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Abstract: The object of the first experiments were to determine the effects of virtual 

fencing on cortisol concentrations and behavior of beef cattle. Mixed breed beef heifers 

and cows (n = 55 and 59, respectively; initial BW = 315 ± 30 kg and 484 ± 84 kg, 

respectively) were randomly assigned to a physically fenced (PF) or virtually fenced (VF) 

pasture. Animals were rotated within respective treatments for 28 or 56 d, respectively. 

No significant differences were observed in animal behaviors, cortisol concentrations in 

hair or feces, nor lactate and non-esterified fatty acid concentrations. Virtual fencing was 

not more stressful to animals when compared to electric fencing. The objective of the 

second experiment was to validate the classification of the activities, and resource, terrace 

position, and burn unit usage of grazing cattle made by remote monitoring collars. Angus 

steers (n = 12; BW = 227 ± 45.0 kg) were fitted with an electronic GPS receiver and 

activity collar (Herd MOOnitor Ltd). Animal activities (collected every 4 s) were 

determined by a real time microcontroller and an algorithm for analyzing accelerometer 

data, and GPS locations (collected every 5 min) were collected and classified by the 

collar. Animal activities included grazing, walking, and resting. GPS locations included 

position on terraces, burn patch, and resource utilized. Data from the collars were 

matched to human observation data measuring the same activity and location parameters. 

Data from walking and resting activities, and resource and burn patch usage were 

accurately matched. However, grazing activity classification (≥ 30%) and terrace position 

accuracies (≥ 39%) were less than the reported NIR (≥ 39% and ≥ 42%, respectively), 

leading researchers to conclude that grazing activities could not be accurately classified. 

 

 



iv 
 

TABLE OF CONTENTS 

 

Chapter          Page 

 

I. REVIEW OF LITERATURE .....................................................................................1 

 

 Introduction ..............................................................................................................1 

 History of grazing technology .................................................................................2 

 Electric fencing ........................................................................................................5 

 Virtual fencing .........................................................................................................8 

       Effects of electrical impulses on animals...........................................................9 

 Measuring stress in grazing animals ......................................................................12 

            Cortisol .............................................................................................................14 

            Corticosterone ..................................................................................................18 

            Lactate ..............................................................................................................19 

            Non-esterified fatty acids .................................................................................20 

            Behavior ...........................................................................................................21 

  Monitoring grazing behavior .................................................................................24 

Evaluation of accuracy of sensors....................................................................25 

            Remote monitoring collars ...............................................................................27 

Summary of literature ............................................................................................29 

 

 

II. EFFECTS OF VIRTUAL FENCING ON CORTISOL CONCENTRATIONS AND 

BEHAVIOR OF BEEF CATTLE 

  

 Abstract ..................................................................................................................31 

 Introduction ............................................................................................................32 

 Materials and Methods ...........................................................................................33 

 Pastures ............................................................................................................33 

 Animals ............................................................................................................35 

 Virtual fencing system .....................................................................................36 

 Sample collection .............................................................................................38 

 Laboratory analysis ..........................................................................................39 

 Statistical analysis ............................................................................................40 

 Results and Discussion ..........................................................................................41 

     Behavior variables ...........................................................................................41 

     Cortisol & Corticosterone ................................................................................42 

     Serum metabolites ...........................................................................................45 

     Correlations ......................................................................................................46 

      Applications ...........................................................................................................50



v 
 

 

III. VALIDATION OF REMOTE BEHAVIOR MONITORING COLLARS IN 

GRAZING BEEF CATTLE 

 

 Abstract ..................................................................................................................52 

 Introduction ............................................................................................................53 

 Materials and Methods ...........................................................................................54 

       Pastures ............................................................................................................54 

       Animals ............................................................................................................54 

            MOOnitor collars .............................................................................................55 

       Data collection .................................................................................................56 

       Statistical analysis ............................................................................................57 

 Results and Discussion ..........................................................................................58 

 Conclusion .............................................................................................................63 

 



vi 
 

 

LITERATURE CITED ..............................................................................................114 

 

APPENDICES ...........................................................................................................126



vii 
 

LIST OF TABLES 

 

 

Table                                                                                                               Page 

                                                                                                                    

   2.1 Effects of virtual fencing on behavior and physiology of beef cattle: Study 1 .... 64 

   2.2 Effects of virtual fencing on cortisol and corticosterone concentrations of beef  

   cattle: Study 2 ............................................................................................................ 66 

   2.3 Effects of virtual fencing on blood metabolite concentrations of beef cattle:  

   Study 2 ....................................................................................................................... 67 

   2.4 Summary of shocks recieved ............................................................................... 68 

   3.1 Confusion matrix for activity class variables....................................................... 69 

   3.2 Confusion matrix of the dominant activity in an observation period .................. 70 

   3.3 Confusion matrix for resource variables .............................................................. 71 

   3.4 Confusion matrix of the dominant resource utilized in an observation period .... 72 

   3.5 Confusion matrix for terrace position variables ................................................... 73 

   3.6 Confusion matrix of the dominant terrace position utilized in an observation  

   period ......................................................................................................................... 74 

   3.7 Confusion matrix for burn patch position variables ................................... ….....75 

   3.8 Confusion matrix of the dominant burn patch utilized in an observation period.76 

 

 

 

 

    

 



 
 

LIST OF FIGURES 

 

Figure           Page 

   2.1 Virtual fencing collar version1 ...........................................................................77 

   2.2 Virtual fencing collar version 2 ..........................................................................78 

   2.3 Virtual fencing collar version 2 on animal .........................................................79 

   2.4 Two phase training period for VF treatment.......................................................80 

   2.5 D 0 virtual fence boundary .................................................................................81 

   2.6 Behavior variables – study 1 ...............................................................................82 

   2.7 Daily step count-study 2 .....................................................................................83 

   2.8 Standing time per day-study 2 ............................................................................84 

   2.9 Daily lying bouts- study ......................................................................................85 

   2.10 Motion index per day-study 2 ...........................................................................86 

   2.11 Hair cortisol concentrations-study 1 .................................................................87 

   2.12 Hair cortisol concentrations-study 2 .................................................................88 

   2.13 Fecal corticosterone concentrations-study 1 .....................................................89 

   2.14 Weekly corticosterone concentrations- study 1 ................................................90 

   2.15 Weekly corticosterone composite concentrations-study 1 ................................91 

   2.16 Fecal corticosterone concetrations-study 2 .......................................................92 

   2.17 Weekly corticosterone concentrations-study 2 .................................................93 

   2.18 Weekly corticosterone composite concentrations-study 2 ................................94 

   2.19 Serum lactate concentrations-study 2 ...............................................................95 

   2.20 Serum NEFA concentrations-study1 ................................................................96 

   2.21 Distribution of shocks .......................................................................................97 

   2.22 Behavior, physiology, and shock count correlations-study 1 ...........................98 

   2.23 Behavior and physiology correlations-study 2 .................................................99 

   2.24 Cortisol metabolite correlatios-study1 ............................................................100 

   2.25 Cortisol metabolite correlations – study 2 ......................................................101 

   2.26 Final shock and physiology correlations – study 2 .........................................102 

   2.27 Behavior and shock correlations – study 2 .....................................................103 

   3.1 Pasture map .......................................................................................................104 

3.2 Terrace position within pasture .........................................................................105 

3.3 Location of water/salt and shade within pasture ...............................................106 

3.4 MOOnitor collar................................................................................................107 

   3.5 Fraction of 5-min observation periods matched to MOOnitor collar  

classification for resting…………………………………………………………...108 

   3.6 Fraction of 5-min observation periods matched to MOOnitor collar  

   classification for grazing. ........................................................................................109 

    

 



ix 
 

Figure           Page 

 

3.7 Fraction of 5-min observation periods matched to MOOnitor collar  

   classification for walking. .......................................................................................110 

3.8 Fraction of 5-min observation periods matched to MOOnitor collar  

classification for resource usage ................................................................................111 

3.9 Fraction of 5-min observation periods matched to MOOnitor collar  

classification for terrace use location .........................................................................112 

3.10 Fraction of 5-min observation periods matched to MOOnitor collar  

classification for burn patch usage. ............................................................................113 

  

 

 

 



1 
 

 

CHAPTER I 

 

 

REVIEW OF LITERATURE 

Introduction 

 Livestock management practices have changed greatly over time, while still 

keeping fundamental principles intact. The end goal of livestock management continues 

to be to produce the most efficient animals in the most cost-effective manner. Livestock 

management has evolved to include new technologies, such as virtual fencing (VF) and 

motion sensor integrated global positioning systems (GPS) collars with the ability to 

remotely monitor animal behavior and health. Both technologies offer great 

advancements in the field of livestock management, as virtual fencing may provide the 

ability to fully utilize the diverse resources allotted to cattle on pasture (Umstatter et al., 

2015); and integrative GPS collars may allow researchers to accurately measure animal 

distribution and behaviors while grazing (Ungar et al., 2005). 

The implementation of these livestock management technologies offers a unique 

opportunity to utilize seemingly “un-fencable” terrain, execute various stocking and 

grazing management practices with limited labor costs, and even remotely monitor 

individual animal health status. However, the use of these technologies has been reported 

to produce adverse effects on animals. Animal discomfort has been linked to electrical 

shock, from either electrified wire fencing or through the use of VF collars (Lee et al., 

2009; Teixeira et al., 2017). Any introduction of discomfort to livestock, by means of 
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transportation, handling, or the implementation of grazing technologies may result in 

stress responses. An animal’s response to stress results in the release of stress hormones 

such as catecholamines and cortisol (Brockman and Laarveld, 1986). The secretion of 

these stress-induced hormones have been reported to affect reproductive, metabolic, and 

immune functions within the animal (Sapolsky et al., 2000; Chrousos, 2009). Cattle 

response to stressors has also been linked to an increase of other blood metabolites, such 

as plasma lactate and non-esterified fatty acids (NEFA; Petherick et al., 2009). An 

increase of these metabolites may result in a decrease in animal performance, as both 

metabolites have been linked to a change in animal metabolism (increases or decreases in 

body condition score; BCS) due to prolonged exposure to stressors (Matteri et al., 2000; 

Bernabucci et al., 2005). Additionally, the integration of livestock management 

technologies such as motion sensor integrated GPS collars may not yet be without flaw. 

For example, to the author’s knowledge, validation of motion sensor integrated GPS 

collars has not been completed, and issues with accuracy of both GPS location and 

animal behavior have not been fully nullified (Ungar et al., 2005). 

There are many factors that influence the efficacy of grazing technologies. While 

the implementation of these technologies into livestock management practices holds 

many opportunities to increase the profitability of the livestock industry; many variables 

remain unknown in the validation of remote health monitoring collars, and the overall 

effect of technology use on livestock. Considerable research has been conducted 

regarding the aforementioned variables, and though great progress has been made 

towards the applicable use of these technologies, the ethical and economical aspects of 

such technology must be thoroughly examined.  
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History of Grazing Technology 

According to Ensminger and Perry (1997), a good fence promotes good 

relationships with neighbors, makes livestock production possible, and increases land 

values. However, the art and science of managing livestock has undergone a long-term 

evolution in management practices over the centuries. Livestock management began with 

herding and shepherding practices, following the fluid movements of nomadic cultures 

(Reuter 2021, personal communication). As humans began to make settlements in various 

areas, some cultures chose to implement semi-sedentary livestock management, 

establishing residences and ‘home pastures’ to inhabit at certain times of the year. As 

societies became more established, permanent residences became more prevalent and 

transhumant management systems became more common (Reuter 2021, personal 

communication). This was and is still typical in mountainous areas, in which livestock 

herds were moved seasonally. Though all of these livestock management practices are 

still used today, the United States and other first world countries typically implement 

sedentary livestock management. Sedentary livestock management systems consist of 

permanent dwellings where livestock management is conducted using fenced pastures in 

close proximity to said dwellings.  The original purposes of fences were to restrain cattle, 

to not only prevent loss of livestock but prevent destruction of croplands by livestock 

grazing (Pickard, 1999). Although in the United States, the rise of fences may have been 

implemented as a measure of ownership and status more so than livestock containment 

(Hayter, 1939). The evolution of livestock management towards fencing may also be 

credited to the Tragedy of the Commons, during which competition for resources such as 

land and water exceeded the productivity of such resources. As populations of both 
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humans and livestock grew, implementation of more traditional methods of livestock 

management were necessary for vegetative and livestock productivity (Fafchamps, 1998). 

Some cultures first implemented “live fences” of hedges and utilized ditches to subdivide 

or contain various agricultural pursuits (dated to the early 1800’s; National Gallery of 

Art, 2021). As livestock management progressed, stone walls and wooden fences were 

implemented in early colonial America (Smithsonian, 2008). As settlers moved West 

across the United States, resources and lack therof led to the invention of smooth wire 

fences in the 1830’s to replace wood fences (Oklahoma Historical Society, 2021). 

However, these fences did little to fully contain livestock as the fences were easily 

uprooted or disrupted. Barbed wire fences were invented with aims to prevent animals 

from rubbing against and damaging fence lines (Mayberry, 1939). Although, barbed wire 

is the predominant fencing method across much of the livestock industry, there were 

initial hesitations in its implementation as many viewed barbed wire as cruel and 

compromising to animal welfare; and in some countries (i.e., Switzerland) barbed wire is 

still considered inhumane (Umstatter, 2011). Electric fences were originally derived as 

another form of protection for wire fences, implemented to keep cattle or horses from 

trampling fences enclosing pastures or crops. Electric fences utilize electrically insulated 

wires that are connected to a power supply (Vollmer, 2016). Each of these fencing 

methods evolved from one or more fence types before it, improving from not only a 

management perspective but economic perspective as well. From electric fences, the 

concept of VF has become of great interest within livestock management.  

As the prevalence of livestock management increased, herding practices 

previously carried out across open ranges were implemented with the use of conventional 
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fencing.  Rotation of animals from paddock to paddock and separation of animals during 

various physiological stages could easily be achieved. Though the evolution of 

conventional fencing greatly improved the efficiency of pastures and rangeland through 

herding and animal husbandry tactics, the costs of both the fencing itself and labor-

intensive management remain high. The implementation of grazing and livestock 

management technologies, such as VF, provide livestock managers new avenues to 

achieve the underlying goals of livestock production. Virtual fences provide an 

alternative for livestock managers to contain their cattle in new and more efficient ways. 

Virtual fencing technologies also provide the ability to create fences in otherwise un-

fencable terrain, remotely gather or relocate animals, and remotely monitor animals. 

Electric Fencing 

Physical fencing systems that implement electric shock as a deterrent have 

become widely adopted across various livestock industries, and are even used with pets 

and wildlife. The purpose of such fencing systems is to cut down on costs, labor, and 

materials compared to conventional barbed wire fencing. However, costs may vary on the 

voltage of the energizer used to produce electric currents. As previously stated, electric 

fencing systems utilize electrically insulated wires. These wires are used to deliver a 

limited amount of energy through a current, and a small electric shock is administered 

when an animal comes in contact with the wire, closing the circuit (Vollmer, 2016). In 

order for electric fences to be useful, 3 major parameters must be fulfilled. Electric fences 

must have adequate electrical strength to deter animals from the fence line, the ability to 

withstand livestock pressures, such as rubbing or pushing the fences, and the ability to 

withstand naturally occurring pressures. First, the shock supplied by the fence must be 
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sufficient to repel livestock, which relies heavily on proper wire insulation (Weston, 

1963). Weston (1963) stated that controller units of electric fencing may produce 

voltages ranging from 300-2000V, with pulse rates of 70-80 per min. However, more 

recent research states that voltage delivered by electric fencing ranges from 2000-

10,000V, dependent on the application (Vollmer, 2016). These voltages are much higher 

than can be humanely used in other fencing technologies, such as virtual fencing 

(Umstatter, 2011). According to Ohm’s Law, an assumption can be made that electric 

shock will increase with the increase of electric voltage, heightening the effectiveness of 

electrical fences (Honda, 2021). However, as reported by Honda (2021), the effectiveness 

of electric fences in terms of voltage applied varies among species. Researchers have 

reported that larger animal species may be easily deterred with the use of lower voltages 

(1500V), while smaller species are more likely to require higher voltages (4000V). 

Animal disposition may act as the underlying cause for differences in the amount of 

voltage required to effectively deter animals from a fence line. Research has reported that 

foxes and raccoon dogs, while similar in size and weight, require differing voltages to 

deter the respective animals from an electric fence. Honda (2021) reported that raccoon 

dogs required a higher voltage to be deterred while foxes were deterred with a lower 

voltage. Researchers speculate this increased abhorrence to electric fences is due to the 

natural shyness and vigilance common among the fox species, suggesting foxes are less 

likely to test an electric fence compared to more curious raccoon dogs. The construction 

of electric fences may also be reflective of the ability to properly contain or exclude 

animals. Electric fences utilized in livestock management often have lengths that span ½ 

a mile or greater; in these cases the resistance of the wire may vary by length. Thus, long 
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stretches of electric fence are prone to drops in voltage (Vollmer, 2016) and therefore, the 

efficacy of the electric shock delivered.  

Secondly, the construction of the electric fencing must withstand livestock 

rubbing or pushing against non-electrified portions of the fence (Weston, 1963). A 

solution to this issue may lie in the wire used during the construction of an electric fence. 

Since the 1980’s, the wire of choice for the construction of electric fences is often high-

tensile wire, with tensile strength between 170,000 and 200,000 pounds per square inch 

(McCutchan, 1980). Karhu and Anderson (2006) reported that high tensile electric 

fencing was successful in separating cows from bulls, as well as cows from calves during 

weaning. Results from this study demonstrated a 100% containment of bulls utilizing 2-

wire and 3-wire electric fences, and 99% and 100% respectively, for cow/calf separation.  

Additionally, electric fence lines, similar to barbed wire fences must be erected in 

such a manner that the fence can withstand naturally occurring pressures (Weston, 1963). 

Terrestrial obstacles are a major factor in the construction of all static fences. Thick brush 

cover has been reported to reduce the effectiveness and power emitted from electric 

fencing, as heavily branched plants or thick brush may inadvertently ground the electric 

current (Weston, 1963). Slope and rugged terrain are also obstacles for static fences. 

Fencing in inaccessible locations may increase labor costs, either through the loss of 

fencing sections or through the costs of manually clearing the fence path (likely through 

mechanical means). Soil resistance may also affect the flow of the electrical current. 

Since the electric current must flow through soil to a ground stake, the large variation of 

resistance and moisture content between soil types can disrupt the distribution of the 

electric current (Vollmer, 2016). Cold temperatures may cause faults in the line that may 
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become difficult to pinpoint and galvanized steel wire may become brittle in frigid 

temperatures (Weston, 1963). The impact of cold temperatures and seasonal changes on 

the soil again play a role in the efficiency of electric fencing. Increased moisture or 

dryness alter the conductivity of topsoil, and frozen soil is a poor electrical conductor 

(Vollmer, 2016).  

Virtual Fencing 

The concept of VF was actualized by Richard Peck in 1971 with his description of 

a mechanism and method for controlling animals (Peck, 1973). Commercially denoted 

the “Invisible Fence”, the system consisted of a collar worn by the animal and a signal-

emitting wire placed as a perimeter fence with the aim to control cats and dogs. While 

physical fencing has been time-tested and utilized worldwide, physical fencing fails to 

offer the management flexibility that accompanies VF. Virtual fencing has evolved from 

static containment in a defined area to mobile fence lines (Umstatter, 2011). The 

implementation of VF could lead to improved utilization of seasonal forage growth or re-

establishment of pasture biodiversity through the use of exclusion areas (Umstatter et al., 

2015). Many of the aspects of herding or specialty stocking methods (i.e., limit, strip, 

creep, or swath grazing) can also be incorporated into livestock management practices 

through the use VF, as this technology has the ability to alter animal position within a 

landscape in near real-time (Anderson, 2007). Virtual fencing becomes effective by 

creating a boundary based upon geographical coordinates and applying a stimulus when 

an animal nears or crosses the boundary. This dynamic stimulus action allows for 

‘virtual’ herding or mustering (Butler et al., 2006). Many studies have been conducted 

comparing the efficacy of VF to conventional fencing methods. Campbell et al. (2019) 
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reports that both electrical tape fencing and VF were successful in keeping cattle 

contained in prescribed areas, with VF animals spending less than 3% of time in areas 

excluded from the prescribed grazing zone. Similarly, 2 extensive grazing studies were 

conducted with cattle wearing VF ear tags set to provide a single audio warning prior to 

an electrical stimulus. Researchers reported that cattle remained in designated grazing 

zones within the pastures 93% and 100% of the time compared with cattle allowed to 

graze the pastures normally (52% and 44% of the time; Tiedemann et al., 1999).  

Some disadvantages to utilizing VF are that animals must wear the device and the 

device may require adjustment as an animal grows (Umstatter, 2011); the VF device 

worn by animals must also have adequate power supply with a small size and mass, and 

be able to withstand impact and the elements (Tiedemann et al., 1999). Along with these 

issues, proper signal strength, communication, and energy supply of the device worn by 

the animals is crucial. The efficacy of VF relies heavily on the alteration of animal 

behavior. Thus, to minimize the physiological effects of electrical cues on grazing 

animals, Anderson (2007) states that virtual fencing technology must contain on-board 

fail-safes to prevent excessive stimulation, which could result in long-term physiological 

stress.  

Effects of Electrical Impulses on Animals 

In order for VF to be effective and also be ethically acceptable, cattle must be able 

to adapt to VF through the use of associative learning, with the goal to identify audible 

and electric shock stimuli associated with VF to avoid excessive or unnecessary stress. 

Cattle respond to stimuli that vary from audible to tactile, and the response produced by 
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different stimuli can be trained (Laca, 2009).  Allowing cattle to learn associations 

between stimuli and VF ensures that the technology remains ethically suitable for animal 

welfare and reduces stress on the animals (Umstatter, 2011). Conventional electric 

fencing is a prime example of associative learning by cattle, as cattle recognize the visual 

barrier of electric fencing and learn to avoid the electric shock that follows contact with 

the fence (Lee et al., 2009). The ability of cattle to learn and adapt to the association 

between both audible and electrical stimuli and virtual fence-lines was reported by Lee et 

al. (2009) in which cattle were contained by a VF line that changed weekly, with the 

number of audio cues and electric stimulus administered to the cattle decreasing over 

time. Similarly, Tiedemann et al. (1999) reported that heifers were able to learn the 

location of an exclusion zone after receiving as few as one audio-electrical stimulus. Lee 

et al. (2009) also reported that animals receiving only electrical stimulus received 

significantly more electrical shocks than cattle who experienced audio cues first. 

  Animal behavior can be a strong indicator of animal well-being and health status. 

The behavior response of one animal can also influence other animals; when 2 steers 

were grazing in close proximity and 1 received an audio-electrical stimulus, the other 

steer moved in tandem with the stimulated steer (Quigley et al., 1990). This data helps to 

solidify the practice that, in terms of VF, an audio cue and electric stimulus should be 

applied in response to an animal’s behavior rather than location alone (Lee et al., 2008). 

Quigley et al. (1990) also observed that cattle receiving both an audio and electric 

stimulation resumed grazing activity in less than 1 min and, at times, as soon as 10 sec 

with no perceivable agitation. Individual animal temperament may also play a role in 

each animal’s ability to adapt to a VF boundary. Anderson (2007) reports over multiple 
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studies, some animals required a longer period to learn the association of stimuli and VF 

or even required more intense stimulation, while other animals learned quickly with little 

to no need for stimulation cues. The inability of some animals to properly learn the 

associations between stimuli and VF may be due to increased flight responses toVF 

reported in select animals (Lee et al., 2009). The presence of electrical stimuli may also 

affect cattle behavior patterns, primarily consisting of grazing, resting, and ruminating. 

Teixeira et al. (2017) reports that cattle exposed to electric fencing spent nearly 15% less 

time grazing compared to cattle exposed to non-electrified wire fencing. Researchers 

suggested that cattle grazing without the presence of an electrical stimuli spent more time 

grazing near the fence line, and the possibility exists that cattle can sense the presence or 

absence of the electric field itself. While Campbell et al. (2019), found no distinct 

differences in movement patterns or pasture utilization between cattle enclosed by VF or 

electric tape fencing, lying time was reduced by an average of less than 20 min per day 

and the number of electrical stimuli received by cattle decreased over time (Campbell et 

al., 2019).  Markus et al. (2014) reports that cattle subjected to electrical stimulation 

displayed behaviors that included head shaking and changes in speed, direction, or body 

position; although others have reported no distinct changes in vocalizations, tail swishes, 

movement forward or back, or head movements in Santa Gertrudis steers subjected to a 

low energy shock (Lee et al., 2008a).  

Due to the negatives associated with electrical stimuli, research has been 

conducted using positive or negative reinforcements, such as vibration, light, or reward 

with feed (Umstatter, 2011) to promote associative learning with VF. However, data 

indicate that electrical shock is the most effective form of reinforcement for the VF 
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boundary (Umstatter et al., 2015). That being said, imprecise stimuli in duration or spatial 

terms lead to confusion for the animals and are not conducive towards proper associative 

learning by livestock (Umstatter, 2011); so, efforts to avoid technological malfunctions 

and implementing training periods to ensure proper associative learning are possible 

solutions. To exemplify the importance of the proper stimulus, Markus et al. (2014) 

reported that heifers quickly learned where electrical stimulus would be implemented, but 

it took little to no time for cattle to use the previously excluded areas once stimulus was 

removed. When appropriate levels of electrical stimuli are utilized, electric fencing and 

VF collars have been reported to produce similar stress responses in cattle (Markus et al., 

2014; Campbell et al., 2019).   

Measuring Stress in Grazing Animals 

A stress event has been defined as a time when the body’s basal homeostasis is 

perceived to be or is actually threatened. In response to a stress event, adaptive behavioral 

and physiological responses are implemented to re-establish homeostasis (Chrousos, 

2009).  Stressors may be categorized as acute or chronic, and any number of 

environmental or physiological factors may act as a stressor, including transport, 

nutrition, weather, physiological status and even routine handling of livestock. The 

sympathetic nervous system and the hypothalamic-pituitary-adrenocortical (HPA) axis 

act as the body’s major neuroendocrine stress responses (Lu et al., 2018). Initial 

activation of the sympathetic nervous system and HPA axis often occur when the animal 

is subjected to an acute stressor, during which catecholamines and cortisol are secreted 

(Sapolsky et al., 2000; Chrousos, 2009). Cortisol is a pleiotropic hormone, affecting all 

major bodily systems associated with the preservation of homeostasis (Chrousos, 2009; 



13 
 

Papadimitriou and Priftis, 2009). A study by Cafe et al. (2011) reported a positive 

correlation between plasma cortisol, plasma lactate, and NEFA concentrations; 

suggesting the activation of a sympatho-adrenal-medullary axis interaction with cortisol 

and epinephrine/norepinephrine in response to a stressor (Sapolsky et al., 2000). As a 

ruminant animal undergoes a stress event, the regulation of glucose and the rate of 

gluconeogenesis are both affected. Thus, the release of hormones in response to stressors 

mobilizes stores of energy with the aim to metabolically adapt to a stressor (Brockman 

and Laarveld, 1986); and metabolic priority is placed on bodily systems directly 

associated with the ‘fight or flight’ reaction, such as the brain and skeletal muscle 

(Chrousos, 2009). Therefore, secretion of stress-induced hormones, such as 

catecholamines and cortisol, are known to affect the reproductive, metabolic, and 

immune functions within the animal (Sapolsky et al., 2000; Chrousos, 2009).  Animals 

experiencing chronic stress have been shown to have lower average daily gain (ADG) 

due to increased metabolic maintenance requirements, resulting from a shift in the body’s 

metabolic priority from a state of homeostasis to adaption to the stressor. This decrease in 

an animal’s ability to gain weight may also be due to the inhibition of energy storage via 

insulin resistance caused by increased metabolic stress (Sapolsky et al., 2000). Cattle 

with calm temperaments have been both genetically and phenotypically associated with 

increased growth rates as reported by Nkrumah et al. (2007). Turner et al. (2011) stated 

that the relationship between ADG and temperament is likely the result of an animal’s 

long-term susceptibility to stressors combined with subsequent behaviors associated with 

a prolonged stress response. In contrast with an animal’s singular immediate reaction to 

stress, Boles et al. (2015) suggested that cattle responses to stress may differ in Bos 
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taurus animals when compared with Bos indicus. Evidenced by a study conducted by 

Blecha et al. (1984), which found that cortisol concentrations of Angus cattle were lower 

for both control and transported steers than cortisol concentrations for both control and 

transported Brahman Χ Angus steers. 

