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Abstract 

Yassine Barhoumi 

EFFICIENT SCOPEFORMER: TOWARDS SCALABLE AND RICH FEATURE 

EXTRACTION FOR INTRACRANIAL HEMORRHAGE DETECTION USING 

HYBRID CONVOLUTION AND VISION TRANSFORMER NETWORKS. 

2022-2023 

Nidhal C. Bouaynaya, Ph.D. 

Ghulam Rasool, Ph.D. 

Master of Science in Electrical and Computer Engineering 

 

The field of medical imaging has seen significant advancements through the use of 

artificial intelligence (AI) techniques. The success of deep learning models in this area has 

led to the need for further research. This study aims to explore the use of various deep 

learning algorithms and emerging modeling techniques to improve training paradigms in 

medical imaging. Convolutional neural networks (CNNs) are the go-to architecture for 

computer vision problems, but they have limitations in mapping long-term dependencies 

within images. To address these limitations, the study explores the use of techniques such 

as global average pooling and self-attention mechanisms. Additionally, the study 

investigates the performance of vision transformers (ViTs), which have shown potential 

for outperforming CNNs in image classification tasks. The Scopeformer, a new end-to-end 

architecture that combines the unique strengths of both CNNs and ViTs, is proposed to 

improve upon their individual performance. The study contributes to the conversation 

about effective approaches for tackling challenging computer vision tasks in medical 

imaging.  
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Chapter 1 

 Introduction 

1.1 Problem Statements 

Stroke is a serious medical condition that occurs when the blood supply to the brain 

is disrupted, resulting in brain cell death and permanent brain damage [1]. It is a leading 

cause of death and disability worldwide, with over 15 million people experiencing a stroke 

each year [2]. Intracranial hemorrhaging, or bleeding within the skull, is a common type of 

stroke that can result in serious medical complications, including increased pressure within 

the skull, brain swelling, and extensive brain damage if left untreated [3]. Timely detection 

and treatment of brain hemorrhages, or bleeding within the skull, is critical for improving 

patient prognosis and treatment outcomes [4], as it can significantly reduce the risk of 

serious medical complications and prevent long-term disability or death [5]. 

One effective way to detect and classify brain hemorrhages at an early stage is 

through the use of head computed tomography (CT) scans [6]. These scans produce 

detailed images of the brain and are capable of accurately identifying the location and 

extent of brain hemorrhages [7]. In addition to being a valuable diagnostic tool [8], head 

CT scans are also quick and easy to perform [9], making them a practical option for the 

management of brain hemorrhages [10]. 
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The importance of prompt detection and treatment of brain hemorrhages cannot be 

overstated [11]. Early detection and treatment can significantly reduce the risk of serious 

medical complications and improve patient prognosis and treatment outcomes [12,13]. 

Therefore, it is crucial for healthcare professionals to have access to the necessary 

diagnostic tools, such as head CT scans [14], to accurately diagnose and manage brain 

hemorrhages [15]. 

Currently, the detection and classification of brain hemorrhages is often reliant on 

the expertise of qualified physicians, who must manually evaluate CT scans to identify 

indications of bleeding or abnormalities within the brain tissues [16]. This process can be 

time-consuming and may not always yield accurate results, particularly in cases where the 

hemorrhages are small or subtle [17]. It is also prone to human error, as it relies on the 

subjective interpretation of the scans by the physician [18, 19]. 

Automated detection methods using deep learning algorithms have been developed 

to address these issues and improve the accuracy of hemorrhage detection [20]. Machine 

learning algorithms have the potential to significantly improve the accuracy and speed of 

brain hemorrhage detection, particularly within the first 24 hours after the onset of 

symptoms, when the risk of serious complications is highest [2, 21-23]. These algorithms 

can be trained to autonomously identify and classify brain hemorrhages by analyzing CT 

scans, without the need for human intervention [24]. This can greatly reduce the detection 

time, enabling faster and more effective treatment of brain hemorrhages, and potentially 

preventing serious medical complications and extensive brain damage [25]. 
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The use of machine learning algorithms for the detection and classification of brain 

hemorrhages is a rapidly evolving field [26], with numerous studies and clinical trials 

exploring the potential benefits of this approach [27, 28]. Some machine learning 

algorithms have demonstrated high levels of accuracy in identifying brain hemorrhages, 

rivaling the performance of experienced physicians [29, 30]. Emerging computer vision 

techniques, such as deep learning [31], offer the possibility of creating faster and more 

robust models for the detection and classification of brain hemorrhages [32,123-126]. 

These algorithms, combined with advanced feature extraction methods [33], can analyze 

CT scans more quickly and accurately than a human analyst, potentially saving valuable 

time and resources [34]. By leveraging the power of deep learning [35], these algorithms 

can identify patterns and features within the CT scans that may not be immediately visible 

to the human eye, improving the accuracy and speed of the detection process [36]. 

In addition to improving the accuracy and speed of brain hemorrhage detection 

[37], the use of machine learning algorithms has the potential to reduce the workload of 

healthcare-qualified physicians and improve access to diagnostic services in underserved 

or remote areas [38]. It can also help to reduce the cost of healthcare by automating the 

detection process and freeing up medical professionals to focus on more complex and 

nuanced cases [39]. This can help to improve the overall efficiency of the healthcare system 

and reduce the burden on qualified medical professionals [40]. The use of machine learning 

algorithms for the detection and classification of brain hemorrhages can also assist expert 

physicians and radiologists in triaging patients, prioritizing those with more severe or acute 
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conditions [41]. This can help to ensure that patients receive the appropriate level of care 

and attention [42].  

Overall, as a promising breakthrough in healthcare, the use of machine learning for 

the early detection and classification of brain hemorrhages has the potential to greatly 

improve patient outcomes and reduce the burden of stroke on healthcare systems 

worldwide. Accurate and efficient detection and classification can lead to timely and 

effective treatment, potentially preventing serious complications and extensive brain 

damage. By leveraging the power of deep learning and computer vision techniques, these 

algorithms have the potential to significantly improve patient outcomes and streamline the 

diagnostic process. It is an exciting area of research with much potential for future 

development and application in clinical practice. 

1.2 Thesis Objectives 

The aim of our project is to make significant strides in the use of cutting-edge tools 

from deep learning algorithms in medical image classification, particularly in the detection 

of hemorrhages from CT scans [43]. We hope to significantly enhance the capabilities of 

these algorithms in this field, enabling more accurate and efficient identification of brain 

hemorrhages [44]. By focusing on intracranial hemorrhages specifically, we hope to 

address a critical need in the field of stroke care [45] and reduce the burden of this condition 

on healthcare systems worldwide [46]. We intend to develop a reliable and efficient method 

for detecting multi-type brain hemorrhaging in CT scans [47], enabling medical 

professionals to promptly initiate the necessary treatment and potentially prevent further 

complications [48]. 
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The goal of our research is to explore the potential benefits of integrating two state-

of-the-art deep learning models, the convolutional neural network (CNN) [49] and the 

vision transformer (ViT) [50], into a single end-to-end model called Scopeformer. By 

combining the strengths of both architectures, we aim to create a hybrid model that 

outperforms either model alone on the task of detecting hemorrhages from medical images 

[51]. This is a critical problem in the field of healthcare, as early and accurate identification 

of intracranial hemorrhages can facilitate prompt treatment and potentially prevent further 

complications [52]. 

To validate the effectiveness of our proposed hybrid model, we will apply it to the 

RSNA hemorrhage detection challenge [53], a widely recognized benchmark in the field 

of medical image analysis [54]. Our aim is to demonstrate that the Scopeformer model is 

able to achieve superior performance compared to either the CNN or ViT model alone, as 

well as other state-of-the-art approaches [55]. In addition to its potential practical value, 

our research will also contribute to the growing body of knowledge on the application of 

deep learning models in medical image analysis [56] and the potential benefits of hybrid 

models [57]. Overall, our work has the potential to make a meaningful impact on the field 

of healthcare and improve patient outcomes [58].  

This thesis aims to achieve the following objectives: 

1. Design a hybrid CNN-ViT architecture to address the RSNA hemorrhage detection 

challenge.  

2. Demonstrate the trainability of the model in various configurations. 
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3. Investigate different pretrained CNN architectures as feature map extractors for use 

with various ViT variants. 

4. Evaluate the quality of the proposed backbone and suggest training approaches to 

improve it. 

5. Optimize trainable parameters through the use of dimensionality reduction 

techniques and hyperparameter exploration. 

1.3 Hypotheses Statements  

We propose that convolutional neural networks (CNNs) can be used effectively as 

feature extractor modules to generate high-quality feature maps that can serve as input 

patches for vision transformer (ViT) models. We believe that the incorporation of 

correlation contexts among features across designated axes within the ViT model can lead 

to improved classification results. In this study, we will test our hypothesis by using CNNs 

to extract features from images and feeding these features as input to various ViT models. 

We will then evaluate the classification performance of these models and explore different 

techniques for optimizing their trainable parameters.  

Our proposed model is predicated on the premise that a combination of pretrained 

CNNs can generate strong and comprehensive features for the Vision transformer (ViT) 

block. Various research supports the idea that using a combination of multiple CNNs in a 

single architecture can generate strong and comprehensive features for use in a subsequent 

model [59]. An example is where authors propose a hybrid CNN model that combines 

multiple CNNs in a single architecture to generate a single feature map for the purpose of 

a segmentation task [59]. The vision transformer (ViT) block is designed to extract 
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functional correlations within the feature map and transmit them to the final classification 

block while maintaining a constant output dimension [50]. This capability is described in 

detail in the paper on ViT, which outlines the design and functionality of the model [50]. 

The ability to extract functional correlations within the feature map and transmit them to 

the final classification block is a key characteristic of the ViT model and is an important 

factor in its effectiveness for various image recognition tasks. We believe that 

incorporating self-attention layers within the model will improve its performance by 

strengthening the correlation between input patch features [60]. In our end-to-end 

Scopeformer architecture, we expect that the more ViT encoder blocks we stack, the 

stronger the extracted feature correlations will be for classification. However, we theorize 

that there is a critical number of ViT encoders that can be stacked before classification 

performance reaches a plateau and starts to decrease for a particular dataset. To test these 

hypotheses, we plan to study the impact of the size and number of ViT encoders on the 

model's performance, as well as the size of the input feature map determined by the number 

of CNN architectures used in the Scopeformer model. We will use experimental methods 

and statistical analysis to evaluate the performance of the model under different 

configurations and identify the optimal settings for achieving the best classification results. 

Convolutional neural networks (CNNs) [61] are powerful machine learning models 

that are capable of learning a wide range of low-level and high-level features through 

training on large datasets [62]. These features serve as hard inductive biases [63], guiding 

the model's decision-making process and helping it to generalize to new data [64]. 

However, we hypothesize that pretraining the CNNs in our model on diverse types of 
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datasets [65] and using various data augmentation techniques [66] can further bias the 

learned features towards the RSNA classification application. This is because the core of 

our model consists of multiple CNNs, each of which is responsible for learning different 

aspects of the data [67]. By pretraining each CNN independently and significantly altering 

the training paradigm, we believe that we can improve the final decision-making process 

of the model [68,69]. To test this hypothesis, we will investigate different approaches to 

pretraining and training the CNNs in our model, including variations in the datasets and 

data augmentation techniques used. We will then evaluate the impact of these changes on 

the classification performance of the model, using experimental methods and statistical 

analysis to assess the effectiveness of each approach. 

The use of multiple CNNs in a single model can be computationally expensive, so 

we have carefully selected our CNN backbones in an effort to obtain a more consistent and 

comprehensive feature map. We believe that this will help us to build a more efficient and 

effective model for the RSNA classification application. To further optimize the model, we 

will conduct an interpretability analysis [70] using saliency maps [71] to identify CNN 

architectures that may be redundant or not contribute significantly to the final decision. 

This will allow us to eliminate unnecessary CNNs and reduce the computational cost of 

the model without sacrificing performance. Additionally, we will use self-attention 

visualizations spanning various layers in the ViT pipeline to understand the richness of 

CNN features and their role in the decision-making process. By using these techniques, we 

hope to minimize the number of CNN architectures in the model while maintaining or 

improving its performance. 
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The objectives of this project are to address the following significant problems in 

our formulation of the problem hypothesis: 

1. We expect that the feature map produced by the various CNN architectures using 

multiple CNNs will contain redundancies that need to be addressed. 

2. The inclusion of various CNN architectures in the backbone of the Scopeformer for 

end-to-end training may impose computational and memory constraints. We 

suggest that enriching lower dimensional feature maps produced by the CNNs 

through pretraining and transfer learning may improve the feature richness and 

diversity presented to the ViT as a potential solution to this issue. 

3. We propose that CNNs learn hard inductive biases, and we hypothesize that soft 

inductive biases within patterns among these features can be extracted using the 

self-attention layers of the ViT blocks. 

