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Abstract:  

Sleep is a naturally occurring neurological state of the human body that helps restore and 

regenerate physiological and mental systems. Sleep comprises of AWAKE, Non-rapid Eye 

Movement (NREM), and Rapid Eye Movement (REM) stages. NREM sleep consists of 

four sleep stages N1, N2, N3, and N4. In an ideal sleep cycle, a human subject transitions 

through the sleep stages in the order AWAKE -> N1 -> N2 -> N3 -> N4 -> REM. Even 

though sleep is a resting state of the human body, physiological systems like the central 

nervous system, the cardiac system, and the respiratory system are still working in their 

vegetative state. However, the impact of sleep pathologies like sleep apnea on sleep stage 

transitions and connectivity between physiological systems during sleep remains largely 

unknown. This  research presents a four-phased methodology to identify differences in 

sleep stage transition patterns and connectivity between physiological systems between 

control and sleep apnea subjects during sleep. The analysis is performed on 

polysomnography and histogram data collected from the Sleep Heart Health Study (SHHS) 

dataset. In phase I, the frequently occurring sleep stage transition patterns in healthy and 

unhealthy subjects are identified using the Apriori algorithm. In phase II, we studied the 

coupling strength and coupling direction between time series signals of brain wave 

activities measured as EEG waves in the δ, θ, α, σ, β, ɣ1, and ɣ2 bands. We proposed a 

framework that implements the Time Delay Stability (TDS) method that identifies the 

coupling strength between EEG bands and the LSTM-based Granger Causality (LSTMGC) 

estimation method that determines the coupling direction of the identified links. The results 

show a high coupling strength in control subjects in all sleep stages compared to sleep 

apnea subjects. Most links are bidirectional in the awake stage for control and sleep apnea 

subjects. However, in other sleep stages, more unidirectional links are identified in sleep 

apnea subjects, indicating a reduced coupling between EEG bands. In phase III, we 

developed an LSTM-based conditional Granger causality (LSTMCGC) method to identify 

the indirect influences of oxygen saturation ('sao2') and nasal airflow ('airflow') on brain-

heart interactions during sleep. The results indicate that during light sleep, the sao2 and 

airflow signals have a low influence on brain-heart interactions in sleep apnea subjects but 

strongly influence the control subjects. In the REM sleep stage, the sao2 and airflow signals 

strongly influence brain-heart interactions for sleep apnea subjects and have a low 

influence for control subjects. In phase IV, we developed the Change in Causation during 

Sleep (CCS) model to study the changes in causation between physiological systems during 

an 8-hour long sleep. We mainly studied the causation between heart rate ('hr') and oxygen 

saturation signals. The overall results indicate a high causality from sao2 to hr signals in 

the REM sleep stage for sleep apnea subjects. But no such association is observed for 

healthy subjects.  
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CHAPTER I 
 

INTRODUCTION 

 

Sleep is a naturally occurring neurological state that allows the human body to restore and 

regenerate all the physiological and mental systems [1]. Getting a good-quality and sufficient sleep 

every night is essential for maintaining good health as sleep impacts many psychological processes 

such as memory consolidation [2-6] and biological processes such as energy expenditure, 

inflammation, appetite, and glucose regulation   [7-10].   

The primary structural organization of normal sleep consists of AWAKE, non-rapid eye movement 

(NREM), and eye-movement (REM) sleep stages. The NREM is further divided into four sleep 

stages N1, N2, N3, and N4 [11]. Stages N1 and N2 of NREM are considered light sleep, whereas 

N3 and N4 are considered deep sleep. During a sleep cycle, each sleep stage has unique 

characteristics, including variations in eye movements, brain waves, and muscle tone. Sleep stages 

can be identified using electroencephalographic (EEG) recordings, which trace the electrical 

patterns of brain activity [12, 13]. Other than adults with specific neurological disorders and 

newborn babies, most individuals' sleep episodes start with the NREM N1 stage. An average 

individual usually spends 1 to 7 minutes in the N1 stage during the first sleep cycle, which 

constitutes 2-5% of total sleep. During this sleep stage, the brain activity on EEG transitions from 

rhythmic alpha waves to low voltage to mixed frequency waves. The alpha waves have 8 to 13 

brain wave cycles per second [14]. 
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An average individual spends approximately 10 to 25 minutes in stage N2 during initial sleep cycles, 

and the duration increases with every successive cycle. Stage N2 constitutes around 45-55% of total 

sleep. During this sleep stage, low-voltage and mixed frequency waves along with sleep spindles  (large, 

slow waves intermingle with a brief burst of activity) and K-complexes are observed in the brain 

activity on EEG [15] signals. Stages N3 and N4 mainly occur during the first third of the night and are 

collectively considered slow-wave sleep (SWS). An average individual usually spends only a few 

minutes in stage N3 and around 20 to 40 minutes in stage N4 during the initial sleep cycle. Stages N3 

and N4 constitutes about 3-8% and 10-15% of total sleep, respectively. The brain activity on EEG for 

stages N3 and N4 shows high-voltage and slow-wave activity, primarily delta waves [16]. The brain 

activity of REM sleep constitutes low-voltage, mixed frequency waves, theta activity, and slow alpha 

activity. An average individual spends around 1 to 5 minutes in the REM sleep stage during the initial 

sleep cycle. The duration in this stage increases as the individual successfully progresses through the 

sleep episodes [16]. This study's research problems mainly utilize EEG brain waves collected during 

sleep for analysis. 

Sleep is important for strengthening and maintaining mental wellbeing for both adults and children [17-

23]. Recent studies show an increased interest in studying sleep disturbances such as short sleep 

duration [24-26], sleep disordered breathing [27] and non-restorative sleep.  The research shows that 

the prevalence of sleep-disordered breathing (respiratory disturbance index (RDI), apnea-hypopnea 

index (AHI), oxygen desaturation index (ODI) >= 5/h) is around 9.0 to 76.6% in women and 24.0 to 

83.8% in men. In addition, moderate to severe sleep-disordered breathing (RDI, AHI, or ODI) is around 

4.0 to 50.9% in women and 7.2 to 67.2% in men [27]. A national US poll by the National Sleep 

Foundation in 2009 showed that around 13% of Americans had an average sleep duration of fewer than 

6 hours every night in 2001, but in 2009, this increased to 20%[28].  Recent studies on sleep research 

indicate an association between sleep disturbances and reported health problems[29, 30]. Sleep 

disturbances profoundly impacts the occurrence and development of many health variables like diabetes 
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[31-33], metabolic syndrome [34], obesity [35], susceptibility to cold [36], and proinflammatory 

cytokines [37], along with severe health disorders like depression, cancer, hypertension dementia, and 

cardiovascular diseases [38-42].      

The current study focuses on obstructive sleep apnea, a common sleep disorder caused by sleep 

disordered breathing [43]. For a patient with sleep apnea, breathing repetitively stops and starts during 

sleep, caused due to repeated collapse of the pharyngeal airway [44, 45]. Based on a report provided 

by the American Academy of Sleep Medicine (AASM), the economic burden of undiagnosed sleep 

apnea is nearly $150B. The estimated costs include nearly $26.2 billion in vehicular accidents, $86.9 

billion in reduced productivity and $6.5 billion in workplace accidents [46]. Untreated sleep apnea 

might lead to an increased risk of heart disease, hypertension, depression, and diabetes. Thus, it is 

important to understand and diagnose sleep apnea. Polysomnography is a sleep disorder diagnostic tool 

in sleep medicine and it is used to collect physiologic parameters during sleep [47]. During 

polysomnography, the brain waves, heart rate, oxygen level in blood, breathing, leg movements and 

eye movements during sleep are recorded. The current research focuses on utilizing some of the 

polysomnogram signals to study and compare the physiological network graphs for a healthy subject 

and sleep apnea subject during sleep.  

The ideal sleep stage transitions in one sleep cycle in a healthy person has the order AWAKE -> N1 -

>N2 -> N3 -> N4 -> REM [48, 49]. Most physiological activities are reduced during sleep. But some 

of the physiological systems controlled by the central nervous system, like the cardiac system and 

respiratory system, are still working in their vegetative state. Sleep pathologies like sleep apnea affect 

sleep stage transitions, interactions, and connectivity among these physiological systems [50, 51]. In 

recent years, a growing interest has emerged in accessing the interactions between brain EEG bands (δ, 

θ, α, σ, β, ɣ1, and ɣ2 frequency bands), cardiovascular sub band (High frequency and low frequency 

bands of ECG waves) [52] during sleep. These studies show an existence of strong coupling between 
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EEG bands during sleep [1, 52, 53]. However, the existence of sleep apnea might affect the coupling 

strength and direction of coupling between physiological systems during sleep. 

Studying the effects of sleep apnea on sleep stage transitions and the coupling between different organ 

systems can lead to a better insight into neurocognitive mechanisms during sleep. This knowledge could 

lead to the development of interventions that could lessen the negative influence of sleep apnea on 

overall health. 

This research is organized as follows: Chapter 2 provides an outline of the four phased methodology of 

this research. The details about the studies performed in phases I, II, III and IV are provided in chapters 

4, 5, 6 and 7 respectively, where each chapter discusses the following: 1) Introduction to the problem 

and background work, 2) Analysis procedures and models 3) Results and 4) Discussions respective to 

each research problem. Details about the Sleep Heart Health Study (SHHS) data used for each phase 

of the research are provided in chapter 3.  Chapter 8 provides a summary of the results obtained for 

each research problem and discusses the contributions made. 
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CHAPTER II 
 

 

RESEARCH OVERVIEW 

 

This chapter presents an overview of the research problem: the impact of sleep apnea on sleep 

stage transition and physiologic network connectivity. It contains the following subsections: a) 

Problem statement and b) Research methodology outline. 

2.1 Problem Statement 

Sleep is a naturally occurring state that helps the human body restore all the physiological systems. 

The ideal sleep cycle for healthy subjects follows the sleep stage transition pattern Awake-> N1 -

> N2 -> N3 -> N4 -> REM. Physiological systems controlled by the central nervous system like 

the respiratory system and cardiac system work in their vegetative state during sleep. But sleep 

pathologies like sleep apnea affect sleep stage transitions, interactions and connectivity among 

these physiological systems, which may lead to side effects such as mood changes, cognitive 

deficiencies, lack of focus, drowsiness and more serious health problems like cardio-vascular 

disease.  

The goal of this study is to investigate the effects of sleep apnea on physiologic system interactions 

during sleep. For subjects suffering from severe sleep apnea, during the sleep apnea episodes, 

oxygen saturation levels drop significantly, and breathing repeatedly stops and starts.  The research 

problems assessed in this study include the following: 
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a) Does sleep apnea impact the transitions between sleep stages? 

b) Does sleep apnea influence the connectivity in brain networks during sleep? 

c) How does the drop in oxygen saturation levels and disordered breathing influence the 

brain-heart connectivity during sleep for sleep apnea subjects? 

d) How does the causation between oxygen saturation on heart rate signals vary during an 

8-hour long sleep in control and sleep apnea subjects? 