 Cortisol 

The activation of the HPA axis through either environmental or physiological 

stressors releases cortisol into the blood (Foury et al., 2011). This release of cortisol 

along with catecholamines activates gluconeogenesis and glycogenolysis, creating a 

metabolic shift and freeing more energy for the body to utilize (Brockman and Laarveld, 

1986). Cortisol concentrations can be utilized to determine an animal’s stress response to 

a wide range of stressors such as transport, handling, and experimental physiological 

manipulations (Hart, 2012). Cortisol is most commonly measured in plasma, saliva, 

feces, and hair. Cortisol assays aim to measure the biologically active, free portion of 

cortisol (Mormède et al., 2007) as the free portion has been found to be correlated with 

total plasma cortisol (Greenwood and Shutt, 1992). Cortisol concentrations within the 

body at any given time fluctuate greatly between individual animals, suggesting varied 

levels of HPA axis activity (Comin et al., 2013), as it is secreted in an ultradian cycle 

(short periods of active hormone release; Windle et al., 1998) over a 24-h period (Hart, 

2012). Due to this secretion cycle, plasma cortisol is not an ideal measure for chronic 

stressors as they are known to have a down regulation effect on the HPA axis (Bornstein 

et al., 2008). However, research has shown that cortisol concentrations found in hair and 

fecal cortisol metabolites may serve as more long-term measures for cortisol (Schmidt et 

al., 2010). 
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In terms of cortisol measurements, hair seems to be the only matrix with the 

ability to evaluate long term chronic stress, due to the fact that as hair grows hormones 

are accumulated along the hair shaft (Tallo-Para et al., 2015; Comin et al., 2013). A 

drawback of using hair to measure cortisol is that initial samples may be an accumulation 

of previous stressfull situations unrelated to the present experiment (Tallo-Para et al., 

2015). However; in terms of health status, hair cortisol remains an excellent biomarker 

for chronic health conditions, as short-term changes that may affect plasma cortisol 

concentrations are removed, such as the specific start and end of a disease or the intensity 

of the HPA reaction (Burnett et al., 2015; Comin et al., 2013). Cattle observations 

indicate that hair growth and texture are different when found in different regions on the 

body, likely effecting the total cortisol accumulated per region (Moya et al., 2013). 

Schwertl et al. (2003) reported that hair growth on the tail switch of dairy cattle ranges 

from 0.6-1.0 mm/d, suggesting that a 2-4 cm hair sample would be sufficient to measure 

changes in hormone levels (Comin et al., 2013). In a study comparing hair cortisol 

concentrations from various body locations of cattle, Moya et al. (2013) reported hair 

cortisol concentrations to range from 0.30 to 5.31 pg/mg for Angus cross bulls. These 

concentrations differed from hair cortisol concentrations reported by González de la Vara 

et al. (2011) recorded in 2-yr-old cows (12.15 ± 1.85 pg/mg). This variation could be due 

in part to physiological differences between age and sex. Other factors such as hair color, 

photoperiod, season of year and nutrition also play a role in hormone deposition within 

the hair shaft. Darker hair colors are known to have greater levels of melanin which may 

act as a buffer for UV radiation leaching of cortisol concentrations, supported by the 

research of Heimbürge et al. (2020); however, some researchers have reported lighter 
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colored hair to contain greater cortisol concentrations (González de la Vara et al., 2011).  

It has also been reported that hair cortisol concentrations of cattle are greater in the winter 

months compared to summer (Heimbürge et al., 2020), possibly due to the decreased 

sunlight and UV radiation during the winter months. Moya et al. (2013) reported that hair 

collected through a clipping method showed greater cortisol concentrations in 

comparison to hair collected by a plucking method (2.35 ± 0.176 pg/mg and 1.75 ± 0.176 

pg/mg, respectively), suggesting that the hair follicle contains lower cortisol 

concentrations than the hair shaft. This is likely due to the fact that as the hair emerges 

from the epidermis it is coated in hormone secretions from sebaceous and apocrine 

glands. Moya et al. (2013) also indicated that clipped hair may be a better measure of the 

accumulation of adrenocortical activity, as plucked hair only expresses cortisol 

accumulation days prior to extraction (likely due to a dilution of cortisol concentrations 

by follicle inclusion) while clipped hair has been shown to express cortisol accumulation 

from weeks to months prior to collection. This data agrees with results from Heimbürge 

et al. (2020), indicating that higher cortisol concentrations were expressed as hair was 

segmented proximally to distally from the hair follicle with distal hair showing 2.5 times 

greater cortisol concentrations. Hair clipped from the tail has also been shown to express 

higher concentrations of cortisol, compared with the head, neck, and hip (Moya et al., 

2013) as this hair may be the most susceptible to the incorporation of external fluid 

containing cortisol, such as sweat, urine, and sebum. This suggests that the body location 

from which the hair is collected may be more important than coloring when measuring 

cortisol concentrations.  It has also been reported that hair from the tail has a faster 

growth/rest cycle compared to body hair in cattle (Fisher et al., 1985), likely making tail 
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hair the most suitable matrix to measure long-term hair cortisol concentrations. In a study 

conducted by Heimbürge et al. (2020) hair growth rates for cattle ranged from 3.5 to 17.0 

mm/month, with hair growing from the tail at the fastest rate.  

Hair cortisol concentrations have been reported at various concentrations within 

the literature. Comin et al. (2013) reported that cortisol concentrations of dairy cows 

range from 0.76 to 28.95 pg/mg in a study comparing healthy cattle to those suffering a 

disease or stressful event (i.e., calving). During the study, a threshold was established 

stating that hair cortisol concentrations below 4.17 pg/mg are indicative of healthy cattle 

(Comin et al., 2013). Burnett et al. (2015) also reported that hair cortisol concentrations 

remained greater in cows that were clinically diseased compared to healthy cows. The 

authors reported that increased cortisol concentrations for ‘unhealthy’ cattle in multiple 

studies is likely due to repeated HPA axis activation, ultimately leaving the animals more 

susceptible to disease and homeostatic disruption (Comin et al., 2013). In a study 

examining long-term effects of an automated milking system, Jerram et al. (2020) found 

average hair cortisol concentrations to be 1.99 ± 0.77 pg/mg. Throughout the literature 

other varying concentrations of hair cortisol have been reported: 

Hair Cortisol, pg/mg Citation Animal type 

0.69  Braun et al., 2017 Dairy cows 

0.73  Braun et al., 2017 Dairy cows 

2.35  Moya et al., 2013 Angus cross bulls 

5.7  Burnett et al., 2014 Dairy cows 

12.15  González-de-la-Vara et al., 

2011 

Dairy heifers 

                Range of hair cortisol concentrations reported in the literature. 
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which may be due to a variety of assays used to measure hair cortisol, breed type, hair 

collection location and even hair color (Braun et al., 2017). 

 Corticosterone  

Cortisol is indirectly measured in feces through various metabolites (Möstl et al., 

1999) or hormones co-released with cortisol such as corticosterone. Animals that are 

chronically stressed have been shown to release increased levels of corticosterone when 

challenged with adrenocorticotropic hormone (ACTH), a hormone that stimulates the 

production and secretion of glucocorticoids (Bornstein et al., 2008). In a study conducted 

to determine the cortisol/corticosterone ratio between 13 species of animals, results 

presented high plasma cortisol levels to be associated with high corticosterone levels, and 

vice versa, across 9 of the species (Koren et al., 2012). Though others in the literature 

have also reported that cortisol and corticosterone are correlated, the expression of each 

metabolite may vary depending on the stress response, meaning that the use of both 

metabolites may produce the most accurate results (Koren et al., 2012). The ratio of 

plasma cortisol to corticosterone in several breeds of dairy cattle has been reported as 4:0 

in Holsteins, 1:5 in Guernseys, and 2:8 in Jerseys (Venkataseshu and Estergreen, 1970). 

Palme et al. (2000) reported basal and peak cortisol metabolite concentrations in cattle 

fecal samples following transportation to from 39 – 2301 nmol/kg (13.5 - 797.3 ng/g). 

Although cortisol metabolite concentrations may be influenced by changes in diet or 

intestinal, and bacterial activity, Möstl et al. (2002) stated that the concentration of fecal 

cortisol metabolites is a direct reflection of cortisol production that occurred 

approximately 12 h prior. However, elevated fecal cortisol levels can be excreted up to 5 

d after a stressful transportation event (Möstl et al.,2002).  
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      Lactate 

Lactate is produced in muscle tissue through anaerobic glycolysis as a result of 

the conversion of pyruvate to lactic acid by way of lactate dehydrogenase (Burfeindand 

and Heuwieser, 2012). Neuroendocrine responses to stress activate the HPA axis, leading 

to increased rates of glycolysis within the body (Matteri et al., 2000). As physiological 

and environmental stressors activate the sympathetic nervous system, catecholamines are 

released from the adrenal medulla, intensifying the breakdown of glycogen in the liver 

and increasing lactate concentrations in the blood (Warriss, 2010). Diesch et al. (2004) 

reported that Friesian and Angus calves undergoing a stressful birthing process expressed 

increased plasma lactate concentrations (6.3 mmol/L and 9.1 mmol/L; respectively), in 

comparison with calves birthed without assistance (4.7 mmol/L and 6.5 mmol/L; 

respectively). Boles et al. (2015) reported a range of blood lactate concentrations from 

below 0.8 mmol/L to 11.3 mmol/L in Simmental X Angus steers with varying 

temperaments, with and average lactate concentrations reported to be between 2.5 

mmol/L and 3.0 mmol/L.  

Exercise can also be viewed as a stressor as exercise produces an anaerobic 

environment within the body. Davidson and Beede (2009) reported that exercise in the 

form of an acute stressor increases plasma lactate concentrations, suggesting an increase 

in metabolic acidosis caused by an anaerobic metabolism within the muscle. Holmes et 

al. (1972) reported, in a comparison of “double muscled” and normal Hereford heifers, 

initial lactate concentrations for normal and “double muscled” heifers were 2.8 mg/L and 

4.2 mg/L, respectively; it was also reported that exercise increased the average blood 

lactate of the normal beef heifers to 3.14 mmol/L. A study conducted to determine blood 
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lactate concentrations of horses undergoing various types of exercise found that lactate 

production is correlated with the level of intensity of the anaerobic process that results 

from exercise, leading to the conclusion that plasma lactate is more strongly related to the 

intensity of a stressor (i.e. exercise) than plasma cortisol (Desmecht et al., 1966). The 

addition of a strong base or loss of a bicarbonate may result in metabolic acidosis 

(Davidson and Beede, 2009), and acute stressors may affect the body’s ability to 

compensate for such changes through respiration and buffering, resulting in an influx of 

anaerobic processes. Cattle exhibiting increased concentrations of blood lactate have also 

expressed a correlation with decreased fat thickness (Boles et al. 2015), possibly due to 

an increased chronic stress response and adaption of metabolism (Matteri et al., 2000). 

Research has previously reported that plasma lactate concentrations are influenced by the 

temperament of cattle; Coombes et al. (2014) reported that as flight speed in cattle 

increased from 1 to 5 m/s, and plasma lactate concentrations increased approximately 

50%.  

 Non-esterified Fatty Acids 

The production of glucose in the ruminant animal occurs mainly through the use 

of volatile fatty acids (VFA) resulting from the fermentation of carbohydrates within the 

rumen. Cattle rely on the conversion of VFA through gluconeogenesis for energy 

(Sanchez et al., 2013). Non-esterified fatty acids are released from adipose tissue in 

response to hormonal cues such as corticosteroids and catecholamines. The release of 

NEFA from adipose tissue provides increased energy to tissues throughout the body, 

though increased concentrations of NEFA have been reported to be problematic 

(Adewuyi et al., 2005; and Shi et al., 2015).  Drackley (2000) reported normal NEFA 
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concentrations to be no greater than 0.2 mM in cows with a positive energy balance. 

Non-esterified fatty acids may act as a marker for a negative energy balance (Adewuyi et 

al., 2005) and may be an inducing factor for inflammatory responses such as acidosis or 

ketosis. Shi et al. (2015) reported an increase in the release and expression of pro-

inflammatory factors tumor necrosis factor alpha (TNF-α), interleukin six (IL-6) and 

interleukin 1 beta (IL-1β) when calf hepatocytes were treated with high NEFA 

concentrations; concluding that increased NEFA concentrations directly induces an 

inflammatory response in cattle. Several studies have reported that increased levels of 

plasma NEFA induced oxidative stress in cattle through decreasing the activity of several 

antioxidant enzymes (Shi et al., 2015; Bernabucci et al., 2005; and Contreras et al., 

2012). There is also evidence that increased NEFA concentrations lead to a decrease in 

fat deposition, possibly reducing beef cattle performance. Bernabucci et al. (2005) also 

stated that animals exhibiting increased rates of fat mobilization had an increased affinity 

for a sensitivity to oxidative stress. Non-esterified fatty acid concentrations may also be 

related to animal behaviors. Sanchez et al. (2013) reported that animals classified as 

temperamental had greater circulating concentrations of NEFA compared to animals 

classified as calm prior to an immune challenge. These results correlate with a study 

conducted by Nkrumah et al. (2007) which reported a negative correlation between flight 

speed and carcass fat, concluding that flighty cattle had a decreased fat deposition in 

comparison with calmer cattle.  

 Behaviors 

The effects of internal and external stressors on cattle impact a broad range of 

bodily functions including, behavior, productivity, and carcass quality. Behavioral 
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activity of cattle is often used as an indication of overall animal comfort and well-being 

(Cooke et al., 2005). Temperament, defined as the variation of behavioral responses to 

stressful events (Cafe et al., 2011), has been correlated with the intensity of a stress 

response. It has been reported that cattle deemed to be more excitable have a higher basal 

concentration of catecholamines and cortisol in comparison with calmer cattle. Brahman 

bulls labeled as temperamental had higher stress metabolite levels before and after 

transportation than calm cattle, while only the calm cattle expressed an increase in 

cortisol as a direct response to the transportation event (Burdick et al., 2010). Literature 

also reports that cattle deemed ‘flighty’ or ‘excitable’ are more active (Grandin, 1993). 

This increase in muscle activity is likely due to increased glycogen mobilization, 

resulting in an increase of plasma lactate (Coombes et al., 2014). Cafe et al. (2011) 

reported steers deemed to be more temperamental exhibited greater concentrations of 

plasma cortisol, which were associated with increased plasma lactate and NEFA 

concentrations, leading to the conclusion that flightier or more temperamental cattle have 

a more intense stress response. Previous research has reported that cattle exhibiting an 

increased cortisol response fed more often per day and were associated with lower live 

carcass weights, lower ADG, and decreased rib fat thickness. These results suggest that 

cattle experiencing stress may increase net feed intake but exhibit a reduced feed 

efficiency (Cafe et al., 2011), likely caused by the metabolic shift previously explained. 

Changes in diet composition can also affect animal behavior. Miguel-Pacheco et al. 

(2019) stated that heifers fed a low crude protein (CP) diet during the preconception 

period affected both dam and calf behavior. Researchers reported that standing time was 

12.6 minutes longer for heifers fed a low protein diet (10% CP) compared to heifers fed a 
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high protein diet (18% CP). In addition, calves of low protein dams had an increased 

latency for initial standing and suckling compared to calves of high protein dams 

(Miguel-Pacheco et al., 2019). Cattle expressing increased cortisol levels have been 

reported to spend less time ruminating (Lindström et al., 2001; Bristow and Holmes, 

2007); these cattle have also been reported to vocalize and stand more often, while 

remaining in close proximity with others in comparison with cattle exhibiting lower 

cortisol concentrations (Bristow and Holmes, 2007). During repeated transportation 

events, Falkenberg et al. (2013) reported a 6% decrease in body weight (BW) during the 

initial transportation event in heifers that were transported for 4 h, compared to only a 

2.5% loss in BW for heifers that were not transported. As transportation and relocation 

are known stressors for livestock, even a small shift from metabolic homeostasis can alter 

an animal’s wellbeing. The release of cortisol, even in small quantities can result in 

immunosuppression, leaving the animals more susceptible to disease and mortality 

(Blecha et al., 1984). On the other end of the spectrum, short-lived increases in cortisol 

may be indicative of a healthy animal’s homeostatic compensation to a stressful event 

and the animal’s ability to mobilize resources within the body to take preventative actions 

(Falkenberg et al., 2013). 

The environment of an animal can also alter its behavior. In a study comparing 

the effects of rearing calves on river stone or sawdust, Sutherland et al. (2013) reported 

that calves reared on river stones spent more time standing and less time lying, playing, 

and had lower skin temperatures, which may indicate a decreased ease of movement and 

comfort. Factors such as handling style have also been reported to affect livestock 

physically and physiologically. In a comparison of different handling styles in both a 
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backgrounding and feedlot setting, Petherick et al. (2009) reported that both flight score 

and animal movement around a test arena were correlated with cortisol, NEFA, and 

lactate concentrations. It was reported that all of the aforementioned metabolites were 

greatest in calves that were subjected to poor handling practices, poorly handled calves 

also had the lowest BW and BCS, likely due to a stress-mediated change in metabolism 

(Petherick et al., 2009).  

Monitoring Grazing Behavior 

Traditional methods of livestock management are limited to the use of time-tested 

tools such as adjusting stocking rates, rotational grazing, and adjusting supplementation 

at a herd level to improve the productivity of a grazing herd. However, the use of 

technology to aid in herd management provides the flexibility to focus on individual 

animals while implementing proper rangeland management practices (Andriamandroso et 

al., 2016); as the interaction between plants and animals can be observed and remotely 

managed by combining feeding behavior and animal position data (Laca, 2009). When 

monitoring is aimed at managing individual animal grazing behaviors, it is important to 

note that grazing, ruminating, and resting take up 90 - 95% of the daily activity of cattle 

(Andriamandroso et al., 2016). The basis for recording individual grazing animals lies in 

3 parameters: animal location, animal posture, and animal movement (Andriamandroso et 

al., 2016). 

There are three primary methods of monitoring cattle behavior that utilize various 

technologies: accelerometers measuring physical behavior, radio frequency sensors 

measuring feeding and watering behaviors, and spatial measurements utilizing GPS 
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(Richeson et al., 2018). Remote monitoring of beef cattle can provide useful information 

regarding animal use and proximity to food and water, changes in activity and social 

behaviors, as well as detection of changes in health status (Richeson et al., 2018). A 

variety of other technologies have been developed to monitor grazing animal behaviors. 

Mercury switches have been developed to measure head movements along with steps and 

lying behaviors (Laca, 2009). Acoustic monitors aim to classify behaviors while 

estimating feed intake rates, while other sensors specifically measure acceleration of the 

head or legs, heart rate, core temperature, chewing motions, or chewing/biting sounds 

(Laca, 2009). Researchers have even developed remote devices to measure cattle BW 

passively as animals move across a weighing platform to access food or water (Charmley 

et al., 2006). 

 Evaluation of Accuracy of Sensors 

The utilization of remote health monitoring technologies is centered on a 

reduction of labor costs and an increase in animal performance while decreasing events 

of mortality (Richeson et al., 2018). Because the act of grazing is a combination of 

periods when an animal is actually eating and periods of activity associated with eating 

(i.e., searching for forage or moving from one patch to another; Gibb, 1996), the accuracy 

of remote behavior sensors becomes a key element in estimating actual animal behaviors.  

Global positioning technology utilizes the triangulation of radio signals and geo-

orbiting satellites to determine coordinates of latitude, longitude, and elevation. Global 

positioning technology derived positions have been proven to be geographically accurate 

(79 and 71%) after ex-post differential correction (Schlecht et al., 2004). Data received 
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from GPS units provide information regarding location changes in time, and from this the 

speed of change in position and distances traveled by animals can be computed, allowing 

for a more complete representation of habitual and spatial distribution of ruminant 

animals (Laca, 2009). In early GPS research, Schlecht et al. (2004) reported that reliable 

estimates (error rates < 0.5) of daily activity and hourly activity patterns of grazing cattle 

could be computed using GPS technology; later research shows that GPS fixes as short as 

1-s intervals are successful in characterizing foraging, walking, and stationary behaviors 

(Anderson et al., 2012). Schlecht et al. (2004) also stated that behaviors of cattle wearing 

GPS equipment did not differ from control cattle within herd, as no excessive resting 

behaviors, grazing disturbances, nor skin irritations from wearing GPS equipment were 

reported. Similarly, in a study utilizing GPS collars worn by sheep, Hulbert et al. (1998) 

reported that animals wearing GPS collars equivalent to 2.2% of BW exhibited similar 

grazing and circadian behaviors compared to uncollared sheep.  

While GPS technology has been reported to be effective in classifying animal 

behaviors, there are inefficiencies in the technology itself. Though Anderson et al. (2012) 

was able to use GPS fixes to determine animal behaviors, abnormalities were reported. 

Even if there was no directional movement for animals undergoing stationary behaviors, 

GPS technology always reported some movement. Performance of the electronic 

equipment was also faulty, complete failure of hardware and software occurred during 

periods of observation, and issues were also reported with the durability and consistency 

of placement of the GPS units. Due to these issues, it was determined that speed 

thresholds, one identifying transitions from stationary to foraging and another identifying 

transitions form foraging to walking behaviors, used to optimize the total of correctly 
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identified behaviors was a better model compared to discriminately utilizing 

observational data (Anderson et al., 2012). Issues have also been reported in GPS collars 

utilizing the Global System for Mobile communications, as transmission functions 

properly in areas with adequate cellular service, however, in remote areas where the use 

of GPS units to monitor grazing behavior may be most beneficial, there is frequently 

inadequate signal for unit communications (Umstatter, 2011).  

Accelerometers are electronic sensors that transform physical acceleration from 

motion and gravity into a voltage signal output (Andriamandroso et al., 2016). 

Accelerometers are utilized to measure step rates, as the acceleration per step can be 

measured and converted to a square pulse that can be counted (Frost et al., 1997). This 

technology is also capable of measuring the amount of time an animal spends conducting 

an activity, such as lying or walking (Robert et al., 2009), by classifying animal activity 

through specific algorithms. Though accelerometers have the ability to remotely monitor 

livestock health, the validity of such abilities has yet to be validated. In order to fully 

monitor animal behaviors with the option to monitor health status, an integration of 

multiple categories of sensors may provide the most accurate information to remotely 

manage and detect early health and welfare issues within a livestock herd.  

Remote Monitoring Collars 

Remote monitoring of the health status and grazing behaviors of beef cattle has 

been attempted by researchers with the use of spatial temporal information provided by 

GPS collars integrated with motion sensors. The use of GPS tracking collars is common 

practice for the observation and management of many species of wildlife, as the 
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information provided by GPS collars coupled with geographic information systems (GIS) 

allow researchers to evaluate animal movement and distribution among landscapes 

(Ungar et al., 2005). This methodology has been implemented into cattle grazing 

practices as a way to evaluate resources utilized by grazing animals. Ungar et al. (2005) 

found in 2 studies utilizing GPS collars integrated with motion sensors, that the addition 

of a motion sensor improved the ability of the collars to classify grazing behaviors and 

distance traveled. This study also showed that distance data alone was not sufficient in 

predicting animal activities such as grazing or resting. Similar results were reported by 

Turner et al. (2000) in which a high accuracy rate was reported for the classification of 

cattle behaviors. Additionally, González et al. (2015) reported success in utilizing a 

higher frequency rate of data collection to most accurately classify behaviors that closely 

resemble each other (i.e., rumination from resting or foraging from traveling).  

Though results have been reported in the classification of grazing cattle behaviors 

with the use of integrative GPS collars, some issues remain to be addressed. An accurate 

account of cattle behavior cannot yet be derived from remote monitors, as the monitors 

cannot yet fully distinguish between small movements of the animal’s head and neck and 

transitions within larger movements of resting, walking, grazing, etc. For example, a 

resting animal may still move its head to groom or deter insects, and walking while 

grazing may not be easily distinguished from walking while traveling to a new location. 

In addition to these flaws, Ungar et al. (2005) stated several other reasons why complete 

accuracy is not easily obtainable using these GPS collars; i.e. all animals may not exhibit 

similar motion behaviors while grazing, GPS motion fixes are not always represented on 

the exact same time scale, and one collar may differ from another in how it senses 
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motion, affecting how different motions are translated into activity records (Turner et al., 

2000). Most methodologies utilized for behavioral classification data also have the 

disadvantage of requiring large power sources and computing powers, along with the 

need for subjective human observation to establish classification thresholds, leaving 

much room for error. 

SUMMARY OF LITERATURE  

Livestock management practices have evolved greatly over time. With this 

evolution comes the responsibility to not only choose the grazing technology most suited 

for producer and animal needs, but to ensure that the technology implemented is morally 

and ethically sound in application. Grazing technologies provide a wide range of 

implications for producers to attempt to meet management needs. Fences ranging from 

traditional permanent wire fences to semi-permanent electrified wire fences, to 

essentially mobile VF systems allow for a great range of grazing methods and landscapes 

to be utilized in the livestock industry. Remote behavior and health monitoring 

technologies provide another resource for livestock managers to increase the profitability 

of their herds. The addition of motion sensors to GPS location monitors may provide 

livestock producers with vital data to improve the health and well-being of livestock 

herds.  

While these technologies are innovative and present a path of progress for the 

livestock industry, the introduction of these novel management practices may cause 

unnecessary physical and physiological stress. In terms of an animal's response to stress, 

it is important to understand that responses will differ among type of stressor, breed of 
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animal (Boles et al. 2015), physiological state or sex (Diesch et al. 2004; Boles et al. 

2015), and even between individual animals (Anderson, 2007; Lee et al. 2009; Quigley et 

al., 1990). Much of the literature suggests that the use of technologies such as VF or 

remote monitoring collars, as compared to electric fencing or the absence of collars, 

produce little to no difference in the stress response of animals. However, more research 

implementing various livestock management technologies is required to fully assess the 

effectiveness of remote livestock management, along with both short- and long-term 

effects on livestock.  
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ABSTRACT 

Objective: Two experiments were conducted to evaluate the effects of virtual fencing 

(VF) on stress in beef cattle.  

Materials and Methods: Cattle were contained by physical, 2-strand electric fencing 

(PF) or by use of proprietary, GPS-based VF collars, with no physical interior fencing. 

Tail switch hair and fecal samples were analyzed for cortisol concentrations to measure 

accumulated stress experienced by the cattle. A subset of cattle were fitted with 

pedometers to evaluate behavior.  

In Study 1, 55 heifers were rotated in 1 PF or 1 VF pasture over 28 d. In Study 2, 59 

mature cows and heifers were rotated in 1 of 2 PF or 1 of 2 VF pastures (n = 4) over 56 d. 
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In the second experiment, blood samples were also collected to quantify NEFA and 

lactate in serum.  

Results and Discussion: In Study 1, in both PF and VF, hair cortisol (0.39 ± 0.3 and 0.37 

± 0.1 pg/mg, respectively) and fecal corticosterone (140 ± 79.6 and 128 ± 56.7 ng/g)  

were within published normal ranges. Step counts and motion index appeared elevated in 

the adaptation phase for VF. Study 2 was analyzed using analysis of variance as a 

completely randomized design with pasture as the experimental unit. No effect of fence 

type was observed for standing time or lying bouts (P > 0.16). However, VF cattle moved 

more than PF (P ≤ 0.002; likely due to the VF training period) in the first few days, but 

not later in the experiment. No differences were observed in cortisol metabolites, lactate, 

or NEFA (P ≥ 0.14) due to fence type.  

