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require a high degree of precision. Such applications include industrial applications,
human-robot collaboration applications, and experimental setups for model testing.
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ing System (ROS) is a widely-used framework for creating robotic applications both
in research and in industry due to its easy hardware abstraction, code re-usability, and
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CHAPTER I

INTRODUCTION

In the present work, a 9-DOF Robotic arm-gantry system is considered. It consists

of a 7-DOF Motoman SIA10D robotic arm ceiling mounted on a 2-DOF XY -gantry.

This arm-gantry system is designed as a towing mechanism for the wavemaker facility

being setup at Oklahoma State University. The motivation for the design is to leverage

the wide range of motion of the articulated robot (SIA10D) for model handling while

having a mobile base (XY - gantry) that can traverse the entire length of the tank. In

general, prototype testing is not advisable in such huge systems to avoid catastrophic

failures. Hence, a simulation of the arm-gantry system was created in the ROS-

Gazebo environment to test and visualize the motion plans before interfacing with the

actual hardware. The simulator was coupled with Moveit to perform motionplanning.

The capabilities of the simulator were further enhanced to perform stochastic optimal

control using probabilistic inference.

Stochastic Optimal Control (SOC) has been a topic of interest for the past few

decades due to its applications across several disciplines such as robotics, finance,

and biomechanics. The objective of SOC is to solve the traditional optimal control

problem in the presence of uncertainty. In the context of robotics, this uncertainty is

either in the form of noisy observations or as the process noise that captures model

uncertainties in the system. In practice, this uncertainty is assumed to have a known

distribution such as a Gaussian distribution.

Filtering is the estimation of the time-dependent state of the system having ob-
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served some noisy measurements. Filtering performed with the notion of some statis-

tic optimality is called optimal filtering. Another form of filtering is Bayesian Fil-

tering which uses the Bayesian paradigm for state estimation. Bayesian Smoothing

is another important class of estimation methods that are used to reconstruct the

smoothed estimates of states that occurred before the current time [19]. In contrast,

the Bayesian filtering methods tend to estimate the current state based on the his-

tory of measurements. A wide range of algorithms has been developed in the past

few decades for estimation for various applications such as Kalman Filter [7], Ex-

tended Kalman Filter, Unscented Kalman Filter [6], Particle Filter [5, 11], Unscented

Particle Filter [23], Rao–Blackwellized Particle Filter [12], etc., and their smoothing

counterparts.

The Kalman filter and the Linear Quadratic Regulator (LQR) are the two most

fundamental paradigms in estimation and optimal control theories respectively. The

most straightforward connection between the two was proposed in the Kalman du-

ality [7, 20] which states that the Kalman filter for a linear time-varying stochastic

system is equivalent to the LQR of its dual system [9]. It has been shown that there

is a one-to-one correspondence between the two paradigms. But, the main limitation

of this duality is that it generalizes poorly beyond the Linear Quadratic Gaussian

(LQG) case. Hence, a more general duality between optimal control and estimation

was proposed in [20] that replaces the Kalman/ Kalman-Bucy filter in Kalman dual-

ity with an information filter and relates the probabilities to exponential costs rather

than a one-to-one correspondence. The general duality was proven to be applicable

to a wide range of problems such as systems with non-linear dynamics and non-linear

measurements, systems with non-quadratic costs, discrete-time and continuous-time

systems, and deterministic optimal control problems.

The general duality and in particular the notion of exponentiated costs to model

likelihood has motivated a new class of methods for solving SOC problems called the

2



‘Control as Inference’ methods. Some of the algorithms proposed in this area are

ilqg [21], AICO [22] and its variants [15, 17, 18], I2C [24], etc.

The use of SOC with linearized dynamics has proven to be fruitful in designing

optimal feedback control laws in high-dimensional non-linear systems. The iterative

linear quadratic gaussian (ilqg) [21] performs iterative linearization of non-linear sys-

tem dynamics around the current trajectory and uses the LQR paradigm to obtain

update equations to compute locally optimal trajectory. This uses a linear feedback

control law. The Approximate Inference Control (AICO) [22] uses a graphical model

representation of the SOC problem. It then performs inference on the graphical model

using message passing techniques analogous to the belief propagation. The update

equations are derived assuming all the messages to be Gaussian. The algorithm it-

erates continuously through forward and backward passes until some convergence

criterion is satisfied. It was shown that the update equations for the backward mes-

sage are analogous to the Ricatti equations in the LQG setting. The AICO algorithm

is limited by two assumptions: it assumes that the trajectory length is known and it

doesn’t account for the constraints on the control both of which are common consid-

erations in real-world robotic applications. The AICO-T [15] algorithm was proposed

to address the issue of trajectory length constraint by parametrizing time as a vari-

able and using Expectation Maximization to simultaneously perform both temporal

and spatial optimization. The constrained - AICO [17] algorithm was proposed to

address the control constraint issue by modifying the control prior to include the

upper and lower bounds on the control and prescribing a linear feedback controller

to infer the optimal control distribution rather than inferring the optimal trajectory

distribution as in AICO. More recently, the Input Inference for Control (I2C) [24]

algorithm formulated the SOC problem as that of an input estimation problem. It

performs Expectation-Maximization by treating the hyperparameters as latent vari-

ables and hence finding the parameters that maximize the expected log-likelihood

3



in the M-step. The E-step performs linear Gaussian message passing to find state

and control distributions. It finally prescribes a linear gaussian controller to infer the

optimal control distribution.

The idea of approximate inference was also connected to the field of Reinforcement

Learning. ψ-Learning, Soft Q-learning are some of the algorithms developed in this

direction. For a more detailed introduction to RL as inference, the interested readers

are directed to [16, 10, 13, 14].

In the present work, only the AICO and the constrained - AICO algorithms are

studied in detail. This thesis report is outlined as follows the preliminaries for the

AICO algorithm are introduced in Chapter II, the AICO algorithm and the con-

strained - AICO algorithm are reviewed in detail with derivations for all the main

results in Chapter III, the steps involved in the development of the Robotic arm -

gantry simulator are described in detail in Chapter IV, the results of the simulation

experiments performed on the robotic arm-gantry system and the unicycle model are

presented in Chapter V.

The contributions of this thesis are as follows:

• Development of a Robotic arm-gantry simulator using ROS-Gazebo framework

integrated with Moveit to test motion plans before interfacing with the actual

hardware.

• Extending the motion planning functionality of the simulator with the addition

of probabilistic inference-based control.

• Most of the literature at the time of this writing on AICO is on articulated and

humanoid robots. The present work attempts to extend this study to robotic

applications with prismatic joints and non-holonomic mobile robots.

• This work suggests a dual to the constrained AICO formulation by state exten-

sion of the AICO formulation to impose the control constraints in the former as

4



state constraints in the latter approach. Hence, enabling AICO to infer state

trajectories that obey the control constraints.
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CHAPTER II

PRELIMINARIES

2.1 Stochastic Optimal Control

Consider a dynamical system given by

xt+1 = xt + ∆tf(xt, ut) + dξt, (2.1.1)

where xt ∈ X represents the state of the system at time t and ut ∈ U represents the

control given that the system is in state xt. Let c(xt, ut) be the cost incurred at time

t. Then the optimal cost-to-go function is given by

J(xt) = min
u

[c(xt, ut) + E[J(xt+1, ut+1])] . (2.1.2)

The general solutions to this problem are confined to a small class of systems [1].

But, if the system dynamics are linear, the states evolve by an additive white gaussian

noise and the costs are quadratic then there exists a closed-form solution for the

optimal control problem. The solution to this control problem is the optimal feedback

control that minimizes the expected value of the quadratic cost criterion. This is well

known as the Linear Quadratic Gaussian (LQG) case in the optimal control literature.
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2.2 Markov Decision Process (MDP)

An MDP is a discrete-time stochastic control process that models the evolution of

the system in a motion planning setting. It is the extension of the idea of the Markov

chains but with the addition of a finite number of possible actions in each state and

a reward that is incurred for every choice of the state-action pair. An MDP satisfies

the Markov property which is a memoryless property of the system i.e. the next

state of the system only depends on the current state and the current action and is

independent of all of the previous states of the system.

