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An ideal traction and braking system not only ensures ride comfort and transportation 

safety but also attracts significant cost benefits through the reduction of damaging 

processes in wheel-rail and optimum on-time operation. To overcome the problem of 

the wheel slip/slide at the wheel-rail contact surface, it is crucial and scientifically 

challenging to detect adhesion and its changes because adhesion is influenced by 

different factors. However, critical information this detection provides is applicable not 

only in the control of trains to avoid undesirable wear of the wheels/track but also in the 

safety compromise of rail operations. The adhesion level between the wheel and rail 

cannot be measured directly, but the friction on the rail surface can be measured using 

measurement techniques. The braking and traction control system can be characterized 

by estimating wheel-rail adhesion conditions during railway operations. This paper 

presents the Particle Swarm Optimization (PSO)-based Extended Kalman Filter (EKF) 

to estimate adhesion force. The main limitation in applying EKF to estimate states and 

parameters is that its optimality is critically dependent on the proper choice of the state 

and measurement noise covariance matrices. To tackle this difficulty, a new approach 

based on the use of the tuned EKF is proposed to estimate induction motor (as a main 

part of the train moving system) parameters. This approach consists of two steps. In the 

first step, the covariance matrices are optimized by PSO and then, their values are 

introduced into the estimation loop. Finally, the superiority of the PSO-based EKF 

algorithm is verified by making simulations in Matlab and comparing the estimation 

performances of this technique and EKF. The results prove an acceptable performance 

in load torque and speed estimation after tuning the covariance matrices and confirm 

the high accuracy and efficiency of the proposed method. 

 

NOMENCLATURE  

a and b: semi-axis length of the contact patch 

B and D: reduction factors 

C11: Kalker coefficient 
Cv: viscous friction 

𝐹𝑎: adhesion force 
𝐹𝑁: normal force between the wheel and rail 
G: shear module 

𝐼𝑠𝛼  and 𝐼𝑠𝛽: α−𝛽 axis stator currents 

𝑐1 and 𝑐2:self-recognition and social component coefficients 

𝐽eqv, 𝐽𝑥: equivalent and wheelset axle moment of inertia 

𝐽𝑔: gearbox moment of inertia 

𝜓𝑟𝛼  and 𝜓𝑟𝛽: α−𝛽 axis rotor flux 

𝐽𝑤𝑅 𝑎𝑛𝑑 𝐽𝑤𝐿: right and left wheel moment of inertia 

𝑘𝐴 and 𝑘𝑆: reduction factors in the adhesion and slip area 

Lm: mutual inductance 

Lr and Ls: rotor and stator self-inductance 

𝑛𝑖: gear reduction ratio 

np : number of the pole pairs 

N: number of unknown variables or number of samples 

Pi: previous best position of each particle 

Q and R: process and measurement noise covariance matrixes 

r: wheel radius 

Rr and Rs: rotor and stator resistance 

𝜇𝑓: traction coefficient  

𝑇𝑚: motor torque 

𝑇𝐿: load torque 

𝑉: longitudinal velocity 

𝑣(𝑡) and 𝑤(𝑡): measurement and process noise 

Vi, 𝑋i: velocity and position of ith particle 

w: inertia weight factor  

ϵ: gradient of tangential stress  

𝜉: creepage between the wheel and rail 

𝜔𝑚,𝜔𝑤
: motor and angular velocity 
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I. Introduction 

  Locomotive design, which was introduced more than 200 

years ago, is still developing and in progress. Based on the 

type of energy usage, railway vehicles are divided into three 

classes: steam, diesel-fueled, and electric. In steam 

locomotives, steam energy is provided by the combustion of 

fuels. Since steam locomotives cannot be loaded with over a 

certain amount of fuel, they cannot operate at long distances. 

So, the application of the steam system in this vehicle has 

been completely obsolete. The source of energy in 

diesel-fueled locomotives is diesel motors. According to the 

fuel tank, a diesel train that pulls ten wagons can take 

approximately 600-700 km distance. Unlike these two types, 

electric locomotives have no refueling problems, so they are 

suitable for traveling long distances. Another advantage of 

these locomotives is that they are the most economical 

locomotives because of their tractive effort.  

  Progress in science and technology, especially in the field 

of computer modeling, has allowed the adoption of new and 

advanced forms of traction systems for railway vehicles. 

However, the performance of the locomotive traction system 

is limited by the adhesion condition between the wheel and 

the rail. Adhesion is the key element for determining optimal 

traction performance. Moreover, adhesion affects the 

passengers’ comfort, the safety of transportation equipment, 

and railway vehicles’ energy management. Wheel shape and 

size and rail contact area directly influence the motion of 

railway vehicles. The Hertzian theory is one of the methods 

widely used to find the contact patch shape and size. This 

theory includes some assumptions such as non-conformal 

elliptical contact (valid if dimensions of the contact area are 

smaller than the curvatures of surfaces), frictionless surfaces, 

and elastic half-spaces. It is worth noting that the dynamics of 

railway wheelsets are influenced by different factors. This 

impactability and uncertain variations in the contact condition 

complicate the mechanical system of railway wheelsets 

significantly.  

  The interaction of the vehicle and track is affected by four 

main factors: suspension characteristics, metallurgy, contact 

mechanics, and friction. The wheel-rail interaction is the most 

important issue in the dynamics of railway vehicles. Any 

changes in the contact condition can trigger subsequent 

changes in the braking and traction responses of the rail 

vehicle [1], especially when the rail and/or wheel contact 

surfaces are subject to environmental factors such as dirt [2], 

water, deliberately applied friction modifiers [3], weather 

conditions [4], or contact surface temperatures [5-7], leading 

to the well-known problem of low adhesion. Slip/slide, which 

can potentially cause severe wear of wheel and rail surfaces 

and increase mechanical stress in the system, is caused by 

low adhesion. Wheels slip in traction or slide in braking if 

they deliver a higher force to the rail than they can transmit. 

