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Biophysical interactions control the progression of harmful algal blooms
in Chesapeake Bay: A novel Lagrangian particle tracking model with
mixotrophic growth and vertical migration

Jilian Xiong ,19* Jian Shen ©," Qubin Qin®," Michelle C. Tomlinson,? Yinglong . Zhang,’ Xun Cai,’”? Fei Ye," Linlin Cui,’
Margaret R. Mulholland*
1Vi1rginia Institute of Marine Science, William & Mary, Gloucester Point, Virginia; 2National Centers for Coastal Ocean
Science, National Oceanic and Atmospheric Administration, Silver Spring, Maryland; *ORISE Research Participation
Program at EPA, Chesapeake Bay Program Office, Annapolis, Maryland; *Department of Ocean and Earth Sciences, Old
Dominion University, Norfolk, Virginia

Scientific Significance Statement

Harmful algal blooms (HABs) threaten human health, marine life, and coastal economies. Accurate prediction of HABs is still a
challenge. Lagrangian particle tracking (LPT) is a popular tool to track algal blooms, yet most LPT models use passive particles
to represent algae without considering their interactions with ambient environmental conditions, including water tempera-
ture, salinity, available light, and nutrient concentrations. To advance predictions of HABs, we developed a novel LPT-
Biological (LPT-Bio) model that integrates the advantages of both Lagrangian and Eulerian approaches by incorporating algal
dynamics (mixotrophic growth, respiration, and mortality), algal biomass change, and diel vertical migration (DVM), along
the predicted transport trajectories. The model is fully controlled by environmental conditions while maintaining mass bal-
ance. The improved LPT-Bio model was applied to simulate the 2020 Margalefidinium polykrikoides bloom in the Chesapeake
Bay and successfully captured bloom intensity/duration/spatial extent and resolved locally aggregated patchiness. We found
that capturing DVM patterns and including mixotrophic growth are critical for HAB simulation. The present model framework
can provide a basis for developing a forecast system for HABs in the Bay.

Abstract

Climate change and nutrient pollution contribute to the expanding global footprint of harmful algal blooms.
To better predict their spatial distributions and disentangle biophysical controls, a novel Lagrangian particle
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Harmful algal blooms in Chesapeake Bay

tracking and biological (LPT-Bio) model was developed with a high-resolution numerical model and remote
sensing. The LPT-Bio model integrates the advantages of Lagrangian and Eulerian approaches by explicitly sim-
ulating algal bloom dynamics, algal biomass change, and diel vertical migrations along predicted trajectories.
The model successfully captured the intensity and extent of the 2020 Margalefidinium polykrikoides bloom in the
lower Chesapeake Bay and resolved fine-scale structures of bloom patchiness, demonstrating a reliable predic-
tion skill for 7-10 d. The fully coupled LPT-Bio model initialized/calibrated by remote sensing and controlled
by ambient environmental conditions appeared to be a powerful approach to predicting transport pathways,
identifying bloom hotspots, resolving concentration variations at subgrid scales, and investigating responses of
HABs to changing environmental conditions and human interference.

Harmful algal blooms (HABs) are increasing globally,
posing an increasing threat to public and ecosystem health
and coastal economies (Anderson et al. 2012; Glibert 2020).
Climate change and escalating nutrient pollution contribute
to the expanding footprint of HABs (Glibert 2020). A better
understanding of the fundamental processes causing blooms
to form and more accurate predictions of HABs and their
responses to changing ocean conditions depend on develop-
ing new monitoring and laboratory techniques and numerical
modeling (Anderson et al. 2012). Fueled by the increased fre-
quency and geographic coverage of observational data, many
approaches to formulating HAB models have been established
(Franks 2018), including conceptual, statistical, and process-
based/mechanistic models (McGillicuddy Jr 2010; Anderson
et al. 2015; Ralston and Moore 2020).