In the context of the present work, we consider the following MDP. If a system is

in state s and the decision policy chooses an action u then the system evolves into

a new state s′ with a state transition probability governed by the system dynamics

P (s′|s, u). Every such transition results in a reward r(s, u) which acts as a quantifiable

measure of the effectiveness of the state-action pair. Strictly speaking, the reward is a

term used in the Reinforcement learning literature, In the context of optimal control,

this measure is called cost c(s, u). A distinguishable feature of the RL and optimal

control paradigms is that the objective of the action policy in RL is to maximize the

rewards whereas the objective of the control policy in optimal control is to minimize

the cost. In the present work, we only consider finite horizon trajectories and hence

we only consider finite-horizon MDPs with a linear Gaussian assumption. Hence, the

state transition probability and the cost at any time t are given as follows

P (xt+1|xt, ut) = N (xt+1|Atxt + at +Btut, Qt), (2.2.1)

c(xt, ut) =
1

2
xTt Rtxt − rTt xt +

1

2
uTt Htut. (2.2.2)

7



2.3 Probabilistic Graphical Models (PGM)

The graphical representation of probability distributions is called a Probabilistic

Graphical Model (PGM). Such representation of the model provides advantages such

as visualization of the model, analysis of the conditional dependence of variables and

facilitates the transformation of the complex mathematical computations into rela-

tively simpler graphical computations [2]. A PGM consists of nodes and edges where

each node represents a random variable and each edge represents the dependency

between the variables. Hence, a joint distribution of all random variables can be de-

composed into a product of factors based on the conditional independence properties

of the PGM.

Generally, PGMs can be classified into three types given as follows

• Bayesian Networks: These models have directed edges indicated by an arrow

from the independent to a dependent random variable. These are also called di-

rected graphical models. For instance, the Bayesian Networks shown in Fig. 1(a)

represents the joint distribution P (x, y, z) = P (x)P (y)P (z|x, y). These types

of graphical models are generally used to model causal relationships.

• Markov Networks: These models are distinguished by the undirected edges

between the nodes. Hence, these are also called undirected graphical models or

Markov Random Fields. The joint distribution is represented as the product

of the potential functions ψC(wC) over the maximal cliques wC of the graph.

A maximal clique wC is the maximum subset of nodes in the graph that are

fully connected. For instance, the joint distribution of the undirected graphical

model shown in Fig. 1(b) is given as P (x, y, z) = 1
Z
ψC(wC) where Z is the

normalization constant (equal to 1 in this case) called the partition function

and the maximal clique wC = {x, y, z}.

• Factor Graphs: A Factor graph is a bipartite graph i.e. it consists of two types

8



of nodes one to represent the random variables and the other to represent the

factors containing those random variables. An edge in a factor graph always

connects two nodes of different types. A random variable node is connected

to the factor node if and only if the factor depends on the random variable.

These are an important and more general class of PGMs that are popularly

used for inference. The joint distribution over variables is given as the product

of factors in the factor graph. For instance, the joint distribution represented

by the factor graph shown in Fig. 1(c) is given by P (x, y, z) = f(x, y, z).

The three types of PGMs discussed above are almost always interchangeable. As

the reader must have already noticed that all the three representations in Fig. 1

correspond to the same joint distribution over the relation ψC(wC) = f(x, y, z) =

P (x)P (y)P (z|x, y). In the present work, Bayesian Networks are the choice of PGM

used and hence, the discussion that follows will only be focused on Bayesian Networks.

For a more detailed introduction to PGMs, the interested readers are referred to [2, 8].

Figure 1: Types of Probabilistic Graphical Models. a) Bayesian Network b) Markov
Network c) Factor Graph.

2.4 Bayes rule and inference on graphs

The underlying principle behind inference, in general, is one of the foundational con-

cepts in probability and statistics called the Bayes theorem. It states that the proba-

9



bility of the joint distribution of two random variables is the product of the probability

of the conditional distribution and the prior distribution of the independent variable.

This can also be extended to distributions with more than two variables. Let x, y

be two random variables with prior distributions P (x) and P (y) respectively then,

according to Bayes theorem

P (x, y) = P (y|x)P (x) = P (x|y)P (y). (2.4.1)

Inference in graphs deals with the computation of one or more subsets of nodes

in a graph having observed some other nodes. Mathematically, it deals with the

computation of the posterior distribution P (X|Y), where X = {x1, x2, ..} are the

unobserved nodes in the graph or sometimes called as the latent variables and Y =

{y1, y2, ..} are the observed nodes in the graph or observed variables. The inference

is generally classified into two types based on the computational tractability of the

posterior distribution as exact inference, approximate inference.

A common approach to performing inference on graphs is using local message

passing. A message from a sender node to a receiver node is the marginalization of

all the nodes connected to the sender node except the receiver node. This approach

helps in reducing the computational complexity of computing marginals of the nodes

by performing efficient computations exploiting the structure of the graph. The mes-

sage passing can be used to derive recursive relationships thereby avoiding redundant

computations. Finally, the marginal of a particular node is given as the product of

all the incoming messages into the node.

2.4.1 Message passing

Consider the Bayesian Network as shown in Fig. 2. Let x0, x1, x2, x3 be the latent

variables and z0, z1, z2, z3 be the observed variables in the graph. For instance, let the

inference problem is to find the marginal of x2 conditioned on the observed variables.

10



Then the posterior probability is given as

P (x2|z0, z1, z2, z3) ∝ P (x2, z0, z1, z2, z3) (2.4.2)

=
∑

x0,x1,x3

P (x0, x1, x2, x3, z0, z1, z2, z3). (2.4.3)

From the structure of the graph in Figure 2, we further write (2.4.3) as

∑
x0,x1,x3

P (x0, x1, x2, x3, z0, z1, z2, z3) =
∑

x0,x1,x3

P (x0)
2∏
i=0

P (xi+1|xi)
3∏
i=0

P (zi|xi)

(2.4.4)

=
∑
x3

P (z3|x3)P (x3|x2)P (z2|x2)
∑
x1

P (x2|x1)P (z1|x1)
∑
x0

P (x1|x0)P (x0)P (z0|x0).

(2.4.5)

Figure 2: Inference on a Bayesian Network.

A message µi→j(xj) from i to j is defined as,

µi→j(xj) =
∑
xi

f(xi, xj)
∏
k\i

µk→i(xi) (2.4.6)

Hence, substituting eq. (2.4.6) into (2.4.5) yields

P (x2, z0, z1, z2, z3) = µx3→x2(x2)µz2→x2(x2)
∑
x1

P (x2|x1)P (z1|x1)µx0→x1(x1) (2.4.7)

= µx3→x2(x2)µz2→x2(x2)µx1→x2(x2) (2.4.8)
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Hence, the marginal distribution is given as the product of the messages coming into

the node. This message passing technique is used in algorithms such as belief propaga-

tion, sum-product algorithm, loopy belief propagation, etc. The reason for the choice

of this example, in particular, is that the AICO algorithm discussed in the present

work uses the same graphical model as 2 and it uses the message passing technique

for approximating the posterior distribution. The AICO algorithm is discussed in

further detail in the Chapter III.
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CHAPTER III

METHODOLOGY

In this chapter, the Approximate Inference Control (AICO) algorithm [22] and the

constrained - AICO algorithm [17] are reviewed in detail. A state extension approach

is also suggested to impose the control constraints as state constraints in the AICO

algorithm thereby inferring state trajectories that account for the control constraints.

3.1 Review of the Approximate Inference Control (AICO)

Consider the discrete time controlled stochastic equation is given by :

˙̄x = ft(x̄t, ūt) + ξt, (3.1.1)

where ft is the non-linear state dependent dynamics, x̄t is the zero-noise state, ū is

the open-loop control input, and ξ ∼ N (0, Qt) is the zero mean brownian motion.

Using Euler forward method for discretization,

x̄t+1 = x̄t + hft(x̄t, ūt) (3.1.2)

where h is a sufficiently small timestep.