1.4 Thesis Focus and Organization 

The primary focus of this thesis is to develop a machine learning model that can accurately 

detect and classify various types of hemorrhaging in CT scan images from the RSNA 

hemorrhage detection dataset. This is a challenging problem that requires advanced image 

analysis techniques to identify and classify the different types of hemorrhaging in the 

images. To address this problem, we will conduct multiple simulations of the proposed 

model to optimize its performance. We will use a range of techniques, including data 

augmentation, dimensionality reduction, and hyperparameter optimization, to fine-tune the 

model and improve its accuracy in detecting and classifying different types of 
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hemorrhaging. We will also explore different CNN architectures and ViT configurations 

to identify the most effective combination for the task. Through these simulations, we hope 

to develop a model that can accurately and efficiently detect and classify different types of 

hemorrhaging from processed CT scan images. 

The first chapter of this thesis provides an in-depth introduction to the problem of detecting 

intracranial hemorrhaging in medical images, including a discussion of the challenges and 

importance of accurately identifying and classifying different types of hemorrhaging. We 

also provide an overview of the RSNA intracranial hemorrhage detection challenge and 

the motivation behind our work in this area.  

The second chapter of the thesis covers the technical background knowledge necessary to 

understand the computer vision and deep learning techniques used in this study. We discuss 

the basics of convolutional neural networks (CNNs) and vision transformers (ViTs), as 

well as various feature extraction methods and their role in improving model performance.  

In the third chapter, we describe the approach and methodology behind the simulations 

conducted on the Scopeformer model. This includes details on the datasets and data 

augmentation techniques used, the design of the model architecture, and the evaluation 

criteria used to assess the model's performance.  

The fourth chapter presents the results of the proposed hybrid model, including 

comparisons to other state-of-the-art methods and an analysis of the model's performance 

on different types of hemorrhaging. We also discuss the strengths and limitations of the 

model and provide insights into how it can be further improved in the future.  
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Finally, in the fifth and final chapter, we provide a summary of the overall results and 

accomplishments of this thesis. We discuss the contributions made by this work and 

suggest potential directions for future research in this area. 
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Chapter 2 

 Literature Review 

 

This chapter provides a thorough review of the technical and theoretical aspects 

relevant to our proposed work on the RSNA hemorrhage detection problem. We present a 

literature review of various approaches that have been used to tackle this problem, 

including common architectural designs and hemorrhage identification methods, as well as 

data augmentation and dimensionality reduction techniques. We also discuss the adoption 

of convolutional neural networks (CNNs) and transformer architectures in this context, and 

the advantages and disadvantages of using these approaches for image classification tasks. 

In this chapter, we delve into the process of feature extraction executed by different CNN 

architectures, including the concept of convolutional layers and their role in extracting 

features from images. We discuss the benefits of using CNNs for image classification tasks, 

such as their ability to learn hierarchical representations of image data and their robustness 

to translation and rotation invariance. However, we also highlight some of the limitations 

of CNNs, including their sensitivity to the choice of hyperparameters and their reliance on 

large amounts of labeled data for training. In addition to CNNs, we also explore the use of 

transformer architectures for image classification tasks. We introduce the concept of self-

attention and discuss how it allows transformers to capture long-range dependencies and 

global context in images. We compare the benefits of using transformers over traditional
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CNNs for image classification, including their ability to handle variable-length sequences 

and their greater efficiency in terms of memory and computation. Finally, we present some 

of the most popular transformer architectures and their applications in the literature, 

including ViTs and Scopeformers. Overall, this chapter provides a comprehensive 

overview of the technical and theoretical foundations of our proposed work and sets the 

stage for the subsequent chapters where we describe the details of our approach and present 

the results of our simulations. 

2.1 Introduction 

The application of machine learning in the field of radiology has the potential to 

significantly enhance the accuracy and speed of intracranial hemorrhage detection, which 

is a critical task in medical practice [72]. Delayed diagnoses of this type of bleeding can 

lead to serious complications and even death [5], making it crucial to identify and classify 

different types of hemorrhaging as quickly and accurately as possible [4]. In this study, we 

conducted a systematic comparison of various transformer network architectures to assess 

their ability to extract features that can improve the classification performance of computed 

tomography (CT) scans for detecting different types of hemorrhaging. By identifying the 

most effective transformer architecture for this task, we aim to improve the accuracy and 

reliability of automated hemorrhage detection systems in radiology, which could ultimately 

lead to better patient outcomes and a reduction in the risk of medical complications caused 

by delayed diagnoses. 
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2.2 Vision Transformer 

Vision Transformers (ViTs) have gained popularity in a variety of computer vision 

identification applications [73, 74] and have demonstrated success in a range of vision 

tasks, including the ImageNet classification challenge [75]. The key component of ViT-

based models is the transformer block [76], which was originally introduced by Vaswani 

et al. [60] in the field of natural language processing (NLP). The successful implementation 

of the Transformer model [60] applied to images, known as vision Transformer or ViT, 

was a milestone in the computer vision field [50] with comparable performance to SOTA 

convolutional neural networks such as Residual neural networks [77] and EfficientNet 

neural networks [78].   

ViTs have been shown to be particularly effective in the medical field, with various 

successful implementations being proposed that outperform standard convolution-based 

models by a significant margin [79]. One of the key advantages of ViTs [50] is their ability 

to extract high-level features from images, which can be used for tasks such as diagnosis 

and treatment planning [80]. In order to do this, the ViT model divides a natural image into 

equal, 3-channel square patches, which are then flattened and represented as uni-

dimensional tokens. Each patch represents local semantic information from the raw image, 

and the model learns to extract patterns from their correlations [50]. Using smaller patches 

allows for the extraction of higher local correlations and improved semantics, as the model 

is able to analyze the relationships between the different patches in greater detail [81]. 

However, this increased complexity also results in more expensive computations and a 

greater need for large amounts of data [82]. It has been shown that ViT models only 
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outperform standard CNNs in high data regimes during pre-training or training [82-83]. In 

other words, in order to achieve the best results, these models require a large amount of 

data to learn from in order to extract the most relevant features [82- 83]. 

Despite the challenges posed by their complexity and data requirements, ViTs have 

the potential to revolutionize the way that medical diagnoses are made [84]. By providing 

more accurate and reliable results, they can help doctors to make more informed treatment 

decisions, ultimately leading to improved patient outcomes. As such, the development of 

ViT-based models in the medical field is an area of active research and development, with 

many researchers and engineers working to optimize their design and performance [84]. 

Vision transformers are strong feature correlation modules [85]. Truong et al. [86] 

showed this attribute by incorporating feature layers to estimate a large number of 

confident matches between image pairs. These layers compute each confidence value in 

the correspondence volume by taking the dot product of two feature vectors extracted from 

specific locations in the source and target images. [87].  

The key success behind ViT-based models are the multi-headed self-attention 

(MHSA) blocks [60]. MHSA operation within each transformer block enables each 

inputted tokenized vector to interact with all input vectors which allows the model to 

construct global correlations crucial in learning semantics. These semantics are further 

improved with successive computations of the MHSA operations in an end-to-end 

architecture composed of multitude of ViT encoders [88]. The hierarchical stacking comes 

with a high-rate increase of computational costs [89]. In every transformer block, the 

complexity degree of self-attention is quadratic to the number of input tokens. As such, the 
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computation of the attention matrix in MHSA, which requires computationally and volatile 

memory demanding procedures to compute batch-wise matrix multiplication, can 

overdraw the memory and computation resources when scaling up to high data regimes 

[90]. It is especially difficult to simulate larger vision transformer-based models on 

resource-constrained systems with restricted processing capabilities, stringent memory 

limits, or a limited power budget. 

A comprehensive overview of different vision transformer attempts of 

implementation in computer vision was presented by Salman H. Khan et. al. [91] in their 

survey article. The authors provide a detailed analysis of the use of transformers in various 

computer vision tasks. These tasks include object detection, which involves identifying and 

localizing objects in images or videos; segmentation, which involves partitioning an image 

into different regions or classes; and action recognition, which involves identifying and 

classifying actions performed in videos. 

The authors discuss the strengths and limitations of using transformers in these 

tasks, highlighting the advantages of transformers in terms of their ability to process large 

amounts of data and capture long-range dependencies. However, they also note that 

transformers can be computationally expensive and require a large number of parameters, 

which can be a challenge when scaling to large datasets. In addition, the authors provide 

insights on future research directions in the use of transformers in computer vision. They 

suggest that there is potential for further development and improvement of transformer-

based approaches in tasks such as image generation and unsupervised learning and suggest 

that future research should focus on developing more efficient transformer architectures 
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and methods for training and fine-tuning transformers on specific tasks. They also discuss 

the strengths and limitations of using transformers in these tasks and provide insights on 

future research directions in this area. 

2.2.1 Vision Transformer Architecture Overview 

The vision transformer architecture proposed by Dosovitskiy et. al [50], involves a 

unique approach to processing RGB images. The images are hard split into 16 by 16 by 3 

patches without overlap, and each patch is flattened and considered as an input token 

specific to that patch of the image. These flattened patches are then mapped to a constant 

latent vector z through a trainable projection to the embedding matrix E, forming a 

sequence that is taken as the input to the first ViT encoder. This sequence is then packed 

and used to form the input matrix X, which is projected onto a trainable embedding matrix. 

This projection allows the model to learn powerful and task-specific features from the input 

data, enabling it to perform various vision tasks with high accuracy.  

• Resolution of the input image: 224 x 224 x3 

• Resolution of the patch: 16 x 16 x 3 

• Number of patches: N=196 

The authors added a class embedding that can be learned and included it in the input 

matrix X for the vision transformer model. The input matrix X has a first dimension of 

N+1, where N represents the number of rows in the matrix. The size of each flattened patch 

vector is determined by the number of pixels in the patch across the three channels, which 

is calculated by multiplying the number of pixels in each channel (16 x 16 x 3 = 768). This 
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value of 768 represents the second dimension of matrix X. After being inputted, matrix X 

is projected onto the embedding matrix E. The first dimension of E is the same as the 

second dimension of X (768), while the second dimension is determined by the chosen 

variant of the vision transformer. If the variant selected is "base," the projection will be 

onto a matrix of 768 x 768. If the variant chosen is "large," the matrix dimension will be 

768 x 1024. If the variant selected is "huge," the matrix dimension will be 768 x 1280. The 

variant of the ViT encoder that is chosen plays a significant role in determining the 

complexity of the overall vision transformer model. The additional transformation that 

occurs after the flattening layer allows for control over the desired dimensionality reduction 

based on the variant that has been selected. This added flexibility allows the user to tailor 

the model to their specific needs and desired level of complexity. 

• Input:      𝑥 𝐸 = 𝑧0 

• Dimension:    (1 ∗ 768)(768 ∗ 𝐷) => (1 ∗ 𝐷) 

• Matrix form:    𝐸𝑝𝑜𝑠 + 𝑋 𝐸 = 𝑍 

• Dimension:   ((𝑁 + 1) ∗ 𝐷) + ((𝑁 + 1) ∗ 768)(768 ∗ 𝐷) => ((𝑁 + 1) ∗ 𝐷) 
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Figure 1 

 Overview of the Vision Transformer Model 

 

 

The positional embedding matrix should have the same dimensions as the resulting inner 

product multiplication between the matrices X and E. The matrix Z has the same 

dimensions as the positional embedding matrix, which is also identical to the result of the 

projection of both matrices X and E. The positional embedding matrix is a trainable matrix, 

with each row representing the position of the relative vector being added. This allows the 

model to learn and incorporate the positional information of each vector into the overall 

representation. The dimensions of the positional embedding matrix are determined by the 

projection of matrices X and E, and this resulting value is used to set the dimensions for 

both the positional embedding matrix and the matrix Z. 

In this implementation, the same input matrix Z is used at the input level and is 

passed through a normalization layer three times to create the Key, Query, and Value 

matrices. These matrices, denoted as K, Q, and V, respectively, have the same dimensions 

as the input to the encoder, which is the dimension of Z. The dimensions of K, Q, and V 
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are therefore equal to N+1 by D, where N is the number of patches (+1 for the class 

embedding) and D is the latent vector's dimension. In contrast, the original Transformer 

work [60] multiplies these matrices by trainable square weight matrices, but this step is not 

included in this implementation. It is important to note that the dimensions of K, Q, and V 

are determined by the input to the encoder and are therefore fixed.  

• Key, Query, and value matrices dimensions:   dim(𝐾) = dim(𝑄) = dim(𝑉) =

((𝑁 + 1) ∗ 𝐷) 

The dimension of the latent vector, denoted as D, is determined by the chosen 

model and remains constant throughout all of the encoder layers. Similarly, the value of 

N+1 is also conserved. The number of patches is equal to the resolution of the input image 

divided by the dimension of the patch, and the dimension of the latent vector is equal to 

the number of pixels in the patch multiplied by the number of channels projected onto the 

embedding matrix. In other words, the dimensions of the matrix can be simplified to either 

N by D or (N+1) by D. It is important to note that these values are fixed and determined 

by the chosen model and input data. 

