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Abstract: Fractional derivatives are non local operators that has compacity property in terms of
parameter number for modeling diffusive phenomenon with very few parameters. One of its main
properties is its non-local behavior, as it can be exploited to model long-memory phenomena
such as heat transfers. However, such non-locality implies a constant knowledge of the full past
of the function to be differentiated. In the context of real-time system identification, this may
limit the experiences as calculations become slower as time progresses. This study deals with
the relationship between frequency content of a signal and its truncation error in order to obtain

real-time exploitable algorithms.
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1. INTRODUCTION

Fractional calculus has been a mathematical concept since
its origin after knowing a huge interest in modeling diffu-
sive phenomena since the 70s (Oustaloup (2014)). Diffusive
phenomena have been shown to exhibit behavior that
can be modelled through a half-order derivative. Thermal
impedance at high frequency has also been proven to
behave like a half-order integrator (Battaglia et al. (2001)).
It has also been shown that finite thermal media can also
be modeled through fractional order impedance models
(Duhé et al. (2022)). Its properties have proven to be
useful in medical scenarios, as is the case of lung modeling,
cardiac tissue and muscle relaxation. Therefore, there is an
increasing interest regarding fractional order models and
their properties.

Fractional differentiation definitions is not unique (Kilbas
et al. (2006); Garrappa et al. (2019)), but all definitions
model long-memory phenomena. The past history of a
given function f(¢) still has an influence on its fractional
derivative after a long period of time. Fractional order
dynamics can be interpreted as an infinite distribution
of time constants (Oustaloup (1995)). Unfortunately, this
implies the existence of infinitely slow time constants. A
main drawback regarding this property is the non-local
nature of fractional differentiation: the whole knowledge
of the function past is required in order to estimate its
fractional derivative at any given time. As time goes by, a
signal “history” becomes progressively longer and this may
lead to slower computing times if a strict definition for the
operator is kept. Computing time may be critical in real-
time applications and a continuous increase in computing
time can lead to an infeasible algorithm. In consequence,
a truncated version of the operator is sought.

The fractional derivative may be elegantly truncated in
a really simple way through Podlubny’s short memory
principle (Podlubny (1999)). The principle allows to use a
limited portion of a function past and still get an accurate
estimation of its fractional derivative. Even though Pod-
lubny’s principle provides an accuracy guarantee, it gives
a pessimistic limit that could still be too slow to compute
for some real-time scenarios. Online system identification
usually imply an excitation signal relying within a defined
bandwidth (Ljung (1999)). Therefore, the spectrum of a
signal could influence the required length of the past signal
and the truncation error. One of the aims of this paper
is to analyze the frequency and parameter influence on
truncation error for fractional differentiation. This will be
performed through a simple scenario.

The earliest proposed techniques for fractional order sys-
tem identification come from the 90s (Le Lay (1998)).
This first methods estimate coefficients for a fractional
order transfer function. However, they are limited to the
Griinwald-Letnikov discrete-time definition of the frac-
tional derivative. By taking continuous-time identification
methods, methods relying on state-variable filters, least-
squares optimization and instrumental variables are intro-
duced (Malti et al. (2008)).

Real-time system identification is based upon recursive
estimation methods, as recursive least-squares or recursive
prediction error method (Ljung (1999)). The analysis of
recursive identification methods has also been extended to
least squares with state-variable filters and instrumental
variable techniques (Padilla (2017)). A first study on
recursive prediction error identification for fractional order
models was proposed in Djouambi et al. (2012) for only
coefficient estimation. Long-memory Recursive Prediction
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Error Method (LMRPEM) has proven to be a useful
tool for accurately estimating a fractional order model’s
coefficients (Victor et al. (2022)). In that paper, the signal
full time length was considered without considering real-
time implementation. An effective combination of a well
chosen truncation method and LMRPEM algorithm could
lead to an entirely real-time implementable identification
technique for fractional order models.

