

© Mehran University of Engineering and Technology 2023 54

Mehran University Research Journal of Engineering and Technology

https://doi.org/10.22581/muet1982.2302.07

 2023, 42(2) 54-70

An improved non-local awareness of congestion and load balanced algorithm for

the communication of on chip 2D mesh-based network

Munib Ahmed *, Muhammad Iram Baig

Department of Electrical Engineering, University of Engineering and Technology, Taxila 47050 Pakistan

* Corresponding author: Munib Ahmed, Email: munibahmed340@gmail.com

Received: 27 July 2022, Accepted: 24 March 2023, Published: 01 April 2023

K E Y W O R D S A B S T R A C T

Congestion Awareness

Load Balancing

Network-on-Chip

Network Partition

Source Routing

Distributed Routing

 Due to advancements in multi-core design technology, IC (Integrated Circuits)

designers have expanded the single chip multi-core design. A privileged way

of communication effectively between these multi-cores is a Network on-chip

(NoC). Design of an effective routing algorithm capable of routing data to non-

congested paths is the most notable research challenge in NoC, by retrieving

congestion information of non-local nodes. This research proposed an

improved congestion-aware load balancing routing algorithm. Non-local or

distant links congestion awareness is done by propagating congestion

information via data packets. By counting number of hops from the source

node, in the quadrant of the destination node, an intermediate node has been

defined, and after the calculation of the least congested route to the

intermediate node, this route is also stored in the data packet for source routing.

Furthermore, for load balancing network is partitioned into two areas called

high congested area (HCA) and low congested area (LCA). For load balancing,

from HCA a node in LCA is selected as output for data packets. Comparison

of the proposed algorithm is done in the form of average latency, average

throughput, power consumption, and scalability analysis under synthetic traffic

patterns. Under simulation experiments, it is shown improvement in an average

latency and throughput of the proposed algorithm is 31.28% and 5.28%

respectively, than existing.

1. Introduction

In the current era, with the consideration of the high

amount of data generated, multi-core processors and

single Core processors could not process massive data

[1]. So, number of multi-core processor required to

process massive data. Increase in the number of cores

on a single chip, communication between these cores

could not be fulfilled by bus-based or point-to-point

architecture. In this regard, a Network-On-Chip (NoC)

is a broad field under research, an alternative to these

architectures for scalability and efficiency

improvement [2]. Unlike the bus-based and point-to-

point architecture, NoC has the benefit of using

independent implementation and optimization of

nodes, multiple topologies support, and network link

and nodes customization as per application.

Traditional interconnect difficulties have been

overcome with the use of customized links between

each node because it employs a fast and efficient link

to route packets between routers. With better

utilization of resources, NoC also provides high

bandwidth and throughput. NoC has a scale-able

architecture, as a result debugging and expanding the

network is easier [3].

According to International Technology Roadmap

for semi-conductor (ITRS) report, the number of

https://doi.org/10.22581/muet1982.2302.01
mailto:munibahmed340@gmail.com

© Mehran University of Engineering and Technology 2023 55

processing cores would be more than five thousand by

2025 [4]. With this road map in semiconductor

technology, the new requirement must be merged for

NoC. The new requirement, such as Routing algorithm

for traffic mapping, load balancing, and congestion

management. This increase in the number of cores on

the Integrated Circuit is a serious issue for the

researcher to efficiently. In NoC, communication

between each core (also called nodes) is done by

routing unit called Processing Element (PE) via data

link. This PE is programable and is configured for

routing the data packet control. In this paper, we

discuss load balancing and congestion awareness by

proposing an improved congestion-aware load

balancing algorithm.

In a network, congestion occurs when a link

exceeds its capacity of data. The average distance

between the source and destination nodes grows as the

network size increase[5], while the number of cores

raises the probability of congestion. Corresponding

nodes with these links are said to be a congested node.

A congested node holds packets since resource/nodes

are occupied by packets allowing incoming packets

not to route to their destination. Therefore, congestion

in the network cause packet not to reach a destination

in time and hence the degraded important network

parameter i.e., throughput and latency. In computer

networks, when congestion occurs packets are

discarded. In NoC packets could not be discarded

because NoC a lossless packet routing is required. As

a result, there is a possibility of high-power

consumption as well as a sharp efficiency degradation

[6].

To improve the NOC performance many

approaches have been proposed, including changing

packet injection rate dynamically [7] [8], optimizing

routing algorithm [9] [10], increasing the number of

router virtual channels (VCs), and changing NOC

structure, and so on. Designing a routing algorithm or

optimization [11, 12] is one of the best effective

solutions. Which specifies the path of a packet to be

transmitted on it and thus it directly influences the

latency and throughput of NoC [10, 13]. In various

ways, congestion in the network could be controlled

by using a congestion-aware routing algorithm.

In a congestion-aware routing algorithm, a path is

selected having the least congestion by knowing

congestion information of non-local(distant) routers.

In general, routing algorithms are divided into

deterministic, oblivious, and adaptive algorithms.

Deterministic routing algorithm: just one path is used

to send packets between two particular nodes.

Oblivious routing: a random set of nodes is chosen

from the source node, with no regard for the network

state. Adaptive routine algorithm: packet path is

selected depending on the network state. A less

congested path would be selected out of multiple

congested paths. Adaptive Routing algorithms are

subdivided into two groups, A minimal adaptive

routing method selects the route that requires the

fewest number of hops. Non-minimal adaptive

routing: An adaptive routing algorithm finds a route

that increases the hops count from source to

destination by increasing the degree of adaptivity.

Minimal routing techniques increase latency and

power consumption since packets are routed via a

large number of links and routers. Non-minimal

routing algorithms, on the other hand, are best for

choosing a non-minimal path with load balancing that

keeps packets out of congested areas, reduces packet

latency, and allows them to reach their destination

[14].

Adaptive routing algorithms are separated into two

types based on congestion awareness: local congestion

awareness and non-local congestion awareness. For

congestion awareness, different techniques are

proposed in the literature. In recent studies congestion

propagation network (CPN)[15] which employs

additional hardware for congestion propagation,

reinforcement learning based method [16] utilizes the

back aunt method for congestion awareness of

upstream router and increase the traffic burden in

network with zero area overhead, link sharing [17] to

propagate the congestion information on Idea link

with the disadvantage of finding and forcing ideal

clock cycle for congestion propagation and freerider

[18] to the propagation of congestion information via

data packet. Starvation may occur when the packet

does not reach in time. In our research propagation is

done by using freeride without area overhead of

additional network and traffic burden for congestion

carrier. Classification of a routing algorithm can also

be done as Source Routed (SR) algorithm and

Distributed Routed (DR) algorithm. In source routing

a precomputed route is stored in a packet. Whereas in

DR the packet holds only the address of the destination

node. In our research, SR and DR with minimal

adaptive routing is utilized.

