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AN EOLIAN DUST ORIGIN FOR CLASTIC FINES OF DEVONO-MISSISSIPPIAN MUDROCKS OF THE

GREATER NORTH AMERICAN MIDCONTINENT
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1University of Oklahoma, School of Geosciences, Norman, Oklahoma 73019, U.S.A.
2University of Bristol, School of Geographical Sciences, Bristol, U.K.

3Independent Geoscientist, Norman, Oklahoma 73072, U.S.A.

ABSTRACT: Upper Devonian and Lower–Middle Mississippian strata of the North American midcontinent are
ubiquitously fine-grained and silt-rich, comprising both so-called shale as well as argillaceous limestone (or calcareous
siltstone) that accumulated in the Laurentian epeiric sea. Although long recognized as recording marine deposition,
the origin and transport of the fine-grained siliciclastic material in these units remains enigmatic because they do not
connect to any proximal deltaic feeder systems. Here, we present new data on grain size, whole-rock geochemistry,
mineralogy, and U-Pb detrital-zircon geochronology from units across Oklahoma; we then integrate these data with
models of surface wind circulation, refined paleogeographic reconstructions, and correlations from the greater
midcontinent to test the hypothesis that wind transported the siliciclastic fraction to the marine system. The
exclusively very fine silt to very fine sand grain size, clear detrital origin, widespread distribution over large regions of
the epeiric sea, Appalachian sources, and paleogeographic setting in the subtropical arid belt far-removed from
contemporaneous deltaic feeder systems are most consistent with eolian transport of dust lofted from subaerial delta
plains of the greater Appalachian orogen and incorporated into subaqueous depositional systems. Delivery of dust that
was minimally chemically weathered to Devono-Mississippian epeiric seas likely provided essential nutrients that
stimulated organic productivity in these commonly organic-rich units.

INTRODUCTION

Siltstone, argillaceous siltstone, silty carbonate, siliciclastic mudstone,

shale, and chert are common lithofacies in the upper Devonian–Middle

Mississippian strata in basins of the North American midcontinent that

accumulated in epeiric seas of the southern Laurentian craton (Fig. 1, 2;

Lowe 1976; Lane and De Keyser 1980; Gutschick and Sandberg 1983;

Over 1990; Schwartzapfel 1990; Turner et al. 2015; Schieber 2016;

Kondas et al. 2018; Godwin et al. 2019; Mazzullo et al. 2019; Miller et al.

2019b; Milad et al. 2020; Price et al. 2020). These strata are commonly

organic-rich, and have attracted interest primarily as petroleum source

rocks and unconventional reservoirs (Barrows and Cluff 1984; Smith and

Bustin 1998; Smith and Bustin 2000; Slatt and O’Brien 2011; Angulo and

Buatois 2012; Higley 2013; Wang and Philp 2019), but they also provide

insights on climate, tectonics, and carbon sequestration of the time. The

range of explanations for deposition of the siliciclastic fraction includes: 1)

suspension settling (Kirkland et al. 1992; Smith and Bustin 1998), 2) a

combination of suspension settling, density currents, and gravity flows

(e.g., Wright and Friedrichs 2006; Loucks and Ruppel 2007; Macquaker et

al. 2010; Milad et al. 2020; Price et al. 2020), and 3) wind- or tide-induced

subaqueous currents that remobilized muds across ancient epeiric seas

(Schieber 2016). Although all accept that these strata ultimately

accumulated in marine environments, the provenance, generation, and

transport of the significant volume of uniformly fine-grained siliciclastic

material remain enigmatic and unresolved.

To better constrain the origin and transport of the siliciclastic fraction in

these units, this work integrates new data from Upper Devonian and

Lower–Middle Mississippian siltstone, mudrock, and argillaceous carbon-

ate units across Oklahoma with compilations of coeval systems of the

greater midcontinent region (Fig. 2). We use these data to test the

hypothesis of eolian delivery to the marine environment for the vast

volume of this material. An eolian-dust origin explains otherwise

perplexing attributes of these units and has significant implications for

interpretation of organic productivity in these and analogous systems.

GEOLOGICAL BACKGROUND, PALEOGEOGRAPHY, AND PALEOCLIMATE

The Anadarko Basin was initially part of the Oklahoma Basin (Johnson

et al. 1988) which originated in the Early Cambrian in response to thermal

subsidence associated with development of the Southern Oklahoma

Aulacogen (Wickham 1978; Dalziel 1991; Meert and Torsvik 2003).

Cambro-Ordovician carbonate strata accumulated in the axis of the failed

rift (Perry 1989) as a broad epicontinental shelf developed on the flanks

(Johnson et al. 1989). Carbonate and, subordinately, siliciclastic mudstone

sedimentation continued through the Devono-Mississippian (e.g., Hunton

Limestone, Woodford Shale, Sycamore Limestone, Caney Shale), a time of

relative tectonic quiescence in this part of the Anadarko Basin and greater

midcontinent region, before the tectonic disruptions of the Ouachita and

Ancestral Rocky Mountains orogenies (Feinstein 1981; Johnson et al.

1988, 1989). Closure of the Rheic Ocean and associated contractional
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tectonics beginning in the latest Mississippian (Serpukhovian)–Early

Pennsylvanian (Nance et al. 2010) ultimately produced the thin-skinned

Ouachita fold-and-thrust belt and the associated Arkoma basin (Fig. 1). By

Pennsylvanian time, a series of NW–SE-oriented basement-cored uplifts

developed, termed the Ancestral Rocky Mountains, including the Wichita–

Amarillo uplift and yoked Anadarko Basin of southwestern Oklahoma and

northern Texas (Kluth and Coney 1981). The present configuration of the

Anadarko Basin is a product of this compressional inversion of the earlier

aulacogen along basement-involved reverse faults, and development of

accommodation space along the mountain front (Johnson et al. 1989).

Beyond Oklahoma, Late Devonian orogenic events affected both the

eastern and western margins of the craton, in the form of the Acadian–

Neoacadian and Antler orogenies, respectively. The Acadian and Neo-

acadian orogenies produced a series of westward-prograding clastic

wedges, the Catskill Delta complex during the Middle–Late Devonian

and the Price–Pocono–Borden–Grainger delta complex during the Early–

Middle Mississippian (Ettensohn and Woodrow 1985; Ettensohn 2004,

2008, 2022), whereas the Antler clastic wedge prograded eastward

(Sandberg and Gutschick 1980; Johnson and Pendergast 1981) (Fig. 3).

The Oklahoma Basin remained isolated and far removed from each of

these clastic wedge complexes, ~ 1800 km from the Antler and ~ 1500

km from the Appalachian, throughout the Late Devonian to Middle

Mississippian (Fig. 3). Note that we use North American stage names for

the Mississippian, for consistency with the literature.

The eastern deltaic complexes are well exposed in outcrops and

boreholes throughout the Appalachian Valley and Ridge and Appalachian

Plateau provinces, and exhibit both marine and continental facies for nearly

1000 km along orogenic strike (Fig. 1). The Catskill Delta complex

developed during the Middle to Late Devonian, transporting siliciclastics

from the Acadian Orogen to marginal marine environments along the

Appalachian foreland (Fig. 3). During the Famennian, this complex

comprised an estimated four main delta systems, fed by low-gradient

coastal rivers emanating from alluvial systems in the highlands—akin in

scale to the Eocene and modern Texas–Louisiana coastal plain, or the

northern Sumatran coast (Sevon 1985; Woodrow et al. 1985; Boswell and

Donaldson 1988). Organic-rich black shales characterize the basinal facies

of the Catskill Delta complex in the Appalachian foreland basin (Ettensohn

and Woodrow 1985; Boswell and Donaldson 1988; Ettensohn 2008;

Ettensohn et al. 2019).