The attention weights, which are obtained through the SoftMax function applied to 

the normalized product of Q and K, are based on the pairwise similarity between elements 

of the sequence and their corresponding query and key representations (q and k, 

respectively). These attention weights indicate how much emphasis should be placed on 

each element of the sequence when generating the output. The SoftMax function is used to 

ensure that the attention weights sum to 1, allowing them to be interpreted as probabilities. 

The attention weights are calculated using the query and key representations of each 
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element, allowing the model to determine the relevance of each element to the current task 

at hand. 

 

The attention weights are used to determine the amount of emphasis that should be 

placed on each element of the value matrix, which is identical to the original input matrix 

Z. This value matrix represents a mapping for the input image itself, and the attention 

weights can be visualized to show how much the model is focusing on specific pixels that 

are relevant to the classification or learned class. By applying the SoftMax function to the 

attention weights, they can be interpreted as probabilities, indicating the importance of each 

element in the value matrix. This allows us to see which pixels the model is paying the 

most attention to and how this attention is distributed across the image. Overall, the 

attention weights SoftMax play a crucial role in determining the relevance of each element 

in the input image for the current task at hand. 
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Figure 2 

Representative Examples of Attention from the Output Token to the Input Space by the ViT 

Model 

 

Note. The model attends to image regions that are semantically relevant for classification. 

 

The authors utilized Attention Rollout in their work to calculate attention mappings 

from the outputted tokens to the input space [92]. This technique involves averaging the 

attention weights across all 16 heads of the ViT (large variant) before recursively 

multiplying the weight matrices of all layers. This process allows for the blending of 

attention among tokens in different ViT encoders, as the attention weights are calculated 

and averaged across all heads before being used to determine the attention mappings. 

Attention Rollout allows for a more comprehensive understanding of how the model is 

attending to different tokens and how this attention is distributed across the input space. It 

is an important aspect of the ViT model and contributes to its effectiveness in various tasks. 

At this point in the process, we have arrived at the level of the key K, query Q, and 

value V matrices, which have been normalized from the original input matrix Z. Although 
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the ViT model typically includes multiple heads in the encoder, we will assume that there 

is only one head in this case. When examining the attention operation, we can see that the 

resulting matrix has the same dimensions as the input matrix Z, meaning that the input 

dimensions are preserved after the self-attention layer is applied. 

The process of preserving the input dimensions begins with the product of Q and 

the transpose of K, which results in a square matrix with dimensions of (N + 1)2. The 

SoftMax function is then applied to this matrix, producing a set of probabilities for each 

element in the matrix. When this matrix is multiplied with the matrix V, the result is a 

matrix with dimensions of N+1 by D. The square matrix generated by the attention 

operation puts more emphasis on the elements of the value matrix, which is identical to the 

original input matrix Z. This ensures that the input dimensions are preserved after the self-

attention layer is applied. 

In the next step, there is a skip connection and the matrices from the self-attention 

layer and the skip connection are added together and normalized. We are then at the level 

of the multi-layer perceptron, which is applied to each position separately and identically. 

In order to preserve the dimensions, the input and output of the multi-layer perceptron have 

the same dimensions, with the inner layer having a larger dimension that is dependent on 

the chosen model variant. The skip connection serves to reinforce the flow of information 

and, in order to be able to add the two matrices, they must have the same dimensions. This 

allows the model to effectively incorporate both the self-attention layer and the skip 

connection into its overall representation.  
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To summarize, we began with an input matrix Z with dimensions of N+1 by D, 

split it into identical K, Q, and V matrices, applied the multi-head attention layer and passed 

it through a multi-layer perceptron (MLP) layer, and ended up with a matrix with 

dimensions of N+1 by D. This process demonstrates that the input to the Transformer layer 

is identical to its output, regardless of the number of encoder layers used. This means that 

the dimensions of the input are preserved throughout the entire process. The vision 

transformer pipeline in this case is columnar rather than pyramidal [93], and the complexity 

of the problem is determined by the values of N (the number of patches) and D (the 

dimension of the latent vector). It is important to properly set these values in order to 

accurately address the problem at hand.  

In the case of multi-head attention, or parallel attention layers, we are able to 

maintain the dimensions of the model by concatenating the heads and reducing the 

dimensions of the key, query, and value matrices by the number of heads. This allows us 

to effectively reduce the complexity of the model while still preserving the relevant 

information. When we concatenate the heads, we are able to retrieve the original 

dimensions of the model. It is important to properly balance the number of heads with the 

dimensions of the key, query, and value matrices in order to ensure that the model is able 

to effectively process the input data while still being computationally tractable. 

In summary, we can see that the skeleton of the vision transformer has a columnar 

structure. Within the transformer block, the input matrix X is attended to itself at the 

transformer encoder block level through the multi-head self-attention (MHSA) layer. After 

each block, we are left with an output matrix that has improved semantics and higher 
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correlations among the projected pixel counterparts, leading to better classification results. 

It is important to note that the dimensions of the input matrix are preserved throughout the 

transformer blocks, which is a powerful feature that allows the model to effectively process 

the data while still being computationally tractable. The complexity of the problem is 

controlled through only two parameters: D and N. However, this particular configuration 

has some limitations, which motivated the authors of the “Pyramid vision transformer” 

paper [93] to focus on improving this structure in their work. 

 

Figure 3 

 Overview of the Vision Transformer Model 

 

Note. The Vision Transformer model has a columnar shape specifically engineered for 

image classification problems. 
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However, vision transformers require high data regimes and huge architectural 

variants to reach such performances Specifically, if ViT is trained on datasets with more 

than 14M images it can approach or beat state-of-the-art CNNs. 

2.2.2 DeepViT Vision Transformer Architecture Overview 

Convolutional neural networks [77, 94] integrate global information by combining 

multiple convolutional subsequent operations, whereas vision transformers (ViTs) [50] 

establish patterns from spatial information and non-local dependencies across the encoder 

block's multi-head self-attention (MHSA) function [60]. This allows vision transformer-

based models to acquire richer global context without manually building layer-wise local 

features extracted by convolution-based filters. Attending to all pixels of the image yields 

more meanings from global feature correlations. As proven in [73], on ImageNet 

classification problem, a model composed of 12-blocks of ViT encoders topped a ResNet 

model composed of more than 30 bottleneck convolutional blocks. 
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Figure 4  

Overview of Top-1 Classification Performance of Vision Transformer Models as Function 

of the Stacked ViT Encoder Blocks  

 

 

As shown in Figure 4, when the depth of the ViT model is increased by adding 

more transformer blocks on top of one another, the performance does not consistently 

improve. In fact, the model's performance tends to plateau and eventually decline. In 

contrast, the DeepViT model, which incorporates a re-attention mechanism, is able to 

improve performance by going deeper into the data. This model does not exhibit the same 

tendency to plateau, at least under the conditions tested. However, it is worth noting that 

this plateauing effect may still occur for larger models. Overall, these findings suggest that 

the re-attention mechanism implemented in the DeepViT model allows for more effective 

and efficient processing of the input data. 
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Figure 5 

Comparison of the (a) Basic ViT with N Transformer Blocks and (b) the DeepViT Model 

Suggested in DeepViT Model 

 

 

One of the key differences between DeepViT and ViT is the inclusion of a re-

attention layer within the transformer block. In ViT, this layer is typically replaced with a 

self-attention layer, which can lead to an "attention collapse" issue that limits the ability to 

train deeper models. By replacing the self-attention layer with a re-attention layer, 

DeepViT is able to address this issue and allow for the training of deeper ViT models. This 

modification allows DeepViT to process the input data and improve performance on 

various tasks more effectively. Overall, the inclusion of the re-attention layer is a key 

feature that sets DeepViT apart from ViT and allows it to achieve better results. 
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Figure 6 

Cosine Similarity Between the Feature Map of the Last Block and Each of the Previous 

Block 

 

 

In order to understand the behavior of ViT and DeepViT, the authors analyzed the 

cosine similarity between two successive feature maps before and after each transformer 

encoder block. They found that the ViT model initially has no similarities across feature 

maps in the initial encoder layers. However, as more encoder layers are added, the 

similarity increases, and the feature maps start to resemble one another. This is due to the 

fact that, without actual transformations occurring on the transitionary set of tokens, we are 

simply repeating the same transformer encoders, which is redundant. A similar effect can 

be seen in the DeepViT model, but it is prolonged, allowing for continuous progress until 

the point where repeated feature maps are produced that do not include any added 
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information. This analysis helps to shed light on the limitations of both ViT and DeepViT 

and suggests potential areas for improvement. 

 

Figure 7 

Attention Map Visualization of a Baseline ViT Model with Re-Attention - Comparison of 

Shallow and Deep Blocks with and without Re-Attention 

 

 

The attention map visualization shown here demonstrates the behavior of both the 

ViT and DeepViT models. It can be seen that these models primarily learn local patch 

relationships at the shallow blocks, with most of the attention values near zero. As the block 

becomes deeper, the scope of the attention maps increases gradually, but they tend to 

become nearly uniform and lose diversity. This suggests that the models struggle to 

effectively incorporate information from a wider range of patches as they process the data. 

Overall, the attention maps provide insight into the patterns of information that the models 

are able to learn and how they incorporate this information into their overall representation 

of the input data. 
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2.3 Convolutional Neural Networks 

Convolutional neural networks (CNNs) have been widely used in computer vision 

tasks, such as image classification, due to their ability to extract high-resolution features 

from data [95, 96]. These models are particularly effective at analyzing images because 

they are able to learn and recognize patterns and features within the data, allowing them to 

effectively classify and identify objects or other relevant features in the images. However, 

CNNs have certain limitations, such as a reliance on pre-defined kernel sizes and the 

inability to efficiently process data with long-range dependencies. In recent years, 

alternative models such as the vision transformer (ViT) have been proposed as a potential 

alternative to CNNs for certain applications. These models are able to process data in a 

more flexible and efficient manner, allowing them to potentially outperform CNNs on 

certain tasks. In the RSNA challenge, the top-ranking solutions for classifying cerebral 

bleeding in CT scans employed multi-stage classification models that incorporated a 

convolution-based feature extraction stage [97]. These models were able to accurately 

identify the presence of bleeding in the scans, highlighting the potential for machine 

learning to make a significant impact in the medical field. The use of convolution-based 

models for feature extraction allowed these solutions to effectively analyze the images and 

extract relevant features for classification. This demonstrates the utility of machine 

learning in medical applications and the potential for these techniques to improve patient 

care and diagnosis. 

The architecture of a machine learning model, including the stacking and 

arrangement of its convolutional layers, can significantly impact the features that the model 
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is able to extract from the data. These features are influenced by a variety of factors, such 

as the architecture structure, the parameters controlling the flow of visual information, and 

the depth of the model [98]. To improve the performance of the model, it is crucial to 

carefully consider these factors and optimize the design of the model. This may involve 

adjusting the architecture, selecting appropriate parameters, or increasing the depth of the 

model, among other approaches. By carefully designing the model's architecture, it is 

possible to improve its ability to extract relevant features and improve its performance on 

various tasks. 

One approach to improving the performance of a machine learning model is to 

increase the depth of its architecture. This can lead to improved feature representations due 

to the higher non-linearity and increased receptive field of the model. In addition to 

increasing the depth, there are various other strategies that can be employed to optimize 

the design of the model, including the use of different convolution layers, activation 

functions, loss functions, regularization methods, and optimization processes [99]. For 

example, certain off-the-shelf architectures have been proposed that aim to increase the 

perceptual field, improve feature extraction efficacy, and reduce the trainable parameter 

space, resulting in faster and more efficient computation. By carefully considering the 

design of the model and applying appropriate strategies, it is possible to significantly 

improve its performance and effectiveness [23,22,39,6,40]. 

Overall , the design of a machine learning model's architecture plays a critical role in its 

ability to effectively extract and utilize relevant features from the data. By carefully 

considering and optimizing various configurations, such as the architecture structure, the 
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parameters controlling the flow of visual information, and the depth of the model, it is 

possible to significantly improve the model's performance and accuracy. These 

considerations are particularly important for tasks such as image classification, where the 

ability to extract and analyze relevant features is critical for accurate and reliable results. 

By properly designing the model's architecture, it is possible to improve its effectiveness 

and maximize its potential for success on various tasks. 

2.3.1 Residual Neural Networks Overview 

The concept of residual networks was first introduced in 2015 in order to address 

the issue of vanishing gradients that can occur as a network grows in depth. When a 

network has a large number of layers, the gradients can become very small during the 

backward propagation process, which can negatively impact the gradient descent algorithm 

used to update the weights and biases. Residual networks, also known as ResNets, address 

this issue by incorporating a shortcut link, or skip connection, into the network design. 