The advantage of using a minimal routing

Algorithm is packet does not go far away from the

destination node and hence avoids live-lock in the

network. While using a minimal routing algorithm

there is a problem arises called load balancing all over

the network. ZARA [15] and ParRouting [19] partition

the network, in [20] network is segmented into subnets

for load balancing in the network. In our research load

© Mehran University of Engineering and Technology 2023 56

balancing is done by partitioning the network into two

areas based on closeness centrality.

The main contribution of this research is as flows:

• An intermediate node is defined in the

quadrant of the destination node from the

source node, and the least congested path is

calculated for source routing.

• For load balancing network is partitioned into

two area HCA and LCA, route of data packet

from one area to other is take placed based on

proposed algorithm.

• Improved congestion awareness routing

algorithms for both LCA and HCA are

proposed using source routing and distributed

routing by leveraging congestion propagation

via data packet, avoiding the separate

congestion propagation network, or wiring

overhead for propagating the congestion

information.

The rest of this paper is provided as follows:

Section 2 summarizes the relevant work, and

section 3 gives the proposed algorithm. The

implementation of the proposed algorithm is shown in

Section 4. Experimental setup and performance

analysis are given in Section 5. Finally, in section 6, a

conclusion has been drawn.

2. Literature Review

Routing algorithms with the feature of congestion

awareness of distant and only neighbor nodes

proposed so far in the literature are covered in this

section. Any routing algorithm having the property of

congestion awareness first defines the output nodes

(based on congestion status) to deliver the packet to

the destination. Based on the crowd information, an

appropriate node is picked among the output nodes,

and the packet is transmitted to the destination through

this node. An adaptive routing method that identifies

whether the output node is crowded is known as a

congestion-aware routing algorithm. Because of its

simplicity in NoC design, the non-adaptive scheme is

very well-known. This type of routing is XY-routing,

which is a non-adaptive routing scheme [21]. In this

algorithm, packets are first routed to a horizontal plane

and then routed to a vertical plane to reach the

destination node. This algorithm routes packets via the

shortest route. On the other hand, adaptive routing

algorithms dynamically adapt the route according to

the condition of the network and are mostly used for

load balancing and congestion awareness.in adaptive

routing algorithms, virtual or physical channels are

included to ensure the dead lock freedom in the

routing algorithms.

The congestion measurement determines whether

the node is crowded or not. The congestion measure is

a parameter that determines the status of the node

whether it is congested or not. The quantity of full or

empty buffer [22], number of VCs full or empty [23],

and count of arbiter requests [24] are used to calculate

this value. A link to the next node is set to be congested

if credit remains for buffer are less than a certain

threshold. Similarly, for VCs, the quantity of free

virtual channels determines the congestion status. The

number of flits that pass through any link is also

specified by a crossbar. The larger the number of flits

passes which indicates the node is congested. In [25]

measure of this parameter is done by two-bit values.

Each value defines four distant thresholds and defines

a different level of congestion based on the buffer

level.

Another essential parameter in a congestion-

aware routing algorithm is the number of nodes

required to find the next node using congestion

information from these nodes. The algorithm is

classified into three types based on this criterion: local,

regional, and global congestion algorithms. Only

neighboring nodes determine congestion information

in a local congestion-aware algorithm. Hence the

propagation extent is limited to only neighbor nodes.

In Dy-Adaptive [25] and Dy-XY [22] each node has

congestion information of only the neighbor node to

decide the routing of a packet to a later node. For

example, in Dy-Adaptive routing algorithm, each

node determines the congestion information neighbor

node and selects the candidate node having the least

congested link. The link congestion is determined by

the buffer level of a router.

When both output links are in minimum route, the

BARP [26] in 2008 algorithm is used, in which the

packet is sent to the next node estimate the probability

computed by neighbor congestion in a grouping.

Tedesco et al. [27] presented a new routing strategy in

which a packet called an alarm is sent to the source

node informing it of the intermediate node's

congestion state. The congestion information is stored

in a table and routes the package by using adaptive

source routing. Selecting the route based on the local

congestion or neighbor congestion information may

lead to the wrong route because congestion might exist

in distant nodes. For local congestion, there was still

no new research on congestion-aware routing

algorithms.

The regional congestion aware algorithm is another

sort of congestion-aware routing algorithm that

© Mehran University of Engineering and Technology 2023 57

propagates congestion information from a few far-

flung nodes. This algorithm, once again, does not

provide congestion information for all nodes in the

network. Gratz et al. presented RCA (Region

Congestion Awareness) [24] in 2008, which was the

first regional congestion-aware algorithm. This

research proposed three methods of congestion

propagation RCAID, RCA Fan-in, and RCA

Quadrant. A simple implementation is RCAID which

propagates congestion information autonomously

along each dimension. In RCA Fan-in, congested

information in an axis along with congested

information of orthogonal nodes are also added. As a

result, a current router has more congestion

information on the network. Because of gathering the

wrong congestion information from the orthogonal

direction third method, the RCA quadrant comes into

existence. In RCA Quadrant, two different values of

two quadrants were received, updated, and propagated

in the network with the disadvantages of wires and

logic complexity over RCA Fanin and RCAID. The

RCA routing algorithms suffer from two defects. The

first defect is it overlooks the destination location to

collect congestion information. For example, if the

distance between a source node and destination node

is less than five hops, interference may occur with the

congestion information of nodes located beyond the

destination nodes. The second problem is that the

RCA collects the congestion information of nodes

along the X-axis and Y-axis only. Knowing the fact

that most of the routes from the source node do not

cross these notes. To solve this issue DBAR [28] and

CATRA [29] were proposed after the RCA algorithm.

In DBAR, the routing algorithm used two

congestion information registers for nodes congestion

information in rows and columns. In this way, the

interference that may occur in RCA is resolved by

DBAR by determining the congestion information

from registers following source node and destination

node. But still, DBAR has only congestion

information of rows and columns. The CATRA

algorithm, which is one of the most prominent in

modern years, is based on the chance of passing

through any intermediary node. The congestion details

of trapezoid nodes around the present node are being

gathered and compared in the CATRA algorithm.

Agents are utilized to spread the congestion condition.

The drawback of CATRA is that the agent is

overburdened. In 2015, a freerider [18] method was

presented to solve this problem. Instead of using a

specialized Congestion Propagation Network,

congestion bits are spread via data packets in freerider.

The Overhead of agents used in CATRA is reduced by

this method. According to the author out of 128bits

flit, 52 bits are free and could be used for propagation

of the congestion information of distant or non-local

nodes.