Among techniques used to simulate HABs, Lagrangian par-
ticle tracking (LPT) is proving to be a powerful tool for identi-
fying sites of HAB initiations, transport pathways, and
dispersion patterns in coastal regions (Onitsuka et al. 2010;
Velo-Suarez et al. 2010; Giddings et al. 2014; Gillibrand
et al. 2016; Pinto et al. 2016; Weisberg et al. 2019; Lim
et al. 2021). Combined with monitoring and hydrodynamic
numerical modeling, LPT models are potential tools for HAB
early warning (Wynne et al. 2013; Cusack et al. 2016; David-
son et al. 2021). LPT models are initiated by introducing
numerical particles into a system and instructing them to be
transported passively through physical processes. Most previ-
ous studies use these models to represent the transport of
harmful algae without considering algal bloom dynamics,
algal cell behaviors, or other environmental factors affecting
algal growth. The prediction accuracy of these applications
needs to be interpreted with caution since, while transported
as particles, algal blooms are also highly regulated by ambient
environmental conditions, that is, different algal species have
growth optima and respond to environmental conditions
favorable for their proliferation.

Several LPT models have imparted particles with behaviors/
responses consistent with the organism of interest’s biology
and behavioral characteristics, for example, temperature-,
salinity-, and light-regulated growth (Aleynik et al. 2016;
Gillibrand et al. 2016; Zhou et al. 2021), and vertical migra-
tions (Henrichs et al. 2015). Yet, no LPT models to date have
incorporated nutrient limitation and mixotrophic growth,

factors that may contribute to the competitive success of
dinoflagellate groups (Mulholland et al. 2018; Hofmann
et al. 2021; Qin et al. 2021). To better predict distributions of
harmful algae and their response to the changing environ-
ment as they are transported to connected waterways and to
disentangle biophysical controls, we developed a novel LPT
and biological (LPT-Bio) model that integrates the complex
growth strategies of mixotrophic dinoflagellates with physico-
chemical environmental factors and coupled that with an
advanced high-resolution numerical hydrodynamic model
and remote sensing. The LPT-Bio model explicitly simulates
algal growth, respiration, mortality, and diel vertical migra-
tion (DVM) patterns along the predicted transport trajectories.

Blooms of the harmful algal species Margalefidinium pol-
ykrikoides have become a global concern and the geographical
distributions extend to coastal areas worldwide (Iwataki
et al. 2008; Kudela and Gobler 2012; Al-Azri et al. 2014; Lopez-
Cortés et al. 2019; Roselli et al. 2020; Yfiiguez et al. 2021).
Nearly annual late summer blooms of M. polykrikoides in the
Chesapeake Bay (CB) threaten many fisheries and aquaculture
industries (Hudson 2018). Blooms of M. polykrikoides have
expanded from those first-described in the York River
(Mackiernan 1968) to those reported later in the mainstem and
lower CB tributaries (Marshall and Egerton 2009; Mulholland
et al. 2009; Morse et al. 2011, 2013).

In the late summer of 2020, high chlorophyll a (Chl a)
concentrations were evident in the lower CB and the adjacent
Atlantic Ocean based on Ocean Land Color Imager Level
3 products. Several coastal and CB monitoring programs con-
firmed the bloom to be M. polykrikoides. Satellite images
recorded the complete bloom cycle, including the uncommon
phenomenon of M. polykrikoides export from the lower CB to
coastal Atlantic waters following Tropical Storm (TS) Isaias
(Xiong et al. 2022). A similar expansion was only reported in
2007 (Mulholland et al. 2009) although the CB outflow plume
persistently delivers materials toward the Atlantic Ocean
(Jiang and Xia 2016). Currently, no model exists to accurately
predict the trajectory and extent of M. polykrikoides in the CB
and the adjacent continental shelf once a bloom has initiated.
The extensive long-term observations and recent research
parameterizing the key physiological processes and behavioral
strategies of the regional M. polykrikoides (Hofmann
et al. 2021; Qin et al. 2021) make the lower CB an ideal test
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bed for validating the prediction ability of the LPT-Bio model.
The advent of high-resolution daily ocean color imagery cov-
ering the CB region and the adjacent continental shelf
(Wynne et al. 2021) further provides a unique opportunity to
study HABs by merging the LPT-Bio model with satellite data.
The newly developed LPT-Bio model and the successful simu-
lation of the 2020 bloom demonstrate the predictive potential
for HABs in the CB.