Implications and Applications: These data indicate that VF is not more stressful to 

cattle than PF. These results warrant further research and development of virtual fencing 

technology. 

Key Words: Fence, Stress, Livestock management 

INTRODUCTION 

          Technology continues to allow new and innovative ways to manage livestock; one 

such technology is virtual fencing (VF). Virtual fencing could improve utilization of 

seasonal forage growth, or re-establishment of pasture biodiversity through the use 

of exclusion areas (Anderson, 2007; Umstatter et al., 2015), while also allowing for 

“virtual” herding or mustering of animals (Butler et al., 2006). Virtual fencing technology 

has been reported to effectively contain cattle without substantially affecting animal 
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behavior and welfare (Campbell et al., 2019), with efficacy rates reported at ≥ 90 % for 

containing cattle with VF technology (Tiedemann et al., 1999). 

Electrical shock, either in the form of electrified wire fencing or VF collars, has 

been reported to cause some animal discomfort (Lee et al., 2009; Teixeira et al., 

2017). Stressors in cattle cause an increase in stress hormones (i.e. cortisol) and blood 

metabolites such as plasma lactate and non-esterified fatty acids. These metabolites may 

result in decreased animal performance, as they elicit a change in animal metabolism, 

especially when due to prolonged exposure to stressors (Matteri et al., 2000; Bernabucci 

et al., 2005). Stress caused by electrical shock has also been reported to adversely affect 

animal behaviors by interrupting normal grazing activities and increasing agitation 

following electrical shock (Markus et al., 2014; Campbell et al., 2019).  

           Therefore, the objective of these studies was to evaluate the effects of VF on stress 

and behaviorial responses in beef cattle when compared to physical electric wire fencing 

in a rotational grazing management system.  

MATERIALS AND METHODS 

All procedures were approved by the Institutional Animal Care and Use Committee at 

Oklahoma State University (Animal Care and Use Protocol number: IACUC-19-63-

STW) 

Pastures 

          The pastures utilized in these studies consisted of warm-season perennial grasses, 

primarily Bermuda grass (Cynodon dactylon) or yellow bluestem (Bothriochloa 
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ischaemum). This research was conducted at the Bluestem Research Range at Oklahoma 

State University, 14.5 km SW of Stillwater, OK. 

           Study 1. This pilot study was conducted over the course of 28 d, beginning in 

August 2020. Two pastures, each approximately 24 ha in size, were selected for this 

study. One pasture was assigned to VF and one to physical fencing (PF). In PF, the 

pasture was divided into 2 approximately equally sized paddocks with a double-stranded, 

electrified, high-tensile wire fence. The fence controller (Gallagher B600 Solar; 

Gallagher, Riverside, MO) maintained a voltage of 7kV throughout the study. In the VF 

pasture, each pasture was divided similarly to PF, using only the VF system for animal 

rotation (described below in greater detail). The VF pasture did not contain any physical 

interior fencing. Weekly, 10 forage samples were hand-clipped to ground level using a 

0.09-m2 quadrat, in the area that cattle had access to. Clippings were composited by 

pasture. Concurently with pasture sampling, forage mass was estimated by collecting 30 

readings per pasture using a calibrated rising plate meter (Model EC-20; Jenquip, 

Feilding, New Zealand; Moffet et al., 2012; Reuter et al., 2012).  

          Study 2. This study was conducted over the course of 56 d, beginning in October 

2020. Four pastures ranging in size from 9.4 ha to 16.5 ha were selected for this study. 

Each pasture was randomly assigned 1 of 2 fencing types: VF or PF. In PF pastures, each 

pasture was divided into 4 approximately equally-sized paddocks with a double-stranded, 

electrified high-tensile wire fence. The fence controller maintained a voltage of 7kV 

throughout the study. In VF pastures, each pasture was divided similarly to PF, but using 

only the VF system for animal rotation (described below in detail). The VF pasture did 
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not contain any physical interior fence. Forage sampling and plate meter readings were 

conducted similarly to the method described in Study 1.  

Animals in both studies were rotated to the next pasture at approximately 0800 h 

on Mondays. Physically-fenced animals were manually rotated by a herdsman in a utility 

terrain vehicle (UTV; Gator XUV835M, John Deere, Moline, IL). Virtually-fenced 

animals were rotated solely through the use of the VF system. A one-way gate action was 

used on the day of rotation, where the VF that was preventing animals from entering the 

next rotation paddock was disabled. Once animals crossed into the next assigned 

paddock, the VF re-enabled. If animals attempted to return to the previous rotation, sound 

and shock patterns were initiated by the VF collar (described below in greater detail). 

Each pasture contained one water tank to provide ad libitum water in either the SE, SW, 

or NE corner of each pasture, sourced from the rural water district in Payne County. 

Ponds were present in 3 of the 4 pastures. To establish a similar environment in each 

pasture, animals were excluded from accessing these ponds by either a single electrified, 

high-tensile, wire or through the use of the VF system.    

Animals 

           Study 1. Fifty-five Angus heifers (BW= 315 ± 30 kg) were utilized for this study. 

Animals were randomly allocated into a PF (n = 24) or VF (n = 31) pasture. All animals 

utilized for this study had no prior exposure to the VF system and were not accustomed to 

the pastures, however, animals did have prior experience to PF, the herdsman and UTV. 

Virtually-fenced animals wore version 1 VF collars (Figure 2.1).  
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Study 2. Fifty-nine Angus, Beefmaster, and Angus-Hereford cross mature cows 

and heifers (BW = 484 ± 84 kg) were utilized for this study. These cows had previously 

been managed in the pastures utilized in this experiment or similar pastures and were 

familiar with the fencing, water tanks, herdsman and UTV etc. of the Bluestem Research 

Range. All animals had also undergone at least 2 wk of exposure to the VF collars and 

VF system. Calves were weaned from the cows 4 d prior to the start of the study. Cows 

were stratified by previous calf status (calf weaned vs. no calf) and breed type 

(Angus/Angus-Hereford cross, n = 38 or Beefmaster, n = 21). Within these stratifications, 

cows were randomly assigned to one of two PF (n = 15 and 15) or 1 of 2 VF (n = 14 and 

15) pastures. All animals wore a version 2 VF collar (Figure 2.2 and 2.3). Animals in the 

PF treatment wore collars set only to track global positioning system (GPS) location, 

while collars in VF pastures tracked GPS location in addition to actively fencing the 

animals.   

Virtual Fencing System 

          The VF system (Vence.io; Vence, Inc., San Diego, CA) consisted of collars 

utilizing GPS technology, remotely deployed radio telemetry masts, a cloud server, and 

an end user software interface. Virtual fence boundaries were defined through the Vence 

computer software and the outlined parameters and instructions were communicated to 

each collar through the server network. Global positioning system location functions of 

the program allowed for visualization and analysis of animal movements and VF 

efficiency via the Vence computer software.  
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The VF system was set to alter animal behavior through the use of sensory cues 

administered as animals attempted to penetrate a virtual boundary. The width of the 

boundary for which sensory cues were administered was determined in the Vence 

computer software as a stimulus zone (50m) from the VF fenceline and an additional 

sound zone (5m) for a total of 55m of VF boundary (Figure 2.4). An auditory tone (4kHz; 

experienced by the animal at 75 dB for 0.5 sec) was administered by the collar as an 

animal approached the VF boundary (the sound zone). If the animal responded to the 

auditory cue and turned away from the VF boundary, no other stimulus was applied. 

However, if an animal continued toward the VF boundary after receiving the auditory 

cue, a short electrical pulse was applied to the animal’s neck through the collar (at 800V 

for 0.5 sec). If the animal remained in the VF boundary after receiving both an audio and 

electrical stimulus, a pattern of 0.5 sec of sound, 1.5 sec of no stimulus, 0.5 sec of 

electrical stimulus, then 2.5 sec of no stimulus would continue for 100 sec. After 100 sec 

there was a 180 sec-period of no stimulus. This pattern would continue for approximately 

20 min; at that time, built-in fail-safes would disable any further stimuli until the collar 

was manually reset by the manager.  

On d 0 of each study, animals entered the assigned pastures. Virtual fencing 

animals were immediately placed into a 48-h training period (Figure 2.4) in which no 

interior VF lines were activated. During the first 24 h, animals were subjected to a 10-m 

stimulus zone along the perimeter fence line. Animals were also excluded from any 

ponds within the pasture using the VF system. The following 24 h included the previous 

exclusions, with the addition of a 5-m sound zone added to the interior portion of the 

stimulus zone. This caused animals to first pass through a sound zone, then stimulus 
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zone, prior to reaching the physical fence line surrounding each pasture. After the 48-h 

training period, exclusions from the perimeter of the VF pastures were removed and the 

VF lines of the rotation paddocks were implemented. Therefore, during the first 48 h, VF 

animals had access to a much larger pasture (24 or 58 ha) compared to animals in the PF 

paired pastures. After the first 48 h, all animals had access to pastures of approximately 

the same size (Figure 2.5).   

Sample Collection 

Study 1. A subset of animals was randomly selected (n = 18; n = 9 per treatment) 

to wear an additional, custom-built global positioning system (GPS) collar (i-gotU GT-

120; Mobile Action Technology Inc., New Taipei City, Taiwan; Bailey et al., 2018), and 

an IceQube pedometer (IceRobotics Ltd.; Edinburgh, Scotland; Borchers et al., 2016). 

The pedometers were placed on the rear right leg of the selected animals on d 0. Data 

from the i-gotU GPS collars is not presented here.  

Feces were collected from all animals via rectal palpation on d 0 and d 28 to 

measure corticosterone levels (Moya et al., 2013; Foote et al., 2016). Fecal samples were 

stored in airtight sample bags at -20℃ until corticosterone analysis was completed. 

Additionally, once per wk, fecal samples from animals in the subset group were collected 

from the pasture while the herd was grazing. Fecal samples were obtained by observing 

animals then collecting a sample from a fresh pat produced by each animal. Also at this 

time, a weekly fecal composite was created for each of the 2 treatments by combining 

samples of 20 fresh pats from each pasture. To measure cortisol levels, hair was shaved 

from the tip of the tail switch with clippers equipped with a surgical blade; hair was 
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shaved as close to the skin as possible (Moya et al., 2013; Tallo-Parra et al., 2015). Hair 

was shaved on d 0 to remove existing hair and was not collected, on d 28 hair grown over 

the study period was shaved and collected for analysis. Hair was stored in airtight sample 

bags at -20℃ until cortisol analysis was completed. 

Study 2. A subset of animals (n = 16; n = 4 per pasture) were randomly selected 

and fitted with an IceQube pedometer as described above.  

Feces were collected from all animals via rectal palpation on d 0 and d 56 to 

measure corticosterone levels. Fecal samples were stored as described above. 

Additionally, once per wk, fecal samples from the subset of animals wearing pedometers 

were collected from the pasture while the herd was naturally grazing. This fecal 

collection was conducted in the same fashion as described above. Also at this time, a 

weekly fecal composite from each of the 4 pastures was taken from samples of 20 fresh 

pats. Hair was shaved from each animal while in the chute on d 0 and d 56 in order to 

isolate cortisol levels. Hair was shaved and stored as described above. Blood was 

collected from each animal via coccygeal venipuncture on d 0 and d 56 into vacutainer 

tubes (BD Vacutainer; Franklin Lakes, NJ). Samples were placed on ice after collection 

and transported to the laboratory in Stillwater, OK.  A wooden stir stick was used to 

release the blood clot before centrifuging samples (Foote 2020, personal communication). 

Blood tubes were centrifuged at 3,000 × g for 25 min at 4℃ (Sorvall RC6; Thermo 

Scientific, Waltham, MA). All d-0 samples required re-centrifuging at 5,000 × g. Serum 

was collected and stored at -20℃ until lactate and NEFA analysis.  

Laboratory Analysis 
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All forage samples were dried to a constant weight at 50°C in a forced air oven 

for 24 h and ground to pass through a 1-mm screen in a cutting mill (Pulverisette 19; 

Fritsch Milling and Sizing, Inc. Pittsboro, NC), samples were composited by fence type 

and collection date. Samples were then stored at room temperature in airtight sample 

bags.  

Serum samples were thawed at room temperature immediately before lactate and 

NEFA analysis. Serum ʟ-lactate was analyzed using an immobilized enzyme system (YSI 

Model 2950 D; YSI Inc., Yellow Springs, OH). Non-esterified fatty acid concentrations 

were quantified utilizing a commercial kit (HR Series NEFA HR2; Wako Pure Chemical 

Industries, Osaka, Japan) following manufacturer instructions.  

            Hair cortisol analysis was performed using methods described by Koren et al. 

(2002) modified by Moya et al. (2013); during which, samples were saturated with 

methanol, incubated and the supernatant was evaporated to dryness. Cortisol was then 

isolated with the use of a commercial RIA kit (MP Biomedicals; Irvine, California). Fecal 

corticosterone analysis was performed utilizing the method described by Foote et al. 

(2016). Fecal glucocorticoid metabolites were extracted and analyzed for corticosterone 

concentrations in duplicate using a commercial RIA kit (MP Biomedicals; Irvine, 

California). Intra- and interassay CV were 3.16% and 5.13%.   

Statistical Analysis 

All data were analyzed in R (R Core Team; 2020). Descriptive statistics were 

summarized for Study 1. Study 2 was analyzed as a completely randomized design using 

ANOVA with pasture as the experimental unit. Dependent variables were cortisol, 
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corticosterone, NEFA, lactate, and behavior variables provided from pedometers (step 

count, standing time, lying bouts, and motion index). Independent variables were fence 

type, wk or d, and the interaction between these variables. Week was modeled as a 

continuous variable such that quadratic effects of wk were considered. 

RESULTS AND DISCUSSION 

Behavior Variables 

Study 1 was a pilot study and only descriptive statistics were reported (Table 2.1). 

Values were numerically similar in each treatment and compared to published values 

(discussed below).  Step count and motion index of VF animals were numerically 

increased compared to PF during the training stage of the study (Figure 2.6).  

In Study 2, daily step count was affected by an interaction between fence type and 

the quadratic effect of day (P < 0.001; Figure 2.7). These results indicate that fence type 

impacted the step count response of animals differently across the duration of the study, 

with step count generally decreasing in VF over the study period.  Standing time in Study 

2 was not different between treatments (P = 0.59; Figure 2.8). Mean standing time for PF 

was 761 min/d and VF was 751 min/d. However, standing time for both treatments 

decreased over the study period (P = 0.005). The spike in standing time was due to an ice 

storm that affected the Stillwater, OK area on d 11 of the study (October 26th, 2020; OK 

Mesonet, 2020 data). On this day, animals were unable to graze the standing forage and 

had to be fed hay. Lying bouts did not differ among treatments (P = 0.68). Average lying 

bouts per day for PF was 8.07 and VF was 7.63 (Figure 2.9). Similar to step count, 

motion index (Figure 2.10) was affected by an interaction between fence type and the 
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quadratic effect of day (P = 0.002). Motion index is defined as a measure of an animals’ 

activity relative to acceleration and energy expenditure (IceRobotics Ltd. 2021). Motion 

index is affected by the duration of activity and the extent of leg movement, making 

motion index indicative of overall activity (Gladden et al., 2020). These results from 

Study 2 indicate that fence type affected the overall activity response of animals 

differently across the study, in that VF animals moved more early in the trial, but 

standing and lying times did not differ due to fence type. 

The behavioral activity of cattle is often indicative of animal comfort and well-

being (Cooke et al., 2005). Grazing cattle spend the majority of the time resting, 

ruminating, and grazing (normally 90-95% of daily activity; Andriamandroso et al., 

2016). Behavioral activities of the cattle monitored in Study 1 and Study 2 are not 

indicative of animals that are stressed or experiencing discomfort based upon results 

reported in the literature. Large increases or decreases in animal motion are direct stress 

responses. Grandin (1993) reported that cattle are more active when excited or stressed, 

and others have reported that cattle placed in stressful situations spend less time 

ruminating and lying and more time standing (Bristow and Holmes, 2007; Sutherland et 

al., 2013). Animals in Study 1 and 2 did not exhibit large deviations from normal 

activities of grazing cattle, as no large increases in standing time, step count, and motion 

index were observed. Animals in the current studies also exhibited no decrease in number 

of lying bouts. These results indicate that VF was not more stressful than PF.  

Cortisol & Corticosterone 
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Hair cortisol concentrations at the end of Study 1 were 0.40 ± 0.32 pg/mg for PF 

and 0.37 ± 0.15 pg/mg for VF (Table 2.1; Figure 2.11). 

 Hair cortisol concentrations reported in Study 2 did not differ due to fence type 

on d 0 (P = 0.16) nor d 56 (P = 0.34; Table 2.2, Figure 2.12). Hair cortisol concentrations 

decreased over the study period, but no differences were found in the magnitude of 

change from d 0 and d 56 due to fence type (P = 0.14). The numerical decrease in 

cortisol concentrations over the study period could be attributed to residual cortisol 

concentrations reported in the d 0 samples, as previous management unrelated to the 

current study may have resulted in cortisol deposition in the d 0 samples.  

Hair cortisol concentrations from both Study 1 and Study 2 are within reported 

reference ranges, (0.76 to 28.95 pg/mg in multiparous cows; Comin et al., 2013). Other 

researchers have reported hair cortisol concentration ranges as low as 0.30 to 5.31 pg/mg 

in Angus cross bulls (Moya et al., 2013). The large range in concentrations reported in 

the literature may be due to the breed, sex, physiological state of study animals, and lab-

to-lab analysis variation (González de la Vara et al., 2011; Moya et al., 2013; and Braun 

et al., 2017). The hair cortisol concentrations reported for Study 1 and 2 may be 

indicative of an animal’s healthy, homeostatic response to acute stress events, rather than 

a prolonged or chronic stress response. Falkenberg et al. (2013) reported that short-lived 

increases in cortisol are representative of an animal’s ability to beneficially mobilize 

resources within the body and take preventive actions against other stressors. 

            Fecal corticosterone concentrations reported for Study 1 were 140 ± 79.6 ng/g for 

VF and 128 ± 56.7 ng/g for PF at final collection (d 28; Figure 2.13). Corticosterone 
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concentrations did increase numerically on d 28 when compared to d 0. However, no 

consistent pattern of increase in fecal corticosterone can be reported over the study period 

(Table 2.1; Figure 2.14 and 2.15). 

            Fecal corticosterone concentrations reported in Study 2 (Table 2.2) did not differ 

due to fence type on d 0 (P = 0.46) nor d 56 (P = 0.51; Figure 2.16). Fecal corticosterone 

concentrations reported in Study 2 numerically increased over the study period, though 

there was not a difference between concentrations from d 0 and d 56 (P = 0.66; Table 

2.2). No difference in fence type was observed for weekly fecal corticosterone 

concentrations (P = 0.79; Figure 2.17) nor for weekly corticosterone composite 

concentrations (P = 0.16; Figure 2.18).  

           Fecal corticosterone concentrations from both Study 1 and Study 2 were within 

concentration ranges reported for normal cattle in the literature. Fecal corticosterone 

reported in Study 1, with the exception of d 28, were similar to basal fecal cortisol 

metabolite concentrations reported by Palme et al. (2000), where lactating cows were 

subjected to transportation, loading and unloading, or no handling. The authors reported 

basal fecal cortisol metabolite concentrations ranging from 13.5 to 97.7 ng/g.  

Concentrations from d 28 were slightly greater than basal cortisol metabolite levels 

reported in Palme et al. (2000), but are similar to the range reported for peak 

concentrations, 75.2 to 797.3 ng/g. Corticosterone concentrations from Study 2 were just 

above the basal or just below the peak fecal cortisol metabolite concentrations reported 

by Palme et al. (1999), where cattle were challenged with adrenocorticotropic hormone 

(ACTH). The basal cortisol metabolite concentration range by the authors was 11.8 to 

154.2 ng/g and peak cortisol metabolite range was 258.1 to 677.1 ng/g. Although d 56 
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corticosterone concentrations were numerically increased compared to d 0 in Study 2, the 

effect of fence type was not significant (P ≥ 0.16) in d 0, d 56, weekly samples, or weekly 

composites, leading us to the conclusion that VF was not more stressful than PF. 

Serum Metabolites 

Serum lactate concentrations analyzed in Study 2 (Table 2.3) did not differ due to 

fence type on d 0 (P = 0.85) nor d 56 (P = 0.91; Figure 2.19). Average lactate 

concentrations in beef cattle have been reported to range between 9 and 115 mg/dL (Sako 

et al., 2007; Burfeind and Heuwiese, 2012). Mitchell et al. (1988) reported elevated 

serum lactate concentrations in cattle post transportation of 42 mg/dL, which are similar 

to d 56 concentrations from Study 2, with serum lactate concentrations of 42.3 ± 4.8 

mg/dL (VF) and 40.9 ± 4.9 mg/dL (PF; Table 2.3). Although d 56 lactate concentrations 

were increased compared to the literature, the change in concentration between d 0 and d 

56 was not significant due to fence type (P = 0.86; Table 2.3).  

Lactate is produced in the muscle through anaerobic glycolysis as a result of the 

conversion of pyruvate to lactic acid via lactate dehydrogenase (Burfeindand and 

Heuwieser, 2012). Increases in lactate concentrations have been reported in animals 

undergoing a stress event (Diesch et al., 2004; Petherick et al., 2009) and are strongly 

related to the intensity of a stressor (Desmecht et al., 1996). Therefore, serum lactate 

concentrations reflect that animals in Study 2 were undergoing some form of a stress 

response, however lactate concentrations were only slightly elevated in comparison to the 

literature, and fence type did not affect the magnitude of change between d 0 and d 56. 
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Non-esterified fatty acid concentrations were different between fence types on d 0 

(P = 0.04), but not on d 56 (P = 0.65; Table 2.3; Figure 2.20). Eleveated NEFA on d 0 

may be caused by the weaning event shortly before d 0, or the different physiological 

stages of the animals utilized for Study 2, as both bred and open cows and heifers were 

utilized (Garverick et al., 2012). However, as cattle were randomly assigned to treatment, 

within physiological stage, on d 0, we cannot explain why there was a difference in 

NEFA. Fence type did not affect the change in NEFA between d 0 and d 56 (P = 0.35). 

Non-esterified fatty acids are released from adipose tissue in response to the presence of 

corticosteroids and catecholamines. Increased NEFA concentrations have been reported 

to induce inflammatory responses in cattle (Shi et al., 2015), and concentrations ≥ 700 

meq/L have been linked to an increased risk for disease (Ospina et al., 2010). Non-

esterified fatty acid concentrations reported in Study 2 were slightly increased compared 

to the published range of normal NEFA concentrations, which was reported to be no 

greater than 200 meq/L (Drackley, 2000; Adewuyi et al., 2005). The increase in NEFA 

concentrations reported in this study may not be due to a stress response, but to the 

physiological state of the animals used in Study 2. It is presumed that as cattle progress 

through gestation, adipose tissues mobilize, thereby increasing serum NEFA 

concentrations (Beever, 2006).  

Correlations  

Previous research indicates that movement of cattle is strongly associated with a 

stress response. While limited correlations between the specific behavior variables 

measured in these studies and cortisol metabolites were reported in the literature, it has 

been reported that cattle deemed to be excited or stressed have a higher basal 



47 
 

concentration of catecholamines and cortisol (Burdick et al., 2010). Literature also 

reports that cattle deemed ‘flighty’ or ‘excitable’ are more active (Grandin, 1993), and 

cattle expressing increased cortisol levels have been reported to spend less time 

ruminating and more time standing (Lindström et al., 2001; Bristow and Holmes, 2007). 

Therefore, positive associations between some behaviors, cortisol metabolites, and blood 

metabolites would be expected during the current studies if the animals were 

experiencing chronic stressors.  

Most of the behavior variables measured in these studies were not correlated with 

the cortisol metabolites in either study. We did, however, observe that in Study 1 (n = 4), 

d 0 fecal corticosterone and standing time were correlated (R = 0.97; Figure 2.21), while 

hair cortisol was correlated with step count (R = 0.70) and standing time (R = 0.99). 

However, in Study 2, there were no positive correlations between the behavior variables 

most strongly associated with a stress response (step count and motion index; P > 0.49) 

and the cortisol metabolites measured on d 0 and d 56 (Figure 2.22).   

Cattle behavior has also been associated with the blood metabolites measured in 

Study 2. Lactate is associated with the stress response in cattle, as stressors increase the 

rate of anaerobic glycolysis (Matteri et al., 2000) resulting in an increase in lactate 

production in the muscle (Burfeind and and Heuwieser, 2012). However, lactate is most 

commonly reported in the literature (Coombes et al., 2014; Holmes et al., 1972) to be 

correlated with acts of motion. Similar results were reported by Petherick et al. (2009), in 

a comparison of different handling styles of cattle in both backgrounding and feedlot 

settings. Both flight speed (the speed at which cattle exit confinement) and animal 
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movement around a test arena were correlated with cortisol, NEFA, and lactate 

concentrations.  

Based upon the existing literature, we expected that lactate concentrations and 

standing time would be negatively correlated. However, standing time in Study 2 was 

weakly correlated with d 56 lactate concentrations (P = 0.24; R = 0.41). That result, in 

combination with the fact that no other behavior variables measured in Study 2 produced 

a positive correlation with the physiological variable measured, we conclude that the 

correlation between standing time and d-56 lactate concentrations is insignificant. Similar 

to standing time, lying bouts were correlated to d 56 NEFA concentrations (P = 0.10; R = 

0.54; Figure 2.22). This correlation could be due to the increased standing time caused by 

the ice storm that occurred during a portion of Study 2; although NEFA concentrations 

were not elevated during this time, animals may have relied on circulating NEFA for 

energy (Sanchez et al., 2013) when the animals were experiencing cold stress.  

Correlations between hair cortisol and fecal corticosterone reported in the 

literature do not follow a consistent pattern. Moya et al. (2013) reported correlations 

between hair cortisol and glucocorticoid concentrations, but the correlations were not 

strong or homogenous across the study. Similarly, Tallo-Parra et al. (2015) reported a 

significant correlation between fecal cortisol metabolites and white hair collected from 

dairy cattle. Conversely, these researchers reported no such correlation between fecal 

cortisol metabolites and black hair collected from the same animals. In the current 

experiments, Study 1 hair cortisol concentrations were not correlated with fecal 

corticosterone concentrations. Further, fecal corticosterone measured across weeks for 

Study 1 did not display a consistent pattern when measured in individuals vs. the 
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composite sample (Figure 2.23).  In Study 2, no correlations were observed between d 0 

hair cortisol concentrations and any other cortisol metabolite collection dates (Figure 

2.24). However, hair cortisol concentrations on d 56 were correlated with fecal 

corticosterone concentrations from only wk 2 and 6 (P = 0.02, R = 0.63 and P = 0.42, R = 

0.24, respectively). Similar to Study 1, fecal corticosterone measured across weeks in 

Study 2 were inconsistent when comparing individuals to the composite sample. 

Correlations between blood metabolite and cortisol metabolite concentrations 

were inconsistent across Study 2. No correlation was reported between either measure of 

hair cortisol and NEFA concentrations. Conversely, the literature reports positive 

correlations between blood cortisol and NEFA concentrations (Sanchez et al., 2013). 

Final lactate concentrations were negatively correlated with both measures of fecal 

corticosterone, similar to results reported by Chen et al. (2017) in which the expression of 

lactate in rat cells was inhibited by exposure to corticosterone. Positive correlations 

between NEFA and corticosterone concentrations have been previously reported in the 

literature (Gross et al., 2021). However, a negative correlation was reported between 

fecal corticosterone and NEFA concentrations in Study 2 (Figure 2.25).  

