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Name: SURAJ PAWAR

Title of Study: PHYSICS-GUIDED MACHINE LEARNING FOR TURBULENCE
CLOSURE AND REDUCED-ORDER MODELING

Major Field: MECHANICAL & AEROSPACE ENGINEERING

Abstract: A recent advance in scientific machine learning has started to show
promising results in fluid mechanics. Despite their early success, the application of
data-driven methods to turbulent flow simulation is non-trivial due to underlying
highly nonlinear multiscale interactions. Here we present novel physics-guided machine
learning (PGML) approaches for turbulence closure model discovery and model order
reduction of complex multiscale systems. Our turbulence closure model discovery
approach is based on exploiting big data without relying on underlying turbulence
physics and learning from physical constraints. Specifically, we propose a frame
invariant neural network model that can incorporate physical symmetries as inductive
biases and illustrates its stable performance in the coarse-grid simulation without
any kind of post-processing of the predicted subgrid-scale closure model. The frame
invariant SGS model guarantees desired physical constraints without the need for
any regularization terms and ultimately generalizes to different initial conditions and
Reynolds numbers. To achieve data-efficient training and improved generalization,
we propose a concatenated neural network with an uncertainty quantification mecha-
nism that leverages information from hierarchies of models. The concatenated neural
network is based on embedding information from cheap to evaluate low-fidelity ap-
proximations into the certain hidden layer of the neural network both during training
and deployment. This framework is demonstrated for a range of problems, including
turbulent boundary layer reconstruction, and reduced-order modeling of the vortex
merging process. Furthermore, we investigate the seamless integration of sparse and
noisy observations into non-intrusive reduced-order models, and hybrid models where
the dynamical core of the system is modeled using the known governing equations, and
the subgrid-scale processes are modeled using a deep learning model. To summarize,
this work builds a bridge between extensive physics-based theories and data-driven
modeling paradigms and paves the way for using hybrid physics-informed learning
algorithms to generate predictive technologies for turbulent fluid flows.
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CHAPTER I

Introduction

1.1 Motivation and Background

Machine learning (ML) methods have entered the renaissance due to groundbreaking

findings in natural language and image processing. This can be attributed to several

factors, including vast and increasing volumes of data; advances in computational

hardware; reduced costs for computation, data storage, and transfer; sophisticated

data-driven algorithms; an abundance of open source libraries and benchmark datasets;

and significant investment by industry on data-driven problem-solving. In recent years,

data-driven modeling has started to play important role in advancing many scientific

disciplines traditionally dominated by physics-based models [166, 141]. The fluid

mechanics field which has traditionally dealt with massive amounts of data gathered

from experiments, field observations, and high-resolution simulation is also seeing a

surge in the application of ML algorithms to solve a variety of problems [50, 46].

The application of ML models is particularly promising for problems, where the

complete mechanistic description of certain processes is not well understood, or where

it is computationally intractable to run physics-based models at desired resolution in

space and time. These situations are very common in fluid mechanics. For example,

closure models deployed in many applications encountered in combustion, climate, and

wind energy are based on isotropic homogeneous turbulence assumption which is not

quite applicable for nonstandard stratified, inhomogeneous, and massively separated

flows. The second challenge is related to online tasks like uncertainty quantification

(UQ) which is very important for model calibration, designing effective risk mitigation

strategies, and configuring optimal sensor networks that require running a forward

model multiple times. While ML models are a potential choice for these problems,

there are several challenges in applying pure data-driven methods to scientific discovery

problems due to various reasons, such as limited availability of data, poor generalization

under distribution shift, interpretability of black-box methods, and violation of known

physics, such as symmetries, constraints, and conserved quantities.
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The physics-based approaches, on the other hand, are interpretable, trustworthy,

and highly generalizable implying that they can be applied to a much wider array

of problems (in the context of fluid mechanics, atmospheric flows and flow around

heat exchangers) provided that they are governed by similar physics. However, they

can be computationally very demanding. Therefore, there is a need to build hybrid

models that can take advantage of data-driven methods without violating the domain

knowledge built over decades [318, 164, 167]. This dissertation will focus on developing

different physics-guided machine learning approaches for closure model discovery and

model order reduction problems encountered in turbulent fluid flows.

1.2 Turbulence Closure Model Discovery

Turbulent flows are prevalent in nature and are characterized by a wide range of

length and time scales. Most of the transient flows involve the development of the

boundary layer, flow separation due to adverse pressure gradient, and turbulence

transition. The multiscale nature of the flow is even more pronounced in geophysical

flows where there is a massive difference between the largest and smallest eddies,

and these eddies interact with each other to exchange heat, momentum, and water.

While direct numerical simulation (DNS) of the spatio-temporal evolution of turbulent

flows can resolve the full spectra of turbulence down to the Kolmogorov scale, it is

computationally intractable even with today’s supercomputers. One often has to resort

to lower-order models such as large eddy simulation (LES) or Raynolds-Averaged

Navier-Stokes (RANS) simulation to model turbulent flows. The nonlinearity of Navier-

Stokes equations introduces unclosed terms (also called subgrid-scale (SGS) closure

terms in LES) to account for interactions between resolved and unresolved scales. In

LES, the large scales are explicitly resolved and small scales are parameterized. If

the interactions between large and small scales are not accurately modeled, then an

increase in grid resolution will not necessarily improve the accuracy of the large scales

[177]. Many closure models have been proposed with varying levels of accuracy and

computational requirements [244, 330, 84, 361].

Some of the most commonly used parameterization models are based on phenomeno-

logical arguments and involve tuning model parameters to match the experimental

findings. The physical processes in geophysical and engineering applications are tightly

coupled where the accuracy and computational performance of closure models play

a critical role. It is also well known that the parameterizations are a major source
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of uncertainties in turbulent flow simulation and have been a topic of research for

many decades [101, 425]. Therefore, despite the plethora of turbulence closure models,

the development of a universal closure model to account for nonlinear and nonlocal

interactions of small scales on larger scales remains a grand challenge. Furthermore,

the development of LES models specific to geophysical flows is relatively scarce com-

pared to many LES models developed for engineering flows. This motivates the need

for research on developing novel turbulence closure models that do not assume any

heuristics of turbulence physics but learn from big data in combination with physical

constraints.

1.3 Model Order Reduction

There has been tremendous progress in simulating multiphysics problems using partial

differential equation (PDE) based discretization methods and these methods have

been scaled for large problems (for example turbulent flow simulation, atmospheric

flows, wind energy) with high-performance computing infrastructure. Despite this

progress, their use in online tasks like optimization, optimal control, uncertainty

quantification, and data assimilation for high-dimensional parameterized systems is

computationally intractable. Many modeling paradigms attempts to address this

challenge by constructing a reduced-order representation of the system that captures

the essential features at significantly reduced computational cost [326, 369, 302]. One

of the main requirements of physics-based reduced-order models (ROMs) is that they

require complete information about the underlying governing equations. However, for

many problems in engineering and geophysical applications, the exact structure of

governing equations is not known or is insufficient for the desired purpose and this

limits their capability in practical applications.

Recently, ML has emerged as a promising tool in building non-intrusive surrogate

models that do not require any information about the underlying dynamics and

solely learn from the data. The adjoints for these surrogates models can be efficiently

computed using automatic differentiation and this makes them attractive for outer loop

applications, such as design optimization and variational data assimilation. However,

the black-box nature of ML is currently preventing its full potential from being

utilized in engineering and geophysical applications. Hence, there is a prevailing trend

towards hybrid analysis and modeling (HAM) which explores the continuum between

physics-based and ML methods to design models which are generalizable, trustworthy,
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computationally efficient, and dynamically evolving in time. Furthermore, data-driven

surrogate models should be capable of capturing the uncertainty associated with

the prediction to safeguard against the dangers of extrapolation, and therefore, new

algorithms and frameworks are warranted to address these challenges.