Methodology

Bloom monitoring

Surveillance data for the 2020 M. polykrikoides bloom
include dataflow data, fixed site observations, water sample
collections, and satellite imagery. The dataflow mappings and
continuous measurements of Chl a at one fixed site inside
bloom-impacted regions were collected by the Hampton
Roads Sanitation District. The cell counts and species identifi-
cations via water samplings were made using standard micro-
scopic methods at Old Dominion University and Virginia
Institute of Marine Science and were reported to the Virginia
Department of Health (VDH) for inclusion on the algal bloom
surveillance map (https://www.vdh.virginia.gov/waterborne-
hazards-control/algal-bloom-surveillance-map/).

The satellite-based daily monitoring, at 300 m resolution,
was derived from Copernicus Sentinel-3 satellite data from the
European Organisation for the Exploitation of Meteorological
Satellites (EUMETSAT) and processed by NOAA’s National
Centers for Coastal Ocean Science (https://coastwatch.noaa.
gov/cw_html/NCCOS.html). The satellite-derived Chl a were
determined by a near-infrared to red ratio (Gilerson
et al. 2010; Wynne et al. 2021) and the satellite-derived Red
Band Difference (RBD) was used as a proxy of relative chloro-
phyll fluorescence to highlight areas with high algal biomass
(Wolny et al. 2020; Jordan et al. 2021).

LPT-Bio model

Numerical particles were used to represent M. polykrikoides
cells and were equipped with a virtual sensor to record varying
cell densities driven by physical and biological processes. The
horizontal and vertical locations of particles are (Chiu
et al. 2018)

X=X 4 (U+a;ix)At+R\/6KxAt, (1)

JK
n+1 n Y
Y =Y"+ (V+ ay)At+R,/6KyAt, (2)

JK
g <W+(9_Zz+ Wswim)At+R\/6KzAt, 3)

where U, V, and W are velocities in Cartesian coordinates x, y,
and z. R is a real random number with a zero mean and a
uniform distribution between -1 and 1. K,, K, and K, are
turbulent diffusion coefficients. Wgyim is the daytime

Harmful algal blooms in Chesapeake Bay

(06 : 00-18 : 00) ascent and nighttime (18 : 00-06 : 00)
descent velocity (Park et al. 2001). We integrated algal bloom
dynamics (i.e., mixotrophic growth, respiration, temperature-
modulated mortality, and density-related aggregation settling)
into the LPT-Bio model to simulate cell density variations, which
are dynamically driven by environmental parameters
(i.e., temperature, salinity, irradiance, and nutrients). The cell
density (C}) recorded by particle i is controlled by

act
dt

:(G*RBS*MT)Cngagg, (4)

where G is the mixotrophic growth rate, including photo-
trophic (GY) and heterotrophic growth (G). The photo-
trophic growth is

Gy = Gopf (D (S)min [f (1), f(DIN)], (5)

where Ggpt is the phototrophic growth rate at optimal condi-
tions. f(T), f(S), f(I), and f(DIN) are temperature-, salinity-,
irradiance-, and DIN-limited functions, respectively. Details
for limitation functions are given in Qin et al. (2021).
The heterotrophic growth is
Gy = Gopif (T)f (S)f (OM12), (6)

opt.

where G‘Zpt is the maximum heterotrophic growth rate at opti-
mal conditions. The growth-limiting function for the bioavail-
able organic matter (DOM and POM smaller than 12um,
Jeong et al. 2004), f(OMj2), is adjusted based on bloom inten-
sities (Supporting Information Table S1).

