Rowan University

Rowan Digital Works

Faculty Scholarship for the College of Science & Mathematics

College of Science & Mathematics

3-29-2023

Data Analysis of Lossy Generative Data Compression for Robust Remote Deep Inference

Silvija Kokalj-Filipovic Rowan University, kokaljfilipovic@rowan.edu

Follow this and additional works at: https://rdw.rowan.edu/csm_facpub

Part of the Computer Sciences Commons

Recommended Citation

Kokalj-Filipovic, Silvija, "Data Analysis of Lossy Generative Data Compression for Robust Remote Deep Inference" (2023). Faculty Scholarship for the College of Science & Mathematics. 288. https://rdw.rowan.edu/csm_facpub/288

This Poster is brought to you for free and open access by the College of Science & Mathematics at Rowan Digital Works. It has been accepted for inclusion in Faculty Scholarship for the College of Science & Mathematics by an authorized administrator of Rowan Digital Works.

Reconstruction Lave

Trained on all reconstructions

Use generative models

for compression!

Data Analysis of Lossy Generative Data

Compression for Robust Remote Deep Inference

Silvija Kokalj-Filipovic, Professor, Computer Science

IoT and 6G will transfer high data rates over limited channel bandwidth: compress with some distortion_ System Model (compressing data to match LOSSY COMPRESSION) communication bandwidth or storage capacity, Vector Quantization (VQ): conceptual description decompressing remotely and classifying) This is a 3-D lattice, but imagine multidimensional Submitted to **Curiosity:** ACM WiseML'23 $\ell(\widehat{x})$ **VQ-VAE** part w/ CS students: Lossy of OpenAl LeNet5 Decompress Image Channel Compression Mathew Williams DALL-E 2 Z_E 2^{18} bits Armani Rodriguez How does compression affect HQA_0 to topological data features HQA_4 Z_Q and can that be related to Training data≠ Inference data classification accuracy? LeNet5 LeNet5 VQ-VAE & HQA¹ are 'learned compression' ATTACK as opposed to JPEG (classical lossy compression) Reconstructions (lossy) 1. How lossy reconstruction affects inference $dim(\mathbf{z}_E) < dim(\mathbf{x})$ VAE (variational autoencoder): generative model accuracy? Robustness: 2. Do lossy reconstructions cause distribution shifts in adversarial attacks? our reconstructions are random (fake) datapoints of the same class (produced generatively) VQ-VAE ORIGINAL Trained on original MNIST Persistence barcode <u>a</u> 99% Lenet Accuracy Comparison on MNIST Same accuracy/ 1/4 bandwidth Conclusion Persistent Homologies **ATTACKED** (at least)

HQA_4

HQA_0

ATTACKED

μ: Median

topological analysis of reconstructions and their neural net projections with and without an adversarial attack

PHO: entropy of 0th order homology (connected components)

PH1: entropy of 1th order homology (holes)

There is potential for attack detection but more research needed.

VQ-VAE saves 4x
bandwidth for the
same accuracy,
equal robustness
to attacks, and has
the possibility of full
accuracy for the
same bandwidth
due to its generative
nature

[1] W. Williams et al., "Hierarchical quantized autoencoders," in Intern.

Conf. on Neural Information Processing Systems (NIPS), 2020.