Clastic-wedge deposition continued into the Early–Middle Mississippi-

an (Kinderhookian–Osagean) in response to Neoacadian tectonism, such

that the Appalachian foreland overfilled and deltaic deposition of the

Borden and Grainger formations (Figs. 2, 3) prograded into the eastern and

southeastern Illinois Basin (Ettensohn et al. 2022). Active denudation

ceased in the Middle to Late Mississippian (Meramecian–middle

Chesterian), resulting in extensive carbonate deposition in the Appalachian

foreland (Greenbrier and Newman Limestones, Fig. 2; Ettensohn et al.

2022). Toward the eastern Appalachian foreland basin, carbonate strata

intertongue with continental redbeds and eolianites throughout West

Virginia, Virginia, and Maryland (Wynn and Read 2008; Ettensohn et al.

2022). Early development of the Mauch Chunk Delta began in eastern

Pennsylvania in the Meramecian (Wynn and Read 2008; Ettensohn et al.

2022) (Fig. 3).

In the extensive cratonic region between the Acadian (east) and Antler

(west) orogenic systems, broad epeiric seas, intracratonic basins, and

emergent arches prevailed through the Late Devonian–Early Mississippian,

FIG. 1.—Major basins (gray shading), domes, and arches (red lines and text) of the U.S. for the Devono-Mississippian. Abbreviations are as follows: AnB, Anadarko Basin;

AntB, Antler Basin, ArB, Arkoma Basin; BWB, Black Warrior Basin; FCB, Forest City Basin; FtWB, Fort Worth Basin; IB, Illinois Basin; MB, Michigan Basin; N. ApB,

Northern Appalachian Basin; S. ApB, southern Appalachian Basin; TB, Tobosa Basin; WB, Williston Basin; OD, Ozark Dome. Numbers within circles correspond to

locations of stratigraphic columns in Figure 2. Yellow polygon outlines the Appalachian Valley and Ridge Province (V&R). The edge of the brown polygon shows the western

limit of the Appalachian Plateau Province (A.P.). Modified from Adams (1965), Gutschick and Sandberg (1983), Smith and Bustin (2000), Loucks and Ruppel (2007), Soeder

et al. (2014), Ettensohn et al. (2019) and Thomas et al. (2020).
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with organic-rich mudstones, including the Chattanooga Shale, Ohio

Shale, New Albany Shale, Antrim Shale, and Woodford Shale accumu-

lating east of the Transcontinental Arch and correlative mudstones such as

the Bakken Shale and Duvernay Shale accumulating west of the

Transcontinental Arch (Figs. 2, 3). Carbonate-dominant systems with

variably silty and cherty components prevailed through the Early–Middle

Mississippian (e.g., the North Hill Limestone, Keokuk Limestone, St. Joe

Group, Boone Group, Osage Limestone of northern Oklahoma, and

Madison Limestone; Figs. 2, 3; Gutschick and Sandberg 1983, and others).

By the Middle to Late Mississippian (Meramecian–late Chesterian), fine

siliciclastic contents increased, with deposition of silty carbonates, marine

siltstones, and silty organic-rich mudstones (e.g., Blue River Group,

Warsaw Shale, Barnett Shale, Meramec and Sycamore formations, Caney

Shale and Madison Limestone; Figs. 2, 3).

The midcontinent region ranged from southern subtropical latitudes

(~ 158 S–308 S) in the Late Devonian to near-tropical latitudes (~ 158 S)

by the Early–Middle Mississippian (e.g., Boucot et al. 2013; Domeier and

Torsvik 2014; Scotese and Wright 2018) (Fig. 3). Paleoclimatic

reconstructions document arid conditions in lowland regions throughout

the midcontinent within these time intervals (Boucot et al. 2013) (Fig. 3).

Additionally, a number of instances of ice-contact deposits document

evidence for suspected icesheets and/or alpine and even tidewater

glaciation within the central Appalachian orogenic system during the

latest Devonian (approximately lower to middle Siphonodella praesulcata

conodont zonation; LE, Retispora lepidophyta–Indotriradites explanatus

FIG. 2.—Regional stratigraphic correlation of Middle Devonian–Upper Mississippian units across the Laurentian craton from west (left) to east (right). Dark gray indicates

units that are considered elevated in organic richness. Abbreviations on chronostratigraphic chart headings are as follows: Prd, Period; Epc, Epoch; Int, International Age; US,

US Age; Cond, Conodonts. Numbered headings for each column correspond to locations denoted in Figure 1. Abbreviations for stratigraphy as follows: Dnd Pk, Diamond

Peak; DC, Dale Canyon Formation; HSC, Homestead Canyon Formation; Mywd, Maywood; BDSD, Birdbear Fm, Duperow Fm, Souris River Fm, Dawson Bay Fm; Rchra,

Rancheria Formation; Fytv, Fayetteville Shale; Bach, Bachelor Formation; Spgr, Springer Formation; Brlgtn, Burlington Limestone; Hmptn, Hampton Formation; ER, English

River Formation; MM, Maple Mill Shale; Wspn, Wapsipinicon Formation; Michgn, Michigan Formation; Marshll, Marshall Sandstone; Cdwtr, Coldwater Shale; Bre, Berea

Sandstone; Bfrd, Bedford Shale; Jord R, Jordan River Formation; Stpt, Stephensport Group; WB, West Baden Group; FtP, Ft. Payne; MS, MacCrady Shale. Spty Kf, Spechty

Kopf Formation. See Supplemental File 2 for references used to construct this chart in addition to the abbreviations for conodont zonations.
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FIG. 3.—Late Devonian–Middle Mississippian paleogeographic reconstructions. Oklahoma is outlined in red for all panels. A) Paleogeography of the Late Devonian

(~ 360 Ma, Famennian). B) Facies and tectonic map for the Famennian. The Catskill Delta complex is noted by a stippled beige polygon and fluvial systems (Boswell and

Donaldson 1988). Midcontinent region and Oklahoma lie within the arid belt (Scotese and Wright 2018), whereas the Appalachians lie within a seasonally wet climate

(Brezinski et al. 2009). C) Paleogeography of the Middle Mississippian (~ 345 Ma, Osagean). D) Middle Mississippian, Osagean, facies and tectonic paleogeographic map.

The Price–Pocono Delta complex is noted by stippled beige polygon with sketched fluvial systems (Gutshick and Sandberg 1988; Ettensohn et al. 2022). Thin solid black line

ORIGIN OF EOLIAN DUST OF THE NORTH AMERICAN MIDCONTINENTJ S R 1189



to LN, Retispora lepidophyta–Verrucosisporites nitidus miospore zona-

tion) (e.g., Spechty Kopf Formation, Isaacson et al. 2008; Brezinski et al.

2008, 2009, 2010; Lakin et al. 2016; Ettensohn et al. 2020a, 2020b) (Fig.

2).