1.4 Organization

The dissertation is organized as follows. In Chapter II, we investigate different

data-driven frameworks for learning SGS stresses in the a priori settings and determine

a stabilization rule for a posteriori deployment of data-driven closures into a coarse-grid

simulation. Specifically, we study how the choice of a learning map affects the accuracy

of the data-driven SGS model and compare the performance of two neural network

architectures for LES of Kraichnan turbulence.

Chapter III presents a data assimilation framework to incorporate sparse and noisy

observations in the hybrid model built using the governing equations for dynamical

core and data-driven model for subgrid-scale processes. We illustrate our framework for

the multiscale Lorenz 96 system for which the parameterization model for unresolved

scales is exactly known, and the two-dimensional Kraichnan turbulence system for

which the parameterization model for unresolved scales is not known a priori. Our

analysis, therefore, comprises a predictive dynamical core empowered by (i) a data-

driven closure model for subgrid-scale processes, (ii) a data assimilation approach

for forecast error correction, and (iii) both data-driven closure and data assimilation

procedures. We show significant improvement in the long-term prediction of the

underlying chaotic dynamics with our framework compared to using only neural

network parameterizations for future prediction.

In Chapter IV, we propose a novel frame invariant neural network framework

for SGS closure modeling that yields the stable and most accurate solution without

using any stabilization rule. We design a tailored neural network architecture that

incorporates physical symmetries (for example, translation, Galilean, and rotation) as

hard constraints and satisfy them to the precision of discretization error. This leads to

a physically consistent neural network-based SGS model that has the most accurate

prediction in a priori analysis. Furthermore, the frame invariant model is stable in

a posteriori deployment without any kind of post-processing or addition of artificial

dissipation. We show that the frame invariant model is generalizable across different

initial conditions and Reynolds numbers and our numerical investigation demonstrates

4



the best agreement for the frame invariant model with the filtered DNS solution for

several statistical metrics.

Chapter V puts forth a concatenated neural network approach to build tailored,

effective, and efficient machine learning models that can leverage the information from

simplified physics-based models. In particular, we combine the self-similarity solution

and power-law velocity profile (low-fidelity models) with the noisy data obtained

either from experiments or computational fluid dynamics simulations (high-fidelity

models) through a concatenated neural network. We illustrate how the knowledge from

these simplified models results in reducing uncertainties associated with deep learning

models and improved generalization for boundary layer flow prediction problems.

Chapter VI extends the application of concatenated neural network framework

to projection-based reduced-order models. We apply this framework as a novel model

fusion approach combining the physics-based Galerkin projection model and long-short

term memory (LSTM) network for parametric model order reduction of fluid flows.

We show that the framework is capable of enhancing the generalizability of data-

driven models, and effectively protecting against or informing about the inaccurate

predictions resulting from extrapolation.

Chapter VII describes the integration of equation-free surrogate model within

sequential data assimilation framework and its application to forecasting weekly average

sea surface temperature. The surrogate model uses proper orthogonal decomposition

(POD) to identify the dominant structures of the flow, and a long short-term memory

network to model the dynamics of the POD modes. The surrogate model is then

integrated within the deterministic ensemble Kalman filter (DEnKF) to incorporate

sparse and noisy observations at optimal sensor locations obtained through QR

pivoting. It is demonstrated that the prediction accuracy of the NIROM gets improved

by almost one order of magnitude by the DEnKF algorithm.

Finally, in Chapter VIII, the concluding remarks regarding the use of physics-

guided machine learning to turbulence and opportunities to address some of the open

questions are provided.
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CHAPTER II

Deep Learning Frameworks for Subgrid Scale Closure Models

The contents of this chapter has been published in Theoretical Computational Fluid

Dynamics (TCFD)1.

Abstract: In this chapter, we investigate different data-driven parameterizations

for large eddy simulation of two-dimensional turbulence in the a priori settings.

These models utilize resolved flow field variables on the coarser grid to estimate the

subgrid-scale stresses. We use data-driven closure models based on localized learning

that employs a multilayer feedforward artificial neural network with point-to-point

mapping and neighboring stencil data mapping, and convolutional neural network fed

by data snapshots of the whole domain. The performance of these data-driven closure

models is measured through a probability density function and is compared with

the dynamic Smagorinksy model (DSM). The quantitative performance is evaluated

using the cross-correlation coefficient between the true and predicted stresses. We

analyze different frameworks in terms of the amount of training data, selection of input

and output features, their characteristics in modeling with accuracy, and training

and deployment computational time. We also demonstrate computational gain that

can be achieved using the intelligent eddy viscosity model that learns eddy viscosity

computed by the DSM instead of subgrid-scale stresses. We detail the hyperparameters

optimization of these models using the grid search algorithm. After numerical analysis

in the a priori settings, we deploy data-driven SGS models in coarse-grid simulations

and design a post-processing step to achieve stable large eddy simulation.

1Pawar, S., San, O., Rasheed, A., & Vedula, P. (2020). A priori analysis on deep learning of
subgrid-scale parameterizations for Kraichnan turbulence. Theoretical and Computational Fluid
Dynamics, 34(4), 429-455.
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2.1 Introduction

Direct numerical simulation (DNS) of complex fluid flows encountered in many engi-

neering and geophysical applications are computationally unmanageable because of

the need to resolve a wide range of spatiotemporal scales. Large eddy simulation (LES)

and Reynolds Averaged Navier-Stokes (RANS) modeling are two most commonly used

mathematical modeling frameworks that give accurate predictions by considering the

interaction between the unresolved and grid-resolved scales. The development of these

models is termed as the turbulence closure problem and has been a long-standing

challenge in the fluid mechanics community [88, 195, 244, 243].

In LES, we filter the Navier-Stokes equations using a low-pass filtering operator

that separates the motion into small and large scales, and in turn, produces modi-

fied equations, which are computationally faster to solve than actual Navier-Stokes

equations [22, 324, 96]. The interaction between grid-resolved and unresolved scales

is then taken into account by introducing subgrid-scale stress (SGS) term in the

modified equation. The main task of the SGS model is to provide mean dissipation

that corresponds to the transfer of energy from resolved scales to unresolved scales

(the production of energy at large scales is balanced by the dissipation of energy at

small scales based on Kolmogorov’s theory of turbulence). The dissipation effect of

unresolved scales can be included utilizing an eddy viscosity parameterization obtained

through grid-resolved quantities. Providing such dissipation mechanism often results

in increasing the numerical stability of the under-resolved discretization. These eddy

viscosity approaches are called as functional models, which assume isotropy of small

scales to present the average dissipation of the unresolved scales [107]. The most widely

used functional model is the Smagorinsky model [350] that uses a global constant

called the Smagorinsky coefficient to produce mean dissipation of energy. It is observed

in many studies that a single value of the Smagorinsky coefficient cannot be used for a

variety of flow phenomenon [78, 241, 228, 295]. The deficiencies of static Smagorinsky

model can be overcome by using dynamic Smagorisnky model (DSM) proposed by

[118]. [212] introduced the modification in Germano’s DSM by which the stress-strain

relationship is optimized with a least-squares approach (we discuss Lilly’s version

of DSM in detail in Section 2.2.1). Several other versions of Germano’s DSM have

been proposed, such as localized version to overcome mathematical inconsistencies

in standard DSM [120], Lagrangian version of DSM [245], and DSM with a corrector

step [280]. Even the dynamic procedure is not free from parameter tuning and one
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has to specify the test filter and grid-filter width ratio to accurately model the SGS

stresses. Hence, there is a constant effort to develop a subgrid-scale model that is free

from heuristics and can predict the SGS stresses accurately.