 

2.2 Research Methodology Outline 

This research is conducted in four phases, as shown in figure 2.1 to address the four problems 

mentioned in section 2.1. The list of methods applied in each phase address the research problem 

shown in table 2.1. In the first phase, the focus is on investigating the frequent sleep stage transition 

patterns in subjects with and without sleep apnea. The Apriori association rule mining algorithm is 

used in this phase to identify frequently occurring sleep stage transitions.  

In the second phase, the research focus is on finding the intra-network connectivity between the 

EEG frequency bands (δ, θ, α, σ, β, ɣ1, and ɣ2) for control subjects and sleep apnea subjects. In 

this phase, time delay stability statistical model is used to determine the strength of the links in 

physiological networks, and LSTM based Granger causality estimation is used to determine the 

directionality of the links. 

The third phase focuses on identifying the indirect causation of oxygen saturation and nasal airflow 

signals on brain-heart interactions during sleep. For this study, the LSTM based conditional 

Granger causality method is used to identify the indirect causation caused by a third signal on the 

brain-heart connectivity. 



 

7 
 

In the fourth phase, the Change in Causation values between heart rate and oxygen 

saturation signals is studied in sleep apnea and control subjects. In this phase, the Change in 

Causation during Sleep (CCS) model is used to compute the causal values between time-series 

signals for every 30sec interval. 

 

 

Figure 2.1: Four-phase research methodology 

 

2.3 Contributions 

In this research work, we performed apriori based sleep stage transition pattern mining and we 

proposed a framework which utilizes the time delay stability method to identify coupling strength 

and the LSTM based granger causality estimation method to identify the coupling direction of brain 

EEG waves in sleep apnea subjects. We developed an LSTM-based conditional Granger causality 

model to identify the indirect influences of sao2 and airflow signals on brain-heart interactions in 

control and sleep apnea subjects. We also proposed the Change in Causation during Sleep (CCS) 

model to identify the changes in causation values between two physiological system signals when 

the subject transitions from one sleep stage to another. 
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Table 2.1:  Research Methodology Overview 

Phase Research Problems Research Sub questions Methods 

Phase I Impact of Sleep Apnea on 

sleep stage transitions 

● How do sleep stage transitions occur 

for sleep apnea subjects? 

Apriori Algorithm 

Phase 

II 

 

 

 

Brain network interactions 

for Sleep Apnea subjects 

 

 

● How does the brain network 

interactions of healthy subjects differ 

from Sleep Apnea subjects? 

 

Time Delay 

Stability and 

LSTM based 

Granger Causality 

(LSTMGC) 

models 

Phase 

III 

Indirect influence of third 

organ system signals on 

brain-heart interactions  

 

● Is there any indirect influence on 

interactions between two 

physiological systems caused by a 

third system? 

● How do the indirect influences vary 

between healthy and Sleep apnea 

subjects? 

LSTM based 

Conditional 

Granger Causality 

(LSTMCGC) 

model 
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Phase 

IV 

Changes in influence of an 

organ system on another 

during different sleep 

stages 

 

● How does the changes in causation 

between two physiological systems 

vary through a night’s sleep while 

transitioning between different sleep 

stages? 

Change in 

Causation during 

Sleep (CCS) 

model 
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CHAPTER III 
 

 

RESEARCH DATA 

The data used for the current research is collected from the Sleep Heart Health Study (SHHS) 

dataset. The subsections of this chapter present the details about the SHHS data source, data used 

for phases 1, 2, 3, and 4, and the steps involved in data processing. 

3.1 Data Source 

SHHS is a multi-center cohort study database implemented by the National Heart Lung & Blood 

Institute [54-56] to determine the cardiovascular and other consequences of sleep-disordered 

breathing. This data consists of polysomnogram recordings collected over a night (average record 

duration is 8 hours) on participants during their visit to the participating institutions between 1995 

and 1998. 

3.2 Data for phase I:  

The dataset for phase 1 includes polysomnography recordings of 5049 subjects who are 40 years 

or older with no tracheostomy, no history of treatment of Sleep Apnea, and no home oxygen therapy 

at the time of visit. For this study, the records with available Apnea-Hypopnea Index (AHI) and 

Myocardial Infarction (MI) information are only considered. AHI is a scale that can be used to 

determine the severity of sleep apnea. If AHI is below 5, the sleep apnea level is regarded as 1, and 

if the AHI level is greater than 30, then the subject is considered to have severe sleep apnea and 

considered level 4, as shown in table 3.1.
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Table 3.1: Sleep Apnea levels based on AHI 

AHI Rating SA Level 

<5 Normal Sleep Apnea 1 

5-15 Mild Sleep Apnea 2 

15-30 Moderate Sleep Apnea 3 

>30 Severe Sleep Apnea 4 

 

For this study, the sleep data with details about the sleep stage (Awake, N1, N2, N3, N4, or REM) 

the subject in each epoch (30-sec interval) is considered. In every record, the initial few minutes of 

data where the subject is in the Awake stage before entering another sleep stage is trimmed because 

the subject might be in a wakefulness state instead of an Awake sleep stage. The sleep stages are 

numbered as follows: Stage 0 is Awake, stage 1 is N1, stage 2 is N2, stage 3 is N3, stage 4 is N4, 

and stage 5 is REM. The reduced dataset has 1775 records of subjects with sleep apnea level 1, 

2036 records with level 2, 1238 records with level 3, and 762 records with level 4. The dataset is 

divided into three sub-datasets based on the number of MI (the records with no MI data are 

removed) as follows: 

● Dataset 1 (SA 1, MI 0), D1: includes records of subjects with SA level 1 and zero MI. 

● Dataset 2 (SA 4, MI 0), D2: includes records of subjects with SA level 4 and zero MI. 

● Dataset 3 (SA 4, MI >= 1), D3: includes records of subjects with SA level 4 and number of 

MI greater than or equal to 1. 

 

The analysis is performed separately on each of the three data subsets, and the results are 

compared.  
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3.3 Data for phases II, III and IV  

The subjects in this study included 10 control subjects and 15 subjects with Sleep Apnea. The 

details about the subjects considered for this study are shown in table 3.2. 

Table 3.2: Description of subjects used for analysis 

Variables Control Group Sleep Apnea Group 

Hlthy25 Definitely true Mostly false, definitely false 

Age 35-45 Years 40-85 Years 

During interim follow up, told 

by doctor that the subject has 

sleep apnea 

No Yes 

Apnea Hypopnea Index <2 >30 

Count 5 Male, 5 Female 8 Male, 7 Female 

 

The overnight polysomnography recording consists of the following signals [57]: 

● C3/A2 and C4/A1 EEGs, sampled at 125Hz 

● Right and left electrooculograms (EOGs), sampled at 50 Hz 

● A bipolar submental electromyogram (EMG), sampled at 125 Hz 

● HR: Heart rate derived from the ECG and sampled at 1 Hz  

● Body position (using a mercury gauge sensor) 

● Airflow:  Detected by a nasal-oral thermocouple, sampled at 10Hz 
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● Oxygen saturation (saO2): These signals are sampled at 1Hz 

 

For phase 2, only C3/A2 EEG signals are considered for analysis. Sample polysomnography 

recording is shown in figure 3.1. Different EEG frequency bands are extracted from the raw EEG 

signals for analysis and the process of extraction is explained in section 3.4. 

 

Figure 3.1: Sample polysomnography data 

For phase 3, along with the EEG frequency bands, HR, sao2 and airflow signals of 10 control 

subjects and 15 sleep apnea subjects (table 3.2) are considered for analysis. Along with the 

polysomnography data, the hypnogram data (i.e., sleep stage data for every 30sec) is also 

considered.  The airflow signals are resampled to 1 Hz frequency, such that all the signals have the 

same time resolution of 1 data point for every second. 

For phase 4, only sao2, resampled airflow and HR signals along with hypnogram data of 10 control 

subjects and 15 sleep apnea subjects (table 3.2) are considered for the analysis. 
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3.4 EEG Signal processing: 

The polysomnography data contains overall EEG signals captured at the C3/A1 brain region. The 

raw EEG time series signals are processed to extract frequency bands  δ [0 – 4Hz], θ [4 – 8Hz], 

α [8 – 12Hz], σ [12 – 16Hz], β [16 – 20Hz], ɣ1 [20 – 34Hz], and ɣ2 [34 – 100Hz], which are the 

components of the overall EEG signal. A Fast Fourier Transform (FFT) is used to extract the 

different frequency bands from the raw EEG signal. In the SSHS dataset, the EEG signals are 

sampled at frequency 125Hz, thus there are 125 data points for each second. The raw EEG signal 

is divided into segments with size 60 sec with 30 sec overlap. The frequency bands are extracted 

for each segment using FFT and the power spectral density is calculated for each band in the 60 

second window. The bands are normalized with the mean power of the entire band. The normalized 

bands are used for further analysis. The steps for the EEG signal processing are shown in algorithm 

3.1 and the sample output of the EEG frequency band extraction is shown in figure 3.2 and figure 

3.3. 

The variables used in the EEG Signal Processing algorithm 3.1 are defined in table 3.3. 

 

Table 3.3: Notations used in algorithm 3.1 

Variable Purpose 

S RAW EEG signal 

Sawake Awake stage EEG signal  

Sn12 EEG signal in stages N1 and N2 

Sn34 EEG signal in stages N3 and N4 

Srem EEG signal in REM sleep stage 

x 60 sec segment of a signal 

psd Power spectral densities of the signal 
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deltapower, thetapower, 

alphapower, sigmapower, 

betapower, gamma1power, 

gamma2power 

Power of all the frequency bands 

SS Signal for a single sleep stage 

power Computed power of all the bands for a signal of size 2 sec  

full_sig_power Power of all the bands for the entire signal 

nor_bands Normalized power of all the bands for the entire signal 

z_score Computed z score of all bands 

 

Algorithm 3.1: EEG Signal Processing 

Input: Raw EEG signal S 

Output: nor_bands for all sleep stages 

1. Sawake = S where sleep_stage = 0 

2. Sn12 = S where sleep_stage = 1 or sleep_stage = 2 

3. Sn34 = S where sleep_stage = 3 or sleep_stage = 4 

4. Srem = S where sleep_stage = 5 

5. func computePower (x): 

6.          psd = fft(x) 

7.          f = fftfreq(x) 

8.         deltapower = psd [indices where 0 <= f < 3.9] 

9.          thetapower = psd [indices where 4 <= f < 7.9] 

10.          alphapower = psd [indices where 8 <= f < 11.9] 

11.          sigmapower = psd [indices where 12 <= f < 15.9] 
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12.          betapower = psd [indices where 16 <= f < 19.9] 

13.         gamma1power = psd [indices where 20<= f < 33.9] 

14.        gamma2power = psd [indices where 34 <= f < 99.9] 

15. return power of all bands 

16. for each sleep stage signal SS do: 

17.        split SS into segments of 60 sec with 30 sec overlap 

18.         for each segment i do: 

19.                 power = computePower(i) 

20.                 full_sig_power = full_sig_power. append(power) 

21.          end for 

22.        nor_bands = z_score(full_sig_power) 

23. end for 

 

 

Figure 3.2. Raw EEG signal 
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Figure 3.3: Frequency bands of EEG signal, X-axis: Time (sec), Y-axis: Power 
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CHAPTER IV 
 

 

PHASE I: SLEEP STAGE TRANSITION ANALYSIS 

 

This chapter discusses the frequently occurring sleep stage transition patterns of control subjects 

and subjects with sleep apnea or myocardial infarctions.  

