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1. Introduction

Computational Fluid Dynamics (CFD) has been around for as long as computers exist, starting
with von Neumann’s program to simulate the weather on the ENIAC machine (1950’s) and even
earlier, with 1922 Richardson’s description of “human” computers computing the weather by
hand (he estimated that 64,000 human calculators, each calculating at a speed of 0.01 Flops/s,
would be sufficient to predict the weather in real time (https://www.altair.com/c2r/ws2017/
weather-forecasting-gets-real-thanks-high-performance-computing). Leaving aside human
calculators, electronic ones have made a spectacular ride till current days, from the few hundred
Flops of ENIAC to the current few hundred Petaflops of the Top 1 IBM-Nvidia Summit computer.
Sixteen orders of magnitude in 70 years, close to a sustained Moore’s law rate (doubling every
1.5 years)! Amazingly, CFD has been consistently on the forefront of such spectacular ride and
continues to do so to this day. Finite Differences served as the tool of the trade in 60-70’s, later
to be replaced by finite-volumes and, to a lesser extent, by Finite-Elements as well on account
of the need of handling complex geometries, a must for most engineering problems. On a more
fundamental side, spectral methods, have taken the lions’s share of CFD for the numerical study
of homogeneous fluid turbulence, and keep holding their pole position to this day. All of these
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methods respond to the same strategy: Discretization of the continuum equations of fluid me-
chanics. That is, they start from the Navier–Stokes equations and represent them on a suitable
grid in real or reciprocal space, sometimes both. This is the mainstream numerics for basically
any classical continuum field equations, but in the mid 80’s a qualitatively different approach
was put forward by a small group of inspired researchers in France and the USA.

2. Lattice Gas Cellular Automata

In the mid 80’s a very different approach was proposed: instead of discretise the continuum fluid
equations, one rather devises a fictitious particle dynamics which would recover the continuum
picture in the infrared limit: large scales as compared to the particle mean free path [1,2]. At first,
this sounds like a self-inflicted pain, for it is known that molecular dynamics can barely reach
micrometric regions in space and milliseconds in time, even on the largest supercomputers. The
key, though, is that particle are not real molecules but “effective” ones, i.e. they represent a large
collection of real molecules, where large means basically the number of molecules in a single
computational cell.

It turns out that if the dynamics of these fictitious particles can be designed in such a
way as to preserve the basic mass-momentum-energy conservation laws, relinquishing all the
hydrodynamically irrelevant molecular details, this fictitious particle dynamics (FPD) would
prove competitive against the mainstream discretization approach.

A spectacular example in point is the famous Lattice Gas Cellular Automata (LGCA) first
proposed by Frisch, Hasslacher and Pomeau in 1986 [1] with substantial early contributions by
Stephen Wolfram as well [2]. In equations:

ni (x + ci , t +1)−ni (x, t ) =Ci [n] (1)

where ni = 0,1 is a boolean occupation number indicating the absence(presence) of a particle
at site x and time t with discrete velocity ci (vector indices relaxed for simplicity). The LHS of
the above equation represents the free-streaming of a boolean particle with velocity ci from site
x at time t to site xi = x + ci at time t +1. The streaming is synchronous, in that all sites xi still
belong to the uniform regular lattice. This step is exact, in that it implies an error-free transfer of
information from site x to xi , no loss in between. The RHS codes for the local particle collisions
at site x and time t .

The beauty is that it does not have to conform to any detail of molecular interactions, but only
to the main conservation laws: mass-momentum-energy (the latter not being part of the original
formulation) as well as rotational invariance.

Remarkably, the above prescriptions can be encoded in Boolean form too. To be precise,
the collision operator takes the values Ci = −1,0,+1 corresponding to annihilation, no-action,
generation of a particle with velocity ci at site x and time t . A typical collision (i , j ) → (k, l ) is then
coded by a fourth-order boolean polynomial of the form:

Ci j→kl = ni ·n j · n̄k · n̄l

where · is a logical AND and overbar denote logical NOT (turning 0 into 1 and viceversa). Note that
the above term involves a four-body interaction because boolean particles are fermions, hence
the collision can take place only on condition that the final states are empty.

The major appeal of LGCA rest with its fully Boolean nature, hence literally round-off freedom,
as well as their outstanding amenability to parallel computing. The expectations were high, to
the point that the Washington Post maintained that the method should be “kept off the Soviet
hands” [3] (for the record, back in 1986 the Berlin wall was still standing).
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Despite the tantalizing promises, the LGCA did not make to the mainstream CFD, for a series
of conceptual and technological reasons, including statistical noise, low collisional rates and
exponential complexity of the collision rule with the number of discrete states.

In hindsight, the main show-stopper was the latter. Indeed the complexity of the collision op-
erator, scales like 2b for a LGCA with b discrete states per site (b stands for “bits”). It turns out that
in three spatial dimensions the minimum suitable hydrodynamic lattice is a f our-dimensional
Face Centered HyperCube (FCHC), featuring b = 24 and resulting in (O224 ∼ 16 millions) boolean
operations at each lattice site and every time step. Too much to compete with “standard” meth-
ods, requiring of the order of hundreds of floating point operations for the same task. In other
words, LGCA proved unviable because of their exponential computational intensity.

Heroic efforts were put in place, mostly by the French school to mitigate the problem, i.e.
minimise the number of collisions for a given value of the Reynolds number [4]. Even so, the
result did not change the ultimate sentence of computational unviability, so that practical interest
in LGCA started to flag down in the early 90’s.

It would be a gross mistake to identify this computational “failure” with a scientific flop. Quite
on the contrary, LGCA was an overly productive idea, as it opened the way to the possibility that
fluids can be simulated using a suitably stylized microscopic approach rather than by discretizing
the continuum equations of fluids.

Among others, this idea gave birth to the highly successful offspin known as Lattice Boltzmann
(LB) method [5–7].

Even though in hindsight it appears “obvious” that LB could have been generated by direct
discretization of the continuum Boltzmann kinetic equation, an observation that led a significant
number of scientists to dismiss the LGCA and the historical LB route, as needlessly complicated.
This is very easy, but only in hindsight: the fact remains that historically this opportunity was
realised and seized only thanks to the LGCA work. Till then, discrete velocity models, which
predated LGCA by two-three decades [8–11], were never meant to be used for fluid-dynamic
purposes!