These skip connections allow data from a previous layer to be injected directly into a deeper 

layer, helping to alleviate the problem of vanishing gradients and improving the 

performance of the network. Overall, the use of skip connections in residual networks has 

proven to be an effective method for addressing the challenges of training deep neural 

networks and improving their performance. 
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Figure 8  

Overview of Two Residual Block Types Used in ResNet Architectures 

 

 

The skip connection in a residual network, as shown in Figure 12, allows the 

activation x from an earlier layer to be added to the activation of F(x) a few layers deeper 

in the network. This sum is then passed through a ReLU non-linearity. By allowing the 

activation x to bypass several layers and be directly injected into a deeper layer, the skip 

connection helps to alleviate the problem of vanishing gradients. Even if a significant 

amount of information is lost in the function F(x), the presence of the activation x from the 

earlier layer means that some of this information is still present in the deeper layer. This 

can help to stabilize the gradients and improve the performance of the network. Overall, 

the skip connection is an important aspect of residual networks and plays a key role in 

helping to address the challenges of training deep neural networks. 
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Before the introduction of skip connections, it was difficult to train deep neural 

networks with more than 25 convolution blocks due to the problem of vanishing gradients. 

However, the use of residual blocks with skip connections has allowed for the creation of 

networks with hundreds or even thousands of layers, while still maintaining good 

performance. These residual blocks enable the network's architecture to grow very deep, 

while still being able to effectively learn and extract useful features from the data. As a 

result, the use of residual blocks has greatly expanded the capabilities of deep learning 

models and has led to significant advances in a wide range of applications. 

The performance of various residual network architectures was evaluated on the 

ImageNet dataset, which is a widely used dataset for testing the effectiveness of different 

network topologies. The results showed that residual networks with skip connections 

outperformed traditional networks without skip connections on this dataset. For example, 

a residual network with 34 layers achieved a training error of 7.76%, compared to a training 

error of 10.02% for a plain 34-layer network without skip connections. These results 

demonstrate the effectiveness of residual networks in improving the performance of deep 

learning models and highlight the importance of skip connections in overcoming the 

challenges of training deep neural networks. 

2.3.2 Inception Architecture Overview 

The inception module is a popular architecture used to improve the performance of 

convolutional neural networks (CNNs). It was first introduced in 2014 in the Inception 

paper [100], and since then it has become a widely used design in CNNs. In traditional 

CNNs, the size of the filters is a critical hyperparameter that must be carefully chosen by 
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the user. The inception module was developed to address this issue by computing multiple 

convolutions of different sizes (1x1, 3x3, and 5x5) and a 3x3 max pooling operation, 

eliminating the need for the user to manually select a single filter size. To reduce the 

computational cost of these convolutions, the inception module also includes 1x1 

convolutions that serve as a dimension reduction step before the more computationally 

expensive 3x3 and 5x5 convolutions. These 1x1 convolutions are activated with ReLU 

functions, which introduce nonlinearity to the process. Figure 13 illustrates an inception 

module with and without dimension reduction. 

 

Figure 9 

 Overview of Two Inception Modules Used in Inception Architectures 

 

 

The inception module combines the outputs of convolution and pooling operations 

to create a single output volume, which is then used as the input for the next layer of the 

network. This module allows the network to determine which filter sizes and pooling 

techniques will be most effective at improving the model's accuracy, rather than relying on 
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the user to manually select a filter size. The network can also determine the optimal filter 

size for a particular layer, eliminating the need for manual selection. 

Xception Architecture Overview 

The Xception architecture is a type of convolutional neural network (CNN) that is part of 

the Inception family of CNNs and is characterized by its use of depth-wise separable 

convolutional layers. Depth-wise separable convolutions are implemented by first 

performing a spatial convolution independently on each channel of the input, followed by 

a 1x1 convolution to transform the dimensions. This is in contrast to traditional 

convolutions, which operate over all channels of a volume at once. The Xception 

architecture is based on the Inception framework and has been shown to be effective in a 

range of image classification tasks. This reduces the number of connections and, as a result, 

the model's learnable parameters. 

 

Figure 10 

Overview of the Depth Wise Separable Convolution Used in Xception Architectures 
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The Xception network architecture is a combination of two previous successful 

network designs, the ResNet and the Inception Network. It combines the use of skip 

connections from the ResNet design with depthwise separable convolutional layers from 

the Inception Network. The resulting network is made up of a linear stack of 36 depthwise 

separable convolution layers connected by skip connections. This combination of 

principles allows the Xception network to benefit from both the ResNet and Inception 

Network designs. When tested on the ImageNet dataset, the Xception network was able to 

outperform both the 152-layer ResNet and the Inception Network, demonstrating its 

effectiveness as a network architecture. [23][24]. 

2.3.3 EfficientNet Architectures Overview 

The EfficientNet family of models is a collection of convolutional neural networks that are 

designed to be both accurate and efficient. They are created using a structural scaling 

technique that scales every dimension of the architecture using a set of predetermined 

scaling coefficients. This technique was developed by the authors of the EfficientNet paper 

[78] and resulted in the creation of the EfficientNet B0 to B7 models. These models have 

been shown to outperform the state-of-the-art in terms of accuracy on the ImageNet dataset, 

while also being smaller and faster than other convolution models with similar accuracy 

scores. The scalability of the EfficientNet models is heavily influenced by the baseline 

network used, and the authors used the AutoML MNAS framework [102] to conduct a 

neural architecture search in order to further enhance the performance of the models in 
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terms of FLOPS (floating-point operations per second). The EfficientNet models are 

created using inverted mobile bottleneck convolution applied to the base model [103]. 

 

Figure 11 

Overview of the Baseline Scalable and Generalizable EfficientNet-B0 Network in 

EfficientNet Architectures 

 

 

2.3.4 Convolution Operations for Features Dimensionality Reduction  

Deep convolutional neural networks often have an increasing number of feature 

mappings as the network depth increases, which can be a disadvantage. This problem can 

be exacerbated when larger filter sizes, such as 5-by-5 and 7-by-7, are used, as they can 

significantly increase the number of parameters and computation required to process the 

data. In order to address this issue, 1-by-1 convolutional layers, also known as projection 

layers or feature map pooling layers, can be utilized. These layers are effective at down-

sampling the content of feature maps and preserving the most salient information, while 

reducing the overall number of feature maps needed. Additionally, projection layers can 

be applied directly to feature maps to perform a direct projection, which can be used to 

generate new feature maps or to pool features across channels in a similar manner to 
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traditional pooling layers. By using these projection layers, it is possible to simplify the 

model and reduce complexity without sacrificing important features or performance in 

tasks such as image classification and object detection. 

2.4 Convolution Neural Network-Based Vision Transformers 

The convolution vision transformer model (CvT) introduced by Wu et al. [104] 

combines the strengths of both convolutional neural networks (CNNs) and vision 

transformers (ViT). The CvT model utilizes the end-to-end feature learning capability of 

CNNs and the input structure of ViT to create a hierarchy of ViT modules and CNN token 

embeddings. This hierarchy allows the CvT model to take advantage of the scale, shift, and 

distortion invariances present in CNN features, while also maintaining the dynamic 

attention and global context capabilities of transformers. Additionally, the CvT model 

exhibits strong generalizability, making it a powerful tool for various vision tasks. It has 

the potential to become a widely used architecture in the field of computer vision, 

particularly for tasks that require both strong feature learning and contextual 

understanding. 

2.5 Vision Transformer in Medical AI 

Since their inception, transformers have quickly gained popularity in medical 

artificial intelligence (AI) applications due to their high level of adaptability. Several 

successful implementations of the vision transformer (ViT) in the medical field have been 

proposed and demonstrated significantly better performance compared to traditional 

convolution-based models [79]. The ability of ViT to effectively process and analyze large 
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amounts of data and provide accurate predictions has made it a valuable tool in the medical 

field. 

2.6 RSNA Challenge and Dataset 

The success of modern computer vision models can be largely attributed to the 

extensively annotated benchmark datasets that have been collected by the machine learning 

community. These datasets provide a wealth of information for machine learning 

algorithms to learn from, which is crucial in the development of accurate and reliable 

models. In 2019, the Radiological Society of North America (RSNA) provided a large 

collection of brain CT scans for use in a machine learning challenge [105]. The dataset 

included scans of both healthy participants and patients with various types of an internal 

cerebral hemorrhage. The RSNA dataset was collected by Adam E. et al. [105] from 

multiple scanner types used in different institutions around the world. The dataset is 

considered the current largest dataset publicly available aimed to capture complex real-

world details of the hemorrhage sub-types. The dataset was publicly released in the 2019 

Intracranial Hemorrhage (ICH) detection challenge hosted by the Kaggle platform. This 

dataset is considered the current largest dataset available online and contains 870,301 

annotated 16-bit grayscale computer tomography (CT) scans saved in the DICOM format, 

annotated with five types of hemorrhage. Trained physicians categorized each CT slice 

with one or more types of a brain hemorrhage. Five different forms of hemorrhages are to 

be identified in this competition, with an additional class representing the presence of any 

hemorrhage type in the provided slice. These classes were labeled as Epidural hemorrhage 
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(EDH), Intraparenchymal hemorrhage (IPH), Intraventricular hemorrhage (IVH), 

subarachnoid hemorrhage (SAH), and Subdural hemorrhage (SDH). 

The goal of the machine learning challenge was to encourage the development of 

autonomous algorithms for multi-class hemorrhage classification. These algorithms, 

known as computerized multi-label classifiers, were designed to analyze 2D slices of CT 

images and determine whether there was any cerebral bleeding present. They also provided 

a probability vector with six components related to different classification targets. This 

information is important in the field of radiology, as it allows doctors to accurately 

diagnose and treat patients with cerebral bleeding. 

Overall, the use of annotated benchmark datasets and advanced machine learning 

techniques has greatly improved the accuracy and reliability of modern computer vision 

models. These models have the potential to revolutionize the way that medical diagnoses 

are made and can ultimately lead to better patient outcomes. The RSNA challenge serves 

as a testament to the potential of machine learning in the medical field and highlights the 

importance of ongoing research and development in this area.  

2.7 Generative Adversarial Networks 

Generative Adversarial Networks (GANs) are a type of machine learning model 

that can generate new data by training a learnable generative model on a dataset of existing 

data [106]. They are designed to have two neural networks: the generator (G) and the 

discriminator (D), which are connected by a bottleneck known as the latent or feature space 

[107]. The generator's goal is to create new images (x) by sampling noise from normal 

distributions and learning latent features (z) from the training dataset, using the equation 
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x=G(z) [106]. These latent features are learned automatically by the GAN during the 

training process, and we have no control over their specific values or meanings [106]. 

However, we can analyze the generated images produced by the GAN to better understand 

the semantic meanings of these latent features [107]. 

One of the most commonly used generator network designs for GANs is the Deep 

Convolutional Generative Adversarial Network (DCGAN) [107]. DCGANs use transposed 

convolutions and up-sampling to create new images from random noise (z) [107]. They are 

often considered to be reversed deep learning classifiers, as they generate new images 

rather than classifying existing ones [107]. In this way, the generator creates random noise, 

and the discriminator guides it towards producing specific types of images [106]. 

GANs have a wide range of applications, including image generation [106], text 

generation [108], and data augmentation [108]. They have been used to generate realistic 

images of faces [109], animals [110], and other objects [111], as well as to create synthetic 

datasets for training other machine learning models [112]. GANs are a powerful tool for 

creating new data and have the potential to revolutionize many areas of machine learning 

and artificial intelligence. 

2.8 Transfer Learning 

The concept of transfer learning involves using knowledge and skills acquired from 

tasks that have a large amount of labeled data available to perform tasks that have only a 

small amount of labeled data available. This can be especially useful in situations where 

creating new labeled data is time-consuming or expensive, as it allows you to make use of 
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existing datasets in a more efficient way. There are several reasons why transfer learning 

is commonly used in practice: 

• It is often difficult to train a Convolutional Neural Network (CNN) from scratch 

due to the lack of available labeled data. In these cases, using pre-trained network 

weights as initializations for training or using a fixed feature extractor can help to 

solve many problems more effectively. 

• Training large neural networks can be very resource-intensive, especially when 

using powerful graphics processing units (GPUs). Transfer learning can help to 

reduce the amount of training time and computational resources needed to build 

and train complex models like the proposed Scopeformer model. 

• Determining the optimal topology, training method, hyperparameters, and other 

details for deep learning models can be challenging, as there is often not much 

theoretical guidance available. Transfer learning can help to simplify this process 

by allowing you to leverage the knowledge and skills learned from other tasks to 

perform new ones more effectively. 

2.9 Sharpness-Aware Minimization 

Sharpness-Aware Minimization (SAM) is a recent optimization method that has 

shown great potential in improving the generalization ability of neural networks. 