4.1 Introduction and Background Work 

Getting continuous and sufficient sleep is necessary for physiological functions, metabolism, and 

long-term memories [17]. Ideally, a healthy person with normal sleep habits transitions between 

sleep stages in a certain pattern starting from AWAKE and alternating between Non-REM and 

REM sleep stages. The typical sleep architecture of a healthy young adult consists of 5 sleep stages 

alternating between REM and Non-REM sleep stages (N1, N2, N3, and N4) [49, 58]. The typical 

sleep stage pattern REM -> N1 -> N2 -> N3 -> N4 -> followed by back to REM is considered as a 

cycle. The duration of each sleep cycle is different with an average duration of a sleep cycle to be 

90min and during a night's sleep, four to six such cycles are repeated. During the first half of sleep, 

stages N3 and N4 (deep sleep) are longer. But during the latter half of sleep, the duration of REM 

sleep gets longer alternating with stage N2 sleep [59].  
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A human subject needs to go through all the sleep stages because they are involved in healing and 

developing the body and brain. If any of the REM or Non-REM sleep stages are missing, then it 

would lead to the consequences of inadequate sleep on physical and mental health. Subjects with 

sleep disorders like sleep apnea and insomnia struggle to go through all the sleep stages. In clinical 

research, sleep stage transition data is used to assess sleep continuity and identify health disorders. 

In this study, we utilized sleep stage transition data of subjects with no sleep apnea, subjects with 

sleep apnea, and subjects with myocardial infarction to identify similarities and differences between 

frequently occurring sleep stage transition patterns among these subjects. 

Christensen et al. [60] examined the transitions to REM sleep. They performed an intensive search 

for abnormal sleep transitions between all sleep stages and thresholds on the total number to 

identify specific features which can locate narcolepsy in a clinical setting. Laffan et al. [61] used 

the transition rates between different sleep stages as an index to measure sleep continuity. In this 

analysis, the transition rate is computed by calculating the total number of transitions per hour of 

sleep. The analysis results show that the overall and stage-specific transition rates can be used as a 

measure to predict sleep quality without using the traditional standards of sleep architecture. 

Schlemmer et al. [62] computed the probability distributions of sleep stage transitions for old and 

young subjects with and without a sleep disorder. The authors compared the variation in transition 

probabilities due to sleep disorder with the changes in transition patterns due to aging. However, 

the authors analyzed only one-step transition probabilities between sleep stages. Kim et al.[63] 

proposed a mining-based sleep pattern analysis of sleep log data collected through wearable 

devices. The proposed method is used to normalize the errors arising in each user's life pattern, 

integrate and process sleep logs, and provide a sleep index. The Apriori algorithm [64] repeatedly 

finds similar sequential patterns in the data to identify a final sequential pattern. The authors applied 

Apriori algorithm to the sleep data transitions of a user set to identify the sequential sleep patterns. 
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The Apriori algorithm was first proposed by Agarwal [65-68] in 1994 for association rule mining. 

This algorithm uses a bottom-up approach to find association rules in a database. To the best of our 

knowledge, frequent sleep stage transition patterns in sleep apnea subjects have not been identified 

before. We used the apriori-based sleep stage transition pattern mining method for the current study 

to analyze the frequently occurring sleep stage transition patterns in sleep apnea and myocardial 

infarction subjects. In this study, we considered SHHS data to analyze and identify frequently 

occurring sleep stage transition patterns in healthy and unhealthy subjects. 

4.2 Method: Apriori algorithm-based frequent sleep stage transition pattern mining 

Apriori association, a rule mining algorithm, is a well-known method to identify frequently 

occurring patterns in a dataset. This study exploits the Apriori algorithm to identify frequently 

occurring sleep stage transitions in subjects during sleep. This algorithm repeatedly searches for 

commonly occurring sleep stage transition patterns in the subject's sleep stage sequence. The 

algorithm is terminated when no more frequent sleep stage transition patterns can be found. The 

frequent patterns found by the algorithm satisfy the minimum support of 0.75. Support determines 

the pattern’s frequency of occurrence. The minimum support of 0.75 indicates that frequent sleep 

stage transition patterns occur at least in 75% of the records.  

The apriori algorithm cycles through the creation of candidate pattern set CPk and frequent pattern 

sets FPk of length k until no new candidate sets can be formed. The frequent pattern sets that satisfy 

the minimum threshold of 0.75 are included in the candidate pattern sets CPk. The frequency of 

occurrence of these new candidate pattern sets in the dataset is identified, and new sequential 

pattern sets are generated using the candidate pattern set.  

The two main steps for the Apriori algorithm based frequent sleep stage transition pattern mining 

algorithm are explained below: 
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The candidate pattern set CP1 with sequence length ‘k=1’ consists of the individual sleep stages 

Awake, N1, N2, N3, N4 and REM. 

1. The frequent pattern set FP1 of sequence length ‘k =1’ is created with sleep stages that 

occur in at least 75% of the records in the dataset. 

2. By joining the frequent pattern sets in FP1, candidate pattern set CP2 with sequence 

length ‘k=2’ is created. 

 The above two steps are repeated until no new candidate sets CPk+1 cannot be formed or frequent 

pattern set FPk is not found, and the algorithm is terminated. The steps are explained below in 

algorithm 4.1. 

The variables used in algorithm 4.1 are shown in table 4.1. 

Table 4.1: Notations used in algorithm 4.1 

Variable Purpose 

FPk Frequent sleep stage transition pattern set of size k, satisfying 

minimum support 

CPk Candidate sleep stage transition pattern set of size k 

SS Sleep stages 

 

Algorithm 4.1: Apriori Algorithm Based Frequent Sleep Stage Transition Pattern Mining 

Input: Sleep stage data 

Output: FP1 ∪ FP2 ∪ FP3 ………  FPk  

1. CP1 : Sleep stages 

2. FP1: Sleep stages satisfying minimum support in CP1 
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3. for (k=1; FPk ! = Null ; k++) do begin: 

4.         CPk+1 = candidate sleep stage transition patterns generated from FPk 

5.         for each sleep stage SS in dataset do: 

6.                Increase the count of all candidates in CPk+1 that are in SS 

7.         end for 

8. FPk+1 =  Candidates in Ck+1 with minimum support 

9. end for 

10. return FP1 ∪ FP2 ∪ FP3 ………  FPk 

 

4.3 Results: 

For this analysis, sleep data is divided into cycles. A cycle is considered to be from one REM state 

to the next REM stage. Hence, if the subject enters the REM stage 5 times in an 8-hour long sleep, 

the data is divided into five cycles. In this work, only the first six cycles are considered for analysis. 

As sleep patterns of males are different from females, they are analyzed separately.  

Table 4.2 provides the details about the number of subjects that enter each cycle for males and 

females. The number of subjects progressing through a higher number of cycles reduces as the 

cycle number increases. For instance, in table 4.2, the number of subjects that enter cycle 2 with 

SA 1, and MI 0 is 384. But out of 384, only 378 subjects entered cycle 3. This indicates that only 

378 subjects went into REM three times in their entire sleep, and six subjects were awake after they 

entered REM two times in their entire sleep. This indicates that the number of subjects entering 

REM sleep stages kept declining with the increase in the number of cycles. This trend is observed 

in all three datasets in both MALES and FEMALES. D1, D2, D3 are different datasets as defined 

earlier with D1 being healthy patients, D2 being patients with severe sleep apnea, but no MI, and 

D3 being patients with both severe sleep apnea and MI. 
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Table 4.2: Number of subjects entering each cycle for males and females  

  

Cycle  

MALE  FEMALE  

D1 D2 D3 D1 D2 D3 

1 391 395 37 1035 196 12 

2 384 393 36 999 195 12 

3 378 388 36 991 191 10 

4 377 378 35 975 184 10 

5 360 356 34 904 162 9 

6 334 326 29 802 145 9 

 

Cycle 1 includes the sleep stage information from the beginning of sleep till the subject enters REM 

for the first time. Table 4.3 provides information about the percentage of subjects that entered the 

N3 and N4 stages in their first sleep cycle. In dataset D1, 84% of male subjects entered the N3 stage 

in their first cycle, whereas only 14% of subjects entered the N4 stage. In all the datasets, higher 

percentages of male and female subjects entered the N3 stage than the N4 stage in each cycle. This 

behavior is the expected behavior even in a healthy human being. The results also show that the 

more ill a patient is, the less likely he or she is to enter the 6th and later sleep cycles. Over 84% of 

patients from D1 subjects enter cycle 6 and 82% of D2 subjects enter cycle 6, whereas only 78% of 

D3 subjects enter cycle 6 (figure 4.1).  
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Figure 4.1: Percentage of male subjects entering each sleep cycle 

 

Table 4.3: The number of records where N3 and N4 stages are present for Cycle 1  

GENDER D1 D2 D3 

 

MALE 

N3 present in 84% of 

records. 

N4 is present in only 

14% of records. 

N3 present in 74% of 

records. 

N4 is present in only 

12% of records. 

N3 is present in 72% 

of records. 

N4 is present in only 

10% of records. 

 

FEMALE 

N3 present in 93% of 

records. 

N4 present in less 

than 30% records. 

N3 present in 93% of 

records. 

N4 is present in 26% 

records. 

N3 is present in 91% 

of records. 

N4 is present in only 

11% of records. 
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The following behavior is observed in higher cycles: 

• A few subjects are not entering the AWAKE stage after REM. Instead, they are 

entering one of the N1, N2, N3, or N4 stages. The percentage of records starting from 

the AWAKE stage decreases as sleep apnea severity increases.  

• In both males and females, the percentage of records where N3 and N4 stages are 

present is decreasing as sleep apnea severity is increasing or the number of MI is 

increasing.  

• The percentages of records with N4 also reduce in the later cycles for males and 

females. 

• The percentage of records where N3 and N4 stages are present is more in females than 

in males.  

• The percentage of records starting with N2 increases in the later cycles for males and 

females. 

 

 

Figure 4.2: Percentage of records with more than 50 transitions in a single cycle for males 

subjects  
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Figure 4.3: Percentage of records with more than 50 transitions in a single cycle for 

female subjects 

Figure 4.2 and figure 4.3 include the percentages of records that have more than 50 transitions in 

a single cycle for males and females, respectively. Transition size is defined as the total number 

of sleep stage transitions that occur in a single sleep cycle. From the results in the tables, the 

following conclusions can be drawn:  

• As Sleep Apnea severity increases, the transition size reduces, i.e., the subject is entering 

into REM just with fewer sleep stage transitions.  

• The transition size decreases as the subjects enters more cycles.  