Without considering interactions between phototrophy and
heterotrophy, the mixotrophic growth rate equals the hetero-
trophic growth rate at night and consists of phototrophy and
heterotrophy during the daytime and cannot exceed the maxi-
mum growth rate at a certain temperature and salinity (Qin
et al. 2021). The mixotrophic growth rate is thus

= ()

o] mn [ij +G, Ggptf(T)f(S)], Daytime
G, Nighttime

The cell density loss terms in Eq. (4) include respiration (Res,
Qin et al. 2021), temperature-modulated mortality (M, Hof-
mann et al. 2021), and density-related aggregation settling
(Mage =7(C1)%, =0.1 [cellsm>d] " is the aggregation param-
eter; Lima and Doney 2004).

The high-resolution wunstructured-grid model SCHISM
(Zhang et al. 2016; Supporting Information Fig. S1) was uti-
lized to provide 3D velocities, temperature, salinity, and near-
surface irradiance to drive particle transport and cell density
variations. Blooms of M. polykrikoides are usually patchy with
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local accumulations due to algal behavior and physical trans-
port. The superior boundary fitting and local refinement
enable unstructured-grid models to perform better in regions
with complex bathymetry and shoreline geometry (Nunez
et al. 2020). The present hydrodynamic model did not activate
the wave module, yet wave effects, for example, wave-induced
sea surface roughness and Stokes drift advection, are suggested
to be important factors impacting simulated particle trajecto-
ries, especially during wind events (Mao and Xia 2020). More-
over, nutrient and turbidity data associated with algal growth
were from Chesapeake Bay Program (CBP) monitoring data
(https://data.chesapeakebay.net/WaterQuality; Fig. 1).

LPT-Bio model simulations

The initial particle seeding locations and total particle
numbers were determined by satellite-derived Chl a (mg Chl
a m~3), which were converted into cell density (cells m~3)
using a conversion factor of 1.69 x 10~® mg Chl a cell™* for
M. polykrikoides (Hofmann et al. 2021). Satellite-derived RBD

% Hydrodynamic ‘
Module

I

© Biomass
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values identify locations with high algal biomass, and pixels
with RBD greater than 2.00 x 10~ * in the lower CB were cho-
sen as particle-releasing regions (Supporting Information
Fig. S2). Particle numbers within selected pixels were deter-
mined as the ratio of satellite-derived cell density to the initial
cell density of each particle, C, (cellsm > particle !).
Co = 1.00 x 107 cells m~> particle! was chosen to balance
the computational cost and model robustness. The sensitivity
of simulated Chl a to C, is presented in Supporting Informa-
tion Figs. S3, S4. Particles were then seeded randomly inside
selected pixels.

The M. polykrikoides bloom was first observed on 22 July
2020, in the lower James River and then observed outside the
James River mouth 5 d later (Supporting Information Figs. S5,
S6). Based on available high-quality satellite images, three
dates (22 July, 28 July, and 08 August) were selected to release
particles (i.e., as reinitializations), with the tracking periods
ranging from 7 to 10 d. The total released particles were
76,809, 120,448, and 325,841, respectively (Supporting

% Satellite

F o’
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Fig. 1. HAB model framework that includes three components: hydrodynamic module of SCHISM, biological module based on LPT, and NOAA satellite

datasets.
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Information Table S1). The satellite overpass time was around
14 : 30-15 : 30 and particles were released at 15 : 00 at a depth
of 0.5 m on the three dates. Each particle is implemented with
DVMs with a daytime ascent rate of 30 m d ' and a nighttime
descent rate of 70 m d~! (Sohn et al. 2011). Sensitivity simula-
tions were performed to assess the importance of DVMs on
bloom development.