Meanwhile, instability and inconsistent traction performance, 

which cause problems in train schedules, are negative effects 

of low adhesion. If creepage at the wheel-rail interface 

increases, the temperature will increase in the contact areas 

and it will decrease the coefficient of friction, resulting in the 

creation of flatness, shelling, and skid marks on the wheels 

and rails, which also suffer from wheel burns and 

deterioration caused by damaged wheels. As a result, the rails 

need regrinding, and the wheelsets need reprofiling or 

replacing, which imposes additional costs on the rail industry. 

Adhesion estimation in wheel-rail contact area during train 

operation, which is an important task for railway industries, is 

a multifaceted process as it depends on several operational 

factors that influence nonlinear processes at the wheel-rail 

contact interface. To characterize the braking and traction, 

which are key elements of performance and safety issues, 

accurate information about the adhesion is necessary [8].  

  There are many approaches proposed by researchers to 

studying adhesion. Investigating the lateral dynamics, 

specific types of friction conditions (dry or wet), or single 

wheelsets are methods mentioned in [9-11] for surveying the 

wheel-rail interface. To control the wheel rotational 

acceleration below a pre-defined threshold, controlling the 

measured slip ratio (relative speed between the train and 

wheel) is noted in commonly used wheel slip protection 

schemes [12-14]. The operational rail self-cleaning 

mechanism [15], axle load distributions, vehicle speed, and 

track irregularities are other train operational factors that 

researchers consider in adhesion estimation. Additionally, rail 

vehicle design has a significant effect on adhesion [16]. In 

[17], a single wheelset velocity was used as Kalman filter 

input to detect adhesion force for slip control purposes. This 

model has, also, been applied to detect wheel slip/slide and 

re-adhesion control of AC traction motors in railway 

applications [18]. To suppress the slide and slip and adjust 

the torque command, a multiple-induction motor single 

inverter has been investigated to estimate the adhesion force 

[19,20]. Extended Kalman filter (EKF)-based estimation of 

creepage, creep force, and friction coefficient between the 

wheel and rail surfaces by utilizing the stator voltage, current, 

and speed of the traction AC motor was proposed in [21]. 

Another method to detect slip velocity is multi-rate EKF state 

identification. In this method, traction motor load torque is 

identified by combining the multi-rate method and the EKF 

method. Faster detection of slip and reliability and traction 

performance improvement are benefits of this approach [22].  

  Estimation of the rotor fluxes, currents, and motor speed 

for direct vector control of induction motors in the 

implementation of the EKF algorithm was proposed in [23]. 

For the system to operate at the optimal state, proper 

selection of measurement noises and covariance matrices is 

an important problem associated with the use of EKF. It is 

worth noting that both matrices are not known, especially 
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since it is very difficult to define the system noise. Therefore, 

these matrices are often used as parameters for tuning. The 

adjustment can be made by using evolutionary algorithms or 

a trial-and-error approach [24]. Adhesion can be estimated by 

focusing on longitudinal dynamics and associated adhesion 

effects. In this method, an observer is designed, and nonlinear 

wheel-rail contact is considered. To cover this nonlinearity, 

EKF was combined with a parameter estimator [25]. It should 

be noted that EKF estimation is directly related to the correct 

selection of system and measurement noise covariance 

matrices. Due to the unknown stochastic properties of the 

corresponding noises in EKF, it is not possible to obtain the 

mathematical relationship between the EKF performance and 

the noise covariance matrices. Therefore, researchers have 

proposed different methods to determine these matrices in the 

literature. These methods have classified the matrices into 

constant and dynamic. In the first classification, matrices are 

determined by the trial-and-error method [26-29]. This 

approach is not only time-consuming but also does not yield 

optimum results for the whole speed range. In [30], an 

unscented Kalman filter (UKF) was employed for IM state 

estimation and the results were compared with EKF, which 

showed that at the beginning of the simulation, UKF 

outperformed EKF but when the input torque was changed, 

EKF started to outperform UKF. The next group of studies 

has performed off-line optimization of these matrices by 

focusing on heuristic algorithms such as differential evolution 

[31-32] and genetic algorithms [33]. 

  Unlike conventional optimization algorithms such as 

Newton-Rapson and Levenberg-Marquardt, which require 

mathematical expressions and their derivatives, heuristic 

algorithms provide derivative-free global optimization using 

only fitness functions and fitness values [33]. Because of the 

offline optimization process, the optimization method is 

time-consuming like the trial-and-error method. Meanwhile, 

the operating conditions of the induction motor affect these 

matrices, so they must be updated depending on the working 

conditions. Therefore, the second group of studies [34-37] 

has proposed the capability of online updating of these 

matrices. Some of these studies [35,37] have used the fuzzy 

logic approach to update these matrices. Knowledge and 

experience of an expert are two key factors to achieve high 

performance estimations with this method, so its design 

process is quite complicated.  

  Model-based adhesion estimation (which is based on the 

contact forces and moments analysis) is another method used 

in the literature. Due to the dependence of creep forces and 

moments on the level of track irregularities, it is difficult to 

illustrate adhesion conditions without prior knowledge of the 

track irregularities. To solve such a problem, the estimation 

of adhesion conditions based on the eigenvalue analysis 

without prior knowledge of the track irregularity level was 

proposed [38]. The non-model-based estimation scheme 

compares the dynamic responses of leading and trailing 

wheelsets using the yaw positions of the leading and trailing 

bogies [39]. In general, simulation methodology used for rail 

vehicles’ traction system can be divided into the following 

simulation stages: simulation of the mechanical system 

[40-42], simulation of the longitudinal dynamics of the train 

[40-41], simulation and modeling of the electrical and 

traction control systems [43-44], creep force modeling at the 

wheel-rail interface [45-50], simulation of the full 

mechatronic system of a locomotive [41,51-52], and 

validation and verification of the results [40,53-54]. 