In the past decade, the unprecedented amount of data collected from experiments,

high-fidelity simulations has facilitated using machine learning (ML) algorithms in fluid

mechanics [50, 46]. ML algorithms are now used for flow control, flow optimization,

reduced order modeling, flow reconstruction, super-resolution, and flow cleansing

[188, 50]. One of the first applications of deep learning in fluid mechanics was by [246]

who implemented neural network methodology to reconstruct near-wall turbulence and

showed an improvement in prediction capability of velocity fields. Subsequently, several

ML algorithms such as shallow decoder for flow reconstruction [93], a convolutional

neural network (CNN) for super-resolution of turbulent flows [108], deep convolutional

autoencoder for nonlinear model order reduction [200, 257] have been proposed. Several

studies have been conducted to model the dynamics of chaotic fluid flows using ML

algorithms [329, 220, 308, 281, 382, 310, 285]. Recently there is a growing interest

in using the physical knowledge in combination with the data-driven algorithms

[309, 95, 225, 213, 406, 238, 281, 250]. The physics can be incorporated into these

learning algorithms by adding a regularization term (based on governing equations) in

loss function or modifying the neural network architecture to enforce certain physical

constraints.

In addition to reduced order modeling and chaotic dynamical systems, the turbu-

lence closure problem has also benefited from the application of ML algorithms and

has led to reducing uncertainties in RANS and LES models [87, 194, 174, 393, 368].

Different machine learning algorithms like kernel regression, single hidden layer neural

network, random forest [373, 374, 214] have been proposed for turbulence closure

modeling. [340] proposed the hybrid approach in which the neural network is used

for learning Bardina’s scale similar subgrid-scale model for turbulent channel flow.

Their neural network architecture employed 15 input features consisting of velocity

gradients and Reynolds tensor components (made up of fluctuating component of

velocity), and turbulent viscosity as the learned variable. The motivation behind this

approach was to improve computational performance rather than to learn the true

turbulent dynamics. [213] presented a novel neural network architecture that utilizes

a multiplicative layer with an invariant tensor to embed Galilean invariance for the

prediction of Reynolds stress anisotropy tensor. Their tensor basis neural network

(TBNN) uses five invariants of strain-rate tensor and rotation-rate tensor at a point
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in the input layer. In addition to the input layer, the TBNN has tensor input layers

that take a tensor basis [296] (tensor basis includes 10 isotropic basis tensors). They

demonstrated the superiority of applying constrained neural network over generic

neural network architecture in predicting Reynolds stress anisotropy tensor for various

complex flow problems such as duct flow, and wavy channel flow. [238] introduced

data-driven turbulence closure framework for subgrid-scale modeling and performed

a priori and a posteori analysis for two-dimensional Kraichnan turbulence. Their

neural network architecture employs vorticity, streamfunction, and eddy-viscosity

kernel information at nine surrounding grid points to learn the turbulence source

term at the central point. They found that the inclusion of eddy viscosity kernels

leads to accurate prediction of the turbulence source term. [112] tested an artificial

neural network for finding a new subgrid-scale model in LES of channel flow using

the pointwise correlation between grid resolved variables and subgrid stresses. They

investigated the effect of different input variables to the neural network and observed

that including velocity gradients and vertical distance gives the most accurate predic-

tion for SGS stresses. [388] developed a data-driven framework to learn discrepancies

in Reynolds stress models as a function of mean flow features using random forest

regression algorithm. They evaluated the performance of the proposed framework

in terms of different training and testing parameters for flow characteristics and

different geometries. [37] built an approximation model using encoder-decoder CNN

architecture to determine the aerodynamic flow field around airfoils using the angle of

attack, Reynolds number, and airfoil shape as the input variables. [28] developed a

data-driven approach based on recurrent convolutional neural network for learning

the LES closure term for decaying homogeneous isotropic turbulence problem and

presented a methodology to construct stable models that can be used in CFD codes.

Their architecture includes snapshots of primitive variables and the coarse grid LES

operator as input features and unknown subgrid terms in labels. [354] evaluated the

capability of multilayer perceptron and long short-term memory network in predicting

the turbulent statistics for shear flow. In the recent work, [276] illustrated the two

to eight times computational gain that can be attained with a data-driven model

that utilizes deep neural network to learn eddy viscosity obtained from the dynamic

Smagorinsky model.

The motivation behind the present work is to address the following questions:

which data-driven algorithms are suitable for particular applications, which input

features have a significant influence on learning subgrid stresses, which algorithm
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has better predictive capability, which algorithm is faster, and how much data to

use for different ML algorithms for efficient learning? In addition to addressing

these questions, we also study the effect of data locality where the information at

neighbouring points is found to give improved prediction than point-to-point mapping.

The work presented here is concurrent with many of the ideas presented in above

studies [238, 28, 233, 213, 108, 276], and our main objective is to investigate the

performance of different approaches for subgrid-scale modeling in LES of turbulence.

To achieve these objectives, we examine the performance of data-driven closure mod-

els for two-dimensional Kraichnan turbulence [180]. Even though the two-dimensional

turbulence cannot be realized in practice or experiments but only in numerical simula-

tions, it represents many geophysical flows and provides a starting point in modeling

these flows. It finds application in modeling many atmospheric and ocean flows

[182, 204, 39]. A reduction in dimensionality compared to three-dimensional turbu-

lence leads to inverse energy cascade, i.e., the transfer of energy from small scales

to large scales and direct enstrophy (spatial average of the square of the vorticity)

cascade from large scales to small scales [181, 24, 204]. Therefore, with the presence

of complex flow interactions and simplicity of two-dimensional analysis, Kraichnan

turbulence will serve as a good testbed for our data-driven closure model analysis. Our

approaches are based on three models that employ velocity field, velocity gradients,

and the Laplacian of the velocity. These variables are available in any CFD solver

and the SGS stresses can be learned in several ways such as point-to-point mapping,

neighboring stencil mapping, and learning from the whole field or snapshot. In this

work, we demonstrate these different approaches and analyze them in the context of

the predictive performance, amount of training data, and computational overhead for

training and testing, as well as their data structures.

In Section 2.2, we introduce the turbulence closure problem and the dynamic

Smagorinsky model. Section 2.3 will present different frameworks investigated in this

study. In Section 2.4, we detail the data generation using DNS and will evaluate data-

driven turbulence closure models in terms of predictive performance, computational

overhead, and data requirement for training. We demonstrate an additional modeling

approach using intelligent eddy viscosity model in Section 2.5 that is computationally

faster than the DSM. Finally, we will present the conclusions and future work in

Section 2.7. We also describe the hyperparameters selection procedure in Appendix 2.B

to obtain optimal neural network architecture.
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2.2 Turbulence Closure

We begin with the introduction of the turbulence closure framework by outlining

governing equations in its primitive variables form used to model incompressible

fluid flows. The spatial and temporal evolution of the fluid flow are governed by the

Navier-Stokes equations that describe the conservation of mass and momentum:

∂ui
∂xi

= 0, (2.1)

∂ui
∂t

+
∂uiuj
∂xj

= −1

ρ

∂p

∂xi
+ ν

∂

∂xj

(
∂ui
∂xj

+
∂uj
∂xi

)
, (2.2)

where ui is the ith component of velocity, p is the pressure, ρ is the density, and ν is

the kinematic viscosity of fluid. The governing equations for LES (also called as the

filtered Navier-Stokes equations) are obtained by applying a low-pass filter operation

and it results in a grid-filtered system of equations:

∂ūi
∂xi

= 0, (2.3)