Let xt and ut be the actual state and controls (with noise). Then, the state and

13



control deviations δx and δu are given by

δx = xt − x̄t, (3.1.3)

δu = ut − ūt. (3.1.4)

Linearizing the dynamics in (3.1.2), we obtain

δxt+1 + x̄t+1 = δxt + x̄t + hft(δxt + x̄t, δut + ūt). (3.1.5)

Subtracting the original dynamics (3.1.2) from (3.1.5) yields

δxt+1 = δxt + h
[∂ft
∂xt

δxt +
∂ft
∂ut

δut
]

(3.1.6)

= (I + h
∂ft
∂xt

)δxt + h
∂ft
∂ut

δut (3.1.7)

= Atδxt +Btδut (3.1.8)

xt+1 − x̄t+1 = At(xt − x̄t) +Bt(ut − ūt) (3.1.9)

xt+1 = Atxt +Btut + x̄t+1 − x̄t − h
∂ft
∂xt

x̄t − h
∂ft
∂ut

ūt (3.1.10)

= Atxt +Btut + hft(x̄t, ūt)− h
∂ft
∂xt

x̄t − h
∂ft
∂ut

ūt (3.1.11)

= Atxt + at +Btut (3.1.12)

where

At = I + h
∂ft
∂xt

, (3.1.13)

Bt =
∂ft
∂ut

, (3.1.14)

at = h(ft(x̄t, ūt)−
∂ft
∂xt

x̄t −
∂ft
∂ut

ūt). (3.1.15)

The state transition probability is assumed to be a Gaussian distribution given
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by

P (xt+1|xt, ut) = N (xt+1|Atxt + at +Btut, Qt). (3.1.16)

where N (x|a,A) represents a Gaussian distribution with mean µ and covariance Σ

defined as

N (x|µ,Σ) =
1

det(2πΣ)
1
2

exp((x− µ)TΣ−1(x− µ)) (3.1.17)

The total trajectory cost C(·) is given as

C(x0:T , u0:T ) =
T∑
t=0

ct(xt, ut), (3.1.18)

where ct(xt, ut) =
1

2
xTt Rtxt − rTt xT + uTt Htut. (3.1.19)

For approximate inference, consider a binary random task variable zt with asso-

ciated likelihood given as

P (zt = 1|xt, ut) = exp{−ct(xt, ut)} (3.1.20)

AICO [22] represents the above problem formulation given in eqns. (3.1.16) - (3.1.20)

in the form of a Bayesian Network. The state xt and the control ut at time t are

considered as latent variables of the model. The term zt is an observed variable that

corresponds to the task likelihood or optimality at time t. The probabilistic graphical

model used to represent the above stochastic optimal control problem in the AICO

formulation is shown in Fig. 3.

Consider the likelihood in eq. (3.1.20),

P (zt = 1|xt, ut) =
P ((zt = 1), xt, ut)

P (xt, ut)
(3.1.21)
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Figure 3: Graphical Model representation of the SOC in Section 3.1

Since the joint distribution of xt, zt is conditionally independent of ut, eq. (3.1.21)

can be rewritten as,

P (zt = 1|xt, ut) =
P ((zt = 1), xt)P (ut)

P (xt, ut)
(3.1.22)

∝ P (zt = 1|xt)P (ut) (3.1.23)

For LQG case, the cost is quadratic in xt, ut. Hence the eq. (3.1.23) can be written

as

P (zt = 1|xt, ut) = exp{−ct(xt, ut)} (3.1.24)

= exp(−1

2
xTt Rtxt + rTt xT − uTt Htut) (3.1.25)

= exp(−1

2
xTt Rtxt + rTt xT ) exp(−uTt Htut) (3.1.26)
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From eqns. (3.1.26) and (3.1.23) the likelihood can be rewritten as

P (zt = 1|xt, ut) = exp(−1

2
xTt Rtxt + rTt xT )︸ ︷︷ ︸
∝N [xt|rt,Rt]

exp(−uTt Htut)︸ ︷︷ ︸
=N [ut|0,Ht]

(3.1.27)

P (zt = 1|xt, ut) ∝ N [xt|rt, Rt]N [ut|0, Ht] (3.1.28)

Comparing with the eq. (3.1.23) yields

P (zt = 1|xt) ∝ N [xt|rt, Rt] (3.1.29)

P (ut) = N [ut|0, Ht] (3.1.30)

where N [x|a,A] represents the Gaussian distribution in canonical form defined as

N [x|a,A] =
exp(−1

2
aTA−1a)

|2πA−1| 12
exp

(
−1

2
xTAx+ xTa

)
. (3.1.31)

Marginalizing the controls in eq. (3.1.16) yields

P (xt+1|xt) =

∫
u

P (xt+1|xt, ut)P (ut)dut (3.1.32)

=

∫
u

N (xt+1|Atxt + at +Btut, Qt)N [ut|0, Ht]dut (3.1.33)

= N (xt+1|Atxt + at, Qt +BtH
−1BT

t ) (3.1.34)

For the prior and likelihood given in eqns. (3.1.34), (3.1.30), consider the posterior

distribution P (x0:T |z0:T = 1) which represents the probability of a trajectory x0:T

conditioned on the observing optimality z0:T = 1 for the entire trajectory. The
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posterior can be rewritten as

P (x0:T |z0:T = 1) = P (x0, x1, x2, ....., xT |z0 = 1, z1 = 1, z2 = 1, ....., zT = 1) (3.1.35)

=
P (x0:T , z0:T = 1)

P (z0:T = 1)
(3.1.36)

=
P (x0)P (x1|x0)...P (xT |x0:T−1P (z0|x0:T )....P (zT |z0:T−1, x0:T )

P (z0:T = 1)

(3.1.37)

From the graph shown in Fig. 2, zt, xt+1 depend only on xt, all the other variables

are conditionally independent of each other. Hence, the eq. (3.1.37) yields

P (x0:T |z0:T = 1) ∝ P (x0)P (x1|x0)P (x2|x1).....P (xT |xT−1)P (z0 = 1|x0)....P (zT = 1|xT )

(3.1.38)

∝ P (x0)
T−1∏
t=0

P (xt+1|xt)
T∏
t=0

P (zt = 1|xt) (3.1.39)

∝ P (x0)
T−1∏
t=0

N (xt+1|Atxt + at, Qt +BtH
−1BT

t )
T∏
t=0

N [xt|rt, Rt]

(3.1.40)

The posterior in eq. (3.1.40) is computationally intractable. Hence, AICO approxi-

mates the above posterior using the message passing approach as discussed in Sec-

tion 2.4.1.

The messages are assumed to be Gaussian distributions of the form

Forward message : µxt−1→xt(xt) = N (xt|st, St), (3.1.41)

Backward message : µxt+1→xt(xt) = N (xt|νt, Vt), (3.1.42)

Task message : µzt→xt(xt) = N [xt|rt, Rt]. (3.1.43)

Using a similar message passing approach as discussed in Section 2.4.1, the messages
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can be derived in recursive form given as

Forward message:

µxt−1→xt(xt) = N (xt|st, St) (3.1.44)

From the definition of message given in eq. (2.4.6)

µxt−1→xt(xt) =

∫
xt−1

dxt−1P (xt|xt−1)µxt−2→xt−1(xt−1)µzt−1→xt−1(xt−1)dxt−1. (3.1.45)

Solving which we obtain

st = at−1 + At−1(S
−1
t−1 +Rt−1)

−1(S−1t−1st−1 + rt−1), (3.1.46)

St = Q+Bt−1H
−1BT

t−1 + At−1(S
−1
t−1 +Rt−1)

−1ATt−1. (3.1.47)

Backward message:

µxt+1→xt(xt) = N (xt|νt, Vt) (3.1.48)

From the definition of message given in eq. (2.4.6)

µxt+1→xt(xt) ∝
∫
xt+1

dxt+1P (xt+1|xt)µxt+2→xt+1(xt+1)µzt+1→xt+1(xt+1)dxt+1 (3.1.49)

Solving which yields

νt = −A−1t at + A−1t (V −1t+1 +Rt+1)
−1)(V −1t+1νt+1 + rt+1), (3.1.50)

Vt = A−1t [Q+BtH
−1BT

t + (V −1t+1 +Rt+1)
−1]A−Tt . (3.1.51)

Task message:

Let yi ∈ Rp×1 represent a task variable of the system such as the end-effector position
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of a robotic arm, measure of collision danger etc. and φi(x) : x→ yi be a map from

the state space to the task space. Let Ji denote the jacobian of the function φi(·) for

a given state x. Then for n task variables, the task message is given as,

µzt→xt(xt) = P (zt|xt) = N [xt|rt, Rt] (3.1.52)

where,

rt =
n∑
i=1

ρi,tĴ
T
i (y∗i,t − φi(x̂t) + Ĵix̂t), (3.1.53)

Rt =
n∑
i=1

ρi,tĴ
T
i Ĵi, (3.1.54)

in which ρi,t are time-dependent precision values, y∗i,t are the task space targets for

t ∈ (0, T ], x̂t is the estimate of xt and Ĵi = Ji(x̂t).