Animals experiencing an electrical shock are likely to exhibit more movement 

and move away from the stimulus. Markus et al. (2014), reported that cattle subjected to 

electrical stimulation displayed behaviors that included head shaking and a change in 

speed, direction, or body position. The literature also reports that grazing cattle not 

experiencing a stress response spend the majority of the time grazing or ruminating, up to 

90-95% of daily activity (Andriamandroso et al., 2016). Due to this, it was expected that 
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animals exhibiting a stress response would display movement and behaviors different 

than those of animals not subjected to a stress event.  

The total shock count for animals in the VF treatment were recorded and a 

correlation analysis was performed between shock count, behavior variables, and cortisol 

metabolites (Figure 2.21; Table 2.4).  In Study 1, the total shock count received by VF 

animals was positively correlated with standing time (R = 0.83), but there was no 

correlation between shock count and any other behavior measured. As expected, shock 

count for Study 1 was also positively correlated with fecal corticosterone on d 0 (R = 

0.91; Figure 2.22), and hair cortisol concentration on d 28 (R = 0.79). In Study 2, shock 

count was positively correlated with step count, standing time, and motion index (Figure 

2.26).  Given the results from Study 1, it was expected that shock count would have been 

positively correlated with the cortisol metabolites measured in Study 2. However, the 

correlation between shock count and physiological stress measures collected on d 56 of 

Study 2 produced interesting results in that, only negative correlations were reported 

between total shock count and final concentrations (d 56) of hair cortisol, fecal 

corticosterone, NEFA, and lactate (Figure 2.25). These negative correlations would 

indicate that the shocks received by animals in the VF treatment did not result in a 

measurable stress response. 

APPLICATIONS 

Physiological metabolites were not affected by fence type, and the expected 

correlations were either absent or inconsistent in both studies. We conclude that using a 

VF system to contain and rotate cattle was not more stressful to the livestock than the 
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industry standard, double-strand electrified wire fencing. Further research, development 

and use of VF is warrented.   
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ABSTRACT 

The objective of this study was to validate the classification of activity, and 

resource usage of grazing cattle made by remote monitoring collars. Angus steers (n = 

12; BW = 227 ± 45.0 kg) were fitted with an electronic global positioning system (GPS) 

receiver and activity collar (Herd MOOnitor Ltd; Ra’anna, Israel). Animal activities 

(collected every 4 s) were determined by a real time microcontroller and an algorithm for 

classifying the accelerometer data, and GPS locations (collected every 5 min) were 

collected by the collar. Animal activities were classed as grazing, walking, and resting. 

Global positioning system locations were intersected with maps in a geographic 

information system (GIS) to the location from 3 layers: landscape position, burn patch, 
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and resource (forage, water, or shade) utilized. Data from the collars were matched to 

simultaneous human observation of the same activity and location in resource areas. 

Accuracy rates for location classification in the resource usage (≥ 67%) and burn patch (≥ 

75%) layers suggest that MOOnitor collars can classify GPS locations of grazing animals 

in large, wide features. However, grazing activity classifications (≥ 30%) and terrace 

position accuracies (≥ 39%) were less than the reported Non-inclusion rates (≥ 39% and ≥ 

42%, respectively), leading researchers to conclude that human observed and collar 

predicted grazing activity classifications did not agree well.  

INTRODUCTION 

Traditional methods of livestock management are limited to the use of time-tested 

tools such as adjusting stocking rates, rotational grazing, and adjusting supplementation 

at a herd level to improve the productivity of a grazing herd. However, the 

implementation of grazing technologies to aid in livestock management provide 

producers the ability to focus on individual animals while implementing proper rangeland 

management practices (Andriamandroso et al., 2016). Researchers have reported that 

utilizing grazing technologies allow the interaction between plants and animals to be 

observed and remotely managed by combining feeding behavior, animal position (Laca, 

2009), and animal behavior data (Richeson et al., 2018). 

Activity-monitoring collars provide an opportunity to remotely manage cattle 

herd health status and behavior. Global positioning system (GPS)-based collars are 

commonly used in studying wildlife species, and motion sensors have allowed 

researchers to monitor behavior and resource utilization by grazing cattle (Ungar et al., 
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2005). While promising, the accuracy of these sensor systems has not been well 

described in peer reviewed literature, especially for use on growing steers. Understanding 

accuracy is critical for interpretation of the data these sensors provide.  Therefore, the 

objective of this study was to characterize the accuracies of activity classification and 

geographic position for grazing cattle made by remote monitoring collars.  

MATERIALS AND METHODS 

All procedures were approved by the Institutional Animal Care and Use 

Committee at USDA-ARS-SPRRS (Animal Care and Use Protocol number: AUP-025) 

Pastures 

 All pastures utilized in this study were located at the USDA-ARS, Southern 

Plains Range Research Station in Woodward, OK. This study was conducted over 

approximately 60 d, beginning in June 2021.  A total of 6 pastures (8 to 16 ha) were 

utilized for the current study. Terraces were present in 4 of the 6 pastures. Pastures 

utilized in the current study were part of a long-term burn treatment study, in which 3 of 

the pastures were in a broadcast burn rotation (Laveled “-0” after the pasture id in Figure 

3.1) and 3 pastures were in a 4-patch, burn rotation rotation. The patches in the rotations 

were likewise labeled: -A, -B, -C, or -D after the pasture id (Figure 3.1). The locations of 

terraces (Figure 3.2), along with the water, salt block, and shade locations (Figure 3.3) 

within each pasture were defined in GIS (QGIS; Open-Source Geospatial Foundation) 

software and matched to the GPS locations provided by the collars. 

Animals 
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Animals were sourced from Wanger Farms, Ft. Supply, OK. A subset of 12 

Angus steers (BW = 227 ± 45.0 kg) were utilized for this study. A total of 34 steers were 

grazed in the 6 separate pastures to consume approximately 14% of expected annual 

forage production in a 90-d grazing period.  

MOOnitor Collars 

At the initiation of the study, 12 pre-allocated steers were fitted with an electronic 

GPS receiver and activity collar (Herd MOOnitor Ltd; Figure 3.4). The collars were 

equipped with satellite communication, 3-axis accelerometers, a GPS receiver, and solar 

panels for power supply. Collars were configured to record the steer’s location every 5 

min and the steer’s activity every 4 s for the duration of the grazing period. Steers 

activities were classed into grazing, walking (walking without grazing), and resting 

(standing and lying combined) by a real-time microcontroller and an algorithm for 

classifying the accelerometer data approximately every 4 s. The collars also collected 

GPS data, which was used to determine animal locations relative to 3 map layers defining 

available resources (shade, forage, water/salt), terrace positions (terrace top, bottom, and 

in between terraces), and burn patches (burn patch A, B, C, D, or no patch). Data from 

the collars was downloaded utilizing a short-range radio via a PC user interface. Two 

streams of data were derived from the collars (an algorithm file and an activity file) The 

activity file is data that was stored on board the collar and was downloaded 

approximately weekly. The algorithm file contained the same classification data as the 

activity fiel with the addition of an activity index measured by the collar. These two 

sources of data were also attributed with times from different sources that were often 

available at different times of data download. Due to this variability, suspected to be due 
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to the inability of the microcontroller of the collar to simultaneously write data while 

streaming data to the PC, observational classifications were compared to the activity file 

data. Each collar weighed <1% of steer BW (2.2 kg).  

Data Collection 

          For the current study, the collared animals were observed in the pasture and 12 

animals were selected, on the basis of collar data output strength and visually 

distinguishable characteristics on the cattle, in order to make observations from a distance 

and avoid disturbing the animals while making observations. In order to validate the 

classification of activities and locations by the MOOnitor collar, cattle were periodically 

observed. A single human observer recorded steers activities to include walking, resting 

(a combination of standing and lying), and grazing; the resource being utilized during the 

observation period (shade, forage, or water/salt); where steers were positioned relative to 

the terrace features top (the ground that has been pushed higher than natural ground along 

the contour), bottom (ground up slope of the terrace top but lower than the natural ground 

that occasionally become ponded),  or between two terraces (the ground between terraces 

that is sloped as the natural ground); and the burn patch the animal was utilizing (A, B, C, 

D, or No patch). A single animal was observed for a minimum of 20 min per observation 

period, during which, a distance was maintained between cattle and the observer to avoid 

human interference in animal behaviors. During an observation period, the 

aforementioned activities and locations of the observed steer were manually recorded to 

the nearest sec as reported on a handheld GPS unit. Observations were not recorded on 

days animals were handled for weighing. Observations were not conducted on days with 

adverse weather or overcast skies as experience had taught us that powering the radio 
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continuously for 20 min to communicate the data without good light to keep the betteries 

charged was often difficult and would result in incomplete observations. A total of 382 

five-min periods were recorded during this study. Approximately 30 five-min observation 

periods were conducted per steer, with approximately 24 to 30 five-min observation 

periods recorded per day. 

Statistical Analysis 

  Data were stored in a geopackage (GPKG) using the ‘sf’ package (Pebesma, 2018) 

and analyzed in R (R Core Team, 2020) to format geospatial information. Data reporting 

GPS locations outside the assigned pasture area were removed. Activity data were 

summarized into a confusion matrix, with reference parameters set as 0, 0.25, 0.5, 0.75, 

0.99, or 1 such that, if a behavior was observed (by either MOOnitor or human 

observation) at any time during a 5 min observation period, the activity was assigned a 1, 

denoting a true positive. The ‘caret’ package (Kuhn, 2008) in R was utilized to assess the 

multiple-category prediction model and a cross tabulation of actual and predicted 

activities (confusion matrix) was created. Within the confusion matrix, the factor of the 

predicted classes (MOOnitor activity classification) was used as the first argument and 

the factor of classes to be used as the true results (Observation classification) was the 

second argument. This determination of predictor and true results were utilized for all 

activity and location parameters measured in this study. The accuracy percentage, P-

value, no-information rate (NIR), and the Kappa coefficient were reported. For the 

purposes of this study, NIR is defined as the largest proportion of the observed classes, or 

a naive classifier that must be exceeded to prove the model to be significant (Machine 

Learning, 2018), and the P-value is a computed hypothesis test to determine if the overall 
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accuracy rate is greater than the rate of the largest class (NIR; Dahiru, 2008). Accuracy is 

defined (Machine Learning, 2020) as the proportion of correctly classified activities 

within the 382, five-min observation periods, and Kappa measures the agreement 

between 2 raters (i.e. classification or observation; Cohen, 1960).   

RESULTS AND DISCUSSION 

The results for the activities, terrace location, resource locations, and burn patch 

location observations were matched against classifications made by the MOOnitor collar. 

The classifications made by the MOOnitor were also matched against the classifications 

made by the algorithm. Accuracy, NIR, Kappa, and a P – value were reported.  

Activities  

 Statistical variables for activities are presented in Table 3.1. The linear regression 

of the fraction of a 5-min observation period observed vs. the fraction of a 5-min 

observation period classified by the MOOnitor show that the data follow a linear model 

for resting (P < 0.001; Figure 3.5) and walking (P < 0.001; Figure 3.7), though it was not 

a strong linear relationship. The same can be reported for the linear regression of 

observation vs. algorithm classification for resting (P = 0.15; Figure 3.5) and walking (P 

= 0.07; Figure 3.7). Observation vs. classification accuracies for resting activities (≤ 43%; 

Table 3.1) and for walking (≤ 58%; Table 3.1) led us to the conclude that the MOOnitor 

collars accurately predicted and classified resting and walking behaviors (accuracies > 

NIR). However, this was not the case for both linear relationships reported for grazing 

behaviors (Figure 3.6). The overall observation vs. classification accuracies are reported 

as ≤ 31 % (accuracies < NIR; Table 3.1). Based upon these results, the MOOnitor collars 
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did not accurately predict and classify grazing behaviors, however walking and resting 

were accurately classified.    

 The inaccuracies reported by the MOOnitor collar in classifying activities of 

grazing cattle may be due to movement of the head and neck of the animals while they 

were conducting resting activities. In the current study, the observer took note that even 

during resting activites (i.e. lying or standing) animals often moved the head and neck to 

perform grooming or to repel pests. The motion of these activities was also registered and 

recorded by the MOOnitor collars. Similarly, Ungar et al. (2005) speculated that similar 

movements while resting may have been a cause for their reported misclassification rate. 

This may be further supported by the high accuracy rate reported by Robert et al. (2009), 

in which head and neck movements were not measured, as 3-dimensional accelerometers 

were placed on the rear legs of calves. Researchers reported that these accelerometers 

exhibited 99.2% and 98.0% accuracy rates for the classification of lying and standing 

activities.  

Locations 

 Results for the use of resources, water/salt, forage, and shade are presented in 

Table 3.3. The linear regression for the fraction of a 5-min observation period observed 

as in the water/salt location and the fraction of a 5-min observation period classified as in 

the water/salt location by the MOOnitor followed a linear model (P = 0.002; Figure 3.8). 

However, the linear regressions performed for forage and shade did not follow a linear 

model (Figure 3.8).  The dominant resource utilized by the animals was determined to be 

forage (Table 3.4) and reported to be accurately classified by the MOOnitor collar (77.5 
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%; Table 3.3). Resource utilization accuracies for all resources measured were ≥ 67% 

(accuracies > NIR; Table 3.3), leading researchers to conclude that the MOOnitor collars 

can accurately determine resource usage via GPS location.  

The results for the terrace positions utilized are presented in Table 3.5. The linear 

regressions for the fraction of a 5-min observation period observed as in terrace top, 

bottom, and in between terrace and the fraction of a 5-min observation period classified 

as in terrace top, bottom, and in between terrace by the MOOnitor did not follow a linear 

model (P = 0.99, 0.95, and 0.88, respectively; Figure 3.9). Terrace position utilization 

accuracies were reported as ≥ 39% (accuracies < NIR; Table 3.5). Based upon these 

results, the MOOnitor collars cannot accurately determine terrace position via GPS 

location.  

Results for the burn patch utilized are presented in Table 3.7. The linear 

regressions for the fraction of a 5-min observation period observed as in burn patch A (P 

< 0.001), B (P = 0.17), C (P = 0.04), and D (P < 0.001; Figure 3.10), and the fraction of a 

5-min observation period classified as in the aforementioned burn patches followed a 

linear model, though not all linear relationships were strong. However, the linear 

regression for the fraction of a 5-min period observed as in No burn patch did not follow 

a linear model (P = 0.99). Burn patch utilization accuracies were reported as ≥ 75 % 

(accuracies > NIR; Table 3.7). Results indicate that MOOnitor collars can accurately 

determine burn patch utilization via GPS location.   

No research could be found in the literature relating to the prediction of the 

specific resources, terrace positions, or burn patches utilized via GPS location as 
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measured in the current study. However previous research reports that the basis for 

recording individual grazing animals lies in animal location, animal posture, and animal 

movements (Andriamandroso et al., 2016), and the interaction between plants and 

animals has been previously observed and utilized to remotely manage livestock by 

combining feeding behavior and animal position data (Laca, 2009). Hulbert and French 

(2001) reported that continuous and accurate spatial location data is required to 

accurately model resource selection by animals. The selection of heterogeneously-

distributed resources has been reported to be affected by the scale of heterogeneity 

(Nams, 2005). Research utilizing high fix rate (4 Hz) GPS data to predict animal resource 

(forage) selection within a 1-ha patch has been reported to be approximately 30% 

accurate (the probability of accurately predicting resource selection; Swain et al., 2008) 

however, prediction errors (calculated using speed variables derived from velocity) were 

90% for sample frequencies greater than half an hr. These researchers also reported that 

accurate resource selection predictions for small patches (< 25 m2), are possible at a GPS 

fix interval of at least 10 s. Although data presented in the current study suggest that 

MOOnitor collars can accurately predict resource usage through GPS location, better 

accuracy rates may have been possible at GPS fix intervals smaller than every 5-min.  

Prescribed fire in often applied to rangelands to enhance habitats and manage 

resource selection of grazing animals (Butz, 2009). Although observations in the current 

study are not comperable, the burn unit usage data presented in the current study is in 

agreement with reports in the literature, in that the dominant burn unit used by animals 

(A; Table 3.8) was the unit most recently burned. Similarly, over a 5-yr study, researchers 
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report that cattle selected light and moderately burned forages during all 5-yrs post 

burning (Clark et al., 2014).  

 The use of motion integrative GPS collars and the accuracy of activity 

classification has been previously reported in the literature. In a study utilizing Lotek 

GPS collars set to collect GPS locations every 5 min and activity samples every 4 sec, 

observations were conducted in a similar manner to those in the current study and activity 

classes were classified as grazing, traveling, and resting (a combination of lying and 

standing). Researchers stated a misclassification rate of 12-14%, with the main source of 

misclassification due to collars incorrectly classifying resting activities as grazing (Ungar 

et al., 2005). Other researchers, deploying Lotek GPS collars at the same operational 

schedule as Ungar et al. (2005), reported an overall accuracy rate of 91.7% for the 

classification of grazing and resting activities of cattle (Turner et al., 2000). Success in 

accurately classifying cattle behaviors using motion integrative GPS collars has also been 

reported when utilizing high frequency data collection. In 2 trials conducted by Gonzalez 

et al. (2015), GPS collars were reported to correctly classify animal behaviors at 85.5% 

and 90.5% utilizing GPS and accelerometer data collection frequencies of 4Hz (345,000 

data points/d) and 10Hz (862,500 data points/d), respectively.   

 The complete and accurate estimation of activities through the use of motion 

integrated GPS collars has proved difficult to achieve. Reasons for this difficulty reported 

in the literature include: resting activities are not always associated with no or very low 

motion, walking is integrated into both grazing and traveling, movement patterns of 

animals may differ within herd (Ungar et al., 2005), and GPS collars themselves may 

differ in the sensitivity to motion (Turner et al., 2000).  
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CONCLUSION  

Difficulties in the accuracy of grazing behavior classification reported in this 

study are likely caused be one or more of the aforementioned issues. We can also 

speculate that the frequency at which data is summarized by the collars may not have 

been high enough to accurately distinguish different cattle activities, evidenced by 

Gonzalez et al. (2015). The frequency of data summarization in the current study was low 

(288 data points for GPS and 21,600 data points for accelerometer data collection, per 

day) in comparison to the studies performed by Gonzalez et al. (2015).  Therefore, data 

presented in this study leads researchers to conclude that MOOnitor collars could only 

accurately monitor and predict resting and walking behavior of beef cattle. More research 

and adjustments to the inner workings of the collars are necessary to achieve an accurate 

validation of the ability of remote monitoring collars to classify grazing cattle behaviors. 
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Table 2.1 Effects of virtual fencing on behavior and physiology of beef cattle: Study 1 

  Treatments1 

 VF  PF 
 

Mean SD CV Min Max  Mean SD CV Min Max 

Steps2,3, per d 4656 1345 0.29 1911 11522 4440 985 0.22 2085 8334 

Lying bouts4,3, per d 13.8 3.75 0.27 6.0 31 11.3 2.77 0.25 5.0 20 

Standing time5,3, min per d 740 83.5 0.11 532.9 1084.4 744 79.4 0.11 515.9 1062.8 

Motion index3,6, per d 19848 6129 0.31 7613 52722 18494 4867 0.26 7287 41155 

Hair cortisol7, pg/mg         

d 28 0.37 0.15 0.39 0.13 0.59 0.40 0.32 0.80 0.01 0.86 

Fecal corticosterone, ng/g         

d 07 77.9 46.8 0.60 11.5 158 73.8 34.1 0.46 14.4 113 

d 73 96.5 65.6 0.68 22.8 177 67.4 37.8 0.56 31.1 131 

d 143 59.5 33.4 0.56 23.9 96.9 39.6 32 0.81 13.3 92.1 

d 213 86 33.5 0.39 46.4 133 75.2 28.6 0.38 28.3 99.5 

d 287 140 79.6 0.57 50.5 296 128 56.7 0.44 21.9 180 

1Treatments included a virtually fenced pasture (VF) or a physically fenced pasture (PF) 
2Number of steps taken per d 

3n = 8 animals total; 4 animals per treatment 
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4Average number of lying bouts per d 
5Time spent standing, in minutes per d 
6Motion index per d; activity relative to acceleration and energy 
7n = 55; animals per treatment = 31 and 24, respectively 
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Table 2.2 Effects of virtual fencing on cortisol metabolite concentrations of beef cattle: 

Study 2  
VF1 PF SE P-value 

Hair cortisol, pg/mg     

    d 0 0.52 0.29 0.072 0.16 

    d 56 0.09 0.17 0.046 0.34 

  Delta, d 56-d 0 0.43 0.13 0.090 0.14 

Fecal corticosterone, ng/g 
    

     d 0 168 224 43.7 0.46 

     d 56 223 265 37.5 0.51 

  Delta, d 56-d 0 -56.8 -4.4 74.0 0.66 

1Treatments included 2 virtually fenced pastures (VF) or 2 physically fenced pastures (PF) 
2n = 59; animals per treatment = 29 and 30, respectively    
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Table 2.3 Effects of virtual fencing on blood metabolite concentrations of beef cattle: 

Study 2  

VF1 PF SE P-value 

Lactate, mg/dL 
    

  d 0 36.1 37.6 4.9 0.85 

  d 56 42.3 40.9 7.8 0.91  

  Delta (d 56-d 0) -6.2 -4.2 7.6 0.86 

NEFA3, meq/L 
    

  d 0 452.8 346.4 16.8 0.04 

  d 56 367.1 428.4 84.2 0.65 

  Delta (d 56-d 0) 85.7 -71.9 91.7 0.35 

1Treatments included 2 virtually fenced (VF) or 2 physically fenced pastures (PF) 
2n = 59; animals per treatment = 29 and 30, respectively 
3Non-esterified fatty acid concentration, meq/L 
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Table 2.4 Summary of shocks recieved1 

 Study 1 Study 2 

Max 452 1385 

Min 0 115 

Mean 164 418 

SD 137 353 
1Shocks were received by virtually fenced (VF) animals 
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Table 3.1 Confusion matrix for activity class variables1 
 
 

Accuracy, 

% NIR2, %  P-value Kappa3 

Resting     

Obs vs. Moon4 42.9 28.9 <0.001 0.32 

    Obs vs. Alg5 36.7 34.0 0.15 0.25 

Alg vs. Moon6 84.8 36.8 <0.001 0.81 

Grazing     

Obs vs. Moon4 30.7 39.4 0.99 0.19 

    Obs vs. Alg5 25.5 44.2 1.0 0.14 

Alg vs. Moon6 76.6 24.9 <0.001 0.71 

 Walking         

Obs vs. Moon4 57.9 46.9 <0.001 0.30 

    Obs vs. Alg5 54.5 50.5 0.07 0.22 

Alg vs. Moon6 78.1 45.9 <0.001 0.64 

Dominant Activity7 82.6 50.1 <0.001 0.67 

1n = 12 animals and 382 observation periods 
2No-inclusion rate 
3Measure agreement between classification and true values 
4Fraction of 5-min observation period observed as an activity and fraction of 5-min observation 

period classified as an activity by MOOnitor collar 
5Fraction of 5-min observation period observed as an activity and fraction of 5-min observation 

period classified as an activity by Algorithm  
6Fraction of 5-min observation period classified as an activity by Algorithm and fraction of 5-

min observation period classified as an activity by MOOnitor collar 
7Activity performed the most during 5-min observation periods  
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Table 3.2 Confusion matrix of the dominant activity in an observation period1 

 Observed3 

Predicted2 Grazing Resting Walking 

Grazing 151 44 2 

Resting 2 123 0 

Walking 9 1 3 
1n = 12 animals and 382 observation periods 
2Activiy predicted by MOOnitor collar  
3Activity recorded by human observer 
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Table 3.3 Confusion matrix for resource variables1 
 
 

Accuracy, % NIR2, %  P-value Kappa3 

Forage     

Obs vs. Loc4 67.3 53.3 <0.001 0.46 

Shade     

Obs vs. Loc4 79.9 71.3   <0.001 0.52 

 Water/Salt         

Obs vs. Loc4 87.7 82.2 0.002 0.57 

Dominant Resource5 77.5 57.9 <0.001 0.57 
1n = 12 animals and 382 observation periods 
2No-inclusion rate 
3Measure agreement between classification and true values 
4Fraction of 5-min observation period observed as in a resource location and fraction of 5-min 

observation period classified as in a resource location by MOOnitor location 
5Resource utilized the most during 5-min observation periods 
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Table 3.4 Confusion matrix of the dominant resource utilized in an 

observation period1 

 Observed3 

Predicted2 Forage Shade Water 

Forage 207 49 22 

Shade 10 46 0 

Water 5 0 44 
1n = 12 animals and 382 observation periods 
2Resource predicted by MOOnitor collar location 
3Resource recored by human observer 
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Table 3.5 Confusion matrix for terrace position variables1 
 
 

Accuracy, % NIR2, %  P-value Kappa3 

Terrace top     

Obs vs. Loc4 72.5 79.8 0.99 0.25 

Terrace bottom     

Obs vs. Loc4 72.1 76.4 0.95 0.33 

 In between terrace         

Obs vs. Loc4 39.3 42.8 0.88 0.13 

Dominant Terrace 

Location5 56.9 58.9 0.76 0.04 

1n = 6 animals and 191 observation periods 
2No-inclusion rate 
3Measure agreement between classification and true values 
4Fraction of 5-min observation period observed as on terrace position and fraction of 5-min 

observation period classified as on terrace position by MOOnitor location 
5Terrace position utilized the most during 5-min observation periods 
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Table 3.6 Confusion matrix of the dominant terrace position utilized in 

an observation period1 

 Observed3 

Predicted2 Terrace 

bottom 

In between 

terrace 
Terrace top 

Terrace bottom 2 4 4 

In between terrace 22 136 69 

Terrace top 0 12 9 
1n = 6 animals and 191 observation periods 
2Terrace position predicted by MOOnitor collar location 
3Terrace position recorded by human observer 
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Table 3.7 Confusion matrix for burn patch position variables1 
 
 

Accuracy, % NIR2, %  P-value Kappa3 

Patch A     

Obs vs. Loc4 87.3 54.4 <0.001 0.76 

Patch B     

Obs vs. Loc4 94.6 92.6   0.17 0.61 

Patch C         

Obs vs. Loc4 95.1 91.7 0.04 0.64 

Patch D     

Obs vs. Loc4 87.8 71.6 <0.001 0.68 

Not in Patch     

Obs vs. Loc4 75.7 85.2 0.99 0.39 

Dominant Patch 

Location5 82.8 44.6 <0.001 0.75 

1n = 6 animals and 191 observation periods 
2No-inclusion rate  
3Measure agreement between classification and true values 
4Fraction of 5-min observation period observed as in burn patch and fraction of 5-min 

observation period classified as in burn patch by MOOnitor location 
5Burn patch utilized the most during 5-min observation periods 
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Table 3.8 Confusion matrix of the dominant burn patch utilized in an observation 

period1 

 Observed3 

Predicted2 Not in Patch  Patch A  Patch B  Patch C  Patch D 

Not in Patch  24 3 2 5 13 

Patch A 4 86 2 0 4 

Patch B 0 2 9 0 0 

Patch C 0 0 0 11 0 

Patch D 0 0 0 0 39 
1n = 6 animals and 191 observation periods 
2Burn patch position predicted by MOOnitor collar location 
3Burn patch position recorded by human observer 
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Figure 2.1: Virtual fencing collar version 1.   
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Figure 2.2: Virtual fencing collar version 2. 
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Figure 2.3: Virtual fencing collar version 2, on animal. 
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Figure 2.4: Two phase training period for VF treatment implemented during the first 48 h of 

trial 

A: 50 m shock zone (red) active along the perimeter of the VF pasture, including exclusion from 

2 ponds, was active for the first 24 h of the training period. 