  PSO is an evolutionary computation method that is used to 

optimize nonlinear systems [55]. This approach was first 

introduced in [56], and since then, it has been considered one 

of the most popular optimization methods in the literature. In 

[57], the PSO algorithm is used to optimize the objective 

function to reach the best parameters and variables of 

controllers. In [58], the use of the PSO algorithm in railway 

studies is reviewed, but the use of PSO for adhesion and 

creep force modeling is not mentioned. PSO is preferred due 

to its simplicity and the high nonlinearity in adhesion and 

creep force models. To demonstrate the level of agreement 

between adhesion and creep force models and measurements, 

PSO-based parameterization of adhesion and creep force 

models is proposed in [59]. Swarm intelligence-based 

adhesion estimation algorithm allows determining the 

adhesion optimum between wheel and rail. Therefore, the 

reference slip value for the controller can be determined 

according to the adhesion conditions, which leads to an 

effective wheel slip control performance [60]. 

  Among the state observer mentioned above, EKF is an 

accurate estimator. The disadvantage of EKF is that its 

effectiveness heavily depends on the covariance matrices of 

the measurement and system noises, which are critical 

parameters for torque and speed estimation of induction 

motors and usually could not be acquired accurately. Thus, 

several intelligent optimization algorithms have been 

proposed to enhance the EKF performance. In this paper, the 

PSO algorithm is employed to optimize EKF for torque 

(which has a linear relation with adhesion force) and estimate 

the speed of the induction motor. The main contributions of 

this paper are (1) the formulation of a mathematical model for 

the torque estimation of an induction motor for wheel-rail 

adhesion estimation, (2) the successful employment of the 

PSO algorithm to optimize EKF covariance matrices, and (3) 

the construction and implementation of a simulation model in 

Matlab to evaluate the performance of PSO-EKF. The 

effectiveness of the proposed approach for adhesion 

estimation is verified through simulation experiments, and its 

superiority in the estimation of variables compared to 

conventional EKF is proved. 

  The rest of this paper is organized into five sections. 

Section II introduces the principle concepts of PSO. Section 
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III gives the details of the traction system and the sixth-order 

mathematical model of the induction motor. The PSO-based 

EKF framework is presented in Section IV. Section V 

provides the details of the experimental results in the 

implementation of EKF. Finally, Section VI presents the 

conclusion. 

 

II. Particle Swarm Optimization Concepts  

  PSO is a metaheuristic algorithm that optimizes a problem 

by iteratively trying to improve a candidate solution with 

regard to a given measure of quality. PSO is motivated by the 

intelligent collective behavior of some animals, such as bird 

flocking and fish schooling. This optimization algorithm 

exploits the concepts of social sharing of information in 

which the population is called a swarm, and each individual 

in the swarm is called a particle. In PSO, to improve the 

results for a defined objective function, an iterative procedure 

is followed and the particles move in the search space based 

on the reasoning as follows. 

  First, they evaluate their fitness continuously and in each 

iteration, memorize the best position that they have ever had 

in their movement history. Second, knowing the position of 

the best particle in the swarm, particles move in the 

n-dimensional space, foraging the solution.  

  Particles in the swarm are in communication with each 

other and update the mentioned parameters in each iteration. 

While moving toward the best position, they change their 

position and velocity based on the local and global best 

information. Local best refers to the best position of each 

particle in its movement history, and the best position of the 

whole group is called global best which is updated in each 

iteration. Therefore, the whole group would have sufficient 

knowledge about the position of the new global best, if the 

best position is changed. All the particles in the swarm search 

areas near the global best and try to move toward them. This 

phenomenon is called convergence. 

  Small values of the inertia weight allow all particles to 

reduce their speed so that when they reach the area of the 

global best, their speed converges to zero. When unpleasant 

convergence occurs, we can give the particles a new set of 

initial values to get rid of this unpleasant situation. PSO has 

two advantages over the GA algorithm. First, in PSO, 

particles decide about the next movement in the space by 

using their history and the best of the group history but in GA, 

transferring the knowledge of the current group to the next is 

completely hereditary. It is obvious that random procedures 

of cross-over and mutation affect this inheritance, and pure 

knowledge is not transferred from one generation to the next; 

hence, PSO is more reliable and faster than GA. Second, 

death and reborn of the particles in GA, in each iteration, 

cause computational burden on the system to arise whereas in 

PSO, the population of the particles is constant and particles 

only update their position and velocity, so there is no 

computational burden problem.  

 

III. Traction System and Discrete-Time 

Mathematical Model 

  In the simulated system used in this research, a wheelset 

with two wheels is driven by an AC induction motor through 

a gear set. The details of the traction system are presented in 

Fig.1. 

 
Fig. 1. The schematic of the traction system. 

 

  The wheels are driven by the creep forces generated at the 

contact patch between the wheels and the rail. Hence, the 

dynamic equations are given as:  

𝜔𝑤 =
𝜔𝑚

𝑛𝑖
                                                                        (1) 

𝑑𝜔𝑚

𝑑𝑡
=

𝑇𝑚−𝑇𝐿

𝐽𝑒𝑞𝑣
                                  (2) 

where 𝜔𝑤  is the wheel’s angular velocity, 𝜔𝑚  is the 

motor’s angular velocity, 𝑛𝑖 is the gear reduction ratio, 𝑇𝑚 

is the motor torque, and 𝑇𝐿 and 𝐽eqv are the load torque and 

the equivalent moment of inertia, respectively represented as: 

 𝑇𝑚 =
𝑛𝑝𝐿𝑚

𝐿𝑟
(𝐼𝑠𝛽𝜓𝑟𝛼 − 𝐼𝑠𝛼𝜓𝑟𝛽)                   (3) 

 𝑇𝐿 =
2𝑟𝐹𝑎

𝑛𝑖
                                 (4) 

 𝐽𝑒𝑞𝑣 = 𝐽𝑚 +
𝐽𝑔+𝐽𝑥+𝐽𝑤𝑅+𝐽𝑤𝐿

𝑛𝑖
2                       (5) 

where 𝐹𝑎 is the longitudinal creep force or adhesion force of 

a single wheel and 𝐽𝑔 , 𝐽𝑥 ,  𝐽𝑤𝑅 , 𝐽𝑤𝐿  are the moment of 

inertia of the gearbox, wheelset axle, right wheel, and left 

wheel, respectively. 