To compare model results with satellite data, the simulated
cell densities recorded by all particles in the same pixel (coordi-
nates given by satellite images) were integrated together, then
converted to Chl g, and saved every half an hour. A best-match
strategy was applied to assess model performance given the
inherent uncertainties in satellite and model configurations.

30 July

03 August

42 44 46
x10°

Harmful algal blooms in Chesapeake Bay

The closest model-satellite pair with respect to Chl a for each
pixel was searched between 10 : 00 and 18:00. The normalized
Taylor diagram (Taylor 2001) was used to evaluate the model
prediction skill, in terms of correlation coefficient, normalized
centered root-mean-square difference, and normalized standard
deviations of the model against satellite data (Hofmann
et al. 2008).

Results and discussion

HAB development and progression
Satellite images revealed the progression of M. polykrikoides
blooms from the lower James River to the lower CB and then

[ Model
I Satellite
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0
50 100 150 0 50 100 150
Chl a (mgm™) Chl a (mgm™)

o

Fig. 2. Simulations with particles released on 28 July 2020. Column 1: simulated Chl a concentrations (Chl g, depth < 1 m); Column 2: satellite-derived
Chl g; Column 3: satellite-derived RBD value; Column 4: best-match time determined daily between 10 : 00 and 18 : 00; Column 5: cumulative distribu-
tion function of simulated and satellite-derived Chl a. The black lines represent satellite data. The red lines are simulations of Chl a from the best-match
searching, while faded red lines are simulations saved every half-hour between 10 : 00 and 18 : 00. Column 6: histogram of simulated (best-match) and

satellite-derived Chl a.
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coastal Atlantic waters (Fig. 2; Supporting Information
Figs. S7, S8). The bloom first appeared in the lower James
River on 22 July and subsequently propagated coastward, with
a density of 7610 cells mL~" (Supporting Information Fig. S6)
measured on 27 July outside the James River mouth. A marked
coastward progression and a massive bloom at Virginia Beach
occurred after TS Isaias (Supporting Information Fig. S1) pas-
sed the CB watershed on 04 August. Cell densities reached
8640 cells mL~' at the southern bank of the CB outside the
James River mouth, and 6990 cells mL~' were recorded at the
Virginia Beach oceanfront on 06 August following the storm
(Supporting Information Fig. S6), resulting in discolored and
foul-smelling waters. The dataflow mappings and satellite
images indicate the spatial patchiness of the bloom, while
fixed site Chl a measurements show marked temporal varia-
tions in bloom intensity (Supporting Information Fig. SS5).

(a) Up =0;Down=0

Harmful algal blooms in Chesapeake Bay

Although M. polykrikoides blooms occur almost annually in
the lower CB and its tributaries, export to the Atlantic Ocean
has only been reported in 2007 (Mulholland et al. 2009),
2020, and 2021 (https://www.vdh.virginia.gov/waterborne-
hazards-control/algal-bloom-surveillance-map/).

LPT-Bio model results

Evolutions of cell concentrations and coastward transport
of HABs from the James River to the lower CB and coastal
Atlantic waters were well-captured by the LPT-Bio model
(Fig. 2), despite some biases in bloom intensity and extent; a
good model performance was achieved (on 05 and 06 August)
with correct reproduction of the massive bloom at Virginia
Beach (Fig. 2). The dense bloom streaks at the James River
mouth were also well reproduced (Fig. 2; Supporting Informa-
tion Fig. S8). The LPT-Bio model generally predicts more

(b) Up=30md";Down=0md" (c) Up=30md';Down=10md" (d) Up=30md";Down=30md" (e) Up=230md";Down=70md"’

0

g%

»
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W
¥
W
"

.

4.5
x10°

g8

Fig. 3. Simulated Chl a (depth < 1 m) with different DVM speeds. Particles were released on 28 July 2020. The vertical migration speeds were annotated

above each column.

