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 The goal of the work is to solve the nonlinear convection-diffusion-reaction 

problem using the variational iteration method with the combination of the 

Chebyshev wavelet. This work developed a hybrid iterative technique named as 

Variational iteration method with the Chebyshev wavelet for the solutions of 

nonlinear convection-diffusion-reaction problems. The aim of applying the 

derived algorithm is to achieve fast convergence. During the solution of the given 

problem, the restricted variations will be mathematically justified. The effects of 

the scaling and other parameters like diffusion parameter, convection parameter, 

and reaction parameter on the solution are also focused on by their suitable 

selection. The approximate results include the error profiles and the simulations. 

The results of variational iteration with the Chebyshev wavelet are compared with 

variational iteration method, the Modified variational iteration method, and the 

Variational iteration method with Legendre wavelet. The error profiles allow us to 

compare the results with well-known existing schemes. 

1. Introduction 

The differential equations describe the physical 

phenomena in almost all fields of engineering and 

applied sciences. Various physical applications are 

expressed in the custom of mathematical equations 

called mathematical prototypes or models, which are 

used to simulate the physical behavior of the dynamical 

systems [1-3]. The solution of the partial differential 

equations (PDEs) based models using symbolic methods 

as well as the numerical approaches is a usual 

mathematical practice but due to nonlinear complexities 

and other ambiguous situations for the existence of the 

solutions, like effects of small scaling perturbations 

arising in various engineering models. The problems 

remain still challenging task for many researchers from 

all around the world. Therefore, they are keenly attracted 

to this area of research [4-6]. 

The convection-diffusion-reaction (CDR) partial 

differential equations (PDE’s) provide a vital role of 

mathematical modeling for the wide-ranging real-world 

problems in natural sciences and engineering. These 

problems involve the air transport, absorption of 

pollutants in soil, neuron diffusion, processing of food, 

biological systems modeling, semiconductors modeling, 
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chemical species reaction and oil reservoir flow 

transport, etc. The convection, diffusion and reaction 

processes have been used to describe a variety of 

physical issues, like the variation in concentration of one 

or more compounds in a medium. Convection depicts 

the movement of substances because of the transport 

medium whereas the reaction is a contact. The Diffusion 

also ensures the transportation of the material from a 

higher density to a lower density and maintains a 

uniform dispersion of the substance. The Convection-

Diffusion-Reaction process describes the substance's 

concentration. 

In various problems, the unknown solution of the 

governing PDE’s indicates the physical quantities that 

do not take the negative results such as concentrations 

of chemical compounds, the pollutants, the population, 

etc. Generally, the applications of the convection-

diffusion-reaction (CDR) type equations are divided into 

three modeling procedures. The first procedure is known 

as the convection process that occurs due to the 

materials movement.  The diffusion process occurs due 

to the material movement from high concentrated to low 

concentrated regions. The third technique is the reaction 

process that occurs due to the decay, absorption, and 

reaction of the substances with other additives. 

All the above three CRD modeling procedures define 

the quantity distribution and the changes in the given 

medium.  

Generally, the determination of the analytical 

solution for the nonlinear diffusion Equations 

specifically with nonlinear internal source terms is not 

very straightforward. Many approaches have been 

proposed to solve the linear and nonlinear PDEs like 

Adomain Decomposition Methods (ADM) [7-9], 

Homotopy Perturbation techniques [10, 11], Legendre 

wavelet technique (LW) [5, 6, 12-16], Haar wavelet 

technique [17-19], Chebyshev wavelet (CW) technique 

[20, 21] and  variational iteration method (VIM) [22-25].  

The PDEs based problems are generally solved with 

known suitable boundary information, whereas the 

ordinary differential equations (ODEs) are generally 

solved as initial value problems (IVP) [1, 13]. The idea 

of variational strategies like He’s variational iteration 

method (HVIM) is considered as very effective method 

for the solution of ODE’s and PDE’s [22, 26-28]. 

In the spirit of the suggested strategies and keeping 

in view the efficiency of the VIM  along with the novel 

ideas of the solution strategies using wavelet-based 

methods (WBM), therefore, work is extended towards 

the coupling of the modern WBM with the latest 

techniques like VIM [23]. Combining the CW with the 

other various algorithms has several advantages 

moreover the main goal is good accuracy, which is 

possible in the spirit of [29-31]. This approach is based 

on the coupling the Chebyshev wavelets with VIM. The 

combining process yields a nonlinear system, which is 

then solved by the numerical method. The main 

contribution of our work is to derive the proposed VIM 

by combining the CW with VIM, which allows the 

classical solution as a convergent series for  PDEs. Some 

problems have been tested with the proposed algorithm, 

which provides a strong computational framework for 

the solutions of the time dependent nonlinear PDEs. 

2. Methodology 

Consider the following  model problem  as a one-

dimensional CDR equation as [8] 

𝜕𝑢(𝑥,𝑡)

𝜕𝑡
=

𝜕

𝜕𝑥
(𝐸(𝑢(𝑥, 𝑡)

𝜕𝑢(𝑥,𝑡)

𝜕𝑥
) + 𝐹(𝑢(𝑥, 𝑡))

𝜕𝑢(𝑥,𝑡)

𝜕𝑥
+

𝑄(𝑢) (∵ 𝑢 ∈ 𝑅+ × 𝛺)          (1) 

Here, 𝑢(𝑥, 𝑡) have been investigated, 𝐹(𝑢(𝑥, 𝑡)) is 

the convection velocity term in the horizontal direction, 

whereas 𝐸(𝑢(𝑥, 𝑡)) the diffusion and 𝑄(𝑢) is the 

reaction term. The 𝛺 is the one-dimensional spatial 

domain. 

The work starts with the solution of some nonlinear 

PDEs by applying the VIM then extended work to the 

main part of the study, which is dedicated to coupling 

the VIM with the CW for the given specific class of the 

problems.  