  In this paper, the sixth-order rotor flux-based induction 

motor model is used in the EKF algorithm to estimate 𝐼𝑠𝛼, 

𝐼𝑠𝛽 , 𝜓𝑟𝛼 , 𝜓𝑟𝛽 , 𝜔𝑚 , and 𝑇𝐿 . In this modeling, the state 

variables are stator current, rotor flux, angular velocity of the 

motor, and load torque. The state space representation of such 

a model can be written as follows [61]: 
𝑑𝑥(𝑡)

𝑑𝑡
= 𝐴𝑋(𝑡) + 𝐵𝑢(𝑡) + w(t)                              (6)  

y(t)=C𝑋(𝑡) + 𝑣(𝑡)                             (7) 

𝑋 = [𝐼𝑠𝛼 𝐼𝑠𝛽 𝜓𝑟𝛼 𝜓𝑟𝛽 𝜔𝑚   𝑇𝐿]
𝑇               (8) 

y=[𝐼𝑠𝛼     𝐼𝑠𝛽]𝑇                                (9) 

𝑢=[𝑢𝑠𝛼    𝑢𝑠𝛽]𝑇                             (10) 

https://en.wikipedia.org/wiki/Mathematical_optimization
https://en.wikipedia.org/wiki/Iterative_method
https://en.wikipedia.org/wiki/Candidate_solution
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A=

[
 
 
 
 
 
 
 
 
 − (

𝑅𝑠

𝜎𝐿𝑠
+

𝐿𝑚
2 𝑅𝑟

𝜎𝐿𝑠𝐿𝑟
2) 0

𝐿𝑚𝑅𝑟

𝜎𝐿𝑠𝐿𝑟
2

𝐿𝑚

𝜎𝐿𝑠𝐿𝑟
𝑛𝑝𝜔𝑚 0 0

0 −(
𝑅𝑠

𝜎𝐿𝑠
+

𝐿𝑚
2 𝑅𝑟

𝜎𝐿𝑠𝐿𝑟
2) −

𝐿𝑚

𝜎𝐿𝑠𝐿𝑟
𝑛𝑝𝜔𝑚

𝐿𝑚𝑅𝑟

𝜎𝐿𝑠𝐿𝑟
2 0 0

𝑅𝑟𝐿𝑚

𝐿𝑟
0 −

𝑅𝑟

𝐿𝑟
−𝑛𝑝𝜔𝑚 0 0

0
𝑅𝑟𝐿𝑚

𝐿𝑟
𝑛𝑝𝜔𝑚 −

𝑅𝑟

𝐿𝑟
0 0

−3𝑛𝑝𝐿𝑚

2𝐽𝑒𝑞𝑣𝐿𝑟
𝜓𝑟𝛽

3𝑛𝑝𝐿𝑚

2𝐽𝑒𝑞𝑣𝐿𝑟
𝜓𝑟𝛼 0 0 −

𝐶𝑣

𝐽𝑒𝑞𝑣
−

1

𝐽𝑒𝑞𝑣

0 0 0 0 0 0 ]
 
 
 
 
 
 
 
 
 

                          (11) 

B=

[
 
 
 
 
 
 

1

𝜎𝐿𝑠
   

0    
0    
0    
0    
0    

0
1

𝜎𝐿𝑠

0
0
0
0 ]

 
 
 
 
 
 

                                    (12) 

C=[
1 0 0     
0 1 0     

0 0 0
0 0 0

]                   (13) 

σ = 1 −
𝐿𝑚
2

𝐿𝑠𝐿𝑟
                                  (14) 

where Rs is the stator resistance, Rr is the rotor resistance, Ls 

is the stator self-inductance, Lr is the rotor self-inductance, 

Lm is the mutual inductance, np is the number of the pole 

pairs, σ is the leakage coefficient, and Cv is the viscous 

friction. The extended model of IM can be represented by 

(15) and (16). 

[
 
 
 
 
 
 
𝐼�̇�𝛼
𝐼�̇�𝛽

�̇�𝑟𝛼

�̇�𝑟𝛽

�̇�𝑚

�̇�𝐿 ]
 
 
 
 
 
 

= 𝐴

[
 
 
 
 
 
𝐼𝑠𝛼
𝐼𝑠𝛽
𝜓𝑟𝛼

𝜓𝑟𝛽

𝜔𝑚

𝑇𝐿 ]
 
 
 
 
 

+

[
 
 
 
 
 
 

1

𝜎𝐿𝑠

0
0
0
0
0

0
1

𝜎𝐿𝑠

0
0
0
0 ]

 
 
 
 
 
 

[
𝑈𝑠𝛼

𝑈𝑠𝛽
] + 𝑤(𝑡)          (15)                                         

[
𝐼𝑠𝛼
𝐼𝑠𝛽

] = [
1 0 0     
0 1 0     

0 0 0
0 0 0

]

[
 
 
 
 
 
𝐼𝑠𝛼
𝐼𝑠𝛽
𝜓𝑟𝛼

𝜓𝑟𝛽

𝜔𝑚

𝑇𝐿 ]
 
 
 
 
 

+ 𝑣(𝑡)    (16) 

where 𝑤(𝑡) and 𝑣(𝑡) are the process and measurement noise, 

respectively.  

𝐹𝑎 =
2𝐹𝑁𝜇𝑓

𝜋
(

𝑘𝐴𝜖

1+(𝑘𝐴𝜖)2
+ arctan(𝑘𝑆𝜖)), 𝑘𝑆 ≤ 𝑘𝐴 ≤ 1 (17) 

   𝐹𝑎  at the wheel-rail contact is modeled by Polach's 

method [62], which has been widely used in commercial 

codes owing to its short computational time and satisfactory 

accuracy compared with other methods. 