3. Entry Lattice Boltzmann

Be as it may, historically LB developed in the wake of LGCA.
The basic idea of LB is to replace effective particles with corresponding probability distribu-

tion functions (PDF), along the same line which takes molecular dynamics to Boltzmann’s ki-
netic theory. On the lattice though the task is littered with deadly catches, namely badly bro-
ken symmetries that would prevent the recovery of the correct equations of fluids in the con-
tinuum limit. The Lattice Boltzmann (LB) method made its earliest chronological appearance in
1988 [12], its first computationally viable realization being published just months later [13]. Ever
since, LB has marked a tremendous growth in methods and applications [14–28] over an amaz-
ingly broad spectrum of problems across different regimes and scales of motion, literally from
astrophysical jets [29] all the way down to quark-gluon plasmas [30].

4. LB in a nutshell

The LB equation (LBE) reads as follows:

fi (⃗x + c⃗i , t +1)− fi (⃗x, t ) =−Ωi j

(
f j − f eq

j

)
(⃗x; t )+Si (⃗x; t ) (2)

where the lattice time step is made unit for simplicity. In the above, fi (⃗x, t ) ≡ f (⃗x, v⃗ = c⃗i ; t ), i = 0,b
denotes the probability of finding a particle at lattice site x⃗ and time t with a molecular velocity
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Figure 1. The workhorse lattices in two and three dimensions, with 9 and 19 discrete
velocities, respectively.

v⃗ = c⃗i . Here, c⃗i denotes a set of discrete velocities, which must exhibit enough symmetry to obey
the mass-momentum (energy) conservation rules, along with rotational invariance (isotropy).

Typical two and three dimensional lattices are shown in Figure 1.
The left hand side of eq. (2) denotes free-streaming, while the right hand side is the collision

step, which consists of a short-range component, driving the system towards a local equilibrium
f eq

i and a soft-core source of momentum Si (⃗x; t ). The latter is in fact more general and can
represent the source of any macroscopic quantity relevant to the physics in point. This is a major
asset of LB, one that permits to include complex mesoscale physics often beyond the realm of
continuum fluids, at a minimum cost in terms of programming and computing overheads.

The local equilibrium corresponds to a finite-order truncation of a local Maxwellian:

f eq
i = wiρ

(
1+βui + β2

2
qi

)
(3)

where β = 1/c2
s , ui = u⃗ · c⃗i and qi = u2

i − u2c2
s , cs and u⃗ being the lattice sound speed and

the local flow velocity, respectively. In the above wi is a set of weights normalized to unity, the
discrete analogue of the absolute Maxwellian in continuum velocity space. The truncation is an
unavoidable consequence of lattice discreteness, which permits to recover Galilean invariance
only to a finite order in the Mach number M a = |u⃗|/cs . The relevant hydrodynamic quantities are
computed as simple linear and local combinations of the discrete distributions, namely:

ρ(⃗x; t ) =∑
i

fi (⃗x; t ), ρu⃗ (⃗x; t ) =∑
i

c⃗i fi (⃗x; t ) (4)

where ρ is the fluid density. Higher order moments deliver the fluid pressure and stress tensor
in the form of linear and local combinations of the discrete populations, which proves very con-
venient for simulation purposes. Formally, The LB eq. (2) is nothing but a set of finite-difference
equations, and yet one with great power inside. This power stems mainly from four basic ingre-
dients, namely: i) Exact free-streaming, ii) Local lattice equilibria, iii) Tunable relaxation matrix,
iv) Flexible external source, before moving on to these items, we hasten to add that the eq. (2) can
be shown to converge to the (quasi-incompressible) Navier–Stokes equations in the usual limit of
small Knudsen numbers, K n =λ/L ≪ 1, i.e. small mean free path versus the typical scale of vari-
ation of hydrodynamic quantities. This is also a statement of weak departure from local equilib-
rium. Technically, this entails a Taylor expansion in the lattice time step, as combined with a dou-
ble expansion in low Knudsen and Mach number. The tool of the trade is the Chapman–Enskog
asymptotics [31].
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Figure 2: Two examples of fully-turbulent lattice Boltzmann simulations for automotive and aeronautical
applications. (Courtesy of Dassault Systemes)

5 Mainstream LB applications

As mentioned above, at the time of this writing LB is a massive bibliographic presence in fluid dynamics
and most allied fields, particularly soft flowing matter [6] and the physics/biology interface [29]. It would
be utterly impossible to cover this vast ground in any single paper, hence here we shall just outline main
applications in broad strokes.

5.1 Macroscopic flows

Historically, Lattice Boltzmann was developed as a computational alternative to the discretization of the
Navier-Stokes equations of continuum fluid dynamics, the main target being high-Reynolds turbulent
flows in complex geometries [30]. The initial hopes were that LB would allow a better resolution of the
near-grid scales or even provide a natural subgrid model via the extra degrees of freedom of the kinetic
representation (then dubbed ”ghost modes”) versus the hydrodynamic one [31]. This turned out not
to be the case, but prepared the ground for subsequent developments which have met with significant
success, as witnessed by existence of a number of open source [32] and commercial codes, particularly
POWERFLOW, developed by EXA Corporation and recently acquired by Dassault Systemes [33]. The
academic side has also witnessed remarkable progress, mostly but not exclusively in connection, with the
development of the entropic method [34] and Large-Eddy simulations [35, 36, 37]. More recently, LB
has also been used to study turbulent flows with suspended bodies, a topic of great relevance for energy
and environment [38]. Another successful application of LB to macro-hydrodynamics are flows in porous
media, with accompanying heterogeneous chemical reactions [39, 40], which draw major benefits from the
LB ability to deal efficiently with grossly irregular geometries.