∂ūi
∂t

+
∂uiuj
∂xj

= −1

ρ

∂p̄

∂xi
+ ν

∂

∂xj

(
∂ūi
∂xj

+
∂ūj
∂xi

)
, (2.4)

where the overbar quantities represent the filtered variables. The filtered Navier-Stokes

equations have the nonlinear term uiuj which is unknown due to truncation of small

eddies by spatial filtering operation. The decomposition of nonlinear term [205] can

be given as

uiuj = τij + ūiūj, (2.5)

where τij = uiuj − ūiūj is the subgrid-scale stress that consists of cross-stress tensor

(which represents interaction between large and small scales), Reynolds subgrid tensor

(which represents interaction between subgrid scales), and Leonard tensor (which

represents the interactions among large scales). Using this decomposition, the filtered

Navier-Stokes equations can be written as

∂ūi
∂t

+
∂ūiūj
∂xj

= −1

ρ

∂p̄

∂xi
+ ν

∂

∂xj

(
∂ūi
∂xj

+
∂ūj
∂xi

)
− ∂τij
∂xj

. (2.6)

The main challenge in subgrid-scale modeling is to approximate this τij term and the

approximated model should provide sufficient dissipation corresponding to the transfer

of energy from large eddies to unresolved eddies. The static Smagorinsky model [350]
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which uses an effective eddy viscosity to model SGS stresses is given by

τM,d
ij = −2(Cs∆)2|S̄|S̄ij, (2.7)

where the superscript M stands for the model, d means the deviatoric (traceless) part

of the tensor, ∆ is the grid-filter width, and Cs is the static Smagorinsky coefficient. A

derivation of Smagorinsky model for two-dimensional case is provided in Appendix 2.A.

The terms |S̄| and S̄ij in the above equation are calculated as

S̄ij =
∂ūi
∂xj

+
∂ūj
∂xi

, |S̄| =
√

2S̄ijS̄ij. (2.8)

It should be noted that the static Smagorinsky model might be excessive or under

dissipative with suboptimal values of Cs. It was found in many studies that the

Smagorinsky coefficient is different for different flows and additional modifications

are needed in the near-wall region [78, 241, 228, 295]. To tackle these problems, the

dynamic Smagorinksy model [118, 212] was introduced that allowed the Cs to be

computed dynamically based on the flow, time, resolution, and spatial location. The

dynamic Smagorinsky model is discussed in detail in Section 2.2.1.

2.2.1 Dynamic Smagorinsky Model

[118] introduced the dynamic procedure that calculates the Smagorinsky coefficient

based on the local flow structure dynamically instead of assuming a constant value.

The dynamic procedure consists of applying a secondary spatial filter called as the

test filter to the grid-filtered Navier-Stokes equations. The test filtered equations can

be written as

∂ ˆ̄ui
∂t

+
∂ ˆ̄ui ˆ̄uj
∂xj

= −1

ρ

∂ ˆ̄p

∂xi
+ ν

∂

∂xj

(
∂ ˆ̄ui
∂xj

+
∂ ˆ̄uj
∂xi

)
− ∂Tij
∂xj

, (2.9)

where the caret over the overbar represents the test filtered variables. The test filtered

subgrid stress Tij (also called as subtest-scale stress) is given by

Tij = ûiuj − ˆ̄ui ˆ̄uj. (2.10)

Similar to Equation 2.7, the subtest-scale stress can be approximated as

T M,d
ij = −2(Cs∆̂)2| ˆ̄S| ˆ̄Sij, (2.11)
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where ∆̂ is the test filter scale. The application of the dynamic procedure leads to

introduction of grid filtered SGS stresses given by

Lij = Tij − τ̂ij, (2.12)

= ̂̄uiūj − ˆ̄ui ˆ̄uj. (2.13)

In the dynamic procedure, the value of Cs is chosen in such a way that the error (also

called as Germano identity error) given in the below equation is minimized

ϵij = T M,d
ij − τ̂M,d

ij − Ldij, (2.14)

= −2(Cs∆̂)2| ˆ̄S| ˆ̄Sij + 2[(Cs∆)2|S̄|S̄ij
∧

]− Ldij. (2.15)

The computation of Cs in the above equation that minimizes the Germano identity

error is not straight-forward as Equation 2.14 is a tensor equation (three equations in

case of two-dimensional flows) for only one unknown Cs. Also, the coefficient Cs in

the second term of Equation 2.15 is inside the test filter operator. However, it is often

approximated as

ϵij = −2(Cs∆̂)2| ˆ̄S| ˆ̄Sij + 2(Cs∆)2|S̄|S̄ij
∧

− Ldij, (2.16)

which makes the formulation mathematically consistent only when Cs is a constant

valued variable.

(Cs∆)2 =
MijLdij
MijMij

, (2.17)

where

Mij = 2|S̄|S̄ij
∧

− 2

(
∆̂

∆

)
| ˆ̄S| ˆ̄Sij. (2.18)

From the original dynamic Smagorinsky model [118], it was found that the denominator

in Equation 2.17 can become very small leading to excessively large value of Cs.

Furthermore, Equation 2.17 becomes mathematically ill-posed since we factor Cs from

the convolution filter (i.e., see Equation 2.16). Therefore some type of averaging is

necessary in practice as given below

(Cs∆)2 =
<MijLdij >+

h

<MijMij >h

, (2.19)
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where < · >h denotes the spatial averaging, and < · >+
h= 0.5(< · > +| < · > |)

denotes the positive clipping. The above averaging gives a global value of Cs, which

changes over time. Even though the spatial adaptivity of the dynamic model is

lost due to this averaging procedure, the eddy viscosity field given by Equation 2.65

provides spatial variability. One of the advantage of the dynamic Smagorinsky model

is that the numerator can also take negative values corresponding to backscatter,

i.e., transfer of energy from small scales to large scales. If the averaging is not

done, the dynamic model leads to a highly variable eddy viscosity field and can

cause numerical simulations to become unstable [218, 244]. These findings are also

applicable to data-driven turbulence closure modeling as demonstrated in recent

studies [238, 28]. From computational point of view, the dynamic Smagorinsky model

often stabilizes numerical schemes by providing absolute dissipation to numerical

oscillations associated with truncation or aliasing errors at the small scales [332, 234].

2.3 Data-driven Turbulence Closure

In this section, we outline different data-driven turbulence closure frameworks inves-

tigated in this work. As discussed in Section 2.2, we try to approximate τij using

resolved flow variables on coarse grid in subgrid-scale modeling. We can consider

this as a regression problem that can be studied using various classes of supervised

machine learning algorithms. In the case of supervised algorithms, we try to learn the

optimal map between inputs and outputs. We focus on two algorithms: an artificial

neural network (ANN) also called as multilayer perceptron and convolutional neural

network (CNN) to build data-driven closure models.

An artificial neural network consists of several layers made up of the predefined

number of nodes (also called as neurons). A node combines the input from the data

with a set of coefficients called weights. These weights either amplify or dampen the

input and thereby assign the significance to the input in relation to the output that

the ANN is trying to learn. In addition to the weights, these nodes have a bias for

each input to the node. The input-weight product and the bias are summed and this

sum is passed through a node’s activation function. The activation function introduces

nonlinearity and this allows the neural network to map complex relations between

inputs and outputs. The above process can be described using the matrix operation

as given by [132]

Sl = WlX l−1, (2.20)
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where X l−1 is the output of the (l − 1)th layer, Wl is the matrix of weights for the

lth layer. The output of the lth layer is given by

X l = ζ(Sl +Bl), (2.21)

where Bl is the vector of biasing parameters for the lth layer and ζ is the activation

function. If there are L layers between the input and the output, then the mapping of

the input to the output can be derived as follow

Ỹ = ζL(WL, BL, . . . , ζ2(W
2, B2, ζ1(W

1, B1, X))), (2.22)

where X and Ỹ are the input and output of the ANN, respectively.