In 2017, a new method called ERCA [30] was

created to solve the problem of RCA interference. For

congestion estimate, ERCA uses dynamic weight

rather than static weight. The distance between the

source and destination nodes is used to calculate these

weights. AZRA [15], a novel load balancing method,

was suggested in 2018. A forbidden region was

established in this method, and packets with certain

attributes were not permitted to transit through it. In

2020, ParRouting [19] algorithm for load balancing

was proposed. In this algorithm, a network is

partitioned into three areas based on closeness

centrality and packet from the low priority area, and

the highly congested area is routed to the high priority

area and low congestion area. The disadvantage of an

algorithm is that at a high injection rate the packet

moves toward high priority nodes get congested and

degrade in latency if the destination node lies in the

central node. In 2020, Akbar et al [31] proposed an

algorithm that is a combination of both deterministic

and adaptive routing. In extreme congestion, the

packet moves as far as possible in a limited time and

again selects the minimum route by knowing the

possibility of congestion calculated by using

betweenness centrality, history of previous packets

routed, and degree of adaptivity.

DAR [32]and GCA [33] are global congestion-aware

routing algorithms. The disadvantage of these

algorithms is extra overhead for storing and

propagating global congestion information and is not

scalable. Because of this most global congestion-

aware algorithms are not proposed in recent years.

However, a network is segmented into a subnet and

then a global congestion-aware algorithm is

implemented on them, [20] is one of these categories

of an algorithm. NoC was divided into numerous

subnets in this routing technique. The proposed

method coupled the benefits of reginal congestion-

aware routing in each subnet with global congestion-

aware routing between subnets. CPN agents require

more space and power in regional and global

algorithms, making them uneconomical for the NoC

design used in battery-powered or portable embedded

systems. That is why, in recent years, there has been a

minimal study on this type of routing algorithm. The

employment of a regional congestion algorithm is

projected to be no longer cost-effective due to the

relevance of area and resources.

As a result, a minimum adaptive congestion aware

load balance with congestion information from a few

non-local nodes up to three hops from the source node

is presented in this study. In the following, it can be

© Mehran University of Engineering and Technology 2023 58

seen how intelligently a least congested path to an

intermediate node is selected, and other decisions for

route selection are made based on the residence of the

destination and source node in the network. Table 1

illustrate the summary of Cutting edge research papers

using different routing technique and performance

parameter measuring.

Table 1

Summary of Cutting-edge research papers having deficiencies, routing technique and performance parameter measuring

Sr# year Routing Type Routing

Characteristic/Deficiencies

Switching

Type

Performance Parameter

1 Nain Z.et al

[36]

2020 Adaptive +Fault

Tolerance

Live lock avoidance by

selecting alternative port

 Deficiencies: No distant or

non-local congestion

awareness

wormhole Avg. Flit Delivery ratio

0.42flits/cycle/node

@ 0.03 IR

2 Akbar R et.al

[31]

2020 Deterministic

adaptive Routing

Congestion-aware

probabilistic method based.

wormhole Normalized power,

consumption, Avg.

Latency, Throughput

74 cycles @ 0.01 IR bit

reversal traffic Patterns

3 Subnet-

Routing [20]

2021 Fully Adaptive

Routing

Congestion aware by use of

advantage of both local and

global congestion awareness

 Deficiencies: overhead of

using separate CPN

wormhole Latency, Throughput

power, switching

activity scaling analysis.

40.05 cycles @ 0.01 IR

with synthetic Bit

Reversal traffic

4 Par-routing

[19]

2020 Adaptive Partitioning network and set

priorities for local balancing

 Deficiencies: if destination

node in central area and

packet in high priority area,

the is degradation in latency

and throughput

wormhole Avg Latency,

Throughput,

Switching activity

62 cycles @ 0.01

injection rate of bit

reversal traffic

5 Ahmad K et al

[37]

2021 Adaptive Congestion Aware

 Deficiencies: congestion

awareness via data packet on

for one hop beyond the

neighbor node

wormhole Latency

3. Proposed Algorithm Design

This section elaborates on the design of the

congestion-aware load balancing routing algorithm.

The proposed algorithm is a type of destination-based

Minimal Adaptive using both SR and DR. The core

idea is to define an Intermediate node, three hops

beyond the source node either in the x-axis direction

or in the y-axis direction. The selection of the

intermediate node is described below. Once the

Intermediate node has been defined, the least

congested path from the source node is selected for

source routing. This section also describes the

partition of a network in HCA and LCA for load

balancing. For both congested areas two Algorithm 1

and Algorithm 2 are proposed. Congestion

propagation and updating mechanism are described in

section 4.

3.1 Intermediate Node Selection

An intermediate node is a node that is either in the x-

axis direction or in the y-axis direction from a source

node. Selection is made based on a minimum value of

the congested node either on the x-axis or y-axis. This

is illustrated in Fig.1. This intermediate node could be

in any direction from source to destination in the

quadrant North-East (NE), East-South (ES), North-

West (NW) or West-South (WS) depending upon the

destination node. In Fig.1 the selection of intermediate

node Ix and intermediate node Iy depends upon the

© Mehran University of Engineering and Technology 2023 59

congestion of the link along the x-direction and y-

direction respectively.

Fig. 1. Intermediate node Ix and Iy are determined in the

NE quadrant of destination node D and Iy selected based

on the least congested path Py3

An Intermediate node is a predefined node

calculated from the location of the source node and

destination node quadrant. If source node having

location of S(x,y), intermediate node along x-axis is

calculated as Ix=I(x-1,y+3) for NE quadrant, Ix=I(x+1,y+3)

for ES quadrant, Ix=I(x-1,y-3) for NW quadrant, Ix=I(x+1,y-

3) for WS quadrant nearer to destination node and

along y-axis is calculated as Iy=I(x-3,y+1) for NE

quadrant , Iy=I(x+3,y+1) for ES , Iy=I(x-2,y-1) for NW and

Iy=I(x+3,y-1) for WS quadrant.

All the congestion information of links along the

x-axis and y-axis is stored in the congestion

information register module in Router (further detail

in router architecture subsection). A link having value

of 1 that represents the link is congested and 0 means

the link is not congested. Notation of congestion scale

depends upon the free cell in the buffer of the router

(buffer level). Which is given in Table 2. In [20]

different buffer levels occupied are presented by 2-bit

value for congestion representation. Same congestion

measure value we are using here. If the congestion

information value is binary value 11 or more than 75%

link is said to be congested and marked as 1 for link

congestion propagation.

Table 2

Amount of congestion determined for input buffer:

Input buffer level occupied in

percentage

Congestion Value

Less than or equal to 25% 1

In between 25% and 50% 2

Between 50% and 75% 3

More than 75% 4

For intermediate node selection, out of three paths

Px1 Px2, and Px3 along x- the axis and along the y-axis

Py1, Py2, and Py3 least congested path is selected. For

example, in Fig.1 Px2 and Py3 are the least congested

path along the x-axis and y-axis respectively. After

comparing the congestion link of selected paths Px2

and Py3 a link having the least congested path defines

the intermediate node. Px2 has a link value of 110 and

Py3 has a link value of 100. Py3 defines the selected

intermediate node along the y-axis Iy. So, a packet is

routed along the y-direction (north) using source

routing. If both paths have equal congestion links, the

packet is routed to the intermediate node nearer to a

destination node. If the destination node is one or two

hops (less than three hops) beyond the source node,

then local congestion information is utilized for output

link selection.