B: A with the addition of a 5 m sound zone (white), was active for the second 24 h of the training 

period.  
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Figure 2.5: Representation of the VF boundary on d 0. The dashed line represented the VF 

boundary separating the weekly rotation pastures.  
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Figure 2.6: Effects of virtual fencing on behavior of beef cattle - Study 1. Treatments included a 

virtually fenced pasture (VF) or a physically fenced pasture (PF) (n = 18; animals per treatment 

= 9). Motion index is activity relative to acceleration and energy expenditure. 
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Figure 2.7: Effects of virtual fencing on daily step count of beef cattle – Study 2, a linear 

regression model (red line) with standard error bands (grey shading). Treatments included 2 

virtually fenced pastures (VF) or 2 physically fenced pastures (PF) (n = 16; animals per 

treatment = 8). 
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Figure 2.8: Effects of virtual fencing on standing time (min/d) of beef cattle – Study 2, a linear 

regression model (red line) with standard error bands (grey shading). Treatments included 2 

virtually fenced pastures (VF) or 2 physically fenced pastures (PF) (n = 16; animals per 

treatment = 8). 
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Figure 2.9: Effects of virtual fencing on number of daily lying bouts of beef cattle – Study 2, a 

linear regression model (red line) with standard error bands (grey shading). Treatments included 

2 virtually fenced pastures (VF) or 2 physically fenced pastures (PF) (n = 16; animals per 

treatment = 8). 
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Figure 2.10: Effects of virtual fencing on daily motion index of beef cattle – Study 2, a linear 

regression model (red line) with standard error bands (grey shading). Treatments included 2 

virtually fenced pastures (VF) or 2 physically fenced pastures (PF) (n = 16; animals per 

treatment = 8). 



87 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.11: Effects of virtual fencing on hair cortisol concentrations of beef cattle, d28 – Study 

1. Treatments included a virtually fenced pasture (VF) or a physically fenced pasture (PF) (n = 

55; animals per treatment = 31 and 24, respectively). 

  



88 
 

 

Figure 2.12: Effects of virtual fencing on hair cortisol concentrations of beef cattle - Study 2. 

Treatments included 2 virtually fenced pastures (VF) or 2 physically fenced pastures (PF) (n = 

59; animals per treatment = 30 and 29, respectively). D 56-d 0: P = 0.14. 
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Figure 2.13: Effects of virtual fencing on fecal corticosterone concentrations of beef cattle – 

Study 1. Treatments included a virtually fenced pasture (VF) or a physically fenced pasture (PF) 

(n = 55; animals per treatment = 31 and 24, respectively). 

 

  



90 
 

 

Figure 2.14: Effects of virtual fencing on weekly fecal corticosterone concentrations – Study 1, a 

loess regression model (red line) with standard error bands (grey shading). Treatments included a 

virtually fenced pasture (VF) or a physically fenced pasture (PF) (n = 18; animals per treatment 

= 9). 
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Figure 2.15: Effects of virtual fencing on weekly fecal corticosterone composites – Study 1. 

Treatments included a virtually fenced pasture (VF) or a physically fenced pasture (PF), a loess 

regression model is represented by the red line (n = 18; animals per treatment = 9). 
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Figure 2.16: Effects of virtual fencing on fecal corticosterone concentrations in beef cattle – 

Study 2. Treatments included 2 virtually fenced pastures (VF) or 2 physically fenced pastures 

(PF) (n = 59; animals per treatment = 30 and 29, respectively). D 56-d 0: P = 0.66. 
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Figure 2.17: Effects of virtual fencing on weekly fecal corticosterone concentrations of beef 

cattle- Study 2, a loess regression model (red line) with standard error bands (grey shading). 

Treatments included 2 virtually fenced pastures (VF) or 2 physically fenced pastures (PF) (n = 

16; animals per treatment = 8) 
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Figure 2.18: Effects of virtual fencing on weekly corticosterone concentrations in weekly fecal 

composites of beef cattle – Study 2, a loess regression model (red line) with standard error bands 

(grey shading). Treatments included 2 virtually fenced pastures (VF) or 2 physically fenced 

pastures (PF) (n = 2 per treatment; 20 pats composited per pasture). 
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Figure 2.19: Effects of virtual fencing on serum lactate concentrations of beef cattle – Study 2. 

Treatments included 2 virtually fenced pastures (VF) or 2 physically fenced pastures (PF) (n = 

59; animals per treatment = 30 and 29, respectively). D 56-d 0: P = 0.87. 
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Figure 2.20: Effects of virtual fencing on serum NEFA concentrations of beef cattle – Study 2. 

Treatments included 2 virtually fenced pastures (VF) or 2 physically fenced pastures (PF) (n = 

59; animals per treatment = 30 and 29, respectively). D 56-d 0: P = 0.35.  
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Figure 2.21: Distribution of shocks received by virtually fenced (VF) animals from Study 1 (A) 

and Study 2 (B).   

A 

B 
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Figure 2.22: Correlations between behavior variables, cortisol metabolites, and shock count -

Study 1. Treatments included a virtually fenced pasture (VF) (n = 4). Lying bouts are the average 

number of lying bouts per day. Motion is the average of motion index per day. Motion index is 

activity relative to acceleration. Steps is the average step count per day. Fecal cort. d28 is the 

fecal corticosterone concentrations collected on d 28. Shocks is the average of electrical stimulus 

experienced by the VF treatment during Study 1. Fecal cort. d0 is the fecal corticosterone 

concentrations collected on d 0. Hair cort. d28 is the hair cortisol concentrations collected on d 

28. Standing is average standing time per day.  
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Figure 2.23: Correlations between behavior variables, cortisol metabolites, and blood 

metabolites – Study 2. Treatments included 2 virtually fenced pastures (VF) or 2 physically 

fenced pastures (PF) (n = 10). Lying bouts is the average number of lying bouts per day. Motion 

is the average of the motion index per day. Motion index is the activity relative to acceleration. 

Steps is the average step count per day. Fecal cort. d28 is the fecal corticosterone concentrations 

collected on d 28. Hair cort. d0 is the hair cortisol concentrations collected on d 0. Fecal cort. d0 

is the fecal corticosterone concentrations collected on d 0. Hair cort. d28 is the hair cortisol 

concentrations collected on d 28. Standing is the average standing time per day. Lactate d0 is 

serum lactate concentrations collected on d 0. Lactate d56 is serum lactate concentrations 

collected on d 56. NEFA is non-esterified fatty acid. NEFA d0 is serum non-esterified fatty acid 

concentrations collected on d 0. NEFA d56 is serum non-esterified fatty acid concentrations 

collected on d 56. 
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Figure 2.24: Correlations between fecal corticosterone and hair cortisol concentrations – Study 

1. Treatments included a virtually fenced pasture (VF) or a physically fenced pasture (PF) (n = 

18; animals per treatment = 9). Fecal cort. d0 is the fecal corticosterone concentrations collected 

on d 0. Fecal week 1 is the fecal corticosterone concentrations collected on week 1. Fecal week 2 

is the fecal corticosterone concentrations collected on week 2. Fecal week 2 is the fecal 

corticosterone concentrations collected on week 2. Fecal cort. d28 is the fecal corticosterone 

concentrations collected on d 28. Hair cort. d28 is the hair cortisol concentrations collected on d 

28.  
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Figure 2.25: Correlations between hair cortisol and fecal corticosterone concentrations – Study 

2. Treatments included 2 virtually fenced pastures (VF) or 2 physically fenced pastures (PF) (n = 

13). Fecal Cort. d 0 is the fecal corticosterone concentrations collected on d 0. Fecal week 1 is 

the fecal corticosterone concentrations collected on week 1. Fecal week 2 is the fecal 

corticosterone concentrations collected on week 2. Fecal week 3 is the fecal corticosterone 

concentrations collected on week 3. Fecal week 4 is the fecal corticosterone concentrations 

collected on week 4. Fecal week 5 is the fecal corticosterone concentrations collected on week 5. 

Fecal week 6 is the fecal corticosterone concentrations collected on week 6. Fecal week 7 is the 

fecal corticosterone concentrations collected on week 7. Fecal Cort. d 56 is the fecal 

corticosterone concentrations collected on d 56. Hair cort. d 0 is the hair cortisol concentrations 

collected on d 0. Hair Cort. d 56 is the hair cortisol concentrations collected on d 56.  
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Figure 2.26: Correlations between cortisol metabolites, blood metabolites, and shock – Study 2. 

Treatments included 2 virtually fenced pastures (VF) (n = 13 animals). Shocks is the average of 

electrical stimulus experienced by the VF treatment during Study 1. Fecal Cort. d 56 is the fecal 

corticosterone concentrations collected on d 56. Hair Cort. d 56 is the hair cortisol concentrations 

collected on d 56. Lactate d 56 is the serum lactate concentrations collected on d 56. NEFA is 

non-esterified fatty acid concentrations. NEFA d 56 is the serum non-esterified fatty acid 

concentrations collected on d 56.  
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Figure 2.27: Correlations between behavior variables and shock counts – Study 2. Treatments 

included 2 virtually fenced pastures (VF) (n = 6). Lying bouts is the average number of lying 

bouts per day. Motion is the average motion index per day. Motion index is activity relative to 

acceleration. Steps is the average step count per day. Shocks is the average of electrical stimulus 

experienced by the VF treatment during Study 2. Standing is the average standing time per day.  
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Figure 3.1: Pasture map - orange areas denote pastures without burn patches. Purple, green, 

yellow and blue denote burn patches. 
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Figure 3.2: Terrace position within pastures. Orange denotes terrace bottom, purple denotes 

terrace top. 
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Figure 3.3: Locations of water/salt and shade within pasture. Shade denoted as pink polygons 

and water/salt location denoted as orange circles. 
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Figure 3.4: MOOnitor collar 

 

  



108 
 

 

Figure 3.5: Fraction of 5-min observation periods matched to MOOnitor collar classification for 

resting (n = 12 animals, and 382 observation periods). A is the fraction of 5-min period classified 

as resting by MOOnitor collar vs. fraction of 5-min observed as resting. B is the fraction of 5-

min period classified as resting by algorithm vs. fraction of 5-min period observed as resting.  

C is the fraction of 5-min period classified as resting by MOOnitor collar vs. fraction of 5-min 

period classified as resting by algorithm. 

 

  

P < 0.001 

P < 0.001 
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Figure 3.6: Fraction of 5-min observation periods matched to MOOnitor collar classification for 

grazing (n = 12 animals, and 382 observation periods). A is thefraction of 5-min period classified 

as grazing by MOOnitor collar vs. fraction of 5-min observed as grazing. B is the fraction of 5-

min period classified as grazing by algorithm vs. fraction of 5-min period observed as grazing.  

C is the fraction of 5-min period classified as grazing by MOOnitor collar vs. fraction of 5-min 

period classified as grazing by algorithm.   

P = 0.99 

P < 0.001 
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Figure 3.7: Fraction of 5-min observation periods matched to MOOnitor collar classification for 

walking (n = 12 animals, and 382 observation periods). A is the fraction of 5-min period 

classified as walking by MOOnitor collar vs. fraction of 5-min period observed as walking. B is 

the fraction of 5-min period classified as walking by algorithm vs. fraction of 5-min period 

observed as walking. C is the fraction of 5-min period classified as walking by MOOnitor collar 

vs. fraction of 5-min period classified as walking by algorithm.  

  

P < 0.001 

P < 0.001 
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Figure 3.8: Fraction of 5-min observation periods matched to MOOnitor collar classification of 

resource usage (n = 12 animals, and 382 observation periods). A is the fraction of 5-min period 

classified as in water/salt location by MOOnitor collar vs. fraction of 5-min period observed as in 

water/salt location. B is the fraction of 5-min period classified as in forage location by MOOnitor 

collar vs. fraction of 5-min period observed as in forage location. C is the fraction of 5-min 

period classified in shade location by MOOnitor collar vs. fraction of 5-min period observed as 

in shade location.  

  

P = 0.002 

P < 0.001 

P < 0.001 
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Figure 3.9: Fraction of 5-min observation periods matched to MOOnitor collar classification of 

terrace location usage (n = 12 animals, and 382 observation periods). A is the fraction of 5-min 

period classified as in terrace top by MOOnitor collar vs. fraction of 5-min period observed as in 

terrace top. B is the fraction of 5-min period classified as in terrace bottom by MOOnitor collar 

vs. fraction of 5-min period observed as in terrace bottom. C is the fraction of 5-min period 

classified in between terrace by MOOnitor collar vs. fraction of 5-min period observed as in 

between terrace.  

  

P = 0.99 

P = 0.88 

P = 0.95 
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Figure 3.10: Fraction of 5-min observation periods matched to MOOnitor collar classification of 

burn patch usage (n = 6 animals). A is the fraction of 5-min period classified as in burn patch A 

by MOOnitor collar vs. fraction of 5-min period observed as in burn patch A. B is the fraction of 

5-min period classified as in burn patch B by MOOnitor collar vs. fraction of 5-min period 

observed as in burn patch B. C is the fraction of 5-min period classified in burn patch C by 

MOOnitor collar vs. fraction of 5-min period observed as in burn patch C. D is the fraction of 5-

min period classified in burn patch D by MOOnitor collar vs. fraction of 5-min period observed 

as in burn patch D. E is the fraction of 5-min period classified as in no burn patch by MOOnitor 

collar vs. fraction of 5-min period observed as in no burn patch.  

 

  

P < 0.001 P = 0.17 

P < 0.001 P = 0.04 

P = 0.99 
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APPENDICES 

 

 

 Appendix 1. MOOnitor Collar R Code 

 

> library(sf) 

Linking to GEOS 3.9.0, GDAL 3.2.1, PROJ 7.2.1 

> library(tidyverse) 

-- Attaching packages ------------------------------------------------------------------------- 

tidyverse 1.3.1 -- 

v ggplot2 3.3.5     v purrr   0.3.4 

v tibble  3.1.4     v dplyr   1.0.7 

v tidyr   1.1.3     v stringr 1.4.0 

v readr   2.0.1     v forcats 0.5.1 

-- Conflicts ---------------------------------------------------------------------------- 

tidyverse_conflicts() -- 

x dplyr::filter() masks stats::filter() 

x dplyr::lag()    masks stats::lag() 

> library(grid) 

> library(ggpubr) 

> GEOPKG    <- 

+   "./Data/Processed/CollarValidation_moonitor-val_5-min-lines.gpkg" 

> VALID_BUF <- 10 

> features.5min.val <- st_read(GEOPKG, 

+            layer = "features_act_loc_5min_val") 

Reading layer `features_act_loc_5min_val' from data source  

  `G:\.shortcut-targets-by-

id\1lEXMbRSSDgi0BDt1u631O6PxqzCMbcfg\Jeffus_Moffet\Data\Processed\CollarVali

dation_moonitor-val_5-min-lines.gpkg'  

  using driver `GPKG' 

Simple feature collection with 383 features and 62 fields 

Geometry type: GEOMETRY 

Dimension:     XY 

Bounding box:  xmin: 461588 ymin: 4030131 xmax: 463472.9 ymax: 4031875 

Projected CRS: WGS 84 / UTM zone 14N 

> ##### ACTIVITY  #### 

> ##### Resting #### 

> activity.summary.mult <- as.data.frame(features.5min.val) %>% 

+   select(aniID, obs.a.Ra.f, obs.a.G.f, obs.a.W.f,  

+          moon.a.R.f, moon.a.G.f, moon.a.W.f, 



127 
 

+          alg.a.R.f, alg.a.G.f, alg.a.W.f,) %>% 

+   arrange(aniID) %>% 

+   mutate(obs.a.Ra.mult = NA, 

+          moon.a.R.mult = NA, 

+          alg.a.R.mult = NA) %>% 

+   mutate(obs.a.Ra.mult = ifelse(obs.a.Ra.f == 0, 0, obs.a.Ra.mult), 

+          obs.a.Ra.mult = ifelse(obs.a.Ra.f > 0.00 & obs.a.Ra.f <= 0.25, 0.25, 

obs.a.Ra.mult),  

+          obs.a.Ra.mult = ifelse(obs.a.Ra.f > 0.25 & obs.a.Ra.f <= 0.50, 0.50, 

obs.a.Ra.mult), 

+          obs.a.Ra.mult = ifelse(obs.a.Ra.f > 0.50 & obs.a.Ra.f <= 0.75, 0.75, 

obs.a.Ra.mult), 

+          obs.a.Ra.mult = ifelse(obs.a.Ra.f > 0.75 & obs.a.Ra.f < 1, 0.99, obs.a.Ra.mult), 

+          obs.a.Ra.mult = ifelse(obs.a.Ra.f == 1, 1, obs.a.Ra.mult), 

+          moon.a.R.mult = ifelse(moon.a.R.f == 0, 0, moon.a.R.mult), 

+          moon.a.R.mult = ifelse(moon.a.R.f > 0.00 & moon.a.R.f <= 0.25, 0.25, 

moon.a.R.mult), 

+          moon.a.R.mult = ifelse(moon.a.R.f > 0.25 & moon.a.R.f <= 0.50, 0.50, 

moon.a.R.mult), 

+          moon.a.R.mult = ifelse(moon.a.R.f > 0.50 & moon.a.R.f <= 0.75, 0.75, 

moon.a.R.mult), 

+          moon.a.R.mult = ifelse(moon.a.R.f > 0.75 & moon.a.R.f < 1, 0.99, 

moon.a.R.mult), 

+          moon.a.R.mult = ifelse(moon.a.R.f == 1, 1, moon.a.R.mult),  

+          alg.a.R.mult = ifelse(alg.a.R.f == 0, 0, alg.a.R.mult), 

+          alg.a.R.mult = ifelse(alg.a.R.f > 0.00 & alg.a.R.f <= 0.25, 0.25, alg.a.R.mult), 

+          alg.a.R.mult = ifelse(alg.a.R.f > 0.25 & alg.a.R.f <= 0.50, 0.50, alg.a.R.mult), 

+          alg.a.R.mult = ifelse(alg.a.R.f > 0.50 & alg.a.R.f <= 0.75, 0.75, alg.a.R.mult), 

+          alg.a.R.mult = ifelse(alg.a.R.f > 0.75 & alg.a.R.f < 1, 0.99, alg.a.R.mult), 

+          alg.a.R.mult = ifelse(alg.a.R.f == 1, 1, alg.a.R.mult),  

+                   ) %>% 

+   select(!(obs.a.Ra.f:alg.a.W.f))  %>% 

+   mutate(obs.a.Ra.mult = as.factor(obs.a.Ra.mult), 

+          moon.a.R.mult = as.factor(moon.a.R.mult), 

+          alg.a.R.mult = as.factor(alg.a.R.mult)) 

> caret::confusionMatrix(activity.summary.mult$moon.a.R.mult, 

activity.summary.mult$obs.a.Ra.mult) 

Confusion Matrix and Statistics 

 

          Reference 

Prediction  0 0.25 0.5 0.75 0.99  1 

      0    71   22   2    0    0  2 

      0.25  9   48   7    4    4  6 

      0.5   1    2   8   11   10  6 

      0.75  0    1   1    5   27 30 

      0.99  0    0   1    0    4 45 
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      1     0    0   0    0    0  8 

 

Overall Statistics 

    Accuracy : 0.4299           

    95% CI : (0.3762, 0.4848) 

    No Information Rate : 0.2896           

    P-Value [Acc > NIR] : 3.243e-08                                          

     Kappa : 0.3167           

                                           

 Mcnemar's Test P-Value : NA               

Statistics by Class: 

 

                     Class: 0 Class: 0.25 Class: 0.5 Class: 0.75 Class: 0.99 Class: 1 

Sensitivity            0.8765      0.6575    0.42105     0.25000     0.08889  0.08247 

Specificity            0.8976      0.8855    0.90506     0.81270     0.84138  1.00000 

Pos Pred Value         0.7320      0.6154    0.21053     0.07812     0.08000  1.00000 

Neg Pred Value         0.9580      0.9027    0.96296     0.94465     0.85614  0.72783 

Prevalence             0.2418      0.2179    0.05672     0.05970     0.13433  0.28955 

Detection Rate         0.2119      0.1433    0.02388     0.01493     0.01194  0.02388 

Detection Prevalence   0.2896      0.2328    0.11343     0.19104     0.14925  0.02388 

Balanced Accuracy      0.8871      0.7715    0.66306     0.53135     0.46513  0.54124 

> caret::confusionMatrix(activity.summary.mult$alg.a.R.mult, 

activity.summary.mult$obs.a.Ra.mult) 

Confusion Matrix and Statistics 

 

          Reference 

Prediction  0 0.25 0.5 0.75 0.99  1 

      0    76   41   3    1    1  3 

      0.25  6   33   8    4    3  3 

      0.5   0    1   5   13   12  8 

      0.75  0    0   2    4   23 29 

      0.99  0    0   1    0   10 75 

      1     1    0   0    0    0 10 

 

Overall Statistics         

Accuracy : 0.367           

    95% CI : (0.3182, 0.418) 

    No Information Rate : 0.3404          

    P-Value [Acc > NIR] : 0.1507          

    Kappa : 0.2485          

                                          

 Mcnemar's Test P-Value : <2e-16          

Statistics by Class: 

 

                     Class: 0 Class: 0.25 Class: 0.5 Class: 0.75 Class: 0.99 Class: 1 

Sensitivity            0.9157     0.44000    0.26316     0.18182      0.2041  0.07812 
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Specificity            0.8328     0.92027    0.90476     0.84746      0.7676  0.99597 

Pos Pred Value         0.6080     0.57895    0.12821     0.06897      0.1163  0.90909 

Neg Pred Value         0.9721     0.86834    0.95846     0.94340      0.8655  0.67671 

Prevalence             0.2207     0.19947    0.05053     0.05851      0.1303  0.34043 

Detection Rate         0.2021     0.08777    0.01330     0.01064      0.0266  0.02660 

Detection Prevalence   0.3324     0.15160    0.10372     0.15426      0.2287  0.02926 

Balanced Accuracy      0.8742     0.68013    0.58396     0.51464      0.4858  0.53705 

> caret::confusionMatrix(activity.summary.mult$moon.a.R.mult, 

activity.summary.mult$alg.a.R.mult) 

Confusion Matrix and Statistics 

 

          Reference 

Prediction  0 0.25 0.5 0.75 0.99  1 

      0    93    2   0    0    0  0 

      0.25 25   48   4    0    0  0 

      0.5   3    3  28    2    1  1 

      0.75  0    0   3   54    4  0 

      0.99  0    0   0    0   49  1 

      1     0    0   0    0    1  7 

 

Overall Statistics 

   Accuracy : 0.848           

     95% CI : (0.8046, 0.885) 

    No Information Rate : 0.3678          

    P-Value [Acc > NIR] : < 2.2e-16       

    Kappa : 0.8067          

                                          

 Mcnemar's Test P-Value : NA              

Statistics by Class: 

 

                     Class: 0 Class: 0.25 Class: 0.5 Class: 0.75 Class: 0.99 Class: 1 

Sensitivity            0.7686      0.9057    0.80000      0.9643      0.8909  0.77778 

Specificity            0.9904      0.8949    0.96599      0.9744      0.9964  0.99687 

Pos Pred Value         0.9789      0.6234    0.73684      0.8852      0.9800  0.87500 

Neg Pred Value         0.8803      0.9802    0.97595      0.9925      0.9785  0.99377 

Prevalence             0.3678      0.1611    0.10638      0.1702      0.1672  0.02736 

Detection Rate         0.2827      0.1459    0.08511      0.1641      0.1489  0.02128 

Detection Prevalence   0.2888      0.2340    0.11550      0.1854      0.1520  0.02432 

Balanced Accuracy      0.8795      0.9003    0.88299      0.9693      0.9436  0.88733 

> ROM <- ggplot(features.5min.val, aes(x=obs.a.Ra.f, y=moon.a.R.f)) + 

geom_point(alpha = 0.7) + 

+   stat_smooth(method = "lm", #formula = y ~ x + I(x^2), 

+               size = 1, colour= "orangered1") + 

+   geom_abline(slope = 1, intercept = 0, linetype = "dashed") + 

+   theme_set(theme_light()) + 

+   labs(y= "classified \nas resting by MOOnitor",   
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+        x="observed as resting")  

> ROM 

`geom_smooth()` using formula 'y ~ x' 

Warning messages: 

1: Removed 48 rows containing non-finite values (stat_smooth).  

2: Removed 48 rows containing missing values (geom_point).  

> ROA <- ggplot(features.5min.val, aes(x=obs.a.Ra.f, y=alg.a.R.f)) + geom_point(alpha 

= 0.7) + 

+   stat_smooth(method = "lm", #formula = y ~ x + I(x^2), 

+               size = 1, colour= "orangered1") + 

+   geom_abline(slope = 1, intercept = 0, linetype = "dashed") + 

+   theme_set(theme_light()) + 

+   labs(y= "classified \nas resting by algorithm",  

+        x="observed as resting")  

> ROA 

`geom_smooth()` using formula 'y ~ x' 

Warning messages: 

1: Removed 7 rows containing non-finite values (stat_smooth).  

2: Removed 7 rows containing missing values (geom_point).  