For any given dataset, female subjects have more percentage of records with the number of 

transitions greater than 50. 
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4.3.1 Frequent sleep stage transition mining results 

The Apriori algorithm is applied on datasets D1, D2 and D3 separately for males and females. Each 

cycle is considered separately for analysis. In the analysis, the main focus is to find similar 

frequently occurring transition patterns among the three datasets. 

The frequent transition patterns are shown as graphs in figures 4.4 and 4.5. Figure 4.4 consists of 

graphs for cycle 1 (i.e., Transitions from the beginning of sleep to the end of the first REM sleep). 

Figure 4.5 consists of the graphs for cycle 6 (i.e., sleep transitions occurring from the end of 5th 

REM to the end of 6th REM sleep). In these graphs, each node represents a sleep cycle where A is 

Awake, and R is the REM sleep stage. An edge in these graphs represents the frequent occurrence 

of the transition between the respective sleep stages. In figures 4.4 and 4.5, the frequently occurring 

transition patterns in datasets D1 are shown as healthy, and datasets D2 and D3 as unhealthy.  

 

Cycle 1:  

In cycle 1, no male and female subjects (both healthy and unhealthy) entered the N4 sleep stage. 

The most frequently occurring transition for male and female subjects is N1 -> N2, N2 -> REM. 

The male healthy and unhealthy subjects are found to transition often from Awake to REM sleep 

stage, whereas this transition is not found frequently in female subjects. Healthy female subjects 

frequently transition from deep sleep to light sleep. But such frequent transition is not observed in 

male subjects. Unhealthy male subjects frequently transition from light sleep to REM sleep. But 

unhealthy female subjects transitioned to the REM stage from deep sleep stage N3. Male subjects 

transitioned directly from AWAKE to REM sleep frequently. 
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Figure 4.4: Frequent sleep stage transitions for male, female healthy and unhealthy subjects 

for first sleep cycle 

 

Cycle 6: 

In cycle 6, some of the frequent transition patterns in healthy and unhealthy male subjects are N1 -

> N2, N2 -> REM, A -> N2, AWAKE -> R. Whereas the frequent transition patterns in female 

subjects are N1 -> N2, N2 -> REM, N3 -> REM. The unhealthy male and female subjects frequently 

transitioned from Awake to N2. Unlike females, no frequent transitions to the N3 sleep stage are 

found in male healthy and unhealthy subjects. 
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Figure 4.5: Frequent sleep stage transitions for male, female healthy and unhealthy subjects 

for 6th sleep cycle 

 

The summary of results obtained are as follows: 

As the severity of sleep apnea increases, the percentage of subjects with MI 1 or MI 2 or MI 3 

increases. The percentage of records starting from AWAKE is reduced in the later cycles for both 

males and females. As Sleep Apnea severity increases, the transition size is reduced, which implies 

the subject is entering into REM just with few transitions. For any given dataset, female subjects 

have more percentage of records with sizes > 10, 50 and 100 when compared to males. The more 

frequently found short cycles are: 

{N2;REM}, {N1;REM}, {N1;N2;REM}, {AWAKE;REM}, {AWAKE;N2;REM} , 

{AWAKE;N1;REM}, {AWAKE;N1;N2;REM}. 
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N3 and N4 are present in a greater number of records in females than males. The subjects with 

severe sleep apnea and the subjects with severe sleep apnea and MI 1,2 or 3 have similar patterns, 

but very few records of data are available to analyze for higher number of cycles. In the SA 1 MI 

0 datasets many records have repetitions of the same small pattern before reaching the REM stage 

for both males and females; patterns like {AWAKE; N1 ; AWAKE; N1; AWAKE…..REM}. 

 

4.4 Conclusion 

Sleep helps the human body to restore and regenerate all the physiological and mental systems. Our 

results suggest that the sicker a person is, the fewer sleep cycles or she will go through in a typical 

night’s sleep. The more ill a person is, the more likely the sleep cycles will be incomplete. A healthy 

person transitions through sleep stages AWAKE to REM in the order AWAKE, N1, N2, N3, N4, 

REM, and back to AWAKE. The sleep stage transitions can be utilized to determine sleep 

continuity and identify health disorders. In this study, we utilized sleep stage transition data to 

identify frequently occurring sleep stage transition patterns in subjects with sleep apnea, subjects 

with no sleep apnea, and subjects with myocardial infarction. The sleep stage transition analysis 

for subjects with sleep apnea and myocardial infarction shows that most of the time, the subjects 

are not transitioning through the ideal cycle (i.e., AWAKE -> N1 -> N2 -> N3 -> N4 -> REM). The 

frequently found sleep stage transition patterns in the subjects are {N2: REM}, {N1:REM}, 

{N1;N2;REM}, {AWAKE;REM}, {AWAKE;N2;REM}, {AWAKE;N1;REM}, 

{AWAKE;N1;N2;REM}. High frequency of these patterns indicate a sleep problem like sleep 

apnea.
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CHAPTER V 
 

 

PHASE II: INTRA BRAIN NETWORK CONNECTIVITY DURING SLEEP 

This chapter discusses the intra-network coupling between brain bands (δ, θ, α, σ, β, ɣ1, 

and ɣ2) during sleep, which is identified using the methods TDS and LSTM based Granger 

causality estimation (LSTMGC).  

5.1 Introduction and Background Work 

Healthy sleep is essential for the human body to stave off diseases, reduce stress and strengthen 

and maintain long-term memories [17]. Sleep is expressed as a period of reduced activity where 

the blood pressure and temperature are dropped, and physiological demands are reduced. However, 

research over the past 60 years shows that the brain remains active during sleep and other 

physiological systems like the cardiovascular system and the respiratory system are still working 

in their vegetative state collectively as an integrated network. Recent studies demonstrate analytical 

models of dynamic integrated physiological networks during sleep and indicate how multiple 

factors like sleep pathologies affect the coupling of integrated networks [69]. The recommended 

sleep for adults is 7-8hrs every day. Habitually sleeping outside the normal sleep range may lead 

to serious health problems and sleep disorders [24-26]. Even though sleep is a resting state, most 

of the physiological systems like cardiac system, respiratory system and central nervous system are 

working in their vegetative state. Sleep pathologies like sleep apnea affect the interactions among 

the physiological systems, and their effects on these physiological system networks are largely 

unknown
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Literature shows that researchers have applied the following methods to identify the integrated 

physiological network interactions: a) Computational methods based on time delay, b) Methods 

based on Transfer Entropy (TE), and c) Methods based on Granger Causality (GC). These methods 

utilized the overnight polysomnography (PSG) data of human subjects. The PSG data includes 

signals like electroencephalography (EEG), electrocardiography (ECG), electrooculography 

(EOG), oxygen saturation, and respiration [24]. 

The implementation of computational methods based on time delay to understand the 

interactions among different physiological systems can be found in the works developed by Bartsch 

et al, Ivanov et al[52, 70].   The authors developed an analytical method based on the concept of 

time delay stability to identify and quantify networks of physiologic interactions from long-term 

continuous, multi-channel physiological recordings. The authors developed a physiologically 

motivated visualization framework to map networks of dynamical organ interactions to graphical 

objects encoded with information about the coupling strength of network links quantified using the 

time delay stability measure. The findings of this methodology demonstrate a direct association 

between network topology and physiologic function and provide new insights into understanding 

how health and distinct physiologic states emerge from networked interactions among nonlinear 

multi-component complex systems. The authors found that during different physiologic states, the 

network of organ-to-organ interactions is characterized by different configurations of links and 

links strength. Overall, in sleep network physiology, the authors discussed only the link strength 

between physiologic network nodes but not the directionality of the links. In addition, the analysis 

was not performed on subjects with sleep apnea but only on healthy subjects. 
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Methods like directed information [71] and transfer entropy [72] are able to detect the nonlinear 

dependencies between past and future with minimal assumptions about the predictive relationships. 

But these estimators have high variance and require large amounts of data for reliable estimation. 

These approaches also suffer from the curse of dimensionality when the number of time series is 

growing [73].  

For understanding the relation between two time series, among the available choices, Granger 

causality [74, 75] is the commonly used framework. The approaches such as lagged correlation 

[76] or coherence [76] analyze strictly bivariate covariance relationships between the time series 

but Granger causality metrics depend on the activity of the entire system of time series, thus making 

them more appropriate for understanding high dimensional complex data streams. 

Vector autoregressive (VAR) model is a popular model which assumes linear time series dynamics 

to estimate Granger causality [75, 77]. In this model, the time lags of a time series have a linear 

effect on the future of other time series and the magnitude of the linear coefficients quantifies the 

Granger causal effect. However, in this model, to assess Granger causality the maximum time lag 

should be specified explicitly. If the lag is too short, the Granger causal connections occurring at 

longer time lags between series will be missed. If the lag is too larger, overfitting may occur. 

Hierarchical lasso [78] and truncating penalties [79] have been used to automatically select the lags 

while protecting against overfitting. However, this method may fail when the relation between the 

past of one series and future of another have nonlinear dependencies [80-82]. 

Neural networks are capable of representing complex nonlinear and non-additive interactions 

between inputs and outputs. Methods such as multilayer perceptrons (MLPs) [83-85] and recurrent 
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neural networks (RNNs) like long-short term memory networks (LSTM) [86] have shown 

improved performance in forecasting multivariate time series given their past.  

Tank et al. [87, 88] proposed a class of nonlinear methods for estimation of Granger causality by 

applying structured multilayer perceptrons (MLPs) or recurrent neural networks (RNNs) combined 

with sparsity-inducing penalties on the weights on the input time series.  The authors proposed 

component multilayer perceptron (cMLP) and component long-short term memory (cLSTM) 

architectures with lasso penalty to select Granger causality on the DREAM3 dataset. The provided 

approaches outperform the existing Granger causality approaches. 

Faes et. al. [53]  performed Granger causality by vector autoregressive (VAR) modeling on 

components of heart rate variability using time series analysis and EEG power in the δ, θ, α, σ, β 

bands for 10 healthy subjects during sleep. The significance of each link in the network is assessed 

using F-statistics. The whole-night analysis revealed the existence of a fully connected network of 

brain-heart and brain-brain interactions, with the β EEG power acting as a hub that conveys the 

largest number of GC links between the heart and brain nodes. These links became progressively 

weaker when assessed during light sleep, deep sleep, and REM sleep, thus suggesting that brain-

heart GC networks are sustained mainly by sleep stage transitions. However, the disadvantage of 

using the VAR model is that the time lags of a series directly impact the future of other series. Thus, 

maximum time lag to be considered has to be specified explicitly when assessing GC.  

Alvardo et. al. [89] analyzed the polysomnography of 28 patients diagnosed with obstructive sleep 

apnea (OSA) and compared the results with 10 control subjects. The authors performed Granger 

causality estimation on the EEG and EKG signals from the polysomnography time series to 
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measure the connectivity among brain waves (δ, θ, α, σ, β) and three spectral sub bands for heart 

rate variability of OSA patients before and during continuous positive air pressure (CPAP).  Jhon 

et. al. [1] provided a framework to measure causality that connects central nervous system and 

cardiac system in people diagnosed with OSA before and during treatment with CPAP. The authors 

used artificial neural networks to obtain models for Granger causality computation on EKG and 

EEG signals recorded in polysomnographic studies. However, the analysis is performed for the 

whole night without considering the separate sleep stages. 