5.2 Multiphase and colloidal flows

Two areas where LB has made a real difference are multiphase/multi-component flows and flows with
suspended bodies [41]. In the former case LB offers the major benefit of simplicity: interfaces need no
explicit tracking but emerge spontaneously, informed by the corresponding mesoscale forces which are
implemented as soft source terms. This benefits comes at the prize of several limitations, most of which
have been however significantly mitigated in the course of time [42, 43, 44]. Many LB variants exist today
which have found massive use especially in the area of microfluidics (see below). Among these, a very
fruitful option is offered by the Color Gradient technique [45], in which the idea is to add an explicit
anti-diffusive flux sending particles of each species uphill along their density gradient instead of against it,
thereby promoting the formation of an interface against the coalescing effect of surface tension. The stress-
jump condition across fluid interfaces can be further augmented with an immersed-like force modeling the
repulsive effect generated by a surfactant solution absorbed onto the drop interfaces. This contribution
can be added to the collision operator via a suitable forcing term as proposed in [46, 47]. The above
approach has been shown to correctly capture highly non trivial many-droplet configurations, like dense
emulsions and foams. As an example, the extended multi-component model has been shown to reproduce
the formation of ordered droplets clusters in microfluidic channels [48]. As shown in figure 3(a), the
droplets, continuously injected within the main channel, undergo a spontaneous ordering into hexagonal
clusters, which is due to a subtle competition between local, short-range, repulsive interactions (i.e., the
near-contact forces) and the surface tension. Another major field of application are complex flows with
immersed bodies, both rigid and deformable, in which LB is typically coupled to other methodologies for
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Figure 2. Two examples of fully-turbulent lattice Boltzmann simulations for automotive
and aeronautical applications. (Courtesy of Dassault Systemes)

5. Mainstream LB applications

As mentioned above, at the time of this writing LB is a massive bibliographic presence in fluid
dynamics and most allied fields, particularly soft flowing matter [6]. It would be utterly impossible
to cover this vast ground in any single paper, hence here we shall just outline main applications
in broad strokes.

5.1. Fluid turbulence

Historically, Lattice Boltzmann was developed as a computational alternative to the discretiza-
tion of the Navier–Stokes equations of continuum fluid dynamics, the main target being high-
Reynolds turbulent flows in complex geometries [32]. The initial hopes were that LB would al-
low a better resolution of the near-grid scales or even provide a natural subgrid model via the
extra degrees of freedom of the kinetic representation (then dubbed “ghost modes”) versus the
hydrodynamic one [33].

This turned out not to be the case, but prepared the ground for subsequent developments
which have met with significant success, as witnessed by existence of a number of open
source [34] and commercial codes, particularly POWERFLOW, developed by EXA Corporation
and recently acquired by Dassault Systemes [35]. The academic side has also witnessed remark-
able progress, mostly but not exclusively in connection, with the development of the entropic
method [36] and Large-Eddy simulations [37–39]. More recently, LB has also been used to study
turbulent flows with suspended bodies, a topic of great relevance for energy and environment [40]
However, possibly the most successful applications of LB to macro-hydrodynamics are flows in
porous media, with accompanying heterogeneous chemical reactions [41,42], a mainstream that
is here to stay.

5.2. Multiphase and colloidal flows

Two areas where LB has made a real difference are multiphase/multi-component flows and
flows with suspended bodies [43]. In the former case LB offers the major benefit of simplicity:
interfaces need no explicit tracking but emerge spontaneously, informed by the corresponding
mesoscale forces which are implemented as soft source terms. This benefits comes at the prize
of several limitations, most of which have been however significantly mitigated in the course of
time [44–46].
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(a) (b)

Figure 3: (a) Spontaneous ordering of droplets in a microfluidic channel ([48]). (b) Large-scale simulation of
a colloidal flow ([50])

fluid structure interactions [41, 49]. To this regard, recent Multi-GPU state-of-the art implementations of
LB codes for multi-component colloidal flows [50] have been shown to deliver remarkable performances,
up to 200 GLUPS (Giga Lattice Updates Per Second on a cluster made of 512 A100 NVIDIA cards), on
computational grids with several billions of lattice points ( see figure 3(b). These results open attractive
prospects for the computational design of new materials based on colloidal particles.

5.3 Micro and nano-hydrodynamics

In the early 1990’s LB was applied exclusively to macroscopic fluid problems, and even with a vengeance,
since some prominent researchers vetoed its use for anything but this [51]. Yet, precisely in those years, a
few groups offered numerical evidence that the LB scheme can handle moderately non-equilibrium flows
beyond the strict realm of hydrodynamics [52, 53, 55]. This, together with a boost of activity in the area
of non-ideal, multiphase and multicomponent fluids, has led to a major mainstream of LB applications,
mostly in soft-matter and microfluidics [46, 56, 57, 58, 59, 60, 62].

The key ingredients for this transition from the macro to the micro-hydrodynamic levels turned out
to be the introduction of higher order lattices, securing the compliance with generalized hydrodynamics
beyond the Navier-Stokes description, as well as the development of suitable boundary conditions, capable
of dealing with non-equilibrium effects associated with large gradients at solid walls [53]. Very recently,
the LB has also been successfully coupled to off-lattice, particle models to develop novel classes of fully
mesoscale hybrid approaches capable of capturing the physics of fluids at the micro- and nanoscales when-
ever a continuum representation of the fluid falls short of providing the complete physical information.
In addition, LBM has also been coupled to Direct Simulation Monte Carlo (DSMC) in view of efficiently
simulating isothermal flows characterized by variable rarefaction effects [63].

Another major mainstream of current LB research is the study of flows with suspended bodies, both
rigid and deformable ones. This was originated by pioneering work on colloidal nanoflows, i.e. rigid
spheres flowing in a LB solvent, which was sparked by the development of the so-called fluctuating
Lattice Boltzmann, taking in due account the statistical fluctuations which characterize hydrodynamic
behavior at the nanoscale [64].

The original fluctuating LB (FLB) scheme for colloidal flows has spawn many subsequent develop-
ments, including biopolymers and deformable objects of biological interest, such as membranes and cells.
Methodologically, this was made possible by the fruitful merge between LB and the Immersed Boundary
Method [49]. Details of this highly technical and utterly important subject can be found in [41].