> RAM <- ggplot(features.5min.val, aes(x=alg.a.R.f, y=moon.a.R.f)) + geom_point(alpha 

= 0.7) + 

+   stat_smooth(method = "lm", #formula = y ~ x + I(x^2), 

+               size = 1, colour= "orangered1") + 

+   geom_abline(slope = 1, intercept = 0, linetype = "dashed") + 

+   theme_set(theme_light()) + 

+   labs(y= "classified \nas resting by MOOnitor",  

+        x="classified as resting by algorithm") 

> RAM 

>ggarrange(ROM, ROA, RAM + rremove("x.text"),  

          labels = c("A)", "B)", "C)"), 

          ncol = 1, nrow = 3) 

>ggsave("Plots/resting_combined.png", height = 7.5, width = 8) 

> ##### Grazing #### 

> activity.summary.mult <- as.data.frame(features.5min.val) %>% 

+   select(aniID, obs.a.Ra.f, obs.a.G.f, obs.a.W.f,  

+          moon.a.R.f, moon.a.G.f, moon.a.W.f, 

+          alg.a.R.f, alg.a.G.f, alg.a.W.f,) %>% 

+   arrange(aniID) %>% 

+   mutate(obs.a.G.mult = NA, 

+          moon.a.G.mult = NA, 

+          alg.a.G.mult = NA) %>% 

+   mutate(obs.a.G.mult = ifelse(obs.a.G.f == 0, 0, obs.a.G.mult), 

+          obs.a.G.mult = ifelse(obs.a.G.f > 0.00 & obs.a.G.f <= 0.25, 0.25, obs.a.G.mult), 

+          obs.a.G.mult = ifelse(obs.a.G.f > 0.25 & obs.a.G.f <= 0.50, 0.50, obs.a.G.mult), 

+          obs.a.G.mult = ifelse(obs.a.G.f > 0.50 & obs.a.G.f <= 0.75, 0.75, obs.a.G.mult), 

+          obs.a.G.mult = ifelse(obs.a.G.f > 0.75 & obs.a.G.f < 1, 0.99, obs.a.G.mult), 
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+          obs.a.G.mult = ifelse(obs.a.G.f == 1, 1, obs.a.G.mult), 

+          moon.a.G.mult = ifelse(moon.a.G.f == 0, 0, moon.a.G.mult), 

+          moon.a.G.mult = ifelse(moon.a.G.f > 0.00 & moon.a.G.f <= 0.25, 0.25, 

moon.a.G.mult), 

+          moon.a.G.mult = ifelse(moon.a.G.f > 0.25 & moon.a.G.f <= 0.50, 0.50, 

moon.a.G.mult), 

+          moon.a.G.mult = ifelse(moon.a.G.f > 0.50 & moon.a.G.f <= 0.75, 0.75, 

moon.a.G.mult), 

+          moon.a.G.mult = ifelse(moon.a.G.f > 0.75 & moon.a.G.f < 1, 0.99, 

moon.a.G.mult), 

+          moon.a.G.mult = ifelse(moon.a.G.f == 1, 1, moon.a.G.mult),  

+          alg.a.G.mult = ifelse(alg.a.G.f == 0, 0, alg.a.G.mult), 

+          alg.a.G.mult = ifelse(alg.a.G.f > 0.00 & alg.a.G.f <= 0.25, 0.25, alg.a.G.mult), 

+          alg.a.G.mult = ifelse(alg.a.G.f > 0.25 & alg.a.G.f <= 0.50, 0.50, alg.a.G.mult), 

+          alg.a.G.mult = ifelse(alg.a.G.f > 0.50 & alg.a.G.f <= 0.75, 0.75, alg.a.G.mult), 

+          alg.a.G.mult = ifelse(alg.a.G.f > 0.75 & alg.a.G.f < 1, 0.99, alg.a.G.mult), 

+          alg.a.G.mult = ifelse(alg.a.G.f == 1, 1, alg.a.G.mult),  

+   ) %>% 

+   mutate(obs.a.G.mult = as.factor(obs.a.G.mult), 

+          moon.a.G.mult = as.factor(moon.a.G.mult), 

+          alg.a.G.mult = as.factor(alg.a.G.mult)) 

> caret::confusionMatrix(activity.summary.mult$moon.a.G.mult, 

activity.summary.mult$obs.a.G.mult) 

Confusion Matrix and Statistics 

 

          Reference 

Prediction  0 0.25 0.5 0.75 0.99  1 

      0    10    0   0    0    0  0 

      0.25 55    5   1    1    1  1 

      0.5  47   12   6    2    4  1 

      0.75 17    9  12   12   15 13 

      0.99  3    3   0   11   64 15 

      1     0    0   0    0    9  6 

 

Overall Statistics:            

    Accuracy : 0.3075           

    95% CI : (0.2585, 0.3599) 

    No Information Rate : 0.394            

    P-Value [Acc > NIR] : 0.9996           

    Kappa : 0.192            

                                           

 Mcnemar's Test P-Value : NA               

Statistics by Class: 

 

                     Class: 0 Class: 0.25 Class: 0.5 Class: 0.75 Class: 0.99 Class: 1 

Sensitivity           0.07576     0.17241    0.31579     0.46154      0.6882  0.16667 
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Specificity           1.00000     0.80719    0.79114     0.78641      0.8678  0.96990 

Pos Pred Value        1.00000     0.07813    0.08333     0.15385      0.6667  0.40000 

Neg Pred Value        0.62462     0.91144    0.95057     0.94553      0.8787  0.90625 

Prevalence            0.39403     0.08657    0.05672     0.07761      0.2776  0.10746 

Detection Rate        0.02985     0.01493    0.01791     0.03582      0.1910  0.01791 

Detection Prevalence  0.02985     0.19104    0.21493     0.23284      0.2866  0.04478 

Balanced Accuracy     0.53788     0.48980    0.55346     0.62397      0.7780  0.56828 

> caret::confusionMatrix(activity.summary.mult$alg.a.G.mult, 

activity.summary.mult$obs.a.G.mult) 

Confusion Matrix and Statistics 

 

          Reference 

Prediction  0 0.25 0.5 0.75 0.99  1 

      0    12    0   0    0    0  2 

      0.25 86    5   1    0    1  1 

      0.5  49   13   6    6    3  4 

      0.75 16    9   7    8   13  8 

      0.99  3    3   4   10   55 14 

      1     0    1   1    3   23  9 

 

Overall Statistics               

    Accuracy : 0.2527           

    95% CI : (0.2095, 0.2998) 

    No Information Rate : 0.4415           

    P-Value [Acc > NIR] : 1                

    Kappa : 0.1416           

                                           

 Mcnemar's Test P-Value : <2e-16           

Statistics by Class: 

 

                     Class: 0 Class: 0.25 Class: 0.5 Class: 0.75 Class: 0.99 Class: 1 

Sensitivity           0.07229     0.16129    0.31579     0.29630      0.5789  0.23684 

Specificity           0.99048     0.74203    0.78992     0.84814      0.8790  0.91716 

Pos Pred Value        0.85714     0.05319    0.07407     0.13115      0.6180  0.24324 

Neg Pred Value        0.57459     0.90780    0.95593     0.93968      0.8606  0.91445 

Prevalence            0.44149     0.08245    0.05053     0.07181      0.2527  0.10106 

Detection Rate        0.03191     0.01330    0.01596     0.02128      0.1463  0.02394 

Detection Prevalence  0.03723     0.25000    0.21543     0.16223      0.2367  0.09840 

Balanced Accuracy     0.53138     0.45166    0.55285     0.57222      0.7290  0.57700 

> caret::confusionMatrix(activity.summary.mult$moon.a.G.mult, 

activity.summary.mult$alg.a.G.mult) 

Confusion Matrix and Statistics 

 

          Reference 

Prediction  0 0.25 0.5 0.75 0.99  1 

      0     9    1   0    0    0  0 
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      0.25  1   56   6    0    0  0 

      0.5   0    5  57    8    0  0 

      0.75  2    1  15   45   10  3 

      0.99  0    0   0    4   71 20 

      1     0    0   0    0    1 14 

 

Overall Statistics            

    Accuracy : 0.766            

    95% CI : (0.7164, 0.8107) 

    No Information Rate : 0.2492           

    P-Value [Acc > NIR] : < 2.2e-16        

    Kappa : 0.7055           

                                           

 Mcnemar's Test P-Value : NA               

Statistics by Class: 

 

                     Class: 0 Class: 0.25 Class: 0.5 Class: 0.75 Class: 0.99 Class: 1 

Sensitivity           0.75000      0.8889     0.7308      0.7895      0.8659  0.37838 

Specificity           0.99685      0.9737     0.9482      0.8860      0.9028  0.99658 

Pos Pred Value        0.90000      0.8889     0.8143      0.5921      0.7474  0.93333 

Neg Pred Value        0.99060      0.9737     0.9189      0.9526      0.9530  0.92675 

Prevalence            0.03647      0.1915     0.2371      0.1733      0.2492  0.11246 

Detection Rate        0.02736      0.1702     0.1733      0.1368      0.2158  0.04255 

Detection Prevalence  0.03040      0.1915     0.2128      0.2310      0.2888  0.04559 

Balanced Accuracy     0.87342      0.9313     0.8395      0.8378      0.8843  0.68748 

## plot 

 

GOM <- ggplot(features.5min.val, aes(x=obs.a.G.f, y=moon.a.G.f)) + geom_point(alpha 

= 0.7) + 

  stat_smooth(method = "lm", #formula = y ~ x + I(x^2), 

              size = 1, colour= "orangered1") + 

  geom_abline(slope = 1, intercept = 0, linetype = "dashed") + 

  theme_set(theme_light()) + 

  labs(y= "classified \nas grazing by MOOnitor",  

       x="observed as grazing")  

GOM 

ggsave("Plots/obs_moon_grazing_PVALUE.png", height = 4, width = 5) 

 

GOA <- ggplot(features.5min.val, aes(x=obs.a.G.f, y=alg.a.G.f)) + geom_point(alpha = 

0.7) + 

  stat_smooth(method = "lm", #formula = y ~ x + I(x^2), 

              size = 1, colour= "orangered1") + 

  geom_abline(slope = 1, intercept = 0, linetype = "dashed") + 

  theme_set(theme_light()) + 

  labs(y= "classified \nas grazing by algorithm",  

       x="observed as grazing") 
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GOA 

ggsave("Plots/obs_alg_grazing_PVALUE.png", height = 4, width = 5) 

 

GAM <- ggplot(features.5min.val, aes(x=alg.a.G.f, y=moon.a.G.f)) + geom_point(alpha 

= 0.7) + 

  stat_smooth(method = "lm", #formula = y ~ x + I(x^2), 

              size = 1, colour= "orangered1") + 

  geom_abline(slope = 1, intercept = 0, linetype = "dashed") + 

  theme_set(theme_light()) + 

  labs(y= "classified \nas grazing by algorithm",  

       x = "classified as grazing by MOOnitor")  

GAM   

ggsave("Plots/alg_moon_grazing_PVALUE.png", height = 4, width = 5) 

#### combine plots #### 

ggarrange(GOM, GOA, GAM + rremove("x.text"), 

          labels = c("A)", "B)", "C)"), 

          ncol = 1, nrow = 3, 

          align = "v") 

ggsave("Plots/grazing_combined.png", height = 7.5, width = 8) 

> activity.summary.mult <- as.data.frame(features.5min.val) %>% 

+   select(aniID, obs.a.Ra.f, obs.a.W.f, obs.a.W.f,  

+          moon.a.R.f, moon.a.W.f, moon.a.W.f, 

+          alg.a.R.f, alg.a.W.f, alg.a.W.f,) %>% 

+   arrange(aniID) %>% 

+   mutate(obs.a.W.mult = NA, 

+          moon.a.W.mult = NA, 

+          alg.a.W.mult = NA) %>% 

+   mutate(obs.a.W.mult = ifelse(obs.a.W.f == 0, 0, obs.a.W.mult), 

+          obs.a.W.mult = ifelse(obs.a.W.f > 0.00 & obs.a.W.f <= 0.25, 0.25, obs.a.W.mult), 

+          obs.a.W.mult = ifelse(obs.a.W.f > 0.25 & obs.a.W.f <= 0.50, 0.50, obs.a.W.mult), 

+          obs.a.W.mult = ifelse(obs.a.W.f > 0.50 & obs.a.W.f <= 0.75, 0.75, obs.a.W.mult), 

+          obs.a.W.mult = ifelse(obs.a.W.f > 0.75 & obs.a.W.f < 1, 0.99, obs.a.W.mult), 

+          obs.a.W.mult = ifelse(obs.a.W.f == 1, 1, obs.a.W.mult), 

+          moon.a.W.mult = ifelse(moon.a.W.f == 0, 0, moon.a.W.mult), 

+          moon.a.W.mult = ifelse(moon.a.W.f > 0.00 & moon.a.W.f <= 0.25, 0.25, 

moon.a.W.mult), 

+          moon.a.W.mult = ifelse(moon.a.W.f > 0.25 & moon.a.W.f <= 0.50, 0.50, 

moon.a.W.mult), 

+          moon.a.W.mult = ifelse(moon.a.W.f > 0.50 & moon.a.W.f <= 0.75, 0.75, 

moon.a.W.mult), 

+          moon.a.W.mult = ifelse(moon.a.W.f > 0.75 & moon.a.W.f < 1, 0.99, 

moon.a.W.mult), 

+          moon.a.W.mult = ifelse(moon.a.W.f == 1, 1, moon.a.W.mult),  

+          alg.a.W.mult = ifelse(alg.a.W.f == 0, 0, alg.a.W.mult), 

+          alg.a.W.mult = ifelse(alg.a.W.f > 0.00 & alg.a.W.f <= 0.25, 0.25, alg.a.W.mult), 

+          alg.a.W.mult = ifelse(alg.a.W.f > 0.25 & alg.a.W.f <= 0.50, 0.50, alg.a.W.mult), 
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+          alg.a.W.mult = ifelse(alg.a.W.f > 0.50 & alg.a.W.f <= 0.75, 0.75, alg.a.W.mult), 

+          alg.a.W.mult = ifelse(alg.a.W.f > 0.75 & alg.a.W.f < 1, 0.99, alg.a.W.mult), 

+          alg.a.W.mult = ifelse(alg.a.W.f == 1, 1, alg.a.W.mult),  

+   ) %>% 

+   mutate(obs.a.W.mult = as.factor(obs.a.W.mult), 

+          moon.a.W.mult = as.factor(moon.a.W.mult), 

+          alg.a.W.mult = as.factor(alg.a.W.mult)) 

> caret::confusionMatrix(activity.summary.mult$moon.a.W.mult, 

activity.summary.mult$obs.a.W.mult) 

Confusion Matrix and Statistics 

 

          Reference 

Prediction   0 0.25 0.5 0.75 0.99 

      0     70   20   0    0    0 

      0.25  69  114  10    0    0 

      0.5   15   13   9    2    0 

      0.75   2    4   3    0    0 

      0.99   1    1   1    0    1 

 

Overall Statistics 

          

    Accuracy : 0.5791           

     95% CI : (0.5242, 0.6326) 

    No Information Rate : 0.4687           

    P-Value [Acc > NIR] : 3.248e-05        

    Kappa : 0.3037           

                                           

 Mcnemar's Test P-Value : NA               

Statistics by Class: 

 

                     Class: 0 Class: 0.25 Class: 0.5 Class: 0.75 Class: 0.99 

Sensitivity            0.4459      0.7500    0.39130     0.00000    1.000000 

Specificity            0.8876      0.5683    0.90385     0.97297    0.991018 

Pos Pred Value         0.7778      0.5907    0.23077     0.00000    0.250000 

Neg Pred Value         0.6449      0.7324    0.95270     0.99387    1.000000 

Prevalence             0.4687      0.4537    0.06866     0.00597    0.002985 

Detection Rate         0.2090      0.3403    0.02687     0.00000    0.002985 

Detection Prevalence   0.2687      0.5761    0.11642     0.02687    0.011940 

Balanced Accuracy      0.6668      0.6592    0.64758     0.48649    0.995509 

> caret::confusionMatrix(activity.summary.mult$alg.a.W.mult, 

activity.summary.mult$obs.a.W.mult) 

Error in confusionMatrix.default(activity.summary.mult$alg.a.W.mult, 

activity.summary.mult$obs.a.W.mult) :  

  the data cannot have more levels than the reference 

> caret::confusionMatrix(activity.summary.mult$moon.a.W.mult, 

activity.summary.mult$alg.a.W.mult) 
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Confusion Matrix and Statistics 

 

          Reference 

Prediction   0 0.25 0.5 0.75 0.99   1 

      0     88    1   0    0    0   0 

      0.25  43  143   5    0    0   0 

      0.5    3    7  18    7    0   1 

      0.75   0    0   2    6    1   0 

      0.99   0    0   0    2    2   0 

      1      0    0   0    0    0   0 

 

Overall Statistics         

    Accuracy : 0.7812           

    95% CI : (0.7325, 0.8246) 

    No Information Rate : 0.459            

    P-Value [Acc > NIR] : < 2.2e-16        

    Kappa : 0.6434           

                                           

 Mcnemar's Test P-Value : NA               

Statistics by Class: 

 

                     Class: 0 Class: 0.25 Class: 0.5 Class: 0.75 Class: 0.99 Class: 1 

Sensitivity            0.6567      0.9470    0.72000     0.40000    0.666667  0.00000 

Specificity            0.9949      0.7303    0.94079     0.99045    0.993865  1.00000 

Pos Pred Value         0.9888      0.7487    0.50000     0.66667    0.500000      NaN 

Neg Pred Value         0.8083      0.9420    0.97611     0.97188    0.996923  0.99696 

Prevalence             0.4073      0.4590    0.07599     0.04559    0.009119  0.00304 

Detection Rate         0.2675      0.4347    0.05471     0.01824    0.006079  0.00000 

Detection Prevalence   0.2705      0.5805    0.10942     0.02736    0.012158  0.00000 

Balanced Accuracy      0.8258      0.8387    0.83039     0.69522    0.830266  0.50000 

## plot 

 

WOM <- ggplot(features.5min.val, aes(x=obs.a.W.f, y=moon.a.W.f)) + 

geom_point(alpha = 0.7) + 

  stat_smooth(method = "lm", #formula = y ~ x + I(x^2), 

              size = 1, colour= "orangered1") + 

  geom_abline(slope = 1, intercept = 0, linetype = "dashed") + 

  theme_set(theme_light()) + 

  labs(y= "classified \nas walking by MOOnitor", 

       x="observed as walking") 

WOM 

ggsave("Plots/obs_moon_walking_PVALUE.png", height = 4, width = 5) 

 

WOA <- ggplot(features.5min.val, aes(x=obs.a.W.f, y=alg.a.W.f)) + geom_point(alpha = 

0.7) + 

  stat_smooth(method = "lm", #formula = y ~ x + I(x^2), 
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              size = 1, colour= "orangered1") + 

  geom_abline(slope = 1, intercept = 0, linetype = "dashed") + 

  theme_set(theme_light()) + 

  labs(y= "classified \nas walking by algorithm",  

       x="observed as walking")  

WOA 

  ggsave("Plots/obs_alg_walking.png", height = 4, width = 5) 

 

WAM <- ggplot(features.5min.val, aes(x=alg.a.W.f, y=moon.a.W.f)) + geom_point(alpha 

= 0.7) + 

  stat_smooth(method = "lm", #formula = y ~ x + I(x^2), 

              size = 1, colour= "orangered1") + 

  geom_abline(slope = 1, intercept = 0, linetype = "dashed") + 

  theme_set(theme_light()) + 

  labs(y= "classified \nas walking by MOOnitor",  

       x="classified as walking by algorithm") 

WAM 

ggsave("Plots/alg_moon_walking_PVALUE.png", height = 4, width = 5) 

#### combine plots ####   

ggarrange(WOM, WOA, WAM + rremove("x.text"), 

          labels = c("A)", "B)", "C)"), 

          ncol = 1, nrow = 3, 

          align = "v") 

ggsave("Plots/walking_combined.png", height = 7.5, width = 8) 

>   activity.summary.mult <- as.data.frame(features.5min.val) %>% 

+     select(aniID, assignPasture,  

+            obs.a.Ra.f:obs.a.W.f,  

+            moon.a.R.f:moon.a.W.f, 

+            alg.a.R.f:alg.a.W.f 

+            ) %>% 

+     arrange(aniID) %>% 

+     mutate(obs.dominant.act = NA, 

+            moon.dominant.act = NA) %>% 

+     mutate(obs.dominant.act.max = pmax(obs.a.Ra.f, obs.a.G.f, obs.a.W.f)) %>% 

+     mutate(obs.dominant.act = ifelse(obs.dominant.act.max == obs.a.Ra.f, "R", 

obs.dominant.act), 

+            obs.dominant.act = ifelse(obs.dominant.act.max == obs.a.G.f, "G", 

obs.dominant.act), 

+            obs.dominant.act = ifelse(obs.dominant.act.max == obs.a.W.f, "W", 

obs.dominant.act), 

+     ) %>% 

+     mutate(moon.dominant.act.max = pmax(moon.a.R.f, moon.a.G.f, moon.a.W.f)) 

%>% 

+     mutate(moon.dominant.act = ifelse(moon.dominant.act.max == moon.a.R.f, "R", 

moon.dominant.act), 
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+            moon.dominant.act = ifelse(moon.dominant.act.max == moon.a.G.f, "G", 

moon.dominant.act), 

+            moon.dominant.act = ifelse(moon.dominant.act.max == moon.a.W.f, "W", 

moon.dominant.act), 

+     ) %>% 

+     mutate(obs.dominant.act = as.factor(obs.dominant.act), 

+            moon.dominant.act = as.factor(moon.dominant.act)) 

>   caret::confusionMatrix(activity.summary.mult$moon.dominant.act, 

activity.summary.mult$obs.dominant.act) 

Confusion Matrix and Statistics 

 

          Reference 

Prediction   G   R   W 

         G 151  44   2 

         R   2 123   0 

         W   9   1   3 

 

Overall Statistics                    

    Accuracy : 0.8269          

    95% CI : (0.782, 0.8658) 

    No Information Rate : 0.5015          

    P-Value [Acc > NIR] : < 2.2e-16       

    Kappa : 0.672                                              

 Mcnemar's Test P-Value : 1.662e-09       

Statistics by Class: 

                     Class: G Class: R Class: W 

Sensitivity            0.9321   0.7321 0.600000 

Specificity            0.7341   0.9880 0.969697 

Pos Pred Value         0.7665   0.9840 0.230769 

Neg Pred Value         0.9203   0.7857 0.993789 

Prevalence             0.4836   0.5015 0.014925 

Detection Rate         0.4507   0.3672 0.008955 

Detection Prevalence   0.5881   0.3731 0.038806 

Balanced Accuracy      0.8331   0.8601 0.784848 

> ##### RESOURCE #### 

> #### water/salt #### 

> resource.summary.mult <- as.data.frame(features.5min.val) %>% 

+   select(aniID,  

+          rec, 

+          obs.r.ws.f, obs.r.sh.f, obs.r.fg.f,  

+          loc.r.ws.f, loc.r.sh.f, loc.r.fg.f) %>% 

+   arrange(aniID) %>% 

+   mutate(obs.r.ws.mult = NA, 

+          loc.r.ws.mult = NA) %>% 

+   mutate(obs.r.ws.mult = ifelse(obs.r.ws.f == 0, 0, obs.r.ws.mult), 
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+          obs.r.ws.mult = ifelse(obs.r.ws.f > 0.00 & obs.r.ws.f <= 0.25, 0.25, 

obs.r.ws.mult), 

+          obs.r.ws.mult = ifelse(obs.r.ws.f > 0.25 & obs.r.ws.f <= 0.50, 0.50, 

obs.r.ws.mult), 

+          obs.r.ws.mult = ifelse(obs.r.ws.f > 0.50 & obs.r.ws.f <= 0.75, 0.75, 

obs.r.ws.mult), 

+          obs.r.ws.mult = ifelse(obs.r.ws.f > 0.75 & obs.r.ws.f < 1, 0.99, obs.r.ws.mult), 

+          obs.r.ws.mult = ifelse(obs.r.ws.f == 1, 1, obs.r.ws.mult), 

+          loc.r.ws.mult = ifelse(loc.r.ws.f == 0, 0, loc.r.ws.mult), 

+          loc.r.ws.mult = ifelse(loc.r.ws.f > 0.00 & loc.r.ws.f <= 0.25, 0.25, loc.r.ws.mult), 

+          loc.r.ws.mult = ifelse(loc.r.ws.f > 0.25 & loc.r.ws.f <= 0.50, 0.50, loc.r.ws.mult), 

+          loc.r.ws.mult = ifelse(loc.r.ws.f > 0.50 & loc.r.ws.f <= 0.75, 0.75, loc.r.ws.mult), 

+          loc.r.ws.mult = ifelse(loc.r.ws.f > 0.75 & loc.r.ws.f < 1, 0.99, loc.r.ws.mult), 

+          loc.r.ws.mult = ifelse(loc.r.ws.f == 1, 1, loc.r.ws.mult),  

+   ) %>% 

+   mutate(obs.r.ws.mult = factor(obs.r.ws.mult, levels = c(0, 0.25, 0.5, 0.75, 0.99, 1)), 

+          loc.r.ws.mult = factor(loc.r.ws.mult, levels = c(0, 0.25, 0.5, 0.75, 0.99, 1))) 

> caret::confusionMatrix(resource.summary.mult$loc.r.ws.mult, 

resource.summary.mult$obs.r.ws.mult) 

Confusion Matrix and Statistics 

 

          Reference 

Prediction   0 0.25 0.5 0.75 0.99   1 

      0    307    0   1    3    1  12 

      0.25   3    0   0    0    0   6 

      0.5    0    0   1    0    0   2 

      0.75   0    0   0    0    0   3 

      0.99   0    0   0    0    0  10 

      1      4    0   1    1    0  27 

 

Overall Statistics          

    Accuracy : 0.877            

    95% CI : (0.8398, 0.9082) 

    No Information Rate : 0.822            

    P-Value [Acc > NIR] : 0.002169         

    Kappa : 0.5743           

                                           

 Mcnemar's Test P-Value : NA               

Statistics by Class: 

 

                     Class: 0 Class: 0.25 Class: 0.5 Class: 0.75 Class: 0.99 Class: 1 

Sensitivity            0.9777          NA   0.333333    0.000000    0.000000  0.45000 

Specificity            0.7500     0.97644   0.994723    0.992063    0.973753  0.98137 

Pos Pred Value         0.9475          NA   0.333333    0.000000    0.000000  0.81818 

Neg Pred Value         0.8793          NA   0.994723    0.989446    0.997312  0.90544 

Prevalence             0.8220     0.00000   0.007853    0.010471    0.002618  0.15707 
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Detection Rate         0.8037     0.00000   0.002618    0.000000    0.000000  0.07068 

Detection Prevalence   0.8482     0.02356   0.007853    0.007853    0.026178  0.08639 

Balanced Accuracy      0.8639          NA   0.664028    0.496032    0.486877  0.71568 

## plot 

WS <-ggplot(features.5min.val, aes(x=obs.r.ws.f, y=loc.r.ws.f)) + geom_point(alpha = 

0.7) + 

  stat_smooth(method = "lm", #formula = y ~ x + I(x^2), 

              size = 1, colour= "orangered1") + 

  geom_abline(slope = 1, intercept = 0, linetype = "dashed") + 

  theme_set(theme_light()) + 

  labs(y= "classified as in water/salt \nas location by MOOnitor",  

       x="observed as in water/salt location")  

WS 

ggsave("Plots/obs_loc_watersalt_PVALUE.png", height = 4, width = 5) 

> #### forage #### 

> resource.summary.mult <- as.data.frame(features.5min.val) %>% 

+   select(aniID, obs.r.fg.f, obs.pos.t.f, obs.r.fg.f,  

+          loc.r.fg.f, loc.pos.t.f, loc.r.fg.f, 

+          length.m) %>% 

+   arrange(aniID) %>% 

+   #  filter(length.m == 0) %>% 

+   mutate(obs.r.fg.mult = NA, 

+          loc.r.fg.mult = NA) %>% 

+   mutate(obs.r.fg.mult = ifelse(obs.r.fg.f == 0, 0, obs.r.fg.mult), 

+          obs.r.fg.mult = ifelse(obs.r.fg.f > 0.00 & obs.r.fg.f <= 0.25, 0.25, obs.r.fg.mult), 

+          obs.r.fg.mult = ifelse(obs.r.fg.f > 0.25 & obs.r.fg.f <= 0.50, 0.50, obs.r.fg.mult), 

+          obs.r.fg.mult = ifelse(obs.r.fg.f > 0.50 & obs.r.fg.f <= 0.75, 0.75, obs.r.fg.mult), 

+          obs.r.fg.mult = ifelse(obs.r.fg.f > 0.75 & obs.r.fg.f < 1, 0.99, obs.r.fg.mult), 

+          obs.r.fg.mult = ifelse(obs.r.fg.f == 1, 1, obs.r.fg.mult), 

+          loc.r.fg.mult = ifelse(loc.r.fg.f == 0, 0, loc.r.fg.mult), 

+          loc.r.fg.mult = ifelse(loc.r.fg.f > 0.00 & loc.r.fg.f <= 0.25, 0.25, loc.r.fg.mult), 

+          loc.r.fg.mult = ifelse(loc.r.fg.f > 0.25 & loc.r.fg.f <= 0.50, 0.50, loc.r.fg.mult), 

+          loc.r.fg.mult = ifelse(loc.r.fg.f > 0.50 & loc.r.fg.f <= 0.75, 0.75, loc.r.fg.mult), 

+          loc.r.fg.mult = ifelse(loc.r.fg.f > 0.75 & loc.r.fg.f < 1, 0.99, loc.r.fg.mult), 

+          loc.r.fg.mult = ifelse(loc.r.fg.f == 1, 1, loc.r.fg.mult),  

+   ) %>% 

+   mutate(obs.r.fg.mult = as.factor(obs.r.fg.mult), 

+          loc.r.fg.mult = as.factor(loc.r.fg.mult)) 

> caret::confusionMatrix(resource.summary.mult$loc.r.fg.mult, 

resource.summary.mult$obs.r.fg.mult) 

Confusion Matrix and Statistics 

 

          Reference 

Prediction   0 0.25 0.5 0.75 0.99   1 

      0     79    0   4    1    3  20 

      0.25   9    0   0    0    0   0 
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      0.5    3    0   2    0    1   4 

      0.75  11    3   1    1    0   0 

      0.99  13    3   1    1    5  10 

      1     22    3   5    2    4 168 

 

Overall Statistics              

    Accuracy : 0.6728           

     95% CI : (0.6231, 0.7199) 

    No Information Rate : 0.533            

    P-Value [Acc > NIR] : 2.205e-08        

    Kappa : 0.4602           

                                           

 Mcnemar's Test P-Value : NA               

Statistics by Class: 

 

