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Superconducting spoke cavities for high-velocity applications

C. S. Hopper* and J. R. Delayen†
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and Accelerator Division, Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA

(Received 12 July 2013; published 3 October 2013)

To date, superconducting spoke cavities have been designed, developed, and tested for particle

velocities up to �0 � 0:6, but there is a growing interest in possible applications of multispoke cavities

for high-velocity applications. We have explored the design parameter space for low-frequency, high-

velocity, double-spoke superconducting cavities in order to determine how each design parameter

affects the electromagnetic properties, in particular the surface electromagnetic fields and the shunt

impedance. We present detailed design for cavities operating at 325 and 352 MHz and optimized for

�0 ¼ 0:82 and 1.

DOI: 10.1103/PhysRevSTAB.16.102001 PACS numbers: 29.20.�c

I. INTRODUCTION

One of the first applications of superconducting radio
frequency (SRF) technology to particle accelerators was
for a proton accelerator [1] and, until the late 1980s, super-
conducting accelerating cavities were separated into two
distinct velocity classes. The low-velocity structures, de-
signed for the acceleration of protons and heavy ions, ex-
tended to the �0 ¼ v0=c� 0:2 regime. They were usually
based on resonant transmission lines and are often referred
to as TEM structures. Among them are the quarter-wave
resonator [2], the coaxial half-wave resonator [3,4], and the
spoke resonator [3–6]. The high-velocity cavities were used
almost exclusively for the acceleration of electrons or posi-
trons and were restricted to �0 � 1. These structures were
made of a series of coupled cells operating in the TM010

mode and are therefore referred to as TM structures.
Since the late 1980s there has been a growing interest in

higher velocity protons and ions [3,5], and TEM structures
have been designed for higher and higher velocities [7],
while TM structures have been designed for lower and
lower velocities, until the two have overlapped in what is
referred to as the medium-velocity region corresponding to
�0 � 0:5–0:6 [8,9].

The majority of superconducting accelerating structures
in use or under development, and included in the
medium-�0 regime, fall under these two broad categories.
Accelerating charged particles from �0 � 0:6 to �0 ¼ 1 is
typically accomplished using TM cavities. The TM cav-
ities used in the medium-velocity region are essentially
similar to the ones in this high-velocity region, but

compressed in the longitudinal direction. For low-frequency,
low-velocity applications, elliptical cavities are large and
potentially mechanically unstable, but for high-velocity ap-
plications, they remain dominant in operational accelerators.
The reasons for this include the geometrical simplicity
(which has led to good design, modeling, and simulation
tools), extensive knowledge base (both in research institu-
tions and industry), and low surface fields at high-�0 [10].
While basic TEM-type cavities, i.e., those with cylindrical
loading elements, may also be easy to design, model, and
fabricate, the improved mechanical properties (e.g. low
microphonics and minimal sensitivity to He pressure) are
only accomplished with more advanced engineering and
fabrication techniques [11,12].
Spoke and other low-frequency, low-velocity cavities

were primarily intended for 4.2 K operation; however,
recent developments in fabrication and processing tech-
niques [7,13,14] have produced results which indicate that
2 K operation may be more economical for large machines,
even taking into account the differences in refrigerator
efficiency [9]. For smaller machines, on the other hand,
2 K operation may not be practical, in which case, spoke
cavities offer a viable 4.2 K option [15].
As the interest in TEM structures has increased and their

design advanced, more and more spoke cavities have been
built and tested [14,16–22]. With the advantages that spoke
cavities can offer (which will be discussed later), there is
recent interest in the design and development of these
structures for the high-velocity regime. Some applications
include, but are not limited to, small, low-energy electron
accelerators for compact light sources [23,24], nondestruc-
tive assay system of nuclear materials in spent fuel using
nuclear resonance fluorescence [25,26], and GeV-scale
proton accelerators such as spallation sources [27]. Spoke
cavities have currently been built and tested for up to
��0 ¼ 0:6 [16], but are now under development for up
to �0 ¼ 1 [28]. The concept for a �0 ¼ 1 double-spoke
cavity is shown in Fig. 1.
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II. FIGURES OF MERIT

The performance of superconducting cavities, and what
applications they are appropriate for, can often be charac-
terized by a few important properties or parameters. This
section gives a brief review of the cavity properties and
parameters which will be reported on in the following
sections.

The motion of a particle subjected to the electromag-
netic fields within a resonant cavity is governed by the
Lorentz force,

~F ¼ dðm ~vÞ
dt

¼ qð ~Eþ ~v� ~BÞ; (1)

wherem is the relativistic mass of the particle with velocity
~v and charge q. Because of the symmetry of the spoke
cavity, there is no magnetic field on axis, in the fundamen-
tal mode, thus acceleration takes place through the inter-
action with an electric field parallel to the velocity of the
particle.

The energy (or voltage) gain acquired by the particle is
the work done by the longitudinal electric field which,
under the assumption that the velocity of the particle
does not change in the cavity, is given by

Vaccð�;�Þ ¼
Z 1

�1
Eze

i½ð!z=�cÞþ��dz; (2)

where ! is the rf frequency, � is the phase between the
particle and the rf field, and z is the direction of particle
propagation.

Under the assumption that the velocity does not change
within the cavity, the voltage gain Vaccð�;�Þ has a sinu-
soidal dependence on the phase � and will have a maxi-
mum V0 for a certain particle velocity �0 which will also
be used to define the � of the cavity. V0 can be divided by a
reference length L to define the accelerating field at which
the cavity is operating,

Eacc ¼ V0

L
: (3)

While there is a consensus in the definition of the
reference length L for TM cavities, there is no universally
agreed upon definition for TEM cavities. In low-velocity
TEM cavities, where the gaps are much less than the rf

wavelength, the problem is treated as an electrostatic one,
and the reference length can be defined as

L ¼ N
�0�

2
; (4)

where N is the number of loading elements, �0 is the
velocity of the particle that would acquire the maximum
voltage from the cavity, and � is the free-space wave-
length corresponding to the frequency of the accelerating
mode [29].
In TEM structures, with uniform loading elements, such

as a spoke cavity with cylindrical spokes, the voltage
acquired by the particle in the end gaps is about half the
voltage gained in the central gaps, therefore, it is logical to
use N as the number of loading elements. In an optimized
cavity, as will be shown later, this is not the case. When the
spoke becomes large and noncylindrical, as is the case with
the cavities presented here, the voltage gain is almost the
same in the end gaps and the central gaps; therefore we
find that in the present case, using N as the number of
accelerating gaps rather than loading elements allows for a
more accurate normalized field comparison between
single-spoke and multispoke cavities.
The energy stored in a cavity is given by

U ¼ 1

2
�0

Z
V
j ~Ej2dV ¼ 1

2
�0

Z
V
j ~Hj2dV; (5)

where the integration is taken over the entire volume of the
cavity. The power dissipation is given by

Pd ¼ 1

2

Z
Rsj ~Hj2dS; (6)

where Rs is the surface resistance and the integral is taken
over the inner surface of the cavity. The ratio of stored
energy and the energy dissipated during one radian in the
walls of the cavity is the quality factor,

Q0 ¼ !0U

Pd

: (7)

The geometrical factor, which is the product of the
quality factor and the surface resistance, G ¼ RsQ0

(in �), is independent of cavity size and material
and depends only on the shape of the structure and the
electromagnetic mode.
A measure of the power dissipation induced by the rf

currents, and thus the efficiency of the structure in con-
verting rf power to voltage gain, is the shunt impedance
defined here as

R ¼ V2
0

Pd

: (8)

Since the power dissipation given in Eq. (6) is clearly
dependent on the material, for a superconducting structure
it has a direct impact on the requirements of the cryogenic
system. A material-independent parameter which is often

FIG. 1. 325 MHz, �0 ¼ 1 double-spoke cavity.
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quoted and is more useful in assessing a particular cavity
design is the product of the shunt impedance and the
surface resistance, RRs (in �2).

The ratio of shunt impedance and quality factor ½R=Q�,
is another parameter that depends only on shape and not on
cavity size or material. The parameter RRs is obtained
as the product of ½R=Q� and G ¼ QRs, and is often used
(as we do here) in place of shunt impedance because it does
not depend on material properties and operating frequency.

III. FEATURES OF THE SPOKE CAVITY

A single-spoke cavity is a variation of the coaxial
half-wave geometry; in its fundamental mode of operation,
the spoke sustains a TEM mode where the length of the
spoke is approximately half of the rf wavelength. The
loading elements of multispoke cavities operate out of
phase with their nearest neighbor by � and, for improved
mode separation and lower surface fields, are usually
oriented perpendicularly to each other.