𝜖 =
𝐺𝜋𝑎𝑏𝐶11

4𝐹𝑁𝜇𝑓
                                     (18) 

𝜉 = √𝜉𝑥
2 + 𝜉𝑦

2             𝜉 ≈ 𝜉𝑥 ,  𝜉𝑦 ≈      (19)  

where 𝐹𝑁 is the normal force between the wheel and rail, 

𝜇𝑓 is the traction coefficient, 𝑘𝐴  and 𝑘𝑆  are different 

reduction factors in the areas of adhesion and slip, 

respectively, G is the shear module, a and b are the semi-axis 

lengths of the contact patch, C11 is the Kalker coefficient, 

and 𝜉 is the creepage between the wheel and rail. In this 

paper, the creepage terms contain only the longitudinal 

component, and the lateral dynamics of the system are 

neglected. This creepage was calculated by the following 

equation [63]: 
 

𝜉 =
𝜔𝑤𝑟−𝑉

𝑉
                                    (20) 

where 𝑉 is the longitudinal velocity of the train. The traction 

coefficient in (17) depends on the slip velocity (𝜉𝑉) and 

friction coefficient, which is expressed by the following 

equation: 

𝜇𝑓 = 𝜇0((1 − 𝐷)𝑒−𝐵𝜉𝑉 + +𝐷                   (21) 

where D and B are reduction factors under different friction 

coefficients. 

 

IV. Wheel-rail Adhesion Estimation using 

PSO- EKF 

  In this paper, we attempt to find the best linear estimation 

of the state vector of the induction motor to estimate the 

adhesion force between the wheel and rail surfaces. The state 

and measurement equations are given as follows: 
 

𝐹𝑒(𝑘) =
𝜕𝑓𝑒(𝑥𝑒(𝑘).𝑢𝑒(𝑘))

𝜕𝑥𝑒(𝑘)
| �̂�𝑒(𝑘). �̂�𝑒(𝑘) (22)                                   

𝐹𝑢(𝑘) =
𝜕𝑓𝑒(𝑥𝑒(𝑘).𝑢𝑒(𝑘))

𝜕𝑢𝑒(𝑘)
| �̂�𝑒(𝑘). �̂�𝑒(𝑘) (23)               

 𝑃−(𝑘 + 1) = 𝐹𝑒(𝑘)𝑃𝑘(𝑘)(𝐹𝑒(𝑘))𝑇 + 𝐹𝑢(𝑘)𝐷𝑢(𝑘)  

(𝐹𝑢(𝑘))𝑇 + 𝑄(𝑘)                              (24) 

𝐾(𝑘) = 𝑃−(𝑘 + 1)𝐻𝑇(𝐻𝑃−(𝑘 + 1)𝐻𝑇 + 𝑅(𝑘))−1
  (25) 

�̂�𝑒(𝑘 + 1) = 𝑓𝑒(𝑥𝑒(𝑘). �̂�𝑒(𝑘)) + 𝐾(𝑘)(𝑧(𝑘) − 𝐻�̂�𝑒(𝑘)) 

                                      (26) 

 𝑃(𝑘 + 1) = (𝐼 − 𝐾(𝑘)𝐻)𝑃−(𝑘 + 1)            (27) 

where Q and R are the covariance matrixes of process and 

measurement noise and I is the unit matrix symbol. Due to 

the uncertainty of Q and R, their values are obtained by 

trial-and-error methods which are very tedious procedures. 

The values of these matrixes have a significant effect on the 

EKF output. This is considered a defect for this type of 

estimator. To overcome this problem and to avoid the 
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computational complexity of the trial-and-error method, we 

use both EKF and PSO techniques and try to tune Q and R. 

In the literature, the trial-and-error method is used to tune 

the covariance matrices of EKF, which is a very laborious 

task. To surmount this problem, genetic algorithms have 

been used to optimize and tune the two matrices 

automatically [64]. In this work, EKF is designed and 

implemented for the estimation of motor torque with 

randomly selected values of Q and R. To optimize the 

EKF-based torque estimation of the induction motor and 

avoid the difficulty of determining Q and R, an alternative 

method is used in which the two matrices are tuned and 

optimized based on PSO. This approach consists of two 

steps. It first allows finding the optimal values of Q and R, 

and then these values are injected into the EKF estimator to 

estimate motor parameters.  

  In PSO, all particles fly all over a multidimensional 

search space and adjust their position according to their own 

experience and that of neighbors. The position of the ith 

particle (Xi), the previous best position of each particle (Pi), 

and the individual velocity (Vi) that each particle moves in 

the swarm are defined as follows: 

Xi = (xi1, xi2, …, xiN)                            (28)                                         

Pi = (pi1, pi2, …, piN)                           (29) 

Vi = (vi1, vi2, ..., viN)                            (30) 

where i and N denote the ith particle and dimension of the 

problem or the number of unknown variables, respectively. 

In PSO, initialization is done with a group of random 

particles and it is tried to find the optimum value by updating 

generations. Each particle is updated by two best values in 

every iteration: 1) the best position that each particle 

achieved so far during the optimization process or pbest and 

2) the best position ever achieved by any particle in the 

population or gbest. After finding the two best values, the 

position and the velocity of each particle in the kth iteration 

are updated by the following equations in the inertia weight 

approach (IWA): 

𝑣𝑖(𝑘 + 1) = 𝑤. 𝑣𝑖(𝑘) + 𝑐1. 𝑟1(𝑘). (𝑝𝑖(𝑘) − 𝑥𝑖(𝑘)) +  

 
 

𝑐2. 𝑟2(𝑘). (𝑝𝑔(𝑘) − 𝑥𝑖(𝑘)                                  (31) 

Input          
 
 

𝑥𝑖(𝑘 + 1) = 𝑥𝑖(𝑘) + 𝑣𝑖(𝑘 + 1)                   (32)   

where w is the inertia weight factor that controls the impact 

of the previous velocity on the new velocity,  𝑣𝑖  is the 

velocity of the ith particle, c1  and c2  are the positive 

constants, called coefficients of the self-recognition and 

social component and determine which controls the relative 

impact of the local and the global knowledge on the 

movement of each particle respectively, r1 and r2 are two 

random numbers used to maintain the diversity of the 

population and uniformly distributed in the interval [0,1], pi 

is pbest of the ith particle, xi is the current position of the ith 

particle, and pg is gbest of the swarm. 