This paper aims at finding a relationship between the
frequency content of a signal and its truncation error in
order to obtain real-time exploitable algorithms.

The paper is organized as follows: Section 2 introduces the
basics of fractional calculus and fractional order transfer
functions, Section & presents the Short Memory Principle
and the frequency’s study on truncation error, Section 4
analyzes fractional order transient response for a simple
scenario. Section 5 presents LMRPEM algorithm and an
application of a truncated estimation and conclusions and
perspectives are presented in Section 6.

2. MATHEMATICAL BACKGROUND

As previously stated, many different definitions for frac-
tional order differentiation exist. One of the most well-
known definitions is that of Riemann and Liouville (Samko
et al. (1993)):
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where n — 1 < a < n with n being an integer and Euler’s
gamma function is defined as:
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If the initial conditions are set to zero, Riemann-Liouville’s
definition may be proven to be equal to the series definition
given by Griinwald-Letnikov (Samko et al. (1993)):
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Griinwald’s coefficients:
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This coefficients exhibit a slow tendency towards zero
and are what provides long-memory behavior for this
definition.

If h parameter is replaced for a sampling time Ty, this last
definition can be seen as a weighted sum of the functions
past:
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This definition allows an easy implementation for com-
puters and has led to a significant popularity. It is the
definition that will be taken and used for the simulation
scenarios presented in this study.

For null initial conditions, the Laplace transform of the
the fractional derivative leads to a simple expression:

Z{p*f()} =

A fractional single-input single-output (SISO) model may

relate its output y(t) to input w(t) through a fractional
order differential equation:
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where (a;,b;) are real numbers and a; < a2 < ...

and By < f1 <
positive numbers.
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Laplace’s transform allows to relate input and output
through a fractional order transfer function model:
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A fractional order model is commensurate if all of its
derivation orders are an integer multiple of a basic order
v (which is called the commensurate order):
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Stability of fractional order systems has been analyzed in
different contexts. The most well-known stability criterion
was established by Matignon (Matignon and d’Andréa-
Novel (1996)) and allows to check the stability of a com-
mensurate order system through the location of its s
poles. The original theorem was established for commen-
surate orders 0 < v < 1, but this was extended for orders
between 1 and 2 (Moze and Sabatier (2005)). Orders with
commensurate orders beyond 2 can be proven to be un-
stable (Malti et al. (2011)). Further extensions have been
developed in order to check stability of non-commensurate
systems (Rivero et al. (2013)). More recently, stability of
multi-variable and non-linear fractional systems has also
been studied (Lenka (2019)).

Matignon’s Stability Theorem:

Let S be a commensurate transfer function and v its

commensurate order. G(s) = IQD:((;)) is BIBO-stable if and

only if:

O<v<2
and, for every pole s (P,(s;) = 0):
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(10)

(11)
3. TRUNCATED FRACTIONAL DERIVATIVE

As Griinwald-Letnikov’s definition is the most commonly
used for numerical simulation, its definition for a trunca-
tion of length L should be provided:

L]

1 .
L f(t) = Ta Z i f(t —JTs) (12)
S ]:0
The maximal error is then defined as follows:
€maz = Max [p® f(t) —r p* f(t)] (13)
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A simple cosine function will be used for simulations. The
sampling period is taken as Ts = 0.01s for the whole
subsection.

Figure 1 shows maximum error for varying frequencies
within the band [1 — 100]rad/s. Maximal error has been
plotted for different memory lengths and keeping oo = 0.5
constant. As can be observed, an increasing length of mem-
ory leads to naturally lower errors. However, frequency
of signal also plays an important role in error. As fre-
quency increases, there is a significant error reduction for
all memory lengths tested. It could be considered that a
higher frequency implies a higher number of periods of
the cosine function available for fractional differentiation
estimation. Therefore, a reduction of error with frequency
may be considered as a natural consequence of an increased
“knowledge” of the function’s past.
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Fig. 1. Maximal error vs frequency at different truncation
lengths

This result may suggest that the error stays relatively the
same if the same number of periods are taken to estimate
its fractional derivative. Therefore, truncation length L is
now taken as:

L==
w

(14)

where X is an arbitrary factor and w is the signal’s
frequency. This choice of length leads to an estimation
based upon a fixed number of the signal’s periods rather
than a time length. Results from this simulations are
presented in figure 2.

