www.dmlett.com

Research Article

On a linear combination of Zagreb indices

Abeer M. Albalahi*
Department of Mathematics, Faculty of Science, University of Hail, Hail, Saudi Arabia

(Received: 21 February 2023. Received in revised form: 29 March 2023. Accepted: 1 April 2023. Published online: 10 April 2023.)
(C) 2023 the author. This is an open-access article under the CC BY (International 4.0) license (www.creativecommons.org/licenses/by/4.0/).

Abstract

The modified first Zagreb connection index of a triangle-free and quadrangle-free graph G is equal to $2 M_{2}(G)-M_{1}(G)$, where $M_{2}(G)$ and $M_{1}(G)$ are the well-known second and first Zagreb indices of G, respectively. This paper involves the study of the linear combination $2 M_{2}(G)-M_{1}(G)$ of $M_{2}(G)$ and $M_{1}(G)$ when G is a connected graph of a given order and cyclomatic number. More precisely, graphs having the minimum value of the graph invariant $2 M_{2}-M_{1}$ are determined from the class of all connected graphs of order n and cyclomatic number c_{y}, when $c_{y} \geq 1$ and $n \geq 2\left(c_{y}-1\right)$.

Keywords: graph invariant; Zagreb connection indices; topological index; modified first Zagreb connection index; Zagreb indices; cyclomatic number.
2020 Mathematics Subject Classification: 05C07, 05C09.

1. Introduction

Throughout this study, only finite and connected graphs are exclusively considered. For the undefined notations and concepts from graph theory, the readers are suggested to consult books [4, 7, 12].

A topological index associated with a graph is a number that does not change under graph isomorphism. In [2], a topological index appeared in [11] was thoroughly studied first time after its appearance. This index is the modified first Zagreb connection index [2], which is defined for a graph G as

$$
Z C_{1}^{*}(G)=\sum_{v \in V(G)} d_{v} \tau_{v}
$$

where $V(G)$ represents the set of vertices of G, τ_{v} is the number of those vertices of G that are at distance 2 from v, and d_{v} denotes the degree of v. Zagreb connection indices have gained a considerable attention from mathematical community; for example see [6, 8, 15-17].

The sum of squares of vertex degrees of a graph is often denoted by M_{1} and is recognized as the first Zagreb index; for example, see $[3,13]$. The sum of the products of degrees of adjacent vertices of a graph is usually denoted by M_{2} and is generally known as the second Zagreb index (see for example [18]). Thus, for a graph G, one has

$$
M_{1}(G)=\sum_{v \in V(G)}\left(d_{v}\right)^{2}=\sum_{u v \in E(G)}\left(d_{u}+d_{v}\right)
$$

and

$$
M_{2}(G)=\sum_{u v \in E(G)} d_{u} d_{v}
$$

where $E(G)$ represents the set of edges of G. Additional information on Zagreb indices may be found in the review papers [$5,10,14]$ and references cited therein.

If a graph G is quadrangle-free and triangle-free, then

$$
\begin{equation*}
Z C_{1}^{*}(G)=2 M_{2}(G)-M_{1}(G) \quad(\text { see }[2]) \tag{1}
\end{equation*}
$$

Motivated from Equation (1), the linear combination $2 M_{2}-M_{1}$ of M_{2} and M_{1} is studied in this paper for connected graphs of fixed order and cyclomatic number, where the cyclomatic number of a graph is the least number of edges whose removal

[^0]gives cycle-free graph. Since Equation (1) does not hold for infinitely many graphs containing triangle(s) or/and quadrangle(s), so when removing the conditions of being triangle-free and quadrangle-free from G, the right-hand side of Equation (1) is denoted by a modified notation: $Z C_{1}^{\dagger}$. Thus, for any graph G, one has
$$
Z C_{1}^{\dagger}(G)=\sum_{u v \in E(G)}\left(2 d_{u} d_{v}-d_{u}-d_{v}\right)
$$

In the present study, graphs having the minimum value of the graph invariant $Z C_{1}^{\dagger}$ are determined from the class of all connected graphs of order n and cyclomatic number c_{y}, when $c_{y} \geq 1$ and $n \geq 2\left(c_{y}-1\right)$. The case $c_{y}=0$ corresponds to trees, which has already been resolved in [2,9].