  The velocity is updated by Eq. (31) from the previous 

velocity to the new one. The new position of each particle is 

determined by Eq. (32) which is the sum of the previous 

position and the new velocity. Tuning of Q and R is 

necessary to achieve the best estimations. Any changes in 

these two parameters affect both the steady-state and 

transient duration operation of EKF. If Q increases, large 

state noises or uncertainties in the machine will be inevitable, 

which will cause higher Kalman gain, faster EKF transient 

performance, and more heavily weighted measurements. 

Strong noise measurements, weighted less noise, decreased 

Kalman gain, and slower transient performance are the 

consequences of increased R.  

 
Fig 2. The PSO-EKF algorithm flowchart 

 

Therefore, in the first step, the optimal values of Q and R are 

found. Then, these values of Q and R are injected into the 

EKF estimator to estimate the rotor speed and torque of the 

induction motor. For comparison purposes, the performance 

of EKF is evaluated by the fitness function between the 

estimated current and the actual stator current as Eq. (33). 

The manual adjustment of EKF is simple to implement, but 

the process is time-consuming. So, to obtain satisfactory 

Social influence 

Current motion Personal influence 
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estimation performance, an experienced operator is needed.  

In this work, PSO- EKF is used to get the optimal covariance 

matrices. In the optimization of covariance matrices, the 

elements of system noise and measurement noise covariance 

matrices are regulated under some performance index, i.e. 

fitness function. The stator current can be measured by using 

current sensors. Smaller differences between the measured 

and the estimated current imply more accurate torque and 

speed estimation of the induction motor. These difference 

values of stator current can be adopted as the fitness  

function,  

which must be minimized as below: 

min J=
1

𝑁
∑ ‖𝑖𝑠(𝑘) − 𝑖̂𝑠(𝑘)‖2

2𝑁
𝑘=0                   (33)        

where N is the number of samples involved in the 

optimization, 𝑖𝑠  is the actual stator current, 𝑖�̂�  is the 

estimated stator current, and ‖. ‖2 is the Euclidean distance. 

  PSO has six main steps. 1) Each particle in the swarm 

starts to move with random velocity and position in N 

dimensions of the problem space. 2) Fitness of each particle 

is evaluated. 3) Velocity and position of each particle are 

changed according to Eq. (31) and (32), respectively. 4) The 

lbest (local best) and gbest will be updated if necessary; the 

updated position of each particle is evaluated according to its 

fitness. 5) If the criterion is met, the optimization process 

ends; otherwise, it goes to step 3 and the steps are repeated. 

6) The best global solution results from this optimization 

process.  

  In this paper, the PSO-EKF method is utilized to evaluate 

the accuracy compared with EKF in estimating variables. 

The method is composed of two steps. At first, a PSO-based 

EKF structure is presented which allows for finding the 

optimal values of Q and R. In the second step, these optimal 

values are injected into the EKF estimator to estimate the 

torque, which leads to adhesion force estimation. The block 

diagram of the PSO-EKF parameter estimation system is 

illustrated in Fig.2. Also, the pseudo-code for PSO-EKF is 

shown in Appendix A. 

 

V. Results and simulation 

  This section aims to evaluate the accuracy of EKF in 

estimating the variables. To demonstrate the performance of 

the proposed PSO-EKF approach, adhesion force in different 

wheel-rail contact conditions and induction motors are 

simulated using Matlab software. Note that the sampling 

period we used to write our codes in Matlab language is 10−3 

s.  

  To simulate dry, wet, low, and very low contact conditions 

between the wheel and rail, friction coefficients are designed 

as follows: 

𝜇0 = {

0.55         𝑡 < 10     
0.3      10 ≤ 𝑡 < 20
0.06   20 ≤ 𝑡 < 30
0.03   30 ≤ 𝑡 < 35

 

Q and R can be given as:  

Q = diag ([1e-11 1e-9 1.39e-12 1e-9 1.85e-6  

1.42e-6])×0.02  

R = diag ([4e-3   4e-3]) 

  The values of 𝑘𝐴, 𝑘𝑆, D, and B under different friction 

conditions are listed in Table 1. 

 

TABLE 1 

 POLACH MODEL PARAMETERS UNDER  

 DIFFERENT FRICTION CONDITIONS [18] 

 

  The parameters used in the simulation are listed in Table 2. 

Fig.3 shows the curves of the adhesion force versus creepage 

in different wheel-rail contact conditions. As is seen in this 

figure, the creepage curve has a nonlinear characteristic. The 

area on the right side of the peak is called the creepage zone 

and the area on the left side of the peak is the adhesion zone.  

 

TABLE 2 

PARAMETERS AND VALUES USED IN THE SIMULATION 
 

 

 

 
Fig.3. Adhesion force–creepage curves. 

 

The creepage zone is the non-stable part of the curve, and 

adhesion decreases when the creepage increases. On the 

other hand, the adhesion zone is the stable part of the curve, 

in which adhesion increases when the creepage increases. 

Increasing the creepage, the slip region increases versus the 

 

Model parameter 

Wheel–rail conditions 

 

Dry 

 

Wet 

 

Low 

 

Very Low 

 𝑘𝐴 1 1 1 1 

 𝑘𝑆 0.4 0.4 0.4 0.4 

D 0.6 0.2 0.2 0.1 

B 0.4 0.4 0.4 0.4 

f (Hz) LS(H) Lm(H) Lr(H) Rr (Ω) RS (Ω) 

50 0.1004 0.0915 0.0969 1.294 1.54 

𝑟 (m) G (
𝑁

𝑚2
) C11 FN (kN) 

 

Jeqv 

(kg.m2) 

 

Cv

 (
𝑁.𝑚

𝑟𝑎𝑑.𝑠
) 

 

0.34 

 

8.4×1010 

 

4.12 

 

50 

 

0.07 

 

0.015 

V(
𝑚

𝑠
) b (m) np a (m) ni 

 

15 0.0075 3 0.0015 6.92 
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stick region. 

