

PRODUCTION OF LITHIUM CARBONATE FROM GEOTHERMAL BRINE BY SELECTIVE **EXTRACTION OF LITHIUM USING A NOVEL ION SIEVE METHOD Ujjwal Pokharel and Sandeep Kumar**

Batten College of Engineering and Technology

Department of Civil and Environmental Engineering, Old Dominion University, Norfolk, VA USA

INTRODUCTION

- \succ Today, there is an increasing demand for energy in the form of a battery for electronic devices vehicles (EVs) that are made up of lithium
- > The common practice of extracting lithium is not environmentally friendly. These technologies require a significant amount of water, energy, land, and time for extraction
- > Adsorptive extraction is the next-generation method for the extraction of lithium from geothermal brine. Moreover, doped adsorbents have little exposure to research but they show high selectivity to lithium.

Objective:

- > The idea is to provide a novel approach to extract lithium from a geothermal brine with minimal water loss which will be an alternative to the solar evaporation/ concentration process which is very slow (takes 24 months) and water intensive
- \blacktriangleright We will use H₄Mn_{4 9}Al_{0 1}O₁₂ compound for the adsorption of lithium from the brine and ultimately produce lithium carbonate that will be used to produce a Li-ion battery.

Challenges:

- \blacktriangleright Determine the optimal condition to produce H₄Mn_{4 9}Al_{0 1}O₁₂ to attain higher adsorption and low manganese dissociation
- > Optimization of production conditions for the cyclic usability of the same adsorption material.

SOLUTION

- > Variation in temperature in the muffle furnace will be carried out to the mixture of LiOH.H₂O, MnO₂ and AlCl₃, molten LiCl and KCl
- > H₄Mn_{4 9}Al_{0 1}O₁₂ will be tested against different concentration of HCl

RESEARCH PLAN

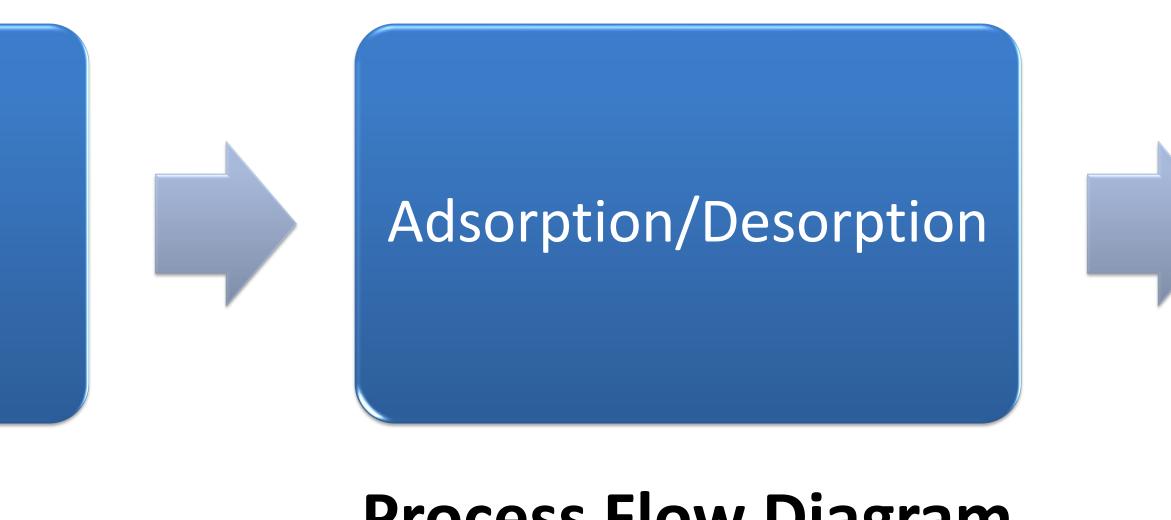
Goal 1. Synthesize and characterize $Li_4Mn_{4,9}Al_{0,1}O_{1,2}$ ion sieve Goal 2. Conversion of $Li_4Mn_{4,9}Al_{0,1}O_{12}$ to $H_4Mn_{4,9}Al_{0,1}O_{12}$ which is the adsorbent material for the lithium extraction and conduct adsorption-desorption process.

Goal 3. Purify the salt precipitates to get Li₂CO₃.

gy storage systems	
and electric	

Production of adsorbent $H_4 Mn_{4.9} Al_{0.1} O_{12}$

> The ultimate expected outcome of the project will be to synthesize the $H_4Mn_4 Al_0 O_{12}$ compound and use it for the adsorption-desorption process to extract lithium from geothermal brine and produce lithium carbonate out of it.


Wang, S., Li, P., Zhang, X., Zheng, S., & Zhang, Y. (2017). Selective adsorption of lithium from high Mg containing brines using HxTiO3 ion sieve. *Hydrometallurgy*, 174, 21-28. Qian, F., Guo, M., Qian, Z., Zhao, B., Li, J., Wu, Z., & Liu, Z. (2021). Enabling highly structure stability and adsorption performances of Li1. 6Mn1. 6O4 by Al-gradient surface doping. Separation and Purification Technology, 264, 118433.

METHOD

In the first stage, $Li_4Mn_{4,9}Al_{0,1}O_{1,2}$ will be synthesized In the second stage, $Li_4Mn_{4,9}Al_{0,1}O_{1,2}$ will be converted to $H_4Mn_{4,9}Al_{0,1}O_{1,2}$ (adsorbent material) by passing HCl

Design a simple bench-scale batch system to carry out the cyclic adsorption and desorption process that can be upgraded to a fixed bed flow configuration Lithium chloride after cyclic adsorption and desorption will be purified by removing unwanted metals to produce Li₂CO₃.

Different analytical instruments like ICP-OES, SEM, TEM, and FTIR will be used to analyze and characterize the adsorbent before and after the adsorption process. Based on the success of the bench-scale experiments, and the design of a fixed bed flow process for the adsorption will be done


Process Flow Diagram

REFERENCES

This Research is performed in Old Dominion University, Biomass Research Lab

