())**OLD DOMINION** UNIVERSITY

Abstract

Protein structure prediction produces atomic models of threedimensional structure of a protein from its amino acid sequence. Understanding the function mechanism of proteins requires knowledge of three-dimensional structures. When developing new enzymes and drugs, it's essential to understand the structure of the target protein. In this study, we analyze models predicted using two ab initio protein structure prediction methods, trRosetta and Quark. A set of thirty protein chains was used to evaluate the effectiveness of the methods. The thirty chains were collected from Protein Data Bank (June – November, 2020). The length and the relative position of the predicted secondary structures were examined. We found that the accuracy of models obtained from trRosetta and Quark is good (TM score 0.358 - 0.969). However, in some cases, the methods were not able to accurately predict the relative location of the secondary structures which might affect the overall folding relationship among secondary structures.

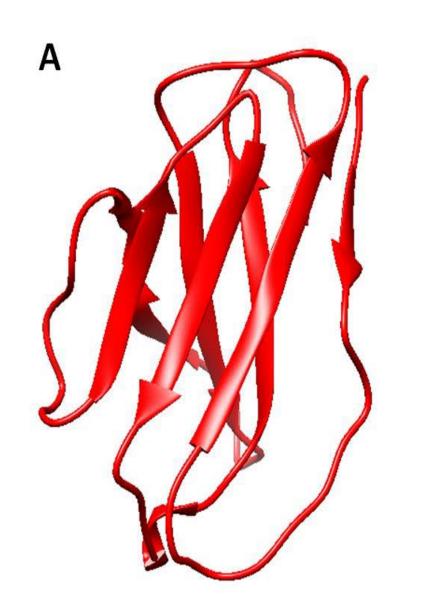
Method

Thirty atomic structures of protein chains were collected from Protein Data Bank (June - November, 2020). The threedimensional structures of the thirty cases were predicted from the FASTA sequence using two ab initio protein structure prediction methods, trRosetta and Quark. Then, the TM-Score was calculated to measure the similarity between the protein atomic structure and the predicted model. Finally, the length and relative position of the predicted secondary structure were examined

Data

Protein	Chain	Seq_Len ^a /PDB_Len ^b	Res ^d	TM-Score	
Name	ID	/SS ^c	Kes~	(trRosetta/Quark)	
7JZU	A	61/55/(3H)	3.1 Å	0.50256/0.79155	
7JZM	A	106/64/(3H)	3.5 Å	0.60077/0.88977	
7KDT	A	500/467/(24H)	3.5 Å	0.48621	
7D7R	A,B	842/579/(15H,12BS)	4 Å	0.71887	
7D0I	B, D, F, H	710/424/(15H, 4BS)	3 Å	0.60041	
7ANZ	A,B	502/410/(14H,13BS)	3.6 Å	0.84789	
7ANZ	С	871/618/(25H, 2BS)	3.6 Å	0.68932	
7ANZ	D	785/613/(22H, 5BS)	3.6 Å	0.69662	
7K1W	F	918/462/(8H, 17BS)	5.1 Å	0.79979	