85UB01 SUOWIWIOD 3A 111D 9|qeoljdde ayy Aq peusenob a1e sejoie YO ‘SN Jo Sejni Joj Akeiqi8uluQ A8|IM UO (SUONIPUOD-PUR-SLLBY WD A8 1M A RIq 1B JUO//SANY) SUOIPUOD pUe swie | 8y} 89S *[ez0z/c0/cz] Uo AriqiTauluo &M ‘AIsieAlun uoluiwod pIO Ad 80E0T 2I01/200T 0T/10p/Wod A8 i Ake.q1pul|uo'sqndo se//sdny Wwolj pepeo|umod ‘0 ‘ZvZz8Lee


https://www.vdh.virginia.gov/waterborne-hazards-control/algal-bloom-surveillance-map/
https://www.vdh.virginia.gov/waterborne-hazards-control/algal-bloom-surveillance-map/

Xiong et al.

accurately when transport processes dominate the bloom pro-
liferation, that is, the best performance was achieved after the
passage of TS Isaias when physical processes dominated bloom
transport (Supporting Information Fig. S9). The quantitative
comparisons between the LPT-Bio model and satellite images
are shown in Supporting Information Fig. S9, where most data
points cluster within the 0.5-1.0 normalized centered root-
mean-square circle and the 0.5-1.0 normalized standard devi-
ation circle. The average model-data correlation coefficient for
all comparison dates is 0.58 (Supporting Information
Table S2). In terms of simulating Chl a in the CB, the LPT-Bio
model skill is comparable to other 3D biogeochemical models
(Yu and Shen 2021). Since ocean color images cannot differ-
entiate the chlorophyll signal from M. polykrikoides and other
co-occurring phytoplankton groups, the simulated Chl
a specific to M. polykrikoides is generally smaller than the
satellite-derived Chl a (Fig. 2, Columns 5-6; Supporting Infor-
mation Figs. S7, §8). Overall, the model demonstrated a reli-
able predictive ability over the 7- to 10-d period when the
2020 M. polykrikoides bloom initiated and was transported to
the coast. Once a bloom initiation has been identified
through coastal monitoring programs, the LPT-Bio model,
incorporated into a hydrodynamic and water quality forecast
system, can predict bloom transport trajectories, intensities,
and variations.

Effects of DVMs

M. polykrikoides vertically migrates with daytime ascents
and nighttime descents, as do other dinoflagellates (Park
et al. 2001; Jeong et al. 2015; Noh et al. 2018). DVMs are
thought to optimize cell exposure to high concentrations of
near-surface sunlight during the day and high concentrations

28 July 03 August
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of near-bottom nutrients at night where they might also avoid
predators (Jeong et al. 2015). Here, we suggest that DVMs may
also allow fast-swimming algae to circumvent physical wash-
out due to coastal ocean circulation and thereby achieve high
cell densities as observed in the lower CB (Fig. 3). Particles
released on 28 July were used to evaluate DVMs because the
best model performance was achieved during this tracking
period. Without DVMs, the passive particles were transported
by currents, leading to a large-scale dispersal of bloom organ-
isms outside the bay mouth (Column 1 in Fig. 3). Under this
scenario, the predicted Chl a remained low and almost no
blooms developed. The model better reproduced cell abun-
dances in surface waters after applying a daytime ascent term
with a swimming speed of 30 md ™' (Column 2 in Fig. 3).
Employing both terms for daytime ascents and nighttime
descents, the bloom organisms accumulated in the nearshore
region and the simulated bloom aggregations better matched
observations (Columns 3-5 in Fig. 3). The vertical migration
speed applied here is sufficient to create the bloom intensity
in shallow regions, although algal cells might adjust their
swimming behaviors based on phototaxis, geotaxis, tempera-
ture, turbulence intensity, stratification, internal biochemical
state, chain length, life-cycle stage, and so on (Heaney and
Eppley 1981; Park et al. 2001; Erga et al. 2015; Henrichs
et al. 2015; Lovecchio et al. 2019; Brosnahan et al. 2020;
Shikata et al. 2020; Lim et al. 2022). More field observations
and laboratory experiments are expected to better constrain
the DVMs of M. polykrikoides. It is clear, however, as seen in
our findings and earlier studies (Gillibrand et al. 2016; Qin
et al. 2021) that vertical migrations are critical for bloom
development and accumulations, especially in nearshore
regions with strong flushing (Shulman et al. 2012).
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Fig. 4. Simulated Chl a concentrations (depth < 1 m) from sensitivity tests of mixotrophy and algal bloom dynamics with particles released on 28 July
2020, by disabling (a1-a5) heterotrophy and (b1-b5) all growth and biomass loss processes.
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Necessity of incorporating mixotrophy and algal bloom
dynamics into LPT models