We summarize here the features of spoke cavities which
make them particularly attractive in the low-velocity to
midvelocity regime. These features, as will be shown in the
rest of the paper, are still present in the high-velocity
regime, although in some cases the advantages TEM
cavities offer in other velocity regimes are reduced.

A. Size

The diameter of a simple spoke cavity (with uniform
spokes) is on the order of half the rf wavelength, whereas
the diameter of a TM cavity is about twice that. This allows
for either smaller physical dimensions at the same operat-
ing frequency or close to half the operating frequency for
the same physical diameter. While this is true at low�0 and
for simple spoke geometries, higher-�0-optimized geome-
tries result in this factor of 2 being reduced. Nonetheless,
since the BCS surface resistance is proportional to the
square of the rf frequency, accelerators can be designed
to operate at lower frequencies (and have fewer elements
with different fundamental frequencies) where 4.2 K op-
eration is practical while maintaining cavities of a reason-
able size. Furthermore, at half the frequency of a TM
cavity of the same �0, a multispoke cavity of the same
length would have half the number of cells. This results in a
larger velocity acceptance causing the cavity to be useful
over a wider range of velocities. Lower frequency would
also lead to a higher longitudinal acceptance, which could
prove beneficial in high-current applications.

B. Cell-to-cell coupling

In elliptical cavities, the cell-to-cell coupling occurs
through the iris opening, but in spoke cavities, which are
more open, the magnetic field lines couple all cells [30].

The cell-to-cell coupling in multispoke cavities, with
simple geometries, is high and they are much more robust

as compared to TM cavities with respect to manufacturing
inaccuracies. Tuning to achieve field profile balance is
important in TM cavities but is usually not necessary in
multispoke cavities.
Even in velocity-of-light multispoke cavities, the funda-

mental mode is the lowest frequency mode, which allows
for simpler damping and extraction of higher-order modes.
Also, unlike TM cavities, the stronger cell-to-cell coupling
together with the small number of spokes, implies that the
accelerating mode will be well separated from the nearest
mode.

C. Surface fields and energy content

As was mentioned previously, the spokes in a multi-
spoke cavity operate out of phase by� from each other in a
TEM-like mode. As such, the fields are concentrated
around the spoke and decay rapidly moving away from
them. TM elliptical cavities have a larger volume which is
uniformly filled with electromagnetic energy. As a result,
spoke cavities tend to have a smaller energy content and
higher shunt impedance. The fields on the outer surface can
be relatively small; this also allows for both the fundamen-
tal power coupler and higher-order mode extraction cou-
plers to be located on the outer surface rather than on the
beam line [31–34], which is customary for elliptical
cavities.
One disadvantage is that for a given gradient defined by

using the inside length of the cavity as the reference length,
the peak surface fields are higher in a spoke cavity com-
pared to those in an elliptical cavity, at least in the high-�
regime [8]. However, in light of the fact that there is no
need to use the beam line for couplers in a spoke cavity, it
is not clear that the surface fields would be significantly
higher at a constant real estate gradient. Additionally,
spoke cavities are intended to be used mostly in relatively
high-current and/or continuous wave applications where
the operating gradients would be modest and not limited by
peak surface fields [15].

IV. ELECTROMAGNETIC DESIGN OF
HIGH-VELOCITY SPOKE CAVITIES

High surface fields in superconducting cavities are
highly undesirable because of the detrimental effects on
performance. At high surface magnetic fields, quenching
can occur, and high surface electric fields can cause field
emission. When comparing the performance of cavities,
normalized surface fields are often discussed. These fields
are Ep=Eacc and Bp=Eacc, where Ep is the peak surface

electric field, Bp is the peak surface magnetic field, and

Eacc is the accelerating electric field defined in Eq. (3).
Minimizing these fields is one of the goals in cavity design.
Note that, for all the cavities that we have investigated, the
inside length of the cavity (iris-to-iris) is always substan-
tially less than that given by Eq. (4) when N is the number
of gaps. Therefore, if we had chosen the inside length as
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the reference length to define Eacc, the quoted ratios of
peak fields to accelerating field would have been lower.
The disadvantage of that choice is that the inside length,
even at constant frequency and �0, is not constant but
depends on the details of the cavity geometry, and there-
fore makes it difficult to compare different designs. Our
choice for the reference length is independent of the par-
ticularities of a design, once the frequency,�0, and number
of spokes are chosen, and makes comparison easier.

It is important to note that there is no such thing as an
‘‘optimal’’ design for all applications. Each application
will have specific design considerations; what may con-
stitute an optimized design for one project may in fact be
undesirable for another. An optimized design, however, is
more than just minimization of normalized fields since, at
some point in the design, both peak surface electric field
and peak surface magnetic field cannot be reduced any-
more and the reduction of one often leads to the increase of
the other. It is then important for the normalized surface
fields to be balanced in the sense that the current technical
limits or application-specific demands are achieved simul-
taneously. In other words, if a peak surface electric field of
40 MV=m and a peak surface magnetic field of 80 mT can
be routinely reached with the same probability, then a
cavity with a ratio of Bp=Ep ’ 2 mT=ðMV=mÞ would in-

dicate that the normalized fields are properly balanced.
Obviously, this ‘‘optimized’’ ratio is very much dependent
on the state of the art, and has changed over time. It is also
dependent on the application and the intended operational
conditions, such as temperature. For this work we have
used as a design goal a ratio of ’ 2 mT=ðMV=mÞ.

In some applications, maximization of the shunt
impedance is more important than minimization of the
surface fields and the designs that maximize the former
can be different from the ones that minimize the latter.
In other words, there is not a single best optimized
design, and what we have attempted here is to show how
various design choices (dimensions, shapes) can affect the
electromagnetic properties (fields, shunt impedance).

This work has been done using the three-dimensional
electromagnetic design software CST MICROWAVE STUDIO�
[35]. The design environment allows for a multitude of
structures to be simulated and a variety of calculations to
be performed. The electromagnetic simulations are accom-
plished using the finite integration technique [35]. From
these simulations, the frequencies and field properties of a
desired number of cavity modes can be determined. In
addition, the cavity properties described in the previous
section can be evaluated.

A. Optimization strategies

The basic geometry of a spoke cavity consists of an
outer conductor, usually either cylindrical or rectangular,
with one or more ‘‘spokes,’’ which are conductors that
run radially, through the longitudinal symmetry axis.

A number of strategies can be used for the optimization
process; here wewill provide a detailed description of those
presented in [28]. Alternatively, advanced methods such as
combining a simulation code with a multiobjective genetic
algorithm have been used [26]. Multiobjective optimization
can rapidly lead to an optimized design but makes it more
difficult to separate the impact of each parameter on the
cavity properties. Here we have chosen a more systematic
approach which results in consistent optimization outcomes
to those obtained with a multiobjective approach.
Any optimization strategy will quickly reveal that the

geometry of the spokes themselves often has the greatest
impact on the peak surface fields. Spokes can be broken
into two areas in terms of both their physical location and
field (electric or magnetic) that they primarily affect. The
region which intersects the wall of the outer conductor is
referred to as the spoke base, while the region intersecting
the beam line is referred to as the spoke aperture. The base
or aperture regions are often referred to as having elliptical,
racetrack, or cylindrical geometries. Figure 2 shows the
main parameters of spokes with a racetrack geometry. It
should be noted that the same definitions apply to elliptical
spoke geometries.
Performing a sweep of the parameters identified in

Fig. 2, whether the spoke aperture and base are of the
elliptical or racetrack variety, can be done by decoupling
the size from the shape. By doing so, desirable shapes can
be found and the best sizes of those can be determined.
Alternatively, both the size and shape can be varied
simultaneously.
In order to identify a shape which effectively minimizes

the surface fields, several different values for spoke base
(aperture) area or circumference can be chosen and a
sweep of two parameters can be done while maintaining
that area or circumference. For example, the base width
and length can be varied while maintaining a constant
circumference. This has the effect of changing the base

FIG. 2. CST MICROWAVE STUDIO� (MWS) view of a racetrack-
shaped spoke. (1) base or aperture width, (2) base or aperture
length, (3) aperture height.
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shape while keeping the overall surface area in contact
with the fields unchanged. Doing so allows us to distin-
guish shapes that are more desirable than others. With a
variety of preferred shapes identified, the optimal sizes of
these shapes can be obtained and compared by scaling the
dimensions while maintaining the shape.