The matrix W and B are optimized through backpropagation and some opti-

mization algorithm. The backpropagation algorithm provides a way to compute the

gradient of the objective function efficiently and the optimization algorithm gives a

rapid way to learn optimal weights. For the regression problem, usually, the objective

is to learn the weights associated with each node in such a way that the root mean

square error between the true labels Y and output of the neural network Ỹ is mini-

mized. The backpropagation algorithm proceeds as follows: (i) the input and output

of the neural network are specified along with some initial weights, (ii) the training

data is run through the network to produce output Ỹ whose true label is Y , (iii) the

derivative of the objective function with each of the training weight is computed using

the chain rule, (iv) the weights are updated based on the learning rate and then we

go to step (ii). We continue to iterate through this procedure until convergence or the

maximum number of iterations is reached. There are a number of ways in which the

weights can be initialized [121], the optimization algorithm is selected [365, 175, 328],

and the loss function be regularized [386, 355] either to speed up the learning process

or to prevent overfitting. Furthermore, highly nonlinear relationship between the

input and output (as in the case of turbulence) necessitates the need of deep neural

network architecture, which are prone to overfitting. Pruning neural network weights

can significantly reduce the parameter count leading to better generalization [23].

It has been demonstrated in many studies how an ANN can be used for learning

input-output relationship in the context of turbulence closure modeling [213, 238, 233,

388, 28, 354, 427, 413, 417]. We use two types of mapping using ANN as shown in

Figure 2.1. The first one is the point-to-point mapping in which only the information
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Figure 2.1: Feedforward neural network for point-to-point and neighboring stencil
mapping of resolved flow variables to SGS stresses.

at a point is used to learn the SGS stresses at that point. We can include different

features at that point and evaluate its predictive capability by means of probability

density function based analysis. We use three classes of point-to-point mapping in our

data-driven closure models as given below

M1 : {ū, v̄} ∈ R2 → {τ̃11, τ̃12, τ̃22} ∈ R3, (2.23)

M2 : {ū, v̄, ūx, ūy, v̄x, v̄y} ∈ R6 → {τ̃11, τ̃12, τ̃22} ∈ R3, (2.24)

M3 : {ū, v̄, ūx, ūy, v̄x, v̄y, ūxx, ūyy, v̄xx, v̄yy} ∈ R10 → {τ̃11, τ̃12, τ̃22} ∈ R3, (2.25)

where ū, v̄ are the the velocities in x and y direction, the subscript x and y denote

the first-derivative, the subscript xx and yy are the second-derivative, and τ̃11, τ̃12, τ̃22

are the approximated SGS stresses.

The second approach is to use the information at neighbouring points to learn

SGS stresses at a point. We can either use information of just north, south, east,

and west points or information at all nine neighbouring points. In our neighboring

stencil mapping, we use information at nine grid points. As we will see in Section 2.4,

one of the advantages of this approach is that the ANN can learn the input-output

mapping with less number of input features. Similar to point-to-point mapping, we

use three classes of input features for neighboring stencil mapping. Therefore, in case

of neighboring stencil mapping, we will have nine times the number of input features

as in case of point-to-point mapping.

16



In addition to ANN, we also investigate CNN for subgrid-scale modeling. CNNs

have been found to perform better than ANNs when the data is in the form of snapshots

such as images and is widely used for computer vision tasks such as object detection

[186, 320], and improving the quality of images [172, 81]. CNNs have also been

successfully applied for detecting flow disturbances [146], super-resolution analysis of

turbulent flow field [108], and turbulence closure modeling [28, 194, 264, 265]. One

of the differences between ANN and CNN is that the training sample to the CNN is

not given as one-dimensional vector but as a two-dimensional snapshot image. This

will preserve the original multi-dimensional structure and will aid in learning the

SGS stresses. Apart from that, the number of parameters to be learned in CNN is

significantly less than ANN due to parameter sharing scheme.

The Conv layers are the fundamental building blocks of the CNN. Similar to weights

in case of ANN, Conv layers have filters, also called as kernels that has to be learned

using the backpropagation algorithm. The filter has a smaller shape but it extends in

through the full depth of the input volume of previous layer. For example, if the input

to the CNN has 64× 64× 3 dimension where 3 is the number of input features, the

kernels of first Conv layer can have 3× 3× 3 shape. During the forward propagation,

we convolve the filter across the width and height of the input volume to produce the

two-dimensional map. The two-dimensional map is constructed by computing the

dot product between the entries of the filter and the input volume at any position

and then sliding it over the whole volume. Mathematically the convolution operation

corresponding to one filter can be given as

Slij =

∆i/2∑

p=−∆i/2

∆j/2∑

q=−∆j/2

∆k/2∑

r=−∆k/2

Wl
pqrX

l−1
i+p j+q k+r +Bpqr, (2.26)

where ∆i, ∆j, ∆k are the sizes of filter in each direction, Wl
pqr are the entries of

the filter for lth Conv layer, Bpqr is the biasing parameter, and X l−1
ijk is the input

from (l − 1)th layer. Each Conv layer will have a set of predefined filters and the

two-dimensional map produced by each filter is then stacked in the depth dimension

to produce a three-dimensional output volume. This output volume is passed through

an activation function to produce a non-linear map between inputs and outputs. The

output of the lth layer is givn by

X l
ijk = ζ(Slijk), (2.27)
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where ζ is the activation function. It should be noted that as we convolve the filter

across the input volume, the size of the input volume shrinks in height and width

dimension. Therefore, it is common practice to pad the input volume with zeros

called as zero-padding. The zero-padding allows us to control the shape of the output

volume and is used in our data-driven closure framework to preserve the shape so that

input and output width and height are the same. The size of the zero-padding is an

additional hyperparameter in CNN.

ū
. . .

v̄yy

τ̃11
τ̃12
τ̃22

Input Conv Conv Conv Conv Conv Conv Output

CNN

Figure 2.2: Convolution neural network for mapping of resolved variables to SGS
stresses. Our CNN architecture is fairly simple and we use zero padding to keep the
same shape as we go from input to the output.

Figure 2.2 shows the schematic of the CNN architecture used in our data-driven

closure framework. The input to the CNN is obtained by stacking snapshots of resolved

variables and their derivatives at the coarse grid. Similar to the ANN, we use three

classes of input features as given in Equations 2.23 - 2.25. Therefore, for model M1,

each sample of the input volume will have 64× 64× 2 shape and the the sample of

output volume will have 64× 64× 3 shape.

2.4 Intelligent SGS Modeling

The present study is focused on the comparison of data-driven closure approaches

discussed in Section 2.3 for SGS modeling. We use two-dimensional Kraichnan

turbulence problem as our prototype example to show the comparison of different

frameworks. The purpose of this test problem is to see how the abundant population

of randomly generated vortices evolve over time [366]. For data-driven frameworks,

we use true subgrid-scale stresses (τij) generated by solving the two-dimensional

Navier-Stokes equation with DNS. The computational domain is square in shape with
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the dimension [0, 2π] × [0, 2π] in x and y directions. The domain has the periodic

boundary condition in x and y directions. We use pseudo-spectral solver for DNS

of Kraichnan turbulence problem. The pseudo-spectral solver is accurate in a sense

that it does not introduce any discretization error. We use hybrid explicit third-order

Runge-Kutta scheme and implicit Crank-Nicolson scheme for the time integration.

It should be noted that we solve the Navier-Stokes equations using streamfunction-

vorticity formulation and then compute primitive variables using a spectral method for

differentiation. The streamfunction-vorticity formulation eliminates the pressure term

from the momentum equation and hence, there is no odd-even coupling between the

pressure and velocity. This allows us to use collocated grid instead of the staggered

grid.

The DNS solution is computed for Re = 4000 with the grid resolution of 1024×1024.

