, the run-time of edsger⋆ is significantly lower than the run-time of the competitive DP algorithm. Numerical
experiments later in this paper will show that the run-time of the competitive DP algorithm grows exponentially with the network
size, whereas the run-time of the edsger⋆ algorithm remains essentially real-time (i.e., being in the sub-second scale). We in addition
conclude that ignoring the stochasticity, as is done by DS, leads to a fast but far from optimal algorithm; note in particular that the
corresponding objective function is substantially higher than its minimal value (as provided by DP).

3. Markovian velocity model

After the motivating example of the previous section, we now formally introduce the general mathematical framework for the
Markov model that describes the attainable velocities of the vehicles, and point out how in the context of this model routing can
be expressed in terms of an SMDP. As before, we consider the objective of minimizing the expected travel time between a given
origin–destination (OD) pair in the road network. Let 𝐺 = (𝑁,𝐴) be a graph representing the road network, with 𝑁 and 𝐴 the set of
101

nodes in 𝐺, and the set of directed arcs in 𝐺, respectively. The set 𝑁 represents the intersections in the road network, whereas the

Transportation Research Part B 160 (2022) 97–124N. Levering et al.

s

i
(
(
a
I
s

B

b
n

s
o
𝑖
n
c

c
d
l
𝑣

t
𝓁
a
r

w
m
d
a

l
𝐵

t

Fig. 2. Single arc network.

Fig. 3. Two-arc network.

et 𝐴 represents the roads that connect these intersections, implying 𝑘𝓁 ∈ 𝐴 only if there is a (direct) road in the network between
the intersections that are labeled by 𝑘 and 𝓁. Let 𝑑𝑘𝓁 be the length of arc 𝑘𝓁.

A realistic feature of our setup is that when this arc is traveled by a vehicle, the speed of this vehicle is not necessarily constant.
Indeed, it may vary between finitely many values, related to e.g. the occurrence of incidents and weather conditions. To deal with
these changing velocities, we introduce a Markovian background process on the arcs 𝐴, of which the background process discussed
n Section 2 is a special case. As we will argue below, the use of this stochastic process will allow us to incorporate random effects
corresponding to non-recurrent congestion, that is) as well as (near-)deterministic patterns in the attainable speeds on the arcs
corresponding to recurrent congestion). We assume that the state of the background process and the corresponding traffic velocities
re available while traveling. Indeed, travelers are able to adapt the chosen route while driving, based on the information available.
n the sequel we will phrase this dynamic stochastic shortest path problem with information on velocity levels in terms of a finite
emi-Markov decision model.

ackground process
Before presenting the full Markov-modulated environmental process, for expositional reasons we will first show examples of

ackground processes on small networks that fit into our framework and gradually extend this setup. First consider the single-arc
etwork in Fig. 2. Define {𝑋𝑘𝓁(𝑡), 𝑡 ⩾ 0} as the continuous-time Markovian background process on this arc such that

𝑋𝑘𝓁(𝑡) =

{

1 no incident on arc 𝑘𝓁 at time 𝑡
2 otherwise,

imilar to the modeling of incidents in the motivational example of the preceding section. The process 𝑋𝑘𝓁(𝑡) provides information
n possible events on 𝑘𝓁 and determines the velocity of a vehicle traveling on 𝑘𝓁: the speed at time 𝑡 equals 𝑣𝑘𝓁(𝑖) if 𝑋𝑘𝓁(𝑡) = 𝑖, for
= 1, 2. For technical reasons it is throughout assumed that all these velocities are strictly positive, but this is, in practical terms,
ot a restriction as they are allowed to have arbitrarily small values. The speed at which vehicles can travel on this arc is now
ompletely described through the background process 𝑋𝑘𝓁(𝑡) and the corresponding 𝑣𝑘𝓁(𝑖).

In the above example there are two possible speeds, but note that in practice one could work with more than two levels; one
ould e.g. think of the period between the clearance of an incident and the time the free-flow speed can be attained again. These
ynamics can be incorporated by allowing the state space of the process 𝑋𝑘𝓁(𝑡) to consist of more than two states. In general we
et this state space be denoted by 𝑘𝓁 = {1,… , 𝑛𝑘𝓁}. When 𝑋𝑘𝓁(𝑡) = 𝑠 ∈ 𝑘𝓁 , the speed at which vehicles are moving on arc 𝑘𝓁 is
𝑘𝓁(𝑠). We use the notation 𝑄𝑘𝓁 to denote the corresponding transition rate matrix of dimension 𝑛𝑘𝓁 × 𝑛𝑘𝓁 .

We now extend the network with an arc 𝓁𝑚 (Fig. 3), and let 𝐵(𝑡) = (𝑋𝑘𝓁(𝑡), 𝑋𝓁𝑚(𝑡)) be the Markovian background process on
his two-arc network. Here {𝑋𝑘𝓁(𝑡), 𝑡 ⩾ 0} and {𝑋𝓁𝑚(𝑡), 𝑡 ⩾ 0} are independent Markovian background processes on the arcs 𝑘𝓁 and
𝑚, respectively. As in the single-arc case we denote the state space of 𝑋𝑘𝓁(𝑡) by 𝑘𝓁 = {1,… , 𝑛𝑘𝓁} and the transition rate matrix
s 𝑄𝑘𝓁 . We can equivalently define 𝓁𝑚 and 𝑄𝓁𝑚 for the process 𝑋𝓁𝑚(𝑡). With 𝑋𝑘𝓁(𝑡) and 𝑋𝓁𝑚(𝑡) being independent, the transition
ate matrix 𝑄 of 𝐵(𝑡) is of the form

𝑄 = 𝑄𝓁𝑚 ⊕𝑄𝑘𝓁 , (2)

here ‘⊕’ is the Kronecker sum that was defined in (1). If 𝐵(𝑡) is in state 𝑠 ∈  ∶= 𝑘𝓁 ×𝓁𝑚, we let the speed at which vehicles are
oving be 𝑣𝑘𝓁(𝑠) on arc 𝑘𝓁 and 𝑣𝓁𝑚(𝑠) on arc 𝓁𝑚. Importantly, this means that the velocity on each of the two arcs is allowed to
epend on both 𝑋𝑘𝓁(𝑡) and 𝑋𝓁𝑚(𝑡). Hence, this way of modeling defines an implicit dependence between the velocities on the two
rcs.

The presented setup can easily be extended by adding more arcs to the network. Consider the network 𝐺 = (𝑁,𝐴) and
abel the directed edges in 𝐴 by 𝑘1𝓁1, 𝑘2𝓁2,… , 𝑘𝑛𝓁𝑛 with 𝑛 ∶= |𝐴|.1 The Markovian background process can now be written as
(𝑡) = (𝑋𝑘1𝓁1 (𝑡),… , 𝑋𝑘𝑛𝓁𝑛 (𝑡)). Here {𝑋𝑘𝑗𝓁𝑗 (𝑡), 𝑡 ⩾ 0}, with 𝑗 ∈ {1,… , 𝑛}, is a continuous-time Markov process with state space
𝑘𝑗𝓁𝑗 = {1,… , 𝑛𝑘𝑗𝓁𝑗 } and transition rate matrix 𝑄𝑘𝑗𝓁𝑗 , such that 𝑋𝑘𝑗𝓁𝑗 (𝑡) is the congestion level at arc 𝑘𝑗𝓁𝑗 ∈ 𝐴 at time 𝑡. Assuming

hat 𝑋𝑘𝑖𝓁𝑖 (𝑡), 𝑋𝑘𝑗𝓁𝑗 (𝑡) evolve independently for 𝑖 ≠ 𝑗, the transition rate matrix 𝑄 of 𝐵(𝑡) is of the form

𝑄 = 𝑄𝑘𝑛𝓁𝑛 ⊕𝑄𝑘𝑛−1𝓁𝑛−1 ⊕⋯⊕𝑄𝑘2𝓁2 ⊕𝑄𝑘1𝓁1 .

1 Observe the difference between 𝑛, denoting the number of arcs in the network, and 𝑛 , denoting the number of states in 𝑋 (𝑡).
102

𝑘𝓁 𝑘𝓁

Transportation Research Part B 160 (2022) 97–124N. Levering et al.

o
v
𝑘

w
w

t

o
c
a
p

A

R
M
w
𝑟
d
a
p

o

R
a
t
𝑋

w
d
w
p

R
d
t
v
(
a

S

p
(
o
a

Dependence between the arcs can again be realized by letting the speed on each of the arcs depend on the state of the full vector
𝐵(𝑡): when 𝐵(𝑡) is in state 𝑠 ∈  = 𝑘1𝓁1 ×… × 𝑘𝑛𝓁𝑛 the speed at which vehicles are moving on arc 𝑘𝑗𝓁𝑗 is 𝑣𝑘𝑗𝓁𝑗 (𝑠). The dynamics
f the vehicles moving on the network are now completely defined through the background process 𝐵(𝑡) and the corresponding
elocity levels. For instance, if 𝐵(𝑡′) = 𝑠, then the travel time on edge 𝑘𝑖𝓁𝑖 for traveling a distance 𝑑 ∈ [0, 𝑑𝑘𝑖𝓁𝑖] when leaving node
𝑖 at time 𝑡′ is distributed as 𝜏𝑠𝑘𝑖𝓁𝑖 (𝑑), with

𝜏𝑠𝑘𝑖𝓁𝑖 (𝑑) ∶= min

{

𝑡 ⩾ 0 ∶ ∫

𝑡

0
𝑣𝑘𝑖𝓁𝑖 (𝐵(𝑢)) d𝑢 ⩾ 𝑑

|

|

|

|

|

𝐵(0) = 𝑠

}

,

here we use the fact that the travel distance 𝑑 can be computed by an integral over the travel speed. For transparency of notation
e abbreviate

𝜏𝑠𝑘𝑖𝓁𝑖 (𝑑𝑘𝑖𝓁𝑖) ≡ 𝜏𝑠𝑘𝑖𝓁𝑖
o denote the travel time for arc 𝑘𝑖𝓁𝑖 when leaving at time 𝑡′ from node 𝑘𝑖.

There is global correlation in the above setup, due to the fact that the speed that a vehicle on a given arc can drive at depends
n the full background process 𝐵(𝑡), containing information on the congestion levels of all arcs. Previous research has shown that
orrelation due to non-recurrent congestion is primarily local; the congestion level of an arc mainly affects the attainable velocities
t upstream arcs that are within a certain distance of the incident arc (Guo et al., 2019; Priambodo et al., 2020). We model this
roperty through the following assumption.

ssumption 1 (Local-𝑟-correlation). Denote with 𝐴𝑟𝑘𝓁 the set of arcs that are at most 𝑟 arcs away from arc 𝑘𝓁 (including 𝑘𝓁 itself).
We assume the velocity on arc 𝑘𝓁 to depend only on the congestion levels of the arcs at most 𝑟 arcs away: 𝑣𝑘𝓁(𝑠) = 𝑣𝑘𝓁(𝑠′) if 𝑠𝑖 = 𝑠′𝑖
for all 𝑖 ∈ 𝐴𝑟𝑘𝓁 .

emark 2. Note that, if the dependence structure is not the same for all arcs, this asymmetry can still be captured by Assumption 1.
ore specifically, let, for every 𝑘𝓁 ∈ 𝐴, 𝐴𝑘𝓁 be the set of arcs whose congestion level affects the velocity on 𝑘𝓁. Observe that,
ith 𝑟𝑘𝓁 denoting the longest distance (in terms of number of arcs) from an element of 𝐴𝑘𝓁 to 𝑘𝓁, there is local-𝑟-correlation for
∶= max{𝑟𝑘𝓁 ∣ 𝑘𝓁 ∈ 𝐴}. Evidently, this local-𝑟-correlation assumption is unnecessarily strong, and can be weakened to capture the
ependence structure per arc. All presented results can be obtained under the weakened assumption of arc-specific local correlation
s well. However, for notational convenience, we will consistently use the (stronger) local-𝑟-correlation assumption throughout the
aper. ◊

Before continuing to the SMDP routing framework induced by our proposed model, the next remark discusses a possible extension
f our model, which was already noted in the motivational example.

emark 3. Suppose there is a Markovian process 𝑌 (𝑡) that prompts global correlation in the network, e.g. weather conditions that
ffect the velocities on all arcs in the network. This can be incorporated into our framework by expanding the process 𝐵(𝑡) with
he process 𝑌 (𝑡). We let 𝐵(𝑡) = (𝑌 (𝑡), 𝑋𝑘1𝓁1 (𝑡),… , 𝑋𝑘𝑛𝓁𝑛 (𝑡)) be such that, given the state of 𝑌 (𝑡), the future evolution of 𝑋𝑘𝑖𝓁𝑖 (𝑡) and
𝑘𝑗𝓁𝑗 (𝑡) are independent for 𝑖 ≠ 𝑗. The transition rate matrix for the case 𝑌 (𝑡) = 𝑠 is then given by

𝑄𝑠 = 𝑄𝑠𝑘𝑛𝓁𝑛 ⊕𝑄𝑠𝑘𝑛−1𝓁𝑛−1 ⊕⋯⊕𝑄𝑠𝑘2𝓁2 ⊕𝑄𝑠𝑘1𝓁1 , (3)

ith 𝑄𝑠𝑘𝑗𝓁𝑗 the transition rate matrix for the congestion levels at arc 𝑘𝑗𝓁𝑗 given 𝑌 (𝑡) = 𝑠. In this way our model allows for global
ependence when information on processes that affect velocities in the whole network is available. In the remainder of this paper
e will mainly focus on the case without global correlation, but, by using transition matrices of the type (3), the results of this
aper can be extended to the case of a known global dependence process. ◊

emark 4. By the use of phase-type distributions the proposed Markov model for congestion is not limited to exponentially
istributed times between states of congestion (Asmussen, 2003). Importantly, phase-type distributions can model random quantities
hat are less variable than the exponential distribution (e.g. by using Erlang distributions) as well as random quantities that are more
ariable than the exponential distribution (e.g. by using hyperexponential distributions). In particular, for highly predictable events
think of recurring events, such as rush hours) Erlang distributions with a high number of phases, thus leading to a low variance,
re well suited. ◊

emi-Markov Decision Process
The objective of this subsection is to phrase our optimization problem in terms of an SMDP. Above we introduced our stochastic

rocess modeling the velocity dynamics. Our setup is somewhat in the spirit of the one used in the work of Psaraftis and Tsitsiklis
1993), Kim et al. (2005a,b) and Sever et al. (2013), who use an MDP to capture the stochasticity in travel times. Importantly, as
pposed to such earlier MDP-based approaches, we impose a continuous-time, rather than discrete-time, stochastic process on the
103

rc speeds. Although at the expense of additional computational complexity, this has several advantages:

Transportation Research Part B 160 (2022) 97–124N. Levering et al.

t

◦ When a vehicle travels an arc, changing conditions on this arc are taken into account. In the conventional MDP
framework it is assumed that if a vehicle is at an intersection, travel times on the attached arcs are known and choices
are based on these known travel times. Conditions on these attached arcs may however change while driving, affecting
the arrival time.

◦ Travel times are a continuous function of the departure epoch. Therefore the consistency- or FIFO-property (Wellman
et al., 1995), is naturally satisfied (see Appendix A for the proof):

Proposition 1. Let 𝑘𝓁 ∈ 𝐴 and denote with 𝜏𝑡𝑘𝓁(𝑑) the travel time on arc 𝑘𝓁 for traveling a distance 𝑑 ∈ [0, 𝑑𝑘𝓁] when starting at 𝑡 ⩾ 0.
Then 𝑡1 ⩽ 𝑡2 implies that 𝑡1 + 𝜏

𝑡1
𝑘𝓁(𝑑) ⩽ 𝑡2 + 𝜏

𝑡2
𝑘𝓁(𝑑).

Routing in our framework can be analyzed using a finite semi-Markov decision process (SMDP). The state of the SMDP consists
of the location of the vehicle combined with the state of the background process. In a practical context, the first could be tracked
by GPS, whereas the latter can be provided by an ITS. Decision epochs are the arrival times at the intersections, in the sense that at
these epochs one has the opportunity to adapt the route. Denote at decision-epoch 𝑖 the state of the SMDP as (𝐾𝑖, 𝐵(𝑡𝑖)), with 𝐾𝑖 ∈ 𝑁
the label of the current intersection and 𝐵(𝑡𝑖) the state of the background process at the current time 𝑡𝑖. The following (reasonable)
assumptions are made:

◦ Waiting at a node is not allowed. Note that this assumption does not affect an optimal policy, as the FIFO property
implies that waiting is never advantageous.