In addition to the geometries explored, it is important to
investigate the orientation of the spokes relative to the
beam line. We define a spoke base or aperture region as
being longitudinal if the longest dimension (either race-
track or elliptical geometries) is parallel to the beam line
and transverse otherwise. More will be said about this in
the next section. The data presented here, unless otherwise
stated, was obtained while performing an optimization of a
two-spoke, 325 MHz, �0 ¼ 1 cavity.

B. Dependence of rf properties
on geometric parameters

In this section, we analyze dependencies that the peak
surface fields and shunt impedance have on various cavity
dimensions. It should be understood that what is described
here are general trends; the actual magnitudes of variations
will depend greatly on the values of the cavity parameters
which remain fixed.

The cavity radius and iris-to-iris length are approxi-
mately determined by the operating frequency and desired
�0. The peak surface fields depend greatly on the shape
and dimensions of both the spoke base and the spoke
aperture region. All data presented have been acquired
under conditions of constant frequency and �0, meaning
that the cavity radius and iris-to-iris length were varied
along with the parameters under consideration in order to
maintain constant frequency and design velocity.

As was already mentioned, a reference length given by
Eq. (4), where N is the number of full accelerating gaps, is
used here. For high-velocity spoke cavities, we found that
if a single-spoke cavity is assumed to have two accelerat-
ing gaps and a two-spoke cavity has three full accelerating
gaps, then, for identical spoke and end-cap geometries,
normalized surface fields and shunt impedance are consis-
tent and can be accurately compared. Figure 3 shows an
example of the dependence of the normalized magnetic
field on the spoke base length. The cavities are the same in
all respects except iris-to-iris length and outer conductor
diameter.

Figure 4 shows some additional cavity parameters
discussed here. Both the spoke base and aperture region
have been investigated with elliptical, cylindrical, and
racetrack geometries. The parameters in Figs. 2 and 4
will be discussed in terms of how they influence the
normalized fields, shunt impedance, energy content, and
frequency. There are no significant differences in terms of
peak surface fields and shunt impedance achievable with
elliptical or racetrack geometries, so here we have chosen
to present the optimization results for a racetrack spoke
base geometry.

1. Spoke base

The magnetic field of the fundamental accelerating
mode in a spoke cavity is more concentrated near the
surface of the outer conductor and encircles the spokes;
the size and shape of the spoke base region thus has a
strong effect on the peak surface magnetic field and a lesser
effect of the peak surface electric field.
A comparison of the normalized magnetic fields that

longitudinal and transverse spoke base orientations provide
is presented in Fig. 5(a). The dependence of the normalized
field on the longest base dimension (which we call the
length) is similar, at smaller dimensions, for both orienta-
tions; however, a lower normalized field can be obtained
with a larger transverse base. The difference, for this given
cavity’s other fixed dimensions, is about 25%, which
is significant. An even greater difference can be seen in
Fig. 5(b). A transverse spoke base can provide a shunt
impedance which far exceeds that of a longitudinal base.
At a value of spoke base length to rf wavelength of 0.6, for
example, a transverse spoke base can provide a shunt
impedance on the order of 70% higher than a longitudi-
nally oriented spoke base. In a small machine, intended to
operate at 4 K, this difference in shunt impedance would
have a dramatic impact on the power dissipation and thus
the cooling requirements.
Additionally, the energy content in a longitudinal ori-

entation can be close to 50% higher than its transverse

FIG. 3. Dependence of the normalized magnetic field on the
spoke base length for a single- and double-spoke cavity with the
same spoke and end-cap geometries.

FIG. 4. Cut-away view of a two-spoke 325 MHz, �0 ¼ 1
cavity.
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counterpart. This is illustrated in Fig. 6. In terms of
microphonics control, the higher energy content of a
longitudinally oriented spoke base could be much more
problematic [36].

For the two orientations, the difference in the achievable
normalized electric field is not as much as for the other rf
properties. Figure 7 shows this difference to be at most
about 10%. It must be stressed, however, that these results
by no means suggest that a longitudinal orientation should
not be considered. As will be shown later, the longitudinal
base results in a smaller cavity diameter for a given fre-
quency and a stronger cell-to-cell coupling (i.e. increased
mode separation). For applications where shunt impedance
is not critical, but size and large mode separation are, the
longitudinal orientation may be preferable.
Before proceeding with any optimization strategy, it is

important to first understand how each of the individual
parameters affect the cavity’s rf properties. Figures 5–7
have already shown the dependence that several cavity
properties have on the spoke base length. Figure 8 shows
a parameter sweep of the spoke base width (transverse and
longitudinal racetrack geometry) to show how the normal-
ized magnetic and electric fields are affected, while Fig. 9
shows how the shunt impedance and energy content
change. Note that in Figs. 8 and 9, the spoke base ap-
proaches a cylinder, which would be located far to the right
on the plots, but never actually becomes cylindrical. This is
because at this base length, a cylindrical base would be
impractical and thus not relevant.
Figure 8 illustrates that the base width orientation can

only improve the normalized electric field by about 10%,
while the impact on the magnetic field is higher. Figure 9(a)
shows that increasing the spoke base width can have a
positive effect on the shunt impedance for both orientations,
but more so for the longitudinal base. This is consistent with
Fig. 5, which showed that a longitudinal base has a higher
shunt impedance for a more cylindrical shape. In Fig. 9(b), it
can be seen that the energy content decreases for a wider
longitudinal base, and increases for the transverse orienta-
tion. Again, this is consistent with what was illustrated in
Fig. 5 which showed that a more cylindrical shape provides
a lower energy content than a longitudinal base.

FIG. 6. Dependence of energy content on spoke base length for
longitudinal and transverse orientations at a constant accelerat-
ing field of 1 MV=m. The leftmost point is common to both
curves since it represents a cylindrical spoke base.

FIG. 7. Dependence of normalized electric field on spoke base
length for longitudinal and transverse orientations. The leftmost
point is common to both curves since it represents a cylindrical
spoke base.

FIG. 5. (a) Dependence of Bp=Eacc and (b) RRs on spoke base
length normalized to rf wavelength for a 325 MHz, �0 ¼ 1
double-spoke cavity at a constant base width of 200 mm. The
blue curves represents a longitudinal base geometry, while the red
curves are for an identical spoke base, but oriented transversely to
the beam line. In both plots, the leftmost point is common to both
curves since it represents a cylindrical spoke base.
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As mentioned in the previous section, shapes can be
chosen and the sizes can be varied until an optimum geome-
try is found. In order to eliminate certain shapes for consid-
eration, balancing of the fields should be considered.
Figure 10 is a plot of Bp vs Ep for several spoke base shapes.

It is clear that many of these shapes need not be investigated
further. For designs that fall close to the lines representing
balanced fields, the optimal sizes are found and compared.

When further optimizing cavities which exhibit well-
balanced fields, it must be emphasized that this strategy is
intended for optimization of a given shape, and therefore
represent local maxima and minima in shunt impedance
and normalized fields, respectively. This is the reason that
the effects that individual cavity dimensions have on the
optimization parameters should be understood. Finding the
dimensions which produce these local maxima and minima
can then serve as a starting point for further modification of
the shape to either enhance the shunt impedance or
decrease the surface fields.

Taking some of the cavities which exhibit balanced
fields from Fig. 10, and keeping the shape relatively con-
stant (by fixing the ratio of base width to length, for
example), an optimized size can be found. Figures 12
and 13 show the dependence of normalized fields, shunt
impedance, and energy content on spoke base size for three
different shapes. These shapes are depicted in Fig. 11.

It is clear from Fig. 12 that, in general, a larger spoke
base decreases the normalized fields. The difference in
achievable fields, for a given shape, is less for a base where
the width and length dimensions are closer [shape (c) in
Fig. 11]. From Fig. 13, a larger base generally leads to a
higher shunt impedance. For larger width/length ratios, the
differences in achievable shunt impedance and energy
content are quite significant. If a high shunt impedance is

FIG. 9. (a) Dependence of RRs and (b) energy content
(at 1 MV=m) on the spoke base width.

FIG. 10. Bp=Eacc vs Ep=Eacc for various spoke base shapes.
Those shapes within the circled region are candidates for further
investigation.

FIG. 8. (a) Dependence of Ep=Eacc and (b) Bp=Eacc on the
spoke base width at a constant base length of 480 mm.
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more desirable, then shape (a) from Fig. 11 is preferable
while giving the lowest energy content. On the other hand,
if lower fields are the main goal, then perhaps a shape more
like (b) in Fig. 11 is a better choice.