6 Quantum-relativistic fluids

Even though the mainstream of LB research remains hard-rooted it classical physics, it should be men-
tioned that the LB scheme is amenable to remarkable generalizations in the direction of both quantum
and relativistic mechanics. The former possibility was recognized as early as 1993, building on a formal
analogy between the Boltzmann equations and the Dirac equation of relativistic quantum mechanics
[65, 66, 67]. Incidentally, the corresponding quantum LB (QLB) scheme was later shown to represent a
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Figure 3. (a) Spontaneous ordering of droplets in a microfluidic channel ( [47]). (b) Large-
scale simulation of a colloidal flow ( [48])

Many LB variants exist today which have found massive use especially in the area of mi-
crofluidics (see below). Among these, a very fruitful option is offered by the Color Gradient tech-
nique [49], in which the idea is to add an explicit anti-diffusive flux sending particles of each
species uphill along their density gradient instead of against it, thereby promoting the formation
of an interface against the coalescing effect of surface tension. The stress-jump condition across
fluid interfaces can be further augmented with an immersed-like force modeling the repulsive ef-
fect generated by a surfactant solution absorbed onto the drop interfaces. This contribution can
be added to the collision operator via a suitable forcing term as proposed in [50,51]. The above ap-
proach has been shown to correctly capture highly non trivial behaviors of many-droplets, dense
system like dense emulsions and foams. As an example, the extended multi-component model
has been shown to reproduce the formation of ordered droplets clusters in microfluidic chan-
nels [47]. As shown in Figure 3(a), the droplets, continuously injected within the main channel,
undergo a spontaneous ordering into hexagonal clusters, which is due to a subtle competition
between local, short-range, repulsive interactions (i.e., the near-contact forces) and the surface
tension. Another major field of application are complex flows with immersed bodies, both rigid
and deformable, in which LB is typically coupled to other methodologies for fluid structure in-
teractions [43]. To this regard, recent Multi-GPU state-of-the art implementations of LB codes for
multi-component colloidal flows [48] have been shown to deliver remarkable performances, up
to 200 GLUPS (Giga Lattice Updates Per Second on a cluster made of 512 A100 NVIDIA cards),
on computational grids with several billions of lattice points (see Figure 3(b). These results open
attractive prospects for the computational design of new materials based on colloidal particles.

5.3. Micro and nano-hydrodynamics

In the early 1990’s LB was applied exclusively to macroscopic fluid problems, and even with
a vengeance, since some prominent researchers vetoed its use for anything but this [52]. Yet,
precisely in those years, a few groups offered numerical evidence that the LB scheme can
handle moderately non-equilibrium flows beyond the strict realm of hydrodynamics [53–55].
This, together with a boost of activity in the area of non-ideal, multiphase and multicomponent
fluids, has led to a major mainstream of LB applications, mostly in soft-matter and microfluidics
[50, 56–61].
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The key ingredients for this transition from the macro to the micro-hydrodynamic levels
turned out to be the introduction of higher order lattices, securing the compliance with gener-
alized hydrodynamics beyond the Navier–Stokes description, as well as the development of suit-
able boundary conditions, capable of dealing with non-equilibrium effects associated with large
gradients at solid walls [54]. Very recently, the LB has also been successfully coupled to off-lattice,
particle models to develop novel classes of fully mesoscale hybrid approaches capable of cap-
turing the physics of fluids at the micro- and nanoscales whenever a continuum representation
of the fluid falls short of providing the complete physical information. In addition, LBM has also
been coupled to Direct Simulation Monte Carlo (DSMC) in view of efficiently simulating isother-
mal flows characterized by variable rarefaction effects [62].

Another major mainstream of current LB research is the study of flows with suspended bodies,
both rigid and deformable ones. This was originated by pioneering work on colloidal nanoflows,
i.e. rigid spheres flowing in a LB solvent, which was sparked by the development of the so-
called fluctuating Lattice Boltzmann, taking in due account the statistical fluctuations which
characterize hydrodynamic behaviour at the nanoscale [63].

The original fluctuating LB (FLB) scheme for colloidal flows has spawn many subsequent
developments, including biopolymers and deformable objects of biological interest, such as
membranes and cells. Methodologically, this was made possible by the fruitful merge between
LB and the Immersed Boundary Method. Details of this highly technical and utterly important
subject can be found in [43].

6. Quantum-relativistic fluids

Even though the mainstream of LB research remains hard-rooted it classical physics, it should
be mentioned that the LB scheme is amenable to remarkable generalizations in the direction
of both quantum and relativistic mechanics. The former possibility was recognized as early as
1993, building on a formal analogy between the Boltzmann equations and the Dirac equation
of relativistic quantum mechanics [64–66]. Incidentally, the corresponding quantum LB (QLB)
scheme was later shown to represent a quantum random walk, as per the seminal Ahronov et
al paper, which appeared just a couple of months ahead of QLB. The QLB was also shown to be
amenable to quantum computing [67].

The extension of the LB scheme to relativistic fluids came much later, as it dates of 2010 [68,69]
and it has undergone major progress in the last decade [70]. The relativistic LB requires some
non-trivial technical manipulation due to the fact that, unlike the Newtonian case, the relativistic
energy of massive particles is an irrational function of the particle momentum, i.e.

E(p) =
√

m2c4 +p2c2 (5)

This makes the task of developing discrete-velocities schemes less straightforward than in the
non-relativistic case, E ≪ mc2, because one can no longer rely on orthogonal polynomials in
the continuum, such as Hermite’s. However, suitable discrete orthogonalization techniques have
been developed over the years, which have permitted to realize fairly efficient relativistic LB
schemes despite the large number of discrete speeds involved [71].

This has permitted the simulation of relativistic flows, such as electron transport in graphene
and transport phenomena in quark gluon plasmas. Amazingly, similar schemes have also been
used for the simulation of cosmic neutrinos in astrophysical flows [29]. Relativistic hydrodynam-
ics is still a small niche as compared to the massive activity in non-relativistic fluids. However,
due to the mounting interest in relativistic fluids at the crossroads between condensed matter,
high-energy physics and gravity [72], it is reasonable to expect that relativistic LB schemes may
gain significant momentum for the years to come.
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Figure 4: LB across scales: from above galaxies all the way down inside the proton! Top row: astrorelativistic
jets resulting from binary neutron star mergers, flow around a racing car, blodd flow in human arteries at
blood cell resolution. Middle: a wet foam. Bottom row: double-stranded biopolymer trasnslocating through
a membrane, The electronic cloud around the methane molecule, the quark-gluon plasma produced by heavy
ion collisions. All of these flows, covering from megaparsecs to femtometers (37 decades), made use of different
variants of the LB method.

quantum random walk, as per the seminal Ahronov et al paper, which appeared just a couple of months
ahead of QLB. The QLB was also shown to be amenable to quantum computing [68].

The extension of the LB scheme to relativistic fluids came much later, as it dates of 2010 [69, 70] and
it has undergone major progress in the last decade [71]. The relativistic LB requires some non-trivial
technical manipulation due to the fact that, unlike the Newtonian case, the relativistic energy of massive
particles is an irrational function of the particle momentum, i.e.