To the best of our knowledge, the studies based on Granger causality estimation in sleep, performed 

analysis only on a whole night’s sleep data without considering separate sleep stages or sleep apnea 

subjects’ data, and the network physiology analysis performed using the time delay stability method 

only determined the strength of the links but not the directionality. To overcome the limitations of 

existing methods, and to identify the strength and directionality of the physiological network links 

for sleep apnea subjects, we propose a framework that incorporates both LSTM based Granger 

causality and the time delay stability method. 
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5.2 Model: Time Delay Stability (TDS) 

The TDS method is used to identify the strength of the links between EEG bands δ, θ, α, σ, β, ɣ1, 

and ɣ2 frequency bands. The steps of the TDS method are shown in figure 5.1 and algorithm 5.1.  

In TDS, to find the coupling strength between two frequency bands, the two-time series are divided 

into segments of length 60 sec with a 30 sec overlap (line 1). Within each segment, the cross-

correlation function with lag values ranging from -60 to +60 is calculated (lines 2 to 9). Time delay 

t0 is the lag at which the absolute value of cross-correlation is maximum in each segment. Stable 

coupling between two time series corresponds to a stable time delay t0 for multiple consequent 

segments. The absence of stable coupling between two time series corresponds to large fluctuations 

in time delay t0. In the TDS method, if the time delay t0 does not vary by more than +/-1 for at least 

5 consecutive segments, then these segments are identified as stable. This process is repeated for 

the entire time series segments by using a sliding window with step size of one segment (lines 18 

to 21). The percentage of time delay stability is shown in equation 1. 

 %𝑡𝑑𝑠 = (𝑛𝑜. 𝑜𝑓 𝑠𝑡𝑎𝑏𝑙𝑒 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠/𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠) ∗ 100                    (1) 
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Figure 5.1: Steps in time delay stability method  

 

The variables used in algorithm 5.1 are shown in table 5.1 

Table 5.1: Notations used in algorithm 5.1 

Variable Purpose 

X1, X2 Input normalized frequency band  

lst Strength of link between two frequency bands 

corr_val Cross correlation value between two series at a given lag 

corr_array Array of correlation values between two series at all lags 

Slag Lag at which correlation is maximum 

lagarray Array with all segment’s lags 

diffarray Array with difference of lags for five consecutive segments 

c Count  

Sst Segment stability 
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Stmat Stability matrix  

 

Algorithm 5.1: Time Delay Stability Algorithm 

Input: Series X1 , Series X2 

Output: lst 

1. Split X1 , X2 into v segments 

2. for each segment i do: 

3.        for each lag in range (-60, +60) do: 

4.               corr_val = cross_correlation(X1i, X2i) 

5.               corr_array = corr_val.append(corr_val) 

6.        end for 

7.        Slag = argmax(corr_array) 

8.        lagarray = lagarray.append(Slag) 

9. end for 

10. func segmentStability(array): 

11.         compute diffarray 

12.        c = count(diffarray < =1) 

13.        if c >= 4 then: 

14.            return “stable” 

15.        else then: 

16.            return “unstable” 

17.        end if 

 

18. for j in range (0, len(lagmax)-5) do: 
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19.        Sst = segmentStability(lagmax[j,j+6]) 

20.        Stmat = Stmat.append(Sst) 

21. end for 

22. lst = (no. of stable segments)/ (total no. of segments) 

 

5.3 TDS Results:    

The results obtained for the TDS method are shown as graphs in figure 5.2. In the graphs, each 

node represents a frequency subsystem and the edge between nodes indicate coupling between EEG 

bands. For this analysis, the links with %tds > 45% are only considered. The results of %tds are 

given a score as shown in equation 2. If the %tds > 80%, a score of 3 is assigned for the subject for 

a particular edge. For instance, if the obtained %tds between delta and alpha bands is 50%, then the 

score of 1 is given for the edge between delta and alpha. 

                                                    𝑠𝑐𝑜𝑟𝑒 =  {

3                                     𝑖𝑓 %𝑡𝑑𝑠 > 80%
1                      𝑖𝑓 45% <  %𝑡𝑑𝑠 < 80% 
0                                      𝑖𝑓 %𝑡𝑑𝑠 < 45%

                        (2) 

The overall weight of links is obtained by taking the score of all the subjects into consideration. 

The equation for the overall link weight is shown in equation 3. In the graphs, the thickness of the 

links is de termined by  

                                                                           𝐿𝑖𝑛𝑘 𝑊𝑒𝑖𝑔ℎ𝑡 =  ∑ 𝑠𝑐𝑜𝑟𝑒𝑖
𝑁
𝑖=1                                    (3) 

The thickness of the links in graphs is determined by the link weight value. 

To analyze, the full night sleep data is split based on the sleep stages. Stages N1 and N2 are 

combined as these two stages are considered as light sleep. Stages N3 and N4 are combined as 
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these two stages are considered as deep sleep. Thus, the TDS method is applied to the following 

data groups: a) full night sleep, b) Awake, c) stages N1 and N2, d) stages N3 and N4, and e) REM.   

When the full night sleep data is considered, a fully connected network between EEG bands is 

observed for both the control group and the sleep apnea group. However, the connectivity between 

EEG bands is reduced when individual sleep stages are considered. The percentages of links with 

stable connectivity for the control group and the sleep apnea group are shown in figure 5.3. For 

both the groups, a greater number of stable links are observed in the awake stage and the least 

number of stable links are observed in the N3 and N4 stages. The control group has a higher 

percentage of stable links than the sleep apnea group in every sleep stage. However, the percentage 

of links in the REM stage are increased when compared to the N1 & N2 and the N3 & N4 sleep 

stages for the control group. But they are reduced for the sleep apnea group. An overall higher 

average link strength is observed in the control group when compared with sleep apnea group. In 

the control group awake stage, links are present between α and σ, β, ɣ1, and ɣ2 bands. But, in the 

sleep apnea group awake stage, there are no links to the α band. A strong coupling is seen between 

the ɣ1 and ɣ2 bands in all sleep stages for both the control group and the sleep apnea group. 
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Figure 5.2 TDS method results 
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Figure 5.3: Percentage of links with stable connectivity in control group and sleep apnea 

group subjects 

  

5.4 Model: LSTM based Granger Causality Estimation (LSTMGC): 

The coupling direction between two EEG bands is identified using the LSTMGC method where 

LSTM is applied to the principle of Granger causality. 

5.4.1 Granger Causality 

Granger causality is a statistical hypothesis test to determine if one time series is useful in 

forecasting another. Time series Y is said to Granger cause series X if including the past values of 

series Y improves prediction of X’s future values. In the original Granger causality, the causal 

dependence is measured using the vector autoregressive model. For instance, consider a two 

stochastic systems Xt and Yt. The two systems can be mathematically represented as shown in 

equations (4), (5): 
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                                                              𝑋𝑡 =  ∑ 𝑎1𝑋𝑡−𝑗
𝑝
𝑗=1 +  𝐸1                                                                                          (4) 

                                                             𝑌𝑡 =  ∑ 𝑏1𝑌𝑡−𝑗
𝑝
𝑗=1 + 𝐸2                                                             (5) 

where p is the maximum number of lagged observations, E1 and E2 are residuals for each series, a 

and b are the coefficients that relate to Xt and Yt systems. To find if series Yt Granger causes series 

Xt, an unrestricted prediction model of Xt combining with Yt is given as follows: 

 

                                                         𝑋𝑡 =  ∑ 𝑎2𝑋𝑡−𝑗
𝑝
𝑗=1 + ∑ 𝑏2𝑌𝑡−𝑗

𝑝
𝑗=1 +  𝐸1                                                           (6)  

                                                            𝐶𝑎𝑢𝑠𝑎𝑙𝑖𝑡𝑦 = 𝑙𝑛
𝑣𝑎𝑟(𝐸𝑟𝑟𝑜𝑟𝑟𝑒𝑑𝑢𝑐𝑒𝑑)

𝑣𝑎𝑟(𝐸𝑟𝑟𝑜𝑟𝑓𝑢𝑙𝑙)
                                   (7) 

Where, Errorreduced = Error of model considering only Xt. 

Errorfull = Error of model considering both Xt and Yt. 

The Granger causality is the logarithm of ratio of variances of reduced error and variances of full 

error as shown in equation (7).  

5.4.2 LSTMGC 

In the LSTMGC model, to forecast the EEG frequency bands, a recurrent neural network LSTM is 

used. LSTM is a recurrent neural network model used for processing sequence data like time-series 

signals. The significance of the LSTM model is that it contains a gate mechanism to provide better 

performance in long-term prediction. The architecture of the LSTMGC model is shown in figure 

5.4. 

Using the LSTMGC model, the behavior of the studied systems can be represented as shown in 

equations (8) and (9). 
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(a) 

 

(b) 

Figure 5.4: (a) LSTMGC overall architecture (b) LSTM model architecture 

                                                               𝑋𝑡 = 𝑓(∑ 𝑎1𝑋𝑡−𝑗
𝑝
𝑗=1 +  𝐸1)                                          (8) 

                                                          𝑋𝑡 = 𝑓(∑ 𝑎2𝑋𝑡−𝑗
𝑝
𝑗=1 + ∑ 𝑏2𝑌𝑡−𝑗

𝑝
𝑗=1 +  𝐸1)                                 (9) 

Where f is a nonlinear function, p is the maximum number of lagged observations, E1 is the 

forecasting residues, a and b are the coefficients that relate to Xt and Yt systems.  
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The Granger causality for LSTMGC model is measured as given in equation (10). 

                                                            𝑔𝑐 = 𝐸𝑟𝑟𝑜𝑟𝑟𝑒𝑑𝑢𝑐𝑒𝑑 − 𝐸𝑟𝑟𝑜𝑟𝑓𝑢𝑙𝑙                                 (10) 

where, Errorreduced = forecasting error of model considering only Xt as input. 

Errorfull = forecasting error of model considering both Xt and Yt as input. 

If the 𝑔𝑐 value is zero, then the system Yt has no influence on system Xt. Positive 𝑔𝑐 value refers to 

the existence of effective connectivity between systems Yt to Xt. 