Generalization is a crucial aspect of machine learning models, as it allows the model to 

accurately perform on unseen data. Traditional optimization methods, which rely solely on 

minimizing the training loss, can often lead to overfitting, where the model memorizes the 

training data rather than learning generalizable patterns. This can lead to poor performance 
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on unseen data and hinder the model's ability to generalize to new situations. SAM 

addresses this issue by not only minimizing the loss value, but also minimizing the loss 

sharpness. Loss sharpness refers to the smoothness versus sharpness of the loss landscape. 

The loss landscape refers to the shape of the loss function over the space of all possible 

model parameters. It is often visualized as a three-dimensional plot, with the loss value 

represented on the vertical axis and the model parameters on the horizontal axes. The loss 

landscape can have many different shapes, depending on the complexity of the model and 

the characteristics of the training data. A landscape with many deep, narrow minima is said 

to have a high degree of sharpness, while a landscape with shallower, more diffuse minima 

is said to have low sharpness. In other words, it is a measure of how smoothly or sharply 

the loss function changes as the model's parameters are varied. A loss function with high 

sharpness will have very distinct and pronounced minima, while a loss function with low 

sharpness will be more diffuse and have shallower minima. Loss sharpness plays a crucial 

role in the generalization ability of a model. By searching for parameters in the vicinity of 

uniformly low loss values, rather than low loss singularities, SAM aims to find a more 

stable and generalizable set of weights. This approach has been shown to be effective 

across a variety of computer vision tasks, including CIFAR 10, CIFAR 100, and ImageNet. 

In addition to improving generalization, the use of SAM has also been shown to enhance 

the accuracy of machine learning models. By finding a more stable set of weights, SAM is 

able to reduce the risk of overfitting and improve the model's ability to accurately predict 

on unseen data. This is particularly important in fields such as healthcare and finance, 

where accurate predictions are crucial for making informed decisions. Overall, the use of 
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SAM has the potential to greatly enhance the generalization ability of neural networks and 

improve the accuracy of machine learning models. It is an exciting development in the field 

of optimization and has already shown promising results in a variety of tasks. As such, it 

is likely that we will see more research and development in this area in the future. 

2.10 Feature Correlation 

The feature correlation layer is an important building block for many computer 

vision algorithms and has a wide range of applications. It is used to calculate dense 

correspondences between pairs of images, which can be used to compare the similarity 

between the two images. This is done by evaluating the pairwise similarities between the 

reference and query feature maps of a convolutional neural network (CNN), through the 

calculation of scalar products between corresponding pairs of vectors. These 

correspondences can be used for a variety of purposes, including geometric matching, 

disparity estimation, optical flow, few-shot segmentation, semantic matching, and video 

object segmentation. One of the key benefits of the feature correlation layer is its ability to 

provide a reliable measure of similarity between image pairs. This can be used to inform 

various decision-making processes within the CNN, such as identifying corresponding 

points between images or determining the presence of certain objects or features. The 

feature correlation layer is an essential component of many computer vision algorithms 

and has proven to be highly effective in a wide range of applications. As such, it is likely 

that it will continue to be an important part of the field of computer vision in the future. 
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2.11 Projection Methods 

Projection methods, such as PCA viewed as a linear autoencoder, can be used for 

dimensionality reduction through the use of 1x1 convolution layers. The goal of these 

methods is to improve the quality of the data by overcoming sparse and noisy inputs, and 

to reduce uncertainty and repetitive extracted features. One way to increase the richness of 

the features inputted to a ViT block is by reducing the output dimension of a CNN and 

replacing it with different CNN modules. Additionally, compressing the data can be useful 

for reduced-order models (ROMs), where ViT leverages the data in the form of low-rank 

features. These projection methods can be particularly useful in scenarios where the 

amount of available data is limited, as they can help to extract the most important and 

relevant information from the data. 

2.12 Deep Learning Hyperparameters 

Deep learning hyperparameters are variables that are not learned during the training 

process of a deep learning model but are instead set by the practitioner. These 

hyperparameters can significantly affect the performance of a deep learning model, making 

their selection an important task in the development of any deep learning system. 

There are several common types of hyperparameters that are typically tuned in deep 

learning models. These include learning rate, batch size, number of epochs, and the size of 

the network. 

The learning rate is a hyperparameter that determines how fast the model updates 

its weights during training. A larger learning rate can lead to faster training, but it also 
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increases the risk of the model converging to a suboptimal solution. On the other hand, a 

smaller learning rate can lead to slower training, but it also increases the chance of the 

model finding a better solution. 

The batch size is another important hyperparameter, and it determines the number 

of training examples used in each iteration of the training process. A larger batch size can 

lead to faster training, but it can also increase the risk of the model overfitting. A smaller 

batch size can lead to slower training, but it can also help to prevent overfitting. 

The number of epochs is a hyperparameter that determines the number of times the 

model is trained on the entire dataset. Increasing the number of epochs can lead to a better 

model, but it also increases the training time. 

The size of the network, or the number of layers and the number of units in each 

layer, is another important hyperparameter. A larger network can lead to better 

performance, but it also increases the risk of overfitting and the training time. 

Tuning these hyperparameters can be a challenging task, as it requires a good 

understanding of the problem and the trade-offs involved. There are several techniques that 

can be used to tune hyperparameters, including manual search, grid search, and random 

search. 

Deep learning models are highly dependent on the hyperparameters that are set 

before training. Hyperparameters are high-level settings that control the overall behavior 

of the model, such as the learning rate, the size of the model, and the number of epochs to 

train for. Choosing the right hyperparameters can be a challenging task, as there is often a 
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trade-off between performance and efficiency. Too high a learning rate may result in 

unstable training, while too low a learning rate may result in slow convergence. Similarly, 

a model that is too small may underfit the data, while a model that is too large may overfit 

the data and require more computational resources. There are several approaches to 

selecting hyperparameters. One common approach is to use a grid search, where multiple 

combinations of hyperparameters are trained and evaluated in order to find the optimal 

combination. This can be time-consuming, however, and may not always lead to the best 

results. Another approach is to use a random search, where random combinations of 

hyperparameters are sampled and trained in order to find the optimal combination. This 

can be more efficient than a grid search, but still may not guarantee the best results. Another 

approach is to use a Bayesian optimization method, which uses a probabilistic model to 

guide the search for the optimal hyperparameters. This can be more efficient than random 

or grid search, as it takes into account the results of previous trials in order to guide the 

search in the most promising directions. 

In conclusion, deep learning hyperparameters play a crucial role in the performance 

of a deep learning model. Careful selection of these hyperparameters can significantly 

improve the model's accuracy and generalization ability. 

2.13 Data Augmentation 

Data augmentation is an effective technique for improving the performance of deep 

learning models. By generating additional training data through various transformations of 

the original data, data augmentation can help to reduce overfitting and improve the 

generalization ability of the model. It can also be used to un-bias the learning towards 
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specific shapes, as the model is exposed to a wider range of variations during training. 

There are two types of data augmentation techniques: soft and hard. Soft data augmentation 

involves relatively small transformations of the data, such as rotation, horizontal flip, 

vertical flip, random cropping, and random zooming. Hard data augmentation involves 

more significant transformations, such as using GANs or multiple standard data 

augmentation techniques on a given input dataset or batch. There are several libraries 

available that provide data augmentation functionality, such as Magenta, Kornia, and AI 

AugLy. These methods can be deployed dynamically during training to increase the 

training data and to un-bias the learning towards specific shapes. Data augmentation is a 

useful tool for improving the performance of deep learning models, and it is often used in 

conjunction with other techniques such as hyperparameter optimization and regularization 

to further improve model performance.  
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Chapter 3 

 Approach and Methodologies 

 

The approach and methodology for developing the hybrid computer vision algorithm will 

be explained in Chapter 3.  

3.1 Introduction 

Inspired by the recent advancement of the vision transformer model [50], we 

present a hybrid architecture called Scopeformer, that merges the advantages of multiple 

convolutional neural networks (CNNs) and vision transformers (ViT). The CNNs are used 

for feature extraction, while the ViT encoders are responsible for differentially extracting 

weights from the global feature map. These weights represent the inter-feature correlations 

learned by the model with relevance for the hemorrhage classification problem. Our work 

hypothesizes that using feature maps obtained from well-designed CNNs can enhance the 

information processed by ViT and the input resolution it focuses on. The use of CNNs for 

feature extraction allows us to take advantage of the scale, shift, and distortion invariances 

present in these features, while the ViT allows us to maintain the dynamic attention and 

global context capabilities of transformers. Additionally, we propose that generating 

features from a single input image through various CNNs results in a more comprehensive 

set of features with a higher resolution.  
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In order to evaluate the effectiveness of our proposed architecture, we will be tackling the 

RSNA cerebral hemorrhage classification challenge, which is a widely recognized 

benchmark dataset in the field of medical image analysis. Our goal is to develop an accurate 

and reliable model that is able to accurately classify different types of intracranial 

hemorrhages in CT scans. Based on our initial results, we will then proceed to construct an 

Efficient Scopeformer architecture that leverages the training difficulties and model 

failures of the proposed model to make it more memory efficient and scalable. Overall, our 

goal is to create a powerful tool for the accurate and timely diagnosis of intracranial 

hemorrhage, which has the potential to greatly improve patient outcomes and reduce 

mortality rates.  

3.2 Methodology 

The goal of this project is to improve the performance of the vision transformer 

(ViT) model in the task of detecting cerebral hemorrhages from computed tomography 

(CT) scans. To achieve this, we propose the use of a feature generator backbone built from 

multiple convolutional neural networks (CNNs) that are pretrained on predefined 

architectures. The ViT model has shown to be effective in many computer vision 

applications, but it requires large amounts of data and complex architecture in order to 

achieve its full potential. To address this, we aim to utilize pretrained feature extraction 

modules and incorporate dimensionality reduction within the proposed model in order to 

improve the training of the ViT model. Additionally, we focus on making the architecture 

more scalable and efficient by reducing the number of trainable parameters through the use 

of pretraining methods and dimensionality reduction, and by carefully engineering the 
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model and training paradigms to increase feature richness. We also aim to address the high 

computational and memory requirements of the ViT model by optimizing these resources 

and utilizing data augmentation and synthetic data generation techniques.  

3.3 Scopeformer Model Architecture 

We present our hybrid n-CNN-ViT model in figure 8. The model is composed of n 

number of CNN models stacked to build the feature-extractor backbone. 

 

Figure 12 

Overview of the Proposed n-CNN-ViT Architecture 

 

Note. The model is composed of two main stages: Feature map generation and global 

attention encoding for the MLP head classification. 

 

We refer to the n-CNN-ViT model as ``Scopeformer'', derived from the 

``Transformer'' (-former) and the word "Scope-" for the selective feature extraction 

backbone generated from the convolution blocks with deep receptive fields. The 
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Scopeformer model brings significant advancement in ViTs and CNNs. The main 

difference between a Scopeformer model and ViT resides in employing high-level features 

with more semantic information as input to the Transformer encoder, as opposed to the 

originally proposed ViT model which inputs raw natural images in the form of small 

patches. The Scopeformer model takes global convolutional feature maps in the form of 

smaller but deeper patch sizes. The ViT patch extraction method consists of dividing a 

natural image into patches along the height and width, then flattening every patch and 

joining all channels into a single 1-D token. Similarly, we pixel-wise divide the feature 

map along the height and width of the features into 𝑝 ×  𝑝 patches, where 𝑝 is the feature-

patch size (with 𝑝 = 1 for all the experiments in this work). 

The input to the model consists of a tensor with a dimension of H × W ×  C, where 

H represents the height, W represents the width, and C is the number of concatenated 

channels derived from the RSNA DICOM files. The model executes a concurrent forward 

pass of the input images through different CNN architectures and stores the output features 

f. These features are concatenated along the channel axis. The resultant global feature map 

has a dimension of h × w ×  c, where ℎ represents the features height, 𝑤 represents the 

features width, and 𝑐 is the total number of features with 𝑐 = 𝑛 × 𝑓. 

The first Scopeformer architecture uses Xception CNNs [101] and several ViT 

layers. The Xception model is comprised of several Inception modules composed of depth-

wise and point-wise convolutions. In our Scopeformer model, we stack n differently pre-

trained Xception models Xception [101] in the feature extraction backbone and freeze 
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updates on their weights during training. We use the last inception layers embedded within 

the Xception models as features generators.  