◦ Information on the congestion levels on all arcs is available at all times.
◦ There is at least one path connecting every node with the destination node. If this assumption is not fulfilled, we have

a non-connected graph for which we can only construct routing policies for OD-pairs within connected components.

At decision epoch 𝑖, the goal is to choose a neighbor 𝑘𝑖+1 of 𝑘𝑖 such that the expected travel time from 𝑘𝑖 to the destination 𝑘⋆

is minimized. A policy matrix assigns a successor node for each node and each current state of the background process (i.e., each
pair (𝑘, 𝑠) with 𝑘 ∈ 𝑁, 𝑠 ∈ ). Given destination 𝑘⋆, the expected travel time under a policy 𝜋 and initial state (𝐾0, 𝐵(𝑡0)) is given
by

𝐽𝜋 (𝐾0, 𝐵(𝑡0)) = E
⎡

⎢

⎢

⎣

𝐼⋆−1
∑

𝑖=0
𝜏𝐵(𝑡𝑖)𝐾𝑖𝐾𝑖+1

|

|

|

|

𝐾𝑖+1 = 𝜋(𝐾𝑖, 𝐵(𝑡𝑖)), 𝑖 = 1,… , 𝐼⋆ − 1
⎤

⎥

⎥

⎦

, (4)

in which 𝐼⋆ denotes the number of decision epochs until the destination 𝑘⋆ is reached, 𝑡𝑖 the time of decision epoch 𝑖, and 𝜋(𝐾𝑖, 𝐵(𝑡𝑖))
he action under policy 𝜋 given the pair (𝐾𝑖, 𝐵(𝑡𝑖)). The optimal policy is now a policy 𝜋⋆ such that

𝜋⋆ = arg min
𝜋∈𝛱

𝐽𝜋 (𝐾0, 𝐵(𝑡0)),

with 𝛱 denoting the set of admissible policies (i.e., policies for which the probability of reaching the destination is one for all initial
states). For every non-admissible policy 𝜋 set 𝐽𝜋 (𝑘, 𝑠) ∶= ∞ for all (𝑘, 𝑠) ∈ 𝑁 × .

We conclude this section by deriving expressions for both the expected travel time and the transition probabilities pertaining to
a single arc. The resulting quantities are building blocks of the routing policies that will be discussed in the next section. To this
end, define, for 𝑑 ∈ [0, 𝑑𝑘𝓁] and 𝑠, 𝑠′ ∈ , the expected travel time on 𝑘𝓁:

𝜙𝑠(𝑑 ∣ 𝑘,𝓁) ∶= E[𝜏𝑠𝑘𝓁(𝑑)], 𝛷(𝑑 ∣ 𝑘,𝓁) ∶= (𝜙𝑠(𝑑 ∣ 𝑘,𝓁))𝑠∈

In addition, we will work with the Laplace–Stieltjes transform of the travel time on edge 𝑘𝓁 intersected with the event that upon
completion the background state is 𝑠′:

𝜓𝑠𝑠′ (𝑑 ∣ 𝛾, 𝑘,𝓁) ∶= E[𝑒−𝛾𝜏
𝑠
𝑘𝓁 (𝑑)1{𝐵(𝜏𝑠𝑘𝓁(𝑑)) = 𝑠′}], 𝛹 (𝑑 ∣ 𝛾, 𝑘,𝓁) ∶= (𝜓𝑠𝑠′ (𝑑 ∣ 𝛾, 𝑘,𝓁))(𝑠,𝑠′)∈× ,

with 𝛾 ∈ R⩾0. Here 1{𝐸} is the indicator function of an event 𝐸, i.e., a random variable that has value 1 if 𝐸 is true and 0 otherwise;
E[𝑋 1{𝐸}] is the expectation of a random variable 𝑋, but only in the event that 𝐸 applies. The objects introduced above can be
evaluated by conditioning on a possible jump of the background process in a small time-interval. As shown in the following theorem,
it leads to a system of linear differential equations, whose solution can be given in terms of matrix exponentials. A proof is given
in Appendix B.

Theorem 1. Given a graph 𝐺 = (𝑁,𝐴) with a pair of nodes 𝑘,𝓁 ∈ 𝑁 , 𝛾 ∈ R⩾0 and a distance 𝑑 ⩾ 0, it holds that

𝑉𝑘𝓁 𝛷
′(𝑑 ∣ 𝑘,𝓁) = 𝟏 +𝑄𝛷(𝑑 ∣ 𝑘,𝓁),

𝑉𝑘𝓁 𝛹
′(𝑑 ∣ 𝛾, 𝑘,𝓁) = (𝑄 − 𝛾𝐼)𝛹 (𝑑 ∣ 𝛾, 𝑘,𝓁),

with 𝑉𝑘𝓁 ∶= diag {(𝑣𝑘𝓁(𝑠))𝑠∈} and 𝟏 a ||-dimensional column vector of ones.
A solution for this system of linear differential equations can be written as

𝛷(𝑑 ∣ 𝑘,𝓁) =
[

𝐼 𝟎
]

exp

{[

𝑑𝑉 −1
𝑘𝓁 𝑄 𝑑𝑉 −1

𝑘𝓁 𝟏
⊤

]}[

𝟎
]

(5)
104

𝟎 0 1

Transportation Research Part B 160 (2022) 97–124N. Levering et al.
𝛹 (𝑑 ∣ 𝛾, 𝑘,𝓁) = exp{𝑑 𝑉 −1
𝑘𝓁 (𝑄 − 𝛾𝐼)} (6)

with 𝟎 an ||-dimensional column vector of zeros.

Due to our requirement that all the 𝑣𝑘𝓁(𝑠) are positive, the matrix 𝑉 −1
𝑘𝓁 is well-defined. Applying the above result, the expected

travel time on an arc can be directly computed using the expression for 𝛷(𝑑 ∣ 𝑘,𝓁). An expression for the transition probabilities
can be found by setting 𝛾 equal to 0 in (6):

Corollary 1. For a pair of nodes 𝑘,𝓁 ∈ 𝑁 and pair of background states 𝑠, 𝑠′,

P(𝐵(𝜏𝑠𝑘𝓁) = 𝑠′) =
[

exp
(

𝑑𝑘𝓁𝑉
−1
𝑘𝓁 𝑄

)]

𝑠,𝑠′ (7)

Remark 5. The upper left ||×||-block of the matrix exponential in (5) is the matrix exponential of 𝑑𝑉 −1
𝑘𝓁 𝑄. Thus to compute both

the expectation E[𝜏𝑠𝑘𝓁] and the transition probabilities P(𝐵(𝜏𝑠𝑘𝓁) = 𝑠′), computation of the matrix exponential given in (5) suffices. ◊

4. Dynamic routing algorithms

Recall that our objective is to minimize the expected travel time for a given OD-pair in a road network in which a vehicle
may experience changing velocities and in which one knows the current state of the driving background process 𝐵(𝑡). After having
provided background on the optimal policy resulting from DP (Section 4.1), we present two Dijkstra-like shortest path algorithms
that aim to output a (near-)optimal routing policy. These algorithms are dynamic shortest path algorithms, in that at every new
intersection a shortest path algorithm is run again. The analysis of Section 4.2 reveals that the first of these two algorithms, which we
have called edsger, suffers from the curse of dimensionality. The second presented algorithm, edsger⋆, as introduced in Section 4.3,
overcomes this drawback, and offers real-time response (i.e., being in the sub-second scale). Useful implementation details, for these
two algorithms as well as for the DP-based approach, will be provided in Section 4.4. We conclude with Section 4.5, which presents
speed-up techniques that reduce the state space and/or network size, to be used to further decrease the computational costs.

4.1. Optimal policy by dynamic programming

In this subsection we present an algorithm that outputs an optimal routing policy. As we will see in our numerical examples,
this method is prohibitively slow; in this paper we mainly use it as a benchmark for our routing algorithms edsger and edsger⋆. We
will argue below that optimal policies can be characterized as solutions of a set of Bellman optimality equations (Bellman, 1957a,b;
Bertsekas, 1976, 2005; Puterman, 1994; Ross, 1983; Sutton and Barto, 2018). DP methods, competitive algorithms that solve these
optimality equations, have high computational costs, so that they are not particularly suitable for real-time routing purposes. Details
on the implementation of the competitive DP algorithm are provided in Section 4.4.

We proceed by arguing that algorithms outputting an optimal routing policy suffer from the curse of dimensionality. In case
of an MDP, Güner et al. (2012), Kim et al. (2005a,b) and Sever et al. (2013) have characterized an optimal policy to satisfy the
Bellman optimality equations. Importantly, this property carries over to our framework, as can be seen as follows. First note that
we have a destination node 𝑘⋆ which is cost-free and absorbing, i.e., 𝑘⋆ = 𝜋(𝑘⋆, 𝑠) and 𝐽𝜋 (𝑘⋆, 𝑠) = 0 for all 𝑠 ∈ . Furthermore,
denoting 𝑘1 ∶= 𝜋(𝑘0, 𝐵(𝑡0)) as the next node under an admissible policy 𝜋 given the state (𝑘0, 𝐵(𝑡0)) with 𝑘0 ∈ 𝑁 ⧵ 𝑘⋆ and 𝑡0 ∈ R, (4)
implies

𝐽𝜋 (𝑘0, 𝐵(𝑡0)) = E
[

𝜏𝐵(𝑡0)𝑘0𝑘1

]

+
∑

𝑠′∈
P
(

𝐵(𝜏𝐵(𝑡0)𝑘0𝑘1
) = 𝑠′

)

𝐽𝜋 (𝑘1, 𝑠′).

Thus, any admissible policy satisfies a set of Bellman equations. Denote with NB(𝑘) the set of neighbors of a node 𝑘 ∈ 𝑁 ,
i.e., 𝓁 ∈ NB(𝑘) only if 𝑘𝓁 ∈ 𝐴 (note that 𝑘 ∉ NB(𝑘) as it is not allowed to wait at a node). An optimal policy 𝜋⋆ can then be
given through the Bellman optimality equations:

𝜋⋆(𝑘0, 𝐵(𝑡0)) = arg min
𝑘1∈NB(𝑘0)

{

E
[

𝜏𝐵(𝑡0)𝑘0𝑘1

]

+
∑

𝑠′∈
P
(

𝐵(𝜏𝐵(𝑡0)𝑘0𝑘1
) = 𝑠′

)

𝐽𝜋
⋆
(𝑘1, 𝑠′)

}

. (8)

The expected travel times and transition probabilities in (8) can be computed relying on the expressions derived in the previous
section (in particular Eqs. (5) and (7)).

Algorithms that solve the Bellman optimality equations have received substantial attention in the literature. Examples of
frequently used solution methods are the dynamic programming (DP) methods (e.g. value iteration and policy iteration) and linear
programming. It should be realized that the size of our state space may explode: even in a simple setup in which every link has only
two possible background states, a network with |𝐴| links leads to a state space of size 2|𝐴|. We will therefore employ value iteration
(VI) to solve the optimality equations (Sutton and Barto, 2018). For large state spaces the VI algorithm does however suffer from
high complexity:

◦ in every iteration of the algorithm the right hand side of (8) is computed for every possible 𝐵(𝑡0) ∈ , so that the
complexity of the value iteration algorithm contains a term ||2;

◦ computation of the expectations and the transition probabilities, which requires the evaluation of a matrix exponential
105

as in (7), will be intractable when the transition rate matrix 𝑄 is large;

Transportation Research Part B 160 (2022) 97–124N. Levering et al.
◦ a large policy matrix will lead to high memory costs.

DP suffers from the curse of dimensionality; expanding the network leads to an exponential increase in the size of the state space
and corresponding exponential increase in computational costs.

Based on the above, it can be concluded that VI has limited potential in practical settings. We will therefore introduce two
dynamically-used Dijkstra-like shortest path algorithms, edsger and edsger⋆; here ‘dynamically-used’ means that the shortest path
algorithm is run at any decision epoch along the way. edsger provides near-optimal solutions, but, similar to VI, suffers from the
curse of dimensionality. edsger⋆ is an adaptation of edsger that uses the local-𝑟-correlation assumption to overcome the curse of
dimensionality.

4.2. Edsger algorithm

The edsger algorithm (where edsger is an abbreviation of ‘Expected Delay in Stochastic Graphs with Efficient Routing’) can be
seen as a dynamically-used stochastic version of the A⋆-algorithm. More concretely, the method works as follows:

◦ At every decision epoch (every arrival at a node, that is) we use a stochastic shortest path algorithm to identify a path
with lowest expected cost, from the current node to the destination, provided that one is not allowed to change the
route along the way. The resulting policy 𝜋E is to travel to the next node along this path. Thus, given that a vehicle
is at node 𝑘0 ∈ 𝑁 at time 𝑡0, edsger uses a shortest path algorithm with input (𝑘0, 𝐵(𝑡0)) to output a path from 𝑘0 to
𝑘⋆. Then, denoting 𝑘1 for the first node in this path, we have that 𝜋E(𝑘0, 𝐵(𝑡0)) = 𝑘1.

◦ This procedure is then ‘dynamically-used’ in the sense that it is repeated when arriving at 𝑘1, so as to identify
𝑘2 ∶= 𝜋E(𝑘1, 𝐵(𝑡1)). Given the fact that the state of the background process may have changed while traveling from
𝑘0 to 𝑘1, this next node may differ from the one that was selected at 𝑘0. The procedure thus exploits the information
currently available.

◦ One proceeds along these lines until the destination node 𝑘⋆ has been reached.

A first important remark is that this procedure is not necessarily minimizing the expected delay, i.e., the resulting route does
not always coincide with the one generated by the DP-based algorithm discussed earlier. We note that one reason for this potential
loss is the fact that edsger uses a stochastic A⋆-like shortest path algorithm. In a network with stochastic travel times the notion that
a subpath of a shortest path is a shortest path, a property on which Dijkstra and A⋆ are built, does not generally hold, so that the
output is not guaranteed to be the shortest path in expectation. An example (in our context) of this finding, which is often attributed
to Hall (1986), is given in the following example.

Example. A vehicle wants to travel from 𝑘0 to 𝑘⋆ in the network of Fig. 4, in which each arc is 60 km long. A state of the background
process 𝐵(𝑡) is a 3-tuple consisting of the state of (𝑘0𝑘1)1 (the upper link between 𝑘0 and 𝑘1), (𝑘0𝑘1)2 (the lower link between 𝑘0 and
𝑘1) and 𝑘1𝑘⋆, in that order. A closer look at the velocities reveals that the speed on link (𝑘0𝑘1)1 is always 60 km/h, whereas the
speeds on links (𝑘0𝑘1)2 and 𝑘1𝑘⋆ can take two and three values, respectively. For instance, the speed on link (𝑘0𝑘1)2 is 100 km/h if
this link is in state 1 and 10 km/h if this link is in state 2 (irrespective of the states of the other links). We consider the situation
that the initial state of the background process is set 𝐵(𝑡0) = (1, 1, 1). Using Theorem 1 we find the costs of using the upper and
lower link:

E[𝜏𝐵(𝑡0)(𝑘0𝑘1)1
] = 1 h, E[𝜏𝐵(𝑡0)(𝑘0𝑘1)2

] = 1.02 h.

edsger would therefore advise to travel via (𝑘0𝑘1)1. Comparison of the expected travel times of the two paths between 𝑘0 and 𝑘⋆

does however reveal that this is not optimal, as these are 12.21 h and 11.58 h for traveling via (𝑘0𝑘1)1 and (𝑘0𝑘1)2 respectively.
Thus even though (𝑘0𝑘1)1 is the optimal path to 𝑘1, it is not in the expected shortest path to 𝑘⋆. A reason for this phenomenon lies
in the fact that edsger only takes the expectation into account, while variability plays a role here as well, as this variability directly
relates to different conditions on future links. To see this, first note that traveling to 𝑘1 via the upper link will always take 1 h.
Upon arrival in 𝑘1 there is a high probability that the background process of 𝑘1𝑘⋆ has transitioned to a state with reduced speed. If
link (𝑘0𝑘1)2 spends most time in state 1, traveling to 𝑘1 via the lower link can be done within 1 h. In that case there is still a high
probability that link 𝑘1𝑘⋆ can (partly) be traveled at speed 100. Traveling via (𝑘0𝑘1)2 therefore yields a lower expected travel time
than traveling via (𝑘0𝑘1)1, despite the fact that we have E[𝜏𝐵(𝑡0)(𝑘0𝑘1)1

] < E[𝜏𝐵(𝑡0)(𝑘0𝑘1)2
]. ◊

A second reason for the potential loss in optimality lies in the fact that edsger does not exploit its dynamical use in its fullest
extent: due to the fact that in the DP approach one knows that one is allowed to change the path along the way, it potentially leads
to lower cost than the dynamically used version of edsger. This effect is highlighted in the example provided below.