3.2 Load Balancing

Adaptive congestion-aware routing algorithm is a load

balance routing algorithm. While using a minimal

routing algorithm there may occur a problem of load

balancing. A step must be taken to distribute traffic

load all over the network. ParRouting [19] partitioned

the network into three regions to balance the heavy

load traffic from the central area to the Edge area. The

same technique we are using here to partition the

network by using closeness certainty. The shortest

pathways from node μ to all nodes are measured by

closeness centrality. It's commonly written as the

normalized inverse of the sum of the graph's

topological distances. Mathematically it is written as:

∁(𝜇) =
𝑛−1

∑ 𝑑(𝜇,𝑣)𝑛−1
𝑣

 (1)

In above Eq.1 shortest distance of path between v

and u is d (v, μ), and n is the total number of nodes that

could be accessed by μ in the mesh network. A

network is partitioned into two areas HCA and LCA.

Based on two partitioned area Algorithm 1 and

Algorithm 2 is proposed. Output link for HCA is

selected toward LCA to balance traffic from the highly

congested area to the low congested area. An example

of partition 9x9 2D mesh is shown in Fig. 2(a). It can

be seen that Max (∁(μ)) is 0.444 and Min(∁(μ)) is

0.1950. Patriation of the network is on based on

closeness centrality and every node whose closeness

centrality is greater than some threshold is considered

as HCA. Calculation of threshold is as flows.

Threshold = K [Max (∁(μ)) - Min(∁(μ))] +

Min(∁(μ)), where 0<K<1 (2)

The value of K is range from 0 to 1. If we increase

the value of K, HCA will be smaller. If we decrease

the value of K, HCA would be larger and load

balancing would not be possible. Here we choose the

value of K=0.7.

© Mehran University of Engineering and Technology 2023 60

(a)

(b)

Fig. 2. (a) 9x9 2D mesh Network with closeness certainty

value. (b) The network is partitioned into two are HCA

and LCA based on a threshold value.

All values of closeness centrality for nodes greater

than this threshold are considered HCA. In Fig.2 (b)

all red nodes are HCA and green nodes are LCA. If the

source and destination node are in HCA, then

Algorithm 1 is applied. If source and destination both

or only destination node (no matter source node in

HCA) are in LCA, algorithm 2 is applied.

Algorithm 1

For High Congestion Area (HCA) Nodes

3.3 Algorithm 1 Strategy

The network is partitioned into two areas, HCA and

LCA. Algorithm 1 applies to HCA if the source node

and intermediate nodes (both Ix and Iy) are in HCA. A

network has a heavy load in its central area [19]. It is

necessary to route a packet from this congested area to

a low congested area. This is true for Non-Minimal

Adaptive routing. For Minimal Adaptive routing, the

packet must be a queue at the input of the buffer.

Queueing packets at input of Router buffer increases

queue latency and hence causes performance

degradation. Algorithm 1 gives a solution by choosing

the least congested path with minimal Adaptive

Routing.

© Mehran University of Engineering and Technology 2023 61

Assume that destination (dst) node lies in the NE

quadrant. In the first Step, Algorithm 1 checks the

buffer level of neighbor nodes Nx and Ny. If the Buffer

scale of x neighbor Nx(East) and y neighbor node

Ny(North) is less than or equal to 25%(See Table 2),

the packet will be routed to the neighbor node nearer

to the destination node.

 If the first step is not executed, it enters the second

step. In this step, it first checks RoutIsSet(further detail

in section 4 of packet structure) from the packet

header. If RoutIsSet is true it will enter in step3 and

perform source routing. Otherwise, it checks dst nodes

lie outside the region of Intermediate node Ix and Iy, an

Intermediate node with the least congested route is

selected along x- the direction or along the y-direction.

Three paths from the source node along x-direction

Px1, Px2, and Px3 are compared with three paths Py1, Py2,

and Py3. Each path has three hops to reach the

intermediate node. These hops contain a link between

two nods, a link is said to be congested if it has a value

of 1. Non-congested link marked as 0. Each link is

represented by distant link(dist[0][i] for x-direction

and dist[1][i] for y-direction path to intermediate

node) that and consume only one bit in packet header

for congestion information. All distant links

corresponding to the path are shown in Fig.3. Criteria

for the congested link or non-congested link are based

on the buffer scale in the router as described above.

After Least congested path calculation the encoded

complete path is loaded to the packet header. In the

algorithm, remote link addresses are only for the EN

quadrant. The other three remaining quadrant path

computation is done in the same way.

encoded_min_path function performs encoding of a

complete path in three bits. It first compares three

paths, if two paths or all three paths have the same

congestion value, the address of the randomly chosen

path is a return to Py or Px. Table 2 shows a total

number of six paths along x-direction and y-direction

are encoded with 4bits. 0 and 1 represent the output

node along the x-axis in the destination node direction

and the output node along the y-axis in the direction of

the destination node respectively. If the destination

node lies in the region of the Intermediate node near

to source node, the buffer level of output neighbor Nx

or Ny is checked. If it is less than or equal to 2(link

congestion between 50% to 70%), the output node

having the least congested link or nearer to the

destination is selected. If congestion of neighbor is

greater 2(more than 70%) output node having low

closeness centrality is selected.

In Step 3, the Number of Hops (NoH) is equal to 3,

the maximum number of hops to reach the

intermediate node. Whenever a packet enters the

source node, if RoutIsSet is true, it is decremented

until it reaches zero then RouteIsSet is set as false.

Fig. 3. Remote distant links represent congestion

information

At the same time, the least significant bit (LSB) of

the encoded path is left shifted to determine the next

direction for the source node.

Table 3

Addresses of paths encoded along the x-direction and y-

direction:

Paths along x- axis and y-

axis

Encoded address in binary

Px1 0001

Px2 0100

Px3 0010

Py1 1110

Py2 1011

Py3 1101

© Mehran University of Engineering and Technology 2023 62

Algorithm 2

For Low Congestion Area (LCA) Nodes

3.4 Algorithm 2 Strategy

Algorithm 2 applies to nodes that are in LCA. All

nodes having closeness centrality less than the

threshold from Eq. 2 are said to be in LCA. At first,

this algorithm checks whether the source node and

destination node are in LCA and checks whether any

of the Neighbor nodes is in the boundary node or not.

If the source node and destination are both in LCA and

not a boundary node, the neighbor node Nx or Ny is

selected in the direction of the destination node by

calculating distant congestion information. Distant

link congestion up to 3-backyard along with x-axis

nodes and y-axis nodes are compared. The neighbor

candidate node (Nx or Ny) having the least congestion

is selected as the output node. If the comparison of link

congestion is equal, a neighbor node with the nearest

destination is selected. If the residence of the source

node is in the HCA and the destination node in LCA,

the location of both intermediate nodes Ix and Iy is

checked. if Ix and Iy both are in HCA, Algorithm 1 is

applied. Otherwise, the packet from High congestion

is routed to LCA based on no closeness centrality.