Even though a higher X factor leads to lower error, max-
imal error is not preserved by keeping a constant number
of periods. As observed, as frequency increases, keeping
the same number of periods for fractional differentiation
estimation actually leads to an important increase in error.
However, it should be noted that a high enough number
of previous periods may severely limit frequency effect, as
is the case of X = 50.

0.1

L X =10 al
0.09 X =20
X =30
0.08 Y- 1
X =50
0.07 q
0.06 i
g
£005F 1
w
0.04 - q
0.03 P
0.02 f .
0.01 e -~ —
0 R 1
10° 10" 102

frequency (rad/s)

Fig. 2. Maximal error vs frequency at different X factors

4. ONLINE SYSTEM IDENTIFICATION
4.1 Long-Memory recursive prediction error method

In this section, a recursive algorithm for fractional order
system identification will be used in order to estimate
the system parameters. The Long-Memory Recursive Pre-
diction Error Method (LMRPEM) has proven to have
advantages as variance reduction and unbiased results. It
will be the chosen method for the example presented in
this paper.

If one starts with classical prediction error method, error
function is originally defined as:

e(t) = y(t) — 9(b), (15)
where the estimated output §(t) is computed as:
§(t) = G(p.O)u(t). (16)

However, nature of fractional order derivatives lead to the
choice of an extended error in order to take into account
fractional system’s natural long-memory.

é(kTy) = [€(0) e(Ty) €(2Ty) ... e(kT,)]" (17)
This error signal € will include errors at all instants from

t = 0 to the current time t = kT and will be increased
by one data-point per iteration. Additionally, the gradient

(KT, 0) used will be a matrix:

[0e(0) 0e(Ts) 0e(2Ts)  Oe(kTs)T
0bg 0bg obg T Ob
0e(0) 0e(Ts) 0e(2T%) Oe(kTy)
"Z]p(kTs, 9) — 8b1 8b1 8b1 8b1
De(0) Oe(T,) 9e(2T,)  De(kT,)
LO0a,, Oam, Oam, ~ Oam,
(18)

where k indicates the present iteration.
By introducing the extended measured output Y*(kTy)
and the extended estimated output Y (kT}) as:
Y (TY) =[y"(0) y™(T2) y* (2T%) .oy (KTL)]
Y (kTy) =[y(0) y(T%) y(2T5) .y (KT)],
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the long memory recursive prediction-error method (LM-
RPEM) is proposed for fractional order systems:
E(KT) =V (T,) — ¥ (KT.)
O(KT,) = O(k — 1) + 7, R~ (k) (KT, 0)E(kTY)
R(K) = R(k = 1)+, [, (KT, 0)9F (KT, 0) = R(k—1)]
(21)
where 7, is a refining gain analogous to the step in a
gradient descent.

4.2 Simulation results

Suppose a first kind fractional order system:

K
G =17

where true values are K =1, 7 =1 and a = 0.5.

(22)

The input is a pseudo-random binary signal oscillating
between —5 and 5 and containing 2000 points with a
sampling time of Ty = 1.00s. Note that system (22) was
simulated in (Duhé et al., 2022, Section 3.1.1). The system
cut-off frequency at —3dB is obtained at 0.2679rad/s
which provides a time constant of 23.45s. Moreover, as the
system (22) is fractional, its time response is more than 3
times this time constant. Therefore, the sampling time T
is sufficiently small.