2.1 Variational Iteration Method 

To discuss the elementary theories of VIM, we consider 

the following nonlinear problem. 

𝐿(𝑢) + 𝑁(𝑢) = 𝑔(𝑥, 𝑡)           (2) 

The 𝐿 and 𝑁are denoted as the linear and nonlinear 

operators respectively.  Here 𝑔(𝑥, 𝑡) is a known analytic 

function.  We consider the  following  iterative scheme 

of  He’s VIM [23]. 

𝑢𝑛+1(𝑥, 𝑡) = 𝑢𝑛(𝑥, 𝑡) + ∫ 𝜆(𝜏)
𝑡

0
 [𝐿(𝑢𝑛(𝑥, 𝜏)) +

𝑁(𝑢̃𝑛(𝑥, 𝜏)) − 𝑔(𝑥, 𝜏)]𝑑𝜏          (3) 

The function  𝜆 can be optimized by using the 

variational constraint 𝛿𝑢̃𝑛 = 0. The successive 

approximations of the solution 𝑢(𝑥, 𝑡) is modeled by 

𝑢𝑛(𝑥, 𝑡), where (𝑛) is the non-negative integer which 

can be determined with the help of the LMT in the 

availability of the initial solution 𝑢0. The 𝑢0 is a zeroth 
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approximation generally considered as a given initial 

solution satisfying the given boundary conditions. The 

exact solution can be computed as 

𝑢(𝑥, 𝑡) = 𝑙𝑖𝑚
𝑛→∞

𝑢𝑛(𝑥, 𝑡)                 (4) 

It has been observed from the results that VIM is an 

efficient algorithm for solving nonlinear problems.   

2.2 Chebyshev Wavelets 

The CW 𝜓𝑛𝑚(𝑥)  on [0,1] is defined as 

𝜓𝑛,𝑚 = {
2𝑘/2𝑇̃𝑚(2

𝑘𝑥 − 2𝑛 + 1),
𝑛−1

2𝑘−1
≤ 𝑥 ≤

𝑛

2𝑘−1
,

0, elsewhere,
        (5) 

Where, 𝑘 ∈ 𝑍+, 𝑛̂ = 2𝑛 − 1, (𝑛 = 1,2,3,… ), 𝑚 is 

known as the order of Chebyshev polynomials (CPs) and 

𝑡 is known as the normalized time. 

𝑇̃𝑚(𝑥) = {

1

√𝜋
𝑚 = 0,

√
2

𝜋
𝑇𝑚 𝑚 > 0

          (6)  

Where, 𝑚 = 0,1,… ,𝑀 − 1, 𝑛 = 1,2,… , 2𝑘−1. The 

scaling coefficients are to meet the ortho-normality 

criteria. Here, 𝑇𝑚(𝑡)are CPs of the first kind of degree 

m. These wavelets are orthogonal with respect to the 

function 𝑤(𝑡) =
1

√1−𝑡2
on the interval [−1,1], that 

satisfies the following recursive process. 

𝑇0(𝑡) = 1,  𝑇1(𝑡) = 𝑡,

𝑇𝑚+1(𝑡) = 2𝑡𝑇𝑚(𝑡) − 𝑇𝑚−1(𝑡),  𝑚 = 1,2,…
}           (7) 

One can note that in dealing with CW the weight 

function 𝑤𝑛(𝑡)is defined as 

𝑤𝑛(𝑡) = 𝑤(2
𝑘𝑡 − 2𝑛 + 1)          (8) 

 2.3 Function Approximations 

The series expansion of the function 𝑓(𝑡) ∈ 𝐿2𝑤[0,1]  in 

the form of CW series is given as  

𝑓(𝑡) = ∑ ∑ 𝑐𝑛𝑚𝜓𝑛𝑚(𝑡) = 𝐶
𝑇𝜓(𝑡)𝑀−1

𝑚=0
2𝑘−1
𝑛=1                     (9) 

Where 𝐶 and 𝜓(𝑡) are 2𝑘−1𝑀 × 1 matrices 

𝐶 = [
𝑐10, 𝑐11, … , 𝑐1𝑀−1, 𝑐20, 𝑐21, … , 𝑐2𝑀−1, … ,

𝑐2𝑘−1𝑀0, 𝑐2𝑘−1𝑀1, … , 𝑐2𝑘−1𝑀−1
]
𝑇

𝜓(𝑡) = [
𝜓10, 𝜓11, … , 𝜓1𝑀−1, 𝜓20, 𝜓21, … , 𝜓2𝑀−1, … ,

𝜓2𝑘−1𝑀0, 𝜓2𝑘−1𝑀1, … , 𝜓2𝑘−1𝑀−1
]
𝑇

}
 

 

 (10) 

with 𝑐𝑛𝑚 = ⟨𝑓(𝑡), 𝜓𝑛𝑚⟩𝑤𝑛        (11) 

Where the notation ⟨ , ⟩ is the inner product in 

𝐿2𝑤𝑛[0,1] space. 

The function 𝑓(𝑥, 𝑡) ∈ 𝐿2([0,1] × [0,1]) can be 

determined by using CW series as follows. 

𝑓(𝑥, 𝑡) = ∑ ∑ 𝑐𝑖𝑗𝜓𝑖(𝑥)𝜓𝑗(𝑡) =
2𝑘−1𝑀
𝑗=1

2𝑘−1𝑀
𝑖=1

𝜓𝑇(𝑥)𝐶𝜓(𝑡)          (12) 

with 

𝑐𝑖𝑗 = ∫ ∫
𝑓(𝑥,𝑡)𝜓𝑖(𝑥)𝜓𝑗(𝑡)

√1−(2𝑘𝑡−2𝑛+1)
2
√1−(2𝑘𝑥−2𝑛+1)

2

 𝑑𝑥 𝑑𝑡
1

0

1

0
   (13) 

Where 𝐶 is a 2𝑘−1𝑀 × 2𝑘−1𝑀 matrix. 