Belief distribution:

The posterior distribution is approximated in AICO by computing the belief distri-

bution as in graphical model inference but using the messages described above. The

mean of the belief distribution gives the optimal state at each time t. The belief

distribution is computed as

b(xt) = µxt−1→xt(xt)µxt+1→xt(xt)µzt→xt(xt) (3.1.55)

= N [bt, Bt] (3.1.56)

where

bt = S−1t st + V −1t vt + rt, (3.1.57)

Bt = S−1t + V −1t +Rt. (3.1.58)
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3.2 Review of the constrained - AICO

The AICO provides an elegant way to solve the trajectory optimization problem for

a stochastic system. But, one of the major limitations of AICO is that the control

prior is modeled as a zero-mean Gaussian noise which is marginalized later. Hence,

the controls do not directly contribute to the trajectory inference. Hence, the AICO

formulation infers trajectories that do not account for the control constraints. To

address this issue the constrained-AICO [17] algorithm extends the AICO formulation

by modifying the control prior to having a non-zero mean which captures the control

constraints. The control cost is modified in the constrained-AICO formulation as

P (ut) = c′(ut) = uTt Htut + (ut − umax)THU
t (ut − umax) + (ut − umin)THL

t (ut − umin)

(3.2.1)

= N [ht, Ĥt] (3.2.2)

where umax, umin are the maximum and minimum control limits respectively,

ht = uTmaxH
U
t + uTminH

L
t ,

Ĥt = Ht +HU
t +HL

t .

To infer the controls, we consider that for a timestep t all the controls are marginal-

ized except for ut. Hence, the joint distribution is given as

P (x0:T , ut|z0:T ) ∝ p(z0:T |x0:T , ut)p(x0:T , ut) (3.2.3)

= p(xt+1|xt, ut)p(ut)
T∏
l=0

p(zl|xl)
t−1∏
l=0

p(xl+1|xl)
T∏

l=t+1

p(xl+1|xl) (3.2.4)
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The joint distribution of xt, ut conditioned on all the observations z0:T is given as

p(xt, ut|z0:T ) =

∫
0

∫
1

· · ·
∫
xt−1

∫
xt+1

· · ·
∫
T

P (x0:T , ut|z0:T )dx0dx1 · · · dxt−1dxt+1 · · · dxT

(3.2.5)

Regrouping the terms, eq. (3.2.5) can be written as

∝
[ ∫

0

∫
1

· · ·
∫
xt−1

t−1∏
l=0

p(xl+1|xl)
t−1∏
l=0

p(zl|xl)dx0dx1 · · · dxt−1
]

[ ∫
xt+1

∫
xt+2

· · ·
∫
T

p(xt+1|xt, ut)p(ut)
T∏

l=t+1

p(xl+1|xl)
T∏

l=t+1

p(zl|xl)dxt+1dxt+2 · · · dxT
]

(3.2.6)

Following the message-passing approach and using the notations, (3.1.41), (3.1.42), (3.1.43)

yields

=

∫
xt+1

µxt−1→xt(xt)µzt→xt(xt)p(xt+1|xt, ut)p(ut)µxt+2→xt+1(xt+1)µzt+1→xt+1(xt+1)dxt+1

(3.2.7)

= p(xt)p(ut)

∫
xt+1

p(xt+1|xt, ut)µxt+2→xt+1(xt+1)µzt+1→xt+1(xt+1)dxt+1 (3.2.8)

Using the Gaussian approximations of messages in eqns. (3.1.42), (3.1.43), we obtain

= p(xt)p(ut)

∫
xt+1

p(xt+1|xt, ut)N (xt+1|νt+1, Vt+1)N [xt+1|rt+1, Rt+1]dxt+1

Using the result (A.12) we obtain

(3.2.9)

= p(xt)p(ut)

∫
xt+1

p(xt+1|xt, ut)N [xt+1|ν̄t+1, V̄t+1]dxt+1 (3.2.10)
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where

ν̄t+1 = V −1t+1νt+1 + rt+1, (3.2.11)

V̄t+1 = V −1t+1 +Rt+1. (3.2.12)

Using the Woodbury identity and simplifying the above expression we can obtain

the distribution of p(ut|xt) given as

p(ut|xt) = p(xt, ut)/p(xt) (3.2.13)

= N

(
ut|M−1

t

(
BT
t (Qt + V̄ −1t+1)

−1(V̄ −1t+1ν̄t+1 − Atxt − at
))
,M−1

t

)
(3.2.14)

where, Mt = BT
t (Qt + V̄ −1t+1)

−1Bt

The mean of P (ut|xt) can be written as an optimal feedback controller of the form

ut = ot +Otxt (3.2.15)

such that ot = M−1
t

(
BT
t (Qt + V̄ −1t+1)

−1V̄ −1t+1ν̄t+1 −BT
t (Qt + V̄ −1t+1)

−1at

)
(3.2.16)

Ot = −M−1
t BT

t (Qt + V̄ −1t+1)
−1At (3.2.17)

where Mt = BT
t (Qt + V̄ −1t+1)

−1Bt (3.2.18)

3.3 State extension approach

In this work, we suggest an alternative to the constrained - AICO formulation. We

suggest the state extension in AICO imposes the control constraints as state con-

straints for the trajectory inference. The two types of control constraints that are

usually considered in robotic applications are equality constraints and a bounded

constraints.

Equality constraint: An equality constraint is one in which the value of the
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control is fixed to a preset value. By state extension we suggest that for each equality

constraint u = u1 the state space should be extended by an additional state u̇ = 0

and the corresponding u be removed from the control vector. The cost function can

then be modeled to impose a high cost on the new state u for any deviation from u1.

Bounded constraint: A bounded constraint is one in which the value of control

is always bounded between an upper and lower limit i.e. umin < u < umax. By state

extension we suggest that for each bounded constraint, the state should be extended

by an additional state Ḟ = u while keeping the control vector unchanged. The cost

function can then be modeled to impose a cost if the value of Ft+1−Ft > h umax and

Ft+1 −Ft < h umin where h is step size for discretization.

The state constraints discussed above facilitate the inference of trajectories that

obey the control constraints in the AICO setting even if the controls do not directly

contribute to the trajectory inference. The state extension approach was utilized in

the study of the unicycle model discussed in detail in Section 5.2 . It has proven

to be effective in inferring trajectories that obey the control constraints as shown in

Section 5.2.
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CHAPTER IV

DEVELOPMENT OF THE ROBOTIC ARM-GANTRY SIMULATOR

4.1 Robot Operating System (ROS)

Robot Operating System(ROS) is the existing standard for creating robotic applica-

tions both in industry and research. It is an open-source suite of tools, libraries, and

conventions that streamline and simplify the task of creating robotic applications. It

allows the user to avoid building from scratch and rather focus on adapting the exist-

ing code to create more complex applications. The wide popularity and applicability

of ROS are due to its easy hardware abstraction, code reusability, and compatibility

with other open-source libraries and robotic platforms.

4.1.1 ROS Control

ROS Control [3] is one of the core packages of ROS that provides the control in-

terface for robotic applications. It acts as a bridge between the ROS interfaces and

the controllers/actuators in the simulated/real robot. It provides hardware inter-

faces, transmission interfaces, joint limits, and in-built controllers required to control

the robot. It also comes with a set of libraries for creating custom controllers. The

joint state controller and effort controllers/joint trajectory controller

were used in development of the Robotic arm-gantry simulation. An overview of the

ROS Control architecture is shown in Fig. 4 . For a more detailed introduction to

ROS Control, interested readers are directed to [3], and the official documentation on

ROS Wiki.
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Figure 4: Overview of ROS Control architecture [3]

4.1.2 Moveit

Moveit is the primarily used perception and motion planning framework in ROS.