Example. The objective is to minimize the expected travel time from 𝑘0 to 𝑘⋆ in the network of Fig. 5 with 𝐵(𝑡0) = (1, 1, 1, 1). Every
arc has two states and a vehicle can drive 100 km/h on an arc if the state of the arc is 1 and 80 km/h otherwise. The transitions
from state 1 to state 2 have rate 0.1 and the transitions from state 2 to state 1 have rate 1 for all arcs. We first note that the
expected travel times on all paths are equal, such that edsger cannot distinguish between these paths. However, edsger does not take
into account that, in case 𝑘1 is chosen as next node, updated information about the speeds on the two optional paths from 𝑘1 to
𝑘⋆ can be used to pick the optimal path given this updated information. VI does use this information and as such picks the route
via 𝑘1, yielding a 37 s improvement in expected travel time. Note that, for a travel distance of 100 km, this is only a very small
improvement. ◊
106

Transportation Research Part B 160 (2022) 97–124N. Levering et al.

t
t

t
w
a

H
a
w

f

w
t
n

o
a

p
c
s

Fig. 4. Example in which edsger is not optimal, as optimal subpath is not in optimal path.

Fig. 5. Example in which edsger is not optimal, as it does not fully exploit the possibility to change the chosen route.

Whereas the above instance shows that in principle we can construct cases in which DP leads to lower expected delay than edsger,
the experiments of Section 5 show that the difference is typically tiny (if there is a difference at all). Importantly, the modest loss of
optimality that edsger experiences is compensated by a potentially significant improvement in terms of the computational cost: the
experiments show that the computational effort of edsger can be substantially lower than that of the VI algorithm. This is because,
in contrast to VI, edsger does not necessarily compute the expectation and transition probabilities on all arcs in the network.

We now provide a detailed description of the shortest path algorithm that is used within edsger. As discussed above, edsger uses
his stochastic shortest path algorithm to output a path from the current node to the destination. The first node in this path defines
he next action, i.e., the policy of edsger is to travel to this node.

The shortest path algorithm is a stochastic version of the A⋆-algorithm. It assigns a label to every node in the graph and updates
hese labels iteratively. The initial labels are 𝐷𝑘0 = 0 for the source 𝑘0 and 𝐷𝑘 = ∞ for 𝑘 ∈ 𝑁 ⧵ {𝑘0}. A set  is used to store nodes
ith labels that are no longer altered by subsequent steps of the algorithm, and is initialized by  ∶= ∅. In every iteration of the
lgorithm a new ‘current node’ 𝑐 is chosen according to

𝑐 ∶= arg min
𝑘∈𝑁⧵

{𝐷𝑘 + lb𝑘}. (9)

ere lb𝑘 is a lower bound on the travel time from node 𝑘 to destination 𝑘⋆. Since the maximum speeds and the distances of all arcs
re known, lower bounds on the arc travel times can be computed in an elementary way. Applying Dijkstra’s algorithm on a graph
ith these lower bounds yields lb𝑘 for 𝑘 ∈ 𝑁 .

With the current node 𝑐 chosen according to (9), the earlier derived expressions (5) and (7) are used to compute

𝑑𝑘 ∶= 𝐷𝑐 +
∑

𝑠∈
𝑝𝑠𝑐 E[𝜏

𝑠
𝑐𝑘] = 𝐷𝑐 + 𝒑⊤𝑐 𝛷𝑐𝑘 (10)

𝑝𝑠
′

𝑘 ∶=
∑

𝑠∈
𝑝𝑠𝑐 P(𝐵(𝜏

𝑠
𝑐𝑘) = 𝑠′) (11)

or all 𝑘 ∈ NB(𝑐) and 𝑠′ ∈ . In the expressions (10) and (11) we let 𝑝𝑠𝑘 denote the probability that upon arrival in 𝑘 ∈ 𝑁 the
background state is 𝑠 ∈ , and 𝒑𝑘 = (𝑝𝑠𝑘)𝑠∈ is the vector of these probabilities. In addition, 𝛷𝑐𝑘 is the ||-dimensional vector with
entries E[𝜏𝑠𝑐𝑘] = 𝜙𝑠(𝑑𝑐𝑘 ∣ 𝑐, 𝑘) for 𝑠 ∈ . Note that, as 𝐷𝑐 can be seen as an estimate of the expected travel time from 𝑘0 to 𝑐, 𝑑𝑘 is
an estimate for the expected travel time from 𝑘0 to 𝑘. The labels of the neighbors 𝑘 ∈ NB(𝑐) ⧵  are now updated, i.e., if 𝑑𝑘 < 𝐷𝑘

e set 𝐷𝑘 = 𝑑𝑘 and store the vector 𝑝𝑘 for this node (replacing a previous stored value if present). We also store the proposed path
o 𝑘, which is the stored path to 𝑐 with 𝑘 itself appended. After performing this updating step, 𝑐 is added to  and a new current
ode 𝑐 is chosen, again according to (9).

The described procedure is now repeated until the destination node 𝑘⋆ is set as the current node 𝑐. The path the algorithm
utputs is the stored path for 𝑘⋆. In the implementation of the algorithm a heap 𝐻 can be used to reduce the complexity of the
lgorithm, similar to the use of the heap in Dijkstra’s algorithm (Goldberg and Tarjan, 1996). Pseudocode is provided in Algorithm 1.

Despite the fact that, in contrast to the VI algorithm, edsger does not necessarily compute the expectation and transition
robabilities for all arcs in the network, the algorithm still suffers from the curse of dimensionality. In this respect, note that the
ost of evaluating the matrix exponential in (5) will contribute substantially to the cost of edsger. Moreover, in case of a large
tate space, the dimension of 𝑄 will make this evaluation intractable. To overcome this drawback, we will introduce the edsger⋆
107

Transportation Research Part B 160 (2022) 97–124N. Levering et al.

t

T

t

s

Result: path from 𝑘0 to 𝑘⋆ given 𝐵(0) = 𝑠
Initialization: 𝐷𝑘0 = 0, 𝐷𝑘 = ∞ for 𝑘 ≠ 𝑘0, heap 𝐻 = {(𝐷𝑘0 + lb𝑘0 (key), 𝑝𝑘0 , 𝑘0, {𝑘0} (path)}, = ∅;
while 𝐻 nonempty do

1. Extract tuple (𝐷𝑘 + lb𝑘, 𝑝𝑘, 𝑘,path) with minimum first entry (key) from 𝐻 ;
2. If 𝑘 = 𝑘⋆ quit and return path. Else if 𝑘 ∈  go back to step 1. Else continue;
3. for neighbor 𝑘′ in NB(𝑘) ⧵  do

a. Compute 𝑑𝑘′ and 𝑝𝑘′ with (5) and (7);
b. If 𝑑𝑘′ < 𝐷𝑘′ set 𝐷𝑘′ = 𝑑𝑘′ and insert (𝐷𝑘′ + lb𝑘′ , 𝑝𝑘′ , 𝑘′,path + {𝑘′}) in 𝐻 ;

end
4. Add 𝑘 to 

end
Algorithm 1: Outline shortest path algorithm in edsger

algorithm. edsger⋆ can be regarded as an improved version of edsger, as it exploits the local-correlation structure of the background
process to reduce the computational costs of edsger drastically.

4.3. edsger⋆ algorithm

Both the VI algorithm and the edsger algorithm do not use the assumption of local-𝑟-correlation (Assumption 1), which states
that the velocity on arc 𝑘𝓁 ∈ 𝐴 is only dependent on the congestion levels of the arcs at most 𝑟 arcs away. The main idea behind
the edsger⋆ algorithm is to exploit this assumption, so as to overcome the curse of dimensionality. Numerical examples in the next
section will show that edsger⋆ is indeed highly efficient and offers real-time response, while still providing near-optimal results.

Similar to edsger, at any decision epoch edsger⋆ uses a shortest path algorithm that aims to output a minimal path from the
current node to the destination. The next arc in this path is traveled and upon arrival in a new node the shortest path algorithm
is called again. We denote the resulting routing policy by 𝜋E⋆ . The shortest path algorithm used in edsger⋆ (Algorithm 2 below) is
very similar to the algorithm used in edsger, but edsger⋆ exploits Assumption 1, in combination with a specific approximation, to
drastically speed up the computation of 𝑑𝑘′ and 𝑝𝑘′ .

The main idea behind the edsger⋆-algorithm is that, under the assumption of local-𝑟-correlation, the velocity levels on an arc are
only dependent on the state of the background processes on the arcs in 𝐴𝑟𝑘𝓁 . This implies that the expectation of the travel time can
be computed using just these processes. As above, we write 𝐴 = {𝑘1𝓁1,… , 𝑘𝑛𝓁𝑛}. Denote with 𝑄𝑟𝑘𝓁 the transition rate matrix of
the process 𝐵𝑟𝑘𝓁(𝑡) = (𝑋𝑘𝑖𝓁𝑖 (𝑡), 𝑘𝑖𝓁𝑖 ∈ 𝐴𝑟𝑘𝓁) with state space 𝑟𝑘𝓁 .

The dynamics on arc 𝑘𝓁 can be completely described by the process 𝐵𝑟𝑘𝓁(𝑡), as the velocity levels on arc 𝑘𝓁 depend only on
the state of this process. Thus, the velocity on arc 𝑘𝓁 at time 𝑡, defined as 𝑣𝑘𝓁((𝑋𝑘𝑖𝓁𝑖 (𝑡))𝑘𝑖𝓁𝑖∈𝐴), only depends on the values of
entries 𝑘𝑖𝓁𝑖 ∈ 𝐴𝑟𝑘𝓁 . We can therefore write the velocity on arc 𝑘𝓁 at time 𝑡 as 𝑣𝑘𝓁((𝑋𝑘𝑖𝓁𝑖 (𝑡))𝑘𝑖𝓁𝑖∈𝐴𝑟𝑘𝓁). Denote the truncation of
𝑠 = (𝑠𝑘𝑖𝓁𝑖)𝑘𝑖𝓁𝑖∈𝐴 ∈  to the entries corresponding to links in 𝐴𝑟𝑘𝓁 by 𝑠𝑟𝑘𝓁 , i.e., 𝑠𝑟𝑘𝓁 = (𝑠𝑘𝑖𝓁𝑖)𝑘𝑖𝓁𝑖∈𝐴𝑟𝑘𝓁 . Then we write 𝑣𝑘𝓁(𝑠) = 𝑣𝑘𝓁(𝑠𝑟𝑘𝓁) for
he velocity level on arc 𝑘𝓁 whenever 𝑠 ∈ .

heorem 2. Denoting 𝛷𝑟(𝑑 ∣ 𝑘,𝓁) = (E[𝜏𝑠𝑘𝓁(𝑑)])𝑠𝑟𝑘𝓁∈𝑟𝑘𝓁 , it holds that

𝛷𝑟(𝑑 ∣ 𝑘,𝓁) =
[

𝐼 𝟎
]

exp

{[

𝑑 (𝑉 𝑟
𝑘𝓁)

−1𝑄𝑟𝑘𝓁 𝑑 (𝑉 𝑟
𝑘𝓁)

−1𝟏

𝟎⊤ 0

]}[

𝟎

1

]

. (12)

Here 𝑉 𝑟
𝑘𝓁 is a diagonal matrix with entries 𝑣𝑘𝓁(𝑠𝑟𝑘𝓁) for 𝑠𝑟𝑘𝓁 ∈ 𝑟𝑘𝓁 .

Proof. The claim follows from Theorem 1, local-𝑟-correlation (Assumption 1), and the independence of the Markov processes on
he arcs. □

Particularly when 𝑟 is relatively small, this way of computing the expected per-edge travel times yields significant computational
avings, due to the fact that the dimension of 𝑄𝑟𝑘𝓁 no longer grows exponentially with the number of arcs. This does however not

directly yield a solution to the curse of dimensionality, as the computation of the transition probabilities still involves the matrix
𝑄. We therefore propose to use the following (typically highly accurate) approximation for the transition probabilities. Recall that
the transition probabilities of a Markov process 𝐵(𝑡) with transition rate matrix 𝐴 after a time 𝑡 ∈ R can be expressed in terms of a
matrix exponential:

P(𝐵(𝑡) = 𝑠 |𝐵(0) = 𝑠′) = [𝑒𝑡𝐴]𝑠′ ,𝑠.

Note furthermore that we have a good estimate, 𝐷𝑐 , for the travel time from 𝑘0 to 𝑐 ∈ 𝑁 . Based on these two observations we
approximate 𝑝𝑠𝑐 , the probability that 𝐵𝑟𝑘𝓁(𝑡) = 𝑠 upon arrival in 𝑐 given that 𝐵(0) = 𝑠′, by

[𝑒𝐷𝑐𝑄
𝑟
𝑐𝑘] 𝑟 .
108

(𝑠′)𝑘𝓁 ,𝑠

Transportation Research Part B 160 (2022) 97–124N. Levering et al.

i

o
c
t

f
S
s

This results in the following expression for 𝑑𝑘:

𝑑𝑘 ∶= 𝐷𝑐 +
∑

𝑠∈𝑟𝑐𝑘

[𝑒𝑄
𝑟
𝑐𝑘𝐷𝑐](𝑠′)𝑟𝑘𝓁 ,𝑠 E

[

𝜏
𝑠𝑟𝑐𝑘
𝑐𝑘

]

= 𝐷𝑐 + [𝑒𝑄
𝑟
𝑐𝑘𝐷𝑐](𝑠′)𝑟𝑘𝓁𝛷

𝑟(𝑑𝑐𝑘 ∣ 𝑐, 𝑘); (13)

cf. (10). The corresponding pseudocode is given in Algorithm 2.

Result: path from 𝑘0 to 𝑘⋆ given 𝐵(0) = 𝑠
Initialization: 𝐷𝑘0 = 0, 𝐷𝑘 = ∞ for 𝑘 ≠ 𝑘0, heap 𝐻 = {𝐷𝑘0 + lb𝑘0 (key), 𝑘0, {𝑘0} (path)}, = ∅;
while 𝐻 nonempty do

1. Extract tuple (𝐷𝑘 + lb𝑘, 𝑘,path) with minimum key from 𝐻 ;
2. If 𝑘 = 𝑘⋆ quit and return path. Else if 𝑘 ∈  go back to step 1. Else continue;
3. for neighbor 𝑘′ in NB(𝑘) ⧵  do

a. Compute 𝑑𝑘′ with (13);
b. If 𝑑𝑘′ < 𝐷𝑘′ set 𝐷𝑘′ = 𝑑𝑘′ and insert (𝐷𝑘′ + lb𝑘′ , 𝑘′,path + {𝑘′}) in 𝐻 ;

end
4. Add 𝑘 to 

end
Algorithm 2: Outline shortest path algorithm in edsger⋆

4.4. Implementation details

We now discuss several implementation details for the VI-, edsger-, and edsger⋆-algorithms. We will in particular show how to
rewrite specific computations in a form that allows the application of efficient numerical functions. Moreover, we will recommend
the use of efficient data structures. We start by discussing the use of these techniques for the VI algorithm and continue with the
edsger-, and the edsger⋆-algorithms.

◦ The value iteration algorithm. As discussed in Section 4.1, this DP algorithm solves the Bellman optimality equations and outputs
a routing policy that minimizes our objective function. It is an iterative procedure that assigns values 𝐽𝜋⋆0 (𝑘, 𝑠) to all (𝑘, 𝑠) ∈ 𝑁 × 
and updates these values such that they converge to 𝐽𝜋⋆ , the set of optimal values. Concretely, the algorithm sets 𝐽𝜋⋆0 (𝑘⋆, 𝑠) = 0
and 𝐽𝜋⋆0 (𝑘, 𝑠) = ∞ for 𝑘 ∈ 𝑁, 𝑘 ≠ 𝑘⋆, 𝑠 ∈  and iteratively updates these values according to the scheme

𝐽𝜋
⋆

𝑖 (𝑘, 𝑠) = min
𝓁∈NB(𝑘)

{

E[𝜏𝑠𝑘𝓁] +
∑

𝑠′∈
P(𝐵(𝜏𝑠𝑘𝓁) = 𝑠′)𝐽𝜋

⋆

𝑖−1(𝓁, 𝑠
′)

}

, (14)

cf. the scheme (8). Convergence of the iterative procedure has been widely studied in the literature; we refer to e.g. Bertsekas and
Tsitsiklis (1991) and Bonet (2007) and references therein. Specifically, it has been proven that 𝐽𝜋⋆𝑖 (𝑘, 𝑠) converges to 𝐽𝜋⋆ (𝑘, 𝑠) for
all 𝑘 ∈ 𝑁, 𝑠 ∈ .