2.4 Chebyshev Wavelet Operational Matrices of 

Integration 

The integration of the vector 𝜓(𝑡) defined in (5) can give 

as  

∫ 𝜓(𝑠)  𝑑𝑠 = 𝑃 𝜓(𝑡)
𝑡

0
         (14) 

Where 𝑃 is the operational matrix of order 2𝑘−1𝑀×

2𝑘−1𝑀 for integration, for operational matrices reader is 

suggested to review [30]. The matrices 𝐶and 𝑆 are 

𝑀 ×𝑀matrices given. 

𝐶 =
1

2𝑘

[
 
 
 
 
 
 
 
 

1

2

1

2√2
0 0 ⋯ 0 0 0

−1

4√2
0

1

8
0 ⋯ 0 0 0

−1

3√2

−1

4
0

1

12
⋯ 0 0 0

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮
−1

2√2(𝑀−1)(𝑀−3)
0 0 0 ⋯

−1

4(𝑀−3)
0

−1

4(𝑀−1)

−1

2√2𝑀(𝑀−2)
0 0 0 ⋯ 0

−1

4(𝑀−2)
0 ]

 
 
 
 
 
 
 
 

         (15) 

and 

𝑆 =
√2

2𝑘

[
 
 
 
 
 
 
 
 

1

√2
0 0 ⋯ 0

0 0 0 ⋯ 0
−1

3
0 0 ⋯ 0

0 0 0 ⋯ 0
−1

15
0 0 ⋯ 0

⋮ ⋮ ⋮ ⋱ ⋮
−1

𝑀(𝑀−2)
0 0 ⋯ 0]

 
 
 
 
 
 
 
 

        (16) 

2.5. Chebyshev Wavelet Based on Operational Matrices 

of Derivative 

In this section, the operational matrices of the 

derivative𝐷are derived to simplify the expansion of the 

derivative terms in the given PDE’s, in terms of the 

wavelet series. The CW 𝜓𝑛,𝑚(𝑥)is defined on the  

interval [
𝑛−1

2𝑘−1
,
𝑛

2𝑘−1
] as [30] 

𝜓𝑛,𝑚(𝑥) = 2
𝑘/2𝑇̃𝑚(2

𝑘𝑥 − 2𝑛 + 1)       (17) 

The derivative of 𝜓𝑛,𝑚(𝑥) with respect to x 

𝜓𝑛,𝑚
′ (𝑥) =

{
2
3𝑘

2
+1𝑚 ∑ 𝑇̃𝑘(2

𝑘𝑥 − 2𝑛 + 1)𝑚−1
𝑘=1 𝑚  𝑒𝑣𝑒𝑛

2
3𝑘

2 [2𝑚 ∑ 𝑇̃𝑘(2
𝑘𝑥 − 2𝑛 + 1) +𝑚𝑇̃0(2

𝑘𝑥 − 2𝑛 + 1)𝑚−1
𝑘=1 ] 𝑚  𝑜𝑑𝑑

 (18) 
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where, 𝑚 = 0,1,2, … ,𝑀 − 1. The function 𝜓𝑖(𝑥) is zero 

outside the interval [
𝑖−1

2𝑘−1
,

𝑖

2𝑘−1
] so 

𝜓𝑖
′(𝑥) = 𝜓𝑖(𝑥)𝑀         (19) 

𝑀

= 2𝑘

(

 
 
 

0 √2 0 3√2 0 5√2 ⋯ (𝑀 − 1)√2
0 0 4 0 8 0 ⋯ 0
0 0 0 6 0 10 ⋯ 2(𝑀 − 1)
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 0 0 0 ⋯ 2(𝑀 − 1)
0 0 0 0 0 0 0 0 )

 
 
 

𝑀×𝑀

𝑓𝑜𝑟 𝑒𝑣𝑒𝑛 𝑀 

𝑀 = 2𝑘

(

 
 
 

0 √2 0 3√2 0 5√2 ⋯ 0
0 0 4 0 8 0 ⋯ 0
0 0 0 6 0 10 ⋯ 2(𝑀 − 1)
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 0 0 0 ⋯ 2(𝑀 − 1)
0 0 0 0 0 0 0 0 )

 
 
 

𝑀×𝑀

𝑓𝑜𝑟 𝑜𝑑𝑑 𝑀,           (20) 

Thus 

𝜓′(𝑥) = 𝐷 𝜓(𝑥)         (21) 

Therefore, the operational matrices of the derivative 

“𝐷” can be determined as 𝐷 = 𝑀𝑇 ,  𝑓𝑜𝑟 𝑒𝑣𝑒𝑛 𝑀 and 

𝐷 = 𝑀𝑇 , 𝑓𝑜𝑟 𝑜𝑑𝑑 𝑀.  

2.6 Block Pulse Functions (BPF’s) 

A complete set of orthogonal functions, defined on the 

[0,  𝑏] can be developed by BPF’s as follows. 

𝑏𝑖(𝑡) = {
1,

𝑖−1

𝑚
𝑏 ≤ 𝑡 ≤

𝑖

𝑚
𝑏

0 𝑒𝑙𝑠𝑒 𝑤ℎ𝑒𝑟𝑒
        (22) 

For 𝑖 = 1,2, … ,𝑚. An arbitrary function 𝑓(𝑡) ∈

𝐿1[0, 𝑏] has been described in BPFs as  

𝑓(𝑡) ≃ 𝜉𝑇𝐵𝑚(𝑡)            (23) 

Where,𝐵𝑚(𝑡) = [𝑏1 𝑏2 ⋯ 𝑏𝑚]
𝑇and 𝜉𝑇 =

[𝑓1 𝑓2 ⋯ 𝑓𝑚],  here 𝑓𝑖 are the coefficients of BPF 

defined as: 

𝑓𝑖 =
𝑚

𝑏
∫ 𝑓(𝑡)𝑏𝑖(𝑡)𝑑𝑡
𝑖

𝑚
𝑏

𝑖−1

𝑚
𝑏

         (24) 

The following are basic BPF properties, defined as 

Disjoint: The BPF is disjointed with each other in the 𝑡,  

i.e., defined as the 𝑡 ∈ 0, 𝑇)  

𝑏𝑖(𝑡)𝑏𝑗(𝑡) = 𝛿𝑖𝑗𝑏𝑖(𝑡) 𝑖, 𝑗 = 1,2, … ,𝑚       (25) 

Completeness: If 𝑚 grow very large i.e., towards 

infinity, then the BPF is said to be complete, that is 𝑓 ∈

𝐿20, 𝑇) satisfy the following Parse-Val’s identity. 