Analysis of Ab Initio Protein Structure Prediction Methods


Maytha Alshammari¹, Jing He¹

¹Department of Computer Science, Old Dominion University, Norfolk, VA

7K22	L1-L6	109/98/(2H, 7BS)	3.2 Å	0.86752/0.9
7K22	H1-H5	117/99/(6H, 2BS)	3.2 Å	0.82242/0.9
7K2V	Р	264/264/(6H,10BS)	6.6 Å	0.7831
7K2V	А	453/451/(15H,11BS)	6.6 Å	0.4876
7K43	C,F,H	125/122/(5H,11BS)	2.6 Å	0.86828/0.9
7K45	Н	123/122/(4H, 13BS)	3.7 Å	0.88867/0.9
7K45	L	109/103/(2H,11BS)	3.7 Å	0.89111/0.9
6ZME	CE	223/ 117/(4H)	3 Å	0.3926
6ZNL	0,0	186/179/(4H)	3.8 Å	0.42899/0.3
6ZNL	Y	467/410/(6H,15BS)	3.8 Å	0.4146
6LVC	A, C	775/762/(17H,20BS)	3.0 Å	0.7923
6LVC	B, D	132/124/(5H, 3BS)	3.0 Å	0.7803
6S6B	A,B,C	155/153/(6H)	2.75 Å	0.7335
6SD4	A h	560/151/(3H, 7BS)	2.80 Å	0.6923
6VQX	А	100/97/(5H)	3.15 Å	0.6760
6W8U	А,,о	142/140/(1H, 8 BS)	3.8 Å	0.5696
6WB9	0	205/117/(9 BS)	3.0 Å	0.4648
6WB9	2	292/(13H)	3.0 Å	0.6560
6WR4	A, B, C	839/470/(20H, 4BS)	2.9 Å	0.5907
6X8M	А	314/280/(7H, 15BS)	2.2 Å	0.7535
6XDC	А, В	284/193/(5H, 8BS)	2.9 Å	0.3869

Table 1: The 30 Protein Chains. ^aThe protein sequence length. ^bThe protein atomic structure length. ^cThe Number of the protein secondary structure. H indicates number of α -helices and BS indicates the number β -Strands. ^dResolution (electron density).

Results

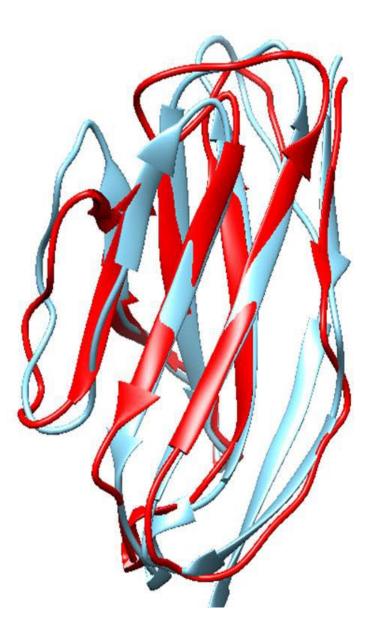


Figure 1: An example of a well prediction of the relative position of the predicted secondary structure. (A) The Red ribbon is the atomic structure of 7K22 chain L. (B) The Blue ribbon is the trRosetta Predicted model. TM-Score is 0.86752.(C) The Purple ribbon is the Quark Predicted model. TM-Score is 0.96950.