2. Main results

Before stating and proving the main results of this paper, some notations and definitions are recalled in the following. For a vertex $v \in V(G)$, define $N_{G}(v)=\{w \in V(G): v w \in E(G)\}$. If $w \in N_{G}(v)$ then w is called a neighbor of v. A vertex in a graph is said to be a pendent vertex (branching vertex, respectively) if it has degree one (at least three, respectively). A non-trivial path $P: u_{1} u_{2} \cdots u_{t}$ of a graph is called pendent path whenever $\min \left\{d_{v_{1}}, d_{v_{t}}\right\}=1$ and $\max \left\{d_{v_{1}}, d_{v_{t}}\right\} \geq 3$, and every remaining vertex of P (if it exists) has degree two. A graph with n vertices is also known as an n-vertex graph. Denote by G^{\prime} a graph deduced from some other graph G after utilizing a transformation provided that $V\left(G^{\prime}\right)=V(G)$. In the remaining part of this paper, wherever such types of graphs are considered simultaneously, the notion d_{v} represents the degree of $v \in V\left(G^{\prime}\right)=V(G)$ in G.

Lemma 2.1. Every graph having the least value of $Z C_{1}^{\dagger}$ over the class of all n-vertex graphs with $c_{y} \geq 1$ cyclomatic number has the minimum degree at least 2 .

Proof. Let G be a graph having the least value of $Z C_{1}^{\dagger}$ over the class of all n-vertex graphs with $c_{y} \geq 1$ cyclomatic number. Contrarily, suppose that the minimum degree of G is 1 . Suppose that $P: v v_{1} v_{2} \ldots v_{r}$ is a pendent path of G, provided that $d_{v} \geq 3$. Since $c_{y} \geq 1$, at least one of the neighbors of v is non-pendent. Let $u \notin\left\{v_{1}\right\}$ be a non-pendent neighbor of v. Denote by G^{\prime} the graph formed by dropping the edge $u v$ from G and inserting there the edge $v_{r} u$. It is obvious that the cyclomatic numbers of G and G^{\prime} are the same. When $r=1$, one has

$$
\begin{aligned}
Z C_{1}^{\dagger}(G)-Z C_{1}^{\dagger}\left(G^{\prime}\right) & =2\left(d_{u}\left(d_{v}-2\right)-2 d_{v}+4+\sum_{w \in N_{G}(v) \backslash\left\{v_{1}, u\right\}} d_{w}\right) \\
& \geq 2\left(d_{u}\left(d_{v}-2\right)-2 d_{v}+4+\left(d_{v}-2\right)\right) \\
& =2\left(d_{u}-1\right)\left(d_{v}-2\right) \geq 2\left(d_{v}-2\right)>0
\end{aligned}
$$

which contradicts the definition of G. When $r \geq 2$, one has

$$
Z C_{1}^{\dagger}(G)-Z C_{1}^{\dagger}\left(G^{\prime}\right)=2\left(\left(d_{u}-1\right)\left(d_{v}-2\right)+\sum_{w \in N_{G}(v) \backslash\left\{v_{1}, u\right\}} d_{w}\right)>0
$$

a contradiction again.
Lemma 2.1 gives the following result.
Corollary 2.1. The cycle graph C_{n} is the unique graph having the minimum $Z C_{1}^{\dagger}$ value among all n-vertex unicyclic graphs.
Denote by $\Delta(G)$ and $\delta(G)$ (or simply by Δ and δ) the maximum and minimum vertex degree, respectively, in a graph G. Define

$$
n_{i}=n_{i}(G)=\left|\left\{w \in V(G): d_{w}=i\right\}\right|
$$

Lemma 2.2. For $c_{y} \geq 2$ and $n \geq 2\left(c_{y}-1\right)$, if G is a graph achieving the least value of $Z C_{1}^{\dagger}$ over the class of all n-vertex graphs with c_{y} cyclomatic number, then $\Delta(G)=3$.

Proof. Take $\Delta=\Delta(G)$. Since only connected graphs are being considered and $c_{y} \geq 2$, one has $\Delta \geq 3$. Suppose to the contrary that $\Delta>3$. From Lemma 2.1, it follows that $\delta(G) \geq 2$. Since $c_{y}=|E(G)|-n+1$ and

$$
\sum_{i=1}^{\Delta} i n_{i}=2|E(G)|
$$

the constraint $n \geq 2\left(c_{y}-1\right)$ yields

$$
\sum_{i=1}^{\Delta} n_{i} \geq 2(|E(G)|-n)=2\left(\sum_{i=1}^{\Delta} \frac{i n_{i}}{2}-\sum_{i=1}^{\Delta} n_{i}\right)=2\left(\sum_{i=3}^{\Delta} \frac{i n_{i}}{2}-\sum_{i=3}^{\Delta} n_{i}\right)
$$

which implies that

$$
\begin{equation*}
n_{2} \geq \sum_{i=4}^{\Delta} n_{i}(i-3) \tag{2}
\end{equation*}
$$

Equation (2) guaranties that G posses some vertex having degree 2. In the following, the vertex $v \in V(G)$ is assumed to be a vertex of maximum degree, that is, $d_{v}=\Delta$.