∫ 𝑓2(𝑡) 𝑑𝑡
𝑇

0
= ∑ 𝑓𝑖

2‖𝑏𝑖(𝑡)‖
2, ∵   𝑓𝑖 =

∞
𝑖=1

1

ℎ
∫ 𝑓(𝑡)𝑏𝑖(𝑡) 𝑑𝑡
𝑇

0
         (26) 

Orthogonality: The orthogonality in the interval 𝑡 ∈

0, 𝑇): 

∫ 𝑏𝑖(𝑡)𝑏𝑗(𝑡)
𝑇

0
 𝑑𝑡 = ℎ 𝛿𝑖𝑗  𝑓𝑜𝑟 𝑖, 𝑗 = 1,2, … ,𝑚       (27) 

Lemma-I: Let the functions 𝑓(𝑡),  𝑔(𝑡) ∈ 𝐿1, be 

extended in BPF as 𝑓(𝑡) = 𝐹𝐵(𝑡) and 𝑔(𝑡) = 𝐺𝐵(𝑡)  

respectively.  One can define the product. 

𝑓(𝑡)𝑔(𝑡) = 𝐹𝐵(𝑡)𝐵𝑇(𝑡)𝐺𝑇 = 𝐻𝐵(𝑡)       (28) 

Where 𝐻 = 𝐹 ⊗ 𝐺 = (𝑓𝑖𝑗 × 𝑔𝑖𝑗)𝑚×𝑚
. 

Lemma-II: Let 𝑓(𝑥, 𝑡),  𝑔(𝑥, 𝑡) ∈ 𝐿1, it can be extended 

in BPF as 𝑓(𝑥, 𝑡) = 𝐵𝑇(𝑥)𝐹𝐵(𝑡), and 𝑔(𝑥, 𝑡) =

𝐵𝑇(𝑥)𝐺𝐵(𝑡) respectively, one has been defined as 

follows 

𝑓(𝑥, 𝑡)𝑔(𝑥, 𝑡) = 𝐵𝑇(𝑥)𝐻𝐵(𝑡)        (29) 

here, 𝐻 = 𝐹 ⊗ 𝐺 = (𝑓𝑖𝑗 × 𝑔𝑖𝑗)𝑚×𝑚
. 

Proofs of Lemmas are given in [15]. 

2.7 Nonlinear Term Approximation (NTA) 

The wavelets in the class of 𝑚 -set of BPF functions are 

given as 

𝜓(𝑡) = 𝜙𝑚×𝑚𝐵𝑚(𝑡)         (30) 

𝜙𝑚×𝑚 ≜ [𝜓(𝑡1) 𝜓(𝑡2) 𝜓(𝑡3) ⋯ 𝜓(𝑡2𝑘−1𝑀)]        (31) 

Where, 𝑡𝑖 are the collocations points 

𝑡𝑖 =
𝑖−0.5

2𝑘−1𝑀
  (∵ 𝑖 = 1,2,… , 2𝑘−1𝑀)       (32) 

The operational matrix of the product of wavelets can be 

designed with the help of the appropriate properties of 

BPF. Suppose that  𝑓(𝑥, 𝑡), 𝑔(𝑥, 𝑡) ∈ 𝐿1 using the 

properties of BPF and expressed as 

{
 
 

 
 𝑓(𝑥, 𝑡) = 𝜓

𝑇(𝑥)𝐹𝜓(𝑡)

= 𝐵𝑇(𝑥)𝜙𝑚×𝑚𝐹𝜙𝑚×𝑚𝐵(𝑡)

𝑔(𝑥, 𝑡) = 𝜓𝑇(𝑥)𝐺𝜓(𝑡)

= 𝐵𝑇(𝑥)𝜙𝑚×𝑚𝐺𝜙𝑚×𝑚𝐵(𝑡)

        (33) 

Let  

𝐹𝑏 = 𝜙𝑚×𝑚𝐹𝜙𝑚×𝑚 

𝐺𝑏 = 𝜙𝑚×𝑚𝐺𝜙𝑚×𝑚 

𝐻𝑏 = 𝐹𝑏⊗𝐺𝑏  

Applying the Lemma-I & II the following results are 

obtained. 

𝑓(𝑥, 𝑡)𝑔(𝑥, 𝑡) =

{

𝐵𝑇(𝑥)𝐻𝑏𝐵(𝑡)

𝐵𝑇(𝑥)𝜙𝑚×𝑚
𝑇 𝑖𝑛𝑣(𝜙𝑚×𝑚

𝑇 )𝐻𝑏𝑖𝑛𝑣(𝜙𝑚×𝑚
𝑇 )𝜙𝑚×𝑚𝐵(𝑡)

𝜓𝑇(𝑥)𝐻𝜓(𝑡)

        (34)   

Where 𝐻 = 𝑖𝑛𝑣(𝜙𝑚×𝑚
𝑇 )𝐻𝑏𝑖𝑛𝑣(𝜙𝑚×𝑚). 

The following sections are dedicated to the results are 

obtained from the implemented strategies such as VIM, 
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and VIM with CW (VIMCW). The model problem 

considered for this work is the CDR problems in one 

spatial domain.   

3. Results and Discussions 

In this section, the derived algorithm has been applied to 

the model problem for the solution of nonlinear PDEs. 