Glaciation in the central Appalachians marks the apex of the late

Devonian icehouse. Glaciation in Gondwanaland began in the late

Famennian (approximately Palmatolepis postera conodont zonation;

VCo, Diducites versabilis–Grandispora cornuta miospore zonation) and

extended to the latest Famennian (Upper Siphonodella praesulcata

conodont zonation; LN, Retispora lepidophyta–Verrucosisporites nitidus

miospore zonation) (Fig. 2) (Caputo et al. 2008; Isaacson et al. 2008; Lakin

et al. 2016). Additionally, minor evidence for Gondwanan glaciation exists

for the Early and Middle Mississippian (Kinderhookian–Osagean and

Meramecian–Chesterian) (Caputo et al. 2008; compilation in Soreghan et

al. 2019).

MIDCONTINENT STRATIGRAPHY OF OKLAHOMA

In Table 1, we summarize the facies attributes and inferred depositional

environments for Upper Devonian and Lower–Middle Mississippian strata

of Oklahoma (Figs. 2, 4, 5). These units are well exposed and have been

widely characterized in the Arbuckle Mountains (southern Oklahoma), the

Ozark Plateau (northeastern Oklahoma), and the subsurface; correlatives

occur throughout the greater midcontinent as demonstrated through

hundreds of thousands of well penetrations (Craig et al. 1978; See

Supplemental File 1).

METHODS

Paleogeographic Reconstructions

To place the study units (Fig. 4) in a broader context (Figs. 2, 3), we

used the paleogeographic maps of Blakey (2013), North American Key

Time Slices �2013 Colorado Plateau Geosystems, Inc, as base maps, and

appended these with major climate belts following Boucot et al. (2013) and

Scotese and Wright (2018). The Correlation of Stratigraphic Units of

North America (COSUNA) project charts (Ballard et al. 1983; Hills and

Kottlowski 1983; Patchen et al. 1984a, 1984b; Bergstrom and Morey 1985;

Hintze 1985; Shaver 1985; Adler 1986; Mankin 1987; Kent et al. 1988)

provided the initial framework for age constraints and correlations, but all

unit ages were updated with the most recent available data (Cohen et al.

2013) (See Supplemental File 2 for references).

Grain-Size Analysis

To assess the nature of and possible transport modes for the siliciclastic

material in the target strata, we collected samples for particle-size analysis

from seven outcrops and ten cores distributed throughout Oklahoma (Fig.

4; See Supplemental Files 2 and 3). While carbonate grains and iron

oxides, as well as grain coatings, may constitute a minor fraction of the

original detrital material, we specifically target the silicate mineral fraction

(SMF) as a proxy for detrital grain size. Therefore, all organic, carbonate,

and iron oxide components were removed using a sequential procedure

following standard methods (cf. Sur et al. 2010a, 2010b; Jiang and Liu

2011; Sweet et al. 2013; Foster et al. 2014), as outlined briefly here.

Samples were gently crushed with a ceramic mortar and pestle to pea-

size gravel to accelerate chemical reactions, then rinsed with distilled water

and sieved at 250 lm to remove any fines generated during crushing.

Samples were subsequently treated with 2N HCl (minimum 24 hours) for

carbonate removal. To remove organic matter and oxidize pyrite, samples

were combusted at 500 8C for ~ 12–20 hours. This does not affect the

grain size of silicate minerals, since silicates do not begin to sinter until

temperatures exceed 500 8C (Schomburg 1991; Rickard et al. 2016).

Samples were then treated with sodium citrate–bicarbonate–dithionite

(CBD) (Sur et al. 2010a; Rea and Janecek 1981) rinses until all iron oxides

were removed.

Smear slides of residues were inspected using a polarizing reflected-light

microscope under 103, 203, and 403 objectives to assess sample

composition and ensure disaggregation, and check for the presence of

remnant authigenic phases such as silicified microfossils (Fig. 6). If

present, silicified microfossils were physically removed by sieving

following visual inspection to determine appropriate sieve size needed to

remove microfossils, microfossil fragments, and/or aggregates while

retaining detrital material (See Supplemental Files 2 and 3 for additional

information). Samples exhibiting a predominance of authigenic material

were eliminated from analysis. Furthermore, both visual inspection and

previous studies on these strata indicate no to minimal instances of quartz

overgrowths (Shelley et al. 2019; Price et al. 2020; Milad et al. 2020;

Duarte et al. 2021; Supplemental Files 3, 4), lending further confidence to

the fidelity of subsequent particle-size analyses. Particle sizes of fully

disaggregated samples were measured using a Malvern Mastersizer 3000

Laser Particle Size Analyzer (LPSA). Of 103 samples processed in this

way, 82 disaggregated sufficiently to enable analysis by LPSA.

Geochemical Analysis

To address compositional characteristics of the silicate material in the

Sycamore and Woodford Shale, nineteen ~ 5 g samples from the Arbuckle

Uplift transect (Figs. 2, 4) were fragmented to gravel size and submerged in

a 1N HCl for 24 hours to eliminate carbonate before whole-rock and trace-

element geochemical analysis (acquired by ALS Geochemical). Remnant

CaO values and high loss-on-ignition (LOI) necessitated application of the

correction by Taylor and McClennan (1985) to interpret the silicate

fraction. Data were analyzed (and biplots were created) using principal-

components analysis (PCA) in R.

Detrital-Zircon Geochronology

To assess provenance of the siliciclastic material, three 10–20 kg

samples from each of the Arbuckle Uplift units (Figs. 2, 4; Woodford

Shale, Sycamore Limestone, and Caney Shale) were processed for zircon

separation and analyzed for detrital-zircon geochronology at the University

of Arizona (UA) LaserChron Center. Analyses were conducted using the

Element 2 laser ablation–single collector–inductively coupled plasma–

mass spectrometer (LA-SC-ICP-MS) following the analytical and data

processing methods described in Pullen et al. (2018) and Gehrels and

Pecha (2014). Insufficient yield from the Woodford Shale sample (despite

 
denotes the western limit of the subaqueous delta prograding from the Appalachians (Borden and Grainger Formations) (Ettensohn et al. 2022). E) Middle Mississippian

(~ 340 Ma, Meramecian) paleogeography of Laurentia. F) Middle Mississippian, Meramecian, facies and tectonic paleogeographic map. Both Parts D and F show the

midcontinent region within the subtropical arid climate belt, and far removed from shorelines. Widespread shallow water is present across the craton, including the

Appalachian Basin, such as the Newman and Greenbrier limestones (Fig. 2) (Ettensohn et al. 2022). Stippled clastics in beige in the Appalachian Basin region of West

Virginia, Virginia, Pennsylvania, denote late Meramecian coastal sands, silts, and eolian environments (Wynn and Read 2008; Ettensohn et al. 2022). Stipple and mudstone

pattern sketched in Oklahoma (outlined in red), denote the deposition of the Meramec, Sycamore, and lower Caney Shale formations. Paleogeographic maps A, C, E are from

Blakey (2013), North American Key Time Slices �2013 Colorado Plateau Geosystems, Inc., and were used as base maps for Parts B, D, F. Paleoclimate boundaries are

derived from Boucot et al. (2013) and Scotese and Wright (2018). See Supplemental File 2 for all references pertaining to construction of facies maps and tectonic maps.
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. 20 kg of processed material) precluded analysis. Best ages from the

Sycamore Limestone and Caney Shale are reported as 206Pb/207Pb for ages

greater than 900 Ma and 206Pb/238U for ages less than 900 Ma. These ages

are displayed as normalized probability density plots using an Excel

macro, provided by the UA LaserChron Center (Gehrels 2010). Analyses

with . 10% discordance and 5% reverse discordance were eliminated

before analysis.