E(p) =
√
m2c4 + p2c2 (5)

This makes the task of developing discrete-velocities schemes less straightforward than in the non-
relativistic case, E � mc2, because one can no longer rely on orthogonal polynomials in the
continuum, such as Hermite’s. However, suitable discrete orthogonalization techniques have
been developed over the years, which have permitted to realize fairly efficient relativistic
LB schemes despite the large number of discrete speeds involved [72].

This has permitted the simulation of relativistic flows, such as electron transport in graphene and
transport phenomena in quark gluon plasmas. Amazingly, similar schemes have also been used for the
simulation of cosmic neutrinos in astrophysical flows [26]. Relativistic hydrodynamics is still a small niche
as compared to the massive activity in non-relativistic fluids. However, due to the mounting interest
in relativistic fluids at the crossroads between condensed matter, high-energy physics and
gravity [73], it is reasonable to expect that relativistic LB schemes may gain significant
momentum for the years to come.

7 Towards exascale LB

A common thread to all the LB applications is their outstanding amenability to parallel computing,
across virtually any kind of architecture (provided hard and ingenuous implementation work is spent
on the task). Remarkable examples abound in the literature [32, 74, 75, 76, 77, 78, 79, 80, 81], but
here I shall just refer to two instances I am directly familiar with. First, the use LB as a fast water
solvent solver for the study of protein crowding within the cell, which reached in excess of 20 Pflops on
the Titan supercomputer, but many outstanding performances have been obtained in other massively
parallel applications at all scales of motion [76]. As a recent and rather spectacular example, I wish
to quote the full-scale simulation of the deep-sea sponge Euplectella Aspergillum, with a fully realistic
description of the highly complex geometrical porous structure at a 10-micron resolution, all the way
up to the centimeters of the full sponge [82]. It is fair to say that such kind of study would have been
impossible without LB. The above applications witness the ability of suitably optimized LB codes to
achieve Petascale performance on highly non-trivial fluid problems.

The LB assets, exact free streaming, machine-accurate conservative collisions and flexibility towards
inclusion of mesoscale physics are expected to carry over from the Peta to the Exascale.

6

Figure 4. LB across scales: from above galaxies all the way down inside the proton! Top
row: astrorelativistic jets resulting from binary neutron star mergers, flow around a racing
car, blodd flow in human arteries at blood cell resolution. Middle: a wet foam. Bottom row:
double-stranded biopolymer trasnslocating through a membrane, The electronic cloaud
around the methane molecule, the quark-gluon plasma produced by heavy ion collisions.
All of these flows, covering from megaparsecs to femtometers (37 decades), made use of
different variants of the LB method.

7. Towards exascale LB

A common thread to all the LB applications is their outstanding amenability to parallel comput-
ing, across virtually any kind of architecture (provided hard and ingenuous implementation work
is spent on the task). Remarkable examples abound in the literature [34, 73–80], but here I shall
just refer to two instances I am directly familiar with.

First, the use LB as a fast water solvent solver for the study of protein crowding within the cell,
which reached in excess of 20 Pflops on the Titan supercomputer, but many outstanding perfor-
mances have been obtained in other massively parallel applications at all scales of motion [75].
As a recent and rather spectacular example, I wish to quote the full-scale simulation of the deep-
sea sponge Euplectella Aspergillum, with a fully realistic description of the highly complex geo-
metrical porous structure at a 10-micron resolution, all the way up to the centimeters of the full
sponge [81]. It is fair to say that such kind of study would have been impossible without LB. The
above applications witness the ability of suitably optimized LB codes to achieve Petascale perfor-
mance on highly non-trivial fluid problems.

The LB assets, exact free streaming, machine-accurate conservative collisions and flexibility
towards inclusion of mesoscale physics are expected to carry over from the Peta to the Exascale.

However,taking LB towards the exascale will face the usual challenges common to most
numerical methods, namely the need of minimizing the cost of accessing data [82], offsetting
communication overheads by overlapping communication and computation and, a possibility
unexplored so far to the best of this author’s knowledge, develop fault-tolerant LB schemes. All
of the above, by taking into account the increasing constraints on power consumption, for which
machine learning might prove a valuable ally, typically by optimizing the reconstruction of fine-
grained information from coarse-grain simulations.

8. Summary: Whither LB?

As we have been illustrating in this short review, over the last three decades, the LB has made
proof of an amazingly flexibility, with a wide spectrum of applications covering fluid motion
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across an impressively broad range of scales, literally from inside protons to the outer Universe
(see Figure 4)! The impact on CFD and allied fields is massive, as reflected by its bibliographic in-
dicators. Aside from bibliometrics, it is fair to say that LB has greatly facilitated the inspection of
highly complex flows which would be very hard to analyze, if possible at all, with other methods.
The main asset behind this success is always the same: information travels along straight charac-
teristics and the streaming step is literally exact (zero-roundoff). With the due amount of work,
far from trivial in the case of complex geometries, this permits to achieve high parallel efficien-
cies also in the presence of fairly complex geometries and strong nonlinearities. In the end, this
is what makes LB such a powerful tool for the study of complex states of flowing matter across
scales. This said, many challenges still remain. Among others, how to control lattice artifacts in
high-Reynolds fluid flows with immersed bodies; how to enhance the stability of LB schemes in
the presence of substantial heat transfer and compressibility effects; how to handle large density
contrasts in multiphase flows. How to represent large nanoscale fluctuations without hamper-
ing numerical stability. From a more technical, but no less important, perspective, how to make
LB compliant with the forthcoming Exascale architectures, which requires a serious effort in the
direction of minimizing the cost of accessing data [79, 80, 82]. And as mentioned above, how to
make LB compliant with the forthcoming quantum computing architectures.

Summarizing, the original Lattice Gas idea of solving fluid dynamics by means of fictitious
molecules instead of discretizing continuum equation did not work in its original and most rad-
ical (boolean) form. However, it has proved exceedingly fruitful from the conceptual standpoint,
by providing the stepping stone for a new class of mesoscale methods and particularly the Lattice
Boltzmann method. In hindsight, LB could have been derived as a discrete velocity version of the
continuum Boltzmann equation, but this does not change a single iota to the fact that, without
the LGCA inspiration, LB would have been discovered much later, if at all.

Conflicts of interest

The author has no conflict of interest to declare.

Acknowledgments

The author is indebted to very many colleagues and friends in Italy and around the world, too
many to mention without taking the chance of embarrassing omissions. Here I only wish to thank
Andrea Montessori and Mihir Durve for their generous help in putting this manuscript together.