The expectations and transition probabilities in the updating step (14) can be computed by applying Theorem 1 and Corollary 1.
As was already noted in Remark 5, the computation of the (|| + 1) × (|| + 1)-dimensional matrix exponential

exp

{[

𝑑𝑘𝓁𝑉 −1
𝑘𝓁 𝑄 𝑑𝑘𝓁𝑉 −1

𝑘𝓁 𝟏

𝟎⊤ 0

]}

(15)

suffices. Note that the upper left || × ||- and upper right || × 1-block correspond to
(

P(𝐵(𝜏𝑠𝑘𝓁) = 𝑠′)
)

(𝑠,𝑠′)∈×
and

(

E[𝜏𝑠𝑘𝓁]
)

𝑠∈
,

respectively. This means that, by writing 𝑖𝑠 for the index of 𝑠 in , 𝒑𝑠𝑘𝓁 = (P(𝐵(𝜏𝑠𝑘𝓁) = 𝑠′))𝑠′∈ and 𝑱̃ 𝜋
⋆

𝑖−1(𝓁) = (𝐽𝜋⋆𝑖−1(𝓁, 𝑠
′))𝑠′∈ , the

terative step (14) can be written as

𝐽𝜋
⋆

𝑖 (𝑘, 𝑠) = min
𝓁∈NB(𝑘)

{

[

(𝒑𝑠𝑘𝓁)
⊤ E[𝜏𝑠𝑘𝓁]

]

[

𝑱̃ 𝜋
⋆

𝑖−1(𝓁)

1

]}

= min
𝓁∈NB(𝑘)

⎧

⎪

⎨

⎪

⎩

exp

{[

𝑑𝑘𝓁𝑉 −1
𝑘𝓁 𝑄 𝑑𝑘𝓁𝑉 −1

𝑘𝓁 𝟏

𝟎⊤ 0

]}

𝑖𝑠

[

𝑱̃ 𝜋
⋆

𝑖−1(𝓁)

1

]⎫

⎪

⎬

⎪

⎭

. (16)

Importantly, it now suffices to compute the product of the matrix exponential (15) and the vector (𝑱̃ 𝜋
⋆

𝑖−1(𝓁), 1)
⊤ to evaluate the

bjective function in (16). For such a product, also known as the action of a matrix exponential, most programming software include
ompiled functions, examples of which are MatrixExp[] in Mathematica and scipy.linalg.expm() in Python; these functions are
ypically considerably faster than first computing the matrix exponential and the vector, and subsequently their product.

Besides the evaluation of the matrix exponential, the computational costs of DP are strongly affected by the data structure used
or the 𝑄-matrix. Implementing the 𝑄-matrix in a sparse way significantly decreases the costs of constructing and storing this matrix.
parsity additionally reduces the costs of updating the values 𝐽𝜋⋆𝑖 (𝑘, 𝑠), since compiled matrix exponential functions in programming
109

oftware are generally faster in case the input is a sparse matrix.

Transportation Research Part B 160 (2022) 97–124N. Levering et al.
Fig. 6. Distance Almere-Dronten to Eindhoven.

◦ The edsger- and edsger⋆-algorithms. Also in the implementation of edsger and edsger⋆, a significant speed-up can be achieved by
(i) working with the action of the matrix exponential and (ii) exploiting the sparsity of the 𝑄-matrix. Here we will focus on the
former speed-up, i.e., the one due to the use of the action of the matrix exponential, as the motivation for using a sparse 𝑄-matrix
is identical to the one in the value iteration case.

Note that edsger uses a matrix exponential in the computations of 𝑑𝑘 and 𝒑𝑘 (see (10) and (11)). If we let 𝒑𝑐𝑘 be the matrix
(P(𝐵(𝜏𝑠𝑐𝑘) = 𝑠′))(𝑠,𝑠′)∈× , we can derive the following equivalence:

[

𝒑⊤𝑘 𝑑𝑘 −𝐷𝑐
]

= 𝒑⊤𝑐
[

𝒑𝑐𝑘 𝜱𝑐𝑘
]

=
[

𝒑⊤𝑐 0
]

[

𝒑𝑐𝑘 𝜱𝑐𝑘

𝟎⊤ 1

]

=
[

𝒑⊤𝑐 0
]

exp

{[

𝑑𝑐𝑘𝑉 −1
𝑐𝑘 𝑄 𝑑𝑐𝑘𝑉 −1

𝑐𝑘 𝟏

𝟎⊤ 0

]}

.

Recall that for a vector 𝒑 and square matrix 𝐴 for which 𝒑𝑒𝐴 exists, we have that (𝒑𝑒𝐴)⊤ = (𝑒𝐴)⊤𝒑⊤ = 𝑒𝐴⊤𝒑⊤, yielding
[

𝒑𝑘
𝑑𝑘

]

=

[

𝟎

𝐷𝑐

]

+ exp

{[

𝑑𝑐𝑘𝑄⊤𝑉 −1
𝑐𝑘 𝟎

𝑑𝑐𝑘𝟏⊤𝑉 −1
𝑐𝑘 0

]}[

𝒑𝑐
0

]

.

The same procedure can be followed to compute (13) in the implementation of edsger⋆.

4.5. Decreasing state space

edsger⋆ yields significant computational savings compared to DP (using value iteration) and the edsger algorithm. However,
further substantial reductions of the computational costs are possible. This is achieved by performing preprocessing steps to reduce
the network size and the state space of the background process. These are general speed-up techniques and can also be performed
in the context of value iteration or edsger.

4.5.1. Decreasing network size
Three specific ideas will be discussed in greater detail. The first one uses Yen’s algorithm (Yen, 1970, 1971) to reduce the size of

the network, by deleting arcs that cannot be on shortest paths. The other proposed ideas relate to decreasing the state space of the
background process: the first idea considers hitting probabilities and excludes background states for which the hitting probability
is below a given threshold, whereas the second uses historical data to exclude background states which are (extremely) rare events.

The first proposed speed-up technique decreases the network size by deleting certain nodes and arcs in the network. The
technique is motivated by the fact that not all arcs in the network will be considered by travelers. The network in Fig. 6 depicts
the shortest route (in distance) from Almere to Dronten, in the Dutch road system. In case there is congestion on this route a
traveler might wish to take a different route. One can argue, however, that the conditions in the network will never be such that
the traveler wishes to use an arc around distant cities, such as, in our example, Eindhoven. As a consequence, the roads around the
city of Eindhoven can be omitted when considering the roads to travel from Almere to Dronten.

We now present a procedure, Yen’s algorithm, that algorithmically determines the arcs that can be excluded. The algorithm is
first used to derive the 𝑚 shortest paths from source 𝑘0 to destination 𝑘⋆ in a deterministic network, in which a vehicle can drive
at maximum velocity levels. Denote with 𝐺′ = (𝑁 ′, 𝐴′) the network that solely consists of the nodes and arcs in these 𝑚 shortest
paths. Then we propose to reduce the network size by only considering 𝐺′ in the routing problem. Note that the value of 𝑚 should
not be too large, as this will not yield computational savings, but also not too small, as this might eliminate arcs that are on the
optimal route. In the numerical experiments of Section 5, the final example considers routing for different values of 𝑚, and shows
that, in a typical setting, a value between 1 and 5 yields good results.
110

Transportation Research Part B 160 (2022) 97–124N. Levering et al.
Fig. 7. Yen’s algorithm deletes important alternative route.

Güner et al. (2012) propose to reduce the network 𝐺 to a network similar to 𝐺′, and compute a routing policy for this reduced
network. We however propose an additional step in the construction of a reduced network, in which we add edges to 𝐺′ which
offer alternative routes in case these do not exist in 𝐺′. An example is provided in Fig. 7. Applying Yen’s 𝑚-shortest path algorithm
with 𝑚 = 5 in the graph of Fig. 7(a) yields Fig. 7(b), which shows that arc 𝑘1𝑘⋆ is present in every of the 5 shortest paths outputted
by Yen’s algorithm. This is undesirable, since this arc can be congested during the period of travel, meaning a traveler might prefer
arc 𝑘0𝑘⋆. After an application of Yen’s algorithm, 𝑘0𝑘⋆ is however no longer in the considered network and therefore not in the
routing policy. A real-world example is shown in Fig. 7(c), where a vehicle wishes to travel from Groningen to Schagen. Application
of Yen’s 𝑚-shortest path algorithm may lead to 𝑚 paths that all contain the Afsluitdijk dam (black marker). A few times a year the
Afsluitdijk is closed for a few hours due to a major accident and in this case there are no alternative routes in 𝐺′.

To avoid a situation as described above, in which there is no alternative to a heavily congested arc, a second step is introduced,
in which arcs that offer these alternative routes are added to 𝐺′. To this end, it is first checked which arcs are in all of the 𝑚
shortest paths. Yen’s algorithm is then repeatedly used to find 𝑙 shortest paths in the network in which one of these arcs is deleted
each time. The sets of 𝑙 shortest paths are added to 𝐺′ and this network is used to construct a routing policy. Observe that, since
these 𝑙 shortest paths are included to guarantee alternatives in case of congestion, and such alternatives do already arise for small
𝑙, choosing 𝑙 equal to 1 or 2 typically suffices.

To analyze the dynamics on 𝑘𝓁 ∈ 𝐴′, we only need information on the state of the process 𝐵𝑟𝑘𝓁(𝑡). Decreasing the network size
as described above can therefore yield a significant reduction in the size of the state space as well: for 𝑘𝓁 ∈ 𝐴 ⧵ (∪𝑖∈𝐴′𝐴𝑟𝑖) the
corresponding Markov processes 𝑋𝑘𝓁(𝑡) give no information on the dynamics on 𝐺′ and can therefore be omitted in any further
analysis.

4.5.2. Use of bounds on hitting probabilities
One technique for reducing the state space of the background process is based on hitting probabilities. The idea is to only include,

for a small number 𝜖, background states 𝑠 ∈  for which P(𝐵(𝑡) = 𝑠) > 𝜖 for some 𝑡 ⩽ 𝑇 , with 𝑇 > 0 denoting the time of arrival
at destination 𝑘⋆. Since this time horizon is evidently not known in advance, one could work with a 𝑀 > 0 that serves as a crude
111

Transportation Research Part B 160 (2022) 97–124N. Levering et al.

I

w

r
i
o
𝑠

4

d
n
w
b
a

t

R
i
S

S

S

5

w
a
b

n

o
t
A
(
t
f
u
w

s

upper bound on 𝑇 . Given an initial background state 𝑠 ∈  an upper bound for the hitting probabilities is then given by

P(∃𝑡 ∈ [0,𝑀] ∶ 𝐵(𝑡) = 𝑠′ ∣ 𝐵(0) = 𝑠) ⩽
|𝐴|
∏

𝑖=1
P(∃𝑡 ∈ [0,𝑀] ∶ 𝑋𝑘𝑖𝓁𝑖 (𝑡) = 𝑠′𝑘𝑖𝓁𝑖 ∣ 𝑋𝑘𝑖𝓁𝑖 (0) = 𝑠𝑘𝑖𝓁𝑖) (17)

n case 𝑘𝑖𝓁𝑖 = {1, 2} for some 𝑖 ∈ {1,… , |𝐴|} with transition rates 𝜆𝑖, 𝜇𝑖, we have

𝑓12(𝑀) ∶= P(∃𝑡 ∈ [0,𝑀] ∶ 𝑋𝑘𝑖𝓁𝑖 (𝑡) = 2 ∣ 𝑋𝑘𝑖𝓁𝑖 (0) = 1) ⩽ P(𝑌𝜆𝑖 (𝑡) ⩽𝑀) = 1 − 𝑒−𝜆𝑖𝑀 ,

here 𝑌𝜆𝑖 (𝑡) ∼ Exp(𝜆𝑖). We equivalently have that 𝑓21(𝑀) ⩽ 1 − 𝑒−𝜇𝑖𝑀 , and by definition 𝑓11(𝑀) = 𝑓22(𝑀) = 1.
Whenever 𝑘𝑖𝓁𝑖 = {1,… , 𝑛𝑘𝑖𝓁𝑖} with 𝑛𝑘𝑖𝓁𝑖 > 2, we can rely on standard results on sums of independent exponentially distributed

andom variables (Bibinger, 2013) in order to find an upper bound on the probabilities in (17). An example is given in Appendix C,
n which it is shown how to use these results in case the Markov process on an arc is a birth–death process. Now, if (an upper bound
f) the derived bound from (17) is smaller than some predefined 𝜖 > 0, we do not consider the corresponding background state
′ ∈  in our further analysis.

.5.3. Use of historical data
A technique to further reduce the background state space is directly based on historical data of the process 𝐵(𝑡) on 𝐺. When this

ata is available, it can be analyzed to determine which states 𝑠 ∈  are most common to occur in reality and which states have
ever occurred during the time period during which the historical data was recorded. For example, in a network with 50 arcs in
hich each arc has two states (congested and uncongested), the situation in which all arcs are congested can theoretically occur,
ut will not be observed in real road networks, as will be confirmed by the historical data. Hence a strategy could be to eliminate
ll states 𝑠 ∈  that have never been attained by the process 𝐵(𝑡), so as to reduce the state space of this background process.

The three techniques discussed in this section can be used as preprocessing steps in dynamic routing. In case of edsger and edsger⋆,
hey can be applied prior to every call of the shortest path algorithm. An outline of the resulting procedure is given in Algorithm 3.

esult: Travel policy from 𝑘0 to 𝑘⋆
nitialization: network 𝐺 = (𝑁,𝐴), 𝐵(0) = 𝑠, Node = 𝑘0;
tep 1: Preliminary node deletion;

a. Derive 𝑚 shortest paths on 𝐺 to form 𝐺′;
b. Identify arcs {𝑘1𝓁1,… , 𝑘𝑛𝓁𝑛} that are on all shortest paths;
c. Derive 𝑙 shortest paths on 𝐺 ⧵ 𝑘𝑖𝓁𝑖 for 𝑖 = 1,… , 𝑛 and add to 𝐺′;
d. Reduce state space background process by looking at deleted arcs;

tep 2: Preliminary background state deletion;
a. Delete states with hitting probability constraint;
b. Delete states by historical data analysis;

tep 3: Use shortest path algorithm;
a. Determine path from 𝑘0 to 𝑘⋆;
b. Travel to outputted next node. Stop if this is 𝑘⋆. Otherwise return to Step 1 with state upon arrival as initial state;

Algorithm 3: Outline Dynamic Routing with Preprocessing steps

. Numerical experiments

This section presents a series of numerical experiments that demonstrate that the edsger⋆ algorithm performs near-optimally
ith high efficiency. That is, corresponding to the earlier introduced notions of distance-to-optimality and efficiency, edsger⋆ outputs
value close to the minimally achievable value while essentially being real-time. To substantiate this claim, we have considered a
road range of traffic scenarios and networks of various dimensions.

More specifically, we first consider a small network and show that value iteration (VI), edsger, and edsger⋆ outperform three
deterministic algorithms (in terms of distance-to-optimality), in case of a simple as well as a more sophisticated background process.
Second, we increase the size of the network to show that the run-time of VI and edsger grows exponentially in the network size,
whereas the run-time of edsger⋆ is substantially less affected. Importantly, edsger⋆ still yields close-to-optimal results in these larger
etworks. Last, we consider routing in a network of realistic size and show that edsger⋆ is still highly efficient and nearly optimal.

The first two experiments consider routing on the highway system around Amsterdam. They compare the distance-to-optimality
f VI, edsger and edsger⋆ to three deterministic algorithms. The three deterministic algorithms, used as benchmarks, all employ
he A⋆-algorithm. The first deterministic algorithm, as before referred to as ‘Deterministic Static’ (abbreviated to DS), applies the
⋆-algorithm on the network with maximum velocities. The second deterministic algorithm, which we will call ‘Stationary Static’

abbreviated to SS), employs the stationary expected travel times as link weights. Importantly, as the maximum speeds as well as
he expected travel times are fixed, both algorithms execute the A⋆-algorithm once to determine the complete travel path, which is
ollowed until the destination is reached. The third benchmark algorithm, called ‘Deterministic Dynamic’ (abbreviated to DD), does
se the available information on the velocities in the network. Every intersection the algorithm calls the A⋆-algorithm on a network
ith the current velocities to determine the next arc to travel.