General-Circulation Modeling

To address climatic attributes and potential atmospheric transport

pathways, we reanalyzed results of a total of 12 coupled general-

circulation-model (GCM) experiments of global climate from intervals

spanning the Middle Devonian to the Late Mississippian. The simulations

were performed with the HadCM3BL-M2.1aD atmosphere–ocean–vege-

tation model (Valdes et al. 2017) and are described in detail in Valdes et al.

(2021). The model uses the same horizontal grid with a resolution of 3.758

3 2.58 in the atmosphere and ocean, with 19 and 20 unequally spaced

vertical levels, respectively. The paleogeographies underlying the model

simulations were derived from the PALEOMAP paleogeographic atlas

(Scotese and Wright 2018). Current geographical coordinates of Oklahoma

and the Appalachian clastic wedges were rotated using the PALEOMAP

rotation model in the pyGplates software (Müller et al. 2018) to place these

features within the appropriate paleogeographical positions. Locations for

the Appalachian clastic wedges are from Ettensohn et al. (2019). Besides

the model geography, the simulations differ only by a linearly increasing

solar constant (0.8% per 100 Myr) and varying concentrations of

atmospheric carbon dioxide. CO2 levels for the selected simulations were

derived from the Foster et al. (2017) curve and range from a peak of 1377

ppmv in the Middle Devonian to a minimum of 233 ppmv in the Middle

TABLE 1.—Devono-Mississippian mid-contient stratigraphy of Oklahoma. X, unconformity; Kinderh, Kinderhookian.

ORIGIN OF EOLIAN DUST OF THE NORTH AMERICAN MIDCONTINENTJ S R 1191



FIG. 4.—A) Local stratigraphic correlation chart between northeastern Oklahoma and southern Oklahoma. BM, Bayou Manard Member; LB, Lindsey Bridge Member; OP,

Ordinance Plant Member. (Modified from Godwin et al. 2019, with additions from Branch 1988, Boardman et al. 2013, and Mazzullo et al. 2013, 2019). Note that

stratigraphic column is not to scale in absolute time. B) Present-day physiographic map of Oklahoma’s tectonic features. US, United States; OK, Oklahoma; TX, Texas; OzU,

Ozark Uplift. Oklahoma is outlined in red. See Supplemental File 2 or 4 for exact coordinates for cores and outcrops. Base map modified from Campbell et al. (1988),

Northcutt and Campbell (1995) and Miller et al. (2021). C) Legend for cores and outcrops plotted in Part B. WDFD, Woodford Shale; MRMC, Meramec; Miss Strat Undif,

Mississippian Strata Undifferentiated; SYC, Sycamore Limestone; PreW, Pre-Welden Shale; W Ls, Welden Limestone; BCH Fm, Bachelor Formation; BNE Gp, Boone

Group.

A.J. MCGLANNAN ET AL.1192 J S R



FIG. 5.—Representative outcrop and hand-sample photos across several of the site locations listed in Figure 4. Photos display common features in outcrop and hand sample

beforechemical treatments to extract the siliciclastic fraction. A) Characteristic laminated mustone beds of the Woodford Shale in southern Oklahoma (No. 9, Fig. 4). B)

Typical alternating thin beds of chert and laminated to papery shales of the Woodford Shale in the Arbuckle Mountains (No. 8, Fig. 4). C) Unweathered black shale core plug

fragment of the Woodford Shale extracted from the Barnes Unit D2 core in Major County, Oklahoma (No. 2, Fig. 4). Scale in centimeters. D) Massive siltstone and laminated

argillaceous siltstone in the Meramec Shaffer core. Core boxes 7–9, depths 2946.70–2949.48 m. Facies interpretation after Miller et al. (2019a) (No. 4, Fig. 4). E) First bench

of typical repetitive graded siltstone gravity flows of the Sycamore Limestone in southern Oklahoma (No. 8, Fig. 4). F) Graded siltstone beds in the Sycamore Limestone at

site No. 8 displaying partial Bouma sequences (interpreted Ta, Tb, Tc, Td). G) Representative facies in the Caney Shale showing resistive black shale layers with soft brown

mudstones and blocky indurated calcareous units (No. 7, Fig. 4). H) Representative photo of upper Devonian through Kinderhookian strata in northeastern Oklahoma (No. 15,

Fig. 4). I) Outcrop of the Bayou Manard Member of the Pryor Creek Formation (No. 15, Fig. 4) displaying calcareous mudstone–wackestone (thick light gray unit) and

calcareous platy shales (lithology after Godwin 2017; Godwin and Puckette 2019).
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FIG. 6.—Photomicrographs of representative

smear slides (in crossed-polarized light (left) and

plane-polarized light (right)) of disaggregated

siliciclastic fraction from Devono-Mississippian

strata in Oklahoma. A, B) Woodford Shale from

the Chenoweth core in northwestern Oklahoma

(No. 11, Fig. 4). C, D) Northview Formation of

the St. Joe Group from the Kansas, Oklahoma

outcrop (No. 15, Fig. 4). E, F) Meramec from the

Rohling core located just west of central Okla-

homa (No. 3, Fig. 4). G, H) Sycamore Limestone

from the Arbuckle Mountains (No. 8, Fig. 4). I, J)

Caney Shale acquired from the Arbuckle Wilder-

ness outcrop (No. 7, Fig. 4). Please see Supple-

mental File 2 or 4 for location coordinates.
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Mississippian. Model performance, the simulated climate evolution

throughout the Phanerozoic and comparison to proxy data are presented

in Valdes et al. (2021).

ANALYSIS OF THE SILICICLASTIC FRACTION

Analyses of Composition and Grain-Size

Results.—Silicate material from the Woodford Shale contains silt-size

quartz, mica, and feldspar (and trace accessory phases), and minor clay.

Visual inspection of the coarsest (. ~ 50 lm) fraction revealed silicified

algal cysts (Tasmanites) and, in some cases, mudstone aggregates, both of

which were removed before LPSA analysis. Grain-size modes typically

range from ~ 5 to 12 lm (n¼ 12). Spatially, the distribution of grain sizes

appears generally uniform with a slight coarsening toward north-northwest

Oklahoma.

Silicate material from the Mississippian units (Meramec, Sycamore

Limestone, Caney Shale, Bachelor Formation, St. Joe Group, and Boone

Group) includes quartz, feldspar, biotite, and metamorphic lithic

fragments, as well as trace accessory phases (Fig. 6). In general, the older

(Kinderhookian–Osagean) units (i.e., Welden Limestone, Bachelor For-

mation, Northview Formation, Compton Formation) are finer grained

(modes of 5–17 lm; two samples from Skaggs core, 34–71 lm) relative to

the younger (Meramecian–Chesterian) units (7–83 lm) (Fig. 7; Supple-

mental File 2).

Interpretation.—The presence of quartz, feldspar, mica, lithic

fragments, and accessory silicates (e.g., zircon) confirm the substantial

detrital contributions to the study strata (Fig. 6). The Upper Devonian and

Lower Mississippian units exhibit the finest modes, whereas Merame-

cian—Chesterian units are coarser (Fig. 7). The Meramec and Sycamore

sections are the siltiest strata by volume of the studied units (Supplemental

File 5). All units have modes falling between very fine silt and very fine

sand fractions. Such uniformly fine modes are consistent with the

hypothesis of eolian transport for this material, addressed further below.