References

[1] U. Frisch, B. Hasslacher, Y. Pomeau, “Lattice gas automata for the Navier–Stokes equations”, Phys. Rev. Lett. 56 (1986),
no. 14, p. 1505-1508.

[2] S. Wolfram, “Cellular automaton 1: basic theory”, J. Stat. Phys. 45 (1986), no. 3-4, p. 471-526.
[3] P. J. Hills, “Discovery in Flow Dynamics May Aid Car, Plane Design”, Washington Post (Nov 19, 1985).
[4] M. Henon, “Viscosity of a lattice Gas”, Complex Systems 1 (1987), no. 4, p. 736-739.
[5] S. Succi, The lattice Boltzmann equation for fluid dynamics and beyond, Numerical Mathematics and Scientific

Computation, Oxford University Press, 2001.
[6] S. Succi, The lattice Boltzmann equation for complex states of flowing matter, Oxford University Press, 2018.
[7] C. Aidun, J. Clausen, “Lattice Boltzmann method for complex flows”, Annu. Rev. Fluid Mech. 42 (2010), p. 439-472.
[8] J. E. Broadwell, “Shock structure in a simple discrete velocity gas”, Phys. Fluids 7 (1964), p. 1243-1247.
[9] R. Gatignol, Théorie cinétique d’un gaz répartition discrète de vitesses, Lecture Notes in Physics, vol. 36, Springer, 1975.

[10] R. Monaco, L. Preziosi, Fluid dynamic applications of the discrete Boltzmann equation, Series on Advances in
Mathematics for Applied Sciences, vol. 3, World Scientific, 1991.



10 Sauro Succi

[11] T. Platkowski, R. Illner, “Discrete velocity models of the Boltzmann equation: A survey on the mathematical aspects
of the theory”, SIAM Rev. 30 (1988), p. 213-255.

[12] G. R. McNamara, G. Zanetti, “Use of the Boltzmann equation to simulate lattice gas automata”, Phys. Rev. Lett. 61
(1988), no. 20, p. 2332-2335.

[13] F. Higuera, S. Succi, “Simulating the flow around a circular cylinder with a lattice Boltzmann equation”, Eur. Phys.
Lett. 8 (1989), no. 6, p. 517-521.

[14] F. Higuera, J. Jimenez, “Boltzmann approach to lattice gas simulations”, Eur. Phys. Lett. 9 (1989), no. 7, p. 663-668.
[15] F. Higuera, S. Succi, R. Benzi, “Lattice gas with enhanced collisions”, Eur. Phys. Lett. 9 (1989), no. 4, p. 345-389.
[16] R. Benzi, S. Succi, M. Vergassola, “The lattice Boltzmann equation: theory and applications”, Phys. Rep. 222 (1992),

no. 3, p. 145-197.
[17] H. Chen, S. Chen, W. H. Matthaeus, “Recovery of the Navier–Stokes equations using a lattice-gas Boltzmann

method”, Phys. Rev. A 45 (1992), no. 8, p. R5339-R5342.
[18] S. Chen, H. Chen, D. Martnez, W. H. Matthaeus, “Lattice Boltzmann model for simulation of magnetohydrodynam-

ics”, Phys. Rev. Lett. 67 (1991), no. 27, p. 3776-3779.
[19] J. M. Koelman, “A simple lattice Boltzmann scheme for Navier–Stokes fluid flow”, Eur. Phys. Lett. 15 (1991), no. 6,

p. 603-607.
[20] Y. Qian, D. d’Humières, P. Lallemand, “Lattice BGK models for the Navier–Stokes equation”, Eur. Phys. Lett. 17 (1992),

no. 6, p. 479-484.
[21] D. d’Humieres, I. Ginzburg, M. e. a. Krafczyk, “Multi Relaxation-time lattice Boltzmann models in three dimensions”,

Philos. Trans. R. Soc. Lond., Ser. A 360 (2002), no. 1792, p. 437-451.
[22] I. V. Karlin, A. Ferrante, C. Oettinger, “Perfect entropies in the lattice Boltzmann method”, Eur. Phys. Lett. 47 (1999),

no. 2, p. 182-188.
[23] X. He, L.-S. Luo, “Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann

equation”, Phys. Rev. E 56 (1997), no. 6, p. 6811-6817.
[24] Z. Guo, C. Zheng, B. Shi, “Discrete lattice effects on the forcing term in the lattice Boltzmann method”, Phys. Rev. E

65 (2002), no. 4, article no. 046308.
[25] S. Succi, “Lattice Boltzmann across scales: from turbulence to DNA translocation”, Eur. Phys. J. B, Condens. Matter

Complex Syst. 64 (2008), p. 471-479.
[26] F. J. Alexander, S. Chen, J. D. Sterling, “Lattice Boltzmann thermohydrodynamic”, Phys. Rev. E 47 (1993), no. 4,

p. R2249-R2252.
[27] X. He, S. Chen, G. D. Doolen, “A Novel Thermal Model for the Lattice Boltzmann Method in Incompressible Limit”, J.

Comput. Phys. 146 (1998), no. 1, p. 282-300.
[28] M. Sbragaglia, R. Benzi, L. Biferale, H. Chen, X. Shan, S. Succi, “Lattice Boltzmann method with self-consistent

thermo-hydrodynamic equilibria”, J. Fluid Mech. 628 (2009), p. 299-309.
[29] L. R. Weih, A. Gabbana, D. Simeoni, L. Rezzolla, S. Succi, R. Tripiccione, “Beyond Moments: relativistic Lattice

Boltzmann methods for radiative transport in computational astrophysics”, Mon. Not. Roy. Astron. Soc. 498 (2020),
no. 3, p. 3374-3394.

[30] S. Succi, “Lattice Boltzmann 2038”, Eur. Phys. Lett. 109 (2015), no. 5, article no. 50001.
[31] S. Chapman, T. G. Cowling, The mathematical theory of non-uniform gases, Cambridge Mathematical Library,

Cambridge University Press, 1990.
[32] H. Chen, S. Kandasamy, R. Orzsag, Steven Shock, S. Succi, V. Yakhot, “Extended Boltzmann Kinetic Equation for

Turbulent Flows”, Science 301 (2003), no. 5633, p. 633-636.
[33] R. Benzi, S. Succi, “Two-dimensional turbulence with the lattice Boltzmann equation”, J. Phys. A, Math. Gen. 23

(1990), no. 1, p. L1-L5.
[34] J. Latt, O. Malaspinas, D. Kontaxakis, A. Parmigiani, D. Lagrava, F. Brogi, M. Ben Belgacem, Y. Thorimbert, S. Leclaire,

S. Li, F. Marson, J. Lemus, C. Kotsalos, R. Conradin, C. Coreixas, R. Petkantchin, F. Raynaud, J. Beny, B. Chopard,
“Palabos: parallel lattice Boltzmann solver”, Comput. Math. Appl. 81 (2021), p. 334-350.