It is widely used due to its minimal barrier to entry [4], ease of use, and huge well-

maintained repository of tools for perception and motion planning in complex robotic

applications.

Moveit uses ROS build and messaging system at its core, and plugins for motion

planning, collision checking, and kinematics. At an architectural level, the launch of

a Moveit application starts a move group node that integrates all the individual com-

ponents and makes them available to the user through ROS actions and services. An

overview of the Moveit architecture is shown in Fig. 5. Moreover, a key feature that

distinguishes Moveit from other motion planning frameworks is the GUI setup assis-

tant that can be used for the initial setup of the robot. It can auto-generate all the

configuration files that contain information about the robot poses, planning groups,

planning algorithms, disabled self-collision checking pairs, etc. This immensely sim-

plifies and streamlines the process of initial setup of Moveit for any custom robot.
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Figure 5: Moveit pipeline [Source: https://moveit.ros.org]

4.2 Robotic arm-gantry simulation

The development of simulation for the robotic arm-gantry system can be divided into

three major steps as given below:

• Development of the ROS-Gazebo framework.

• Configuration of Moveit for the arm - gantry system.

• Integration of Gazebo and Moveit.
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Figure 6: CAD model of the Robotic arm-gantry system.

Figure 7: Front view of the Robotic arm-gantry system.

4.2.1 Development of ROS-Gazebo framework

1. CAD model: The first step for the development of any simulation is the

creation of the 3D model of the robot. The CAD model of the arm-gantry

system was created using Solidworks. The choice of Solidworks for modeling the

system is two-fold: 1) It is easy to use 2) It supports the SW2URDF plugin that

can auto-generate the URDF file from the Solidworks assembly. The Solidworks

model of the arm-gantry system is shown in Fig. 6 - 8. The Solidworks model

of the SIA10D arm was obtained from Yaskawa Motoman1.

1https://www.motoman.com/en-us

28



Figure 8: Top view of the Robotic arm-gantry system.
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Figure 9: URDF of the x-axis of the gantry.

2. Unified Robot Description Format (URDF): The auto-generated URDF

file from step 1 captures all of the link and joint data but lacks the gazebo-

specific information that is required to spawn and control the model in the

gazebo environment. This is usually the information related to the location

of the robot in the gazebo world, transmission interfaces for actuators, and

additional plugins for sensors and control. The URDF of the SIA10D robot

was adapted from the MotoROS Github repository2 and modified as needed. A

snippet of the URDF for the x-axis of the gantry is shown in Fig. 9. ROS also

provides a tool called check urdf to check the syntax and display the kinematic

chain to the user. The kinematic chain for the arm-gantry system is shown in

Fig. 10.

2https://github.com/ros-industrial/motoman
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Figure 10: Kinematic chain of the arm-gantry system.

3. Controllers: At the end of step 2, the simulation can successfully spawn the

robot model in the gazebo environment but cannot control the system. This

functionality is achieved by configuring controllers for each of the joints using the

ros control package and tuning the PID gains for the controllers. A snippet

of the control configuration file for the arm-gantry system is shown in Fig. 11.

This concludes the first stage of the development of the simulation. The gazebo

simulation of the robotic arm-gantry system is shown in Fig. 12.

4.2.2 Configuration of Moveit for the arm-gantry system

The simulator at this stage has the arm-gantry system running in the gazebo en-

vironment with a controller configured to accept control commands and drive the

actuators. But, the simulation is not yet equipped to handle the semantic description

of the robot such as collision checking, joint limits, kinematics, sensor integration,

planning groups, perception, and generation of motion plans which are key aspects of

motion planning. These functionalities are added to the simulation using an external

framework called Moveit discussed in Section 4.1.2. The Moveit package was created

using the moveit setup assistant GUI. The graphical user interface of the Moveit

setup assistant is shown in Fig. 13. The key advantage of using the setup assistant

is that it auto-generates all of the required configuration files which can be manually

modified later. The Moveit interface of the robotic arm - gantry system is shown in
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Figure 11: A snippet of the control configuration file for the arm-gantry system.
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Figure 12: Gazebo simulation of the arm-gantry system.
.

Fig. 14.

4.2.3 Integration of Gazebo and Moveit

The simulator at this stage has two components the gazebo simulation which has

the robot and controllers configured to command the actuators of the arm-gantry

system, the Moveit ecosystem that can take a motion planning request and generate

feasible motion plans without violating the task space constraints. But, both of these

components are not connected yet and hence cannot communicate with each other. In

this stage of the development process, the gazebo and Moveit are connected through

ROS topics such that Moveit can receive the joint state data from the gazebo and

generate motion plans to command the actuators using the effort controllers.

This step concludes the simulation of the robotic arm-gantry simulator. The

simulator has the following functionalities

• It can take a start position and a goal position through the Moveit interface
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Figure 13: The graphical user interface of the Moveit setup assistant.

Figure 14: Moveit interface of the robotic arm-gantry system.
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and then Moveit generates the motion plans and executes them in the gazebo

simulation.

• The simulator can also be given custom user-defined trajectories through the

move group python interface to visualize them in the gazebo simulation.

The code for the simulator can be found in our github repository3.

4.2.4 Integration of AICO and the simulator

The AICO [22] algorithm was studied on the 9-DOF Robotic arm - gantry system

simulator discussed in Section 4.2.1. The simulation setup consists of a .py file that

consists of the implementation of the AICO algorithm. This runs in parallel and

interacts with the ROS-Gazebo simulation of the arm-gantry system. The .py file

interacts with the simulation via Moveit commander to command the joint actuators

in the Gazebo environment. The node graph and all nodes and topics of the simulation

setup are shown in Fig. 15, 16 respectively.

3https://github.com/shahbazqadri/agsim.git
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Figure 15: Node graph showing the active ROS nodes and ROS topics of the simula-
tion setup.
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Figure 16: All the ROS nodes and ROS topics of the simulation setup.
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CHAPTER V

RESULTS

5.1 Robotic arm-gantry system

5.1.1 Problem formulation

Consider, the linear discrete time dynamical system given by

qt+1 = qt + hut + dξt, (5.1.1)

y1,t = φ1(qt) = fwd kin(qt). (5.1.2)

where qi ∈ R9×1 are the joint positions at the ith timestep, ui ∈ R9×1 are the joint

velocities at the ith timestep, y1,i ∈ R3×1 is the task space variable that denotes the

end-effector position at the ith timestep, and φ1(·) : q → y is the mapping from the

state space to the task space and fwd kin(·) is the forward kinematics routine that

computes the end-effector position based on the given joint positions. In this work,

the forward kinematics and the manipulator Jacobian of the arm-gantry system are

computed using the PyKDL library.
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Comparing the eqns. (3.1.16) and (5.1.1) we identify

xt = qt ∈ R9×1, (5.1.3)

At = I9×9, (5.1.4)

at = O9×1, (5.1.5)

Bt = I9×9, (5.1.6)

Qt = 〈dξtdξTt 〉 ∈ R9×9, (5.1.7)

Ht = I9×9. (5.1.8)

where Im×n and Om×n represent identity and null matrices of size m× n.

5.1.2 Implementation details of AICO

Let T ∈ R be the trajectory length for the motion planning problem. Then, using

the notations in eqns. (5.1.3) - (5.1.8) the forward, backward and task messages for

the AICO algorithm [22] shown in Appendix 0.1 are computed as follows

Forward message:

For a timestep t ∈ (0, T ] the forward message is computed as

st = at−1 + At−1(S
−1
t−1 +Rt−1)

−1(S−1t−1st−1 + rt−1),

St = Q+Bt−1H
−1BT

t−1 + At−1(S
−1
t−1 +Rt−1)

−1ATt−1.