Geochemistry

Results.—Principal-component-analysis (PCA) biplots of major oxides

and trace elements (Fig. 8) indicate the relative compositional variability

within the dataset depicted by the vectors (Greenacre 2010). The Woodford

Shale and Sycamore Limestone occupy distinctly different fields (Fig. 8A),

with the Sycamore Limestone displaying significantly greater composi-

tional variability than the silica-rich Woodford Shale. Relative to the North

American Shale Composite (NASC) and contemporaneous Appalachian

Shale (e.g., Sunbury Shale; Rimmer 2004), samples from both the

Woodford Shale and the Sycamore Limestone exhibit depletion in Al2O3

but enrichment in SiO2 (Fig. 8B). From the data illustrated in Figure 8, the

siliciclastic fraction of the Sycamore Limestone is compositionally more

similar to loess (both modern loess and ancient loessite) than to the NASC

(Fig. 8B), especially in siltier layers that compose the upper part of the

formation (avg. 85% SiO2; 6% Al2O3; Chemical Index of Alteration of 57–

62). Elemental ratios of generally insoluble elements (Zr and Ti, Al oxides)

are plotted vs. depth (Fig. 8C) for the Devonian–Mississippian Arbuckle

location (Fig. 2, 4). For all three elemental ratios (Zr/TiO2, Zr/Al2O3, and

TiO2/ Al2O3), values increase abruptly in the lower Sycamore, then return

to values comparable to the Woodford but gradually increase again through

the middle–upper Sycamore (Fig. 8C).

Interpretation.—The geochemical data confirm the mineralogical

evidence for detrital contributions to both the Sycamore Limestone and

Woodford Shale. Intriguingly, neither unit overlaps with the North

American Shale Composite or the Appalachian Shale, both of whichFIG. 7.—Representative particle-size distributions for each of the studied units.
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exhibit much higher values of Al more typical of source material that is

highly chemically weathered. Rather, both units—especially the Sycamore

Limestone—exhibit a signature more similar to loess (Fig. 8B). The

inflection in Zr and TiO2 with respect to Al2O3 (Zr/Ti O2, Zr/Al2O3, TiO2/

Al2O3) in the basal Sycamore Limestone (Fig. 8C) is interpreted to reflect a

possible excursion in provenance. These compositional data are indepen-

dent of grain size, as evinced by the weak relationship (r2 , 0.07) between

grain size and these elements (Supplemental File 4), as well as the

negligible grain-size variation within each of the Sycamore and Woodford

formations in general (Fig. 7).

Detrital-Zircon Geochronology

Results.—U-Pb detrital-zircon ages from the Sycamore Limestone (N¼
1; n ¼ 218) and Caney Shale (N ¼ 1; n ¼ 215) yielded a total of 433

concordant to slightly discordant Paleozoic to Archean (age) grains (Fig.

9). Detrital zircon grains recovered for analysis from the Sycamore

Limestone are well sorted and considerably finer than 100 lm, while

zircons recovered from the Caney Shale are moderately sorted with a

majority of the grains finer than 100 lm. Overall, the age spectra for both

the Sycamore and Caney units reveal similar age distributions, with detrital

FIG. 8.—PCA biplots and vertical profile of insoluble elements spanning the Woodford Shale and Sycamore Limestone in the southern Arbuckle Mountains (No. 8, Fig. 4).

A) All major-element and trace-element oxide data showing relative compositional variability between the Woodford Shale (gray) and the Sycamore Limestone (blue). B)

includes standards comparisons as follows: Upper Continental Crust (UCC) (Taylor and McLennan 1985), North American Shale Composite (NASC) (Gromet et al. 1984),

Correlative Sunbury Shale for central Appalachian Basin (Rimmer 2004), North American Quaternary Loess (NAQL) (Taylor et al. 1983), and ancient loessite (Soreghan and

Soreghan 2007). C) Vertical profile of immobile elements in the Woodford Shale and the Sycamore Limestone outcrop in the southern Arbuckle Mountains. Measured section

and lithology of Sycamore Limestone are adapted and modified from Milad et al. (2020).
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zircon ages ranging from 365 6 5 Ma to 3022 6 12 Ma. The Sycamore

Limestone has a primary population of Mesoproterozoic ages (56%), with

a primary peak at 1047 Ma and subordinate peaks at 1184, 1382, and 1463

Ma. Secondary populations in the Sycamore unit include Paleoproterozoic

ages (16%) with peaks at 1640 Ma and 1739 Ma, as well as early–mid

Paleozoic ages (14%) with primary peaks at 449 Ma and 473 Ma, and

subordinate peaks at 363, 395, and 507 Ma. The Caney Shale also has a

primary detrital-zircon population of Mesoproterozoic ages (38%) with

primary peaks at 1062 Ma and 1356 Ma, and secondary populations of

Paleoproterozoic ages (26%) with a primary peak at 1817 Ma subordinate

peak at 1678 Ma, and Archean ages (23%) with a primary peak at 2715 Ma

(Fig. 9).

Interpretation.—Potential source terranes for the siliciclastic fractions

of these units include the Archean Superior and Wyoming provinces

(. 2.5 Ga) in northern Laurentia, the Trans-Hudson and Penokean

provinces (1.8–1.9 Ga) in north-central Laurentia, the Mazatzal–Yavapai

(1.6–1.8 Ga), Granite–Rhyolite (1.3–1.5 Ga), and Grenville provinces

(0.9–1.3 Ga) throughout central Laurentia and Peri-Gondwanan basement

rocks, Pan-African Gondwanan terranes, Taconic plutons, Acadian

plutons, and associated synorogenic strata (365–820 Ma) along the

Appalachian suture zone in eastern Laurentia (e.g., Hoffman 1989; Van

Schmus et al. 1993; Becker et al. 2005; Whitmeyer and Karlstrom 2007;

Thomas et al. 2004). The Sycamore Limestone is interpreted to have

primary detrital-zircon contributions from the Grenville Province (41%),

with secondary contributions from the Granite–Rhyolite province (18%)

and Acadian and Taconic plutons from the Appalachian orogen (18%),

with minor contributions from the Mazatzal–Yavapai province (13%),

Archean provinces (7%), and Trans-Hudson–Penokean provinces (3%; Fig.

9). The Caney Shale is also interpreted to contain primary detrital-zircon

contributions from the Grenville Province (33%), but it has secondary

contributions from Archean age populations (Wyoming and Superior

cratons, or recycled early Paleozoic midcontinent sandstones; 23%), and

minor contributions from the Granite–Rhyolite province (12%), Mazatzal–

Yavapai province (11%), Appalachian terranes (~11%) and Trans-

Hudson–Penokean provinces (~ 9%).