A larger base does increase the fundamental frequency,
which means that the cavity radius has to be increased
to compensate. This is illustrated in Fig. 14. For the
dimensions given in this example, the cylindrical geometry
gives a radius of roughly 0.6 �0�. When increasing the
base length, the cavity diameter required to maintain a

frequency of 325 MHz increases by 15% for a transverse
spoke base and 10% for a longitudinal one. This can lessen
the advantage spoke cavities provide in terms of compact-
ness. Additionally, for a cylindrically shaped outer con-
ductor, a spoke base length which approaches the diameter
of the cavity itself will become increasingly difficult to
fabricate and clean.
Some generalizations can be made concerning the spoke

base geometry. (i) Cylindrical spoke geometries have
higher surface fields. (ii) Both racetrack and elliptical
geometries allow for similar peak surface fields and shunt
impedance. (iii) Longitudinally oriented spoke bases,
whether elliptical or racetrack, result in lower shunt imped-
ance than that achievable with a transverse orientation.
(iv) A transversely oriented spoke base allows for lower
peak surface fields at the cost of increased cavity diameter.
(v) Larger spoke base length and width result in a larger
cavity diameter to maintain the fundamental mode fre-
quency (Fig. 14). (vi) Transverse spoke base geometries,
especially with large length, can be more difficult than their
longitudinal counterparts to weld into the outer conductor.
In addition, the cleaning of the cavity interior after the
spokes are welded into place could prove more difficult.

FIG. 13. Dependence of (a) RRs and (b) energy content
(at 1 MV=m) on spoke base size. Three different transverse
spoke base shapes are presented, identified by the ratio of base
width to length. For each data point, both the base width and
length are changing, but the ratio remains fixed.

FIG. 11. Different transverse spoke base shapes with different
ratios of width to length. (a) 0.30, (b) 0.42, and (c) 0.52.

FIG. 12. Dependence of (a) Ep=Eacc and (b) Bp=Eacc on spoke
base size. Three different transverse spoke base shapes are
presented, identified by the ratio of base width to length. For
each data point, both the base width and length are changing, but
the ratio remains fixed.
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2. Spoke aperture

The electric field of the fundamental accelerating mode
of a spoke cavity is concentrated at the accelerating gaps
along the beam path. The shape and dimensions of the
spoke aperture region thus have a great impact on the peak
surface electric field. Because the field is concentrated in
this region, achieving a uniform distribution along the
surface of the spoke aperture is important for realizing a
low peak surface electric field.

A similar approach has been used in optimizing the
aperture region to that used in optimizing the base. We
first begin by analyzing how individual parameters influ-
ence the fields and shunt impedance, then study different
aperture shapes and determine the optimal size of those
shapes. For this optimization, we have looked at elliptical,
racetrack, and cylindrical shapes. The elliptical cross
section and the racetrack are similar enough that we need
not present results for both.

Figure 15(a) is an example of how the normalized
electric and magnetic fields behave with respect to the
spoke aperture length (both have a transverse orientation).
The aperture length can be used to change the normalized
electric field by 10%, or more, while the normalized
magnetic field can be influenced by roughly half that.

Figure 15(b) shows the dependence of RRs and the
energy content for the same aperture dimensions. The
shunt impedance is decreased (increasing the power
dissipation) by around 5% while the energy content is
increased by a similar amount. Both of these results have
a negative impact on the cavity performance. However,
from Fig. 15, at an aperture length to rf wavelength ratio of
around 0.20, the normalized electric field is at a minimum
while the adverse effects on the other rf parameters are
minimal.

The dependence of these same properties on the spoke
aperture width are examined in Fig. 16.

The aperture width seems to have a greater effect on the
rf properties than the length. When the width of the

FIG. 15. (a) Dependence of the normalized electric and
magnetic fields and (b) RRs and energy content (at 1 MV=m)
on the spoke aperture length.

FIG. 16. Dependence of (a) Ep=Eacc and Bp=Eacc and (b) RRs

and energy content (at 1 MV=m), on the spoke aperture width.

FIG. 14. Dependence of the cavity diameter on the spoke base
length. A cylindrical base has the highest surface fields, but the
smallest cavity diameter.
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aperture increases, the length of each accelerating gap
decreases. This has the effect of increasing the electric
field for a given voltage. By doing so, there is a point for
which the peak surface field will begin to increase, which is
what is observed in Fig. 16. Both normalized fields can be
reduced significantly, while the shunt impedance and
energy content are increased and decreased, respectively.

Interestingly, the aperture height has more of an influ-
ence on the peak surface magnetic field than the electric
field. This is evident in Fig. 17, as the normalized electric
field changes by only a few percent while the magnetic
field can increase by 20% or more as the height gets larger.

A longitudinally oriented spoke aperture produces sig-
nificantly higher peak electric fields than a transverse one,
thus that geometry is not discussed in detail here.

To determine what spoke aperture shapes to pursue, a
plot of Bp vs Ep for various shapes can be seen in Fig. 18.

Those designs which fall close to the lines representing
Bp=Ep ¼ 2, 2:3 mT=ðMV=mÞ should be optimized further

to determine the shape which provides the lowest normal-
ized fields and highest shunt impedance.

Continuing with the aperture dimensions, similar analy-
sis to that in Figs. 12 and 13 can be done. Figure 19 first
examines the normalized electric and magnetic fields for
four examples of aperture shape. Here, a racetrack geome-
try was used for both the base and aperture regions.

Figure 19(a) illustrates that, as the spoke aperture region
becomes more cylindrical, the normalized electric field

achievable is higher. This can be understood in terms of
the importance of creating a uniform electric field around
the aperture region. Because the field is concentrated along
the beam line, a cylindrically shaped aperture gives a less
uniform distribution than the flat area of a transversely
oriented racetrack or elliptical shape. A cylinder gives
less area for which the field is in contact than a flatter,
racetrack shape. The normalized magnetic field, on the

FIG. 17. Dependence of (a) Ep=Eacc and Bp=Eacc and (b) RRs

and energy content (at 1 MV=m) on spoke aperture height.

FIG. 18. Peak magnetic field vs peak electric field for various
spoke aperture shapes.

FIG. 19. Dependence of the (a) normalized electric and
(b) magnetic fields on spoke aperture shapes.

C. S. HOPPER AND J. R. DELAYEN Phys. Rev. ST Accel. Beams 16, 102001 (2013)

102001-10

3.90 10.5 

3 .85 
325 MHz, ~, = 1 • 

10.0 

• E/Eacc 
3 .80 

• B/Eacc 9 .5 
0 
0 3.75 ~ 

!!:! 9 .0 
C. 3.70 w 

3.65 
8 .5 

3 .60 • • 8.0 

(a) 
3 .55 -'---,---~-~--~-~--~--+ 7.5 

0 .04 0.06 0.08 0 .10 0 .12 0 .14 0 .16 

(Spoke aperture height)/ (rf wavelength) 

1.22x105 1.44 

1.21x105 1.42 

1.2ox10• 1.40 

N 

£. 1.19x105 1.38 
(/) 

a:: 1.18x105 1.36 a:: 
1.17x105 1.34 

1.16x105 • RR, 1.32 
• Energy content 

1.15x105 1.30 
0.04 0.06 0.08 0.10 0 .12 0.14 0.16 

(Spoke aperture height)/ (rf wavelength) 

::::: 
E 
> e. 
~ .s 

0 
0 
~ 

!!:! 
C. 

co 

s: 
'E 
Q) 

'E 
0 
0 
>, 

e> 
Q) 
C: 
w 

::::: 10 
E 
> e. 
~ 9 

.s 
0 
0 
a, 

w 8 
a. 
co 

• 

• 

3.6 

• 325 MHz, ~o = 1 

Bp/Eacc vs. Ep/Eacc 

Bp/Ep = 2.3 

Bp/Ep = 2.0 

• 

;_.--------------------· 
• 

3.8 4 .0 4 .2 
Ep/Eacc 

5.0 ~------------------~ 

4.8 

4 .6 

0 4.4 
0 
a, 

W 4 .2 
a. 
W 4 .0 

3 .8 

3.6 

325 MHz, ~o = 1 
• e Width/Length= 1.0 

e Width/ Length= 0.85 
• Width/ Length= 0.75 
• Width/ Length= 0.65 

3.4 +--~--~-~--~-~--~-~-' 

~ 
E 
> e. 
~ 
.s 

0 
0 
a, 

w 
a. 
co 

0 .12 0 .14 0 .16 0 .18 0 .20 0 .22 0 .24 0 .26 

(Spoke aperture length)/ (rf wavelength) 

8.4 ,---------;::::========;;---, 

8 .2 

8 .0 

7 .8 

7 .6 

7.4 

7 .2 (b) 

• Width/ Length= 1.0 
• Width/ Length= 0.85 
e Width/ Length= 0.75 
• Width/ Length= 0.65 

7.0 +--~--~-~--~-~-~~-~-' 

0 .12 0 .14 0 .16 0 .18 0 .20 0 .22 0 .24 0 .26 

(Spoke aperture length)/ (rf wavelength) 



other hand, improves as the shape goes from more
elongated (ratio of 0.65) to cylindrical.