Backward message:

For a timestep t ∈ (0, T -1] the backward message is computed as

νt = −A−1t at + A−1t (V −1t+1 +Rt+1)
−1)(V −1t+1νt+1 + rt+1),

Vt = A−1t [Q+BtH
−1BT

t + (V −1t+1 +Rt+1)
−1]A−Tt .
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Task message:

Let J1 be the Jacobian of the function φ1(·) which corresponds to manipulator

Jacobian J1 ∈ R3×9 in this case. Since we only consider one task variable y1 that

represents the end-effector position, the task message for AICO given in eq. (3.1.43)

can be rewritten as

rt = ρ1,tĴ
T
1 (y∗1,t − φ1(x̂t) + Ĵ1x̂t), (5.1.9)

Rt = ρ1,tĴ
T
1 Ĵ1 (5.1.10)

where y∗1,0:T are the task-space targets for the entire trajectory. These are considered

equal to goal in the target reaching case and equal to the reference end-effector tra-

jectory in the case of reference trajectory tracking, ρ1,0:T are the precisions for the

entire trajectory that represent the penalty of the deviation of y1,0:T from y∗1,0:T . In

the case of target reaching, a high precision is required only at the final timestep.

Hence, we chose ρ1,0:T−1 = 1e− 3, ρ1,0:T = 1e3. For trajectory tracking, a high preci-

sion is required throughout the trajectory and hence the precision was chosen to be

ρ1,0:T = 1e4.

Belief :

The belief at the timestep t ∈ (0, T ) is computed as

bt = S−1t st + V −1t vt + rt,

Bt = S−1t + V −1t +Rt.

The value of bt corresponds to the optimal value of the joint positions at time t

denoted as qt.
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5.1.3 Results

In the present work, AICO [22] was used to generate the trajectories of the robotic

arm - gantry system for two planning problems: the target reaching and reference

trajectory tracking.

Target reaching problem

The target reaching problem refers to the problem of trajectory generation given a

start state, goal state, and trajectory length while minimizing some cost function.

In this simulation, the cost function penalizes the error between the final state and

the goal. The arm-gantry system was tested for a set of start and goal positions

with uniform and non-uniform control costs. The visualization of the trajectories,

end-effector trajectories, and the total trajectory costs for both cases are shown and

discussed below.

a) Uniform control cost

In the first experiment, the target reaching problem is considered with uniform

control cost on all the joints. The start (joint) and goal (end-effector) positions for

this simulation are as follows

start = [0.25,-0.25,3.1415,0.9494,0,2.3,0,-1.5,0] rad and the goal = [2.73,-2.11,1.55] m.

Figure 17: The trajectory for target reaching in the Gazebo simulation.
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Figure 18: End-effector trajectory for the target reaching problem
start = [0.25,-0.25,3.1415,0.9494,0,2.3,0,-1.5,0] rad; goal = [2.73,-2.11,1.55] m.

The positions of the robot at various timesteps during the simulation, the end-effector

Figure 19: Trajectory cost over iterations for the target reaching problem.

trajectory, and the trajectory cost are shown in the Fig. 17, 18, 19 respectively. From

the end-effector trajectory and the trajectory cost, It can be seen that the arm-gantry
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system reaches the goal position in the given time.

b) Non - uniform control cost

From an application point of view, for this particular arm - gantry system the

effort required to actuate the gantry is more than the effort required to actuate the

joints. Hence, this simulation is conducted with a non-uniform control cost such

that Hx gantry > Hy gantry > Hjoint s = Hjoint l = Hjoint e = Hjoint u = Hjoint r =

Hjoint b = Hjoint t where Hi denotes the control cost on the ith joint. The start

(joint) and goal (end-effector) positions for this simulation are as follows start =

[0.25,-0.25,3.1415,0.9494,0,2.3,0,-1.5,0] rad and the goal = [2.73,-2.11,1.55] m and the

control cost H = diag(10, 5, 1, 1, 1, 1, 1, 1, 1).

Figure 20: The trajectory for target reaching problem with non-uniform control costs
in the Gazebo simulation.

The configuration of the arm-gantry system at different timesteps during the tra-

jectory execution in the Gazebo simulation is as shown in Fig. 20. It is interesting

to note that due to the non-uniform control cost, the inferred trajectories limit the

motion of the gantry and leverage the range of motion of the robotic arm to reach

the goal position. The end-effector and joint position trajectories for the uniform and
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Figure 21: Comparison of the end-effector trajectories for uniform and non-uniform
control costs
start = [0.25,-0.25,3.1415,0.9494,0,2.3,0,-1.5,0] rad; goal = [2.73,-2.11,1.55] m.

Figure 22: Comparison of the joint position trajectories of the XY-gantry for uniform
and non-uniform control costs.

non-uniform control costs are compared in Fig. 21, 22, 23.

c) Comparison of AICO and RRT algorithms

The configuration of the arm-gantry system at various timesteps of the trajectory

is shown in Fig. 24 . The Rapidly-exploring Random Trees (RRT) algorithm was

used in Moveit to solve the target reaching problem described in Section 5.1.3 (a).

A comparison of the end-effector trajectories planned by AICO and RRT (Moveit) is
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(a) Joint s. (b) Joint l.

(c) Joint e. (d) Joint u.

(e) Joint r. (f) Joint b.
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(g) Joint t.

Figure 23: Comparison of the joint position trajectories of the robotic arm for uniform
and non-uniform control costs.

shown in Fig. 25. It can be observed that the RRT algorithm only finds a feasible

trajectory from the start position to the goal position and hence it is not optimal

whereas the AICO infers the optimal trajectory which is unique for a given motion

planning problem.

Trajectory tracking problem

The trajectory tracking problem refers to the problem of generating a trajectory that

tracks a given reference trajectory as closely as possible. In this case, the cost function

is modeled to penalize any deviations from the reference trajectory at every timestep

rather than just the final timestep as in the Target reaching problem. The arm-gantry

system was tested with sinusoidal and elliptical reference trajectories.

a) Sinusoidal Trajectory Tracking

In this simulation, the end-effector of the arm-gantry system is required to track

a given sinusoidal trajectory. The trajectory of the arm-gantry simulation, the end-

effector trajectory, and the comparison of the reference and tracked trajectories are

shown in Fig. 26, 27, 28 respectively.

b) Elliptical Trajectory Tracking

In this simulation, the end-effector of the arm-gantry system is required to track
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Figure 24: The configuration of arm-gantry system at various timesteps of the tra-
jectory for the target reaching problem using RRT algorithm.

a given elliptical trajectory. The trajectory of the arm-gantry simulation, the end-

effector trajectory, and the comparison of the reference and tracked trajectories are

shown in Fig. 29, 30, 31 respectively.

It can be observed from the graphs that the inferred trajectories track the given

reference trajectories very well and hence demonstrating the applicability of AICO

for trajectory tracking problems.

c) Comparison of AICO and RRT algorithms
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Figure 25: The end-effector trajectories of the arm-gantry system using RRT and
AICO algorithms for the target reaching problem.

The tracking performance of AICO and RRT algorithms is compared for the

case of elliptical trajectory tracking. Fig. 32 shows the configuration of the arm-

gantry system at various timesteps of the trajectory. A comparison of the end-effector

trajectories planned by AICO and RRT (Moveit) is shown in Fig. 33. Both the AICO

and RRT algorithms generate trajectories based on the given reference trajectory.

The key difference is that our current implementation of AICO can accept just the

end-effector position (3-DOF) of the waypoints as input whereas Moveit needs the

end-effector pose (6-DOF) of the waypoints as input. As the reference trajectory in

this case consists only of end-effector positions, Moveit defaults the orientation of all

the waypoints to that of the start state. Hence, even though both the algorithms

track the reference trajectory well there is a notable difference in the generated joint

48



Figure 26: The trajectory for sinusoidal trajectory tracking in the Gazebo simulation.

position trajectories as shown in Figs. 29 and 32. Fig. 34 shows the comparison of

the tracking error of both the algorithms. It can be observed that the errors for both

AICO and RRT algorithms are on the same order. For this case of elliptical trajectory

tracking AICO performs slightly better than RRT.
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Figure 27: End-effector trajectory for sinusoidal trajectory tracking.