Both the Sycamore and Caney units contain abundant Grenville-age

grains (33–40% of total age population) with primary peaks at 1047 Ma

FIG. 9.—Relative age-probability plots of detrital-zircon geochronology results from the Mississippian Sycamore Limestone and Caney Shale from the Arbuckle Mountains

in Oklahoma. Also shown for comparison is an average signature for age-equivalent strata from the Appalachian foreland (Park et al. 2010) and an average signature for

Cambrian–Ordovician midcontinent sandstone (Konstantinou et al. 2014). Age distributions are divided into potential source-area provinces. The Mississippian Sycamore and

Caney Formations from Oklahoma are interpreted to have detrital contributions primarily from Appalachian source areas, including recycled strata and exhumed Appalachian

basement (Grenville Province), as well as potential contributions from exhumed Paleoproterozoic and Archean basement.
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(Sycamore) and 1062 Ma (Caney), which fall in the range of Appalachian

Grenville sources (Thomas et al. 2017). Age-equivalent Appalachian

foreland strata from Park et al. (2010) also yield abundant Grenville-age

detrital zircons with a peak age of 1048 Ma (Fig. 10). In addition, both the

Sycamore Limestone and the Caney Shale show contributions (~ 11–18%)

from the Taconic and Acadian orogens in the northern Appalachian suture

zone, represented by detrital-zircon ages ranging ca. 490–440 Ma and 420–

350 Ma (e.g., Thomas et al. 2004, Ettensohn et al. 2019). The Caney Shale

did yield significant Archean-age grains, potentially sourced from recycled

lower Paleozoic sandstone units from the northern midcontinent and

northern Laurentia (Konstantinou et al. 2014).

Simulated Surface Winds

Results.—The paleoenvironmental conditions of the Oklahoma and

greater North American mid-continent region changed from predominantly

subtropical and arid conditions during the Famennian to a rather

monsoonal system exhibiting seasonal wind reversals and summer

precipitation during the Early to Middle Mississippian (Kinderhookian

through Meramecian). These seasonal wind reversals suggest that the

greater midcontinent region was influenced by trade winds during Southern

Hemisphere winter months (June through August) (Fig. 10). The simulated

surface wind patterns are dominated by an interplay between the prevailing

southeasterly trade winds, the land–sea thermal gradient, and local

orography. As such, Acadian and Caledonian orogens tend to, in general,

guide the flow of air around the landmasses, and absolute wind speeds are

reduced due to the presence of these orogenic belts.

Summer winds in the Late Devonian (Fig. 10A) are shown to have come

from the south and diverge across the Laurentian epeiric seas with a

westerly jet flowing along the northern front of the Acadian orogen. During

Late Devonian winter months, a more southeasterly trade-wind circulation

developed across Laurentia (Fig. 10B). Westerlies along the southern front

of the Acadian orogen show reduced wind values topping over the

mountain range with acceleration on the lee side of the orogen. The

Osagean (Fig. 10C, D) and Meramecian (Fig. 10E, F) surface-wind

patterns are very similar. With the progressive northward movement of

Laurentia, the mid-continent region came under the influence of cross-

equatorial, northwesterly winds bringing moist air and summer precipita-

tion toward emergent landmasses (Fig. 10E, F). Winter precipitation was

very low over the adjacent subtropical land masses and limited to tropical

regions northwards of 108 S throughout the Devonian to Mississippian

(Supplemental File 6). Surface windflow patterns during the Osagean and

Meramecian winter months (JJA) flowed westward along the southern front

of the orogen, topped over the range, and swept across the Laurentian

epeiric seas in a west to northwestern direction (Fig. 10E, F; Supplemental

File 6).

Interpretation.—Model simulations reveal that the Laurentian land-

mass and associated orogens strongly influenced surface wind patterns. In

fact, the presence of a larger landmass at subtropical latitudes during the

Early Mississippian promoted seasonal wind reversals and a southward

migration of the Intertropical Convergence Zone (ITCZ). According to the

model data, a northwestward transport of continental dust toward the

midcontinent seems physically plausible, although such a transport would

have been possible only during the austral winter months. These months

are characterized by northwestward, offshore winds across the potential

source regions of the Acadian–Neoacadian clastic wedges.

These wind patterns may be analogous to present winds along the

Andean orogen, where westerlies from the South Pacific anticyclone are

deflected northward creating a southerly jet along the Andean Pacific front.

Air masses top over the orogen and descend as warm dry air off the lee side

of the mountain range, known as Zonda winds (Puliafito et al. 2015; Zou

and Xi 2021) which are similar in process to Foehn winds off New

Zealand’s Alps, Chinook winds off the North American Rocky Mountains,

and Santa Ana winds over the mountains of southern California

(McGowan et al. 1996; Hugenholtz et al. 2007; Álvarez et al. 2021).

Even though coastal and continental summer precipitation increased

towards the Early Mississippian, winter months around the orogenic

highlands were still dry in the simulations and a stronger easterly wind

component may have transported material to the Oklahoma region of

Laurentia. A comparable analog for the Early–Middle Mississippian model

results, which sits at the same latitude, might be present-day northwestern

Australia, where easterlies transport dust westward towards the Indian

Ocean during the winter months following the northward migration of the

ITCZ (Christensen et al. 2017; Keep et al. 2018).

DISCUSSION

The Enigma of the Missing Proximal Deltas

Delivery of siliciclastic material to epeiric seas occurs by either deltaic

or eolian transport. Various processes can then redistribute this material,

e.g., hyperpycnal flows, sediment gravity flows induced by slope failure or

wave and/or current agitation, or contour currents (Stow et al. 2001; Walsh

and Nittrouer 2009; Macquaker et al. 2010; Schieber 2016). Assuming an

average wave base of 50 m, Schieber (2016) posited a maximum transport

distance of 100 km for remobilized sediment, or up to 400 km for an

extreme case of a 200 m wave base. Acknowledging the vast distribution of

siliciclastic mud across the Devonian Laurentian sea, Schieber (2016)

advocated transport induced by bottom currents, but these arguments

demand lateral transport for thousands of kilometers in low-gradient

epeiric seas with wave bases ,, 200 m. While we acknowledge these

arguments as one hypothesis, we propose that eolian delivery is an

additional and simpler explanation that avoids the need to call upon

unknown and unusually powerful storms or tides, as well as flocculation,

which is inconsistent with the minimal clay-mineral content of the study

units.

The genesis and initial mobilization of the large volumes of ubiquitously

fine siliciclastic material characterizing the study units remain unresolved,

in large part owing to the absence of proximal feeder system(s). For the

Devono-Mississippian Bakken Formation of the Williston Basin, for

example, Egenhoff and Fishman (2013) inferred the presence of a deltaic

fan that is either not preserved or not exposed. Similar inferences of deltaic

feeder systems are applied to Devono-Mississippian mudstone units of the

midcontinent (Price et al. 2020) yet without documentation of any

remnants of the subaerial (delta plain) or proximal (subaqueous delta)

depositional systems. It is highly unlikely that researchers have overlooked

such delta systems, given the great density of subsurface data points across

the midcontinent region (e.g., . 100,000 wells in Kansas and Oklahoma;

Newell et al. 1987; Oklahoma Corporation Commission 2021). The coeval

deltas nearest to the midcontinent region during Late Devonian time are the

Catskill (Appalachian foreland) and Antler (Antler foreland) systems, and,

for the early Mississippian, the Price–Pocono–Grainger–Borden (Appala-

chians) deltas, that are separated from the midcontinent study area by

~ 1,000–1,500 km (Fig. 3) (Lane and De Keyser 1980; Ausich and Meyer

1990; Gutschick and Sandberg 1991; Richardson and Ausich 2005;

Ettensohn 2004, 2008; Ettensohn et al. 2019, 2022).