 

5.5 LSTMGC Results 

For this study, the N1 and N2 stages' data are combined during analysis as these stages collectively 

belong to light sleep (LS). Similarly, N3 and N4 stage data are combined as they belong to deep 

sleep (DS). The coupling direction of the links that exist between the EEG bands is shown in figure 

5.2. This is obtained through the LSTMGC method. The results obtained using the LSTMGC 

method for the control group and sleep apnea group are shown in figure 5.5. Most of the links are 

bidirectional in the awake stage for both the control group and the sleep apnea group. In the N1 and 

N2 stages for the sleep apnea group, the link between σ and ɣ2, β and ɣ1 are unidirectional, whereas 

it is bidirectional in the control group. Furthermore, the link between β and θ are in opposite 

directions in this stage for both groups. In the REM stage for the control group, there are links to θ 

from δ, ɣ1, and ɣ2 subsystem. However, in the REM stage for the sleep apnea group there are no 

links to the θ subsystem. Furthermore, the links between β, ɣ2 and α, ɣ1 in the REM stage for sleep 

apnea subjects are present according to the TDS method results. But the 𝑔𝑐 value obtained for both 

these links is negative. Thus, TDS indicates a correlation, but not necessarily a link. There is thus 

no link present between these bands in the LSTMGC results. Overall, bidirectional links are seen 
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for both control and sleep apnea subjects in the AWAKE sleep stage. But, for other sleep stages, 

unidirectional links are identified in sleep apnea subjects. 

 

 

Figure 5.5: LSTMGC results for control group and sleep apnea group 
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5.6 Discussion 

The brain is a significant organ that serves as the center of the nervous system and controls key 

organ systems. Depending on the physiologic state of the human body, the brain control 

mechanisms of different organ systems change. These control mechanisms are influenced by the 

sleep stage and the interactions among other brain regions during sleep. The brain regions 

communicate through various frequency bands, and a single frequency dominates each sleep stage. 

For instance, alpha waves are dominant in Awake and REM sleep stages; theta waves dominate in 

N1 and N2 sleep stages; delta waves are dominant in N3 and N4 sleep stages.  

As a first step, we investigated the inter-brain network interactions in the brain C3 region in control 

and sleep apnea subjects during sleep. In order to identify the direction and strength of the intra-

brain network interactions, we apply our two models, a) TDS to measure the strength of network 

links and b) LSTMGC to identify the direction of links to the EEG time series signals collected 

from the C3 brain region. Thus, we built a network with seven nodes where each node represents 

a frequency band among δ, θ, α, σ, β, γ1 and γ2. This work aims to identify the difference in intra-

brain network interactions among control and sleep apnea subjects during different sleep stages. 

We examine the strength and direction of all the 42 links, which are the combinations of all the 

possible edges between the intra-brain network nodes. The results indicate that the network 

structure of control and sleep apnea subjects in different sleep stages are described by different 

network structures. Furthermore, network structure changes significantly between control and sleep 

apnea subjects, with more network links found in control subjects. 

Our analysis found that in all the sleep stages, the control subjects exhibited high connectivity 

compared to the sleep apnea subjects. In control subjects, the network connectivity is high during 

deep sleep (DS) and low during REM sleep. A similar pattern is seen among sleep apnea subjects 

during DS and REM sleep. In the Awake and light sleep (LS) sleep stages, the network structure 



 

49 
 

of control and sleep apnea subjects have similar links with identical link strengths. But the control 

subjects have more links compared to sleep apnea subjects. In REM sleep, some of the links present 

in the network structure of control subjects are absent in sleep apnea subjects. 

When the direction of links is considered, both the control and sleep apnea subjects have mainly 

bidirectional links in the Awake sleep stage and more unidirectional links in the REM sleep stage. 

In the LS stage, some of the links are bidirectional in the network structure of control subjects but 

unidirectional in sleep apnea subjects.  

 

5.7 Conclusion 

Even though sleep is a resting state, sleep pathologies like sleep apnea impact the network 

connectivity between organ systems during sleep. We proposed a combination of TDS and 

LSTMGC method to identify the strength and direction of coupling between EEG frequency bands 

for control and sleep apnea subjects for different sleep stages. The results show a high coupling 

strength in control subjects in all sleep stages compared to sleep apnea subjects. Most links are 

bidirectional in the awake stage for control and sleep apnea subjects. However, in other sleep stages, 

more unidirectional links are identified in sleep apnea subjects, indicating a reduced coupling 

between EEG bands. 
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CHAPTER VI 
 

 

PHASE III: ANALYSIS OF PHYSIOLOGICAL NETWORKS DURING SLEEP USING 

CONDITIONAL GRANGER CAUSALITY 

 

This chapter discusses the influence of sao2 (oxygen saturation) and airflow (nasal airflow) 

signals on brain-heart interactions during sleep in sleep apnea and control subjects. Long-Short 

Term Memory based Conditional Granger Causality (LSTMCGC) method is used in this study to 

identify the indirect influence of a third organ signal on brain-heart interactions. 

6.1 Introduction and Background work 

For a healthy person, the oxygen saturation levels are between 95% and 100%. But, for a sleep 

apnea patient, the oxygen saturation levels drop as low as 70% [90] during an apnea event. The 

drop in oxygen saturation levels for a sleep apnea patient is shown in figure 6.1. The first graph 

shows the hypnogram where the y-axis specifies the sleep stages (0: Awake, 1: N1, 2: N2, 3:N3, 

4:N4, and 5:REM). The second graph shows the oxygen saturation levels of the sleep apnea patient 

during the 8-hour long sleep. The lowest oxygen levels of the patient are seen during the REM 

sleep stage, where the levels drop to as low as 72%. The effects of such a drop in oxygen saturation 

levels on the interactions between organ systems during different sleep stages are largely unknown. 

As the airflow cessation [91] and reduction in oxygen saturation levels occur during sleep apnea 

episodes. In the current study, the indirect influences of sao2 and airflow signals on brain-heart 

interactions during different sleep stages are studied. 
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Figure 6.1: Hypnogram: X-Axis: Epoch value, Y-Axis: Sleep stage, SaO2: X-Axis: Epoch 

value, Y-Axis: Oxygen saturation level 

Pairwise Granger causality methods are often used to identify causation between two time series 

signals [92]. However, the pairwise Granger causality methods do not clearly differentiate direct 

and indirect causal influences between two time series signals [93, 94]. The applications of 

conditional Granger causality in various fields are discussed below. 

Granger causality model derived from autoregressive models has been actively used to determine 

the connectivity in the human brain with functional magnetic resonance imaging (fMRI) and to 

identify temporal and spatial dynamics of various cognitive processes. Zhou et al. [95] proposed a 

novel approach to quantify the connectivity in the brain using fMRI and the conditional granger 

causality model instead of a pairwise Granger causality model. The results demonstrate that 

conditional Granger causality could achieve better accuracy in identifying network connectivity 

compared to the more widely used pair-wise Granger causality model. Motor imagery has been 
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used widely to study the network reorganization of stroke-related patients.  Wang et al.[96] 

proposed a framework to evaluate the cortical model networking patterns connectivity for stroke 

patients. In this study, conditional Granger causality is used to evaluate the connection between 

motor imagery and motor execution. The results demonstrate that a damaged hemisphere could 

cause abnormal motor activity during motor execution in stroke patients. Mainali et al. [97] 

proposed a conditional causal model detection for detecting interactions in human microbiome 

samples. The authors analyzed the duration and time series of the microbiome to decipher the 

network correlation and causation of microbial genera. The authors demonstrated Granger 

causality, and related techniques may be particularly helpful for understanding the governing nature 

of microbiome composition and structure. Gao et. al. [98] presented a framework that describes 

connectivity networks of motor execution and motor imagery using the conditional Granger 

causality model. The authors demonstrated that selected seed regions in the right-hand have 

performance higher than the left hand due to effective network connectivity resulting in the 

influence of brain asymmetry on connectivity networks. In addition, In-Out degrees consistently 

demonstrated the left lateralization for right-handed subjects. Conditional granger causality based 

on fMRI time series signals specifies how strongly certain portions of the brain contributes to the 

brain activity in a target region. Most efficient way to model nonlinear relationship between source 

and target brain signal is using conditional Granger causality. Chuang et. al. [99] proposed a 

framework based on deep stacking networks and convolution neural networks to understand the 

activities of the brain. Here, conditional Granger causality is used to assess the modelling fidelity 

based on convolution neural networks. The proposed technique successfully estimated time lags 

when synthetic datasets are applied. Thus, the proposed method based on conditional Granger 

causality is a promising model for complex brain networks. Ecological momentary assessment 
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(EMA) has been widely adopted in mobile health applications due to its valuable insights into many 

diseases. Conditional Granger causality based on EMA helps us understand the interpretation of a 

disease and its treatment decisions. Jamaludeen et al.[100] proposed a model based on conditional 

Granger causality and multivariate time series analysis to analyze EMA data of 270 users based on 

their registration data to determine conditional Granger causal relationships. The model discovered 

that some EMA items Granger cause others for more than 8% of the mobile health application 

users. Wada et. al. [101] implemented a conditional Granger causality test to analyze the connection 

between import, energy, export, economic growth, and population on environmental quality in 

Brazil. Conditional Granger causality is also applied to detect interaction networks in the human 

microbiome [102], and evaluate the effective connectivity of the resting-state networks [103]. 

To the best of our knowledge the conditional Granger causality approach has not applied to 

distinguish the influence of direct causal influences between two organ systems and indirect causal 

influences from a third organ system for sleep apnea subjects during sleep. As neural networks are 

capable of representing complex nonlinear and non-additive interactions between inputs and 

outputs, and as long short term memory (LSTM) networks have shown improved performance in 

forecasting multivariate time series given their past [88], in this study, we propose a LSTM based 

conditional Granger causality model. The LSTMCGC model implements conditional Granger 

causality to determine indirect causation of sao2 or airflow signals on causation between EEG 

frequency bands and heart rate signals collected through polysomnography. The aim of this analysis 

is to identify if: 

1. the sao2 or airflow signals influence EEG frequency bands to cause changes to heart rate 

signals. 
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2. the sao2 or airflow signals influence heart rate signals to cause changes in EEG frequency 

bands. 

The results indicate that during light sleep, the sao2 and airflow signals have a very low influence 

on brain-heart interactions in sleep apnea subjects but a strong influence in the control subjects, 

whereas in the REM sleep stage, the sao2 and airflow signals strongly influence brain-heart 

interactions for sleep apnea subjects, but very low influence for control subjects. 

 

6.2 Model: LSTM based Conditional Granger Causality Estimation (LSTMCGC) 

The influence of the airflow, sao2 signals on brain and heart interactions can be identified using 

LSTMCGC method where, LSTM is used in the principle of conditional Granger causality. 

6.2.1 Conditional Granger Causality 

In recent times, interest in the application of the Granger causality concept in physiology has 

increased significantly. The concept of Granger causality is utilized to identify the cause of a 

phenomena and also as a physiological marker [89, 104-108]. The concept of Granger causality 

and its application to identify interactions among brain networks during sleep is presented in 6.2. 

According to this approach, a direct causal relationship between time series X and Y as shown in 

figure 6.2 (where Y causes X, denoted by Y -> X) exists if the prediction error of X based on the 

past values of X and Y is statistically small compared to the prediction error of X when only past 

values of X is considered.  