  In the next step, induction motor parameters are estimated 

using EKF, and their actual and estimated trajectories are 

compared separately to check the degree of estimation 

accuracy and convergence. Estimated stator currents in 

𝜶 and 𝜷 frames (�̂�𝒔𝜶, �̂�𝒔𝜷) with their actual trajectory are 

presented in Figs.4 (a) and (b), respectively. The trajectory of 

the estimated and actual rotor fluxes in 𝜶 and 𝜷 frames 

(�̂�𝒓𝜶,�̂�𝒓𝜷)are displayed in Figs.5 (a) and (b), respectively. 

  It can be seen in Figs.4 and 5 that the presence of an error 

in the estimated trajectories of the stator current and rotor 

flux relative to the actual trajectories of these two variables is 

inevitable. 

  The estimated and actual motor speeds (ω𝑚,�̂�𝑚) are given 

in Fig.6 according to which the EKF estimator tracks the 

speed trajectory with a lower bound of error and converges 

fast. Despite good convergence, according to the simulation 

observations, any changes in the values of the noise and 

process covariance matrices will lead to significant changes 

in the estimated trajectory of motor speed. 

 

 
Fig.4.The trajectories of the estimated and actual motor currents 

(a) in α axis (b) in 𝛽 axis. 

 
Fig.5. The trajectories of the estimated and actual rotor fluxes 

(a) in α axis (b) in 𝛽 axis 

 

  The trajectory of the estimated and actual load torque 

(𝑇𝐿 , �̂�𝐿 ) is presented in Fig.7. According to the linear 

relationship between the load torque and the adhesion force 

expressed in Eq. 4, the estimated adhesion force trajectory is 

obtained as shown in Fig.8. Contrary to the relatively good 

convergence between the estimated and actual motor speed 

trajectory, we are faced with a high error band in the 

estimated and actual load torque trajectory. To overcome this 

error and achieve the desired trajectory, it is necessary to 

change the system and process noise covariance matrices’ 

values. Achieving such values will be possible using trial and 

error, which is a time-consuming approach. 
 

 
Fig.6. The trajectory of the estimated and actual motor speed.  

 

 
Fig.7. The trajectory of the estimated and actual load torque.  

 

 

Fig.8. The trajectory of the estimated adhesion force. 

 

  It can be seen from the simulation results that estimating 

the variables using EKF cannot provide the necessary 

accuracy and convergence in load torque and speed 

estimation, which are the most important factors in 

estimating wheel and rail adhesion. As a result, using an 

integrated method to eliminate these drawbacks can play an 

essential role in achieving the desired result. As was already 

mentioned, the key problem of EKF is that the covariance 

matrices Q and R have a great effect on the estimation results. 

Bad choices of these two matrices will lead to large 

estimation errors or the result of estimation divergent. 

Tuning of Q and R will yield the best estimations.  



57                                                PSO-Based EKF Wheel-Rail Adhesion Estimation /R.havangi, et al 

 

 

  In this section, we try to tune and optimize Q and R based 

on the PSO algorithm. It is worth noting that the 

convergence of the PSO method to the optimal solution 

depends on the three parameters of c1, c2, and w in Eq. (31). 

During simulations, c1, c2, and w are set to 2, 2, and 1, 

respectively and swarm population is set to five particles. In 

the following, we will show the simulation results obtained 

by our proposed approach PSO- EKF. The optimized 

parameters of EKF obtained by our proposed approach are as 

follows: 

QR = [(1e-8)/5   (1e-6)/5   (1.39e-9)/5   (1e-6)/4   

(1.85e-3)/4   (1.42e-2)/4   4e-3   4e-3]×3e-6 

  PSO- EKF stator currents in 𝛼 and 𝛽 frames with their 

actual trajectories are presented in Figs.9 (a) and (b), 

respectively. The trajectories of PSO- EKF and actual rotor 

fluxes in 𝛼 and 𝛽 frames are displayed in Figs.10 (a) and 

(b), respectively. 

 

 

Fig.9. The trajectories of the PSO- EKF and actual motor 

currents (a) in α axis (b) in 𝛽 axis. 

  It can be seen in Figs.9 and 10, the trajectories of the 

stator current and rotor flux relative to the actual trajectories 

of these two variables have suitable convergence.  

  PSO-EKF and actual trajectories of induction motor speed 

are depicted in Fig.11. The trajectories of - EKF and actual 

load torque are presented in Fig.12. 

  Figs.11 and 12 show that the proposed estimator tracks the 

speed and torque trajectories with a lower bound of error and 

converges fast. As can be seen, when sudden changes happen 

in the speed and torque, the error changes in a narrow band 

interval. Therefore, the tuned estimator tracks the state 

trajectories with higher precision and converges fast. 

 

 
 

Fig.10. The trajectories of the PSO- EKF and actual rotor fluxes 

(a) in α axis (b) in 𝛽 axis 

 

 
Fig.11. Trajectory of the PSO- EKF and actual motor speed.  

 
Fig.12. The trajectory of the estimated and actual load torque.  

  The PSO-EKF adhesion force trajectory is shown in Fig. 

13, which is derived from the part of Eq. (4). 

  The estimated longitudinal creep force makes it possible 

to determine the level of adhesion that is present between the 

wheel and the rail. The simulation results show that the 

proposed approach gives desired output within 5 iterations 

compared to the trial-and-error approach. In Figs. 9-12, the 

simulation results relative to the best optimal values of EKF 

parameters are plotted, which show good convergence 

between the estimated and actual states. In spite of relatively 

good convergence between trajectories in the proposed 

approach, tuning of EKF is time-consuming and challenging. 
 