Figure 20 shows that the shunt impedance of these
shapes behaves similarly. The smaller ratio (more elon-
gated) aperture has a lower achievable shunt impedance,
albeit not much less, than the other shapes. A cylindrical
aperture region allows for close to a 5% higher shunt
impedance than the more elongated racetrack shape. It is
not surprising that the smaller ratio then has a higher
energy content, since it is inversely proportional to the
shunt impedance.

To summarize these results, a cylindrical aperture
region gives a lower normalized magnetic field, higher
shunt impedance, and lower energy content. An elongated
racetrack-shaped aperture region gives the lowest normal-
ized electric field. A racetrack shape with a ratio of
width to length somewhere between 0.65 and 1.0 may be
preferable for most applications.

Recently, there have been efforts made to decrease the
quadrupole component by using a ring-shaped aperture
region [37] in a half-wave resonator. It was found that, in
addition to achieving this, the peak surface magnetic field
and shunt impedance could also be improved with this
geometry. We have investigated this geometry (Fig. 21)
and found that it does indeed reduce the quadrupole

component of the off-axis electromagnetic field, but we
did not see significant improvements in the peak surface
fields or shunt impedance over what has been reported
here. This component of the field was reported for our
325 MHz, �0 ¼ 0:82 cavity in [38]. A more detailed
analysis of the multipole components for this cavity and
how different geometries affect those components has been
presented elsewhere [39].

3. Spoke separation

In low-�0 structures made with several loading elements
(multispoke, split ring, or twin quarter wave, for example),
the side gaps are approximately half the size of the central
gap and the energy gained in the side gaps is approximately
half that gained in the central gaps. As was already noted,
the distance between the centers of the side gaps, to a large
degree, determines the �0 of a spoke cavity. Therefore, for
high-�0 cavities at the frequencies discussed here, the
cavity length becomes greater than a meter. This large
size can add some additional challenges, however there
are some advantages to be gained. This longer cavity
provides a great deal of flexibility in the spoke base
dimensions.
Figure 22 shows what is referred to here as the spoke

angle �, which is a measure of the difference between the
transversely oriented spoke aperture and base length and

FIG. 21. Design of a ring-shaped aperture we are using to
study possible reduction in multipole effects. This design is
adapted from [37].

FIG. 22. End view of a single spoke showing the spoke angle�.

FIG. 20. Dependence of (a) RRs and (b) energy content
(at 1 MV=m) on spoke aperture shapes.
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height. This angle not only has a strong effect on the
surface fields, but also on the spoke separation.
Balancing the fields in the accelerating gaps of a multi-
spoke resonator is not paramount, however Ep=Eacc will be

approximately minimized when the electric field is homo-
geneously distributed on the spoke surfaces. If, during a
sweep of the parameter �, the spoke separation remains
constant along with �0 and frequency, the distribution of
the electric field on the beam line will become severely
inhomogeneous, causing the normalized electric field to
increase. If the length of the spoke aperture region is on the
order of those in Fig. 22 (� 0:10�0�), then for a small �,
the spoke separation is very close to one-half of the total
iris-to-iris distance. On the other hand, as � becomes
larger for a transversely oriented spoke base, the structure
begins to resemble a disk-loaded waveguide, and as such,
the spoke separation required to balance the fields in each
cell becomes close to the distance between each spoke and
the end walls (one-third of the iris-to-iris length). Figure 23
shows how the electric field profiles change for different
values of � if the electric fields in each cell are equalized
by changing the spoke separation. For the small spoke
angle (20.5�), the center gap is approximately �0�=2
whereas for� ¼ 44:4�, the gaps are roughly the same size.

Figure 24 shows the dependence of the normalized
electric and magnetic fields on spoke separation. We use
units of �0�=2 because in a cavity with more uniform
spokes, that would be a typical spoke separation.

The effect that the spoke separation can have on the
cavity properties obviously depends, to a large degree, on
the spoke base and aperture dimensions, so we will not
attempt to generalize these effects, but will summarize the
effects that the spoke separation has on one of our opti-
mized cavities (325 MHz, �0 ¼ 1). These data are taken
with a spoke angle of roughly 40�, so when the normalized
electric field is lowest, the field is approximately uniform
in each gap. This occurs at a spoke separation of �0:84
�0�=2. At that point, the normalized magnetic field is
significantly greater than its lowest value. In order to

balance the normalized fields, a spoke separation of around
0.94 �0�=2 would be a good choice for this example.
The dependence the shunt impedance has on the spoke

separation is shown in Fig. 25. Not surprisingly, when the
normalized magnetic field is lowest, the power dissipation
is also low, and thus the shunt impedance is highest.
Finally, it should be noted that when the spoke angle is

large and the spokes are separated to minimize the
normalized magnetic field, the velocity acceptance of the
cavity decreases, as shown in Fig. 26. This is less of
a concern for velocity-of-light cavities, but should be
considered for cavities with a design velocity less than 1.
To conclude this section, we summarize some observa-

tions made concerning the spoke separation of the
325 MHz, �0 ¼ 1 cavity: (i) The normalized electric field
is approximately minimized when the field is distributed
homogeneously on the spoke surface in the accelerating
region. (ii) The optimal spoke separation depends greatly
on �. For fixed aperture dimensions, as � increases, the
spoke separation needed to minimize the normalized elec-
tric field decreases. (iii) Increasing the spoke separation
beyond the point at which the magnitude of the electric
field is equal in each accelerating gap reduces the velocity
acceptance of the cavity.

FIG. 23. On-axis electric field profiles (at 1 J) for different
spoke angle �.

FIG. 24. Dependence of the normalized electric and magnetic
fields on spoke separation, for a spoke angle of 36�.

FIG. 25. Dependence of RRs on spoke separation.
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4. Reentrant parameters (h_out, h_in, and H)

Referring to Fig. 4, h_out can be used to minimize the
peak surface magnetic field, h_in can be used to minimize
the peak surface electric field, and H will strongly influ-
ence both. As with optimization of any parameter with
respect to the peak surface fields, it is important to also
consider maximizing the shunt impedance. In the case of
parameters such as these, which do not impact the surface
fields as greatly as the spoke parameters, we find that there
can be a small gain in shunt impedance while obtaining a
mild reduction in peak surface fields. Figure 27 shows how
h_out impacts both the normalized magnetic field and RRs.

It is clear that increasing h_out has positive effects on
the normalized magnetic field by increasing the volume for
which the field has to encircle the spokes. This also results
in a decreased power dissipation which leads to a higher
shunt impedance.

H is a parameter, as can be seen in Fig. 4, which has
an effect on both the normalized magnetic and electric
fields. Figure 28 shows how the normalized magnetic
field and shunt impedance change for a varying H, while
Fig. 29 shows how the normalized electric field and shunt
impedance change.

The parameter H changes the overall length of the
cavity, but does not change the iris-to-iris distance.
In Fig. 28 it is clear that as this parameter increases, the
normalized surface magnetic field decreases. The opposite
is actually true for the normalized electric field as can be
seen in Fig. 29. Thus, in the cavities examined here, there is
no single value of H that can minimize either of the fields
while simultaneously maximizing the shunt impedance,
but from Figs. 28 and 29, a value of around 100 mm, for
this 325 MHz, �0 ¼ 1 double-spoke cavity, sufficiently
minimizes both fields while maximizing the shunt
impedance.
Finally, since h_in is a parameter which is close to the

beam line, it can be used to optimize the normalized
electric field. Figure 30 shows how the normalized electric
field and shunt impedance change with varying h_in.

5. Curve rounding

Another consideration with regard to field optimization
is the rounding radius applied to otherwise sharp edges
formed when designing the cavity. There are a few areas of
the cavity where the rounding radius can have a significant
affect on the fields, two of which are discussed here and
shown in Fig. 31.