The first compartment of the Scopeformer model is the CNN backbone block. The 

main function of this block is to generate high-level features extracted from the inputted 

generated 3-channel grayscale stacked medical images. The feature generator block 

extracts set of specific features by the mean of multiple Xception [101] CNN architectures 

concatenated along the z-axis of the features with an assertion that the height and width 

across all set of features must be identical. These features are specific to each Xception 

CNN and the specific methods we used to train its weights. The choice of a single type of 

architecture was made initially to distinguish the effects of varying the pretraining 

techniques across the Xception architectures prior to training the Scopeformer model in an 

end-to-end fashion. A patch extraction layer is introduced to reshape the 3-D features into 

the proper shape of “𝑁” unidimensional patches for the Vision Transformer block input 

with conserving the order of which we conduct the tokenization. The hard-split patches are 

flattened to form a sequence of vectors and packed together along with a learnable class 

embedding to form the input matrix. The resultant matrix of input vectors is mapped 

through a trainable projection to a constant latent set of vectors. The pointwise addition of 

the set of positional embedding vectors to the resultant embedding matrix form the input 

to the vision transformer block. The ImageNet pre-trained Xception CNNs, present high-

level features to the ViT block. To this end, we consider that the primary role of the ViT 

block is to extract correlations from depth-wise patches. The global feature map can be 

generated using one or more Xception blocks stacked in the same Scopeformer as depicted 
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in figure 8. Our initial experiments consider stacking raw features from CNN blocks 

without any further processing. The positional embedding matrix is trainable where each 

row represents the position of the relative vector to which we are pointwise adding the 

input. The second compartment in the Scopeformer architecture is the vision transformer 

(ViT) block. In the original ViT paper, the authors extract patches out of natural images 

such as ImageNet and extract the global context local correlations among different tokens 

of the image. However, we argue that inputting the original image to ViT results in limited 

localization abilities, or a loss of the feature resolution which is due to the limited low-

level details the ViT block must be trained to extract. To compensate for that, we use here 

a hybrid CNN-Transformer architecture. This is powerful cause we leverage the detailed 

high-resolution spatial information from the CNN features and the global context encoded 

by Transformers. To this end, the role of training, or pretraining the CNN is that CNNs 

will be trained to encode images into high-level feature representation. And then, patch 

embedding is applied to 1 by 1 patches extracted from the CNN feature map instead of the 

raw images. The Transformer encodes tokenized image patches from the CNN feature map 

as the input sequence, and thus extracts global contexts [113] of the CT scans of the brain 

and the existence of the several types of hemorrhaging. It is applied either directly to raw 

images or to a given 𝒏 number of feature maps extracted from the latest Xception Add 

layers and concatenated to a single feature map. We adopted the base ViT variant with 12 

encoder layers and a latent vector dimension of 1456. In our experiments, we used the 

RSNA intracranial hemorrhage dataset [105] by generating 224 × 224 × 3 images from 

the DICOM files [95]. The input image to each feature extractor is 224 × 224 × 3, and the 
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output dimension is 7 × 7 × 1024. For multiple CNNs, the size of the input vector will be 

7 × 7 × (𝑛 ∗ 1024). A smaller version of n-CNN-ViT models was introduced to reduce 

the computational complexity of the ViT input, where we use a 1 × 1 CNN filter after the 

Xception Add layer to reduce the dimension from 1024 to 128. 

In our formulation, we tend to diversify the pre-training methods of every Xception 

CNN. This allows for generating different features specific to each architecture. In the first 

phase of model training, we load the ImageNet pre-trained weights in all CNNs using Keras 

API [114]. In the second phase of training, Xception CNNs are trained to perform different 

classification tasks, including RSNA hemorrhage dataset to perform classification. We 

used hard data augmentation on one of the CNNs and soft data augmentation on the others. 

We applied style transfer [115] on ImageNet dataset to induce a grayscale brain-like image 

shape bias as depicted in the figure 9. The output dataset was used to pre-train the third 

CNN. In our experiments, we tested several combinations of the pre-trained CNNs within 

the Scopeformer architecture. 
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Figure 13 

Style Transfer Method Applied on ImageNet Dataset. (a) Content Image, (b) Style Image, 

and (c) Output Image 

             

 

3.4 Efficient Scopeformer Model Architecture 

Motivated by the performance of these two models, we proposed in our earlier work 

[116], a hybrid architecture consisting of multiple Xception CNN models [101] for feature 

extraction and several vision transformer encoders for differentially extracting significance 

weights of the feature map relevant to classification. Results showed that the classification 

accuracy is proportional to the number of Xception models and the variety of the 

pretraining methods used to train the CNN architectures. We propose enhancing our earlier 

n-CNN-ViT Scopeformer model by employing a more efficient version of the ViT and 

improved feature extraction method. We modified our Scopeformer architecture by 

introducing several changes in the feature extractor CNNs and the ViT. There are four 

modules as shown in Fig. 3. After extensively testing the Scopeformer model, we 

formulated and included several innovations in the feature extractor CNNs and the ViT 

blocks. We define four modules as presented in figure 9. The first module is the 
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Scopeformer Backbone and represents the stack of multiple CNNs contributing the global 

feature map. The second module is designed for patch extraction (from the CNN features) 

to generate ViT tokens. The third module consists of the ViT pipeline. Finally, the fourth 

module represents the classification head. We discuss these modules in the following 

sections. 

 

Figure 14 

A Schematic Layout of the Scopeformer Architecture 

 

Note. The proposed model is composed of four main modules: (1) Scopeformer Backbone, 

(2) patch extraction, (3) vision Transformer (ViT) encoder, and (4) classification head. A 

single input image is fed to several CNN models to extract a variety of features and 

construct feature maps. These feature maps are processed by the patch extraction module 

and vectorized. The vectors form the input to the Transformer encoder and the model 

output is taken from the classification module. 
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3.4.1 Module 1: Scopeformer Backbone 

The proposed Efficient Scopeformer uses a variety of CNNs to build the feature 

extraction block. The backbone CNNs include ImageNet-pretrained ResNet 152 V2, 

EfficientNet B5 [78], DensNet 201 [117], and Xception [101]. The features generated by 

each CNN are concatenated along the channel axis to form a global feature map. However, 

constructing such a feature map requires that the individual feature maps generated by each 

CNN to have identical height and width. We propose augmenting each CNN with a single 

trainable 1 × 1 convolutional layer that projects the features to an appropriate space. The 

input to the Efficient Scopeformer consists of a tensor with a dimension of H ×W ×3, where 

H represents the height, W represents the width, and 3 is the number of channels. The 

image is concurrently fed to four CNNs to generate high-level feature maps. The channel 

dimension of all four feature maps will be reduced using 1 ×  1 convolution layer to 

8 ×  8 × 
𝑑

4
  , where d is the size of the global feature map. 

3.4.2 Module 2: Patch Extraction 

The input dimension of the second module depends on the size of the global feature 

map set by the first module. In our experiments, the resultant global feature map is a 3D 

tensor with a shape of 8 × 8 × 𝑑. The patch extraction module splits the features across the 

height and width in a channel-wise manner, and extracts 𝑁 =  
8×8

𝑝2
 d-dimensional vectors. 

We set the patch size to 1 × 1, and get 𝑁 = 64 tokens representing one local pixel position 

of features across all the d features. The dimension d is controlled by the projection method 

used in the previous module and represents a bottleneck of the architecture. Every patch 

contains semantic information of the local pixel position across all the generated features 
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from the four CNNs. The resultant sequence of flattened patches 𝑋𝑝 ∈  ℝ64×𝑑  is then used 

as the input set for the ViT block. 

3.4.3 Module 3: Scopeformer ViT 

We evaluated three different ViT configurations for the proposed architecture as 

depicted in Figure 2. These configurations include (1) Deep Scopeformer, (2) deep 

Scopeformer TR (Transpose), and (3) Efficient Scopeformer.  

 

Figure 15 

ViT Scopeformer Configurations  

 

Note. (Left) Baseline Scopeformer Configuration. The first configuration is a ViT block 

with an input of vectorized patches extracted from the CNNs features. (Center) Deep 

Scopeformer TR Configuration: The second configuration introduces a transpose layer 
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to transform the channel-wise patches into feature-wise patches. (Right) Efficient 

Scopeformer Configuration: The third configuration dismisses the token class and uses 

all the feature tokens as input. The output of the third block will be transposed to retrieve 

back the dimension of the CNN features, which we feed to the classification module. 

Baseline Scopeformer Configuration 

In this configuration, we feed a set of vectors generated by patch extraction layer to ViT 

encoders. We used trainable position encoding vectors coupled with vectorized patches and 

a trainable class (CLS) token. The dimension of the input to ViT encoder block is 𝑌 ∈

 𝑅𝑁 × 𝑑 + 1. We used two self-attention variants. The first one is referred to as multi-

head self- attention (MHSA) [50] and the second variant as the multi-head re-attention 

(MHRA) [89]. The key difference resides in the introduction of a trainable transformation 

matrix. These variants are given by: 

𝑀𝐻𝑆𝐴(𝑄, 𝐾, 𝑉) =  𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘
) 𝑉 

𝑀𝐻𝑅𝐴(𝑄, 𝐾, 𝑉) =  𝑁𝑜𝑟𝑚 (𝑀𝑇 (𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘
))) 𝑉 

where 𝑀 ∈  ℝℎ×ℎ  is a learnable transformation matrix, and h is the number of self-

attention heads. 
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Figure 16 

Scaled Dot-Product Attention and Multi-Head Attention 

 

 

With 𝑀 ∈  𝑅ℎ × ℎ is a learnable transformation matrix, and h is the number of 

self-attention heads. 

Deep Scopeformer TR Configuration 

The second Scopeformer ViT configuration applies a transpose operation to the set of 

vectors produced by the patch extraction layer. The output of the transpose layer is summed 

up with the position encoded vectors and concatenated with the CLS token. The dimension 

of the resultant set of vectors is Y𝑇 ∈  ℝd×𝑁+1. We used only MHRA self-attention variant 

(Eq. 2) in our experiments. 

Efficient Scopeformer Configuration 

The third Scopeformer module discards the CLS notion used in previous configurations. 

In these settings, we use all the features generated by ViT encoders for classification. As 

such, the dimension of the input and output of ViT encoders remain identical and equals to 
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Y𝑇 ∈  ℝd×𝑁 . We use a Transpose and Reshape layer at the ViT output to get the appropriate 

dimension for the feature map. We use MHRA self-attention variant to compute self-

attention. 

3.4.4 Module 4: Classification Module 

The classification module in baseline and the deep Scopeformer TR configurations receives 

a single CLS token. The output of this token is turned into a prediction using a multi-layer 

perceptron (MLP) with a sigmoid activation function and a single hidden layer. In the 

efficient Scopeformer configuration, the classification module receives a set of reshaped 

features x𝑦 ∈  ℝ8×8×𝑑. The classification module applies a 2D average pooling layer, 

followed by a flatten layer. Finally, the inference of the class is done via a dense layer with 

a sigmoid activation function. 

3.5 Datasets 

The RSNA dataset was collected by Adam E. et al. [105] from multiple scanner 

types used in different institutions around the world. The dataset is considered the current 

largest dataset publicly available aimed to capture complex real-world details of the 

hemorrhage sub-types. The Radiological Society of North America (RSNA) dataset was 

released in the 2019 Intracranial Hemorrhage (ICH) detection challenge hosted by the 

Kaggle platform. The dataset contains 870,301 annotated 16-bit grayscale computer 

tomography (CT) scans saved in the DICOM format. Individual images consist of pixels 

that have a range of 0 to 216 with a resolution of 2562, referred to as Hounsfield Units 

(HU). HU represents the density of the scanned matter. Trained physicians categorized 

each CT slice with one or more types of the brain hemorrhage. Five different forms of 



65 
 

hemorrhages are to be identified in this competition, with an additional class representing 

the presence of any hemorrhage type in the provided slice. These classes were labeled as: 

Epidural hemorrhage (EDH), Intraparenchymal hemorrhage (IPH), Intraventricular 

hemorrhage (IVH), subarachnoid hemorrhage (SAH), and Subdural hemorrhage (SDH). 

Attenuation HU values are indicative for the content of the scan (Broder and 

Preston, 2011). For instance, bones have an attenuation value ranging between 250 and 

1000, and fat and muscle have attenuation values (AV) ranging between 50 and 100. 

Applying HU windows on a CT slice yields an 8-bit grayscale image. We use three 

windows of HU as channels in the input of the Scopeformer model.  

3.6 Data Preprocessing 

Individual images consist of pixels that have a range of 0 to 216 with a resolution 

of 25616, referred to as Hounsfield Units (HU). HU represents the density of the scanned 

matter. The values of attenuation in Hounsfield Units (HU) can provide information about 

the content of a CT scan. For example, bones typically have an attenuation value between 

250 and 1000 HU, while fat and muscle have values between 50 and 100 HU. These values 

can be used to create an 8-bit grayscale image through the application of HU windows. In 

this study, we use three HU windows as input channels for the Scopeformer model: a brain 

window with attenuation values between 40 and 80 HU, a subdural window with values 

between 80 and 200 HU, and a soft tissue window with values between 80 and 200 HU. 