Experiment 1 uses a Markovian background process in which every arc has just two states: congested or uncongested. It is
hown that VI, edsger and edsger⋆ outperform the deterministic algorithms in terms of distance-to-optimality in this simple setup.
112

Transportation Research Part B 160 (2022) 97–124N. Levering et al.
Fig. 8. Amsterdam highway system.

For a transparent comparison of the algorithms, potential preprocessing steps (Section 4.5) are omitted. Experiment 2 considers a
more detailed background process in which the Markov process of each arc can attain three possible states (so as to more accurately
model the speeds the vehicles can drive at). The background process in addition includes a global event with Erlang distributed
holding time (which could represent a reasonably predictable change in the global circumstances, e.g. rush hour; recall Remark 4).
Graphical and numerical summaries show that the difference in distance-to-optimality between our algorithms and the deterministic
algorithms is even more significant than in Experiment 1. Comparing efficiency shows that the deterministic algorithms and edsger⋆
can be executed in real-time, contrary to VI and edsger, whose computational costs suffer from the size of the state space.

In Experiment 3 we evaluate the computational costs of the various routing algorithms as function of the network size. We do
so by working with an elementary network model, that is then extended with additional arcs to assess its impact on the algorithms’
speeds. In addition, we quantify the effect of the dimension of the background process. The final experiment, Experiment 4, considers
routing on the entire Dutch highway network, and highlights the influence of various model parameters on the performance of the
algorithms. Moreover, the experiment studies the effect of the speed-up techniques introduced in Section 4.5, which turn out to
yield a significant contribution to the run-time reduction in this large network. For the experiments we implemented the networks
and routing algorithms in Wolfram Mathematica 12.0 on an Intel® Core™ i7-8665U 1.90 GHz computer.

Experiment 1. To get a first impression of the performance of the various algorithms, we start by considering a relatively small
network. Our findings reveal that in this network, using a background process in which every link has just two states, both edsger
and edsger⋆ efficiently yield close-to-optimal results. Consider the network of the Amsterdam highway system (Fig. 8), with 9
intersections and 24 links between these intersections (i.e., 12 bidirectional arcs). We pick the following framework:

◦ The background process of every arc contains just two states, uncongested (corresponding to state 1) and congested
(corresponding to state 2). Transition rates are tuned with NDW data, by identifying incidents on a large Dutch highway
segment using drops in the vehicle speed. The average duration of these incidents is set as the reciprocal of the clearance
rate, and the average time between these incidents as the reciprocal of the incident rate.

◦ The state of an arc only affects the speeds on the directly attached arcs, i.e., there is local-1-correlation.
◦ There is no process 𝑌 that induces global correlation.
◦ In case there is no incident on the arc we let the vehicle speed be 100 km/h if there is no incident on the directly adjacent

arcs, and 80 km/h otherwise. In case there is an incident on the arc we let the vehicle speed be 40 km/h if there is no
incident on the directly adjacent arcs, and 20 km/h otherwise.

◦ In the network there is a maximum of three incidents simultaneously, to bound the size of the state space and guarantee
tractability of VI.

Consider a traveler interested in minimizing the total expected travel time from node 1 to node 8. We compare the DP policy
with the routing policies under edsger, edsger⋆ and the three deterministic algorithms DS, SS and DD. In line with what was stated
113

Transportation Research Part B 160 (2022) 97–124N. Levering et al.
Fig. 9. Expected travel time when traveling from node 1 to node 8 (Fig. 8) under the six policies and in five different initial states. State 𝑠1 corresponds to
a ‘fully uncongested’ network upon departure. In state 𝑠2 there are incidents on links (1, 3), (3, 5) and (5, 6). The links with incidents in states 𝑠3 , 𝑠4 and 𝑠5 are
{(7, 5), (6, 8), (7, 9)}, {(3, 5), (6, 8), (8, 6)} and {(5, 6), (6, 5), (8, 6)} respectively.

Table 2
Costs algorithms.

Average 1 Inc. 2 Inc. 3 Inc. WA Run-time (s)

Value iteration 12.75 11.60 12.26 12.83 11.16 2.032
edsger 12.76 11.60 12.27 12.84 11.16 0.094
edsger⋆ 12.76 11.61 12.27 12.84 11.16 0.023
DD 12.83 11.64 12.33 12.91 11.18 0.003
SS 13.08 11.61 12.41 13.19 11.17 <0.001
DS 13.08 11.61 12.41 13.19 11.17 <0.001

above, we do not apply the preprocessing steps of Section 4.5, to make the comparison as fair as possible. The DP policy is derived
from the VI-algorithm, using the implementation guidelines as described in Section 4.4. Implementation of the deterministic policies
follows from a standard implementation of the A⋆-algorithm. The policies of edsger and edsger⋆ can be found by storing the output
of their shortest path algorithms for every initial state (𝑘0, 𝑠) ∈ 𝑁 × . The example below, intended to demonstrate the principles
underlying edsger in a concrete setting, shows that the policy of edsger in node 1, with as background state that every arc except for
the arc from node 2 to node 1 is uncongested, is to travel to node 3.

Example. We use edsger to route from node 1 to node 8 in Fig. 8, when upon leaving the only congested arc is the arc from node
2 to node 1. As a first step, Dijkstra is used on a network with maximum speeds, to determine the lower bounds lb𝑘 of the travel
time from node 𝑘 ∈ 𝑁 to node 8, which in this case are given by

lb1 = 0.18, lb2 = 0.23, lb3 = 0.13, lb4 = 0.16, lb5 = 0.09, lb6 = 0.05, lb7 = 0.09, lb8 = 0, lb9 = 0.13

Now the shortest path algorithm within edsger is used to determine the next node to travel to. Node 1 is set as current node and we
initialize 𝐷1 = 0, 𝐷2 = ⋯ = 𝐷9 = ∞. Then exp(𝑑1𝑘′𝑉 −1𝑄) is computed to determine 𝑑𝑘′ and 𝒑𝑘′ in (10) and (11) for 𝑘′ = 2, 3, 9, the
neighbors of 1, to give:

𝑑2 = 0.19, 𝑑3 = 0.04, 𝑑9 = 0.10.

Since 𝑑𝑘′ < 𝐷𝑘′ for 𝑘′ = 2, 3, 9 we set 𝐷𝑘′ = 𝑑𝑘′ and store (𝐷𝑘′ + lb𝑘′ , 𝑝𝑘′ , 𝑘′, {1, 𝑘′}) for all neighbors 𝑘′ of 1. The updated labels now
yield:

𝐷1 = 0 𝐷2 = 0.19 𝐷3 = 0.04 𝐷4 = ∞ 𝐷5 = ∞ 𝐷6 = ∞ 𝐷7 = ∞ 𝐷8 = ∞ 𝐷9 = 0.10

The new current node is then arg min𝑘′∈𝑁⧵{1}{𝐷𝑘′ + lb𝑘′} = 3. Computing 𝑑𝑘′ and 𝑝𝑘′ for 𝑘′ = 4, 5 gives

𝑑4 = 0.07, 𝑑5 = 0.08.

We therefore store (𝑑𝑘′ + lb𝑘′ , 𝑝𝑘′ , 𝑘′, {1, 3, 𝑘′}) for 𝑘′ = 4, 5 and update the labels:

𝐷1 = 0 𝐷2 = 0.19 𝐷3 = 0.04 𝐷4 = 0.07 𝐷5 = 0.08 𝐷6 = ∞ 𝐷7 = ∞ 𝐷8 = ∞ 𝐷9 = 0.10

The next current node is set as arg min𝑘′∈𝑁⧵{1,3}{𝐷𝑘′ + lb𝑘′} = 5. This procedure is repeated until the current node is set as 8. The
paths stored for node 8 is (1, 3, 5, 6, 8), indicating the first node to travel to is node 3. ◊

Fig. 9 shows the expected travel time (in minutes) of the derived policies in five initial background states. The first set of five
114

bars corresponds to a state of complete non-congestion, i.e., all of the arcs are uncongested upon departure. The expected travel

Transportation Research Part B 160 (2022) 97–124N. Levering et al.

a
c
r
b
s

times under the different policies are in this case similar. Note that this is not surprising, as the influence of unpredictable events is
minimal: the distance between node 1 and node 8 is small and therefore the probability of occurrence of an incident on the shortest
path as well. The second set of bars shows the largest difference in expected travel time between VI and both SS and DS. This
difference in expected travel time is significant, the expectation under these deterministic policies being more than 1.5 as large as
the expectation under VI. The third, fourth and fifth set of bars show the largest difference between the expected travel time under
VI and the expected travel time under DD, edsger⋆ and edsger respectively. Note that these differences are small, and their policies
are thus close-to-optimal.

The fact that DD, edsger and edsger⋆ yield close-to-optimal results in the framework of this experiment can also be seen in Table 2:

◦ The first column shows the expected travel time from node 1 to node 8 under the different policies, averaged (evenly)
over all possible initial background states.

◦ The second column shows the expected travel time from node 1 to node 8, averaged (evenly) over all initial background
states in which one incident has occurred. Columns three and four show the same for respectively two and three incidents.

◦ The fifth column provides a weighted average (WA) of the expectations corresponding to all possible initial background
states; for a given initial background state, the weight equals its limiting probability.

◦ The last column contains the run-time of the algorithms (in sec.).

The average and weighted averages of edsger and edsger⋆ are close to the results of VI. DD performs relatively well, whereas the
values under SS and DS are noticeably suboptimal. Comparison in run-time shows that the computational costs of VI are an order
larger than those of the other algorithms. In Experiment 3 we will investigate the efficiency of the algorithms in greater detail, and
show that the difference in computational costs becomes more substantial when increasing the maximum number of incidents in
the network.

We conclude that in this simple framework, in which every arc can only have two states, edsger and edsger⋆ yield nearly optimal
results, while being roughly one order of magnitude faster than VI. It was also shown that edsger and edsger⋆ perform better than
the three deterministic algorithms SS, DS and DD. Especially in case there are incidents in the network, the difference in distance-to-
optimality is significant. As the occurrence of incidents is relatively rare, the distance-to-optimality of the four algorithms is similar
if there are no incidents in the network upon departure. The next experiment shows that the difference-to-optimality typically grows
when adding more detail to the model.

Experiment 2. In this experiment we consider a more involved background process, and show that edsger and edsger⋆ still yield
nearly optimal results. The two algorithms outperform the deterministic algorithms (in terms of distance-to-optimality), and are at
the same time considerably faster than VI. The example, moreover, demonstrates the comprehensiveness of our model, by illustrating
the possibility of (i) adding recurrent events and (ii) working with more velocities per arc.

We again consider the network of the Amsterdam highway system (Fig. 8), but extend the background process of Experiment 1.
Concretely, we have three speeds per arc (rather than two), and include a global event. We include the extra speed level and global
event in the following way:

◦ Every arc has three states, uncongested (state 1), congested (state 2) and recovery (state 3). A link can transition from
an uncongested to a congested state, but not vice versa: from a congested state a link must first enter the recovery state
before it returns to the uncongested state. The recovery state represents the time between the clearance of an incident and
the time the traffic conditions return to the free-flow speed. The incident rate has been determined as in Experiment 1.
The total clearance rate of Experiment 1 has now been split such that, on average, 90% of the incident is spent in the
congested state, and 10% in the recovery state.

◦ The state of an arc only affects the speeds on the attached arcs, i.e., there is local-1-correlation.
◦ There is a recurrent event that induces global correlation, to be interpreted as a rush hour. This event affects the speeds

on the roads on the inner circle of the highway system, i.e., all arcs between nodes 1, 3, 5, 7 and 9. We will denote these
arcs as category I arcs, whereas we will refer to the other arcs as category II. As a rush hour is a recurring event the time
till its onset has a relatively low variance. That is the reason why we chose to not model this time by an exponential
distribution but rather by an Erlang distribution (as pointed out in Remark 4). In our experiments we took four phases
(see Fig. 10). Only in the last phase, which we identify as the start of the rush hour, the speeds on the arcs in category I
are affected.

◦ Speed levels for the different scenarios can be found in Table 3.
◦ In the network there is again a maximum of three non-uncongested links simultaneously, to bound the size of the state

space and guarantee tractability of VI.

Fig. 11 shows the expected travel time (in minutes) of the algorithms in five initial background states. The first set of six bars
gain corresponds to a state of complete non-congestion. The expected travel times under the different policies are in this case
lose. The second, third and fourth set of bars shows the largest difference in expected travel time between VI and DS, DD and SS,
espectively. This difference in expected travel time is significant, especially for DD. The fifth set of bars shows the largest difference
etween the expected travel time under VI and the expected travel time under both edsger⋆ and edsger. Note that this difference is

⋆

115

mall, and hence the policies edsger and edsger are close to optimal.

Transportation Research Part B 160 (2022) 97–124N. Levering et al.
Table 3
Speed levels on the arcs in km/h. The rows specify the category and state of the arc, the columns
specify if there is rush hour or not, and distinguish between the numbers of attached arcs that
is not in state 1.

Non-rush Rush

0 ⩾1 0 ⩾1

Cat. I
1 100 80 70 60
2 40 20 20 10
3 70 50 50 40

Cat. II
1 100 80 100 80
2 40 20 40 20
3 70 50 70 50

Fig. 10. The four Erlang phases of Rush hour.

Fig. 11. Expected travel time when traveling from node 2 to node 8 (Fig. 8) under the six policies and in five different initial states. State 𝑠1 corresponds to
a ‘fully uncongested’ network upon departure. In state 𝑠3 there are incidents on links (2, 1)3 , (3, 5)2 and (6, 8)2, with subscripts 2 and 3 denoting the congested
and recovery phase of the incident. The links with incidents in states 𝑠2 , 𝑠4 and 𝑠5 are {(1, 3)2 , (3, 5)2 , (5, 6)2}, {(2, 4)2 , (4, 6)2 , (6, 4)2} and {(4, 3)2 , (4, 6)3 , (6, 4)3}
respectively.

Table 4
Average (A) and weighted average (WA) expected travel time of the algorithms in the four different initial phases of the rush hour. Run-time (in sec.) reported
as well.

Phase 1 Phase 2 Phase 3 Phase 4 Run-time (s)

A WA A WA A WA A WA

Value iteration 15.55 14.56 15.70 14.59 15.75 14.60 15.77 14.61 41.513
edsger 15.68 14.59 15.73 14.59 15.76 14.61 15.78 14.61 13.154
edsger⋆ 15.70 14.60 15.74 14.60 15.77 14.61 15.78 14.61 0.154
DD 16.20 15.53 16.76 16.33 17.20 17.00 15.87 14.61 0.003
SS 15.86 14.61 15.86 14.61 15.86 14.61 15.86 14.61 <0.001
DS 17.64 15.73 18.56 16.59 19.27 17.30 19.57 17.62 <0.001

The low distance-to-optimality of edsger and edsger⋆ can also be observed from Table 4. The table shows the average and weighted
average expected travel time (in minutes) under the different policies and in the four different initial Erlang phases of the event
rush hour. Similar to Experiment 1, the weights are set equal to the limiting probabilities. The averages and weighted averages
of edsger and edsger⋆ are very close to the results of VI. DD and SS also perform well, whereas the values obtained by DS are
noticeably suboptimal. In the case of SS, we notice that the expected travel times are hardly affected by the initial rush-hour phase.
Naturally, this can be explained by the fact that SS works with the stationary rush hour setting, with the resulting policy primarily
containing nodes whose speed are not reduced by the rush hour. The last column of Table 4 shows the run-time (in seconds) of
the different algorithms. Note that the computational costs of VI and edsger are substantially larger than those of edsger⋆ and the
three deterministic algorithms.

Thus, summarizing the results of the first two experiments, edsger⋆ has the best performance in terms of distance-to-optimality
and run-time. More precisely, edsger⋆ outperforms the deterministic algorithms in terms of distance-to-optimality, and outperforms
116

Transportation Research Part B 160 (2022) 97–124N. Levering et al.