[35] SIMULIA, “PowerFLOW – Computational Fluid Dynamics Simulation Software Improving Product Design & Devel-
opment”, 2021, https://www.3ds.com/products-services/simulia/products/powerflow/.

[36] S. S. Chikatamarla, C. E. Frouzakis, I. V. Karlin, A. G. Tomboulides, K. B. Boulouchos, “Lattice Boltzmann method for
direct numerical simulation of turbulent flows”, J. Fluid Mech. 656 (2010), p. 298-308.

[37] O. Malaspinas, P. Sagaut, “Consistent subgrid scale modelling for lattice Boltzmann methods”, J. Fluid Mech. 700
(2010), p. 514-542.

[38] P. Sagaut, “Toward advanced subgrid models for Lattice-Boltzmann-based Large-eddy simulation: Theoretical for-
mulations”, Comput. Math. Appl. 59 (2010), no. 7, p. 2194-2199.

[39] N. H. Maruthi, C. Thantanapally, M. Namburi, V. Kumaran, S. Ansumali, “LES/DNS of flow past T106 LPT cascade
using a higher-order LB model”, https://arxiv.org/abs/2204.02191, 2022.

[40] P. Perlekar, L. Biferale, M. Sbragaglia, S. Srivastava, F. Toschi, “Droplet size distribution in homogeneous isotropic
turbulence”, Phys. Fluids 24 (2012), no. 6, article no. 065101.

https://www.3ds.com/products-services/simulia/products/powerflow/
https://arxiv.org/abs/2204.02191


Sauro Succi 11

[41] Q. Kang, P. C. Lichtner, D. R. Janecky, “Lattice Boltzmann Method for Reacting Flows in Porous Media”, Adv. Appl.
Math. Mech. 2 (2010), no. 5, p. 545-563.

[42] G. Falcucci, S. Succi, A. Montessori, S. Melchionna, P. Prestininzi, C. Barroo, D. C. Bell, M. M. Biener, J. Biener, B. Zugic,
E. Kaxiras, “Mapping reactive flow patterns in monolithic nanoporous catalysts”, Microfluid Nanofluid 20 (2016),
no. 7, article no. 105.

[43] T. Krüger, Kusmaatmaja, Kuzmin, O. Shardt, G. Silva, E. M. Viggen, The Lattice Boltzmann Method. Principles and
Practice, Graduate Texts in Physics, Springer, 2017.

[44] X. Shan, H. Chen, “Lattice Boltzmann model for simulating flows with multiple phases and components”, Phys. Rev.
E 47 (1993), no. 3, p. 1815-1819.

[45] M. R. Swift, W. R. Osborn, J. M. Yeomans, “Lattice Boltzmann Simulation of Nonideal Fluids”, Phys. Rev. Lett. 75
(1995), no. 5, p. 830-833.

[46] G. Falcucci, S. Ubertini, C. Biscarini, S. Di Francesco, D. Chiappini, S. Palpacelli, A. De Maio, S. Succi, “Lattice
Boltzmann methods for multiphase flow simulations across scales”, Commun. Comput. Phys. 9 (2011), no. 2, p. 269-
296.

[47] A. Montessori, A. Tiribocchi, M. Lauricella, F. Bonaccorso, S. Succi, “Mesoscale modelling of droplets’ self-assembly
in microfluidic channels”, Soft Matter 17 (2021), no. 9, p. 2374-2383.

[48] F. Bonaccorso, M. Lauricella, A. Montessori, G. Amati, M. Bernaschi, F. Spiga, T. Andriano, S. Succi, “LBcuda: a high-
performance CUDA port of LBsoft for simulation of colloidal systems”, https://arxiv.org/abs/2112.08264, 2021.

[49] A. K. Gunstensen, D. H. Rothman, S. Zaleski, G. Zanetti, “Lattice Boltzmann model of immiscible fluids”, Phys. Rev. A
43 (1991), no. 8, p. 4320-4327.

[50] A. Montessori, M. Lauricella, N. Tirelli, S. Succi, “Mesoscale modelling of near-contact interactions for complex
flowing interfaces”, J. Fluid Mech. 872 (2019), p. 327-347.

[51] A. Montessori, A. Tiribocchi, M. Lauricella, F. Bonaccorso, S. Succi, “Wet to dry self-transitions in dense emulsions:
From order to disorder and back”, Phys. Rev. Fluids 6 (2021), no. 2, article no. 023606.

[52] L.-S. Luo, “Comment on “Discrete Boltzmann Equation for Microfluidics””, Phys. Rev. Lett. 92 (2004), no. 13, article
no. 139401.

[53] X. Shan, X.-F. Yuan, H. Chen, “Kinetic theory representation of hydrodynamics: a way beyond the Navier-–Stokes
equation”, J. Fluid Mech. 550 (2006), p. 413-441.

[54] S. Ansumali, I. V. Karlin, “Kinetic boundary conditions in the lattice Boltzmann method”, Phys. Rev. E 66 (2002), no. 2,
article no. 026311.

[55] A. Montessori, P. Prestininzi, M. La Rocca, S. Succi, “Lattice Boltzmann approach for complex nonequilibrium flows”,
Phys. Rev. E 92 (2015), no. 4, article no. 043308.

[56] B. Duenweg, A. J. C. Ladd, “Lattice Boltzmann Simulations of Soft Matter Systems”, in Advanced Computer Simula-
tion Approaches for Soft Matter Sciences III, Advances in Polymer Science, vol. 221, Springer, 2009, p. 89-166.

[57] M. Sbragaglia, R. Benzi, L. Biferale, S. Succi, F. Toschi, “Surface Roughness-Hydrophobicity Coupling in Microchannel
and Nanochannel Flows”, Phys. Rev. Lett. 97 (2006), no. 20, article no. 204503.

[58] M. Sbragaglia, R. Benzi, L. Biferale, S. Succi, K. Sugiyama, F. Toschi, “Generalized lattice Boltzmann method with
multirange pseudopotential”, Phys. Rev. E 75 (2007), no. 2, article no. 026702.