FIG. 26. Velocity acceptance for two different spoke separations.

FIG. 27. Dependence of the normalized magnetic field and
RRs on the parameter h_out.

FIG. 28. Dependence of the normalized magnetic field and
RRs on the parameter H.

FIG. 29. Dependence of the normalized electric field and RRs

on the parameter H.
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In Fig. 32, we can see how the normalized magnetic field
changes for a wide range of outer conductor edge rounding.
There is almost a 10% difference in the two extremes.

The spoke base rounding radius (identified as ‘‘2’’ in
Fig. 31) also has a strong influence on the peak surface
magnetic field, as Fig. 33 illustrates.

Increasing the spoke base rounding radius decreases the
normalized magnetic field, while there is a large range
of outer conductor rounding radii for which the peak
magnetic field is virtually unchanged.

When determining an optimal rounding, the impact on
multipacting should be considered. While the effect
cannot be eliminated completely because it is much more

dependent on the cavity surface conditions and ability to
provide adjustable levels of power to the susceptible re-
gions of the cavity, we have found that it can be reduced
through simple modifications to the geometry.
When the internal surface of a rf cavity is exposed to the

high fields maintained in a superconducting cavity, elec-
trons (known as primary electrons) can be emitted from the
metal. The trajectory of these electrons is determined by
the electromagnetic fields, and in many cases, they will
come in contact with another part of the surface with a
certain amount of impact kinetic energy. If, for relatively
clean niobium, this energy falls within the range of
�100 eV to 1500 eV, then additional electrons, known as
secondary electrons, will be ejected, which is referred to as
secondary emission yield (SEY) [40]. These electrons can
even end up in resonant trajectories, at which point this
multipacting process can generate a large amount of excess
heat, thus leading to thermal breakdown.
Additionally, these secondary electrons will absorb

energy from the rf fields, thereby limiting the gradient
which would otherwise be achievable in their absence.
The SEY is not only material specific, but also depends
of the condition of the surface [40]. By improving the
quality of the surface, the soft barriers on the gradient
can be eliminated by processing and cleaning. On the other
hand, hard barriers can only be overcome by changing the
cavity geometry.
Multipacting is characterized, most commonly, as either

one-point or two-point. One-point multipacting occurs
when the time of flight of the electron between two impacts
is an integer number of rf cycles and the electron’s impact
site is approximately the same as its ejection site. In two-
point multipacting, the time of flight is an odd number of
half rf cycles and the impact site is not the same as the
ejection site.
In order to analyze the multipacting conditions in these

optimized two-spoke cavities, the 3D parallel tracking
code TRACK3P contained in the ACE3P code suite developed
by SLACwas used [41]. In Fig. 34, we show some resonant

FIG. 31. Cavity with no rounding at (1) the outer conductor
edges and (2) the spoke base.

FIG. 32. Dependence of Bp=Eacc on the outer conductor edge
rounding.

FIG. 33. Dependence of Bp=Eacc on the spoke base rounding
radius.

FIG. 30. Dependence of the normalized electric field and RRs

on the parameter h_in.
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electrons for field gradient levels from 0.5 to 10 MV=m in
an optimized 325 MHz, �0 ¼ 0:82 cavity. The impact
energy is also shown.

Many of the areas where SEY would be likely are
around where the spoke base meets the outer conductor
and at the end cap, so these rounding radii can have an
impact on the number of electron that fall into resonant
trajectories [42]. This cannot be avoided, but slightly
altering the geometry to minimize multipacting should be
considered.

To address possible soft barriers at high field gradient,
the inset of Fig. 35 shows the multipacting electron ener-
gies present from 6–10 MV=m for this region of the cavity.
The plots are for two different rounding radii at the outer
edge. A more subtle rounding (shown in black) has elec-
trons with resonant impact energies of up to about 250 eV,
although most fall below 150 eV. On the other hand, a
larger rounding radius (shown in red) results in virtually all
of the electron energies being below 100 eV. Very similar
electron trajectories are also stable at the rounded area
where the spoke meets the outer conductor. As such, that

rounding radius can be used to minimize the multipacting
in that area as well.

V. RESULTS

A. Field optimization

The �0 ¼ 0:82 models presented here have been
designed with applications to high-energy protons and
ions in mind, and as such, an important optimization
consideration is to reduce the peak surface magnetic and
electric fields. The preceding sections provide a detailed
discussion of how the most influential parameters affect the
fields and shunt impedance, and in this section we present
the results of field minimization optimizations.
Before doing so, there is another consideration to be

made, namely, the placement of the coupler ports. One
advantage of spoke cavities, which was mentioned previ-
ously, is that couplers can be placed on the outer conductor.
Although not reported here, we have included a fundamen-
tal power coupler port, cleaning ports (shown in Fig. 1),
and higher order mode damping ports in simulations of the
final design, and have found that through judicious place-
ment, the electromagnetic properties are not negatively
affected.
Figure 36 shows the surface electric and magnetic fields

for the optimized 325 MHz, �0 ¼ 0:82 cavity. Tables I, II,
III, and IV provide the cavity parameters and rf properties
of four high-�0 cavities that have been optimized to date.
The aperture diameter was fixed at 60 mm for the 325 MHz
cavities and 50 mm for the 352 MHz cavities. The actual
cavities which will be built and tested may be somewhat
different based on fabrication and ease of cleaning
considerations.

FIG. 34. Resonant electrons and their energies for field levels
from 0.5–10 MV.

FIG. 35. Resonant electron impact energy in an end cell of the
cavity in Fig. 34 for gradients up to 10 MV=m. The inset shows
the impact energies for stable multipacting electrons for two
different end-cap outer rounding radii.

FIG. 36. CST MWS� cut-away view showing the surface
(a) electric and (b) magnetic fields of the fundamental mode
of the optimized 325 MHz, �0 ¼ 0:82 cavity.
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B. Shunt impedance optimization

One of the motivations for spoke cavity development is
that they are generally compact enough to operate at lower
frequencies such that they need only be cooled to 4.2 K.
For applications which require relatively small machines,
especially those intended to run in continuous wave (cw)
mode, operating at 2 K may not be feasible, therefore
interest in spoke cavities operating at �0 ¼ 1 is growing.
The optimization considerations for these velocity-of-light
cavities intended to be used in compact accelerators are
somewhat different than that of cavities to be used in more
conventional machines. In the former, power dissipation is
perhaps more important, therefore maximizing the shunt
impedance is the highest priority.

From Eq. (8), it is clear that the shunt impedance is a
measure of how much accelerating voltage can be gained

for a given dissipation. Increasing the shunt impedance,
therefore, is how the dissipation can be decreased. The
power dissipation can be written as

Pd ¼ V2
0

ðR=QÞ �G
� Rs; (9)

where the voltage, here, is normalized to an accelerating
gradient of 1 MV=m, reference length ð3=2Þ�0�, and the
surface resistance is fixed for a given frequency. Thus, to
decrease the power dissipation, the product of R=Q and G
should be increased. Again, both of these parameters are
determined solely by the geometry of the cavity and not by
the size or material properties.
In elliptical cavities, optimizing the geometry of the

outer walls to maximizeQ0 often leads to a spherical shape
because this corresponds to the smallest surface area for a
given volume [43]. We find a similar argument can be
made in the case of these particular geometries, as is
illustrated in Fig. 37, where the dependence of RRs on
the ratio of total surface area to volume (multiplied by rf
wavelength to eliminate units) is shown. At this point, we

TABLE II. Radio-frequency properties, 352 MHz, �0 ¼ 0:82
and �0 ¼ 1.

Parameter �0 ¼ 0:82 �0 ¼ 1 Units

Energy gain at �0
a 1048 1278 kV

R=Q 642 715 �
QRs 158 175 �
ðR=QÞ �QRs 1:01� 105 1:25� 105 �2

Ep=Eacc 3.64 3.69 � � �
Bp=Eacc 7.06 7.06 mT=ðMV=mÞ
Bp=Ep 1.94 1.91 mT=ðMV=mÞ
Energy contenta 0.77 1.03 J

Power dissipationa,b 0.79 0.92 W

aAt Eacc ¼ 1 MV=m and reference length ð3=2Þ�0�.
bRs ¼ 73 n�.

TABLE IV. Radio-frequency properties, 325 MHz, �0 ¼ 0:82
and �0 ¼ 1.