V
w

E
i
n
t
F
𝑛

n
p
t
c

Fig. 12. Examples of networks of size 𝑛 × 𝑛. Here ‘S’ is the source, and ‘D’ the destination.

Fig. 13. Effect of increasing the network size.

I and edsger in terms of efficiency. The next example will show that the savings in run-time will become even more pronounced
hen increasing the network size and/or the maximum number of incidents.

xperiment 3. We consider elementary networks to assess the sensitivity of the run-time as a function of the network size, and
n addition as a function of the maximum number of incidents. In the previous examples, in which the network size and maximum
umber of incidents were small, we already noted that the computational costs of both VI and edsger are considerably higher than
hose of edsger⋆. To directly demonstrate the computational savings when using edsger⋆, we use networks of the type depicted in
igs. 12(a) and 12(b). These networks show a 2 × 2- and 3 × 3-structure, but extending the model in the obvious way produces an
× 𝑛-structure for any 𝑛 ⩾ 2. We increase the value of 𝑛, so as to evaluate the impact on the computational costs for VI, edsger, and

edsger⋆. For simplicity, the conditions on the network are set identical to those of Experiment 1. This includes the condition that
there can only be three incidents in the network simultaneously. However, below we also assess how increasing this bound on the
number of incidents affects the run-time of the algorithms. Note that, besides this assumption on a maximum number of incidents, we
do not include the preprocessing steps of Section 4.5, so as to facilitate a fair comparison between the different routing algorithms.

Fig. 13(a) shows that, contrary to the run-time of edsger⋆, the run-times of both VI and edsger grow exponentially with the
etwork size (note the logarithmic scale). This exponential increase can be explained by the fact that the size of the background
rocess, and thus the size of 𝑄, grows exponentially with the size of the network. Since edsger⋆ only uses the part of the state space
hat corresponds to the states on the directly attached links, its computational costs are hardly affected by the network size. We
onclude that in larger networks VI and edsger become intractable, whereas edsger⋆ still offers real-time response.

Importantly, the substantial reduction of the run-time when using edsger⋆ (instead of VI, that is) does not correspond to a
significant increase of the objective function: Fig. 13(b) shows that edsger⋆ yields close to optimal results. The figure shows the
average and weighted average expected travel time (in minutes), with weights again chosen as the stationary probabilities, for
different network sizes. Observe that DD also yields close-to-optimal results in this framework. This can, however, be explained by
the fact that the considered instance is relatively simple; adding more detail to the framework, as we did in Experiment 2, again
leads to a more pronounced suboptimality of this algorithm.

We observe the same behavior (in terms of computational costs and the value of the objective function) when, instead of the
network size, the bound on the maximum number of incidents is increased (see Fig. 14). That is, considering the 3 × 3-network
displayed in Fig. 12(b), the run-time of VI and edsger grows exponentially with the maximum number of incidents. Moreover, the
run-time of edsger⋆ is hardly affected by the increase of the maximum number of incidents, while still performing nearly optimally.
The substantial difference in run-time is again due to the rapid growth of the dimension of 𝑄 as function of the number of incidents.
117

Transportation Research Part B 160 (2022) 97–124N. Levering et al.
Fig. 14. Effect of increasing the number of incidents.

Fig. 15. Dutch highway system.

In contrast, the matrices 𝑄𝑟𝑘𝓁 , as used by edsger⋆, involve significantly fewer arcs, and are therefore less affected by the number of
incidents. Note that, in case of local-1-correlation, the computational costs of edsger⋆ will e.g. no longer increase if the number of
incidents exceeds the maximum degree of the graph.

From Figs. 13 and 14 we conclude that VI and edsger are inefficient, making these algorithms unsuitable for practical purposes.
The results of edsger⋆ are considerably more promising, as these showed that its run-time is hardly affected by the network size or
maximum number of incidents, while performing close-to-optimal in terms of cost. This is why in our last experiment we investigate
the tractability of edsger⋆ in networks of realistic size. The experiment also considers the influence of the model parameters and
demonstrates the use of the speed-up techniques introduced in Section 4.5.

Experiment 4. To confirm the feasibility of edsger⋆ in large networks, the final experiment considers routing in a network of
realistic size: the Dutch highway network (Fig. 15), with 93 intersections and 262 directed roads between these intersections. Besides
confirming the feasibility of edsger⋆, the experiment has the following three objectives:

◦ Show that edsger⋆ still yields accurate results in terms of expected travel time, supporting our conclusions of the
experiments above. We will omit VI and edsger in our analysis, as these algorithms are intractable in large networks,
as demonstrated in Experiment 3. Instead, we use simulations to compare the travel time under edsger⋆, DD, SS and DS
with the travel time under an optimal path;

◦ Assess the effect of the parameters on the distance-to-optimality of edsger⋆. Concretely, we compare the results of edsger⋆
with the results of DD, SS and DS for different parameter values;

◦ Demonstrate how the speed-up techniques described in Section 4.5 can be used in this network, and how the different
techniques affect the distance-to-optimality and the performance of the algorithms.
118

Transportation Research Part B 160 (2022) 97–124N. Levering et al.

o
n
i

Table 5
Average percentage loss in travel time (U%,W%) and run-time (𝑡, in sec.) of the algorithms; background process as
in Experiment 1.

Short Medium Long

U% W% 𝑡 U% W% 𝑡 U% W% 𝑡

edsger⋆ 6.5 0.4 0.09 5.8 0.4 0.14 3.4 0.3 0.22
DD 7.3 0.4 0.01 5.9 0.8 0.02 4.9 0.7 0.03
SS 25.3 1.5 <0.01 5.5 0.6 <0.01 3.0 0.4 <0.01
DS 25.7 1.3 <0.01 5.1 0.5 <0.01 3.0 0.4 <0.01

Table 6
Average percentage loss in travel time (W%) and run-time (𝑡, in sec.) of the algorithms; background
process as in Experiment 2.

Short

W% 𝑡

edsger⋆ 2.0 0.60
DD 8.5 0.01
SS 2.6 <0.01
DS 11.8 <0.01

Table 7
Average percentage loss for edsger⋆ (left), DD (middle) and DS (right) and different values of the incident rate 𝛼 and clearance rate 𝛽.
edsger⋆ DD DS

𝛼 𝛽 𝛼 𝛽 𝛼 𝛽

10−4 1 100 10−4 1 100 10−4 1 100

10−4 0.00 0.00 0.00 10−4 0.00 0.00 0.00 10−4 39.83 0.03 0.00
1 0.00 10.75 0.05 1 0.00 12.58 1.30 1 0.00 38.52 0.05
100 0.00 0.22 1.50 100 0.00 1.46 29.28 100 0.00 0.22 1.50

To show the travel time under edsger⋆ — still executed without the preprocessing steps of Section 4.5 — is indeed close-to-
ptimal, we simulate the travel time for three OD-pairs. The considered OD-pairs, denoted by ‘Short’, ‘Medium’ and ‘Long’, differ
otably in length, with distances 22.5, 98.5 and 191.7 km respectively. For simplicity we again use the same background process as
n Experiment 1. We simulate realizations of this background process and determine for every realization the travel time of edsger⋆,

as well as the travel times of DD, SS and DS. These travel times are compared with the optimal travel time, i.e., the minimal
achievable travel time under the given realization of the background process. To measure the difference in travel time, we compute
the average percentage loss in travel time:

Average
(travel time algorithm − optimal travel time

optimal travel time ⋅ 100%
)

.

Note that a high value of this measure can also arise for an algorithm that is optimal in terms of expected travel time, e.g. VI. This
is due to the difference between (i) the notion of being (close-to-)optimal in expectation and (ii) the notion of being optimal for a
given realization. Using this measure we can therefore only compare algorithms, not assess individual values.

Table 5 shows the results of the simulations. We first note that edsger⋆ is indeed feasible, as the displayed run-times 𝑡 (in sec.)
are sufficiently low. The columns denoted by U% and W% show the average percentage loss in travel time for a given OD-pair, with
initial states chosen uniformly and weighed (with the corresponding limiting probabilities), respectively.

Table 5 shows that edsger⋆ is close-to-optimal in this large network. If the initial states are drawn according to the limiting
probability (W%), the average percentage loss in travel time is below 1%. In case the initial state is chosen uniformly, the drawn
initial states contain typically many congested links. Even in this more extreme setting, the average percentage loss in travel time
is below 7%. Note that the results of DD are relatively close to the results of edsger⋆, which is not surprising, as we have chosen the
same framework as in Experiment 1 (in terms of the structure of the background process). Table 6 illustrates that the difference in
distance-to-optimality between edsger⋆ and DD becomes more significant if we add more detail to the background process (by using
a setup as in Experiment 2). In Table 5 the results of DS and SS show the disadvantage of not taking into account any (updated)
background information, mostly notable in case of the first OD-pair.

We can in addition assess the effect of the parameters on the distance-to-optimality of the algorithms. To this end, we again
pick the setup of Experiment 1 and simulate, for different values of the incident rate 𝛼 and clearance rate 𝛽, the travel time under
edsger⋆, DD, SS and DS for the OD-pair ‘Short’. Initial states are chosen according to their corresponding limiting probabilities.
Table 7 shows the average percentage loss in travel time for edsger⋆, DD and DS, respectively. The output of SS is not explicitly
shown, as the simulations revealed that the loss under SS is of the same order as DS, in agreement with Tables 2 and 5, which
considered the Experiment 1 setting as well.

The tables reflect the non-stochastic nature of DS and the fact that DD does not take any information on the duration of incidents
119

into account. A few observations we can do:

Transportation Research Part B 160 (2022) 97–124N. Levering et al.

c

Table 8
Average percentage loss (%) and run-time (𝑡, in sec.) for different OD-pairs and different values of 𝑚.

𝑚 = 1 𝑚 = 5

Short Medium Long Short Medium Long

Nodes 8 18 35 9 18 35
Arcs 9 22 42 12 23 43

% 𝑡 % 𝑡 % 𝑡 % 𝑡 % 𝑡 % 𝑡

edsger⋆ 0.8 0.04 0.5 0.07 0.5 0.12 0.8 0.04 0.5 0.07 0.4 0.19
DD 0.8 0.01 0.9 0.01 0.6 0.04 0.8 0.01 0.9 0.01 0.5 0.10
DS 1.9 <0.01 0.6 <0.01 0.6 <0.01 1.9 <0.01 0.6 <0.01 0.5 <0.01

𝑚 = 10 𝑚 = 25

Short Medium Long Short Medium Long

Nodes 10 19 37 16 22 40
Arcs 15 25 48 27 35 55

% 𝑡 % 𝑡 % 𝑡 % 𝑡 % 𝑡 % 𝑡

edsger⋆ 0.8 0.05 0.5 0.07 0.4 0.24 0.8 0.05 0.5 0.09 0.4 0.34
DD 0.8 0.01 0.9 0.01 0.5 0.14 0.8 0.01 0.9 0.02 0.5 0.25
DS 1.9 <0.01 0.6 <0.01 0.5 <0.01 1.9 <0.01 0.6 <0.01 0.5 <0.01

◦ edsger⋆ and DD perform extremely well in case the time between accidents is long (i.e., the incident rate is low). The
probability of an accident occurring while traveling is in this case very low, thus any route circumventing existing
incidents will suffice for a low travel time.

◦ A small clearance rate (i.e., it will take very long before an accident has been cleared) has a potentially high impact
on the travel times of DS and SS. In case 𝛼 = 1 or 𝛼 = 100, the limiting probability of an arc being congested is high,
resulting in a high number of congested arcs. Because there are so few uncongested arcs in the network, the optimal
travel time is with high probability attained on the shortest path (in km), explaining the small average percentage loss
of DS and SS; However, if 𝛼 = 10-4, in the initial state approximately half of the arcs will be congested. DS and SS do not
reroute in case of incidents, and thus have a high travel time in case an accident occurs on the chosen path.

◦ DD is clearly suboptimal in case the incident and clearance rate take higher values. This can be explained by the fact
that DD will reroute in case an incident has occurred on a favorable path, whereas the high clearance rate will imply
the incident duration to be short and thus the impact of the incident on the shortest path minimal.

◦ The highest value in the table of edsger⋆ arises in case 𝛼 = 𝛽 = 1. Note that this loss is smaller than for DD and DS,
implying edsger⋆ still performs better than the deterministic algorithms. The relatively high loss in travel time for edsger⋆
is, as argued above, due to the difference between the notion of being (close-to-)optimal in expectation and the notion
of being optimal for a given realization. The fact that the highest loss arises for 𝛼 = 𝛽 = 1 is not surprising, as, compared
to the other settings, the travel time on a given path has the highest variance for 𝛼 = 𝛽 = 1, and our methods only try to
minimize the expected travel time. The loss under VI would likely be of the same order as that of edsger⋆. Computing
the loss of both algorithms in the network of Experiment 1 with 𝛼 = 𝛽 = 1 results e.g. in losses 7.00% (VI) and 7.27%
(edsger⋆).

As stated above, the third objective of this experiment is to demonstrate the effect of the speed-up techniques described in
Section 4.5 on the distance-to-optimality and the efficiency of the algorithms. The outcome of this experiment, in which we study
the same routes as above (i.e., ‘Short’, ‘Medium’, ‘Long’), is shown in Table 8. Again, we omit the results of SS, as these are of the
same order as DS. We use Yen’s 𝑚 shortest path algorithm to decrease the network size, and distinguish in Table 8 between the
different values of 𝑚, namely 𝑚 = 1, 5, 10, 25. As argued in Section 4.5, this reduction of the size of the network directly leads to a
smaller state space, as we do no longer track the states of the arcs not contained in the reduced network. The derived bound on the
hitting probabilities in (17) gives that, for the OD-pair of ‘Short’, the probability of occurrence of four accidents while driving has
a probability smaller than 𝜖 = 0.0005. Background states that contain four additional incidents with respect to the initial state are
therefore deleted. A similar argument can be used to reduce the size of the state space for the OD-pairs of ‘Medium’ and ‘Long’.

The table reveals that the number of nodes and arcs in the network increases with 𝑚 and consequently the run-time 𝑡 of the
algorithms as well. A moderate value of 𝑚 is therefore preferred. This is also justified by the distance-to-optimality of the algorithms
for moderate values of 𝑚. That is, the table shows that for smaller values of 𝑚 the algorithms still yields close-to-optimal results,
with the average percentage loss below 2% in all cases. Note that the travel times for 𝑚 = 10 and 𝑚 = 25 are even similar to the
ase of 𝑚 = 5. This again advocates the choice of a small 𝑚, e.g. between 𝑚 = 1 and 𝑚 = 5, as this reduces the run-time while the

distance-to-optimality of the algorithms is not affected.

6. Concluding remarks

In this paper we developed a new mechanism for describing the evolution of the velocities in a road traffic network, capable of
120

modeling both recurrent and non-recurrent congestion. For this flexible velocity model we developed a routing algorithm that aims

Transportation Research Part B 160 (2022) 97–124N. Levering et al.

d
p
u
r
e
p
e

t
e

I

T

at minimizing the expected travel time. Extensive experiments showed that it outperforms competing models, in that it provides
near-optimal results but at the same time offers real-time response.

Regarding the velocity model, we advocate the use of a continuous-time Markovian background process to describe the speed
riven by vehicles on the arcs in the network. We have developed various ways to deal with the potentially high dimension of this
rocess. Future research could concern further operationalizing this model, with a specific focus on tuning the model’s parameters
sing measurement data. Concretely, we have argued that the proposed background process is able to incorporate the influence of
andom events, as well as the influence of (nearly) deterministic patterns, on the vehicle speed. Insight into the occurrence of these
vents, and their effect on the velocities, can be provided relying on Intelligent Transportation Systems (ITS). However, it is not a
riori evident how to map the information provided by a typical ITS on the parameters of our Markov model. A future study could
xplore such calibration issues.

Regarding the routing algorithms, we have evaluated these on the basis of (i) distance-to-optimality (i.e., minimizing the expected
ravel time between source and destination) and (ii) efficiency (i.e., run-time). Numerical experiments justify the advice to use
dsger⋆ as routing algorithm, as edsger⋆ is close-to-optimal and has real-time run-time. In the implementation of edsger⋆, as well as

the implementation of the other presented algorithms, the guidelines described in Section 4.4 were used. There may be opportunities
to further speed-up the algorithm. For instance, parallel computing could potentially be used to speed up VI, edsger, and edsger⋆.
Since the costs of computing the per-arc expected travel times are under edsger⋆ significantly lower than under edsger and VI, also
when applying parallel computing edsger⋆ will outperform the competing algorithms.