In contrast to the Upper Devonian, Lower–Middle Mississippian

(Kinderhookian–Meramecian) strata in northeastern Oklahoma are cast

as a shallow-water carbonate ramp that yielded to the sediment-starved

(during Kinderhookian–Osagean) Ouachita trough (southeast) and proto-

Anadarko Basin (southwest; Lane and De Keyser 1980; Gutschick and

Sandberg 1983; Godwin and Puckette 2019; Miller et al. 2019b). Yet the

occurrence of partial Bouma sequences inferred from the Sycamore

Limestone (southern Oklahoma) (Schwartzapfel 1990; Miller and Cullen

2018; Milad et al. 2020), as well as clinoform geometries inferred from
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FIG. 10.—Devono-Mississippian wind circulation model simulation time slices. DJF, December–January–February (Austral summer months); JJA, June–July–August

(Austral winter months). A) Summer months wind vectors during the Late Devonian (Famennian, 359 Ma). B) Winter months wind vectors during the Late Devonian

(Famennian, 359 Ma). C) Summer months wind vectors during the Middle Mississippian (Osagean, 344 Ma). D) Winter months wind vectors during the Middle Mississippian

(Osagean, 344 Ma). E) Summer months wind vectors during the Middle Mississippian (Meramecian, 339 Ma). F) Winter months wind vectors during the Middle

Mississippian (Meramecian, 339 Ma). Time slice 359 Ma correspond with the Late Devonian Glaciation and the timing of black shale, silt, and chert deposition throughout the

North American epeiric sea (Fig. 2). Time slice 344 Ma corresponds with the occurrence of chert in many parts of Laurentia. Time slice 339 Ma corresponds with the general

timing of the deposition of the Sycamore Limestone, Meramec, and Caney Shale formations as presented within. TCA, Transcontinental Arch.
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subsurface data, led Price et al. (2020) to similarly infer a nearby fluvio-

deltaic source despite the ubiquitous absence of evidence for proximal

feeder systems. The Transcontinental Arch and the Ozark Dome were the

most proximal exposed regions during this time but consist of correlative

carbonates with limited exposures of Cambro-Ordovician sandstones and

localized occurrences of upper Devonian sandstone—insufficient in

volume, grain size, and provenance to supply the enormous amounts of

exclusively fine-grained material to surrounding regions (Hills and

Kottlowski 1983; Bergstrom and Morey 1985; Adler 1986).

If any of these Devono-Mississippian systems were deltaic, they are

uniformly ‘‘headless’’—missing all but the distal-most ‘‘prodelta’’ fines,

even where the shelf margins are preserved. In other words, there were no

deltaic systems located nearby to transport the siliciclastic material

basinward. And if the siliciclastic units represent prodelta fines, they

exhibit remarkably uniform grain sizes that fail to fine with distance from

the inferred deltaic feeders, and exhibit an unusual dearth of true clay

(minerals or grain sizes; Figs. 7, 8).

Origin of Voluminous Mid-Paleozoic Silt

In contrast to the prevalence of fluvio-deltaic inferences for the study

units, few have mentioned eolian processes (e.g., Miller and Cullen 2018;

Shelley et al. 2019), whilst others make a connection to the origin of chert

in correlative units such as the Arkansas Novaculite, the Caballos

Novaculite, and cherts of the Osage–Meramecian strata (Banks 1970;

Lowe 1976; Cecil 2004, 2018b). Schieber (2016) explicitly dismissed an

eolian origin for these mudrocks based on the presumed need for large erg

systems to supply the fines via saltation abrasion of sand; yet eolian

abrasion produces very little silt (Swet et al. 2019, 2020; Adams and

Soreghan 2020). Dust-emitting regions today include both low-subtropical

latitude arid regions such as dry lakes of the Bodélé Depression that supply

diatomaceous-rich dust (West Africa; Washington et al. 2006; Chappell et

al. 2008) and the Nile Delta plain, which fuels the dunes and loess of the

Sinai and Negev (Muhs et al. 2013), as well as high-latitude proglacial and

periglacial regions, such as the Copper River delta, which seasonally emits

large volumes (60–160 ktons in 2006; Crusius et al. 2011) of glacially

ground rock powder over hundreds of kilometers into the Gulf of Alaska

(Fig. 11). In all of these cases, the fines are inherent to, and emanate from,

the (subaerially exposed and desiccated) depositional systems, rather than

from eolian saltation.

The critical attributes of the Devono-Mississippian mudrocks of

Oklahoma and the greater midcontinent include the: 1) fine grain size

restricted to very fine silt to very fine sand with little to no clay (mineral or

grain size), 2) blanket-like deposition over large regions, including far from

paleocoastlines, 3) deposition in both sediment-starved basins as organic-

rich and chert-rich mudstone, and in carbonate ramps as dispersed fines, 4)

FIG. 11.—Satellite image of sediment plumes emanating off the Copper River Delta (November 2017). A) Contrasts the subaqueous sediment plumes versus the eolian

plume. B) Shows the vast difference in distance eolian plumes travel versus river mouth sediment plumes. Eolian sediment plumes travel up to 103 km from source regions,

greatly exceeding subaqueous plumes in general. Source of images: NASA Earth Observatory (Stevens 2017a, 2017b).
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ultimate sources in (primarily) the Appalachian orogen, and 5) enigmatic

absence of proximal fluvio-deltaic feeder systems. We propose that

delivery of the siliciclastic material to epeiric seas by eolian transport best

explains this confluence of attributes.

The predominantly arid and seasonally dry climate in the mostly

subtropical latitudes of Devono-Mississippian Laurentia would have

favored dust emission. In this model, the Neoacadian Orogen clastic-

wedge system (Catskill delta for the Devonian, and Price–Pocono–Borden

delta and Mauch Chunk delta for the Mississippian) then provided the

source of the material, which was derived from the orogenic highlands.

Notably, the Catskill delta system drained (at times) regions thought to

have been glaciated during the latest Devonian (Brezinski et al. 2008,

2010; Ettensohn et al. 2020a, 2020b), and thus would have delivered a

ready and voluminous source of Al-poor rock flour to the alluvial plain,

analogous to the Copper River Delta today (Fig. 11). Although no such

glaciation is recorded outside of Gondwanaland for the Mississippian, the

subaerial delta plains of the Price–Pocono–Borden–Grainger and Mauch

Chunk deltas off the Appalachian Orogen would have supplied abundant

silt, analogous to the Nile Delta today. Mass-balance arguments suggest

that only 1% (363 km3) of the total quartz eroded from the Neoacadian

orogen and delivered to the Mississippian fluvio-deltaic plains is needed to

supply the volume of quartz in the Meramec and Sycamore systems (259

km3) (Supplemental File 5).

The eolian-delivery model holds that austral winter winds along the

Appalachian orogen front and Zonda–Foehn–Chinook-like leeward winds

translating into easterlies (Figs. 10, 12) deflated these subaerial delta plains

and lofted siliciclastic fines for ultimate deposition into the Laurentian

epeiric seas and emergent land regions to the (paleo) north and west

(Devonian), and (paleo) west (Mississippian) (Figs. 10, 12). The strength

of leeward winds can impose gusty conditions to generate intense dust

storms, such as the Zonda winds off the Andes (Norte 2015; Puliafito et al.