Single slices of each scan in the dataset were pre-processed individually. Hounsfield unit 

(HU) windowing is an effective practice for manual stroke detection [118]. The RSNA CT 

scan DICOM files provide tags in the metadata about Hounsfield ranges used during 
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registration of the CT scan. We use these tags to ensure standardization of the ranges across 

the dataset prior to applying HU windowing [119]. We use three windows of HU as 

channels in the input of the Scopeformer model, as depicted in figure 12. Our settings for 

HU windows were brain 𝐴𝑉 ∈ [40,80] HU, subdural window 𝐴𝑉 ∈ [80, 200] HU, and 

soft tissue window 𝐴𝑉 ∈ [40,380] HU, similarly to Burduja et al. [95] 

 

Figure 17 

Hounsfield Unit CT Slice Conversion and the Corresponding Stacked 3-Channel Image 

 

Note. During CT scan preprocessing, each slice in each scan was separated into three 

different windows based on HU thresholds. The three windows were then combined into 

channels and saved a single RGB image. 

 

We generate 3-channel images by combining three defined windows from the 

DICOM Hounsfield unit (HU). The output dimension of the images was set to (224,224,3). 

We split the dataset into 90% for training and 10% for validation. 
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3.7 Experiments 

Details about the various Scopeformer hyperparameter configurations and 

architectures are presented in table 1.  

 

Table 1  

Various Configurations – Hyperparameters and Learnable Parameters 

Model CNN 

Blocks 

Layers Feature size MLP Heads Parameters 

Scopeformer (S) 4 8 516 3072 12 34 M 

Scopeformer (B) 4 8 512 4096 16 42 

Scopeformer (M) 4 8 512 5120 16 43 

Scopeformer (L)/4 4 4 1024 4096 16 51 

Scopeformer (L)/8 4 8 1024 4096 16 102 

Scopeformer 

(L)/16 

4 16 1024 4096 16 203 

Deep Scopeformer 

(L)/8 

4 8 1024 4096 16 102 

Deep Scopeformer 

TR (L)/8 

3 8 384 4096 16 6 

Efficient 

Scopeformer 

3 8 384 4096 16 6 

Scopeformer 3 12 3072 3072 8 755 

Scaled 

Scopeformer 

4 8 4096 4096 16 870 
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We present the different proposed Scopeformer variations and details about the 

number of convolution models used in the feature extraction backbone, number of ViT 

layers, the global feature map size, the MLP dimension and the number of heads in each 

ViT block, and the total number of parameters. 

We compare our Efficient Scopeformer implementation to our initial 

implementation of the model and propose lower trainable parameter space given the 

configuration hyperparameters. Our experiments comprise of four main parts. 

In the first set of experiments, we evaluate the size effect of various variants of 

Scopeformer on the classification accuracy, where four variants are evaluated: small (S), 

base (B), medium (M), and large (L). We keep the number of ViT layers fixed (equals to 

8) and increase the complexity of the model by configuring the MLP size residing in the 

ViT blocks for S, B, and M variants, and increasing the feature size for the L variant. The 

number of trainable parameters drastically increase from the smallest (S) to the largest (L) 

variants. 

In the second set of experiments, we investigate the effect of the number of ViT 

encoder blocks on the model performance. Based on preliminary results conducted in the 

first set of experiments, we conduct our ablation study on the large Scopeformer variant 

(L) with a feature size of 1024 and an MLP dimension of 4096. We consider three 

experiments where we gradually stack in an end-to-end fashion 4, 8, and 16 ViT encoders, 

forming three models named Scopeformer (L)/4, Scopeformer (L)/8, and Scopeformer 

(L)/16 respectively. Given the largest model parameters reside within the ViT architecture, 
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the total number of trainable parameters is linearly scaled to the number of ViT blocks we 

use. 

The third set of experiments examines the transition from the originally proposed 

ViT model [50], to a different version called DeepViT [89]. We test this configuration on 

highest performing model from the previous two sets of experiments: Scopeformer (L)/8 

with a global feature map size of 1024, 8 layers of ViT encoders, and an MLP dimension 

of 4096. The model version, entitled as Deep Scopeformer (L)/8, has slightly higher 

number of trainable parameters. 

The final experiment introduces three different ViT configurations to our 

Scopeformer architecture as depicted in figure 10. We add these configurations to the 

highest performing model from the previous three parts of the study: Deep Scopeformer 

(L)/8 with a global feature map size of 1024, 8 layers of ViT encoders, and an MLP 

dimension of 4096. We introduce and compare a set of three Scopeformer configurations; 

Baseline Scopeformer configuration, Deep Scopeformer-TR configuration, and Efficient 

Scopeformer configuration. 

3.8 Pre-Training Efficient Scopeformer 

In all the experiments, we initially pretrained the Scopeformer model using 

ImageNet-1k dataset [120]. Later, we train all models using the RSNA dataset [105]. In 

the first module (convolutional backbone), we freeze ≈ 70% of the layer weights in each 

CNN and keep top ≈ 30% trainable along with the newly introduced 1 × 1 convolution 

layer. In our last experiment using Efficient Scopeformer model, we pretrained the 

backbone neural network on the RSNA dataset for hemorrhage classification for 150 
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epochs on top of the defaulted pretraining on ImageNet-1k. In this experiment, denoted as 

Efficient Scopeformer (p), we freeze weights of the feature extraction block during 

training. 

3.9 Loss Function 

Following guidelines from the RSNA Intracranial Hemorrhage Challenge (ICH), 

we adopted a weighted version of the multi-label logarithmic loss function for our model 

training. The weighting was introduced to amplify the importance of classifying the first 

class representing all types of hemorrhages, with a coefficient of 2, on the expense of the 

rest of the classes which have coefficients of 1. The evaluation of the loss value with respect 

to a single instance represents the weighted average over all the binary losses computed on 

each class individually. The ICH represents a multi-label classification problem, i.e., the 

input image can be classified into multiple classes, using binary labeling for each class to 

indicate its presence or absence. In our formulation, we applied multi-label hot encoding 

on the dataset to assign a binary value on each class for every CT slice. The multi-label 

logarithmic loss function is defined as follows: 

𝐿𝑚𝑢𝑙𝑡𝑖−𝐵𝐶𝐸  (𝑦, �̂�) =  − ∑ 𝛼𝑛

6

𝑛=1

(𝑦𝑛𝑙𝑜𝑔�̂�𝑛 +  (1 −  𝑦𝑛) 𝑙𝑜𝑔(1 −  �̂�𝑛)) 

where 𝛼𝑛 represents the coefficient of the target classes, 𝑦𝑛represents the ground-truth of 

each class n, and �̂�𝑛 is the corresponding predicted probabilities. 
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3.10 Evaluation Metric 

The official model evaluation metric in the RSNA IHC was the weighted accuracy. We 

evaluate the overall performance of the models based on three metrics, (1) the classification 

accuracy on the RSNA dataset, (2) visually evaluation of the global feature richness of the 

embedding layer generated by convolution backbone, and (3) the ratio of the model size 

function to the total number of trainable parameters. 
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Chapter 4 

 

 Results and Discussions 

 

In this chapter, we present the results of computational experiments using various 

configurations of the Scopeformer model. The performance of the algorithm is evaluated 

on the RSNA dataset using accuracy plots and tables, as well as evaluating the multi-

labeled log loss function. We examine the effect of model complexity, such as the number 

of parameters and size of the feature maps in the bottleneck, on the model's performance. 

The proposed n-CNN-ViT structure of the algorithm enables us to analyze the impact of 

adding different types and sizes of convolutional neural networks while maintaining the 

end-to-end training paradigm. To better understand the factors influencing classification 

decisions and identify potential biases in each compartment of the Scopeformer model, we 

conducted several interpretability studies on all the studied configurations. These studies 

helped us make informed choices of model parameters and convolutional neural network 

sizes and types to use in the backbone, which we expect will further improve the 

performance of our proposed model. Additionally, we applied style transfer and 

progressive pretraining methods and evaluated the generated features from various 

convolutional neural networks. The Efficient Scopeformer model was developed based on 

our previous publication [116], on which we made significant changes to the architecture 

to make it more efficient and scalable. 
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To assess potential improvements, we addressed the large trainable parameters, 

Lambda machine memory readability issues, and training time per epoch. We evaluated 

the overall performance of the models based on three metrics, (1) the classification 

accuracy on the RSNA dataset, (2) visually evaluation of the global feature richness of the 

embedding layer generated by convolution backbone, and (3) the ratio of the model size 

function to the total number of trainable parameters. 

4.1 The Effect of Backbone Model Size and Pretraining Techniques 

We gradually stack ”n” various pretrained Xception models in the feature extraction 

backbone. We freeze all these architectures in the backbone to prevent updates on their 

weights during training. We pretrained the CNN models on diversified pretraining 

schemes, including ImageNet-1k natural image dataset (I) and the generated style transfer-

base dataset (S). Table 2 compares different models and the corresponding performances 

on the hemorrhage classification task. While the n-CNN-ViT models were trained on the 

convolution features generated by the convolution backbone, the ViT model was trained 

on raw dataset. The input dimension of the ViT block represents the full resolution image 

or the set of features prior to splitting into patches. Results show that extracting features 

using convolution models to train the ViT model is a better alternative to the raw dataset. 

The Scopeformer model exploits the pretraining for generating high level features useful 

for the ViT architecture. The use of the CNNs leverages the need for high data regimes 

since the ViT model is used to fit these high-level features and extract semantic correlations 

instead of learning the spatial features in training. Furthermore, results show that the 

classification accuracy is proportional to the number of CNN models used in the 
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Scopeformer training, i.e., as we stack feature extraction architectures in the backbone of 

the model, we get higher performances on hemorrhage classification. In our study, we 

found that using a combination of different pretraining methods can significantly improve 

the performance on a target task. By leveraging the specific features and patterns learned 

by each pretrained model, we were able to achieve better results compared to using only 

one type of model. We discovered that a CNN trained on ImageNet is proficient at 

recognizing common patterns and features in images, while a CNN that has been style 

transferred using ImageNet is better at recognizing more specialized patterns and features. 

By combining these models, we were able to take advantage of both their general and 

specialized capabilities. Additionally, using a variety of pretraining methods can reduce 

overfitting and lead to more robust and generalizable models. We also found that 

ImageNet-trained CNNs tend to be biased towards texture, as presented by Geirhos et al. 

[121], and increasing shape bias can improve accuracy and robustness. By selectively 

varying the pretraining methods for each CNN architecture, we were able to further boost 

performance by enriching the features through different sets of weights and dynamics. Our 

results demonstrate the importance of carefully selecting and combining different 

pretraining methods for optimal performance. 
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Table 2  

Classification Performance of ViT Based Models on the RSNA Validation Dataset 

Model ViT input dimension Validation accuracy Loss 

ViT 256×256×3 94.33% 0.18220 

1-CNN-ViT (S) 7×7×1024 96.95% 0.08272 

2-CNN-ViT (I-I) 7×7×2048 97.22% 0.07984 

2-CNN-ViT (S-S) 7×7×2048 97.26% 0.07934 

2-CNN-ViT (I-S) 7×7×2048 97.46% 0.07754 

3-CNN-ViT (I-I-S) 7×7×3072 98.04% 0.07050 

 

In our study, we investigated the effect of feature map size on the performance of 

a Vision Transformer (ViT) model. We found that increasing the feature map size of the 

CNN in the input to the ViT model significantly improved the model's performance. Our 

hypothesis is that this improvement is due to the ViT's ability to extract increased semantic 

correlations from the larger feature maps. The ViT block is designed to identify 

correlations between the input tokens and having a larger number of features appears to 

enhance the ViT's ability to extract semantic meaning from the data. Our results suggest 

that the ViT is able to leverage the additional information provided by the larger feature 

maps to better understand the input data and make more accurate predictions. These 

findings highlight the importance of carefully considering the size of the feature maps in 

the input to the ViT model, as it can have a significant impact on the model's performance.  
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Figure 18 

Performance Versus N-CNN-ViT Variants; Pure ViT, 1-CNN-ViT, 2-CNN-ViT and 3-

CNN-ViT, and Pretraining Modes; ImageNet and Data Generated Using GAN 

 
Note. Models with multiple CNNs and different pretraining modes perform better. 

 

To conclude, our study found that diversifying the inductive biases of the 

Scopeformer model and increasing the feature map size of the CNN input both have the 

potential to significantly improve the performance of the model. By using a combination 

of differently pretrained CNN architectures, we were able to generate a wider range of 

feature maps, which contributed to a richer representation of the data. Similarly, increasing 

the size of the feature maps allowed the Scopeformer to extract more meaningful 

correlations and information from the data. When both of these factors were combined, we 

saw an even greater improvement in performance. These results suggest that carefully 
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considering the pretraining of the CNN and the size of the feature maps can be key to 

optimizing the performance of the Scopeformer model. 