Case 1. At least one of the neighbors of v, say w, has degree 2 .
Since $\Delta>3$, there exists $u \in N_{G}(v)$ such that $u w \notin E(G)$. Let $z \notin\{v\}$ be the other neighbor of w. Denote by G^{\prime} the graph deduced from G after dropping $v u$ and adding $u w$. Since $\delta \geq 2$ and $d_{v}=\Delta \geq 4$, one has

$$
\begin{aligned}
Z C_{1}^{\dagger}(G)-Z C_{1}^{\dagger}\left(G^{\prime}\right) & =2\left(d_{u}\left(d_{v}-3\right)-d_{z}-2 d_{v}+8+\sum_{y \in N_{G}(v) \backslash\{u, w\}} d_{y}\right) \\
& \geq 2\left(d_{u}\left(d_{v}-3\right)-d_{z}-2 d_{v}+8+2\left(d_{v}-2\right)\right)=2\left(d_{u}\left(d_{v}-3\right)-d_{z}+4\right) \\
& \geq 2\left(2\left(d_{v}-3\right)-d_{z}+4\right) \geq 2\left(d_{v}-2\right)>0
\end{aligned}
$$

a contradiction to the definition of G.
Case 2. None of the neighbors of v has degree 2.
Since $\delta \geq 2$, every neighbor of v has degree at least 3. Recall that Equation (2) implies that G posses some vertex having degree 2. Since $\Delta \geq 4$, there are vertices $w^{\prime} \in V(G) \backslash N_{G}(v)$ and $v^{\prime} \in N_{G}(v)$ such that $d_{w^{\prime}}=2$ and $w^{\prime} v^{\prime} \notin E(G)$. Denote by $G^{\prime \prime}$ the graph deduced from G after dropping $v v^{\prime}$ and adding $v^{\prime} w^{\prime}$. Because every neighbor of v has degree at least 3 and $d_{v}=\Delta \geq 4$, one has

$$
\begin{aligned}
Z C_{1}^{\dagger}(G)-Z C_{1}^{\dagger}\left(G^{\prime \prime}\right) & =2\left(\left(d_{v^{\prime}}-1\right)\left(d_{v}-3\right)+\sum_{x \in N_{G}(v) \backslash\left\{v^{\prime}\right\}} d_{x}-\sum_{y \in N_{G}\left(w^{\prime}\right)} d_{y}\right) \\
& \geq 2\left(2\left(d_{v}-3\right)+\sum_{x \in N_{G}(v) \backslash\left\{v^{\prime}\right\}} d_{x}-\sum_{y \in N_{G}\left(w^{\prime}\right)} d_{y}\right) \\
& \geq 2\left(2\left(d_{v}-3\right)+3\left(d_{v}-1\right)-2 d_{v}\right)=6\left(d_{v}-3\right)>0,
\end{aligned}
$$

a contradiction again.
For a graph G, define

$$
m_{i, j}=m_{i, j}(G)=\mid\left\{v w \in E(G): d_{v}=i \text { and } d_{w}=j\right\} \mid
$$

Lemma 2.3. [1] Let G be an n-vertex graph with cyclomatic number $c_{y} \geq 2$, minimum degree 2, and maximum degree 3 .
(i). If the inequality $2\left(c_{y}-1\right) \leq n<5\left(c_{y}-1\right)$ holds then $m_{3,3} \geq 1$.
(ii). If the inequality $n>5\left(c_{y}-1\right)$ holds then $m_{2,2} \geq 1$.
(iii). If the equations $n=5\left(c_{y}-1\right)$ and $\min \left\{m_{2,2}, m_{3,3}\right\}=0$ hold then $\max \left\{m_{2,2}, m_{3,3}\right\}=0$.

Lemma 2.4. For $n>5\left(c_{y}-1\right)$ with $c_{y} \geq 2$, if G is a graph achieving the least value of $Z C_{1}^{\dagger}$ among all n-vertex graphs with c_{y} cyclomatic number and if $a b \in E(G)$, then $\min \left\{d_{a}, d_{b}\right\}=2$.