The comparison of the obtained results with the 

available well-rated methods and the error profiles of the 

proposed algorithm are the heart of this work. The 

effects of the diffusion and other scaling parameters like 

convection and reaction parameters on the obtained 

solution curves for these methods is another interesting 

aspect of this study, which is very clear from the given 

simulation results. 

3.1 Solution of Convection-Diffusion-Reaction CDR 

PDEs’ by VIM  

We consider the following problem is from the literature 

[8], which authors have solved using the Adomain 

decomposition method (ADM). 

{
 
 

 
 𝑢𝑡 = 𝑎𝑢𝑥𝑥 + 𝑏𝑢𝑢𝑥 +

𝑏2

9𝑎
𝑢(𝑢 − 𝑘)(𝑢 + 𝑘)

𝑢(𝑥, 0) =
𝑘(−1+𝐶1𝑒

𝑏𝑘𝑥
3𝑎 )

1+𝐶1𝑒
𝑏𝑘𝑥
3𝑎 +𝐶2𝑒

𝑏𝑘𝑥
6𝑎

              (35) 

Where, C1 and C2 are arbitrary constants.  

Applying the derived algorithm VIM, the following 

iterative process is developed.  

𝑢𝑛+1 = 𝑢𝑛 − ∫ (
𝜕𝑢

𝜕𝜏
− 𝑎𝑢𝑥𝑥 − 𝑏𝑢𝑢𝑥𝑥 −

𝑡

0
𝑏2

9𝑎
(𝑢3−𝑘2 𝑢)) 𝑑𝜏          (36) 

Finally, the following results for the first three 

iterations are obtained. The iterative procedure is 

terminated after three iterations by truncating the higher 

powers of 𝑡 ∈ [0,1). 

𝑢0[𝑥, 𝑡] =
𝑘 (−1 + 𝐶1𝑒

𝑏𝑘𝑥
3𝑎 )

1 + 𝐶1𝑒
𝑏𝑘𝑥
3𝑎 + 𝐶2𝑒

𝑏𝑘𝑥
6𝑎

; 

𝑢1[𝑥, 𝑡] =
𝑘 (−1 + 𝐶1𝑒

𝑏𝑘𝑥
3𝑎 )

1 + 𝐶1𝑒
𝑏𝑘𝑥
3𝑎 + 𝐶2𝑒

𝑏𝑘𝑥
6𝑎

−
𝑏2𝑒

𝑏𝑘𝑥
6𝑎 𝑘3 (−1 + 𝐶1𝑒

𝑏𝑘𝑥
3𝑎 )𝐶2

12𝑎 (1 + 𝐶1𝑒
𝑏𝑘𝑥
3𝑎 + 𝐶2𝑒

𝑏𝑘𝑥
6𝑎 )

2 𝑡 

Thus, the final the result on the third iteration is given as 

𝑢𝑉𝐼𝑀[𝑥, 𝑡] =

{
 
 
 

 
 
 𝑘(−1+𝐶1𝑒

𝑏𝑘𝑥
3𝑎 )

1+𝐶1𝑒
𝑏𝑘𝑥
3𝑎 +𝐶2𝑒

𝑏𝑘𝑥
6𝑎

−
𝑏2𝑒

𝑏𝑘𝑥
6𝑎 𝑘3(−1+𝐶1𝑒

𝑏𝑘𝑥
3𝑎 )𝐶2

12𝑎(1+𝐶1𝑒
𝑏𝑘𝑥
3𝑎 +𝐶2𝑒

𝑏𝑘𝑥
6𝑎 )

2 𝑡 −
𝑏4𝑒

𝑏𝑘𝑥
6𝑎 𝑘5(−1+𝐶1𝑒

𝑏𝑘𝑥
3𝑎 )𝐶2(1+𝐶1𝑒

𝑏𝑘𝑥
3𝑎 −𝐶2𝑒

𝑏𝑘𝑥
6𝑎 )

288𝑎2(1+𝐶1𝑒
𝑏𝑘𝑥
3𝑎 +𝐶2𝑒

𝑏𝑘𝑥
6𝑎 )

3 𝑡2

−
𝑏6𝑒

𝑏𝑘𝑥
6𝑎 𝑘7(−1+𝐶1𝑒

𝑏𝑘𝑥
3𝑎 )(𝐶2

2𝑒
𝑏𝑘𝑥
3𝑎 −4𝐶2𝑒

𝑏𝑘𝑥
6𝑎 (1+𝐶1𝑒

𝑏𝑘𝑥
3𝑎 )+(−1+𝐶1𝑒

𝑏𝑘𝑥
3𝑎 )

2

)𝐶2

10368𝑎3(1+𝐶1𝑒
𝑏𝑘𝑥
3𝑎 +𝐶2𝑒

𝑏𝑘𝑥
6𝑎 )

4 𝑡3 + 𝑂(𝑡4)

     (37)

For the evaluation of the performance of the given 

method and the comparative study of  the obtained 

results the exact solution of the problem is known and 

given as: 

 𝑢[𝑥, 𝑡] =
𝑘(−1+𝐶1𝑒

𝑏𝑘𝑥
3𝑎 )

1+𝐶1𝑒
𝑏𝑘𝑥
3𝑎 +𝐶2𝑒

𝑏2𝑘2𝑡
12𝑎

+
𝑏𝑘𝑥
6𝑎

        (38) 

The error profiles for the above results are given in 

the following Tab. 1 as error analysis for VIM, MVIM 

and ADM [8]. It is observed from Table.1 that the results 

for all the discussed methods are very accurate and 

closed to the exact solution. The algorithm VIM 

significantly better performs than MVIM for this given 

problem and its accuracy is much closer to the ADM 

algorithm; moreover, both the methods VIM and ADM 

perform better than MVIM. 