 

55 
 

 

Figure 6.2: Direct Causality 

 

Figure 6.3: Case A: Full Indirect Causality, Case B: Partially Indirect Causality 

 

But this causality analysis cannot identify some of the relationships between each pair of time series 

when three time series are considered. For instance, Z is the time-series signal causing Y, Y is the 

signal causing X, but Z is not causing X directly. In this case, if Granger causality is used to analyze 

direct relationships between two time series, the indirect causation between Z and X will be 

indistinguishable when Z is the signal causing Y and X (shown in figure 6.3). For both cases, A 

and B in figure 6.3, the causality analysis for two time series suggests the existence of relationships 

as presented in case B of figure 6.3.  
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A conditional Granger causality can be used to differentiate fully indirect causal 

relationships from partially indirect causal relationships in time series. According to conditional 

Granger causality, a fully indirect causal relationship between Z and X (where Z indirectly causes 

X through Y, denoted as Z -> X|Y) exists if the prediction error of X when the past values of X, Y, 

and Z is statistically smaller compared to the prediction error of X when only past values of Y and 

X are considered. For conditional Granger causal analysis, the equations depicted in equation 6 

shown in section 5.4.1 can be extended by considering the third stochastic system Zt and its 

respective coefficients as shown in equation (11). 

                                                                𝑍𝑡 =  ∑ 𝑐1𝑍𝑡−𝑗
𝑝
𝑗=1 + 𝐸3                                                                (11) 

where p is the maximum number of lagged observations, E3 is residuals for Z series, c is the 

coefficient of the Zt system. To find if series Zt conditional Granger causes series Xt, an unrestricted 

prediction model of Xt combining with Yt and Zt is given as follows: 

                                        𝑋𝑡 =  ∑ 𝑎3𝑋𝑡−𝑗
𝑝
𝑗=1 + ∑ 𝑏3𝑌𝑡−𝑗

𝑝
𝑗=1 +   ∑ 𝑐3𝑍𝑡−𝑗

𝑝
𝑗=1 +  𝐸1                        (12) 

The conditional Granger causality from Z to X conditional on Y is given as shown in equation 

(13). 

                                                                   𝐹𝑍→𝑋|𝑌 = 𝑙𝑛
σ2𝐸𝑋𝑌

σ2𝐸𝑋𝑌𝑍
                                                           (13) 

where, σ2𝐸𝑋𝑌  means variance of the error obtained from the model when only past values of X, Y 

are considered and σ2𝐸𝑋𝑌𝑍 means variance of the error obtained from the model when past values 

of X, Y and Z are considered. 
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For conditional Granger causality analysis, two models are created as follows: 

Model 1: Considering past values of X and Y to predict future values of X (Coefficients c3 = 0 in 

equation (12)).  

Model 2: Considering past values of X, Y and Z to predict future values of X. 

Z causes X conditional on Y (Z → X|Y) if the error E1 for model 2 is significantly smaller than the 

error for model 1. 

6.2.2 LSTMCGC 

The architecture of the LSTMCGC model is shown in figure 6.4. Using the LSTMCGC model, the 

behavior of system Xt when past values of Xt and Yt are considered and when past values of Xt, Yt 

and Zt are considered can be represented as shown in equation (9) in section 5.4.2 and equation (14) 

respectively.  

                                         𝑋𝑡 = 𝑓(∑ 𝑎2𝑋𝑡−𝑗
𝑝
𝑗=1 + ∑ 𝑏2𝑌𝑡−𝑗 + ∑ 𝑐2𝑍𝑡−𝑗

𝑝
𝑗=1

𝑝
𝑗=1 +  𝐸1)                    (14) 

where f is a nonlinear function, p is the maximum number of lagged observations, E1 is the 

forecasting residues, a, b and c are the coefficients that relate to Xt , Yt and Zt systems respectively.  

The conditional Granger causality for LSTMCGC model is measured as given in equation (15). 

                                                                     𝑐𝑔𝑐 = 𝐸𝑥𝑦 −  𝐸𝑥𝑦𝑧                                                           (15) 

Where, Exy = forecasting error of model considering only Xt and Yt as input. 

Exyz = forecasting error of model considering Xt , Yt and Zt as input. 



 

58 
 

If the cgc value is zero, then the system Zt does not indirectly cause Xt. Positive cgc value refers to 

existence of effective indirect causation between systems Zt to Xt. 

 

Figure 6.4: LSTMCGC Architecture 

 

6.3 Results 

For the current analysis, the EEG frequency bands, hr (heart rate), sao2 (oxygen saturation), 

airflow signals, and the hypnogram data of sleep apnea subjects (eight male, seven female) and 

control subjects (five male, five female) are considered. The EEG frequency bands are extracted 

from raw EEG signals, as shown in section 3.4. The sampling rate of hr, sao2, and airflow signals 

are resampled to 1Hz. After the preprocessing, all the time series signals have the same time 

resolution of 1 sec. The beginning and ending awake sleep stage data is removed for all the signals 

as the subject might be in a wakefulness state instead of an Awake sleep stage. The hypnogram 

data consists of Awake, N1, N2, N3, N4 and REM sleep stages. In the current study, the data of N1 

and N2 sleep stages data is combined as Light Sleep (LS) and N3 and N4 sleep stages data is 

combined as Deep Sleep (DS). 
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For each subject, the following conditional Granger causal values are computed using the CCS 

algorithm: 

a) sao2 --> hr | c: Causal effect of sao2 on hr signal conditional on signal c 

b) sao2 --> c | hr: Causal effect of sao2 on signal c conditional on hr signal 

c) airflow --> hr | c: Causal effect of airflow signal on hr signal conditional on signal c 

d) airflow --> c | hr: Causal effect of airflow on signal c conditional on hr signal 

Signal c is a frequency band: c ∈ {δ, θ, α, β, σ, γ1, γ2} 

The graphs shown from figure 6.5 to 6.12 represent the results obtained for the current analysis. 

Each node in the graph represents a signal. The existence of an edge between nodes indicates the 

influence of sao2 or airflow on the interactions between the respective nodes. The direction of an 

edge between node1 → node2 indicates the conditional Granger causation of sao2 or airflow on 

node2 conditional on node1.   

During AWAKE sleep stage, low conditional Granger causation from airflow signals to the 

different EEG frequency bands and hr signal interactions is observed (figures 6.5 and 6.6). But 

more conditional causal links are observed from sao2 signal to EEG frequency bands and hr signals. 

This indicates the influence of sao2 is higher than airflow on interactions between brain and heart 

interactions in AWAKE sleep stage in both control and sleep apnea subjects. A similar behavior of 

both sao2 and airflow signals is seen during deep sleep (figures 6.9 and 6.10). 
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Figure 6.5: Network graphs for control subjects during AWAKE sleep stage 

 

 

Figure 6.6: Network graphs for sleep apnea subjects during AWAKE sleep stage 

 

During light sleep, more conditional causal links are seen between nodes when sao2 and airflow 

signal are considered for control subjects (Figure 6.7). But, for sleep apnea subjects, very few links 

are seen between nodes for both sao2 and airflow signals (figure 6.8). This indicates that during 

light sleep, both oxygen saturation levels and the airflow have an impact on the brain-heart 

interactions in control subjects. But such influence is minor in sleep apnea subjects. 
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Figure 6.7: Network graphs for control subjects during Light Sleep 

 

 

 

Figure 6.8: Network graphs for sleep apnea subjects during Light Sleep 
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Figure 6.9: Network graphs for control subjects during Deep Sleep 

 

 

 

Figure 6.10: Network graphs for sleep apnea subjects during Deep Sleep stage 

 

During the REM sleep stage, very few conditional causal links are observed between nodes for 

control subjects (figure 6.11), whereas for sleep apnea subjects, more conditional causal links are 

observed during the REM sleep stage (figure 6.12). This indicates that sao2 and airflow signals 
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have high influence during REM sleep stage in sleep apnea subjects when compared to the control 

subjects. 

 

Figure 6.11: Network graphs for control subjects during REM sleep stage 

 

 

 

Figure 6.12: Network graphs for sleep apnea subjects during REM sleep stage 
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6.4 Conclusions 

Conditional Granger causality analysis is used to explain the existence of an indirect influence 

caused by a third time-series signal on causal relationships between two time-series signals. In this 

study, the LSTMCGC method, which utilizes conditional Granger causality, is implemented to 

understand the influence of sao2 and airflow signals on brain-heart interactions during different 

sleep stages. The results indicate that during light sleep, sao2 and airflow signals have a very low 

influence on brain-heart interactions in sleep apnea subjects but a strong influence in the control 

subjects. In contrast, in the REM sleep stage, the sao2 and airflow signals strongly influence brain-

heart interactions for sleep apnea subjects, but have very low influence for control subjects.  
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CHAPTER VII 
 

 

PHASE IV: CHANGE IN CAUSATION BETWEEN SAO2 AND HR SIGNALS DURING 

SLEEP FOR SLEEP APNEA AND CONTROL SUBJECTS 

 

This chapter discusses the changes in causation between two organ system signals over a night’s 

sleep for a control subject and a sleep apnea subject. The changes in causation are  identified 

using the Change in Causation during Sleep (CCS) method. 

7.1 Introduction and Background work 

Causal learning commonly determines the presence or absence of an influence from a driver time 

series to a target series. These causal influences determine whether the causation exists but does 

not explain when the causation occurs. But in public health, determining a causal influence and 

when the causal effect occurs can have profound consequences. For instance, smoking causes 

cancer, but the likelihood of individuals getting cancer increases over their lifetime. The concern 

here is not whether an individual is susceptible to cancer but when one might become vulnerable 

to it and if smoking increases the chances of it. In these cases, the concern is not on the occurrence 

of an event but its occurrence at or by a given time. Thus, the focus of this study is to address the 

question of when rather than whether an event occurs. 
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In most of the previous studies, researchers focused on identifying if an event occurs but did not 

consider the changes to the event over time [109]. Greville et. al. [110]. Performed a study to 

determine when rather than whether an event occurs. The authors conducted three experiments 

where the participants’ actions can alter an outcome occurrence time. The overall results of this 

study indicate that participants are sensitive to event timing changes. Wasserman et. al. [111] 

conducted two experiments to study the role of temporal contiguity among college students 

responding to and rating contingency relations during operant conditioning. The students were 

given a task in which they gained points every time a light was illuminated, and the students could 

press a response key to influence the light. The students indicated a degree of sensitivity to changes 

in event timing. The overall results demonstrated the response and outcome contiguity as essential 

contributors to causal perception. According to the study by Greville et. al. [112, 113], postponing 

or advancing events in time was enough to obtain causal judgments from participants when the 

contingency was zero, thus suggesting that even when the statistical contingency is zero, the timing 

affects the causal perception. 

Granger causality is commonly used to determine the causal influence of one time series 

on another. Granger causality is popularly applied in neurophysiological and functional imaging 

data to study the characteristics of neurons and brain-related activities. Wen et. al. [114] proposed 

a multivariate framework to estimate Granger causality based on matrix factorization. One of the 

advantages of this framework is that matrix estimation is needed only once for the multivariate 

dataset compared to autoregressive modeling, which requires estimation for each subset in the 

dataset. The Granger causality can be calculated by factorizing the submatrix of the overall matrix. 
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Granger causality is well known in fields like econometrics, where randomized tests are not 

exceptionally normal. Rather data about the powerful improvement of a framework is 

unequivocally demonstrated and used to characterize possibly causal relations.  Also, the thought 

of causality as impact of mediations is transcendent in fields like clinical measurements or software 

engineering. Eichler et. al. [115]  analyzed the impact of outer, potentially different and consecutive 

methods in an arrangement of multivariate time series using the Granger causal construction. The 

questions addressed by the authors include: a) under what interventions does Granger causality 

educate us about the effectiveness regarding interventions, and b) when does the observed times 

series permit to analyze this impact?  