Parameter �0 ¼ 0:82 �0 ¼ 1 Units

Energy gain at �0
a 1135 1384 kV

R=Q 634 737 �
QRs 158 173 �
ðR=QÞ �QRs 1:00� 105 1:28� 105 �2

Ep=Eacc 3.69 3.67 � � �
Bp=Eacc 7.06 7.06 mT=ðMV=mÞ
Bp=Ep 1.91 1.92 mT=ðMV=mÞ
Energy contenta 0.99 1.27 J

Power dissipationa,b 0.88 1.02 W

aAt Eacc ¼ 1 MV=m and reference length ð3=2Þ�0�.
bRs ¼ 68 n�.

TABLE I. Cavity parameters, 352 MHz, �0¼0:82 and �0¼1.

Parameter �0 ¼ 0:82 �0 ¼ 1 Units

Frequency of accelerating mode 352 352 MHz

Frequency of nearest mode 360 358 MHz

Cavity diameter 560 585 mm

Iris-to-iris length 859 1061 mm

Cavity length 1042 1226 mm

Reference length [ð3=2Þ�0�] 1048 1278 mm

Aperture diameter 50 50 mm

TABLE III. Cavity parameters, 325 MHz, �0 ¼ 0:82 and
�0 ¼ 1.

Parameter �0 ¼ 0:82 �0 ¼ 1 Units

Frequency of accelerating mode 325 325 MHz

Frequency of nearest mode 332 331 MHz

Cavity diameter 606 626 mm

Iris-to-iris length 932 1135 mm

Cavity length 1132 1315 mm

Reference length [ð3=2Þ�0�] 1135 1384 mm

Aperture diameter 60 60 mm FIG. 37. Dependence of RRs on the ratio of cavity surface area
to volume.

C. S. HOPPER AND J. R. DELAYEN Phys. Rev. ST Accel. Beams 16, 102001 (2013)

102001-16

1.4x10 5 

1.3x105 325 MHz, ~o = 1 
• • 

1.2x105 • • 
1.1x105 • Cylindrical spoke base 

N • g_ -~ r::l' 
105 • 

a:: 9.0x104 ••• • 8.0x104 .. 
• 

7 .0x104 • 
6 .0x104 

9 .90x10·3 1.02x10·2 1.0sx10·2 1 .08x10·2 

((cavity surface area)(rf wavelength)]/ (cavity volume) 



cannot argue that this is universally true, only that there
appears to be a correlation present.

From the previous sections, there are some generaliza-
tions that can be made with respect to maximizing the
shunt impedance. (i) Increasing the spoke base length
and decreasing the width increases the shunt impedance
(Figs. 5 and 9), but can also increase the peak magnetic
field. (ii) The shunt impedance can be increased by making
the spoke aperture length and width close to equal.
(ii) Increasing the parameter h_out helps to increase the
shunt impedance (Fig. 27)

In Tables V and VI, we present the rf properties for all
four cavities given in the previous section; however, here
the focus of optimization was to achieve a higher shunt
impedance while still maintaining reasonable surface fields.

VI. CONCLUSION

High-velocity spoke cavities can be optimized to pro-
vide low power dissipation (high shunt impedance) and
surface fields which allow for reasonable accelerating gra-
dients. The minimization of the surface fields by increasing
the dimensions of the spoke base causes the cavity to lose
some of its compactness, but still maintains transverse

dimensions of around 20% less than that of a TM cavity
at the same frequency. Depending on the application
(e.g. if only low gradients are required), a cylindrical or
longitudinally oriented spoke can be used to regain the full
compactness advantage.
High-velocity spoke cavities have a more complicated

geometry than their TM counterparts, and as such, have a
large number of variable parameters that allow for custom-
ization for a variety of applications. This makes it difficult
to determine a few simple rules for optimization, but here
we have identified the most influential parameters and how
they can be used to reduce the peak surface fields and
increase the shunt impedance. If the fields are to maintain
a proper balance, for the geometries studied here, it was
found that the trade-off between normalized fields and
shunt impedance is at least 10%. In other words, the shunt
impedance of a cavity can be increased by at least 10% at
the expense of increasing the normalized electric and
magnetic fields by 10%.
The optimized multispoke geometries presented here

lead to all accelerating gaps being of similar length
because the transversely oriented spoke base is large
enough to decrease the cell-to-cell coupling. If we define
this coupling as in [44],

k ¼
1
2 ½ðfðNÞÞ2 � ðfð1ÞÞ2�

2ðf1Þ2 � ðfNÞ2f1� cos½�=N�g ; (10)

where f1 is the frequency of the fundamental mode and fN

is the frequency of the nearest mode (N ¼ 2). Figure 38 is
an example of how the cell-to-cell coupling k decreases as
the transverse dimension of the spoke base increase, and
stays relatively the same as the base dimensions of a
longitudinally oriented spoke increase. This is an impor-
tant point that should be emphasized again. A longitudinal
spoke base orientation allows for a much larger mode
separation and slightly smaller diameter, which is why,

TABLE V. Radio-frequency properties, 352 MHz, �0 ¼ 0:82
and �0 ¼ 1 cavities optimized for higher shunt impedance.

Parameter �0 ¼ 0:82 �0 ¼ 1 Units

Energy gain at �0
a 1048 1278 kV

R=Q 647 757 �
QRs 173 180 �
ðR=QÞ �QRs 1:12� 105 1:36� 105 �2

Ep=Eacc 4.30 4.05 � � �
Bp=Eacc 7.81 7.58 mT=ðMV=mÞ
Bp=Ep 1.82 1.87 mT=ðMV=mÞ
Energy contenta 0.76 0.97 J

Power dissipationa,b 0.72 0.88 W

aAt Eacc ¼ 1 MV=m and reference length ð3=2Þ�0�.
bRs ¼ 73 n�.

TABLE VI. Radio-frequency properties, 325 MHz, �0 ¼ 0:82
and �0 ¼ 1 cavities optimized for higher shunt impedance.

Parameter �0 ¼ 0:82 �0 ¼ 1 Units

Energy gain at �0
a 1135 1384 kV

R=Q 640 743 �
QRs 171 183 �
ðR=QÞ �QRs 1:09� 105 1:36� 105 �2

Ep=Eacc 4.13 4.11 � � �
Bp=Eacc 7.54 7.77 mT=ðMV=mÞ
Bp=Ep 1.83 1.89 mT=ðMV=mÞ
Energy contenta 1.01 1.25 J

Power dissipationa,b 0.80 0.96 W

aAt Eacc ¼ 1 MV=m and reference length ð3=2Þ�0�.
bRs ¼ 68 n�.

FIG. 38. Coupling k between cells of an optimized �0 ¼ 0:82,
325 MHz two-spoke cavity. The leftmost point is common to
both curves since it represents a cylindrical spoke base.
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for some applications, they may be preferable to the trans-
verse geometries presented here.

This decreased cell-to-cell coupling accompanying an
optimized spoke design would suggest that perhaps tuning
to achieve field profile balance could become important, as
it is in TM cavities. However, even with only a few percent
coupling, the tolerance to manufacturing inaccuracies is
quite high. Figure 39 shows that with a 3% coupling, a
5 mm imbalance in the length of the end cells leads to a
10% difference in the on-axis electric field while for as
much as a 1 cm imbalance, there is only a 16% difference
in the fields.

By comparison, with a cylindrical spoke geometry, the
tolerance to manufacturing inaccuracies is even higher, as
would be expected. Figure 40 shows how the on-axis longi-
tudinal electric field changes in each cell when one of the end
cells is reduced in length by 5 and 10 mm. As opposed to the
field profiles in Fig. 39, where the voltage acquired in each

cell is roughly equal, it is clear, as was previously mentioned,
the voltage gained in the center cell of the cylindrical spoke
cavity (Fig. 40) is roughly twice that of the end cells.
The cell-to-cell coupling in this cavity, by Eq. (10), is 6%.
The imbalance of the fields is now 3.8% and 7.3% for a cell
length difference of 5 and 10 mm, respectively.
What can be concluded from this analysis is that spoke

cavities are highly customizable. Optimizing them for low
peak surface fields and high shunt impedance does lessen
some of their advantages outlined previously—their
transverse size increases and the separation between the
fundamental and nearest modes decreases—however those
advantages are still present, and can be quite significant
depending on the application.
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Abstract
Spoke-loaded cavities are being investigated for the

high-velocity regime. The relative compactness at low-
frequency makes them attractive for applications requiring,
or benefiting from, 4 K operation. Additionally, the large
velocity acceptance makes them good candidates for the
acceleration of high-velocity protons and ions. Here we
present the results of cryogenic testing of a 325 MHz, β0
= 0.82 single-spoke cavity and a 500 MHz, β0 = 1 double-
spoke cavity.