5.2 Unicycle model

5.2.1 Problem formulation

The unicycle model is given as


ẋ

ẏ

θ̇

 =


cos(θ) 0

sin(θ) 0

0 1


v
ω

+


µ(x, y)

γ(x, y)

0

+


dξx

dξy

0

 . (5.2.1)
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Figure 28: Comparison of reference and tracked sinusoidal trajectories.

Using the Euler’s forward method of discretization, eq. (5.2.1) can be expressed as


xt+1

yt+1

θt+1

 =


xt

yt

θt

+ h




cos(θ) 0

sin(θ) 0

0 1


vt
ωt

+


µ(x, y)

γ(x, y)

0

+


dξx

dξy

0


 . (5.2.2)

where h is the timestep for discretization, vt, ωt are the linear and angular velocities

respectively, µ, γ are the external disturbances, dξx, dξy represent Brownian motion

in states x, y respectively. In the present work, we consider the specific case of

unicycle model with an equality constraint on the linear velocity vt = v and bounded

constraint on the angular velocity ωmin < ω < ωmax. But, these constraints cannot

be incorporated into the AICO algorithm and thus it infers infeasible trajectories

that violate these constraints. Hence, we modify the unicycle model using the state
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Figure 29: The trajectory for elliptical trajectory tracking in the Gazebo simulation.
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Figure 30: End-effector trajectory for elliptical trajectory tracking.

extension approach discussed in Section 3.3 and extend the state with v̇ = 0. The

resulting model consists of 4 states and 1 input in contrast to the 3 states and 2

inputs in eq. (5.2.1). Linearizing the the dynamics in eq. (5.2.2) assuming that vt =

v(equality constraint) we obtain dynamics of the form

Xt+1 = AtXt + at +Btut + dξt (5.2.3)
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Figure 31: Comparison of reference and tracked elliptical trajectories.

Comparing eqns. (5.2.3) and (3.1.16) we identify, where

Xt =



xt

yt

θt

vt


, (5.2.4)

ut =

[
ωt

]
, (5.2.5)

Jx = h



0 0 −v sin(θt) cos(θt)

0 0 v cos(θt) sin(θt)

0 0 0 0

0 0 0 0


, (5.2.6)

At = I + hJx, (5.2.7)
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Figure 32: The configuration of arm-gantry system at various timesteps of the tra-
jectory for elliptical trajectory tracking using RRT algorithm.

at = h



v cos(θt) + µt(x, y)

v sin(θt) + γt(x, y)

0

0


− hJxXt, (5.2.8)
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Figure 33: Comparision of the end-effector trajectories of the arm-gantry system for
elliptical trajectory tracking using AICO and RRT algorithms.

Bt = h



0

0

1

0


, (5.2.9)

Qt = 〈dξtdξTt 〉, (5.2.10)

Ht = 1. (5.2.11)

5.2.2 Implementation details of AICO

Let T ∈ R be the trajectory length for the motion planning problem. Then, using

the notations in eqns. (5.2.4) - (5.2.11) the forward, backward and task messages for

the AICO algorithm [22] shown in Appendix 0.1 are computed as follows
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(a) x tracking error.

(b) y tracking error.

(c) z tracking error.

Figure 34: Comparision of the tracking error of the trajectories generated using AICO
and RRT algorithms for elliptical trajectory tracking.
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Forward message:

For a timestep t ∈ (0, T ] the forward message is computed as

st = at−1 + At−1(S
−1
t−1 +Rt−1)

−1(S−1t−1st−1 + rt−1),

St = Q+Bt−1H
−1BT

t−1 + At−1(S
−1
t−1 +Rt−1)

−1ATt−1.

Backward message:

For a timestep t ∈ (0, T -1] the backward message is computed as

νt = −A−1t at + A−1t (V −1t+1 +Rt+1)
−1)(V −1t+1νt+1 + rt+1),

Vt = A−1t [Q+BtH
−1BT

t + (V −1t+1 +Rt+1)
−1]A−Tt .

Task message:

Let y1 be the task variable that defines the position of the object (x, y) at a particular

timestep and φ1 : X → y1 be the map from X to y1.

y1 = φ(X) =

x
y

 (5.2.12)

The value of y∗1,0:T is set to that of the goal position in the case target reaching and

to the reference trajectory in the case of trajectory tracking.

We define y2 to be a task variable that measures the collision danger at a particular

timestep and φ2 : X → y2 be the map from X to y2.

pi =


(di − ε)2 , if di < ε

0 , otherwise

(5.2.13)

y2 = φ2(X) =
∑
i

pi (5.2.14)
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The value of y∗2,0:T is set to zero because it is desired that the robot always maintains

a distance greater than the safe distance ε from the obstacle.

A task variable y3 is defined to check the violation of the equality constraint on

the linear velocity at a particular timestep and φ3 : X → y3 be the map from X to

y3.

y3 = φ3(X) = v (5.2.15)

The value of y∗3,0:T is set to the value of the equality constraint imposed on the linear

velocity. Hence, any deviation of the actual velocity y3 from this value incurs a cost

on the system.

Another task variable y4 is defined to check the violation of the bounded constraint

on the angular velocity at a particular timestep and φ4 : X → y4 be the map from X

to y4.

y4 = φ4(X) =


hωmin − θt+1 − θt , if θt+1 − θt < hωmin

θt+1 − θt− hωmax , if θt+1 − θt > hωmax

0 , otherwise

(5.2.16)

The value of y∗4,0:T is set to zero because it is desired that the value of the angular

velocity is always within bounds. Let ρi,t be the precision that represents the penalty

of the deviation of yi,0:T from y∗i,0:T ∀i = [1, 4] at timestep t. In the case of target

reaching a high precision is required only at the final timestep. Hence, we chose

ρ1,0:T−1 = 1e−2, ρ1,0:T = 1e2. For trajectory tracking, the a high precision is required

throughout the trajectory and hence the precision was chosen to be ρ1,0:T = 1e2. A

more stronger cost has to be incurred for deviations in all the other task variables

that represent collision avoidance, linear and angular velocity constraints requiring

much larger precision on these variables. Hence, we chose ρ2,3,4,0:T = 1e5.
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From eq. (3.1.43), the mean r and precision R of the task message can be written

as

rt =
4∑
i=1

ρi,tĴ
T
i (y∗i,t − φi(X̂t) + ĴiX̂t), (5.2.17)

Rt =
4∑
i=1

ρi,tĴ
T
i Ĵi (5.2.18)

where Ji is the Jacobian of φi(·) defined as

Ji =
∂φi
∂Xt

=

[
∂φi
∂xt

∂φi
∂yt

∂φi
∂θt

∂φi
∂vt

]
(5.2.19)

Belief :

The belief at the timestep t ∈ (0, T ) is computed as

bt = S−1t st + V −1t vt + rt,

Bt = S−1t + V −1t +Rt.

The value of bt corresponds to the optimal value of the joint positions at time t de-

noted as qt. In the present work, the AICO [22] algorithm was studied in the context

of the constrained unicycle model given by eqns. (5.2.4) - (5.2.11) for various plan-

ning problems such as target reaching, obstacle avoidance, and the effect of external

disturbances.

5.2.3 Results

Target reaching problem

In this problem, the algorithm has to infer an optimal trajectory from a given start

position to a given goal position. The cost function in this case penalizes the error

between the (x, y) position at the final timestep and the goal position. The parameters
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considered for this simulation are as follows

start = [-100,20,0,100]

goal = [-10,30] m

T = 91

h = 0.01s

ω ∈ [−3.14, 3.14] rad/s

Figure 35: xy-trajectory of unicycle model for the target reaching problem
start = [-100,20,0,100]; goal = [-10,30] m.

It can be observed from Fig. 35 that the robot reaches the goal state. But, it

should be noted that the T is exact in this case which may not be possible always.

So, we perform another simulation for the target reaching problem to study the AICO

algorithm when the T is not exact. The parameters considered for this simulation

are as follows

start = [-100,20,0,100]

goal = [0,0] m

T = 110

h = 0.01s
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Figure 36: The linear velocity (v = 100 m/s) of the unicycle model for the target
reaching problem.

Figure 37: Angular velocity (ω ∈ [−3.14, 3.14] rad/s)of unicycle model for the target
reaching problem.