[59] J. Latt, B. Chopard, “Lattice Boltzmann method with regularized pre-collision distribution functions”, Math. Comput.
Simul. 72 (2006), no. 2-6, p. 165-168.

[60] X.-D. Niu, S.-A. Hyodo, T. Munekata, K. Suga, “Kinetic lattice Boltzmann method for microscale gas flows: Issues on
boundary condition, relaxation time, and regularization”, Phys. Rev. E 76 (2007), no. 3, article no. 036711.

[61] A. Tiribocchi, A. Montessori, M. Lauricella, F. Bonaccorso, S. Succi, S. Aime, M. Milani, D. A. Weitz, “The vortex-driven
dynamics of droplets within droplets”, Nat. Commun. 12 (2021), no. 1, article no. 82.

[62] G. Di Staso, H. J. H. Clercx, S. Succi, F. Toschi, “Dsmc-lbm mapping scheme for rarefied and non-rarefied gas flows”,
J. Comput. Sci. 17 (2016), no. Part 2, p. 357-369.

[63] A. J. C. Ladd, “Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1.
Theoretical Foundations”, J. Fluid Mech. 271 (1994), p. 285-309.

[64] S. Succi, R. Benzi, “Lattice Boltzmann equation for quantum mechanics”, Physica D 69 (1993), no. 3-4, p. 327-332.
[65] P. J. Dellar, D. Lapitski, “Convergence of a three-dimensional quantum lattice Boltzmann scheme towards solutions

of the Dirac equation”, Philos. Trans. R. Soc. Lond., Ser. A 369 (2011), no. 1944, p. 2155-2163.
[66] F. Fillion-Gourdeau, H. J. Herrmann, M. Mendoza, S. Palpacelli, S. Succi, “Formal analogy between the Dirac equation

in its Majorana form and the discrete-velocity version of the Boltzmann kinetic equation”, Phys. Rev. Lett. 111 (2013),
no. 16, article no. 160602.

[67] J. Yepez, G. Vahala, L. Vahala, M. Soe, “Superfluid Turbulence from Quantum Kelvin Wave to Classical Kolmogorov
Cascades”, Phys. Rev. Lett. 103 (2009), no. 8, article no. 084501.

[68] M. Mendoza, B. M. Boghosian, H. J. Herrmann, S. Succi, “Fast Lattice Boltzmann solver for relativistic hydrodynam-
ics”, Phys. Rev. Lett. 105 (2010), no. 1, article no. 014502.

https://arxiv.org/abs/2112.08264


12 Sauro Succi

[69] M. Mendoza, H. J. Herrmann, S. Succi, “Preturbulent Regimes in Graphene Flow”, Phys. Rev. Lett. 106 (2011), no. 15,
article no. 156601.

[70] A. Gabbana, D. Simeoni, S. Succi, R. Tripiccione, “Relativistic Lattice Boltzmann methods: theory and applications”,
Phys. Rep. 864 (2020), no. 3, p. 1-63.

[71] A. Gabbana, V. Ambrus, D. Simeoni, S. Succi, R. Tripiccione, “Fast kinetic simulator for relativistic matter”, Nat. Comp.
Sci 2 (2022), p. 641–654.

[72] G. Policastro, D. T. Son, A. Starinets, “Shear Viscosity of Strongly Coupled N = 4 Supersymmetric Yang–Mills Plasma”,
Phys. Rev. Lett. 87 (2001), no. 8, article no. 081601.

[73] M. Bernaschi, S. Melchionna, S. Succi, M. Fyta, E. Kaxiras, J. K. Sircar, “MUPHY: A parallel MUlti PHYsics/scale code
for high performance bio-fluidic simulations”, Comput. Phys. Commun. 180 (2009), no. 9, p. 1495-1502.

[74] M. Bernaschi, M. Fatica, S. Melchionna, S. Succi, E. Kaxiras, “A flexible high-performance Lattice Boltzmann GPU
code for the simulations of fluid flows”, complex geometries Concurrency and computation: practice and experiencE
22 (2010), no. 1, p. 1-14.

[75] M. Bernaschi, M. Bisson, M. Fatica, S. Melchionna, “20 Petaflops simulations of proteins suspensions in crowding
conditions”, in Proceedings of the International Conference on High Performance Computing, Networking, Storage
and Analysis, ACM Press, 2013.

[76] M. D. Mazzeo, P. V. Coveney, “HemeLB: A high performance parallel lattice-Boltzmann code for large scale fluid flow
in complex geometries”, Comput. Phys. Commun. 178 (2008), no. 12, p. 894-914.

[77] C. Feichtinger, S. Donath, H. Köstler, J. Götz, U. Rüde, “WaLBerla: HPC software design for computational engineer-
ing simulations”, J. Comput. Sci. 2 (2013), no. 2, p. 105-112.

[78] “waLBerla”, https://walberla.net.
[79] S. Alowayyed, D. Groen, P. V. Coveney, A. G. Hoekstra, “Multiscale computing in the exascale era S Alowayyed”, J.

Comput. Sci. 22 (2017), p. 15-25.
[80] S. Succi, G. Amati, M. Bernaschi, G. Falcucci, M. Lauricella, A. Montessori, “Towards exascale lattice Boltzmann

computing”, Comput. Fluids 181 (2019), p. 107-115.
[81] G. Falcucci, G. Amati, P. Fanelli, V. K. Krastev, G. Polverino, M. Porfiri, S. Succi, “Extreme flow simulations reveal

skeletal adaptations of deep-sea sponges”, Nature 595 (2021), no. 7868, p. 537-541.
[82] A. G. Shet, S. H. Sorathiya, S. Krithivasan, A. M. Deshpande, B. Kaul, S. D. Sherlekar, S. Ansumali, “Data structure and

movement for lattice-based simulations”, Phys. Rev. E 88 (2013), no. 1, article no. 013314.

https://walberla.net

	1. Introduction
	2. Lattice Gas Cellular Automata
	3. Entry Lattice Boltzmann
	4. LB in a nutshell
	5. Mainstream LB applications
	5.1. Fluid turbulence
	5.2. Multiphase and colloidal flows
	5.3. Micro and nano-hydrodynamics

	6. Quantum-relativistic fluids
	7. Towards exascale LB
	8. Summary: Whither LB?
	Conflicts of interest
	Acknowledgments
	References