                     Class: 0 Class: 0.25 Class: 0.5 Class: 0.75 Class: 0.99 Class: 1 

Sensitivity            0.5766     0.00000   0.153846    0.200000     0.38462   0.8317 

Specificity            0.8843     0.97568   0.978142    0.959893     0.92350   0.7966 

Pos Pred Value         0.7383     0.00000   0.200000    0.062500     0.15152   0.8235 

Neg Pred Value         0.7868     0.97568   0.970190    0.988981     0.97688   0.8057 

Prevalence             0.3615     0.02375   0.034301    0.013193     0.03430   0.5330 

Detection Rate         0.2084     0.00000   0.005277    0.002639     0.01319   0.4433 

Detection Prevalence   0.2823     0.02375   0.026385    0.042216     0.08707   0.5383 

Balanced Accuracy      0.7305     0.48784   0.565994    0.579947     0.65406   0.8141 

## plot 

 

FG <- ggplot(features.5min.val, aes(x=obs.r.fg.f, y=loc.r.fg.f)) + geom_point(alpha = 

0.7) + 

  stat_smooth(method = "lm", #formula = y ~ x + I(x^2), 

              size = 1, colour= "orangered1") + 

  geom_abline(slope = 1, intercept = 0, linetype = "dashed") + 

  theme_set(theme_light()) + 

  labs(y= "classified as in forage \n location by MOOnitor",  

       x="observed as in forage location") 

FG 

ggsave("Plots/obs_loc_forage_PVALUE.png", height = 4, width = 5) 

> #### shade #### 

> resource.summary.mult <- as.data.frame(features.5min.val) %>% 

+   select(aniID, obs.r.sh.f, obs.r.sh.f, obs.r.sh.f,  

+          loc.r.sh.f, loc.r.sh.f, loc.r.sh.f) %>% 

+   arrange(aniID) %>% 

+   mutate(obs.r.sh.mult = NA, 

+          loc.r.sh.mult = NA) %>% 

+   mutate(obs.r.sh.mult = ifelse(obs.r.sh.f == 0, 0, obs.r.sh.mult), 

+          obs.r.sh.mult = ifelse(obs.r.sh.f > 0.00 & obs.r.sh.f <= 0.25, 0.25, obs.r.sh.mult), 

+          obs.r.sh.mult = ifelse(obs.r.sh.f > 0.25 & obs.r.sh.f <= 0.50, 0.50, obs.r.sh.mult), 
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+          obs.r.sh.mult = ifelse(obs.r.sh.f > 0.50 & obs.r.sh.f <= 0.75, 0.75, obs.r.sh.mult), 

+          obs.r.sh.mult = ifelse(obs.r.sh.f > 0.75 & obs.r.sh.f < 1, 0.99, obs.r.sh.mult), 

+          obs.r.sh.mult = ifelse(obs.r.sh.f == 1, 1, obs.r.sh.mult), 

+          loc.r.sh.mult = ifelse(loc.r.sh.f == 0, 0, loc.r.sh.mult), 

+          loc.r.sh.mult = ifelse(loc.r.sh.f > 0.00 & loc.r.sh.f <= 0.25, 0.25, loc.r.sh.mult), 

+          loc.r.sh.mult = ifelse(loc.r.sh.f > 0.25 & loc.r.sh.f <= 0.50, 0.50, loc.r.sh.mult), 

+          loc.r.sh.mult = ifelse(loc.r.sh.f > 0.50 & loc.r.sh.f <= 0.75, 0.75, loc.r.sh.mult), 

+          loc.r.sh.mult = ifelse(loc.r.sh.f > 0.75 & loc.r.sh.f < 1, 0.99, loc.r.sh.mult), 

+          loc.r.sh.mult = ifelse(loc.r.sh.f == 1, 1, loc.r.sh.mult),  

+   ) %>% 

+   mutate(obs.r.sh.mult = as.factor(obs.r.sh.mult), 

+          loc.r.sh.mult = as.factor(loc.r.sh.mult)) 

> caret::confusionMatrix(resource.summary.mult$loc.r.sh.mult, 

resource.summary.mult$obs.r.sh.mult) 

Confusion Matrix and Statistics 

 

          Reference 

Prediction   0 0.25 0.5 0.75 0.99   1 

      0    261    4   1    2    3  24 

      0.25   5    5   1    0    3   7 

      0.5    0    1   0    1    2   7 

      0.75   2    0   0    2    0   3 

      0.99   0    0   0    0    0   1 

      1      5    3   0    2    0  38 

 

Overall Statistics                  

  Accuracy : 0.799           

   95% CI : (0.7553, 0.838) 

    No Information Rate : 0.7128          

    P-Value [Acc > NIR] : 7.497e-05       

    Kappa : 0.524           

                                          

 Mcnemar's Test P-Value : NA              

Statistics by Class: 

 

                     Class: 0 Class: 0.25 Class: 0.5 Class: 0.75 Class: 0.99 Class: 1 

Sensitivity            0.9560     0.38462   0.000000    0.285714    0.000000  0.47500 

Specificity            0.6909     0.95676   0.971129    0.986702    0.997333  0.96700 

Pos Pred Value         0.8847     0.23810   0.000000    0.285714    0.000000  0.79167 

Neg Pred Value         0.8636     0.97790   0.994624    0.986702    0.979058  0.87463 

Prevalence             0.7128     0.03394   0.005222    0.018277    0.020888  0.20888 

Detection Rate         0.6815     0.01305   0.000000    0.005222    0.000000  0.09922 

Detection Prevalence   0.7702     0.05483   0.028721    0.018277    0.002611  0.12533 

Balanced Accuracy      0.8235     0.67069   0.485564    0.636208    0.498667  0.72100 

## plot 
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SH <- ggplot(features.5min.val, aes(x=obs.r.sh.f, y=loc.r.sh.f)) + geom_point(alpha = 

0.7) + 

  stat_smooth(method = "lm", #formula = y ~ x + I(x^2), 

              size = 1, colour= "orangered1") + 

  geom_abline(slope = 1, intercept = 0, linetype = "dashed") + 

  theme_set(theme_light()) + 

  labs(y= "classified as in shade \n location by MOOnitor",  

       x="observed as in shade location") 

SH 

ggsave("Plots/obs_loc_shade_PVALUE.png", height = 4, width = 5) 

#### combine plots #### 

ggarrange(WS, FG, SH + rremove("x.text"), 

          labels = c("A)", "B)", "C)"), 

          ncol = 1, nrow = 3, 

          align = "v") 

ggsave("Plots/resources_combined.png", height = 7.5, width = 8) 

>   #### resource overall #### 

>  resource.summary.mult <- as.data.frame(features.5min.val) %>% 

+     select(aniID, assignPasture,  

+            obs.r.ws.f:obs.r.fg.f,  

+            loc.r.ws.f:loc.r.fg.f 

+     ) %>% 

+     arrange(aniID) %>% 

+     mutate(obs.dominant.res = NA, 

+            loc.dominant.res = NA) %>% 

+     mutate(obs.dominant.res.max = pmax(obs.r.ws.f, obs.r.sh.f, obs.r.fg.f)) %>% 

+     mutate(obs.dominant.res = ifelse(obs.dominant.res.max == obs.r.ws.f, "W", 

obs.dominant.res), 

+            obs.dominant.res = ifelse(obs.dominant.res.max == obs.r.sh.f, "S", 

obs.dominant.res), 

+            obs.dominant.res = ifelse(obs.dominant.res.max == obs.r.fg.f, "F", 

obs.dominant.res), 

+     ) %>% 

+     mutate(loc.dominant.res.max = pmax(loc.r.ws.f, loc.r.sh.f, loc.r.fg.f)) %>% 

+     mutate(loc.dominant.res = ifelse(loc.dominant.res.max == loc.r.ws.f, "W", 

loc.dominant.res), 

+            loc.dominant.res = ifelse(loc.dominant.res.max == loc.r.sh.f, "S", 

loc.dominant.res), 

+            loc.dominant.res = ifelse(loc.dominant.res.max == loc.r.fg.f, "F", 

loc.dominant.res), 

+     ) %>% 

+     mutate(obs.dominant.res = as.factor(obs.dominant.res), 

+            loc.dominant.res = as.factor(loc.dominant.res)) 

>   caret::confusionMatrix(resource.summary.mult$loc.dominant.res, 

resource.summary.mult$obs.dominant.res) 

Confusion Matrix and Statistics 
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          Reference 

Prediction   F   S   W 

         F 207  49  22 

         S  10  46   0 

         W   5   0  44 

 

Overall Statistics  

  Accuracy : 0.7755           

   95% CI : (0.7303, 0.8163) 

    No Information Rate : 0.5796           

    P-Value [Acc > NIR] : 6.087e-16        

    Kappa : 0.569            

                                           

 Mcnemar's Test P-Value : NA               

Statistics by Class: 

 

                     Class: F Class: S Class: W 

Sensitivity            0.9324   0.4842   0.6667 

Specificity            0.5590   0.9653   0.9842 

Pos Pred Value         0.7446   0.8214   0.8980 

Neg Pred Value         0.8571   0.8502   0.9341 

Prevalence             0.5796   0.2480   0.1723 

Detection Rate         0.5405   0.1201   0.1149 

Detection Prevalence   0.7258   0.1462   0.1279 

Balanced Accuracy      0.7457   0.7247   0.8254 

> ##### POSITION #### 

> #### terrace top #### 

> position.summary.mult <- as.data.frame(features.5min.val) %>% 

+   select(aniID, obs.pos.t.f, obs.pos.t.f, obs.pos.t.f,  

+          loc.pos.t.f, loc.pos.t.f, loc.pos.t.f) %>% 

+   arrange(aniID) %>% 

+   mutate(obs.pos.t.mult = NA, 

+          loc.pos.t.mult = NA) %>% 

+   mutate(obs.pos.t.mult = ifelse(obs.pos.t.f == 0, 0, obs.pos.t.mult), 

+          obs.pos.t.mult = ifelse(obs.pos.t.f > 0.00 & obs.pos.t.f <= 0.25, 0.25, 

obs.pos.t.mult), 

+          obs.pos.t.mult = ifelse(obs.pos.t.f > 0.25 & obs.pos.t.f <= 0.50, 0.50, 

obs.pos.t.mult), 

+          obs.pos.t.mult = ifelse(obs.pos.t.f > 0.50 & obs.pos.t.f <= 0.75, 0.75, 

obs.pos.t.mult), 

+          obs.pos.t.mult = ifelse(obs.pos.t.f > 0.75 & obs.pos.t.f < 1, 0.99, obs.pos.t.mult), 

+          obs.pos.t.mult = ifelse(obs.pos.t.f == 1, 1, obs.pos.t.mult), 

+          loc.pos.t.mult = ifelse(loc.pos.t.f == 0, 0, loc.pos.t.mult), 

+          loc.pos.t.mult = ifelse(loc.pos.t.f > 0.00 & loc.pos.t.f <= 0.25, 0.25, 

loc.pos.t.mult), 
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+          loc.pos.t.mult = ifelse(loc.pos.t.f > 0.25 & loc.pos.t.f <= 0.50, 0.50, 

loc.pos.t.mult), 

+          loc.pos.t.mult = ifelse(loc.pos.t.f > 0.50 & loc.pos.t.f <= 0.75, 0.75, 

loc.pos.t.mult), 

+          loc.pos.t.mult = ifelse(loc.pos.t.f > 0.75 & loc.pos.t.f < 1, 0.99, loc.pos.t.mult), 

+          loc.pos.t.mult = ifelse(loc.pos.t.f == 1, 1, loc.pos.t.mult),  

+   ) %>% 

+   mutate(obs.pos.t.mult = as.factor(obs.pos.t.mult), 

+          loc.pos.t.mult = as.factor(loc.pos.t.mult)) 

> caret::confusionMatrix(position.summary.mult$loc.pos.t.mult, 

position.summary.mult$obs.pos.t.mult) 

Confusion Matrix and Statistics 

 

          Reference 

Prediction   0 0.25 0.5 0.75 0.99   1 

      0    173    8   4    2    1  11 

      0.25  27   13   6    2    1   1 

      0.5    3    0   1    1    1   0 

      0.75   0    0   0    0    0   0 

      0.99   1    0   0    0    0   0 

      1      2    0   0    0    0   0 

 

Overall Statistics  

    Accuracy : 0.7248          

     95% CI : (0.666, 0.7784) 

    No Information Rate : 0.7984          

    P-Value [Acc > NIR] : 0.9983          

    Kappa : 0.2501          

                                          

 Mcnemar's Test P-Value : NA              

Statistics by Class: 

 

                     Class: 0 Class: 0.25 Class: 0.5 Class: 0.75 Class: 0.99 Class: 1 

Sensitivity            0.8398     0.61905   0.090909     0.00000    0.000000 0.000000 

Specificity            0.5000     0.84388   0.979757     1.00000    0.996078 0.991870 

Pos Pred Value         0.8693     0.26000   0.166667         NaN    0.000000 0.000000 

Neg Pred Value         0.4407     0.96154   0.960317     0.98062    0.988327 0.953125 

Prevalence             0.7984     0.08140   0.042636     0.01938    0.011628 0.046512 

Detection Rate         0.6705     0.05039   0.003876     0.00000    0.000000 0.000000 

Detection Prevalence   0.7713     0.19380   0.023256     0.00000    0.003876 0.007752 

Balanced Accuracy      0.6699     0.73146   0.535333     0.50000    0.498039 0.495935 

## plot 

 

TT <- ggplot(features.5min.val, aes(x=obs.pos.t.f, y=loc.pos.t.f)) + geom_point(alpha = 

0.7) + 

  stat_smooth(method = "lm", #formula = y ~ x + I(x^2), 
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              size = 1, colour= "orangered1") + 

  geom_abline(slope = 1, intercept = 0, linetype = "dashed") + 

  theme_set(theme_light()) + 

  labs(y= "classified as in terrace \n top by MOOnitor",  

       x=" observed as in terrace top") 

TT 

ggsave("Plots/obs_loc_terrace_top_PVALUE.png", height = 4, width = 5) 

> #### terrace bottom #### 

> position.summary.mult <- as.data.frame(features.5min.val) %>% 

+   select(aniID, obs.pos.b.f, obs.pos.b.f, obs.pos.b.f,  

+          loc.pos.b.f, loc.pos.b.f, loc.pos.b.f) %>% 

+   arrange(aniID) %>% 

+   mutate(obs.pos.b.mult = NA, 

+          loc.pos.b.mult = NA) %>% 

+   mutate(obs.pos.b.mult = ifelse(obs.pos.b.f == 0, 0, obs.pos.b.mult), 

+          obs.pos.b.mult = ifelse(obs.pos.b.f > 0.00 & obs.pos.b.f <= 0.25, 0.25, 

obs.pos.b.mult), 

+          obs.pos.b.mult = ifelse(obs.pos.b.f > 0.25 & obs.pos.b.f <= 0.50, 0.50, 

obs.pos.b.mult), 

+          obs.pos.b.mult = ifelse(obs.pos.b.f > 0.50 & obs.pos.b.f <= 0.75, 0.75, 

obs.pos.b.mult), 

+          obs.pos.b.mult = ifelse(obs.pos.b.f > 0.75 & obs.pos.b.f < 1, 0.99, 

obs.pos.b.mult), 

+          obs.pos.b.mult = ifelse(obs.pos.b.f == 1, 1, obs.pos.b.mult), 

+          loc.pos.b.mult = ifelse(loc.pos.b.f == 0, 0, loc.pos.b.mult), 

+          loc.pos.b.mult = ifelse(loc.pos.b.f > 0.00 & loc.pos.b.f <= 0.25, 0.25, 

loc.pos.b.mult), 

+          loc.pos.b.mult = ifelse(loc.pos.b.f > 0.25 & loc.pos.b.f <= 0.50, 0.50, 

loc.pos.b.mult), 

+          loc.pos.b.mult = ifelse(loc.pos.b.f > 0.50 & loc.pos.b.f <= 0.75, 0.75, 

loc.pos.b.mult), 

+          loc.pos.b.mult = ifelse(loc.pos.b.f > 0.75 & loc.pos.b.f < 1, 0.99, loc.pos.b.mult), 

+          loc.pos.b.mult = ifelse(loc.pos.b.f == 1, 1, loc.pos.b.mult),  

+   ) %>% 

+   mutate(obs.pos.b.mult = as.factor(obs.pos.b.mult), 

+          loc.pos.b.mult = as.factor(loc.pos.b.mult)) 

> caret::confusionMatrix(position.summary.mult$loc.pos.b.mult, 

position.summary.mult$obs.pos.b.mult) 

Confusion Matrix and Statistics 

 

          Reference 

Prediction   0 0.25 0.5 0.75 0.99   1 

      0    169    3   9    3    0   6 

      0.25  16   16  11    4    6   0 

      0.5    5    0   0    0    0   0 

      0.75   3    0   0    1    0   0 
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      0.99   2    0   0    0    0   1 

      1      2    1   0    0    0   0 

 

Overall Statistics  

 Accuracy : 0.7209           

   95% CI : (0.6619, 0.7748) 

    No Information Rate : 0.7636           

    P-Value [Acc > NIR] : 0.9519           

    Kappa : 0.3343           

                                           

 Mcnemar's Test P-Value : NA               

Statistics by Class: 

 

                     Class: 0 Class: 0.25 Class: 0.5 Class: 0.75 Class: 0.99 Class: 1 

Sensitivity            0.8579     0.80000    0.00000    0.125000     0.00000  0.00000 

Specificity            0.6557     0.84454    0.97899    0.988000     0.98810  0.98805 

Pos Pred Value         0.8895     0.30189    0.00000    0.250000     0.00000  0.00000 

Neg Pred Value         0.5882     0.98049    0.92095    0.972441     0.97647  0.97255 

Prevalence             0.7636     0.07752    0.07752    0.031008     0.02326  0.02713 

Detection Rate         0.6550     0.06202    0.00000    0.003876     0.00000  0.00000 

Detection Prevalence   0.7364     0.20543    0.01938    0.015504     0.01163  0.01163 

Balanced Accuracy      0.7568     0.82227    0.48950    0.556500     0.49405  0.49402 

 

## plot 

 

TB <-ggplot(features.5min.val, aes(x=obs.pos.b.f, y=loc.pos.b.f)) + geom_point(alpha = 

0.7) + 

  stat_smooth(method = "lm", #formula = y ~ x + I(x^2), 

              size = 1, colour= "orangered1") + 

  geom_abline(slope = 1, intercept = 0, linetype = "dashed") + 

  theme_set(theme_light()) + 

  labs(y= "classified as in terrace \n bottom by MOOnitor",  

       x="observed as in terrace bottom")  

TB 

ggsave("Plots/obs_loc_terrace_bottom_PVALUE.png", height = 4, width = 5) 

> #### terrace middle #### 

> position.summary.mult <- as.data.frame(features.5min.val) %>% 

+   select(aniID, obs.pos.i.f, obs.pos.i.f, obs.pos.i.f,  

+          loc.pos.i.f, loc.pos.i.f, loc.pos.i.f) %>% 

+   arrange(aniID) %>% 

+   mutate(obs.pos.i.mult = NA, 

+          loc.pos.i.mult = NA) %>% 

+   mutate(obs.pos.i.mult = ifelse(obs.pos.i.f == 0, 0, obs.pos.i.mult), 

+          obs.pos.i.mult = ifelse(obs.pos.i.f > 0.00 & obs.pos.i.f <= 0.25, 0.25, 

obs.pos.i.mult), 
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+          obs.pos.i.mult = ifelse(obs.pos.i.f > 0.25 & obs.pos.i.f <= 0.50, 0.50, 

obs.pos.i.mult), 

+          obs.pos.i.mult = ifelse(obs.pos.i.f > 0.50 & obs.pos.i.f <= 0.75, 0.75, 

obs.pos.i.mult), 

+          obs.pos.i.mult = ifelse(obs.pos.i.f > 0.75 & obs.pos.i.f < 1, 0.99, obs.pos.i.mult), 

+          obs.pos.i.mult = ifelse(obs.pos.i.f == 1, 1, obs.pos.i.mult), 

+          loc.pos.i.mult = ifelse(loc.pos.i.f == 0, 0, loc.pos.i.mult), 

+          loc.pos.i.mult = ifelse(loc.pos.i.f > 0.00 & loc.pos.i.f <= 0.25, 0.25, 

loc.pos.i.mult), 

+          loc.pos.i.mult = ifelse(loc.pos.i.f > 0.25 & loc.pos.i.f <= 0.50, 0.50, 

loc.pos.i.mult), 

+          loc.pos.i.mult = ifelse(loc.pos.i.f > 0.50 & loc.pos.i.f <= 0.75, 0.75, 

loc.pos.i.mult), 

+          loc.pos.i.mult = ifelse(loc.pos.i.f > 0.75 & loc.pos.i.f < 1, 0.99, loc.pos.i.mult), 

+          loc.pos.i.mult = ifelse(loc.pos.i.f == 1, 1, loc.pos.i.mult),  

+   ) %>% 

+   mutate(obs.pos.i.mult = as.factor(obs.pos.i.mult), 

+          loc.pos.i.mult = as.factor(loc.pos.i.mult)) 

> caret::confusionMatrix(position.summary.mult$loc.pos.i.mult, 

position.summary.mult$obs.pos.i.mult) 

Confusion Matrix and Statistics 

 

          Reference 

Prediction  0 0.25 0.5 0.75 0.99  1 

      0    11    0   1    0    1 12 

      0.25  3    0   0    0    0  2 

      0.5   3    0   2    0    0  2 

      0.75 10    6   1    2    4  8 

      0.99 11    3   6    8    7  7 

      1    52    3   3    8    2 79 

 

Overall Statistics  

Accuracy : 0.393            

  95% CI : (0.3329, 0.4556) 

    No Information Rate : 0.428            

    P-Value [Acc > NIR] : 0.8848           

Kappa : 0.1347           

                                           

 Mcnemar's Test P-Value : NA               

Statistics by Class: 

 

                     Class: 0 Class: 0.25 Class: 0.5 Class: 0.75 Class: 0.99 Class: 1 

Sensitivity           0.12222     0.00000   0.153846    0.111111     0.50000   0.7182 

Specificity           0.91617     0.97959   0.979508    0.878661     0.85597   0.5374 

Pos Pred Value        0.44000     0.00000   0.285714    0.064516     0.16667   0.5374 

Neg Pred Value        0.65948     0.95238   0.956000    0.929204     0.96744   0.7182 
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Prevalence            0.35019     0.04669   0.050584    0.070039     0.05447   0.4280 

Detection Rate        0.04280     0.00000   0.007782    0.007782     0.02724   0.3074 

Detection Prevalence  0.09728     0.01946   0.027237    0.120623     0.16342   0.5720 

Balanced Accuracy     0.51919     0.48980   0.566677    0.494886     0.67798   0.6278 

## plot 

 

IBT <- ggplot(features.5min.val, aes(x=obs.pos.i.f, y=loc.pos.i.f)) + geom_point(alpha = 

0.7) + 

  stat_smooth(method = "lm", #formula = y ~ x + I(x^2), 

              size = 1, colour= "orangered1") + 

  geom_abline(slope = 1, intercept = 0, linetype = "dashed") + 

  theme_set(theme_light()) + 

  labs(y= "classified as in between\n terrace by MOOnitor",  

       x="observed as in between terrace")  

IBT 

ggsave("Plots/obs_loc_terrace_middle_PVALUE.png", height = 4, width = 5) 

####combine plots #### 

ggarrange(TT, TB, IBT + rremove("x.text"), 

          labels = c("A)", "B)", "C)"), 

          ncol = 1, nrow = 3, 

          align = "v") 

ggsave("Plots/terraces_combined.png", height = 7.5, width = 8) 

>   #### TERRACE OVERALL #### 

>   position.summary.mult <- as.data.frame(features.5min.val) %>% 

+     select(aniID, assignPasture,  

+            obs.pos.i.f, obs.pos.b.f, obs.pos.t.f,  

+            loc.pos.i.f, loc.pos.b.f, loc.pos.t.f 

+     ) %>% 

+     arrange(aniID) %>% 

+     mutate(obs.dominant.pos = NA, 

+            loc.dominant.pos = NA) %>% 

+     mutate(obs.dominant.pos.max = pmax(obs.pos.i.f, obs.pos.b.f, obs.pos.t.f)) %>% 

+     mutate(obs.dominant.pos = ifelse(obs.dominant.pos.max == obs.pos.i.f, "I", 

obs.dominant.pos), 

+            obs.dominant.pos = ifelse(obs.dominant.pos.max == obs.pos.b.f, "B", 

obs.dominant.pos), 

+            obs.dominant.pos = ifelse(obs.dominant.pos.max == obs.pos.t.f, "T", 

obs.dominant.pos), 

+     ) %>% 

+     mutate(loc.dominant.pos.max = pmax(loc.pos.i.f, loc.pos.b.f, loc.pos.t.f)) %>% 

+     mutate(loc.dominant.pos = ifelse(loc.dominant.pos.max == loc.pos.i.f, "I", 

loc.dominant.pos), 

+            loc.dominant.pos = ifelse(loc.dominant.pos.max == loc.pos.b.f, "B", 

loc.dominant.pos), 

+            loc.dominant.pos = ifelse(loc.dominant.pos.max == loc.pos.t.f, "T", 

loc.dominant.pos), 
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+     ) %>% 

+     mutate(obs.dominant.pos = as.factor(obs.dominant.pos), 

+            loc.dominant.pos = as.factor(loc.dominant.pos)) 

>   caret::confusionMatrix(position.summary.mult$loc.dominant.pos, 

position.summary.mult$obs.dominant.pos) 

Confusion Matrix and Statistics 

 

          Reference 

Prediction   B   I   T 

         B   2   4   4 

         I  22 136  69 

         T   0  12   9 

 

Overall Statistics 

Accuracy : 0.5698          

 95% CI : (0.5069, 0.631) 

    No Information Rate : 0.5891          

    P-Value [Acc > NIR] : 0.7574          

Kappa : 0.0485                                                

 Mcnemar's Test P-Value : 3.171e-12       

Statistics by Class: 

                     Class: B Class: I Class: T 

Sensitivity          0.083333   0.8947  0.10976 

Specificity          0.965812   0.1415  0.93182 

Pos Pred Value       0.200000   0.5991  0.42857 

Neg Pred Value       0.911290   0.4839  0.69198 

Prevalence           0.093023   0.5891  0.31783 

Detection Rate       0.007752   0.5271  0.03488 

Detection Prevalence 0.038760   0.8798  0.08140 

Balanced Accuracy    0.524573   0.5181  0.52079 

> ##### PATCH  #### 

> #### patch A #### 

>   patch.summary.mult <- as.data.frame(features.5min.val) %>% 

+     select(aniID, assignPasture, 

+            obs.pat.A.f, obs.pat.A.f, obs.pat.A.f,  

+            loc.pat.A.f, loc.pat.A.f, loc.pat.A.f) %>% 

+     arrange(aniID) %>% 

+     mutate(obs.pat.A.mult = NA, 

+            loc.pat.A.mult = NA) %>% 

+     filter(assignPasture %in% c("51S", "56S", "57N")) %>% 

+     mutate(obs.pat.A.mult = ifelse(obs.pat.A.f == 0, 0, obs.pat.A.mult), 

+            obs.pat.A.mult = ifelse(obs.pat.A.f > 0.00 & obs.pat.A.f <= 0.25, 0.25, 

obs.pat.A.mult), 

+            obs.pat.A.mult = ifelse(obs.pat.A.f > 0.25 & obs.pat.A.f <= 0.50, 0.50, 

obs.pat.A.mult), 
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+            obs.pat.A.mult = ifelse(obs.pat.A.f > 0.50 & obs.pat.A.f <= 0.75, 0.75, 

obs.pat.A.mult), 

+            obs.pat.A.mult = ifelse(obs.pat.A.f > 0.75 & obs.pat.A.f < 1, 0.99, 

obs.pat.A.mult), 

+            obs.pat.A.mult = ifelse(obs.pat.A.f == 1, 1, obs.pat.A.mult), 

+            loc.pat.A.mult = ifelse(loc.pat.A.f == 0, 0, loc.pat.A.mult), 

+            loc.pat.A.mult = ifelse(loc.pat.A.f > 0.00 & loc.pat.A.f <= 0.25, 0.25, 

loc.pat.A.mult), 

+            loc.pat.A.mult = ifelse(loc.pat.A.f > 0.25 & loc.pat.A.f <= 0.50, 0.50, 

loc.pat.A.mult), 

+            loc.pat.A.mult = ifelse(loc.pat.A.f > 0.50 & loc.pat.A.f <= 0.75, 0.75, 

loc.pat.A.mult), 

+            loc.pat.A.mult = ifelse(loc.pat.A.f > 0.75 & loc.pat.A.f < 1, 0.99, 

loc.pat.A.mult), 

+            loc.pat.A.mult = ifelse(loc.pat.A.f == 1, 1, loc.pat.A.mult),  

+     ) %>% 

+     mutate(obs.pat.A.mult = factor(obs.pat.A.mult, levels = c(0, 0.25, 0.5, 0.75, 0.99, 