INTRODUCTION
High-velocity single- and multi-spoke cavities have been

suggested for applications including high energy proton ac-
celerators [1] and the acceleration of electrons in compact
light sources [2, 3]. To this end, we have designed, fabri-
cated (along with Niowave, Inc.), and cryogenically tested
a single-spoke cavity with a geometric β0 = 0.82 and op-
erating at 325 MHz and a double-spoke cavity with a β0
and operating frequency of 1.0 and 500 MHz, respectively.
Table 1 shows some of the rf properties for these cavities.
The reference length is β0λ and 3β0λ/2 for the single- and
double-spoke cavity, respectively, while Eacc = 1 MV/m for
both.

Table 1: RF Properties

Parameter 325 MHz 500 MHz
Single Double

β0 0.82 1.0
Ep/Eacc 3.6 3.7
Bp/Eacc [mT/(MV/m)] 6.0 7.6
R/Q [Ω] 449 675
Q · Rs [Ω] 182 174

CAVITY FABRICATION AND
PROCESSING

The 325 MHz single-spoke cavity was designed at ODU
while the fabrication was done at Niowave, Inc. A 150
µm bulk BCP and 30 µm light etch was also performed by
Niowave, Inc. In between these processing steps, a 600◦

C heat treatment was preformed at FermiLab. When the
cavity arrived at Jefferson Lab, a 3-pass high pressure rins-
ing with deionized water at 1250 psi followed by class 100

∗ Work supported by U.S DOE Award No. DE-SC0004094
† chopp002@odu.edu

cleanroom assembly and 25 hour 120◦ bake were all carried
out.

The 500 MHz double-spoke cavity was designed at ODU
while the complete fabrication, processing, and cryogenic
testing were done at Jefferson Lab. The fabrication details
can be found in [4]. The processing was similar to that de-
scribed above. A bulk BCP removing 150 µm was initially
done. This was done in two steps- 75 µm was removed, the
cavity was rotated 180◦ within the BCP cabinet, and the
remaining 75 µm was removed. The cavity thickness (be-
tween the spokes, at the center) is measured in real time to
ensure accurate removal. The BCP mixture had a volume
ratio 1:1:2, which gave an etch rate of roughly 0.5 µm per
minute, at this particular point. The complicated geometry
of the double-spoke cavity resulted in more material being
removed from the end cap regions.

The 500 MHz double-spoke cavity then received a heat
treatment of 600◦ for 10 hours, followed by a light etch of
10 µm, manual high pressure rinsing through the cleaning
ports and three passes through the beam ports in the HPR
cabinet, finishing with a low-temperature bake of 120◦ for
48 hours.

HIGH POWER TESTING
The cryogenic testing of both cavities was carried out at

Jefferson Lab which houses the Vertical Test Area (VTA).
While calibrating the cables, a low power amplifier (1 W)
was used and a 500 W amplifier was used to drive the cav-
ities during the high power tests. The VTA operates with
a closed cycle LHe supply capable of cooling from 300 K
to 4 K in a matter of hours. The 4 K test is then performed
and the dewar is refilled and cooled from 4 K to 2 K. During
this cool down, frequency and Q0 measurements are taken
in order to determine the residual resistance. Finally, the 2
K tests are carried out.

Gradient Measurements
A fixed-length input coupler installed in one of the clean-

ing ports was used for both tests. The 325 MHz single-
spoke cavity was calibrated to have a Qext of 6×109 while
that of the 500 MHz double-spoke cavity was 1×1010. In
both cases, the pickup probe Qext was roughly 2×1011.

The initial tests of the 325 MHz single-spoke cavity
exhibited soft multipacting barriers which were predicted
quite accurately by TRACK3P (within the SLAC ACE3P
code suite [5]). Below 2.5 MV/m, strong multipacting was
expected and it was indeed observed, as shown in Fig. 1.
After a relatively short amount of processing, it was found
that these barriers could be eliminated.



Figure 1: 325 MHz single-spoke cavity initial test results
showing simulated multipacting events.

Figure 2: 325 MHz single-spoke cavity test results before
and after helium processing.

The single-spoke cavity suffered from abundant field
emission, which limited the gradient to roughly 8 MV/m
at 2 K, corresponding to Ep ≈ 30 MV/m and Bp ≈ 50 mT.
Helium processing was employed to try to improve the per-
formance. While a slight improvement was observed (see
Fig. 2), the achievable gradient is still quite low. One pos-
sible contributor is that the surface of the cavity had a num-
ber of stains (possibly from insufficient rinsing after chem-
ical etching) which could not be eliminated through high
pressure rinsing alone. Also, because of the large size of
the cavity, a production-quality HPR could only be done
through the beam pipes. The parts of the spoke and outer
conductor that could not be reached, therefore, had to be
rinsed manually through the cleaning ports. This cavity
has now received an additional light etch at Niowave and
is awaiting another round of testing at Jefferson Lab.

The gradient measurements of the 500 MHz, β0 = 1
double-spoke cavity are shown in Fig. 3. The low-field
Q0 of this cavity are 2.5 × 109 and 1.1 × 1010 for 4.3 K and
2.3 K, respectively. A cold leak appeared when the cavity
was cooled. Because of this, the cavity vacuum was in the
10−7 range and prevented cooling to 2 K. A great deal of

Figure 3: 500 MHz double-spoke cavity initial test results.
The inset shows the oscilloscope trace of the transmitted
power decaying during one oscillation at 2.3 K and 3.7
MV/m.

multipacting between 1 and 4 MV/m had to be processed,
which is consistent with the TRACK3P simulations. A gra-
dient of 4 MV/m (4.3 K) and 3.7 MV/m (2.3 K) marked the
onset of oscillatory behavior. The decay time was on the or-
der of tens of milliseconds, which suggests that the cause
is not magnetic in nature. It is more likely that the cavity
is experiencing thermal breakdown, but further testing is
needed to confirm this. These tests, along with additional
processing are presently being planned.

Residual Resistance
The surface resistance of a superconducting cavity can

be described using BCS theory as Rs = RBCS + Rres, where
RBCS is temperature and frequency dependent, while Rres
depends on the quality of the surface [6]. Knowing the
geometry factor, G = Q0Rs (given in Tab. 1) and RBCS , we
can then measure the intrinsic quality factor as the cavity is
being cooled from 4 K to 2 K, and find the best fit of the
data with

Rs[nΩ]=
a

T [K]
exp
[
− b

T [K]

]
+Rres , (1)

where a and b are constants.
The surface resistance vs. 1/T for both cavities is shown

in Fig. 4. The residual resistance of the 325 MHz single-
spoke cavity is 12.5 nΩ. The 500 MHz double-spoke cavity
was more difficult to estimate in this way because the cold
leak only allowed for cooling to a safe temperature of 2.3
K. It is clear in Fig. 4 that the 500 MHz cavity Rs curve
may not be the most reliable estimate for Rres. The value
obtained is likely not higher than Rres = 13.4 nΩ.

Pressure Sensitivity
Both of the cavities discussed here were intended to only

be tested in the VTA, and therefore only need to withstand
a vacuum load of roughly 1 atm. The 500 MHz double-
spoke cavity is able to do this without any external stiffen-
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Figure 4: Surface resistance measurements for both the 325
MHz single- and 500 MHz double-spoke cavities.

Figure 5: Pressure sensitivity of the 325 MHz single-spoke
cavity.

ing, however the 325 MHz single-spoke cavity is not. A
simple structure was designed and fabricated by Niowave,
Inc. to stiffen the cavity sufficiently for testing (shown in
Fig. 5).

The double-spoke cavity was completely bare, so a much
greater sensitivity to pressure was observed, as shown in
Fig. 6.

CONCLUSION
These are some of the first high-velocity superconduct-

ing spoke cavities fabricated and tested, to date. Both the
β0 = 1 and 0.82 cavities reached a high Q0 and were found
to have a reasonable residual resistance. Multipacting was
encountered, but easily processed. The single-spoke cavity
was limited by field emission while the double-spoke may
be experiencing some sort of thermal breakdown. Each
of the limitations are not fundamental to the design. The
single-spoke cavity has now received another light etch to
remove the residue and is being prepared for imminent test-

Figure 6: Pressure sensitivity of the 500 MHz double-spoke
cavity.

ing at Jefferson Lab. The cold leak in the 500 MHz double-
spoke cavity has been found and fixed and more processing
and testing to identify the source of 4 MV/m limitation is
underway.
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