4.2 The Effect of the Size of Scopeformer 

Tables 3 and 4 show the results of experiments performed with different variants 

of the Scopeformer model. Table 4 depicts different results obtained on individual classes 

of the S, B, and M models. We propose four sizes of the Scopeformer model; S, B, M, and 

L, with reduced number of trainable parameters compared to our initial implementation of 

the Scopeformer model involving several Xception-based CNNs. The key component to 

the parameters reductions is linked to the trainable  1 × 1 convolutional layer placed after 

each convolution architecture in the feature extraction backbone prior to concatenation. In 

this experiment, we gradually increase the model complexity of S, B, and M variants by 

varying the MLP dimension and the number of self-attention heads within the ViT module 

as depicted in table 1. 

In table 3, we note that the base model outperforms the small and medium variants. 

However, in Table 4, we observe that the Base model shows better performance on IPH, 

IVH, and SAH classes, whereas small model shows higher accuracy results on all, epidural 

and SDH classes. Based on these observations we hypothesize that the improved 

performance observed on higher MLP dimensions indicates the ability of the model to 

encompass larger amount of information and extract useful semantics for classification. 

However, the model shows signs of overfitting when the MLP dimension reaches 5120. 

Based on these results, we build our large Scopeformer (L)/8 model by adopting the 

configuration of the base variant with a global feature dimension d = 1024. The feature size 
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increment resulted in a proportional increment of the model trainable parameters. The large 

model (L)/8 performed the best among the proposed variants. The improved performance 

observed on larger ViT sizes while increasing the input feature embedding space indicates 

a richer information brought by these added features, where the model extracted useful 

semantics for classification. Increasing the feature space improved some of the classes on 

the expense of others as evident from Table 4. Training using SAM paradigm were not 

feasible given the massive training time it has added. Suboptimal results from SAM on 

some experiments led us to not use it with the proposed Scopeformer model. 

 

Table 3 

Performance of the Different Scopeformer Variants 

Model Accuracy Loss Recall Trainable Parameters 

Small (S) 93.0% 0.1703 84.95% 34M 

Base (B) 93.92% 0.1461 89.29% 42M 

Medium (M) 93.88% 0.2285 88.44% 43M 

Large (L) / 4 93.12% 0.1378 87.81% 51M 

Large (L) / 8 94.69% 0.1197 89.33% 102M 

Large (L) / 16 92.57% 0.1395 87.34% 203M 

 

4.3 The Effect of Number of ViT Encoders 

We evaluate the effect of the number of ViT encoders on Scopeformer (L)/8 model 

using 4, 8, and 16 encoders. As presented in Table 1 and Table 3, the number of parameters 

scales linearly with the number of encoders. We note that using 8 ViT encoders yields 
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better results than shallower model with 4 ViT encoders. However, the deepest model with 

16 ViT encoders drastically reduces the model performance. We conclude that increasing 

the depth of the ViT model does not scale linearly, and that there is a critical number of 

ViT encoders where the model performs optimally. This behavior may be due to the need 

for high training data sizes to allow deeper networks to perform better. 

 

Figure 19 

Cosine Similarity of the ViT Encoder Feature Maps with Respect to the Last Encoder 

Feature Map 

      

Note. We observe the increased similarities across ViT encoder features function to the 

depth of Scopeformer models. 

 

In Figure 14, we plot the cosine similarity between the features generated by each 

ViT encoder and the last layer of the model. We observe that similarities across features 

generated by each ViT encoder rapidly increase for all proposed models. These similarities 
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further increase in models with higher numbers of ViT encoders. We believe that the 

increased similarities among the features of the Scopeformer(L)/16 model may have 

contributed to the performance decline observed in Table 3. Similarly, reduced similarities 

among ViT features observed on Scopeformer(L)/4 may explain the observed sub-optimal 

performance. From these results, we conclude that the cosine similarity can be a good 

metric for model performance, as reduced or increased similarities may indicate sub-

optimal performances of the Scopeformer model. Shallow models presenting reduced 

similarities may hint to higher performances by stacking more ViT layers, whereas deeper 

models may require additional data to reduce similarities across ViT features to perform 

optimally. The results also suggest that there is an optimum number of ViT encoders for 

Scopeformer model based on the complexity of the dataset and the effectiveness of the 

convolution backbone networks. 

4.4 The Effect of Two Different Self-Attention Variants 

The Deep Scopeformer (L)/8 builds on the Scopeformer (L)/8 model by replacing 

the MHSA layer with a MHRA layer. The additional trainable matrices M adds 

insignificant number of parameters to the Scopeformer (L)/8 model. In Figure 14 (b), we 

note substantial dissimilarities among ViT encoders' features for the Deep Scopeformer 

(L)/8 model. The result may imply an increased feature richness acquired by the model 

from the additional inter-correlations of the MHRA heads. This configuration resulted in 

an accuracy improvement by +1.11% as shown in Table 5. 
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4.5 ViT Scopeformer Configurations 

We address the self-attention computational complexity problem by introducing a 

transpose layer prior to the ViT module. The attention weights matrix in Deep Scopeformer 

(L)/8 has a dimension of 10242. In the second and third ViT configurations, the attention 

weights matrices have dimensions of 652 and 642respectively. The use of the transpose 

layer has substantially contributed to the reduction of the number of trainable parameters 

as indicated in Table 1. This is due to the MHRA quadratic reduction in computation 

complexity. Additionally, transposing the input sequence effectively preserved the feature 

content retrieved by the feature extractor module, and conserved the classification 

performance. Table 5 shows the performance of the three proposed configurations. The 

proposed Efficient Scopeformer variant performed relatively better than the Deep 

Scopeformer (L)/8 for a lower trainable parameter space. We speculate that the role of the 

ViT module in this configuration is to improve the global feature map that was previously 

optimized by the convolution backbone. The global feature map improvement resides in 

using attention computations to generate new features characterized by inter-correlations 

among all features generated by the convolution networks. Our Efficient Transformer 

module improved the global features map correlations and contributed to better 

performance. 
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Table 4 

Model Performance on Individual Target Classes 

 Accuracy 

Large Medium Base Small 

All 71.34% 60.26% 70.5% 70.83% 

Epidural 96.98% 90.18% 95.73% 98.08% 

IPH 85.94% 71.10% 87.28% 85.95% 

IVH 90.5% 70.73% 91.72% 85.95% 

SAH 78.69% 65.49% 78.57% 77.04% 

SDH 77.08% 60.78% 74.35% 74.54% 

 

We note that for the model Efficient Scopeformer (P) pretraining the convolution 

block on the target dataset and freezing the entire block during training produces better 

performance than end-to-end training with around 30% trainable parameters of the 

Efficient Scopeformer's convolution block. We argue that backbone CNNs and ViTs 

present different dynamics that require different model training settings. 

 

Table 5 

Model Performance for Different Scopeformer Modalities 

 Accuracy Loss Trainable parameters 

Scopeformer (L) / 8 94.69% 0.1197 102M 

Deep Scopeformer (L) / 8 96.03% 0.1088 102M 

Deep Scopeformer TR (L) / 8 95.40% 0.1176 6M 

Efficient Scopeformer 95.77% 0.1160 6M 
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4.5.1 Global Feature Map 

Figures 15, 16, and 17 present convolution features generated by three Scopeformer 

architectures for an epidural example Scopeformer (L)/8, Deep Scopeformer (L)/8, and 

Efficient Scopeformer. We observe high variability of the features generated by each CNN 

architecture. Furthermore, we observe that there is no apparent similarity among the 

features generated by different CNNs for all Scopeformer variants. Subsequently, the 

resultant global feature map has low redundancy and higher feature richness. However, 

among these models, we note that the DenseNet [117] model showed the highest feature 

redundancy across the observed features. Therefore, we conducted an ablation study on the 

Deep Scopeformer TR, which resulted in removing the DenseNet201 model from the 

Efficient Scopeformer model backbone. 
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Figure 20 

Feature Maps Visualization of an Epidural Type of Hemorrhage Example. Scopeformer 

(L)/8 

 

 

 

 

 

 



85 
 

Figure 21 

Feature Maps Visualization of an Epidural Type Hemorrhage Example. Deep Scopeformer 

(L)/8 
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Figure 22 

Feature Maps Visualization of an Epidural Type of Hemorrhage Example. Efficient 

Scopeformer 

 

 

4.5.2 Attention Patterns Visualizations 

Figure 18 shows the attention patterns visualizations of the 16 MHRA heads 

concerning the first and last ViT encoders. In the first ViT layer, we observe that the model 

extracts high correlations among features derived from every CNN architecture. This 
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observation suggests the high similarities among the input features of every CNN model. 

Each head learns different correlations patterns among the set of features. However, deeper 

into the model, we observe that the model learns to extract global correlation patterns 

across all the CNN features. The generated set of features add the information about the 

relevance of every feature to the rest of features which contributes towards the observed 

higher performance. 

 

Figure 23 

Attention Pattern Visualization of the Efficient Scopeformer Model 

 

Note. The first and second row represent the 16 attention heads of the first encoder layer. 

The third and fourth row represent the 16 attention heads of the last encoder layer. Each 

attention map has a dimension of 384 × 384. Deeper in the model, Scopeformer extracts 

better correlations among all the input features leveraging all the input CNNs.  
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4.5.3 Grad-CAM 

In Figure 24, we present a Grad-CAM visualization of an epidural type of hemorrhage 

example for the Deep Scopeformer (L)/8 model. Upon examining the visualization, we 

notice that there is high variability in the regions where the model considers important for 

conducting the classification. In some cases, these regions are clearly related to the 

presence of an epidural hemorrhage, such as in the area around the brainstem. However, in 

other cases, the model appears to be considering regions that are less relevant or even 

unrelated to the task at hand. 

One particularly noteworthy aspect of this visualization is the contribution of the 

DenseNet [117] model to the classification process. In many cases, we observe that this 

model contributed the least to the classification and was even shown to be mapping to the 

wrong regions on the image. This suggests that the DenseNet model may not be as effective 

at extracting relevant features for this particular task, compared to other models that are 

used in the Deep Scopeformer (L)/8 architecture. It is worth further exploring the reasons 

behind this behavior and considering alternative approaches to feature extraction that may 

be more suitable for this task. 
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Figure 24 

Grad-CAM Visualization of an Epidural Type of Hemorrhage Example 
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Chapter 5 

 

 Conclusion and Future Work 

 

In the final chapter of this thesis, we have reviewed the overall goals and objectives 

of our research study, which focused on exploring potential improvements to the 

convolutional-based vision transformer model known as Scopeformer in the realm of 

classification of CT scans presenting multiple types of hemorrhages. Specifically, we have 

investigated the effect of model trainable parameters on performance and training 

efficiency, the impact of using multiple off-the-shelf CNN models on the global feature 

richness of the architecture, and a feature projection method for reducing the large, 

redundant feature space. We have also conducted a parametric optimization study to 

evaluate the size effects on model performance and efficiency and implemented three 

vision transformer configurations to evaluate the Re-attention module and different patch 

extraction methods. 

Our research has shown that using various CNN architectures in the Scopeformer 

model can lead to an improvement in the resultant features. This is due to the different sets 

of weights and dynamics that are learned by each network, which can provide 

complementary and specialized information. The Re-attention module also demonstrated 

its ability to enhance performance through the increase in dissimilarities of the vision 

transformer features. These findings suggest that using a diverse set of CNNs and 

implementing techniques to optimize the global feature map can be effective strategies for 

improving the performance of the Scopeformer model.
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One such technique that we have explored is our proposed feature-wise patch 

extraction method, which allowed us to significantly decrease the size of the model while 

still achieving comparable performance. This is an important consideration for practical 

applications, as smaller models are generally easier to deploy and have faster inference 

times. Additionally, the implementation of the Efficient Transformer module resulted in 

improved correlations within the global feature map, contributing to better overall 

performance. These results indicate that our proposed method and module have the 

potential to be useful for optimizing the global feature map in the Scopeformer model and 

potentially in other models as well. 

In conclusion, our research has demonstrated that the Scopeformer architecture has 

the potential to be generalized to other AI domains that require feature generation and 

enhancement. We recommend using diversification of features through the use of multiple 

CNNs, as well as enhancement of feature correlations using deep architectures of the ViT 

with the proposed multiple configurations. These strategies have the potential to improve 

the performance and efficiency of the Scopeformer model and could potentially be useful 

for other tasks as well. 

For future work, we recommend continuing to investigate these and other 

approaches to further optimize the performance and efficiency of the Scopeformer model. 

In particular, it would be interesting to explore the use of other CNN architectures and 

techniques for improving the global feature map in order to see if even further 

improvements can be achieved. Additionally, it would be valuable to evaluate the 
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generalizability of the Scopeformer model to other tasks and datasets in order to determine 

its full potential and real-world applicability. 
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