1)), 

+            loc.pat.A.mult = factor(loc.pat.A.mult, levels = c(0, 0.25, 0.5, 0.75, 0.99, 1))) 

>   caret::confusionMatrix(patch.summary.mult$loc.pat.A.mult, 

patch.summary.mult$obs.pat.A.mult) 

Confusion Matrix and Statistics 

 

          Reference 

Prediction   0 0.25 0.5 0.75 0.99   1 

      0    101    0   0    1    1   3 

      0.25   2    0   0    0    0   0 

      0.5    0    0   0    0    0   0 

      0.75   2    0   0    0    0   2 

      0.99   0    0   1    0    0   5 

      1      6    0   1    1    1  77 

 

Overall Statistics 

Accuracy : 0.8725          

95% CI : (0.8189, 0.915) 

    No Information Rate : 0.5441          

    P-Value [Acc > NIR] : < 2.2e-16       

Kappa : 0.7627          

                                          

 Mcnemar's Test P-Value : NA              

 

Statistics by Class: 

 

                     Class: 0 Class: 0.25 Class: 0.5 Class: 0.75 Class: 0.99 Class: 1 

Sensitivity            0.9099          NA   0.000000    0.000000    0.000000   0.8851 

Specificity            0.9462    0.990196   1.000000    0.980198    0.970297   0.9231 
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Pos Pred Value         0.9528          NA        NaN    0.000000    0.000000   0.8953 

Neg Pred Value         0.8980          NA   0.990196    0.990000    0.989899   0.9153 

Prevalence             0.5441    0.000000   0.009804    0.009804    0.009804   0.4265 

Detection Rate         0.4951    0.000000   0.000000    0.000000    0.000000   0.3775 

Detection Prevalence   0.5196    0.009804   0.000000    0.019608    0.029412   0.4216 

Balanced Accuracy      0.9281          NA   0.500000    0.490099    0.485149   0.9041 

## plot 

   

PA <- ggplot(features.5min.val, aes(x=obs.pat.A.f, y=loc.pat.A.f)) + geom_point(alpha = 

0.7) + 

    stat_smooth(method = "lm", #formula = y ~ x + I(x^2), 

                size = 1, colour= "orangered1") + 

    geom_abline(slope = 1, intercept = 0, linetype = "dashed") + 

    theme_set(theme_light()) + 

    labs(y= "classified as in burn \n patch A by MOOnitor",  

         x="observed as in burn patch A")  

PA 

ggsave("Plots/obs_loc_patch_A_PVALUE.png", height = 4, width = 5) 

> #### patch B ####   

>   patch.summary.mult <- as.data.frame(features.5min.val) %>% 

+     select(aniID, assignPasture, 

+            obs.pat.B.f, obs.pat.B.f, obs.pat.B.f,  

+            loc.pat.B.f, loc.pat.B.f, loc.pat.B.f) %>% 

+     arrange(aniID) %>% 

+     mutate(obs.pat.B.mult = NA, 

+            loc.pat.B.mult = NA) %>% 

+     filter(assignPasture %in% c("51S", "56S", "57N")) %>% 

+     mutate(obs.pat.B.mult = ifelse(obs.pat.B.f == 0, 0, obs.pat.B.mult), 

+            obs.pat.B.mult = ifelse(obs.pat.B.f > 0.00 & obs.pat.B.f <= 0.25, 0.25, 

obs.pat.B.mult), 

+            obs.pat.B.mult = ifelse(obs.pat.B.f > 0.25 & obs.pat.B.f <= 0.50, 0.50, 

obs.pat.B.mult), 

+            obs.pat.B.mult = ifelse(obs.pat.B.f > 0.50 & obs.pat.B.f <= 0.75, 0.75, 

obs.pat.B.mult), 

+            obs.pat.B.mult = ifelse(obs.pat.B.f > 0.75 & obs.pat.B.f < 1, 0.99, 

obs.pat.B.mult), 

+            obs.pat.B.mult = ifelse(obs.pat.B.f == 1, 1, obs.pat.B.mult), 

+            loc.pat.B.mult = ifelse(loc.pat.B.f == 0, 0, loc.pat.B.mult), 

+            loc.pat.B.mult = ifelse(loc.pat.B.f > 0.00 & loc.pat.B.f <= 0.25, 0.25, 

loc.pat.B.mult), 

+            loc.pat.B.mult = ifelse(loc.pat.B.f > 0.25 & loc.pat.B.f <= 0.50, 0.50, 

loc.pat.B.mult), 

+            loc.pat.B.mult = ifelse(loc.pat.B.f > 0.50 & loc.pat.B.f <= 0.75, 0.75, 

loc.pat.B.mult), 

+            loc.pat.B.mult = ifelse(loc.pat.B.f > 0.75 & loc.pat.B.f < 1, 0.99, loc.pat.B.mult), 

+            loc.pat.B.mult = ifelse(loc.pat.B.f == 1, 1, loc.pat.B.mult),  
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+     ) %>% 

+     mutate(obs.pat.B.mult = factor(obs.pat.B.mult, levels = c(0, 0.25, 0.5, 0.75, 0.99, 1)), 

+            loc.pat.B.mult = factor(loc.pat.B.mult, levels = c(0, 0.25, 0.5, 0.75, 0.99, 1))) 

>   caret::confusionMatrix(patch.summary.mult$loc.pat.B.mult, 

patch.summary.mult$obs.pat.B.mult) 

Confusion Matrix and Statistics 

 

          Reference 

Prediction   0 0.25 0.5 0.75 0.99   1 

      0    185    0   1    0    0   3 

      0.25   2    0   0    0    0   0 

      0.5    1    0   0    0    0   1 

      0.75   0    0   0    0    1   0 

      0.99   0    0   0    0    0   0 

      1      1    1   0    0    0   8 

 

Overall Statistics 

Accuracy : 0.9461           

95% CI : (0.9056, 0.9728) 

    No Information Rate : 0.9265           

    P-Value [Acc > NIR] : 0.1747           

Kappa : 0.6112           

                                           

 Mcnemar's Test P-Value : NA               

Statistics by Class: 

 

                     Class: 0 Class: 0.25 Class: 0.5 Class: 0.75 Class: 0.99 Class: 1 

Sensitivity            0.9788    0.000000   0.000000          NA    0.000000  0.66667 

Specificity            0.7333    0.990148   0.990148    0.995098    1.000000  0.98958 

Pos Pred Value         0.9788    0.000000   0.000000          NA         NaN  0.80000 

Neg Pred Value         0.7333    0.995050   0.995050          NA    0.995098  0.97938 

Prevalence             0.9265    0.004902   0.004902    0.000000    0.004902  0.05882 

Detection Rate         0.9069    0.000000   0.000000    0.000000    0.000000  0.03922 

Detection Prevalence   0.9265    0.009804   0.009804    0.004902    0.000000  0.04902 

Balanced Accuracy      0.8561    0.495074   0.495074          NA    0.500000  0.82812 

## plot 

   

B <-  ggplot(features.5min.val, aes(x=obs.pat.B.f, y=loc.pat.B.f)) + geom_point(alpha = 

0.7) + 

    stat_smooth(method = "lm", #formula = y ~ x + I(x^2), 

                size = 1, colour= "orangered1") + 

    geom_abline(slope = 1, intercept = 0, linetype = "dashed") + 

    theme_set(theme_light()) + 

    labs(y= "classified as in burn \n patch B by MOOnitor",  

         x="observed as in burn patch B") 

B 
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ggsave("Plots/obs_loc_patch_B_PVALUE.png", height = 4, width = 5) 

> #### patch C #### 

>   patch.summary.mult <- as.data.frame(features.5min.val) %>% 

+     select(aniID, assignPasture, 

+            obs.pat.C.f, obs.pat.C.f, obs.pat.C.f,  

+            loc.pat.C.f, loc.pat.C.f, loc.pat.C.f) %>% 

+     arrange(aniID) %>% 

+     mutate(obs.pat.C.mult = NA, 

+            loc.pat.C.mult = NA) %>% 

+     filter(assignPasture %in% c("51S", "56S", "57N")) %>% 

+     mutate(obs.pat.C.mult = ifelse(obs.pat.C.f == 0, 0, obs.pat.C.mult), 

+            obs.pat.C.mult = ifelse(obs.pat.C.f > 0.00 & obs.pat.C.f <= 0.25, 0.25, 

obs.pat.C.mult), 

+            obs.pat.C.mult = ifelse(obs.pat.C.f > 0.25 & obs.pat.C.f <= 0.50, 0.50, 

obs.pat.C.mult), 

+            obs.pat.C.mult = ifelse(obs.pat.C.f > 0.50 & obs.pat.C.f <= 0.75, 0.75, 

obs.pat.C.mult), 

+            obs.pat.C.mult = ifelse(obs.pat.C.f > 0.75 & obs.pat.C.f < 1, 0.99, 

obs.pat.C.mult), 

+            obs.pat.C.mult = ifelse(obs.pat.C.f == 1, 1, obs.pat.C.mult), 

+            loc.pat.C.mult = ifelse(loc.pat.C.f == 0, 0, loc.pat.C.mult), 

+            loc.pat.C.mult = ifelse(loc.pat.C.f > 0.00 & loc.pat.C.f <= 0.25, 0.25, 

loc.pat.C.mult), 

+            loc.pat.C.mult = ifelse(loc.pat.C.f > 0.25 & loc.pat.C.f <= 0.50, 0.50, 

loc.pat.C.mult), 

+            loc.pat.C.mult = ifelse(loc.pat.C.f > 0.50 & loc.pat.C.f <= 0.75, 0.75, 

loc.pat.C.mult), 

+            loc.pat.C.mult = ifelse(loc.pat.C.f > 0.75 & loc.pat.C.f < 1, 0.99, loc.pat.C.mult), 

+            loc.pat.C.mult = ifelse(loc.pat.C.f == 1, 1, loc.pat.C.mult),  

+     ) %>% 

+     mutate(obs.pat.C.mult = factor(obs.pat.C.mult, levels = c(0, 0.25, 0.5, 0.75, 0.99, 1)), 

+            loc.pat.C.mult = factor(loc.pat.C.mult, levels = c(0, 0.25, 0.5, 0.75, 0.99, 1))) 

>   caret::confusionMatrix(patch.summary.mult$loc.pat.C.mult, 

patch.summary.mult$obs.pat.C.mult) 

Confusion Matrix and Statistics 

 

          Reference 

Prediction   0 0.25 0.5 0.75 0.99   1 

      0    187    0   0    0    1   4 

      0.25   0    1   0    0    0   0 

      0.5    0    0   0    0    0   2 

      0.75   0    0   0    0    0   2 

      0.99   0    0   0    0    0   1 

      1      0    0   0    0    0   6 

 

Overall Statistics 
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Accuracy : 0.951            

95% CI : (0.9117, 0.9762) 

    No Information Rate : 0.9167           

    P-Value [Acc > NIR] : 0.04244          

Kappa : 0.637            

                                           

 Mcnemar's Test P-Value : NA               

Statistics by Class: 

 

                     Class: 0 Class: 0.25 Class: 0.5 Class: 0.75 Class: 0.99 Class: 1 

Sensitivity            1.0000    1.000000         NA          NA    0.000000  0.40000 

Specificity            0.7059    1.000000   0.990196    0.990196    0.995074  1.00000 

Pos Pred Value         0.9740    1.000000         NA          NA    0.000000  1.00000 

Neg Pred Value         1.0000    1.000000         NA          NA    0.995074  0.95455 

Prevalence             0.9167    0.004902   0.000000    0.000000    0.004902  0.07353 

Detection Rate         0.9167    0.004902   0.000000    0.000000    0.000000  0.02941 

Detection Prevalence   0.9412    0.004902   0.009804    0.009804    0.004902  0.02941 

Balanced Accuracy      0.8529    1.000000         NA          NA    0.497537  0.70000 

  ## plot 

   

C <-  ggplot(features.5min.val, aes(x=obs.pat.C.f, y=loc.pat.C.f)) + geom_point(alpha = 

0.7) + 

    stat_smooth(method = "lm", #formula = y ~ x + I(x^2), 

                size = 1, colour= "orangered1") + 

    geom_abline(slope = 1, intercept = 0, linetype = "dashed") + 

    theme_set(theme_light()) + 

    labs(y= "classified as in burn \n patch C by MOOnitor",  

         x="observed as in burn patch c") 

C 

ggsave("Plots/obs_loc_patch_c_PVALUE.png", height = 4, width = 5) 

> #### patch D #### 

>   patch.summary.mult <- as.data.frame(features.5min.val) %>% 

+     select(aniID, assignPasture, 

+            obs.pat.D.f, obs.pat.D.f, obs.pat.D.f,  

+            loc.pat.D.f, loc.pat.D.f, loc.pat.D.f) %>% 

+     arrange(aniID) %>% 

+     mutate(obs.pat.D.mult = NA, 

+            loc.pat.D.mult = NA) %>% 

+     filter(assignPasture %in% c("51S", "56S", "57N")) %>% 

+     mutate(obs.pat.D.mult = ifelse(obs.pat.D.f == 0, 0, obs.pat.D.mult), 

+            obs.pat.D.mult = ifelse(obs.pat.D.f > 0.00 & obs.pat.D.f <= 0.25, 0.25, 

obs.pat.D.mult), 

+            obs.pat.D.mult = ifelse(obs.pat.D.f > 0.25 & obs.pat.D.f <= 0.50, 0.50, 

obs.pat.D.mult), 

+            obs.pat.D.mult = ifelse(obs.pat.D.f > 0.50 & obs.pat.D.f <= 0.75, 0.75, 

obs.pat.D.mult), 



156 
 

+            obs.pat.D.mult = ifelse(obs.pat.D.f > 0.75 & obs.pat.D.f < 1, 0.99, 

obs.pat.D.mult), 

+            obs.pat.D.mult = ifelse(obs.pat.D.f == 1, 1, obs.pat.D.mult), 

+            loc.pat.D.mult = ifelse(loc.pat.D.f == 0, 0, loc.pat.D.mult), 

+            loc.pat.D.mult = ifelse(loc.pat.D.f > 0.00 & loc.pat.D.f <= 0.25, 0.25, 

loc.pat.D.mult), 

+            loc.pat.D.mult = ifelse(loc.pat.D.f > 0.25 & loc.pat.D.f <= 0.50, 0.50, 

loc.pat.D.mult), 

+            loc.pat.D.mult = ifelse(loc.pat.D.f > 0.50 & loc.pat.D.f <= 0.75, 0.75, 

loc.pat.D.mult), 

+            loc.pat.D.mult = ifelse(loc.pat.D.f > 0.75 & loc.pat.D.f < 1, 0.99, 

loc.pat.D.mult), 

+            loc.pat.D.mult = ifelse(loc.pat.D.f == 1, 1, loc.pat.D.mult),  

+     ) %>% 

+     mutate(obs.pat.D.mult = factor(obs.pat.D.mult, levels = c(0, 0.25, 0.5, 0.75, 0.99, 

1)), 

+            loc.pat.D.mult = factor(loc.pat.D.mult, levels = c(0, 0.25, 0.5, 0.75, 0.99, 1))) 

>   caret::confusionMatrix(patch.summary.mult$loc.pat.D.mult, 

patch.summary.mult$obs.pat.D.mult) 

Confusion Matrix and Statistics 

 

          Reference 

Prediction   0 0.25 0.5 0.75 0.99   1 

      0    146    1   1    0    0  16 

      0.25   0    0   0    0    0   0 

      0.5    0    0   0    0    0   1 

      0.75   0    0   0    0    0   2 

      0.99   0    0   0    0    0   4 

      1      0    0   0    0    0  33 

 

Overall Statistics 

Accuracy : 0.8775           

  95% CI : (0.8244, 0.9191) 

    No Information Rate : 0.7157           

    P-Value [Acc > NIR] : 2.547e-08        

Kappa : 0.6777           

                                           

 Mcnemar's Test P-Value : NA               

Statistics by Class: 

 

                     Class: 0 Class: 0.25 Class: 0.5 Class: 0.75 Class: 0.99 Class: 1 

Sensitivity            1.0000    0.000000   0.000000          NA          NA   0.5893 

Specificity            0.6897    1.000000   0.995074    0.990196     0.98039   1.0000 

Pos Pred Value         0.8902         NaN   0.000000          NA          NA   1.0000 

Neg Pred Value         1.0000    0.995098   0.995074          NA          NA   0.8655 

Prevalence             0.7157    0.004902   0.004902    0.000000     0.00000   0.2745 
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Detection Rate         0.7157    0.000000   0.000000    0.000000     0.00000   0.1618 

Detection Prevalence   0.8039    0.000000   0.004902    0.009804     0.01961   0.1618 

Balanced Accuracy      0.8448    0.500000   0.497537          NA          NA   0.7946 

## plot 

   

D <-  ggplot(features.5min.val, aes(x=obs.pat.D.f, y=loc.pat.D.f)) + geom_point(alpha = 

0.7) + 

    stat_smooth(method = "lm", #formula = y ~ x + I(x^2), 

                size = 1, colour= "orangered1") + 

    geom_abline(slope = 1, intercept = 0, linetype = "dashed") + 

    theme_set(theme_light()) + 

    labs(y= "classified as in burn \n patch D by MOOnitor",  

         x="observed as in burn patch D") 

D 

  ggsave("Plots/obs_loc_patch_D_PVALUE.png", height = 4, width = 5) 

> #### no patch ####   

>   patch.summary.mult <- as.data.frame(features.5min.val) %>% 

+     select(aniID, assignPasture, 

+            obs.pat._.f, obs.pat._.f, obs.pat._.f,  

+            loc.pat._.f, loc.pat._.f, loc.pat._.f) %>% 

+     arrange(aniID) %>% 

+     mutate(obs.pat._.mult = NA, 

+            loc.pat._.mult = NA) %>% 

+     filter(assignPasture %in% c("51S", "56S", "57N")) %>% 

+     mutate(obs.pat._.mult = ifelse(obs.pat._.f == 0, 0, obs.pat._.mult), 

+            obs.pat._.mult = ifelse(obs.pat._.f > 0.00 & obs.pat._.f <= 0.25, 0.25, 

obs.pat._.mult), 

+            obs.pat._.mult = ifelse(obs.pat._.f > 0.25 & obs.pat._.f <= 0.50, 0.50, 

obs.pat._.mult), 

+            obs.pat._.mult = ifelse(obs.pat._.f > 0.50 & obs.pat._.f <= 0.75, 0.75, 

obs.pat._.mult), 

+            obs.pat._.mult = ifelse(obs.pat._.f > 0.75 & obs.pat._.f < 1, 0.99, obs.pat._.mult), 

+            obs.pat._.mult = ifelse(obs.pat._.f == 1, 1, obs.pat._.mult), 

+            loc.pat._.mult = ifelse(loc.pat._.f == 0, 0, loc.pat._.mult), 

+            loc.pat._.mult = ifelse(loc.pat._.f > 0.00 & loc.pat._.f <= 0.25, 0.25, 

loc.pat._.mult), 

+            loc.pat._.mult = ifelse(loc.pat._.f > 0.25 & loc.pat._.f <= 0.50, 0.50, 

loc.pat._.mult), 

+            loc.pat._.mult = ifelse(loc.pat._.f > 0.50 & loc.pat._.f <= 0.75, 0.75, 

loc.pat._.mult), 

+            loc.pat._.mult = ifelse(loc.pat._.f > 0.75 & loc.pat._.f < 1, 0.99, loc.pat._.mult), 

+            loc.pat._.mult = ifelse(loc.pat._.f == 1, 1, loc.pat._.mult),  

+     ) %>% 

+     mutate(obs.pat._.mult = factor(obs.pat._.mult, levels = c(0, 0.25, 0.5, 0.75, 0.99, 1)), 

+            loc.pat._.mult = factor(loc.pat._.mult, levels = c(0, 0.25, 0.5, 0.75, 0.99, 1))) 
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>   caret::confusionMatrix(patch.summary.mult$loc.pat._.mult, 

patch.summary.mult$obs.pat._.mult) 

Confusion Matrix and Statistics 

 

          Reference 

Prediction   0 0.25 0.5 0.75 0.99   1 

      0    132    1   0    1    0   1 

      0.25  11    0   0    1    0   0 

      0.5    7    0   0    0    0   1 

      0.75   1    0   0    0    0   0 

      0.99   0    0   0    0    0   2 

      1     21    0   1    1    0  21 

 

Overall Statistics 

Accuracy : 0.7574           

95% CI : (0.6923, 0.8148) 

    No Information Rate : 0.8515           

    P-Value [Acc > NIR] : 0.9998           

Kappa : 0.3987           

                                           

 Mcnemar's Test P-Value : NA               

Statistics by Class: 

 

                     Class: 0 Class: 0.25 Class: 0.5 Class: 0.75 Class: 0.99 Class: 1 

Sensitivity            0.7674     0.00000    0.00000     0.00000          NA   0.8400 

Specificity            0.9000     0.94030    0.96020     0.99497    0.990099   0.8701 

Pos Pred Value         0.9778     0.00000    0.00000     0.00000          NA   0.4773 

Neg Pred Value         0.4030     0.99474    0.99485     0.98507          NA   0.9747 

Prevalence             0.8515     0.00495    0.00495     0.01485    0.000000   0.1238 

Detection Rate         0.6535     0.00000    0.00000     0.00000    0.000000   0.1040 

Detection Prevalence   0.6683     0.05941    0.03960     0.00495    0.009901   0.2178 

Balanced Accuracy      0.8337     0.47015    0.48010     0.49749          NA   0.8550 

## plot 

   

NO <-  ggplot(features.5min.val, aes(x=obs.pat._.f, y=loc.pat._.f)) + geom_point(alpha = 

0.7) + 

    stat_smooth(method = "lm", #formula = y ~ x + I(x^2), 

                size = 1, colour= "orangered1") + 

    geom_abline(slope = 1, intercept = 0, linetype = "dashed") + 

    theme_set(theme_light()) + 

    labs(y= "classified  as in NO \n burn patch by MOOnitor",  

         x="observed as in NO burn patch")  

NO 

 ggsave("Plots/obs_loc_patch_NONE_PVALUE.png", height = 4, width = 5) 

#### combine plots #### 

ggarrange(PA, B, C, D, NO + rremove("x.text"), 
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            labels = c("A)", "B)", "C)", "D)", "E)"), 

            vjust = 0.1, 

            hjust = -0.2, 

            ncol = 2, nrow = 4, 

            align = "v") + 

    theme(plot.margin = margin(0.8,0,0,0, "cm")) 

   

  ggsave("Plots/patch_combined.png", height = 7.5, width = 8) 

> ### patch overall ####     

>   patch.summary.mult <- as.data.frame(features.5min.val) %>% 

+     select(aniID, assignPasture,  

+            obs.pat.A.f:obs.pat._.f,  

+            loc.pat.0.f:loc.pat._.f) %>% 

+     arrange(aniID) %>% 

+     filter(assignPasture %in% c("51S", "56S", "57N")) %>% 

+     mutate(obs.dominant.patch = NA, 

+            loc.dominant.patch = NA) %>% 

+     mutate(obs.dominant.patch.max = pmax(obs.pat.0.f, obs.pat.A.f, obs.pat.B.f, 

obs.pat.C.f, obs.pat.D.f, obs.pat._.f)) %>% 

+     mutate(obs.dominant.patch = ifelse(obs.dominant.patch.max == obs.pat.A.f, "A", 

obs.dominant.patch), 

+            obs.dominant.patch = ifelse(obs.dominant.patch.max == obs.pat.B.f, "B", 

obs.dominant.patch), 

+            obs.dominant.patch = ifelse(obs.dominant.patch.max == obs.pat.C.f, "C", 

obs.dominant.patch), 

+            obs.dominant.patch = ifelse(obs.dominant.patch.max == obs.pat.D.f, "D", 

obs.dominant.patch), 

+            obs.dominant.patch = ifelse(obs.dominant.patch.max == obs.pat.0.f, "0", 

obs.dominant.patch), 

+            obs.dominant.patch = ifelse(obs.dominant.patch.max == obs.pat._.f, "_", 

obs.dominant.patch), 

+     ) %>% 

+   mutate(loc.dominant.patch.max = pmax(loc.pat.0.f, loc.pat.A.f, loc.pat.B.f, 

loc.pat.C.f, loc.pat.D.f, loc.pat._.f)) %>% 

+     mutate(loc.dominant.patch = ifelse(loc.dominant.patch.max == loc.pat.A.f, "A", 

loc.dominant.patch), 

+            loc.dominant.patch = ifelse(loc.dominant.patch.max == loc.pat.B.f, "B", 

loc.dominant.patch), 

+            loc.dominant.patch = ifelse(loc.dominant.patch.max == loc.pat.C.f, "C", 

loc.dominant.patch), 

+            loc.dominant.patch = ifelse(loc.dominant.patch.max == loc.pat.D.f, "D", 

loc.dominant.patch), 

+            loc.dominant.patch = ifelse(loc.dominant.patch.max == loc.pat.0.f, "0", 

loc.dominant.patch), 

+            loc.dominant.patch = ifelse(loc.dominant.patch.max == loc.pat._.f, "_", 

loc.dominant.patch), 
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+     ) %>% 

+   mutate(obs.dominant.patch = as.factor(obs.dominant.patch), 

+          loc.dominant.patch = as.factor(loc.dominant.patch)) 

>   caret::confusionMatrix(patch.summary.mult$loc.dominant.patch, 

patch.summary.mult$obs.dominant.patch) 

Confusion Matrix and Statistics 

 

          Reference 

Prediction  _  A  B  C  D 

         _ 24  3  2  5 13 

         A  4 86  2  0  4 

         B  0  2  9  0  0 

         C  0  0  0 11  0 

         D  0  0  0  0 39 

 

Overall Statistics 

Accuracy : 0.8284           

95% CI : (0.7696, 0.8775) 

    No Information Rate : 0.4461           

    P-Value [Acc > NIR] : < 2.2e-16        

Kappa : 0.7543           

                                           

 Mcnemar's Test P-Value : NA               

Statistics by Class: 

 

                     Class: _ Class: A Class: B Class: C Class: D 

Sensitivity            0.8571   0.9451  0.69231  0.68750   0.6964 

Specificity            0.8693   0.9115  0.98953  1.00000   1.0000 

Pos Pred Value         0.5106   0.8958  0.81818  1.00000   1.0000 

Neg Pred Value         0.9745   0.9537  0.97927  0.97409   0.8970 

Prevalence             0.1373   0.4461  0.06373  0.07843   0.2745 

Detection Rate         0.1176   0.4216  0.04412  0.05392   0.1912 

Detection Prevalence   0.2304   0.4706  0.05392  0.05392   0.1912 

Balanced Accuracy      0.8632   0.9283  0.84092  0.84375   0.8482 
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