The LPT models are useful for predicting the transport and
spatial distributions of HABs (Fernandes-Salvador et al. 2021)
and detecting bloom initiation sites (Zhang et al. 2020; Clark
et al. 2021). In principle, the tracked particles could spread
over the whole model domain if they are allowed to disperse
randomly. Yet, only locations with favorable conditions can
trigger bloom initiation since biological and environmental
factors come into play. Bloom intensities and locations are
highly related to environmental conditions, including tem-
perature, salinity, available light, nutrient concentrations, and
local transport conditions (Qin and Shen 2019).

To demonstrate the necessity of incorporating mixotrophy
and algal bloom dynamics into LPT models, we first disabled
the heterotrophic growth of M. polykrikoides, which can assim-
ilate organic nutrients to likely outcompete other algal species
(Mulholland et al. 2018) and found that the phototrophic
growth alone cannot sustain the bloom intensities (Fig. 4).
Although particles reached Virginia Beach after the storm
(Fig. 4), the simulated Chl a concentrations were about 50%
of the base scenario (Supporting Information Table S3), con-
sistent with previous findings that the degree of heterotrophy
significantly impacted the timing, duration, distribution, and
magnitude of the M. polykrikoides bloom (Hofmann
et al. 2021; Qin et al. 2021). A further decrease in bloom
intensity was predicted when all growth (heterotrophy and
phototrophy) and loss terms related to the bloom dynamics
were disabled, that is, particles only carried the initial cell den-
sity without being modified during the tracking (Fig. 4).
Therefore, fully coupling particle tracking models with algal
bloom dynamics regulated by surrounding environmental fac-
tors is a must to accurately predict HABs, especially under
changing climate conditions.

Conclusions

Individual-based modeling utilizing particle tracking tech-
niques with implemented algal bloom dynamics offers a more
accurate approach to simulating HABs. This type of model
specifies algal behavior patterns and examines interactions
between physical transport and biological processes. Here, we
developed a novel LPT-Bio model with algal bloom dynamics
driven by surrounding environmental parameters. The model
was coupled with a high-resolution numerical hydrodynamic
model and remote sensing. The satellite-derived Chl a was
used to initialize and calibrate the LPT-Bio model. The physi-
cal transport and DVM parameterizations used in the model
well captured the bloom intensity/patchiness, coastward
expansion, and penetration into the Atlantic Ocean.

The relatively good model predictions of the 2020
M. polykrikoides bloom over the 7-10 d of its development and
the full incorporation of environmental factors suggest that
the present model framework may serve as the foundation for

Harmful algal blooms in Chesapeake Bay

a HAB forecast system for M. polykrikoides blooms in the CB,
as well as investigate responses of HABs to the changing ocean
environments. Further improvements can be made in model
configurations and monitoring sources, for example, the
inclusion of cyst dynamics (Hofmann et al. 2021), and the
availability of satellite data with a higher temporal resolution.
The present modeling technique can be transferred to other
motile organisms such as raphidophytes (Handy et al. 2005)
or nonmotile algal species and water bodies if remote sensing
(or synoptic bloom mappings) and parameterizations of cell
physiological processes are available.
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