

Links and Tait Series

An m-component link is an embedding of m circles into 3-dimensional space. Below are examples of links from the Thistlethwaite Link Table.

A Borromean ring is a link of three unknots such that one component is always over the second component and under the third. The Tait series is an infinite series of generalized Borromean rings.

Δ -crossing Tangle

The Δ -crossing tangle is a collection of three crossings as appear in a Δ move.

The Δ -crossing diagram of a link is a diagram of a link that is drawn such that all crossings occur in Δ -crossing tangles.

The Δ -crossing number $c_{\Delta}(L)$ is the minimal number of Δ -crossing tangles in a Δ -crossing diagram.

The Δ -unlinking number $u^{\Delta}(L)$ of an algebraically split link L is the minimal number of Δ -moves needed to deform L into the trivial link.

THE DELTA-CROSSING NUMBER OF LINKS

Zachary Duah

Andrews University, Advisor: Anthony Bosman

Determining \triangle **-crossing Number**

For an example of determining the Δ -crossing number, notice that link L7a7 can be drawn in such a way that all the crossings occur in a Δ -tangles:

Thus we know that $c_{\Lambda}(L7a7) \leq 3$. To determine the lower bound, we proved:

Proposition 1. Given an link L with crossing number c(L), $c_{\Delta}(L) \geq \frac{1}{3} \cdot c(L)$. Moreover, if we have equality, then L can be turned into a Δ -crossing diagram without adding any crossings.

Proposition 2. Given the standard projection of a link L with crossing number, c(L), we must add j crossings to the diagram to obtain a Δ -crossing diagram such that, $c(L)+j \equiv 0$ (mod 3), where $j \in \mathbb{N}$.

Proposition 3. Given an link L, $c_{\Delta}(L) \leq 2c_3(L)$, where $c_3(L)$ denotes the triple-crossing number of a link.

Therefore by Proposition 3, $c_{\Delta}(L7a7) \leq 8$. And by Proposition 1,

$$c_{\Delta}(L7a7) \ge \frac{1}{3} \cdot 7 = 2.33.$$

Thus $c_{\Delta}(L7a7) = 3$.

Arguing similarly, we determine the Δ -crossing numbers for prime links with up to 8 crossings.

Link	$c_{\Delta}(L)$	$\frac{1}{3}c(L)$	$2c_3(L)$	Link	$c_{\Delta}(L)$	$\frac{1}{3}c(L)$	$2c_3(L)$	Link	$c_{\Delta}(L)$	$\frac{1}{3}c(L)$	$2c_3(L)$
L2a1	1	0.67	2	L7n2	3 or 4	2.33	6	L8a16	3	2.67	10
L4a1	2	1.33	4	L8a1	3	2.67	10	L8a17	3 or 4	2.67	10
L5a1	2	1.67	6	L8a2	3 or 4	2.67	10	L8a18	3	2.67	8
L6a1	2	2	6	L8a3	3 or 4	2.67	8	L8a19	3	2.67	10
L6a2	2 or 3	2	8	L8a4	3	2.67	10	L8a20	3 or 4	2.67	8
L6a3	2 or 3	2	6	L8a5	3 or 4	2.67	10	L8a21	3 or 4	2.67	8
L6a4	2	2	8	L8a6	3	2.67	8	L8n1	3 or 4	2.67	6
L6a5	2	2	8	L8a7	3	2.67	10	L8n2	3 or 4	2.67	6
L7a1	3	2.33	10	L8a8	3	2.67	10	L8n3	3 or 4	2.67	6
L7a2	3	2.33	8	L8a9	3	2.67	10	L8n4	3 or 4	2.67	6
L7a3	3 or 4	2.33	10	L8a10	3	2.67	10	L8n5	3 or 4	2.67	8
L7a4	3	2.33	8	L8a11	3 or 4	2.67	8	L8n6	3 or 4	2.67	8
L7a5	3	2.33	8	L8a12	3 or 4	2.67	10	L8n7	3 or 4	2.67	8
L7a6	3	2.33	8	L8a13	3 or 4	2.67	10	L8n8	3 or 4	2.67	8
L7a7	3	2.33	8	L8a14	4	2.67	8				
L7n1	3	2.33	6	L8a15	3	2.67	8				

\triangle -crossing Number for Tait Series & Δ -unlinking Gap

We can determine the Δ -crossing number for every member of the Tait Series with the following theorem.

Lemma 1. Given a generalized Borromean ring B_n with crossing number 6n,

 $c_{\Delta}(B_n) = 2n$

For instance, B_2 has Δ -crossing number of 4.

We can also obtain a bound for the Δ -unlinking number for the Tait Series.

Lemma 2. Given a generalized Borromean ring B_n ,

 $u^{\Delta}(B_n) \le n$

By combining these two expressions, we obtain an arbitrarily large gap for the Δ -unlinking number.

Theorem 1. Given a generalized Borromean ring B_n ,

 $c_{\Delta}(B_n) - u^{\Delta}(B_n) \ge n$

For example, while B_{10} can be transformed into the trivial link with no more than 10 moves, it cannot be drawn with less than 20 Δ -tangles, a gap of 10.

References

Jablonowski, Michal (2022). Upper bound on delta-crossing and tabulation of knots up to four delta-crossings. DOI: 10.48550/ARXIV.2204.02161. URL: https://arxiv.org/ abs/2204.02161.

Jabłonowski, Michał and Łukasz Trojanowski (Feb. 2020). "Triple-crossing projections, moves on knots and links and their minimal diagrams". In: Journal of Knot Theory and Its Ramifications 29.04, p. 2050015. DOI: 10.1142/s0218216520500157. URL: https:// doi.org/10.1142%2Fs0218216520500157.

Nakanishi, Yasutaka, Yoko Sakamoto, and Shin Satoh (2015). "Delta-crossing number for knots". In: Topology and its Applications 196, pp. 771–776. ISSN: 0166-8641. DOI: https://doi. org/10.1016/j.topol.2015.05.044.