We integrate the solution from time t = 0 to t = 4 with ∆t = 1×10−3. The evolution of

the vorticity field and the energy spectrum for two-dimensional Kraichnan turbulence

are shown in Figure 2.3. The initial condition for the energy spectrum is assigned

in such a way that the maximum value of the energy is designed to occur at the

wavenumber k = 10. Using this energy spectrum and random phase function, the

initial vorticity field is assigned. The random vorticity field assigned is kept identical

(using constant seed) in all our numerical experiments for comparison and reproducing

the results. Interested readers are referred to related work [272, 336] for the energy

spectrum equation and randomization process. We collect 400 snapshots of data from

time t = 0 to t = 4. The Kraichnan-Batchelor-Leith (KBL) theory states that the

energy spectrum of two-dimensional turbulence is proportional to k−3 in the inertial

range and we observe this behavior with our numerical solution at t = 2.0 and t = 4.0

as shown in Figure 2.3. For LES, we coarsen the solution on 64× 64 grid resolution

using the spectral cut-off filter. The resolved flow variables at the coarse grid are then

used to compute input features for data-driven turbulence closure models.

We analyze the performance of data-driven closure models against the dynamic

Smagorinsky model discussed in Section 2.2.1. One of the advantages of DSM is

that the Smagorinsky coefficient is computed using the resolved field variables in a

dynamic fashion and does not require a priori coefficient specification. Due to this

advantage, DSM is widely used in LES of engineering and geophysical applications

[178, 111, 169, 253]. The only parameter that has to be specified for the DSM is the

filter width ratio (i.e., a ratio between the test and grid filters). We use the spectral

cut-off filter as a test filter and the test filter scale is ∆̂ = 2∆. Figure 2.4 shows
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Figure 2.3: Time evolution of the vorticity field and energy spectrum from time t = 0.0
to t = 4.0 for Re=4000 at grid resolution 1024× 1024.
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the temporal evolution of the Smagorinsky coefficient from time t = 0.0 to t = 4.0

computed with the DSM. Ths Smagorinsky coefficient changes between 0.16 to 0.18.

We have to use this low-pass filtering operation eight times for the DSM and the

procedure becomes computationally expensive compared to the static Smagorinsky

model. A data-driven turbulence closure model can also be developed to learn dynamic

eddy viscosity (computed by DSM) instead of learning true SGS stresses. The similar

approach was implemented by [340] for learning Bardina’s scale similar subgrid-scale

model to improve computational performance. We use the similar framework for

learning eddy viscosity computed by the DSM, and is detailed in Section 2.5. The

DNS code for the pseudo-spectral solver, and the code for DSM is implemented using

vectorization in Python. This will allow us to compare the computational performance

of the DSM with data-driven closure models fairly (the most popular libraries for

machine learning like Keras, Tensorflow are available in Python).

We use two metrics to determine the performance of data-driven closure models.

First one is the cross-correlation between true SGS stresses and the predicted SGS

stresses. The cross-correlation (cc) is calculated using the below formula

cc =
cov(Y, Ỹ )

σY σỸ
, (2.28)

where the covariance (cov) is defined as

cov(Y, Ỹ ) = E[(Y − E[Y ])(Ỹ − E[Ỹ ])]. (2.29)

In above equations, Y is the true field, Ỹ is the predicted field, σY is the standard

deviation of Y , σỸ is the standard deviation of Ỹ , E[Y ] is the expected value of the

true field, and E[Ỹ ] is the expected value of the predicted field. The expected value

and the standard deviation for a sample field Y can be given as

E[Y ] =

∑n
i=1 yi
n

, σY =

√∑n
i=1(yi − E[Y ])2

n
. (2.30)

In addition to the cross-correlation, we assess the model’s performance using

probability density function (PDF) based analysis. We test all data-driven closure

models using 350 snapshots of training data from time t = 0.0 to t = 3.5. We use 20%

of the training data for validation. We use the resolved field variables at time t = 4.0

to determine SGS stresses as out-of-training data snapshot. This data has not been
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seen by the neural network during training and hence the model’s performance should

be measured against this data. In addition to using 350 data snapshots for training,

we test extremely sub-sampled data with 70, and 24 snapshots. This will help us in

understanding how much data to use for each of these data-driven closure models

for learning true SGS stresses efficiently. We normalize all input features and output

labels in the range [−1, 1] using the minimum and maximum values for each features.

The normalization of data helps in giving all input features equal importance and also

allow optimization algorithm to converge faster. The hyperparameters for all neural

network architectures are selected using gridsearch algorithm coupled with five-fold

cross-validation and the procedure is discussed in detail in Appendix 2.B. We have to

be cautious when measuring the CPU time for deployment of trained model and the

sample code for CPU time measurement is given in Appendix 2.C. The sample code

for our ANN and CNN architecture is provided in Appendix 2.D.

2.4.1 Point-to-point Mapping

We first discuss the performance of point-to-point mapping ANN in predicting true

SGS stresses. Table 2.1 gives the cross-correlation between true and predicted SGS

stresses for three different models (i.e., models M1, M2, M3 presented in Section 2.3).

The cross-correlation between the DSM and true stresses is low because the DSM

model cannot capture the phase correctly (as we will see at the end of this section). It

can be seen that the correlation between true and predicted SGS stresses is very poor

when we use only coarse-grid resolved velocities at a point to determine the stresses

at that point. It is clear from Figure 2.5 that the point-to-point mapping approach

is unable to map coarse-grid resolved velocities to SGS stresses and it calculates

completely wrong stresses. To investigate further, weather the use of other activation

function helps to improve the prediction or not, we test Tanh and Sigmoid function

with the same neural network architecture. We find that the predicted stresses are

similar even with other activation functions. This confirms that additional input

features are needed to learn more accurate mapping between inputs and outputs. The

PDF for true and predicted stresses with different activation functions are provided

in Appendix B for point-to-point mapping with model M1. For the DSM, the PDF

shape is similar to the true PDF despite having low cross-correlation. The DSM

captures the bulk eddy viscosity, but the phase is completely distorted with the DSM.

From Figure 2.6 and Figure 2.7, we observe an improvement in the prediction of SGS
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stresses as we start including more features like coarse-grid velocity gradients (i.e.,

model M2) and the Laplacian on coarse-grid velocities (i.e., model M3). We test

the point-to-point ANN for subsampled data using 70 and 24 data snapshots. The

cross-correlation between true and predicted stress is almost similar to the one with

350 data snapshots. Figure 2.8 displays the PDF of true stresses and the predicted

stresses computed using point-to-point ANN with a different number of snapshots.

It can be observed that the PDF predicted with different number of snapshots is

almost the same for ANN point-to-point mapping. Therefore, we can conclude that

the ANN can be trained with less number of samples without a significant drop in

accuracy. However, neural networks are prone to overfit when we use fewer data and

the ability of neural networks to approximate on unseen data reduces. There are

different methods to prevent overfitting such as data augmentation, regularization,

weight decay, and dropout that should be used when less data is available for learning

SGS stresses.

In terms of the computational performance, point-to-point mapping requires less

training time for learning SGS stresses from resolved flow variables. This approach

is particularly attractive for complex or unstructured mesh and has been applied in

many studies [427, 213, 406, 112, 388]. As illustrated in these works, our analysis

with simple input features like resolved velocities and their derivatives also shows that

the input features are critical for effective learning of SGS stresses for point-to-point

mapping approach. From Table 2.1, we can see that the train time does not increase

linearly with an increase in the number of input features. The train time for the neural

network mainly depends upon its architecture (how deep and wide it is), and the

number of training samples. Since we are using the same architecture for all models,

we observe that the train time is similar for all cases. In terms of the test time or

deployment time, the point-to-point ANN is slightly slower than the DSM (around

1.3 times).