To the best of our knowledge, no study thus far has determined the changes in causal influences 

between two organ system signals over time for sleep apnea subjects during sleep. 

The existence of causal influence indicates the possibility of intervention. In public health, it is not 

only important to determine if a causal effect exists but also when the causal influence occurs. 

During apnea events the body is denied of oxygen. Normal blood oxygenation is at 90%- 95%. An 

apnea event can drive that level into the 80's% or even 70's% [91]. These levels of oxygenation are 

damaging and dangerous. The impact of the reduced oxygen levels on other organ systems during 

sleep is largely unknown. In our current study, we studied the impact of oxygen saturation (sao2) 

on heart rate (hr) and vice-versa by using the CCS algorithm. The change in causation values from 

sao2 → hr and hr → sao2 are observed for an entire night sleep data for sleep apnea and control 

subjects. The results indicate that influence of oxygen saturation levels on heart rate for sleep apnea 

subjects is high during the REM sleep stage. But for control subjects, no such significant influence 
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during the REM sleep stage is seen. The causation of hr signals on sao2 signals is identified to be 

high during all sleep stages for control subjects. 

7.2 Model: Change in Causation during Sleep (CCS) 

The CCS algorithm determines the changes in causation between two organ system signals during 

an entire night's sleep for sleep apnea and control subjects. The steps for the CCS algorithm are 

shown in algorithm 7.1. Organ system signals like EEG, HR, SaO2, Airflow, etc., collected through 

polysomnography are provided as input to the model. Consider a target system X and driver system 

Y. The behavior of these systems can be represented using eq. (8) and (9) as described in section 

5.4.2. In the CCS algorithm, similar to the LSTMGC method described in 5.4.2, Granger causality 

is used to determine the causality between a driver and target systems. But, in the CCS algorithm, 

the first sleep cycle (i.e., from the first AWAKE sleep stage to the end of the first REM sleep stage) 

is used as historical data for the LSTM neural network, as shown in figure 7.1. 

 

Figure 7.1: Data split for CCS model 
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The signals collected during the first sleep cycle are used as historical data to forecast the rest of 

the time-series signals, as shown in lines 15 through 18. The forecasted signal is split 

into p windows of duration 30sec. For each 30sec window, the Granger causality values are 

calculated as presented in equation 16 (line 19 to 26). The RMSEx (equation (16)) is the root mean 

squared error calculated when only past values of X are considered, and RMSExy (equation (17)) 

is the error computed when past values of both X and Y are considered.  

                                                       𝑅𝑚𝑠𝑒𝑥 =  √
1

𝑙𝑒𝑛(p)
∑ (𝐸𝑥)2𝑡=𝑝𝑡+30

𝑡=𝑝𝑡
                                               (16) 

       

                                                 𝑅𝑚𝑠𝑒𝑥𝑦 =  √
1

𝑙𝑒𝑛(p)
∑ (𝐸𝑥𝑦)2𝑡=𝑝𝑡+30

𝑡=𝑝𝑡
                                           (17) 

 

                                                 𝑐𝑎𝑢𝑠𝑎𝑙𝑖𝑡𝑦𝑦→𝑥  = ( 2 1 + 𝑒
(−

𝑅𝑀𝑆𝐸𝑥
𝑅𝑀𝑆𝐸𝑥𝑦

 + 1 )
) − 1⁄                                (18) 

 

where, pt and pt+30 are the starting and ending times of the pth window, Ex and Exy are the forecasting 

residues.  

However, the Granger causal values are available only for forecast data. The Granger causal values 

for the first sleep cycle are computed as shown in lines 27 to 33. The input signal is divided into 

two splits Sfc and Src, where Sfc consists of first sleep cycle data and Src consists of the rest of sleep 

cycles data (figure  7.1). The Sfc signal and Src signals are split u and v windows of 30sec duration 
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respectively. For each 30sec signal in window u of Sfc, its distance to all the v windows of Src are 

computed using the Euclidean distance measure. The similar window (w_similar) is determined as 

the window with minimum Euclidean distance (lines 1 to 14). The Granger causal value of the ith 

window in Sfc is determined as the Granger causal value of its similar window w_similar[i] in Src.  

The variables used in algorithm 7.1 are shown in table 7.1. 

Table 7.1: Notations used in algorithm 7.1 

Variable Purpose 

X, Y Input signals  

Cx Granger causal values of signal Y -> X for every 30sec windows 

Sfc, Xfc, Yfc First cycle (Awake to REM) data 

Src, Xrc, Yrc Signal data from end of first cycle to the rest of the night  

Ws List of similar windows for all the 30sec windows of first cycle 

signal 

dist Distance matrix with distances of a window from first cycle signal to 

all the windows to the rest of the signal 

 distseg_f Euclidean distance  

distmin Minimum Euclidean distance 

causalityfc Granger causality values for the signal Y -> X for the data of first 

cycle 

causalityrc Granger causality values for the signal Y -> X for the data after first 

cycle 
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𝑐𝑎𝑢𝑠𝑎𝑙𝑖𝑡𝑦 𝑝 Granger causality for a 30sec window computed using equation 16 

𝑅𝑚𝑠𝑒𝑥𝑦 Error predicting X from past values of X,Y computed from equation 

15 

𝑅𝑚𝑠𝑒𝑥 Error predicting X from past values of X computed from equation 14 

Swindows Similar windows of the signals first cycle data 

 

Algorithm 7.1: Change in Causation During Sleep  

Input: Series X, Series Y 

Output: Cx 

1. func similar_windows(Sfc, Src): 

2.          split Sfc into u 30 sec windows 

3.          split Src into v 30 sec windows 

4.          Ws = [ ] 

5.          for each seg_f in u do: 

6.                 dist = [ ] 

7.                 for each seg_r in v do: 

8.                        distseg_f = Euclidean distance (seg_f, seg_r) 

9.                        dist.append(distseg_f) 

10.                 end for 

11.                 distmin = min of dist  

12.                 w_similar = window of distmin 
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13.                         Ws.append(w_similar) 

14.           end for 

15.   Split signal X into Xfc and Xrc 

16.   Split signal Y into Yfc and Yrc 

17.   Forecast X, given past values of X 

18.   Forecast X, given past values of X, Y 

19.   split Xrc into p 30sec windows 

20. causalityrc = [ ] 

21.   for each p do: 

22.           Compute 𝑅𝑚𝑠𝑒𝑥 

23.           Compute 𝑅𝑚𝑠𝑒𝑥𝑦 

24.           Calculate 𝑐𝑎𝑢𝑠𝑎𝑙𝑖𝑡𝑦 𝑝 

25.             causalityrc.append(causalityp) 

26.   end for 

27.  Swindows= similar_windows(Xfc, Xrc) 

28.  split Xfc into q 30sec windows 

29. causalityfc = [ ] 

30.  for each q do: 

31.       causalityq = causality of Swindows[q] 

32.       causalityfc.append(causalityp) 

33.  end for 

34. Cx = causalityfc + causalityrc 
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7.3 Results 

For the current analysis, sao2 signals, hr signals, and sleep stage hypnogram data of 7 male and 8 

female sleep apnea and control subjects are considered from the available polysomnography data.  

Data preprocessing is performed on the raw sao2 and hr signals where the beginning and ending 

awake sleep stage data is removed because the subject might be in a wakefulness state instead of 

an Awake sleep stage. 

For each subject, the following causality changes are computed using the CCS algorithm: 

 a) sao2 --> hr: Causal effect of sao2 on hr signal 

 b) hr --> sao2: Causal effect of hr on sao2 signal. 

7.3.1 Results for Sleep Apnea Subjects 

The analysis is performed on all the available female and male sleep apnea subjects data. The results 

obtained for a single female and male sleep apnea subject is shown in figure 7.2 and figure 7.3, 

respectively. The first graph includes the causation values of sao2 →> hr and hr → sao2 at each 

epoch. The second graph is a hypnogram which shows the sleep stage a subject is in during a given 

epoch. In the hypnogram, 0,1,2,3,4,5 indicates AWAKE, N1, N2, N3, N4 and REM sleep stages 

respectively. A common trend identified in all the sleep apnea subjects is that: 

a)  During the REM sleep stage, the causation from sao2 to hr signals is high for male and female 

subjects. Theoretically, sleep apnea episodes occur at high intensity during REM sleep stages. 
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The observed higher causal values from sao2 to hr signals indicate higher levels of influence of 

decreased oxygen levels on heart rate during sleep apnea episodes. 

b)  During light, deep, and Awake sleep stages, the causation from sao2 → hr is minimal for female 

subjects. 

c)  Except for the REM sleep stage, the hr → sao2 causal values are high compared to sao2 → hr 

causal values. But during the REM sleep stage, very high causal values are seen for sao2 → hr. 

This indicates that, for sleep apnea subjects, the influence of heart rate on oxygen saturation is 

high during awake, light and deep sleep stages.  

d)  For male and female sleep apnea subjects, the causality from sao2 to hr signals increases during 

REM sleep stage and decreases when the subject transitions from REM to other sleep stages.  

 

 

 

Figure 7.2: Change in causality for a female sleep apnea subject 
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Figure 7.3: Change in causality for a male sleep apnea subject 

 

 

7.3.2 Results for Control Subjects 

The analysis is performed on all the available female and male control subject data. The obtained 

results for a single female and male sleep apnea subject is shown in figure 7.4 and figure 7.5, 

respectively. A common trend identified in all the control subjects is that: 

a)  In male control subjects, the hr → sao2 causal values are high compared to the sao2 → hr causal 

values in all sleep stages. 
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 b) In male control subjects, no trend of higher sao2 → hr causal values during REM sleep is 

seen. In male control subjects, higher sao2 → hr causal values are seen during light sleep. 

 c) In female control subjects, overall sao2 → hr causation values are higher than the hr → sao2 

causation values. 

 

 

Figure 7.4: Change in causality for a female control subject 
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Figure 7.5: Change in causality for a male control subject 

 

7.4 Conclusions 

The existence of causal influence indicates the possibility of intervention. In public health, it is not 

only important to determine if a causal effect exists but also when the causal influence occurs. In 

the current study, we studied the impact of oxygen saturation on heart rate and vice-versa by using 

the CCS algorithm. The change in causation values from sao2 → hr and hr → sao2 are observed in 

the entire night’s sleep data for sleep apnea and control subjects. The results indicate that influence 

of oxygen saturation levels on heart rate for sleep apnea subjects is high during the REM sleep 

stage. But for control subjects, no such significant influence during the REM sleep stage is seen. 
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The causation of hr signals on sao2 signals is identified to be high during all sleep stages for control 

subjects.
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