4. Implementation of Algorithm

4.1 Congestion Propagation and Calculation

Congestion-aware routing algorithm requires no-local

congestion information. Unlike congestion

propagation network (CPN) proposed in CATRA to

propagate real-time congestion information through a

dedicated network adds extra area overhead for

network wiring, updating and propagation of

congestion information being done via data packets.

According to Chen et.al [18] , in 128bits of NOC, the

head flit of the packet contains more than 52 free bits

as shown in Fig. 4 these free bits can be used for the

propagation of congestion information.

Fig. 4. Packet structure for 128-bit mesh based network

[18]

The core idea is that head flit coming from North,

south, east, and west have congestion status of K-

backyard link [18]. Local Congestion information of

four links is updated when head flit enters the router.

So, when the head flit enters the router, at first

congestion information of four local links (North,

South, East, and West) is calculated based on the

buffer level of the downstream and upstream routers.

Secondly, all congestion information of K-backyard

links is updated in the congestion information register

(CIR) (described in section 4.2). According to Table 2

a link is congested if the value is greater than or equal

to 2(binary 10). A congested link is marked as 1 and

the non-congested link is marked as 0. According to

the proposed algorithm header format is shown in

Fig.5. 1-bit RoutIsSet and 4bit NoH are added to

determine whether paths are set for source routing or

not.

Fig. 5. A new head flit structure for implementation of

the proposed algorithm

4.2 Router Architecture for Proposed Algorithm

The Baseline architecture of the router is the same as

used in [28], 128bit of NoC, mesh topology, credit-

based wormhole flow control, two VCs, and 2-stage

Pipeline except those two new modules added to

implement a proposed algorithm. Congestion

information Register (CIR) module and Path

Computation Unit (PCU). This modified architecture

of the router is shown in Fig.6, CIR stores and updates

the congestion information after calculation of remote

link in data packets. CIR consist of four registers each

of 16bit that holds the congestion information of non-

local nodes. Packets coming from the neighbor node

© Mehran University of Engineering and Technology 2023 63

having congestion information of (three Hops away

from destination node along north, east, west and

south) is updated in these register bank.

PCU computes the path for source routing. Step 2

and Step 3 in algorithm 1 are being executed by this

unit. A packet from the CIR module enters in PCU and

checks the status bit RouteIsSet from the header of the

packet. If this bit is set, it executes step 3 i.e., the

output node is determined by the LSB value stored in

a packet header, shift encoded path bit to left, and

decrement to NoH. If the status bit RouteIsSet is 0. It

calculates Intermediate nodes and checks if the

destination node is outside the region of Ix or Iy. It

calculates the path as described above in the

Algorithm 1 strategy and stores the encoded path in

the header of the packet.

Fig. 6. Router Architecture to implement the proposed

algorithm

Above implementation have a negligible effect on

latency and area because to implement a CIR unit only

48 registers are required. PCU only performs addition

and compare function in addition with requirements of

some storage register to store 4bits encoded path. We

will evaluate power consumption in the next section.

4.3 Workflow for Implementing Proposed Algorithm

Process flow graph of the proposed algorithms is

described by the block diagram shown in Fig. 7. At

first, when head flit arrives congestion information of

local link is updated to CIR unit as well as the head flit

of packet is updated. Rest of congestion information

in CIR is also updated by loading congestion from

head flit. Head flit contains source and destination

address, based on this address intermediate node is

calculated. In parallel RCU compute local output node

along x-direction or y-direction based on the buffer

level in virtual channel. If buffer level is more than

prescribed threshold RCU hand over the control to

PCU, in PCU algorithm 1 and algorithm 2 work as

routing function to compute the complete path to

intermediate node and to the destination node. In

proceeding subsection explains in detail the working

of both algorithm with examples.

Fig. 7. Flow graph for implementing the proposed routing

algorithm.

4.4 An Example for Algorithm 1

An example of proposed algorithm 1 is given in this

section. Let us consider a source node is represented

by S and a Destination node is represented by D as

shown in Fig. 8 at first algorithm checks if congestion

in the local neighbor in direction of the destination is

less than 10%. Let's assume the buffer level of both

neighbor nodes Nx and Ny is greater than 10%. The

route computation unit (RCU) will not decide the

output direction for the source node. In Parallel the

PCU checks if RoutIsSet status bit in the packet header

and calculate intermediate node Ix and Iy. Let's

consider RoutIsSet status bit is 0. The algorithm

checks destination node is in the region of Ix and Iy. it

can be seen in Fig that D is outside of both

Intermediate node Ix and Iy. Now the path computation

in Step 2 is executed by PCU. Three Paths along x-

direction Px1 Px2, Px3, and along y-direction Py1, Py2 and

Py3 are compared based on remote congestion

information of links from data packets. It is shown in

Figure that Px1 has minimum congestion i.e.

Px1=link1+link2+link6(0+0+0) is 0. The remote

congestion address of each link is shown in Fig. So,

the Intermediate node along x- direction Ix is selected

with path 1 along the x-axis (Px1). Address of path 1

from Table 3 is loaded in the header of the packet as

[0001]. Now control goes to Step 3 of Algorithm 1.

Here output port is decided based on the LSB of the

encoded address stored in the packet header. LSB is 0,

which means the output port for the packet is selected

along X-axis (East). After shifting 1 bit left the address

[0010] and status bit RoutIsSet =1 both values are

loaded to the packet header and NoH is decremented

by one value (NoH=3). For the next output node,

Algorithm 1 cycle is repeated (as S and D are in HCA).

At first congestion info of the local route is checked.

Assume its greater than 10%, RCU will transfer its

control to PCU. PCU checks RoutIsSet =1, LSB is 0,

© Mehran University of Engineering and Technology 2023 64

and the output port in the east is selected by

decrementing NoH. By Shifting to the left, the new

address [0100] is loaded in the packet header again

and repeats the cycle. According to LSB =0, the output

port is selected along the x-axis to the east. At last, by

shifting to the left new address [1000] is loaded in the

packet header and repeats the cycle. According to LSB

=1, the output port is selected along the y-axis to the

north.

For the next cycle, NoH=0 and RoutIsSet =0 show

packet has been reached the Intermediate node. The

complete process is again repeated. Now destination

node is inside the region of Intermediate node Iy. The

algorithm checks input buffer has a congestion level

of less than 50% of Neighbor Nx and Ny. Output with

the least congested link is selected. Assume that Ny

along y- the axis is selected with the least congested

link. As next neighbor node is the destination node(D).

So, a packet is again routed to the North Ny neighbor

node without comparing the congestion level of buffer

along with Ny and Nx.