Table 1 

Absolute Error for VIM, MVIM and ADM 

T x VIM MVIM ADM [8] 

t=0.2 x=0.2 1.0×10-19 1.7×10-12 0 

t=0.4 x=0.4 6.5×10-19 1.4×10-12 4.3×10-19 

t=0.6 x=0.6 4.3×10-19 4.7×10-11 4.3×10-19 

t=0.8 x=0.8 3.9×10-18 1.1×10-10 2.6×10-18 

t=1.0 x=1.0 6.9×10-18 2.1×10-10 7.8×10-18 



 

© Mehran University of Engineering and Technology 2023                                98 

Simulation results of the obtained results from 

various methods are given as under 

 

Fig. 1. Plot of Exact Solution of Eq. 47 

 

Fig. 2. Plot of the Eq. (47) by VIM 

Fig. 3. Plot of Eq. (47) by MVIM 

3.2 Results by the Combining the VIM with VIMCW 

In the spirit of the above results of VIM and results are 

extended toward the main goal of this study by coupling 

the algorithm VIM with the latest wavelet functions like 

Chebyshev wavelets (VIMCW).   

 We consider the following problem available in the 

literature [7]  

{
𝑢𝑡 + 𝛼𝑢

𝛿𝑢𝑥 − 𝜀𝑢𝑥𝑥 = 𝛽𝑢(1 − 𝑢
𝛿)(𝑢𝛿 − 𝛾)

𝑢(𝑥, 0) = [
𝛾

2
+
𝛾

2
𝑡𝑎𝑛ℎ(𝑎1𝑥)]

1

𝛿
          (39) 

The exact solution to the problem (39) is directly 

borrowed from the reference [7] and is given by 

𝑢(𝑥, 𝑡) = [
𝛾

2
+
𝛾

2
𝑡𝑎𝑛ℎ(𝑎1(𝑥 − 𝑎2𝑡))]

1

𝛿
       (40) 

Where  𝑎1 =
−𝛼𝛿±√𝛼2+4𝛽(1+𝛿)

4(1+𝛿)
𝛾 

𝑎2 =
𝛼𝛾

1+𝛿
−
(1+𝛿−𝛾)(−𝛼𝛿∓√𝛼2+4𝛽(1+𝛿))

2(1+𝛿)
  

Case 01:  When 𝛼 = 0,  𝛿 = 1,  𝛽 = 1 the Eq. (39) 

is reduced to the Fitzhugh-Nagumo Equation, a 

Reaction-Diffusion equation is generally applied in the 

circuit theory and estimated the transmembrane 

potential in the Axon. Here we are applying our strategy 

VIM with VIMCW and the obtained results are given in 

Table 2. From Table 2, it is observed that by the 

combination of VIM with CW, the high accuracy with 

the low computational cost is obtained. The results, in 

this case, are also much closed to the exact solution. 

From the error profiles as given in Table 2, one can 

observe that the method variational iteration method 

with Chebyshev wavelets (VIMCW) performs slightly 

better compared to the algorithm ADM [7]. Moreover, 

high accuracy is observed if the results are compared 

with the other methods. 
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Table 2 

The Numerical Results for the ADM, VIMLW and VIMCW (Case-1)

X T 
Exact 

Solution 
ADM [7] VIMLW[15] VIMCW 

Error 

ADM [7] 

Error 

VIMLW[15] 

Error 

VIMCW 

0.1 

0.05 0.00050003 0.000500218 0.000500128 0.000500000 1.88E-07 9.8E-08 3E-08 

0.1 0.000500043 0.000500418 0.000500116 0.000499987 3.75E-07 7.3E-08 5.6E-08 

1 0.000500268 0.000504018 0.000499891 0.000499762 3.75E-06 3.77E-07 5.06E-07 

0.5 

0.05 0.000500101 0.000500288 0.000500694 0.000500050 1.87E-07 5.93E-07 5.1E-08 

0.1 0.000500113 0.000500488 0.000500682 0.000500037 3.75E-07 5.69E-07 7.6E-08 

1 0.000500338 0.000504089 0.000500457 0.000499812 3.751E-06 1.19E-07 5.26E-07 

0.9 

0.05 0.000500172 0.000500359 0.000501260 0.0005001 1.87E-07 1.088E-06 7.2E-08 

0.1 0.000500184 0.000500559 0.000501247 0.000500087 3.75E-07 1.063E-06 9.7E-08 

1 0.000500409 0.00050416 0.00050102 0.000499862 3.751E-06 6.11E-07 5.47E-07 

Case 02: When 𝛿 = 1,  𝛼 ≠ 0and 𝛽 ≠ 0 the Eq. (39) 

gives a prototype model for describing the interaction 

among the reaction mechanisms, diffusion and 

convection effect. Following the same lines as given 

above, the VIMCW yields the following numerical 

result (Table 3). From Table 3, it is observed that VIM 

with CW provides high accuracy and results are much 

closed to the exact solution. Moreover, these methods 

perform better than the ADM. 

 

Table 3 

The Numerical Results for the ADM, VIMCW (Case-2) 

X t 
Exact 

Solution 

ADM 

[7] 

VIMLW 

[15] 
VIMCW 

Error 

ADM[7] 

Error 

VIMLW[15] 

Error 

VIMCW 

0.1 

0.05 0.000500019 0.000500212 0.000500012 0.0005 1.93E-07 7E-09 1.9E-08 

0.1 0.000500025 0.000500412 0.000500000 0.000499987 3.87E-07 2.5E-08 3.8E-08 

1 0.000500137 0.000504012 0.000499762 0.000499762 3.875E-06 3.75E-07 3.75E-07 

0.5 

0.05 0.000500069 0.000500262 0.000500062 0.000500050 1.93E-07 7E-09 1.9E-08 

0.1 0.000500075 0.000500462 0.000500049 0.000500037 3.87E-07 2.6E-08 3.8E-08 

1 0.000500187 0.000504063 0.000499812 0.000499812 3.876E-06 3.75E-07 3.75E-07 

0.9 

0.05 0.000500119 0.000500312 0.000500112 0.0005001 1.93E-07 7E-09 1.9E-08 

0.1 0.000500125 0.000500512 0.000500087 0.000500087 3.87E-07 3.8E-08 9.7E-08 

1 0.000500237 0.00050413 0.000499862 0.000499862 3.893E-06 3.75E-07 5.47E-07 
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3.3 CDR Equation with Homogeneous Boundaries And 

Effect Of The Scaling Parameters On The Solution 

In this section, another aspect of the research is the 

sensitivity of the solution to the scaling coefficients 

discussed for the CDR equations. A more general CDR 

PDEs case has been considered with the homogeneous 

boundary conditions where the main goal is to study the 

effect of convection, diffusion and reaction parameters 

on the solution. The different combinations of the 

scaling parameters are considered a case study for the 

obtained solution from the derived algorithms VIMCW 

to select the problems given in this study. 