2.4.2 Neighboring Stencil Mapping

In this section, we discuss the numerical assessment of results for ANN with neigh-

boring stencil mapping. Table 2.2 reports the cross-correlation between true and

predicted SGS stresses for neighboring stencil mapping ANN. Figure 2.9 shows that

this framework can predict SGS stresses with sufficient accuracy close to the dynamic

Smagorinsky model with just coarse-grid velocities (i.e., model M1). If we compare
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Table 2.1: Cross-correlation between true and predicted SGS stresses, and CPU time
for different models with point-to-point mapping for ANN.

Model Ns cc(τ11) cc(τ12) cc(τ22) Train
time

Test time

DSM - 0.011 -0.008 0.011 - 0.0095
M1 350 0.043 -0.001 0.044 1577.11 0.0138
M2 350 0.343 0.261 0.343 1608.95 0.0132
M3 350 0.556 0.487 0.556 1642.82 0.0127
M3 70 0.555 0.481 0.555 322.08 0.0125
M3 24 0.549 0.465 0.550 112.04 0.0128
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Figure 2.5: Probability density function for SGS stress distribution with point-to-point
mapping. The ANN is trained using M1. The training set consists of 350 time
snapshots from time t = 0.0 to t = 3.5 and the model is tested for 400th snapshot at
t = 4.0.
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Figure 2.6: Probability density function for SGS stress distribution with point-to-point
mapping. The ANN is trained using M2. The training set consists of 350 time
snapshots from time t = 0.0 to t = 3.5 and the model is tested for 400th snapshot at
t = 4.0.
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Figure 2.7: Probability density function for SGS stress distribution with point-to-point
mapping. The ANN is trained using M3. The training set consists of 350 time
snapshots from time t = 0.0 to t = 3.5 and the model is tested for 400th snapshot at
t = 4.0.
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Figure 2.8: Probability density function for SGS stress distribution with point-to-point
mapping. The ANN is trained using M3. The model is trained using different number
of snapshots between t = 0.0 to t = 3.5 and the model is tested for 400th snapshot at
t = 4.0.

Table 2.1 and Table 2.2, we see that the neighboring stencil mapping with model

M1 provides slightly better correlation than utilizing coarse-grid velocities and their

derivatives at a single point. This clearly shows the benefit of incorporating neigh-

boring information to determine SGS stresses. As we begin adding more features

(i.e., first and second derivative of coarse-grid resolved velocities), we start getting

correlation up to 0.8 between true and predicted SGS stresses. From Figure 2.10 and

Figure 2.11, we notice that the SGS stresses predicted by the ANN are very close to

true stresses when the first derivative and Laplacian of coarse-grid velocities are also

included in the training.

We examine this framework with the different number of data snapshots to check

the optimal data needed for ANN to learn SGS stresses with sufficient accuracy.

Figure 2.12 shows the PDF of true and predicted stresses calculated with neighboring
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Table 2.2: Cross-correlation between true and predicted SGS stresses, and CPU time
for different models with neighboring stencil mapping for ANN.

Model Ns cc(τ11) cc(τ12) cc(τ22) Train
time

Test time

DSM - 0.011 -0.008 0.011 - 0.0095
M1 350 0.599 0.548 0.599 1675.92 0.0136
M2 350 0.783 0.731 0.783 1845.62 0.0141
M3 350 0.813 0.744 0.813 2065.11 0.0146
M3 70 0.789 0.746 0.789 425.84 0.0152
M3 24 0.786 0.721 0.786 139.49 0.0149

stencil mapping for different number of snapshots. From Table 2.2 we observe that

there is a slight drop in cross-correlation as we decrease the amount of data utilized

for training. The CPU time required for training drops significantly for less number of

training data snapshots. Overall, we can conclude that the accuracy of the prediction

will improve with the amount of the training data at the cost of higher computational

overhead for training. One more advantage of this approach is that the neighboring

stencil mapping can be employed for the complicated and unstructured mesh. This is

one of the desirable features of any data-driven frameworks, as the turbulence closure

model is deployed for complex fluid flow analysis, which is run on supercomputers. In

the neighboring stencil mapping framework, the information at only a few neighboring

nodes is required and it can be implemented without much of the communication

overhead. For the deployment computational time, we get similar findings as to the

point-to-point mapping ANN. The neighboring stencil mapping is around 1.5 times

slower than DSM. However, to get the same order of accuracy with DSM, we will need

to use a fine mesh for LES and this can be computationally expensive than employing

neighboring stencil mapping ANN.

2.4.3 CNN Mapping

In this section, we present the predictive performance of CNN mapping to learn

SGS stresses. Table 2.3 lists the cross-correlation between true and predicted SGS

stresses computed using CNN mapping. CNN mapping provides the best prediction

among three frameworks, and even with just coarse-grid resolved velocities as input

features, we obtain cross-correlation around 0.78 between true and predicted SGS

stresses. Figure 2.13 shows the PDF of true and predicted stresses calculated using

the model M1 with CNN mapping. CNN mapping can predict the spatial distribution
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Figure 2.9: Probability density function for SGS stress distribution with neighboring
stencil mapping. The ANN is trained using M1. The training set consists of 350 time
snapshots from time t = 0.0 to t = 3.5 and the model is tested for 400th snapshot at
t = 4.0.

−4σ−3σ−2σ−1σ 0σ 1σ 2σ 3σ 4σ
τ11

10−1

100

101

102

P
D

F

−4σ−3σ−2σ−1σ 0σ 1σ 2σ 3σ 4σ
τ12

10−1

100

101

102

−4σ−3σ−2σ−1σ 0σ 1σ 2σ 3σ 4σ
τ22

10−1

100

101

102

True DSM ANN

Figure 2.10: Probability density function for SGS stress distribution with neighboring
stencil mapping. The ANN is trained using M2. The training set consists of 350 time
snapshots from time t = 0.0 to t = 3.5 and the model is tested for 400th snapshot at
t = 4.0.
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Figure 2.11: Probability density function for SGS stress distribution with neighboring
stencil mapping. The ANN is trained using M3. The training set consists of 350 time
snapshots from time t = 0.0 to t = 3.5 and the model is tested for 400th snapshot at
t = 4.0.
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Figure 2.12: Probability density function for SGS stress distribution with neighboring
stencil mapping. The ANN is trained using M3. The model is trained using different
number of snapshots between t = 0.0 to t = 3.5 and the model is tested for 400th
snapshot at t = 4.0.

of stresses correctly and we observe that the true and predicted PDF are very close to

each other. When we incorporate more input features in the form of first and second

derivatives of coarse-grid velocities (i.e., model M2, and M3), we see an improvement

in cross-correlation to around 0.84. Figure 2.14 and Figure 2.15 display the PDF

of true and predicted stresses for models M2 and M3, respectively. A very good

agreement between PDF of true and predicted SGS stresses are observed for CNN

mapping with M2 and M3.

Table 2.3: Cross-correlation between true and predicted SGS stresses, and CPU time
for different models with CNN mapping.