Proof. By Lemmas 2.1, 2.2, and 2.3, one has $\delta(G)=2, \Delta(G)=3$, and $m_{2,2} \geq 1$. Take $v, w \in V(G)$ such that $d_{v}=d_{w}=2$ and $v w \in E(G)$. Contrarily, assume that $s, t \in V(G)$ are adjacent vertices of degree 3 . Let $x \notin\{v\}$ be the neighbor of w. It is possible that $x \in\{s, t\}$; if it happens, then one takes $x=t$, without loss of generality.

Case 1. The sets $N_{G}(v)$ and $N_{G}(w)$ are disjoint.
Denote by G^{\prime} the graph deduced from G after dropping $v w, w x$, st and inserting $v x, s w, t w$. In either of the cases $x \neq t$ and $x=t$, one has $Z C_{1}^{\dagger}(G)-Z C_{1}^{\dagger}\left(G^{\prime}\right)=2$, which contradicts the definition of G.

Case 2. The sets $N_{G}(v)$ and $N_{G}(w)$ are not disjoint.
Since G is connected and $c_{y} \geq 2$, it holds that $d_{x}=3$.
When $x \neq t$, then for the graph $G^{\prime \prime}$ obtained by dropping " $w x, s t$ " from G and inserting " $w t, s x$ " there, one has

$$
Z C_{1}^{\dagger}(G)=Z C_{1}^{\dagger}\left(G^{\prime \prime}\right)
$$

Note that the sets $N_{G^{\prime \prime}}(v)$ and $N_{G^{\prime \prime}}(w)$ are disjoint and thus by Case 1, one gets a contradiction.
When $x=t$, then let $s_{1} \notin t$ be a neighbor of s. Denote by $G^{\prime \prime \prime}$ the graph formed by dropping the edges $w t, s_{1} s$ and inserting the edges $s w, s_{1} t$. Then, $Z C_{1}^{\dagger}(G)=Z C_{1}^{\dagger}\left(G^{\prime \prime \prime}\right)$. Again, the sets $N_{G^{\prime \prime \prime}}(v)$ and $N_{G^{\prime \prime \prime}}(w)$ are disjoint, and thus by Case 1 , one has a contradiction.

Lemma 2.5. For $n=5\left(c_{y}-1\right)$ with $c_{y} \geq 2$, if G is a graph achieving the least value of $Z C_{1}^{\dagger}$ among all n-vertex graphs with c_{y} cyclomatic number and if $a b \in E(G)$, then $\min \left\{d_{a}, d_{b}\right\}=2$ and $\max \left\{d_{a}, d_{b}\right\}=3$.

Proof. By Lemmas 2.1 and 2.2, one has $\delta(G)=2$ and $\Delta(G)=3$. It is claimed that $\max \left\{m_{2,2}, m_{3,3}\right\}=0$. Suppose to the contrary that $\max \left\{m_{2,2}, m_{3,3}\right\}>0$.

If $\min \left\{m_{2,2}, m_{3,3}\right\}=0$ then by Lemma 2.3, it holds that $\max \left\{m_{2,2}, m_{3,3}\right\}=0$, which is a contradiction.
If $\min \left\{m_{2,2}, m_{3,3}\right\}>0$ then by the proof of Lemma 2.4 one deduce that there is an n-vertex graph G^{*} with cyclomatic number c_{y} such that $Z C_{1}^{\dagger}(G)>Z C_{1}^{\dagger}\left(G^{*}\right)$, which contradicts the definition of G.

Lemma 2.6. For $2\left(c_{y}-1\right) \leq n<5\left(c_{y}-1\right)$ with $c_{y} \geq 2$, if G is a graph achieving the least value of $Z C_{1}^{\dagger}$ among all n-vertex graphs with c_{y} cyclomatic number, then $m_{2,2}=0$.

Proof. Suppose to the contrary that $m_{2,2}>0$. By Lemmas 2.1, 2.2, and 2.3, one has $\delta(G)=2, \Delta(G)=3$, and $m_{3,3} \geq 1$. By the proof of Lemma 2.4 one deduces that there is an n-vertex graph G^{*} with cyclomatic number c_{y} such that $Z C_{1}^{\dagger}(G)>Z C_{1}^{\dagger}\left(G^{*}\right)$, which contradicts the definition of G.