𝑢𝑡 + 𝛼𝑢𝑢𝑥 − 𝜀𝑢𝑥𝑥 − 𝛽(1 − 𝑢)(𝑢 − 𝛾)𝑢

= 0 (∵ 𝑥 ∈ (0,1))(41) 

𝑢(𝑥, 0) = 𝑠𝑖𝑛(𝜋𝑥) ,  𝑢(0, 𝑡) = 𝑢(1, 𝑡) = 0,  0 < 𝑡 ≤

𝑇           (42)  

The results for analyzing the effects of the 

convection, diffusion and reaction scaling parameters on 

the solution obtained from the proposed VIMCW with 

VIM algorithms are given in Tables 4-6. 

 

Table 4 

Effect of the Diffusion parameter on the solution, when α=β=γ=1and ε=0.1 

X T VIM [31] VIMLW[15] VIMCW 

0.25 

0.02 0.662906586 0.6632478110 0.6633897720 

0.05 0.605471222 0.6062258200 0.6062907426 

0.1 0.533058172 0.5359022881 0.5357504370 

0.5 

0.02 0.978505105 0.9783715082 0.9782226472 

0.05 0.939899372 0.9401837872 0.9400889898 

0.1 0.859772696 0.8606183819 0.8606204326 

0.9 

0.02 0.318734870 0.318901413 0.3188620393 

0.05 0.334509962 0.336151406 0.3358843048 

0.1 0.364333749 0.369785657 0.368970441 

Table 5 

Analysis of the computed solution with different parameters, when 𝛼 = 𝛽 = 𝛾 = 1 and for 𝜀 = 0.01 

X T VIM [31] VIMLW[15] VIMCW 

0.25 

0.02 0.6737738022 0.6741892803 0.6743629928 

0.05 0.6263884372 0.6269184245 0.6270897822 

0.1 0.5545364193 0.5555862849 0.5557212602 

0.5 

0.02 0.9960566781 0.9958626738 0.9956881105 

0.05 0.9827805512 0.9831830066 0.9830295036 

0.1 0.9411525522 0.943148253 0.9430615633 

0.9 

0.02 0.3248086356 0.324698387 0.3247817676 

0.05 0.3519758496 0.353302645 0.3534087406 

0.1 0.4073554372 0.413604810 0.413736658 
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Table 6 

Analysis of the computed solution with different parameters, when 𝛼 = 𝛽 = 𝛾 = 1 and for 𝜀 = 0.00001 

X T VIM [31] VIMLW[15] VIMCW 

0.25 

0.02 0.6749934115 0.6754206971 0.6755977590 

0.05 0.6287900677 0.6293176707 0.6294996607 

0.1 0.5572184911 0.5581594597 0.5583217752 

0.5 

0.02 0.9980241078 0.9978210985 0.9976437121 

0.05 0.9876581003 0.9880606002 0.9878995546 

0.1 0.9506424332 0.9527147813 0.9526135246 

0.9 

0.02 0.3254891025 0.325357637 0.3254564968 

0.05 0.3539562777 0.355318013 0.355466233 

0.1 0.4123139907 0.4189396763 0.419173732 

 

Fig. 4. Effect of Diffusion Co-efficient 𝜀on the solution 

𝑢(𝑥, 𝑡) 

It is observed from Fig. 4 that at any known time𝑡, 

the consistent and smooth curve for the given parabolic 

problem is observed parabolic symmetric solution with 

a maximum peak at 𝑥 = 0.5.  Also observed from Tabs 

04-06 and Fig. 04, the obtained solution slightly 

increases as the scaling weight 𝜀 decreases from 0.1 to 

0.01; however, no any significant effect is observed 

experimentally in the case, if the𝜀 < 0.01. For example, 

in this case, the result is given in Fig. 04  at 𝜀 =

0.00001. 

The approximate solution of (41) and VIMCW is 

estimated on various 𝜀  and 𝛾 values with 𝛼, and 𝛽 as 

fixed weights. Following tables 07, 08, 09 and 10 show 

the comparison of the computed solution with VIMCW 

with VIM and the role of the reaction co-efficient 𝛾 with 

𝜀 = 0.1 and  𝜀 = 0.001. 
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Table 7 

Analysis of the computed solution with different parameters, when 𝛼 = 𝛽 = 1, 𝛾 = 0.01and 𝜀 = 0.1 

X T VIM [31] VIMLW [15] VIMCW 

0.25 

0.02 0.6670784424 0.667455648666 0.667596736126 

0.05 0.6160138406 0.617001684564 0.617065064632 

0.1 0.5536691817 0.557425730663 0.557272093308 

0.5 

0.02 0.9788933699 0.978787984401 0.978641801385 

0.05 0.9423019182 0.942533408286 0.942442774078 

0.1 k0.8692221544 0.869456480570 0.869460713328 

0.9 

0.02 0.3228359713 0.322968604672 0.322930885759 

0.05 0.3443273981 0.345288149504 0.345021960094 

0.1 0.3827278420 0.384629746723 0.383817641668 

 

Table 8 

Analysis of the computed solution with different parameters, when 𝛼 = 𝛽 = 1, 𝛾 = 0.9and for𝜀 = 0.1 