Fig. 8. 2D mesh Network having source and a

destination node in HCA to implement Algorithm 1

4.5 An Example for Algorithm 2

Algorithm 2 is Illustrated by another example in this

Section. Let's consider source node is in HCA and the

destination node is in LCA as shown in Fig.9

Algorithm 2 checks the closeness centrality of an

Intermediate node. In this example closeness

centrality of Iy consider zero because it lies outside the

size of the network. So, packet is routed to low

centrality values without knowing local congestion or

distant congestion information, in the direction of the

destination. A packet is routed along the y-axis to the

South. Now both the source node and destination node

are in LCA. Distant congestion information could not

be found because Neighbor Ny
” node is a boundary

node. Based on local congestion information packet is

routed to neighbor node Nx to the east. Again, because

neighbor node Ny is a boundary node. Therefore,

based on local congestion information packet is routed

to a destination node.

Fig. 9. Example Explaining algorithm 2, Based on local

congestion awareness packet is routed to the destination

4.6 Deadlock Freedom

For an adaptive routing algorithm considering

deadlock, freedom is Important. The proposed

algorithm is a minimal destination-based adaption

routing algorithm. which is itself deadlock free.

Deadlocks may occur while doing source routing by

choosing the path. Router architecture is used in a

network having two VCs. VC1 and VC2, VC2 has low

priority and is used only by-passing packets when a

dead lock occurs. Allocation of VC2 is done only for

WS (West South) and WN (West North) turns. So,

VC2 is used as an Escape virtual channel [34] when a

dead lock occurs.

5. Simulation and Results

Simulation for performance measure of proposed

routing algorithm and comparison in term of different

measure parameter with other routing algorithms is

presented in this section. We need a tool that can

simulate the parameters of NOC and choose the ideal

parameter for this evaluation. This tool is known as a

NOC simulator. Generally, two types of simulators are

used named software and hardware simulators.

Because of the software simulator’s most significant

attribute is great robustness. Therefore, for NoC

evaluation simulators are usually devolved in the form

of software [31]. A software simulator must have

specific features such as cyclic accuracy, general for

different structures of a network, and notable

simulation speed. A highly parameterizable capability

of fast modeling of concurrent hardware modules with

cyclic level accuracy, a NoCTweak[35] NoC

simulator, is proposed in 2012. This simulator has

been designed and developed in SystemC with C++

Plugins. For performance evaluation, this simulator

provides output results in average latency, average

© Mehran University of Engineering and Technology 2023 65

throughput, and router power (in mW) using a 65nm

standard cell CMOS library.

Table 4

Parameter setup for Performance Evaluation

Topology

Routing algorithm

Switching Technique

No. of Ports

No. of VCs

Size of flit

Length of packet

Frequency

16x16 2D Mesh

Proposed

Wormhole

Five

two

128bits

20flits

150 MHz

Feature Size

Worm-up-time

65nm

2000Cycles

NocTweak evaluates the proposed algorithm's

performance. Each NoC router has a total of five ports

and PEs. Each router port is equipped with two VCs,

each with a capacity of sixteen flits. Table 4 contains

the specifics of the simulation setup.

5.1 Latency and Throughput Analysis

The average delay of packets generated in the network

is the first metric considered in the NoC performance

analysis. Traffic patterns and workload must be

particular for NoC measurement. The workload

dictates how many packets are formed per node on

every clock cycle, whereas the traffic pattern

determines the destination to the source node on every

clock cycle. Using the probability distribution

function, if traffic is injected synthetically, these

traffic patterns are called synthetic traffic patterns.

Mostly used synthetic traffic patterns are uniformly

random, Bit-reversal, Transpose, and bit-complement.

In this paper, a comparison of a suggested algorithm is

done with other three similar algorithms ZARA5-16

[15], Dy-Adaptive [25], and subnet [20] under

uniform random, Bit-reversal, and transpose synthetic

traffic patterns at different injection rates. For a 2-

D mesh 16x16 network, Fig. 9-11 illustrates the

performance measure in terms of average latency of

the proposed routing algorithm and other three

existing routing algorithms under uniform random,

Bit-reversal, and transpose traffic patterns. The

horizontal axis depicts the injection rate (IR) in flits

per node per cycle that defines the workload in a

network. The vertical axis represents average latency

in cycles.

In uniform, Bit-reversal, and transpose traffics, the

proposed method outperforms the other three

algorithms, as shown in Fig. 10-12.

Fig. 10. Average latency evaluation under synthetic

uniform random traffic pattern

Fig. 11. Average latency evaluation under synthetic

Transpose traffic pattern

Fig. 12 Average latency evaluation under synthetic Bit-

Reversal traffic pattern

According to some authors [31, 25] uniform traffic

is unattainable, and the worst outcomes are

unimportant in this case. Because of the superior

nature of the proposed algorithm, which is minimally

adaptable and routes the least crowded way, it

outperforms existing algorithms. Fig.10 under

© Mehran University of Engineering and Technology 2023 66

uniform random traffic, which is itself balanced, the

proposed algorithm performs well as compared to Dy-

Adaptive and ZARA5-16. Because at a high injection

rate proposed algorithm route packet to a path having

the least congestion. Fig.11 shows average latency

under transpose traffic patterns. Since in this traffic

packets are usually routed over a long path. Dy-

Adaptive is saturated rapidly and in comparison, with

the other two algorithms, the proposed algorithm

performs better because of load balancing and

choosing the least congested non-local route selection.

Fig.12 illustrates average latency under bit reversal

traffic patterns. Results are similar to the transpose

traffic patterns. There is no significant difference and

again proposed algorithm outgoes the existing one. In

Table 5 it is shown that Average latency of proposed

algorithm in comparison with others under various

injection rate.

Fig.13-15 illustrates the performance evaluation of

the proposed algorithm with the other two algorithms

Dy-adaptive and subnet in terms of average

throughput. The horizontal axis represents IR in flits

per node per cycle and the vertical axis is represented

by average throughput in flits per cycle. In Fig. 13

proposed algorithm is compared with the other two

algorithms Dy-Adaptive [25] and subnet [20] under

uniform traffic patterns. Uniform random traffic is

already balanced all over the nodes in the network so

there is no significant difference between them.

Fig. 13 Average throughput evaluation under

synthetic uniform random traffic pattern

In Fig.14, it can be concluded that the proposed

algorithm is superior to the Dy-Adaptive routing

algorithm under transpose traffic patterns. While

comparing subnet, at first proposed algorithm defeats

subnet but when IR from 0.38Flits/Node/Cycle

increased subnet outgo proposed algorithm. This is

because of the highly adaptive nature of the subnet.

But at high IR (0.75 Flits/Node/Cycle) proposed

algorithm again defeats the subnet and does not

degrade soon. Hence proposed algorithm defeats the

other two algorithms.

Fig. 14 Average throughput evaluation under synthetic

Transpose traffic pattern

In Fig.15 it is noticeable, that our algorithm is

improved than the Dy-Aaptive algorithm. However,

the proposed algorithm could not beat the subnet by a

significant margin. But the results are not the worst

and are still competitive and the proposed algorithms

are performing well. Table 6. listed the Average

Throughput of proposed algorithm in comparison with

others under various injection rate.