Theorem 2.1. For $c_{y} \geq 2$, in the class of all n-vertex graphs with c_{y} cyclomatic number,
(i) the cubic graphs are the only graphs having the minimum $Z C_{1}^{\dagger}$ value whenever $n=2\left(c_{y}-1\right)$;
(ii) the graphs of maximum degree 3 and minimum degree 2 with the constraint $m_{2,2}=0$, are the only graphs having the minimum $Z C_{1}^{\dagger}$ value whenever $2\left(c_{y}-1\right)<n<5\left(c_{y}-1\right)$;
(iii) the graphs of maximum degree 3 and minimum degree 2 with the constraint $m_{2,2}=m_{3,3}=0$, are the only graphs having the minimum $Z C_{1}^{\dagger}$ value whenever $n=5\left(c_{y}-1\right)$;
(iv) the graphs of maximum degree 3 and minimum degree 2 with the constraint $m_{3,3}=0$, are the only graphs having the minimum $Z C_{1}^{\dagger}$ value whenever $n>5\left(c_{y}-1\right)$.
Proof. Let G be a graph having the least value of $Z C_{1}^{\dagger}$ among all n-vertex graphs with c_{y} cyclomatic number. By Lemmas 2.1 and 2.2 , one has $\delta(G)=2$ and $\Delta(G)=3$. Thus, the following system of equations holds

$$
\begin{gather*}
n_{2}+n_{3}=n \tag{3}\\
2 n_{2}+3 n_{3}=2\left(n+c_{y}-1\right) \tag{4}
\end{gather*}
$$

i). If $n=2\left(c_{y}-1\right)$ then from (3) and (4) it follows that $n_{2}=0$ and thus G consists of the vertices of degree 3 only.
ii). If $2\left(c_{y}-1\right)<n<5\left(c_{y}-1\right)$ then Lemma 2.6 confirms that $m_{2,2}=0$.
iii). This part follows directly from Lemma 2.5.
iv). It follows from Lemma 2.4.

Acknowledgement

The author thanks the anonymous referees for their insightful comments and suggestions.

References

 257 (2019) 19-30
[2] A. Ali, N. Trinajstić, A novel/old modification of the first Zagreb index, Mol. Inform. 37 (2018) \#1800008.
[3] M. An, The first Zagreb index, reciprocal degree distance and Hamiltonian-connectedness of graphs, Inform. Process. Lett. 176 (2022) \#106247.
[4] J. A. Bondy, U. S. R. Murty, Graph Theory, Springer, 2008.
[5] B. Borovićanin, K. C. Das, B. Furtula, I. Gutman, Bounds for Zagreb indices, MATCH Commun. Math. Comput. Chem. 78 (2017) 17-100.
[6] J. Cao, U. Ali, M. Javaid, C. Huang, Zagreb connection indices of molecular graphs based on operations, Complexity 2020 (2020) \#7385682.
[7] G. Chartrand, L. Lesniak, P. Zhang, Graphs \& Digraphs, CRC Press, 2016.
[8] K. C. Das, S. Mondal, Z. Raza, On Zagreb connection indices, Eur. Phys. J. Plus 137 (2022) \#1242
 Cologne-Twente Workshop on Graphs and Combinatorial Optimization, 2018, 65-68.
[10] I. Gutman, E. Milovanović, I. Milovanović, Beyond the Zagreb indices, AKCE Int. J. Graphs Comb. 17 (2020) 74-85.
[11] I. Gutman, N. Trinajstić, Graph theory and molecular orbitals. total π-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972) $535-538$.
[12] F. Harary, Graph Theory, Addison-Wesley, 1969.
[13] E. Milovanović, I. Milovanović, M. Jamil, Some properties of the Zagreb indices, Filomat 32 (2018) 2667-2675.
[14] S. Nikolić, G. Kovačević, A. Miličević, N. Trinajstić, The Zagreb indices 30 years after, Croat. Chem. Acta 76 (2003) 113-124.
 14 (2019) 31-37.
[16] Z. Raza, S. Akhter, On maximum Zagreb connection indices for trees with fixed domination number, Chaos Solitons Fractals 169 (2023) \#113242.
[17] Z. Raza, M. S. Bataineh, M. E. Sukaiti, On the Zagreb connection indices of hex and honeycomb networks, J. Intel. Fuz. Sys. 40 (2021) $4107-4114$.
[18] T. Réti, E. Bitay, Comparing Zagreb indices for 2-walk linear graphs, MATCH Commun. Math. Comput. Chem. 85 (2021) $313-328$.

[^0]: *E-mail address: a.albalahi@uoh.edu.sa