Numerical experiments were conducted to show that edsger⋆ efficiently yields close-to-optimal results under a broad range of
realistic traffic scenarios. The model parameters have been calibrated from historical data on vehicle speeds and flows, collected by
the National Data Warehouse for Traffic Information (NDW) in the Netherlands. Future research will focus on developing a more
formal statistical procedure to estimate these parameters, performing a detailed analysis of the occurrence and consequences of
incidents; cf. the earlier study by Snelder et al. (2013).

CRediT authorship contribution statement

Nikki Levering: Conceptualization, Methodology, Software, Investigation, Writing – original draft, Visualization. Marko Boon:
Conceptualization, Software, Writing – review & editing. Michel Mandjes: Conceptualization, Methodology, Writing – review &
editing. Rudesindo Núñez-Queija: Conceptualization, Methodology, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

The authors would like to thank dr. Maaike Snelder (TU Delft) for her helpful feedback on the manuscript as well as her
suggestions on the analysis of the NDW data.

Appendix A. Proof of Proposition 1

Proposition 1. Let 𝑘𝓁 ∈ 𝐴 and denote with 𝜏𝑡𝑘𝓁(𝑑) the travel time on arc 𝑘𝓁 for traveling a distance 𝑑 ∈ [0, 𝑑𝑘𝓁] when leaving at 𝑡 ⩾ 0.
Then 𝑡1 ⩽ 𝑡2 implies that 𝑡1 + 𝜏

𝑡1
𝑘𝓁(𝑑) ⩽ 𝑡2 + 𝜏

𝑡2
𝑘𝓁(𝑑).

Proof. If ∫ 𝑡2𝑡1 𝑣𝑘𝓁(𝐵(𝑣)) d𝑣 ⩾ 𝑑 it follows that

𝑡1 + 𝜏
𝑡1
𝑘𝓁(𝑑) = 𝑡1 + min

{

𝑡 ⩾ 0 ∶ ∫

𝑡1+𝑡

𝑡1
𝑣𝑘𝓁(𝐵(𝑣)) d𝑣 ⩾ 𝑑

}

⩽ 𝑡1 + (𝑡2 − 𝑡1) = 𝑡2 ⩽ 𝑡2 + 𝜏
𝑡2
𝑘𝓁(𝑑).

f ∫ 𝑡2𝑡1 𝑣𝑘𝓁(𝐵(𝑣)) d𝑣 < 𝑑 it follows that

𝑡1 + 𝜏
𝑡1
𝑘𝓁(𝑑) ⩽ 𝑡1 + min

{

𝑡 ⩾ 0 ∶ ∫

𝑡1+𝑡

𝑡2
𝑣𝑘𝓁(𝐵(𝑣)) d𝑣 ⩾ 𝑑

}

⩽ 𝑡1 + min
{

𝑡 + 𝑡2 − 𝑡1 ⩾ 0 ∶ ∫

𝑡2+𝑡

𝑡2
𝑣𝑘𝓁(𝐵(𝑣)) d𝑣 ⩾ 𝑑

}

= 𝑡1 + (𝑡2 − 𝑡1) + 𝜏
𝑡2
𝑘𝓁(𝑑) = 𝑡2 + 𝜏

𝑡2
𝑘𝓁(𝑑).

his completes the proof. □
121

Transportation Research Part B 160 (2022) 97–124N. Levering et al.

w

P
L

w

l

S

w
r

Appendix B. Proof of Theorem 1

Theorem 1. Given a graph 𝐺 = (𝑁,𝐴) with a pair of nodes 𝑘,𝓁 ∈ 𝑁 , 𝛾 ∈ R⩾0 and a distance 𝑑 ⩾ 0, it holds that

𝑉𝑘𝓁 𝛷
′(𝑑 ∣ 𝑘,𝓁) = 1 +𝑄𝛷(𝑑 ∣ 𝑘,𝓁),

𝑉𝑘𝓁 𝛹
′(𝑑 ∣ 𝛾, 𝑘,𝓁) = (𝑄 − 𝛾𝐼)𝛹 (𝑑 ∣ 𝛾, 𝑘,𝓁),

with 𝑉𝑘𝓁 ∶= diag {(𝑣𝑘𝓁(𝑠))𝑠∈} and 𝟏 a ||-dimensional column vector of ones. A solution for this system of linear differential equations can
be written as

𝛷(𝑑 ∣ 𝑘,𝓁) =
[

𝐼 𝟎
]

exp

{[

𝑑𝑉 −1
𝑘𝓁 𝑄 𝑑𝑉 −1

𝑘𝓁 𝟏

𝟎⊤ 0

]}[

𝟎

1

]

,

𝛹 (𝑑 ∣ 𝛾, 𝑘,𝓁) = exp{𝑑 𝑉 −1
𝑘𝓁 (𝑄 − 𝛾𝐼)},

ith 𝟎 an ||-dimensional column vector of zeros.

roof. The proof uses a type of ‘infinitesimal argumentation’ that is frequently relied upon in the context of fluid storage systems.
et 𝑑 ∈ [0, 𝑑𝑘𝓁], 𝑠, 𝑠′ ∈ . Conditioning on a possible jump of the background process in [0, 𝛥], as 𝛥 ↓ 0, recalling that scenarios with

more than one jump have a probability that is 𝑜(𝛥),

𝜙𝑠(𝑑 ∣ 𝑘,𝓁) = (1 + 𝛥𝑞𝑠𝑠)E
[

𝜏𝑠𝑘𝓁(𝑑) ∣ 𝐵(𝑡) = 𝑠 ∀𝑡 ∈ [0, 𝛥]
]

+
∑

𝑠′≠𝑠
𝛥𝑞𝑠𝑠′ E

[

𝜏𝑠𝑘𝓁(𝑑) ∣ ∃𝑡 ∈ [0, 𝛥] ∶ 𝐵(𝑢) = 𝑠 ∀𝑢 ∈ [0, 𝑡), 𝐵(𝑢) = 𝑠′ ∀𝑢 ∈ [𝑡, 𝛥)
]

+ 𝑜(𝛥)

= 𝛥 + (1 + 𝛥𝑞𝑠𝑠)𝜙𝑠(𝑑 − 𝑣𝑘𝓁(𝑠)𝛥 ∣ 𝑘,𝓁)

+
∑

𝑠′≠𝑠

𝛥𝑞𝑠𝑠′
1 − 𝑒−𝑞𝑠𝑠′𝛥 ∫

𝛥

0
𝜙𝑠′ (𝑑 − 𝑣𝑘𝓁(𝑠)𝑡 − 𝑣𝑘𝓁(𝑠′)(𝛥 − 𝑡) ∣ 𝑘,𝓁) 𝑞𝑠𝑠′𝑒−𝑞𝑠𝑠′ 𝑡 d𝑡 + 𝑜(𝛥),

here it is used that, for 𝑠′ ≠ 𝑠,

E
[

𝜏𝑠𝑘𝓁(𝑑) ∣ ∃𝑡 ∈ [0, 𝛥] ∶ 𝐵(𝑢) = 𝑠 ∀𝑢 ∈ [0, 𝑡), 𝐵(𝑢) = 𝑠′ ∀𝑢 ∈ [𝑡, 𝛥)
]

= ∫

𝛥

0
E
[

𝜏𝑠𝑘𝓁(𝑑) ∣ 𝐵(𝑢) = 𝑠 ∀𝑢 ∈ [0, 𝑡), 𝐵(𝑢) = 𝑠′ ∀𝑢 ∈ [𝑡, 𝛥)
] 𝑞𝑠𝑠′𝑒−𝑞𝑠𝑠′ 𝑡

1 − 𝑒−𝑞𝑠𝑠′𝛥
d𝑡

=
𝑞𝑠𝑠′

1 − 𝑒−𝑞𝑠𝑠′𝛥 ∫

𝛥

0
(𝛥 + 𝜙𝑠′ (𝑑 − 𝑣𝑘𝓁(𝑠)𝑡 − 𝑣𝑘𝓁(𝑠′)(𝛥 − 𝑡) ∣ 𝑘,𝓁))𝑒−𝑞𝑠𝑠′ 𝑡 d𝑡.

Define 𝑓 (𝑡, 𝛥) ∶= 𝜙𝑠′ (𝑑 − 𝑣𝑘𝓁(𝑠)𝑡− 𝑣𝑘𝓁(𝑠′)(𝛥− 𝑡) ∣ 𝑘,𝓁)𝑒−𝑞𝑠𝑠′ 𝑡. Now subtracting 𝜙𝑠(𝑑 − 𝑣𝑘𝓁(𝑠)𝛥 ∣ 𝑘,𝓁) from both sides, dividing by 𝛥 and
etting 𝛥 ↓ 0 we obtain

𝑣𝑘𝓁(𝑠)𝜙′
𝑠(𝑑 ∣ 𝑘,𝓁) = 1 + 𝑞𝑠𝑠𝜙𝑠(𝑑 ∣ 𝑘,𝓁) +

∑

𝑠′≠𝑠
𝑞𝑠𝑠′ lim𝛥↓0

𝑞𝑠𝑠′
1 − 𝑒−𝑞𝑠𝑠′𝛥 ∫

𝛥

0
𝑓 (𝑡, 𝛥) d𝑡

= 1 + 𝑞𝑠𝑠𝜙𝑠(𝑑 ∣ 𝑘,𝓁) +
∑

𝑠′≠𝑠
𝑞𝑠𝑠′𝜙𝑠′ (𝑑 ∣ 𝑘,𝓁),

where the second step follows from L’Hopital’s rule in combination with Leibniz’ integral rule. We have thus obtained the desired
system of linear differential equations:

𝑣𝑘𝓁(𝑠)𝜙′
𝑠(𝑑 ∣ 𝑘,𝓁) = 1 +

∑

𝑠′∈
𝑞𝑠𝑠′𝜙𝑠′ (𝑑 ∣ 𝑘,𝓁).

The same steps can be performed to derive the second system of linear differential equations. Again conditioning on a possible jump
of the background process, as 𝛥 ↓ 0,

𝜓𝑠𝑠′ (𝑑 ∣ 𝛾, 𝑘,𝓁) = (1 + 𝛥𝑞𝑠𝑠) 𝑒−𝛾𝛥 𝜓𝑠𝑠′ (𝑑 − 𝑣𝑘𝓁(𝑠)𝛥 ∣ 𝑘,𝓁, 𝛾)

+
∑

𝑠̃≠𝑠
𝛥𝑞𝑠𝑠̃

𝑞𝑠𝑠̃𝑒−𝛾𝛥

1 − 𝑒−𝑞𝑠𝑠̃𝛥 ∫

𝛥

0
𝜓𝑠̃𝑠′ (𝑑 − 𝑣𝑘𝓁(𝑠)𝑡 − 𝑣𝑘𝓁(𝑠̃)(𝛥 − 𝑡) ∣ 𝑘,𝓁, 𝛾)𝑒−𝑞𝑠𝑠̃𝑡 d𝑡 + 𝑜(𝛥).

ubtracting 𝜓𝑠𝑠′ (𝑑 − 𝑣𝑘𝓁(𝑠)𝛥 ∣ 𝑘,𝓁, 𝛾) from both sides and expanding 𝑒−𝛾𝛥 as 1 − 𝛾𝛥 + 𝑜(𝛥) gives

𝜓𝑠𝑠′ (𝑑 ∣ 𝑘,𝓁, 𝛾) − 𝜓𝑠𝑠′ (𝑑 − 𝑣𝑘𝓁(𝑠)𝛥 ∣ 𝑘,𝓁, 𝛾) = (−𝛾𝛥 + 𝛥𝑞𝑠𝑠 − 𝛾𝛥2𝑞𝑠𝑠)𝜓𝑠𝑠′ (𝑑 − 𝑣𝑘𝓁(𝑠)𝛥 ∣ 𝑘,𝓁, 𝛾)

+
∑

𝑠̃≠𝑠

(1 − 𝛾𝛥)𝛥𝑞2𝑠𝑠̃
1 − 𝑒−𝑞𝑠𝑠̃𝛥 ∫

𝛥

0
𝑓 (𝑡, 𝛥) d𝑡 + 𝑜(𝛥),

ith now 𝑓 (𝑡, 𝛥) ∶= 𝜓𝑠̃𝑠′ (𝑑 − 𝑣𝑘𝓁(𝑠)𝑡 − 𝑣𝑘𝓁(𝑠̃)(𝛥 − 𝑡) ∣ 𝑘,𝓁, 𝛾)𝑒−𝑞𝑠𝑠̃𝑡. Dividing by 𝛥, letting 𝛥 ↓ 0 and using both L’Hopital’s and Leibniz’
ule, we eventually obtain

𝑣𝑘𝓁(𝑠)𝜓 ′
𝑠𝑠′ (𝑑 ∣ 𝑘,𝓁, 𝛾) = (𝑞𝑠𝑠 − 𝛾)𝜓𝑠𝑠′ (𝑑 ∣ 𝑘,𝓁, 𝛾) +

∑

𝑞𝑠𝑠̃ 𝜓𝑠̃𝑠′ (𝑑 ∣ 𝑘,𝓁, 𝛾).
122

𝑠̃≠𝑠

Transportation Research Part B 160 (2022) 97–124N. Levering et al.

A

t

T

R

A
B

B
B
B
B
B
B
B
B
B
B

Fig. 16. Birth–death process.

Fig. 17. Birth–death process with 4 states.

This completes the proof. □

ppendix C. Upper bounds probabilities

We will show how results on the sum of independent exponentially random variables can be used to derive an upper bound on
he hitting probability

P(∃𝑡 ∈ [0,𝑀] ∶ 𝐵𝑘𝓁(𝑡) = 𝑠′𝑘𝓁 ∣ 𝐵𝑘𝓁(0) = 𝑠𝑘𝓁), (C.1)

in case 𝐵𝑘𝓁(𝑡) is a birth–death process. Fig. 16 shows the outline of such a process with 𝑛𝑘𝓁 states. By the structure of a birth–death
process, it holds that

P(∃𝑡 ∈ [0,𝑀] ∶ 𝐵𝑘𝓁(𝑡) = 𝑠′𝑘𝓁 ∣ 𝐵𝑘𝓁(0) = 𝑠𝑘𝓁) ⩽ P(𝑆𝑁 ⩽𝑀),

with 𝑆𝑁 the sum of 𝑁 independent exponentially distributed random variables. Look for example at Fig. 17 with 𝑘𝓁 = {1, 2, 3, 4}
and note that

P(∃𝑡 ∈ [0,𝑀] ∶ 𝐵𝑘𝓁(𝑡) = 3 ∣ 𝐵𝑘𝓁(0) = 1) ⩽ P(𝐸(𝜆1) + 𝐸(𝜆2) ⩽𝑀),

with 𝐸(𝜆1) ∼ Exp(𝜆1) and 𝐸(𝜆2) ∼ Exp(𝜆2) independent.
With 𝑆𝑁 the sum of 𝑁 independent exponentially distributed random variables with rates 𝜆𝑖 (where 𝜆𝑖 ≠ 𝜆𝑗 for 𝑖 ≠ 𝑗) and density

functions 𝑓𝑖(𝑧) =∶ 𝜆𝑖 𝑒−𝜆𝑖𝑧, we have (Bibinger, 2013)

𝑓𝑆𝑁 (𝑧) =
𝑁
∑

𝑛=1

(𝑁
∏

𝑗=1,𝑗≠𝑛

𝜆𝑗
𝜆𝑗 − 𝜆𝑛

)

𝑓𝑛(𝑧) =∶
𝑁
∑

𝑛=1
𝑐𝑛𝑓𝑛(𝑧).