.96950 .90681 .90931 .93388 .35856

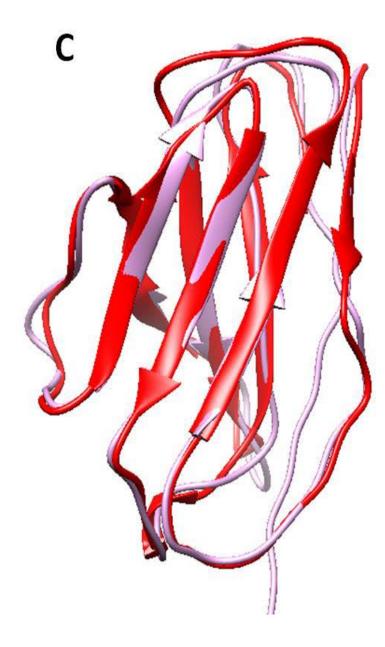
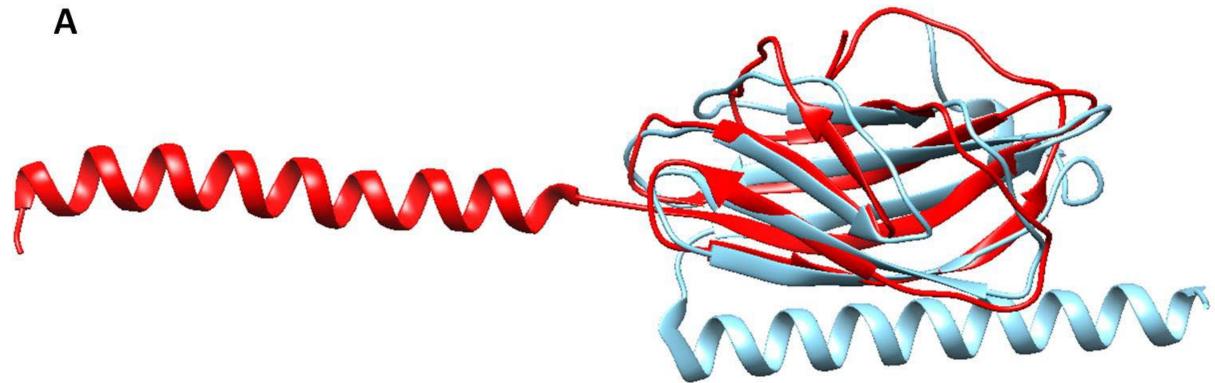
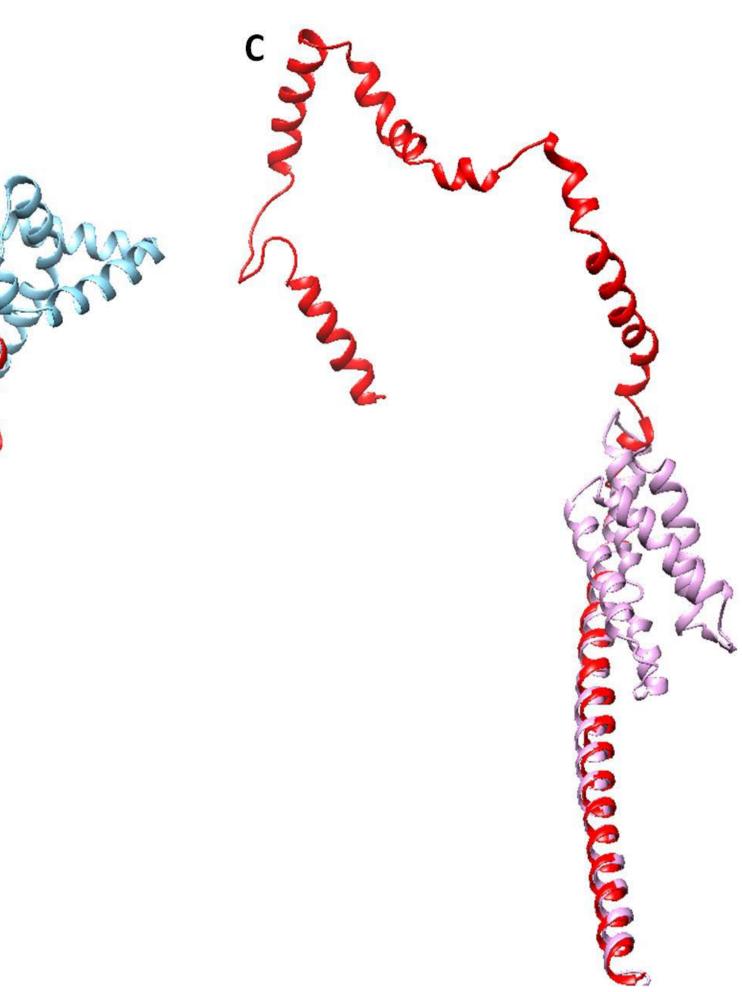


Figure 2: An example of Inaccurate prediction of the relative position of the predicted secondary structure. (A) The Red ribbon is the atomic structure of 6ZNL chain O. (B) The Blue ribbon is the trRosetta Predicted model. TM-Score is 0.42899.(C) The Purple ribbon is the Quark Predicted model. TM-Score is 0.3585.




Figure 3: An example of a Wrong Angel among the predicted Secondary Structures. (A) The Red ribbon is the atomic structure of 6W8U chain A. The Blue ribbon is the trRosetta Predicted model. TM-Score is 0.56965. The predicted model aligned with the atomic structure at the Beta-Sheet region but not aligned well with the Helix region.

We examined models predicted using two ab initio protein structure prediction methods, trRosetta and Quark. We found that the methods are performing well in predicting the structure of a protein. However, the methods in some cases were not able to accurately predict the relative position between secondary structures which might affect the overall folding relationship among secondary structures.

The work in this poster was supported by NIH R01-GM062968 and a scholarship to M.A. by the Government of Saudi Arabia.

Conclusion

Acknowledgements