In system identification, it should be noted that in order to
correctly identify the system parameters, the input signal
should be sufficiently persistent: namely, the input signal
spectrum should have at least half the cosine components
of the number of the system parameters. In the case of frac-
tional system identification, the input signal persistency
has been studied in Abrashov et al. (2017) for first kind
fractional systems (or generalized first order fractional sys-
tems) and in Malti et al. (2022) for second kind fractional
systems (or generalized second order fractional systems).

All simulations are initialized with KO =2, 79 =4 and
a = 0.5 is kept constant. Gamma factor v, = 0.01 and
SNR = 15dB. Figure 3 shows input-output data for this
simulations.
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Fig. 3. Input-output data with SNR = 15dB

Case 1: no truncation

Parameter estimation as well as calculation time are pre-
sented in figures 4 and 5, respectively. An accurate estima-
tion of the parameters is obtained. However, as expected,
calculation time dramatically increases with each itera-
tion.

351 b

05 . . . . . . . . .
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Iteration number

Fig. 4. LMRPEM system identification with L = 128s
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Fig. 5. Computation time vs iteration number

Case 2: truncation equal to relaxation time

Parameter estimation as well as calculation time are pre-
sented in figures 6 and 7, respectively. Truncation length is
chosen to be L = 128s based on long-time approximation.
For this case, truncation leads to oscillations in parame-
ters. However, it can be seen that they are still correctly es-
timated. Calculation time has been dramatically decreased
and is found to have a mean value of t.,. = 14.7ms per
iteration. This is far beyond the sampling time limit, which
enables real-time implementation. Parameter fluctuations
may be due to rather short memory length L, as LMRPEM
method uses an extended error and the whole relaxation
error is non-negligible.

Case 3: truncation longer than relaxation time
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Fig. 6. LMRPEM system identification without truncation
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Fig. 7. Computation time vs iteration number

Parameter estimation as well as calculation time are pre-
sented in figures 8 and 9, respectively. In order to reduce
parameter oscillations seen in previous case, truncation
length is chosen to be L = 256s (twice the relaxation time).
For this case, oscillations are significantly reduced. Even
though the performance is not identical to that of the non-
truncated case, it remains close. On the other hand, cal-
culation cost is not significantly increased with respect to
the previous case. Mean calculation time is t.q4;. = 17.5ms,
which remains far from the sampling time. Calculation cost
curve shows a slight increase in calculation time during the
first iterations and then truncation imposes a limit to this
increase.

5. CONCLUSIONS AND PERSPECTIVES

Non-locality of fractional derivatives constitutes both a
main advantage and drawback to its in mathematical mod-
eling. It allows to capture long-memory behavior, but may
impose implementation limits in real-time scenarios. Pod-
lubny’s Short Memory Principle provides a mathematical
proof of a truncation length L to be used in order to get an
approximated fractional derivative without the whole past
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Fig. 8. LMRPEM system identification with truncation
L = 256s
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Fig. 9. Computation time vs iteration number

of the function. However, even though it effectively pro-
vides a worst-case scenario, Podlubny’s limit doesn’t take
into account frequency of the signal. A simple cosine func-
tion was analyzed by starting with Riemann-Liouville’s
definition, leading to an unsolvable integral for the analytic
error expression. As a consequence, numerical simulations
using Griinwald-Letnikov definition are carried out. It is
then seen that a fixed memory length L will lead to smaller
error as the signal’s frequency w increases. Even though
this may suggest that error reduction is due to an increased
number of periods of the signal taken into account, this
was shown to not be accurate. A fixed number of periods
of a periodic function past increases truncation error as
frequency increases.

There are two main perspectives for this study. The first
one is to further analyze the link between parameter os-
cillation and calculation time. Depending on the scenario,
optimizing truncation length L could lead to satisfying
identification without exceeding sampling time. On the
other hand, a more global fractional order identification
could be analyzed. If fractional order of a system is also to
be identified, it may have a severe influence on the choice
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of length. Influence of truncation over differentiation order
estimation could be further analyzed. Adaptive methods
could also be considered.
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