 
Fig.13. The trajectory of the estimated adhesion force 
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(a) 

 

(b) 

Fig.14. The speed estimation results for EKF PSO-EKF (a) 

Estimated speed (b) speed estimation error  

 

A. Performance Comparison 

  To further show the effectiveness of PSO-EKF, its 

performance is compared with EKF in Figs.14-15. 

Considering the resulting estimation performances, the 

proposed method outperforms EKF because it does not 

require a priori knowledge of the noises. In addition, in the 

proposed method, the process covariance is tuned adaptively. 

The Q matrix in EKF is selected by the trial-and-error 

method, so it deteriorates the estimation performance of EKF. 

In addition, it is quite difficult to determine Q that gives 

sufficient estimation performance by the trial-and-error 

method. 
 

 

(a) 

 

(b) 

Fig.15. Load torque estimation results for EKF PSO-EKF (a) 

Estimated load torque and (b) load torque estimation error 

 

 
Fig.16. RMSE of Omega over time 

 

  To further evaluate the estimations accuracy of the 

approaches, the root mean square error (RMSE) speed and 

load torque occurring in estimations are given in Figs. 16-19. 

RMSE is obtained over 40 Monte Carlo runs. The RMSE of 

estimations over time is shown in Figs.16 and 17 and their 

mean and variance are shown in Figs. 18 and 19. Each bar in 

Figs. 18 and 19 represents the mean and variance of RMSE. 

It can be found that PSO-EKF outperforms EKF in terms of 

the mean and variance of RMSE. It can be seen that the 

RMSE of PSO-EKF is smaller than the RMSE of EKF, so it 

can be deduced that the speed and load torque estimated by 

PSO-EKF is closer to their actual values. As a result, the 

adhesion force estimated using PSO-EKF is more accurate. 

 
Fig.17. The RMSE of the load torque over time 

 

 
Fig.18. The RMSE of the load torque 
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Fig.19. The RMSE of Omega 

TABLE3 

 RUNNING TIME FOR EKF AND PSO-EKF 
Method Running Time(Sec) 

EKF 15 

PSO-EKF 20 

   

  To provide a comprehensive comparison of the methods, 

we provide the computational time for each method in Table 

3. It shows that the cost for this improvement is in the 

slightly increased computational load in PSO EKF. However, 

this fact is insignificant if the poor performance of EKF is 

taken into account. 

 

VI. Conclusions 
 

  EKF is based on system linearization and requires a 

Jacobian matrix in this process. The calculation of the 

Jacobian matrix is a difficult and error-prone operation. As 

we saw in the simulation results of this paper, EKF does not 

have the necessary accuracy in estimating the variables. This 

is due to the high dependence of the output on the values of 

noise and process covariance matrices, which can be 

mentioned as another drawback of this type of filter. A PSO- 

EKF is proposed to make an effective re-adhesion estimator. 

The PSO- EKF estimator’s performance was evaluated by 

comparing the actual and estimated values of load torque, 

motor speed, rotor flux, and stator current. Then, according 

to the relationship between the torque and longitudinal creep 

force, the motor torque and adhesion force were calculated. 

It was observed that PSO-EKF estimated the states with low 

error values when the wheel-rail contact conditions varied. In 

this course, different creep curves corresponding to different 

contact conditions are utilized and the estimation results are 

found accurate and desirable. Beneficial implications of the 

proposed estimator include improvement in the performance 

of the re-adhesion controller, creepage reduction, and 

maximum traction achievement. Meanwhile, the proposed 

PSO-EKF estimator has superiority in estimation when the 

wheel-rail contact conditions change. Despite these 

advantages, one of the major problems of this type of 

estimator is that tuning the covariance matrices of process 

and measurement noise is time-consuming. An appropriate 

hybrid model such as GA-PSO-EKF may provide more 

flexible and fast convergence and less computational time 

than the individual models. This estimator shall be simulated 

and implemented in future works to improve the estimation 

accuracy and save time. 
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APPENDIX A: The pseudo code for PSO-EKF 

1. Initialize particles and the parameters of PSO 

    Do 

  2. Reconstruct the matrices Q, R 

  3. Run EKF  

       3.1 Find Jacobian matrices 𝐅𝐞(𝐤) 

   𝐹𝑒(𝑘) =
𝜕𝑓𝑒(𝑥𝑒(𝑘).𝑢𝑒(𝑘))

𝜕𝑥𝑒(𝑘)
| (�̂�𝑒(𝑘). �̂�𝑒(𝑘)) 

       3.2 Prediction of error covariance matrix 

𝑃−(𝑘 + 1) = 𝐹𝑒(𝑘)𝑃𝑘(𝑘)(𝐹𝑒(𝑘))𝑇 + 𝐹𝑢(𝑘) 

       𝐷𝑢(𝑘)(𝐹𝑢(𝑘))𝑇 + 𝑄(𝑘) 
       3.3 Calculation of Kalman gain matrix 

    𝐾(𝑘) = 𝑃−(𝑘 + 1)𝐻𝑇(𝐻𝑃−(𝑘 + 1)𝐻𝑇 +
        𝑅(𝑘))−1  

       3.4 Update state and error covariance 

        x̂e(k + 1) = f̂e(xe(k). ûe(k)) + K(k)(z(k) −

                Hx̂e(k))  

       P(k + 1) = (I − K(k)H)P−(k + 1)  

4. Optimization Q and R by PSO 

   4.1 Evaluate fitness of particles 

       J =
1

N
∑ ‖is(k) − îs(k)‖2

2N
k=0  

       4.2 Update particle velocity and position 

vi(k + 1) = w. vi(k) + c1. r1(k). (pi(k) −

xi(k)) + c2. r2(k). (pg(k) − xi(k))  

xi(k + 1) = xi(k) + vi(k + 1) 

    Until Maximum iteration 
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