2015; Isla et al. 2021), and Chinook winds that rework proglacial strata

across the northern Great Plains today (Hugenholtz et al. 2007). This

model also explains the dearth of clay minerals (and thus Al), given the

lack of intense chemical weathering expected in this arid climate region

and—for the latest Devonian—the source in a proglacial delta system.

This model predicts the occurrence of similarly uniform fines distributed

in coeval units across a large region of the Laurentian epeiric sea, as indeed

occurs (Figs. 2, 3). Additionally, it builds on several other examples of

eolian–marine units posited for similarly enigmatic, fine-grained (and

generally clay-poor) siliciclastic systems that lack fluvio-deltaic compo-

nents, such as those of the Permian Delaware Mountain Group (Fischer and

Sarnthein 1988), Phosphoria Formation (Carroll et al. 1998), various units

of the Permo-Pennsylvanian (Soreghan 1992; Soreghan et al. 2008), and

Lower Mississippian units of the Appalachian Basin (Cecil et al. 2018a).

Similarly, it builds on the eolian-dust model for the origin of chert in

Paleozoic units of Laurentia proposed by Lowe (1976) and Cecil et al.

(2018b).

 
FIG. 12.—Summary figure of paleogeographic reconstructions from Figure 3 with

posted austral winter (JJA) surface wind vectors from Figure 10. Oklahoma is

outlined in red. A) Latest Devonian (Famennian, ~ 360 Ma). The Catskill Delta

complex is indicated by a stippled beige polygon with sketched fluvial systems. B)

Middle Mississippian Ma (Osagean, ~ 345). The Price–Pocono Delta complex is

also noted by a stippled beige polygon with sketched fluvial systems. C) Middle

Mississippian (Meramecian, ~ 340 Ma). D) Legend. Each panel shows the

midcontinent region in the subtropical arid climate belt, in the orographic rain

shadow of the Appalachian orogen, and far removed from shorelines. Paleowind

directions emanate from the southeast across the Appalachian clastic wedges.

Paleogeographic maps were constructed from Blakey (2013), North American Key

Time Slices �2013 Colorado Plateau Geosystems, Inc. as base maps, with

paleoclimate data from sources including Boucot et al. (2013) and Scotese and

Wright (2018). See Supplemental File 2 for map construction references.

ORIGIN OF EOLIAN DUST OF THE NORTH AMERICAN MIDCONTINENTJ S R 1201



The Woodford Shale consistently exhibits the finest modes of the study

units and the highest silica content (Figs. 7, 8). Its uniquely high silica

content is commonly attributed to the influence of biogenic silica from

nutrient-rich upwelling (Turner et al. 2016), but this explanation evades the

root issue of an ultimate Si source. Cecil et al. (2018b) posited that much

Phanerozoic chert was likely sourced by eolian dust; this model seems

viable for the Woodford Shale given the paleogeographic context of arid

conditions across the midcontinent of Laurentia during the Late Devonian,

conducive to the availability and transport of ultrafine siliceous dust. We

propose that the fine detrital modes reflect: 1) the distance to source and 2)

the direction of surface wind circulation patterns, given the significant

paleogeographic shifts from Late Devonian to Early–Middle Mississippian

times (Figs. 10, 12). During the Late Devonian, Oklahoma and the greater

midcontinent seaway were situated west-northwest of the Catskill delta at

~ 308 S. Prevailing winds off the leeward front of the Appalachian orogen

would have transported eolian dust in a north and west-northwesterly

direction, across the North American midcontinent to Oklahoma and

beyond. The emergent transcontinental arch may have provided temporary

storage areas along this path.

Ultimately, the finest fraction accumulated in the Woodford Shale; by

the Mississippian, shifts occurred in both the location of the primary

source (now the Price–Pocono–Borden–Grainger, the Mauch Chunk deltas,

and coastal clastic systems) and the paleolatitude (~ 158 northward). By

this time, the Price–Pocono–Borden–Grainger and Mauch Chunk deltas

were east-southeast of Oklahoma, enabling prevailing easterlies to loft

fines from these systems directly into the epeiric seas across the greater

midcontinent. With the northward drift of the Laurentian continent,

Southern Hemisphere winter winds off the Appalachian orogen shifted to

blow more directly toward the west and west-northwest (less circuitous

than those of the Late Devonian). This shift might explain the elevated

grain sizes, higher volume of quartz, and more ‘‘loess-like’’ signature in the

Meramecian samples of the Meramec and Sycamore (Fig. 8). Additionally,

orographic effects of the greater Appalachian orogen presumably further

exacerbated the aridity across Laurentia, leading to enhanced eolian

emissions.

Finally, widespread delivery of only minimally (chemically) weathered

eolian fines to Devono-Mississippian epeiric seas may have had auxiliary

effects on organic carbon in these systems. The Mississippian (and Upper

Devonian) of North America contain anomalously high organic carbon,

with the Woodford Shale and correlatives considered world-class source

rocks (Ulmishek and Klemme 1990; Kuuskraa 2011; Sonnenberg 2011).

We speculate that this remarkable organic richness might reflect eolian

delivery of abundant nutrients (notably iron) to these distal epeiric seas,

stimulating productivity and associated preservation of organic carbon, as

has been observed in the Bering Sea (Koffman et al. 2021) and suggested

in other deep-time, dust-sourced systems (e.g., Carroll et al. 1998; Gabbott

et al. 2010; Sur et al. 2015; Abadi et al. 2020).

CONCLUSIONS

� Siliciclastic silt and mudstone are common throughout Upper

Devonian–Lower Mississippian epeiric-sea strata of Laurentia, but no

proximal fluvial–deltaic feeder systems exist to explain transport of this

material.
� Mineralogical data indicate a clear detrital source. Grain-size modes

range from very fine silt to very fine sand, with minimal lateral

variation in units across broad swaths of Oklahoma and the greater

midcontinent region. Geochemical signatures are Si-rich and Al-poor,

reflective a dearth of clay minerals (particularly Woodford Shale and

Sycamore systems). Detrital-zircon geochronology indicates primary

sources in the Appalachian orogen.
� Paleogeographic reconstructions show that the midcontinent occupied

the subtropical arid belt, in the orographic rain shadow of the growing

Appalachian orogen. Consequent aridity would have promoted dust

emission from vast delta plains draining the Appalachian highlands.

Model simulations of surface wind circulations indicate that Southern

Hemisphere winter months were conducive for eolian delivery of fine

siliciclastic material toward the west and northwest, derived from

Appalachian clastic wedges. Alpine glaciation in these highlands

during at least the latest Devonian produced large volumes of

physically weathered fines.
� Siliciclastic silt of the Upper Devonian Woodford Shale most likely

experienced a circuitous eolian trajectory and greater transport

distances, resulting in the predominance of very fine silt modes. In

contrast, Mississippian units were directly downwind of deltaic plains

of the northern Appalachian system, resulting in generally coarser silt

to very fine sand modes.
� Coeval units located most distally contain abundant chert, consistent

with sourcing from very fine silica dust. Eolian transport of material

that was minimally chemically weathered to Devono-Mississippian

epeiric seas likely delivered essential nutrients that stimulated organic

productivity in these commonly organic-rich units—a hypothesis that

merits further investigation.

SUPPLEMENTAL MATERIAL

Supplemental material is available from the SEPM Data Archive: https://

www.sepm.org/supplemental-materials.
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