X T VIM [31] VIMLW [15] VIMCW 

0.25 

0.02 0.6670784424 0.667455648666 0.667596736126 

0.05 0.6160138406 0.617001684564 0.617065064632 

0.1 0.5536691817 0.557425730663 0.557272093308 

0.5 

0.02 0.9788933699 0.978787984401 0.978641801385 

0.05 0.9423019182 0.942533408286 0.942442774078 

0.1 k0.8692221544 0.869456480570 0.869460713328 

0.9 

0.02 0.3228359713 0.322968604672 0.322930885759 

0.05 0.3443273981 0.345288149504 0.345021960094 

0.1 0.3827278420 0.384629746723 0.383817641668 
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Table 9 

Analysis of the computed solution with different parameters, when 𝛼 = 𝛽 = 1, 𝛾 = 0.01and for 𝜀 = 0.001 

X T VIM [31] VIMLW [15] VIMCW 

0.25 

0.02 0.6791313751 0.679568293661 0.679743741062 

0.05 0.6397049627 0.640311460092 0.640489146652 

0.1 0.5804655667 0.58173261843 0.581886016511 

0.5 

0.02 0.9978328741 0.997678598552 0.997504155418 

0.05 0.9871981140 0.987665627665 0.987512492313 

0.1 0.9497956188 0.951703890379 0.951619335015 

0.9 

0.02 0.3299199448 0.329948413546 0.33004377655 

0.05 0.3660743434 0.367940162976 0.36808002838 

0.1 0.4402984102 0.448105396197 0.448320025468 

 

Table 10 

Analysis of the computed solution with different parameters, when 𝛼 = 𝛽 = 1, 𝛾 = 0.9and for𝜀 = 0.001 

X T VIM [31] VIMLW [15] VIMCW 

0.25 

0.02 0.6753039590 0.675731145512 0.675907736608 

0.05 0.6296844687 0.630220016083 0.630400632227 

0.1 0.5593388359 0.560321154424 0.56048020832 

0.5 

0.02 0.9978293608 0.997632470154 0.997455549656 

0.05 0.9871761577 0.987587279157 0.987427653581 

0.1 0.9497078083 0.951764714775 0.951666479908 

0.9 

0.02 0.3258745591 0.325762586512 0.32585887431 

0.05 0.3549948213 0.356409044397 0.35655185817 

0.1 0.4146640268 0.42139503472 0.421617270271 
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Fig. 5. Effect of Reaction 𝛾on the solution 𝑢(𝑥, 𝑡) 

 

Fig. 6. Solution 𝑢(𝑥, 𝑡)of CDR PDE for 𝛼 = 𝛽 = 1;  𝛾 =

0.01,0.1,0.9 and 𝜀 = 0.001,0.1 

Fig.s 5-6, the solution is computed for  𝜶 = 𝜷 =

𝟏;  𝜸 = 𝟎. 𝟎𝟏, 𝟎. 𝟏, 𝟎. 𝟗 and 𝜺 = 𝟎. 𝟎𝟎𝟏, 𝟎. 𝟏. From the 

quantitative information given in tables (Tables-07-10) 

and the simulation curves (4.5),  it is observed at the 

diffusion coefficient 𝜀 = 0.1 and the variation in the 

value of reaction coefficient 𝛾 has almost no effect on 

the solution, but at the small value of the diffusion for 

example 𝜀 = 0.001and with various combinations of the 

reaction coefficient, a minimal effect is observed on the 

solution. 

In the following simulations (Fig. 7-8), the solution 

of the given model equation (4.8) is shown to select the 

various time steps. 

 

 

Fig. 7. Solution of Fitzhugh-Nagumo Equation, when 𝛼 =

0, 𝜀 = 𝛽 = 1;  𝛾 = (0,1)by VIMLW 

 

Fig. 8. Solution of Fitzhugh-Nagumo Equation, when 𝛼 =

0, 𝜀 = 𝛽 = 1;  𝛾 = 0.5by VIMLW 

The simulations (07 and 08), show that the significant 

fall in delayed solutions. Moreover, it is also noticed that 

a parabolic profile is observed for a small value of time.   

For the large value of time, the solution deviates from 

the parabolic nature, which disagrees with the boundary 

conditions and consequently the oscillations appear in 

the solution. 

4. Conclusion 

The wavelet-based algorithm was designed and tested in 

this study to solve nonlinear PDEs, where the VIM is 

combined with CW to design the VIMCW algorithm. 

The models were considered CDR problems in one 

spatial domain for this study. The developed algorithm 

has been applied to the proposed model problem, where 

the error profiles and the effect on the solution of the 

scaling parameters are interesting aspects of the 
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proposed study. The efficiency and accuracy of the 

method were evaluated, and it was observed that the 

VIM performs slightly better than the ADM. Also, it has 

been observed from the computational point of view that 

MVIM is the fast converging, but less accurate approach 

compared to ADM and VIM. In comparison to the VIM 

and ADM methods, it was observed that the proposed 

work VIMCW method can overcome the problem 

complexity of the integration and derivatives appearing 

in nonlinear terms and with no symbolic computations 

consequently. It was observed that VIMCW performs 

better than both the ADM and VIM, along with the less 

computational complexities and given error profiles.  

It is further observed from prepared simulation 

results that the effect of the variations in small diffusion 

scaling parameters reveals a significant effect on the 

solution with the scaling parameters of reaction terms. It 

is observed that the larger time steps create the 

oscillations in the solution from the given simulations 

with the choice of different discrete time steps and the 

most suitable choice for the selection of the time step is 

0.1 or less. The Operational matrices for the wavelets 

were designed and used to cope with nonlinear terms by 

using the applications of the BPFs. As a result, such 

modifications and developments speed the convergence 

and reduce the computational complexities as compared 

to the existing methods. The most interesting aspect is 

that the designed models have a good future for research.  

In view of this study, it is proposed that the work for the 

higher dimensions may be continued. 
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