ω ∈ [−3.14, 3.14] rad/s

It is interesting to note that the trajectory in Fig. 38 reaches the goal but deviates

from the straight-line trajectory which is usually optimal. This is attributed to the
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Figure 38: xy-trajectory of unicycle model for the target reaching problem
start = [-100,20,0,100]; goal = [0,0] m.

Figure 39: The linear velocity (v = 100 m/s) of the unicycle model for the target
reaching problem.

fact that the cost function penalizes the error in the inferred position at the final

timestep T and the given goal position. Hence, given the high linear velocity and

the larger trajectory length than required, the inferred trajectory deviates from the
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Figure 40: Angular velocity (ω ∈ [−3.14, 3.14] rad/s) of unicycle model for the target
reaching problem.

straight-line path such that it reaches the goal position at the final timestep T .

Obstacle avoidance

In this section, we present the simulation results for the target reaching problem in

an obstacle-filled environment. Here, the algorithm has to infer trajectories from the

start state to the goal state while avoiding obstacles. The cost function in this case

not only penalizes the goal error but also the collision with obstacles. Let, di be

the minimum distance of the robot from ith obstacle and ε be the safe distance for

collision. The task variable is modeled as shown below.

For each obstacle i in the environment,

pi =


(di − ε)2 , if di < ε

0 , otherwise

(5.2.20)

y =
∑
i

pi (5.2.21)
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Fig. 41, 42 show the inferred trajectories in various obstacle-filled environments. It

can be seen that all the trajectories reach the goal state by avoiding all the obstacles.

During the simulations, it was observed that in scenarios where the problem is over-

constrained i.e., if an obstacle-free trajectory does not exist with the given constraints

then the AICO algorithm does not converge to a solution.
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Figure 41: xy-trajectories in various obstacle-filled environments.

Effect of external disturbance

In this section, we discuss the simulation results for the target reaching problem in

the presence of external disturbances. The objective of this simulation is to study the

behavior of AICO for a target reaching problem in the presence of external disturbance

i.e. the values of µt, γt in eq. 5.2.2 are non-zero.
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Figure 42: xy-trajectory in an obstacle-filled environments.

Figure 43: Angular velocity for the trajectory in Fig. 42

It can be observed from Fig. 44, 45 that the external disturbances induce a position

shift in the overall trajectory in the direction of the disturbance. But, for the timesteps

closer to the final time T the inferred trajectory reorients towards the goal. This can

be attributed to the fact that the cost is imposed only on the final timestep. Hence,
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Figure 44: xy-trajectories with and without disturbance for µ = 0 and γ = −5 m/s.

Figure 45: xy-trajectories with and without disturbance for µ = 2.5 m/s and
γ = 2.5 m/s.

appropriate corrections are made to the control to account for the disturbances such

that the robot reaches the goal at the final timestep.
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Trajectory tracking in the presence of external disturbances

In this simulation, the AICO algorithm is studied for the trajectory tracking problem

in the presence of external disturbances. We consider the obstacle-filled environment

shown in Fig. 42 and the trajectory therein is passed as the reference trajectory to

the algorithm. The parameters for this simulation are as follows

start = [-100,20,0,100.2]

goal = [-13.25, 26.5] m

T = 87

h = 0.01s

ω ∈ [−10, 10] rad/s

µ = 2.0 m/s and γ = 0 m/s

Figure 46: xy-trajectories with (µ = 2.0 m/s and γ = 0 m/s) and without disturbance
in an obstacle filled environment.

In Fig. 46, the red line represents the disturbance-free reference trajectory ob-

tained in Fig. 42. The green line illustrates the disturbed trajectory that does not

account for the disturbances. The blue line represents the tracked trajectory that is

inferred by the AICO algorithm by accounting for the external disturbance. Given

the high linear velocity and the external disturbance in the positive x-direction, the

robot traverses in a sinusoidal path to stay close to the reference trajectory. The
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Figure 47: Angular velocity with (µ = 2.0 m/s and γ = 0 m/s) and without distur-
bance in an obstacle filled environment.

correction to the angular velocity input in comparison to the angular velocity of the

reference trajectory is as shown in Fig. 47.
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CHAPTER VI

CONCLUSION AND FUTURE WORK

In this work, a robotic arm-gantry simulator is developed for the towing mechanism

of a wavemaker facility. The main purpose of the simulator is to generate and validate

the motion plans before interfacing with the actual hardware. The simulator is devel-

oped in the ROS-Gazebo framework coupled with Moveit API for motion planning.

The simulator was demonstrated to successfully plan and visualize motion plans in

target reaching and trajectory tracking settings. The functionality of the simulator

was also extended to perform stochastic optimal control using the Approximate In-

ference Control (AICO) algorithm. The AICO algorithm was implemented in python

and tested on the arm-gantry simulator for target reaching and trajectory tracking

problems.

The study of AICO was extended to non-holonomic mobile robots by considering

the unicycle model with control constraints. A state extension approach was suggested

to infer state trajectories that obey the control constraints. Several simulations were

performed on the unicycle model such as target reaching with exact and inexact

trajectory length, obstacle avoidance, and effect of external disturbance on target

reaching and trajectory tracking problems to validate the state extension approach

and better understand the behavior of the AICO algorithm.

As part of our future work, we intend to add the functionality to interface the

motionplans with the hardware using motoman drivers1. We also plan on integrating

1http://wiki.ros.org/motoman driver
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sensors into our simulator to be able to perform perception based planning.
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APPENDICES

0.1 Approximate Inference Control (AICO) algorithm

Figure 48: The Approximate Inference Control algorithm [22].
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0.2 Product of multivariate Gaussians

A Gaussian distribution with mean µ and covariance Σ is given as

N (x|µ,Σ) =
1

det(2πΣ)
1
2

exp((x− µ)TΣ−1(x− µ)) (A.1)

=
1

det(2πΣ)
1
2

exp(xTΣ−1x− xTΣ−1µ− µTΣ−1x+ µTΣ−1µ) (A.2)

Similarly it can be shown that,

N (x|µ3,Σ3) = N (x|µ1,Σ1)N (x|µ2,Σ2) (A.3)

=
1

2π det(Σ1)
1
2 det(Σ2)

1
2

exp
(
(xTΣ−11 x− xTΣ−11 µ1 − µT1 Σ−11 x+ µT1 Σ−11 µ1)

+ (xTΣ−12 x− xTΣ−12 µ2 − µT2 Σ−12 x+ µT2 Σ−12 µ2)
)

(A.4)

∝ exp
(
xT (Σ−11 + Σ−12 )x− xT (Σ−11 µ1 + Σ−12 µ2)− (µT1 Σ−11 + µT2 Σ−12 )x

+ (µT1 Σ−11 µ1 + µT2 Σ−12 µ2)
)

(A.5)

Comparing eqns. (A.5) and (A.2) with respect to µ3 and Σ3

µ3 = Σ−11 µ1 + Σ−12 µ2 (A.6)

Σ3 = Σ−11 + Σ−12 (A.7)
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Since N [x|µ,Σ] = N (x|Σ−1µ,Σ−1). Substituting in A.5 we get

N (x|µ4,Σ4) = N (x|µ1,Σ1)N [x|µ2,Σ2] (A.8)

=
1

det(2πΣ1)
1
2 det(2πΣ−12 )

1
2

exp((xTΣ−11 x− xTΣ−11 µ1 − µT1 Σ−11 x+ µT1 Σ−11 µ1)

+ (xTΣ2x− xTΣ2Σ
−1
2 µ2 − (Σ−12 µ2)

TΣ2x+ µT2 Σ2Σ
−1
2 µ2))

(A.9)

∝ exp(xT (Σ−11 + Σ2)x− xT (Σ−11 µ1 + µ2)− (µT1 Σ−11 + µT2 )x

+ (µT1 Σ−11 µ1 + µT2 µ2))

(A.10)

Comparing eqns. (A.10) and (A.2) with respect to µ4 and Σ4 we get

µ4 = (Σ−11 + Σ2)
−1(Σ−11 µ1 + µ2) (A.11)

Σ4 = (Σ−11 + Σ2)
−1 (A.12)
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