This implies for 𝑀 <∞ that

P(𝑆𝑁 ⩽𝑀) = ∫

𝑀

0

𝑁
∑

𝑛=1
𝑐𝑛𝑓𝑛(𝑧) d𝑧 =

𝑁
∑

𝑛=1
𝑐𝑛 ∫

𝑀

0
𝑓𝑛(𝑧) d𝑧 =

𝑁
∑

𝑛=1
𝑐𝑛(1 − 𝑒−𝜆𝑛𝑀).

hese results can now directly be used to find an upper bound on the probabilities in (C.1).

eferences

smussen, S., 2003. Applied Probability and Queues, second ed. Springer-Verlag.
ander, J.L., White III, C.C., 2002. A heuristic search approach for a nonstationary stochastic shortest path problem with terminal cost. Transp. Sci. 36 (2),

218–230.
ellman, R.E., 1957a. Dynamic Programming. Princeton University Press, Princeton.
ellman, R.E., 1957b. A Markovian decision process. J. Math. Mech. 6 (5), 679–684.
ellman, R.E., 1958. On a routing problem. Quart. Appl. Math. 16 (1), 87–90.
ertsekas, D.P., 1976. Dynamic Programming and Stochastic Control. In: Mathematics in Science and Engineering, Academic Press.
ertsekas, D.P., 2005. Dynamic Programming and Optimal Control, Vol. 1, third ed. Athena Scientific.
ertsekas, D.P., 2012. Dynamic Programming and Optimal Control, Vol. 2, fourth ed. Athena Scientific.
ertsekas, D.P., Tsitsiklis, J.N., 1991. An analysis of stochastic shortest path problems. Math. Oper. Res. 16 (3), 580–595.
ibinger, M., 2013. Notes on the sum and maximum of independent exponentially distributed random variables with different scale parameters. Probability arXiv.
onet, B., 2007. On the speed of convergence of value iteration on stochastic shortest-path problems. Math. Oper. Res. 32 (2), 365–373.
oriboonsomsin, K., Barth, M., 2008. Impacts of freeway high-occupancy vehicle lane configuration on vehicle emissions. Transp. Res. D 13 (2), 112–125.
123

http://refhub.elsevier.com/S0191-2615(22)00056-X/sb1
http://refhub.elsevier.com/S0191-2615(22)00056-X/sb2
http://refhub.elsevier.com/S0191-2615(22)00056-X/sb2
http://refhub.elsevier.com/S0191-2615(22)00056-X/sb2
http://refhub.elsevier.com/S0191-2615(22)00056-X/sb3
http://refhub.elsevier.com/S0191-2615(22)00056-X/sb4
http://refhub.elsevier.com/S0191-2615(22)00056-X/sb5
http://refhub.elsevier.com/S0191-2615(22)00056-X/sb6
http://refhub.elsevier.com/S0191-2615(22)00056-X/sb7
http://refhub.elsevier.com/S0191-2615(22)00056-X/sb8
http://refhub.elsevier.com/S0191-2615(22)00056-X/sb9
http://refhub.elsevier.com/S0191-2615(22)00056-X/sb10
http://refhub.elsevier.com/S0191-2615(22)00056-X/sb11
http://refhub.elsevier.com/S0191-2615(22)00056-X/sb12

Transportation Research Part B 160 (2022) 97–124N. Levering et al.

C
C

C
D
D
F
F
F
F
F
F
G
G
G
G

G

H
I
K
K
K
K

L

L
M
M
M
M

M
N
N
P
P
P
P
P

P
P
P
R
S

S
S
S

T
W
W

W
Y
Y

Boucherie, R.J., van Dijk, N.M. (Eds.), 2017. Markov Decision Processes in Practice. In: International Series in Operations Research & Management Science, vol.
248, Springer.

BS, 2020. Statline open data. https://opendata.cbs.nl/statline/#/CBS/nl/dataset/70806ned/table?ts=1609750215691. Accessed: 12-12-2020.
hang, M., Wiegmann, J., Smith, A., Bilotto, C., 2008. A review of HOV lane performance and policy options in the United States. Technical report, US DOT

FHWA.
heung, R.K., 1998. Iterative methods for dynamic stochastic shortest path problems. Nav. Res. Logist. 45 (8), 769–789.
avies, C., Lingras, P., 2003. Genetic algorithms for rerouting shortest paths in dynamic and stochastic networks. European J. Oper. Res. 144, 27–38.
ijkstra, E.W., 1959. A note on two problems in connexion with graphs. Numer. Math. 1, 269–271.
an, Y.Y., Kalaba, R.E., Moore II, J.E., 2005. Arriving on time. J. Optim. Theory Appl. 127 (3), 497–513.
erris, M.C., Ruszczyński, A., 2000. Robust path choice in networks with failures. Networks 35 (3), 181–194.
ord Jr., L.R., 1956. Network Flow Theory. Technical report, Rand Corp. Paper.
rank, H., 1969. Shortest paths in probabilistic graphs. Oper. Res. 17 (4), 583–599.
u, L., Rilett, L.R., 1998. Expected shortest paths in dynamic and stochastic traffic networks. Transp. Res. B 32 (7), 499–516.
u, L., Sun, D., Rilett, L., 2006. Heuristic shortest path algorithms for transportation applications: state of the art. Comput. Oper. Res. 33 (11), 3324–3343.
ao, S., Chabini, I., 2006. Optimal routing policy problems in stochastic time-dependent networks. Transp. Res. B 40, 93–122.
ao, S., Huang, H., 2012. Real-time traveler information for optimal adaptive routing in stochastic time-dependent networks. Transp. Res. C 21, 196–213.
oldberg, A.V., Tarjan, R.E., 1996. Expected Performance of Dijkstra’s Shortest Path Algorithm. Technical report, NEC Research Institute.
üner, A.R., Murat, A., Chinnam, R.B., 2012. Dynamic routing under recurrent and non-recurrent congestion using real-time ITS information. Comput. Oper.

Res. 39 (2), 358–373.
uo, S., Zhou, D., Fan, J., Tong, Q., Zhu, T., Lv, W., Li, D., Havlin, S., 2019. Identifying the most influential roads based on traffic correlation networks. EPJ

Data Sci. 8, 28:1–28:17.
all, R.W., 1986. The fastest path through a network with random time-dependent travel times. Transp. Sci. 20 (3), 182–188.

be, O., 2013. Markov Processes for Stochastic Modeling, second ed. Elsevier.
aufman, D.E., Smith, R.L., 1993. Fastest paths in time-dependent networks for intelligent vehicle-highway systems application. IVHS J. 1 (1), 1–11.
haroufeh, J.P., Gautam, N., 2004. Deriving link travel-time distributions via stochastic speed processes. Transp. Sci. 38 (1), 97–106.
im, S., Lewis, M.E., White III, C.C., 2005a. Optimal vehicle routing with real-time traffic information. IEEE Trans. Intell. Transp. Syst. 6 (2), 178–188.
im, S., Lewis, M.E., White III, C.C., 2005b. State space reduction for non-stationary stochastic shortest path problems with real-time traffic information. IEEE

Trans. Intell. Transp. Syst. 6 (3), 273–284.
erner, J., Wagner, D., Zweig, K.A. (Eds.), 2009. Algorithmics of Large and Complex Networks: Design, Analysis, and Simulation. In: Lecture Notes in Computer

Science, vol. 5515, Springer.
oui, R.P., 1983. Optimal paths in graphs with stochastic or multidimensional weights. Commun. ACM 26 (9), 670–676.
ao, C., Shen, Z., 2018. A reinforcement learning framework for the adaptive routing problem in stochastic time-dependent network. Transp. Res. C 93, 179–197.
iller-Hooks, E., 2001. Adaptive least-expected time paths in stochastic, time-varying transportation and data networks. Networks 37 (1), 35–52.
iller-Hooks, E., Mahmassani, H.S., 2000. Least expected time paths in stochastic, time-varying transportation networks. Transp. Sci. 34 (2), 198–215.
irchandani, B.P., Soroush, H., 1986. Routes and flows in stochastic networks. In: Angrealtta, G., Mason, F., Serafini, P. (Eds.), Advanced Schools on Stochastic

in Combinatorial Optimization. World Scientific Publishing Company, pp. 129–177.
urthy, I., Sarkar, S., 1996. A relaxation-based pruning technique for a class of stochastic shortest path problems. Transp. Sci. 30 (3), 220–236.
ie, Y.M., Wu, X., 2009. Shortest path problem considering on-time arrival probability. Transp. Res. B 43 (6), 597–613.
orris, J.R., 1997. Markov Chains. Cambridge University Press.
ease III, M.C. (Ed.), 1965. Methods of Matrix Algebra. Academic Press.
edersen, S.A., Yang, B., Jensen, C.S., 2020. Fast stochastic routing under time-varying uncertainty. VLDB J. 29, 819–839.
olychronopoulos, G.H., Tsitsiklis, J.N., 1996. Stochastic shortest path problems with recourse. Networks 27, 133–143.
owell, W.B., 2007. Approximate Dynamic Programming: Solving the Curses of Dimensionality. In: Wiley Series in Probability and Statistics, John Wiley & Sons.
riambodo, B., Ahmad, A., Kadir, R.A., 2020. Prediction of average speed based on relationships between neighbouring roads using 𝑘-NN and neural network.

Int. J. Online Biomed. Eng. 16 (1), 18–33.
rovan, J.S., 2003. A polynomial-time algorithm to find shortest paths with recourse. Networks 41 (2), 115–125.
saraftis, H.N., Tsitsiklis, J.N., 1993. Dynamic shortest paths in acyclic networks with Markovian arc costs. Oper. Res. 41 (1), 91–101.
uterman, M.L., 1994. Markov Decision Processes: Discrete Stochastic Dynamic Programming. In: Wiley Series in Probability and Statistics, John Wiley & Sons.
oss, S., 1983. Introduction to Stochastic Dynamic Programming. Academic Press.
ever, D., Dellaert, N., van Woensel, T., de Kok, T., 2013. Dynamic shortest path problems: Hybrid routing policies considering network disruptions. Comput.

Oper. Res. 40 (12), 2852–2863.
nelder, M., Bakri, T., van Arem, B., 2013. Delays caused by incidents: Data-driven approach. Transp. Res. Rec. 2333, 1–8.
utton, R.S., Barto, A.G., 2018. Reinforcement Learning: An Introduction, second ed. MIT Press.
ýkora, O., 2008. State-space dimensionality reduction in Markov decision processes. In: WDS’08 Proceedings of Contributed Papers: Part I - Mathematics and

Computer Sciences. pp. 165–170.
homas, B.W., White III, C.C., 2007. The dynamic shortest path problem with anticipation. European J. Oper. Res. 176 (2), 836–854.
aller, S.T., Ziliaskopoulos, A.K., 2002. On the online shortest path problem with limited arc cost dependencies. Networks 40 (4), 216–227.
ellman, M.P., Ford, M., Larson, K., 1995. Path planning under time-dependent uncertainty. In: Proceedings of the Eleventh Conference on Uncertainty in

Artificial Intelligence. pp. 532–539.
olshon, B., Lambert, L., 2006. Reversible lane systems: Synthesis of practice. J. Transp. Eng. 132 (12), 933–944.

en, J.Y., 1970. An algorithm for finding shortest routes from all source nodes to a given destination in general networks. Quart. Appl. Math. 27 (4), 526–530.
en, J.Y., 1971. Finding the 𝑘 shortest loopless paths in a network. Manage. Sci. 17 (11), 712–716.
124

http://refhub.elsevier.com/S0191-2615(22)00056-X/sb13
http://refhub.elsevier.com/S0191-2615(22)00056-X/sb13
http://refhub.elsevier.com/S0191-2615(22)00056-X/sb13
https://opendata.cbs.nl/statline/#/CBS/nl/dataset/70806ned/table?ts=1609750215691
http://refhub.elsevier.com/S0191-2615(22)00056-X/sb15
http://refhub.elsevier.com/S0191-2615(22)00056-X/sb15
http://refhub.elsevier.com/S0191-2615(22)00056-X/sb15
http://refhub.elsevier.com/S0191-2615(22)00056-X/sb16
http://refhub.elsevier.com/S0191-2615(22)00056-X/sb17
http://refhub.elsevier.com/S0191-2615(22)00056-X/sb18
http://refhub.elsevier.com/S0191-2615(22)00056-X/sb19
http://refhub.elsevier.com/S0191-2615(22)00056-X/sb20
http://refhub.elsevier.com/S0191-2615(22)00056-X/sb21
http://refhub.elsevier.com/S0191-2615(22)00056-X/sb22
http://refhub.elsevier.com/S0191-2615(22)00056-X/sb23
http://refhub.elsevier.com/S0191-2615(22)00056-X/sb24
http://refhub.elsevier.com/S0191-2615(22)00056-X/sb25
http://refhub.elsevier.com/S0191-2615(22)00056-X/sb26
http://refhub.elsevier.com/S0191-2615(22)00056-X/sb27
http://refhub.elsevier.com/S0191-2615(22)00056-X/sb28
http://refhub.elsevier.com/S0191-2615(22)00056-X/sb28
http://refhub.elsevier.com/S0191-2615(22)00056-X/sb28
http://refhub.elsevier.com/S0191-2615(22)00056-X/sb29
http://refhub.elsevier.com/S0191-2615(22)00056-X/sb29
http://refhub.elsevier.com/S0191-2615(22)00056-X/sb29
http://refhub.elsevier.com/S0191-2615(22)00056-X/sb30
http://refhub.elsevier.com/S0191-2615(22)00056-X/sb31
http://refhub.elsevier.com/S0191-2615(22)00056-X/sb32
http://refhub.elsevier.com/S0191-2615(22)00056-X/sb33
http://refhub.elsevier.com/S0191-2615(22)00056-X/sb34
http://refhub.elsevier.com/S0191-2615(22)00056-X/sb35
http://refhub.elsevier.com/S0191-2615(22)00056-X/sb35
http://refhub.elsevier.com/S0191-2615(22)00056-X/sb35
http://refhub.elsevier.com/S0191-2615(22)00056-X/sb36
http://refhub.elsevier.com/S0191-2615(22)00056-X/sb36
http://refhub.elsevier.com/S0191-2615(22)00056-X/sb36
http://refhub.elsevier.com/S0191-2615(22)00056-X/sb37
http://refhub.elsevier.com/S0191-2615(22)00056-X/sb38
http://refhub.elsevier.com/S0191-2615(22)00056-X/sb39
http://refhub.elsevier.com/S0191-2615(22)00056-X/sb40
http://refhub.elsevier.com/S0191-2615(22)00056-X/sb41
http://refhub.elsevier.com/S0191-2615(22)00056-X/sb41
http://refhub.elsevier.com/S0191-2615(22)00056-X/sb41
http://refhub.elsevier.com/S0191-2615(22)00056-X/sb42
http://refhub.elsevier.com/S0191-2615(22)00056-X/sb43
http://refhub.elsevier.com/S0191-2615(22)00056-X/sb44
http://refhub.elsevier.com/S0191-2615(22)00056-X/sb45
http://refhub.elsevier.com/S0191-2615(22)00056-X/sb46
http://refhub.elsevier.com/S0191-2615(22)00056-X/sb47
http://refhub.elsevier.com/S0191-2615(22)00056-X/sb48
http://refhub.elsevier.com/S0191-2615(22)00056-X/sb49
http://refhub.elsevier.com/S0191-2615(22)00056-X/sb49
http://refhub.elsevier.com/S0191-2615(22)00056-X/sb49
http://refhub.elsevier.com/S0191-2615(22)00056-X/sb50
http://refhub.elsevier.com/S0191-2615(22)00056-X/sb51
http://refhub.elsevier.com/S0191-2615(22)00056-X/sb52
http://refhub.elsevier.com/S0191-2615(22)00056-X/sb53
http://refhub.elsevier.com/S0191-2615(22)00056-X/sb54
http://refhub.elsevier.com/S0191-2615(22)00056-X/sb54
http://refhub.elsevier.com/S0191-2615(22)00056-X/sb54
http://refhub.elsevier.com/S0191-2615(22)00056-X/sb55
http://refhub.elsevier.com/S0191-2615(22)00056-X/sb56
http://refhub.elsevier.com/S0191-2615(22)00056-X/sb57
http://refhub.elsevier.com/S0191-2615(22)00056-X/sb57
http://refhub.elsevier.com/S0191-2615(22)00056-X/sb57
http://refhub.elsevier.com/S0191-2615(22)00056-X/sb58
http://refhub.elsevier.com/S0191-2615(22)00056-X/sb59
http://refhub.elsevier.com/S0191-2615(22)00056-X/sb61
http://refhub.elsevier.com/S0191-2615(22)00056-X/sb62
http://refhub.elsevier.com/S0191-2615(22)00056-X/sb63

	A framework for efficient dynamic routing under stochastically varying conditions
	Introduction
	Motivational example
	Markovian velocity model
	Dynamic routing algorithms
	Optimal policy by dynamic programming
	Edsger algorithm
	edsger⋆ algorithm
	Implementation details
	Decreasing state space
	Decreasing network size
	Use of bounds on hitting probabilities
	Use of historical data

	Numerical experiments
	Concluding remarks
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix A. Proof of Proposition 1
	Appendix B. Proof of Theorem 1
	Appendix C. Upper bounds probabilities
	References