Fig. 15 Average throughput evaluation under synthetic

Bit-Reversal traffic pattern

5.2 Power Consumption Analysis

For power evaluation nocTweak [35] simulator

utilizes a 65nm standard cell CMOS library. Analysis

of power consumption by the router is an important

parameter. Since a routing algorithm utilizes a chip as

the backbone for its implementation. Implementation

of congestion-aware routing causes high power

consumption at a high injection rate. A load-balanced

congestion-aware routing algorithm distributes the

workload all over the network and hence allows

efficient utilization of resources and the reduction of

workload over a single resource also causes a

reduction in power consumption. The proposed

routing algorithm does not use an additional network

© Mehran University of Engineering and Technology 2023 67

of wires to detect congestion of non-local nodes.

However, it utilizes the CIR module for congestion

information propagation via data packet and PCU for

computation. Simulation results show that the worst-

case scenario of power consumption is not at a high

injection rate. Fig.16-17 depicts the evaluation of

power consumption of the suggested algorithm in

comparison with the Dy-adaptive and subnet routing

algorithm.

Fig.16 under a uniform traffic pattern, at a high

injection rate Dy-adaptive, performs well as compared

to the proposed algorithm. In comparison with the

subnet proposed algorithm less power consumption. In

Fig. 17 under transpose traffic patterns, power

consumption of Dy-Adaptive increases rapidly. The

proposed algorithm performs very well at a low

injection rate but after injection rate,

0.18flits/node/cycle power consumption is increased

and hence subnet has the least power consumption.

Fig. 16. Power consumption evaluation under synthetic

uniform random traffic pattern

Fig. 17. Power consumption evaluation under Transpose

traffic pattern

Fig. 18. Power consumption evaluation under synthetic

Bit-Reversal traffic pattern

Fig. 18 under bit reversal, the proposed algorithm

consumes less energy than a subnet at a lower

injection rate but at a higher injection rate subnet has

the least power consumption than both Dy-Adaptive

and the proposed algorithm. However, under these

traffic patterns, it can be concluded that, and no worst

scenario makes inefficient design as power

consumption is an important parameter in portable

NoC Structure.

Table 5

Average latency of proposed algorithm in comparison with

others under various injection rate:

Traffic

Patterns

Average latency(cycles)

Dy-

Adaptive

ZARA5-

16

Subnet proposed

Uniform

random

traffic

68 64 74 64

Transpose

Traffic

204 150 120 89

Bit-Reversal

Traffic

213 102 100 85

Table 6

Average Throughput of proposed algorithm in comparison

with others under various injection rate:

Traffic Patterns

Average Throughput (Packet/Cycle)

Dy-

Adaptive

Subnet Proposed

Uniform

random traffic

0.015473 0.015847 0.01614

Transpose

Traffic

0.013372 0.015255 0.01540

Bit-Reversal

Traffic

0.013335 0.014517 0.01479

5.3 Scalability Analysis

Another important parameter to check the efficiency

of the algorithm is to check whether it is scalable or

not. Since mostly global congestion-aware routing

algorithms are not scalable. The scalability of the

routing algorithm shows that it can be implemented to

© Mehran University of Engineering and Technology 2023 68

different dimensions of the NoC without performance

degradation. Fig. 18 shows average latency under

transpose traffic patterns that normalized to the

proposed routing algorithm, at different NoC

dimensions. When dimensions of NoC increase there

is an improvement in average latency. Because at each

candidate node proposed algorithm finds the least

congested path to the intermediate node and balances

load by shifting traffic to the non-congested area. Fig.

19 shows that the proposed algorithm behaves

identically to existing algorithms over almost all

dimensions of the NoC.

Fig. 19. Comparison of the proposed algorithm with

others in terms of normalized average packet latency under

synthetic transpose traffic pattern with different network

size

6. Conclusion

In the recent era, to process the massive data the

number of PEs is increasing on a single chip. Efficient

communication between these PEs is a big challenge.

One of the best solutions is to design routing algorithm

that communicates efficiently between these PEs and

routes the packet to the least congested link. In this

paper, an improved congestion-aware load balancing

algorithm is proposed. The proposed algorithm is a

type of minimal adaptive algorithm. The network is

divided into two areas, LCA and HCA, based on

closeness centrality. For both areas, two algorithms

are proposed. Load balancing is achieved by routing

the packet from HCA to LCA and hence equally

distributed load all over the network. In LCA, a

minimal dentation-based adaptive algorithm is

implemented by knowing the congestion information

of distant nodes. In HCA, an intermediate node is

defined in the direction of the destination node, and

the least congested path is computed using source

routing to this intermediate node by knowing the

congestion status of non-local nodes via data packets.

To implement the proposed algorithm two additional

modules CIR and PCU are included in the baseline

router. Simulation results show that the power

consumption does not reach to worst-case condition

and is still in competition with other comparative

algorithms. Moreover, performance evaluation in

terms of latency and throughput, shows the

prominence of the proposed algorithm more than Dy-

Adaptive, AZRA, and subnet. Finally, the proposed

algorithm's scalability is proved using various network

dimensions. It is shown that average latency and

throughput improvement is 31.28% and 5.26%

respectively, then existing comparative algorithms.

7. References

[1] J. Duato, S. Yalamanchili, L.M. Ni,

"Interconnection networks: an engineering

approach", Morgan Kaufmann Publishers,

July 2003.

[2] W.J. Dally, B.P. Towles, "Principles and

practices of interconnection networks",

Elsevier, 2004.

[3] W. J. Dally and B. Towles, "Route packets,

not wires: on-chip interconnection networks",

Proceedings of the 38th Design Automation

Conference, pp. 684-689, 2001.

[4] ITRS, "International, Technology Roadmap

for Semiconductors", Edition Technical

Report, 2011.

[5] D. Ayhan, H. Ahangari, and O. Ozturk,

"Temperature-aware core mapping for

heterogeneous 3D noc design through

constraint programming", In 28th Euromicro

International Conference on Parallel,

Distributed and Network-Based Processing,

pp. 312-318. IEEE, 2020.

[6] M. Kumar, V. Laxmi, M.S. Gaur, S.B. Ko, M.

Zwolinski, "CARM: congestion adaptive

routing method for on chip networks", Proc.

of the IEEE International Conference on VLSI

Design, pp. 240–245, 2014.

[7] R. Akbar, F. Safaei, S.M.S. Modallalkar, “A

novel power efficient adaptive RED-based

flow control mechanism for networks-on-

chip”, Comput. Electr. Eng, vol. 51, pp. 121–

138, April 2016.

[8] N. Wang and P. Valencia, "Traffic allocation:

an efficient adaptive network-on-chip routing

algorithm design," 2nd IEEE International

Conference on Computer and

Communications, pp. 2015-2019, 2016.

[9] Y. Ouyang, et al. “A novel low-latency

regional fault-aware fault-tolerant routing

algorithm for wireless NoC”, IEEE Access

2020, vol. 8, pp.22650–22663, January 2020.

© Mehran University of Engineering and Technology 2023 69

[10] M.K. Khattak, Y. Tang, H. Fahim, E.

Rehman, M.F. Majeed, “Effective routing

technique: augmenting data center switch

fabric performance”, IEEE Access, vol. 8, pp.

37372–37382, February 2020.

[11] F. Rad, et al, “A survey and taxonomy of

congestion control mechanisms in wireless

network on chip”, Journal of Systems

Architecture, vol.108, pp.101807, July 2020.

[12] M. Abdollahi, S. Mohammadi, "Vulnerability

assessment of fault-tolerant optical network-

on-chips”, Journal of Parallel Distrib.

Comput., Vol.145, pp. 140–159, March 2020

[13] T. Bjerregaard, and S. Mahadevan, “A survey

of research and practices of Network-on-

chip”, ACM Comput. Survay, Vol. 38, pp. 1-

es, 2006.

[14] F. Farahnakian, M. Ebrahimi, et al, “Adaptive

load balancing in learning-based approaches

for many-core embedded systems”,

international Journal of Supercomputing.

Vol.68 (3), pp. 1214–1234, 2014.

[15] A. Reza, F. Safaei, and E. Khodadad, “A

novel adaptive congestion-aware and load-

balanced routing algorithm in networks-on-

chip”, Journal of Computers and Electrical

Engineering , vol. 71 pp. 60-76, 2018.

[16] F. Farahnakian, M. Ebrahimi, M.

Daneshtalab, J. Plosila, and P. Liljeberg,

"Optimized Q-learning model for distributing

traffic in on-chip networks", IEEE 3rd

International Conference on Networked

Embedded Systems for Every Application,

pp. 1-8, 2012.

[17] C. Chen, et al, “Link-sharing: regional

congestion aware routing in 2D NoC by

propagating congestion information on idle

links”, IEEE 3rd International Conference on

Integrated Circuits and Microsystems, pp.

291-297, November 2018.

[18] L. Shaoli, et al. "FreeRider: non-local

adaptive network-on-chip routing with

packet-carried propagation of congestion

information", IEEE Transactions on Parallel

and Distributed Systems, vol. 26, pp. 2272-

2285, 2014.

[19] J. Fang, D. Zhang, and X. Li, “ParRouting: an

efficient area partition-based congestion-

aware routing algorithm for NoCs”, MDPI

Journal of Micromachines, vol.11(12),

pp.1034, 2020

[20] N. Taherkhani, R. Akbar, F. Safaei, and M.

Moudi, "A congestion-aware routing

algorithm for mesh-based platform networks-

on-chip", Microelectronics Journal , vol. 114,

pp. 105145, 2021 .

[21] G. Du, J. He, Y. Song, D. Zhang, and H. Wu,

“Comparison of NoC routing algorithms

based on packet-circuit switching”, Proc. of

the 2013 IEEE Third International Conference

on Information Science and Technology,

Yangzhou, China, pp.707-710, March 2013

[22] M. Li, Q.-A. Zeng and W.-B. Jone, “DyXY: a

proximity congestion-aware deadlock-free

dynamic routing method for network on

chip”, Proc. of the 43rd Annual Design

Automation Conference, pp. 849–852, 2006.

[23] R. Xie, J. Cai, X. Xin and B. Yang, “MCAR:

non-local adaptive Network-on-Chip routing

with message propagation of congestion

information”, Microprocessors and

Microsystems journal, vol. 49, pp. 117–126,

2017.

[24] P. Gratz, B. Grot, and S. W. Keckler,

"Regional congestion awareness for load

balance in networks-on-chip", IEEE 14th

International Symposium on High

Performance Computer Architecture, pp. 203-

214, 2008.

[25] J. Hu and R. Marculescu, "DyAD: smart

routing for networks-on-chip", Proceedings of

the 41st annual Design Automation

Conference in IEEE, pp. 260-263, 2004.

[26] P. Lotfi-Kamran et al, "BARP-a dynamic

routing protocol for balanced distribution of

traffic in NoCs", In IEEE2008 Design,

Automation and Test in Europe, pp. 1408-

1413, 2008

[27] P. Lotfi-Kamran, M. Daneshtalab, C. Lucas,

Z. Navabi, “BARP-a dynamic routing

protocol for balanced distribution of traffic in

NoCs”, In Proceedings of the conference on

Design, Automation and Test in Europe, pp.

1408-1413, 2008.

[28] Ma S, Jerger NE, and Wang Z. “DBAR: an

efficient routing algorithm to support multiple

concurrent applications in networks-on-chip

categories and subject descriptors”, In

Internatinal symposium on computer

architecture, pp. 413-424, 2011.

[29] Ebrahimi M et al, “CATRA- congestion

aware trapezoid-based routing algorithm for

© Mehran University of Engineering and Technology 2023 70

on-chip networks”, IEE Design automation

and test in Europe conference and exhibition,

pp. 320-325, March 2012.

[30] S. Xu, J. Wu, B. Fu, M. Chen, and L. Zhang,

“Efficient regional congestion awareness for

load balance with aggregated congestion

information.”, In IEEE 25th Euromicro

International Conference on Parallel,

Distributed and Network-based Processing,

pp. 93–99, March 2017.

[31] R. Akbar and F. J. N. C. N. Safaei, "A novel

congestion-aware routing algorithm with

prediction in mesh-based networks-on-chip",

International Nano Communication Networks

in Elsevier , vol. 26, p. 100322, 2020.

[32] R.S. Ramanujam, and B. Lin, “Destination-

based adaptive routing on 2D mesh

networks”, In proc. of IEEE Symposium on

Architectures for Networking and

Communications Systems, pp. 1-12 , Oct

2010.

[33] M. Ramakrishna, P.V. Gratz, and A.

Sprintson, “GCA: Global congestion

awareness for load balance in networks-on-

chip”, IEEE/ACM Internatinal Symposium on

Networks-on-Chip, vol. 27, pp. 2022-2033,

Nov. 2013.

[34] C. A. Nicopoulos, D. Park, J. Kim, N.

Vijaykrishnan, M. S. Yousif, and C. R. Das,

"ViChaR: A dynamic virtual channel

regulator for network-on-chip routers", 39th

Annual IEEE/ACM International Symposium

on Microarchitecture, pp. 333-346, 2006.

[35] A. T. Tran, and B. Baas, "NoCTweak: a

highly parameterizable simulator for early

exploration of performance and energy of

networks on-chip", VLSI Computation Lab,

ECE Department, University of California,

2012.

[36] K. Ahmad et al., "Congestion-aware routing

algorithm for noc using data packets",

Wireless Communications and Mobile

Computing journal, vol. 2021

[37] K. Ahmad et al., "Congestion-aware routing

algorithm for noc using data packets",

Wireless Communications and Mobile

Computing journal, vol. 2021.