Model Ns cc(τ11) cc(τ12) cc(τ22) Train
time

Test time

DSM - 0.011 -0.008 0.011 - 0.0095
M1 350 0.783 0.728 0.784 374.47 0.0024
M2 350 0.828 0.779 0.827 391.33 0.0021
M3 350 0.835 0.779 0.835 408.65 0.0017
M3 70 0.736 0.674 0.739 77.25 0.0025
M3 24 0.627 0.589 0.621 27.67 0.0025

We also evaluate the performance of CNN mapping with different amount of

training snapshots for model M3. Figure 2.16 shows the PDF of true and predicted

stresses for the different number of snapshots. We can see that there is a shift in

predicted PDF compared to true PDF for τ11 and τ22 when we use less number of

training snapshots. Also the cross-correlation between true and predicted stresses

have reduced when we utilize less number of data snapshots for training, and the

performance is poorer than neighboring stencil mapping ANN with less number of
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snapshots. In terms of the computational performance, CNN mapping surpasses

both point-to-point and neighboring stencil mapping ANN. This is due to the weight

sharing features of CNN and hence the number of parameters to be learned are less

than ANN. The deployment computational time for CNN is around 0.2 times the

time required by the DSM. Therefore, CNN can provide a more accurate prediction

for LES at a less computational cost. Despite these advantages, the application of

CNN for the unstructured grid is an open question. If the computational domain

has a simple geometry and the data is available in the form of snapshots as in the

case of box turbulence, wall-bounded flows, it is advantageous to use CNN. There

have been several studies that introduce novel CNN architectures for point cloud

data (as in the case of the unstructured grid) [416, 375, 371, 100]. With these novel

CNN architectures, the improved predictive capability of CNN can be exploited for

turbulence closure modeling.
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Figure 2.13: Probability density function for SGS stresses distribution with CNN
mapping. The CNN is trained using M1. The training set consists of 350 time
snapshots from time t = 0.0 to t = 3.5 and the model is tested for 400th snapshot at
t = 4.0.

Figure 2.17 displays the two-dimensional contour plot of true SGS stress τ12 and

SGS stress predicted by the DSM, neighboring stencil mapping ANN, and CNN

mapping. The DSM model captures the bulk eddy viscosity, but not the actual phase.

This is the reason behind low value of cross-correlation between true SGS stresses and

SGS stresses predicted by the DSM. Data-driven models on the other hand are able to

capture both magnitude and phase correctly in comparison with true SGS stress τ12.

To summarize our analysis, we show the cross-correlation between true and pre-

dicted SGS stresses in Figure 2.18 for all three data-driven closure models with a

different number of snapshots. We have summarized the results only for model M3,

which includes coarse-grid velocities, coarse-grid velocity gradients, and the Laplacian
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Figure 2.14: Probability density function for SGS stresses distribution with CNN
mapping. The CNN is trained using M2. The training set consists of 350 time
snapshots from time t = 0.0 to t = 3.5 and the model is tested for 400th snapshot at
t = 4.0.
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Figure 2.15: Probability density function for SGS stresses distribution with CNN
mapping. The CNN is trained using M3. The training set consists of 350 time
snapshots from time t = 0.0 to t = 3.5 and the model is tested for 400th snapshot at
t = 4.0.
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Figure 2.16: Probability density function for SGS stresses distribution with CNN
mapping. The CNN is trained using M3. The model is trained using different number
of snapshots between t = 0.0 to t = 3.5 and the model is tested for 400th snapshot at
t = 4.0.
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of coarse-grid velocities. The model M3 was found to give a better prediction for all

data-driven models without incurring a high computational cost. It can be clearly seen

that the CNN are more sensitive to the amount of training data than ANN in terms of

its ability to predict SGS stresses. In terms of computational performance, the CNN

mapping has the fastest performance (both training and testing/deployment) and has

a potential to give accurate prediction with less computational price compared to the

dynamic Smagorinsky model.

Point-to-point mapping Neighboring stencil mapping CNN mapping
0.00

0.25

0.50

0.75

cc

τ11

Point-to-point mapping Neighboring stencil mapping CNN mapping
0.00

0.25

0.50

0.75

cc

τ12

Point-to-point mapping Neighboring stencil mapping CNN mapping
0.00

0.25

0.50

0.75

cc

τ22

Ns = 24 Ns = 70 Ns = 350

Figure 2.18: Summary of cross-correlation between true and predicted SGS stresses
for different data-driven closure models trained using different number of snapshots.

2.5 Intelligent Eddy Viscosity Modeling

The data-driven frameworks presented in Section 2.4 learn SGS stress directly and

hence attempt to improve it’s prediction by trying to approximate true SGS stresses.

Despite the improved prediction, neural networks are black-box models and these

models cannot be interpreted or explained. In this section, we demonstrate intelligent

eddy viscosity model as an alternative to the dynamic Smagorinksy model. Our aim

here is to illustrate that these black-box data-driven tools can be also tailored to
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accelerate such phenomenological eddy viscosity models.

In two-dimensional simulations, the dynamic procedure in the computation of

Smagorisnky coefficient in DSM involves the application of low-pass filter eight times

at each query. Instead of using these filtering operations, the neural networks can be

trained to learn the dynamic eddy viscosity and the trained model can be deployed

cost-effectively. One more advantage of this approach is that the numerical stability

during the a posteriori deployment will be enforced. [238] noted that the clipping of

vorticity source term is required to attain the numerical stability during the deployment

of data-driven SGS model. The similar observation was also found by [28] for the

decaying homogeneous isotropic turbulence problem. The data-driven SGS closure

models can predict negative source term at some spatial locations and therefore violates

the Boussinesq hypothesis for functional SGS modeling. The intelligent model to

learn eddy viscosity can be built by enforcing the constraint such that eddy-viscosity

predicted by neural network remains non-negative. This eddy viscosity is then used

for computing SGS stresses using Equation 2.7. We only use coarse-grid velocity

and their gradient in the dynamic procedure to compute the Smagorinsky coefficient.

Hence we can include them as input features to learn eddy viscosity. The intelligent

eddy viscosity model is given as

M4 : {ū, v̄, ūx, ūy, v̄x, v̄y} ∈ R6 → {νe} ∈ R1, (2.31)

where the eddy viscosity νe is given as

νe = (Cs∆)2|S̄|, (2.32)

where (Cs∆)2 is computed from Equation 2.19, and |S̄| is given by Equation 2.8.

The similar framework was studied by [276], and they showed that the data-driven

model gives two to eight times computational performance gain against the dynamic

Smagorinsky model for wall-bounded turbulent flows.

The main advantage of this modeling approach is the numerical stability during a

posteriori deployment and computational speed up. To avoid repetition, we compare

the performance of intelligent eddy viscosity model with CNN mapping only. Table 2.4

lists the performance of intelligent eddy viscosity model trained with a different

number of hyperparameters. The task of learning dynamic eddy viscosity is easier

as compared to learning true SGS stresses and hence, we get cross-correlation up
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to 0.98 with just one hidden layer and 16 kernels. The intelligent eddy viscosity

model is around eight times faster than the DSM. If we use deep network similar

to the data-driven SGS model, we still get a computational speedup of four times.

Figure 2.19 show the comparison of true SGS stresses, SGS stresses predicted by DSM,

and SGS stresses computed from different intelligent eddy viscosity models (different

CNN architectures). The SGS stresses predicted by the CNN are very close to the

stresses computed from the DSM, and hence we can get similar performance similar

to the DSM at much less computational cost.

Table 2.4: Cross-correlation between DSM eddy viscosity and intelligent eddy viscosity
predicted by data-driven models, and CPU time for different models with CNN
mapping.

Model Hyperparameters cc(νe) Test time

DSM - - 0.0095
CNN-1 [16] 0.988 0.0012
CNN-2 [16,8,16] 0.994 0.0015
CNN-3 [16,8,8,8,8,16] 0.992 0.0024
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Figure 2.19: Probability density function for true SGS stresses distribution and stresses
computed at t = 4.0 with DSM and intelligent eddy viscosity model. The CNN is
trained using M4.. The model is trained using 350 snapshots between t = 0.0 to
t = 3.5 and the prediction is shown for time t = 4.0.

2.6 A Posterior Deployment with CNN-based Closure Model

After a systematic comparison of different deep learning frameworks for SGS closure

modeling in the a priori settings, we demonstrate the performance of the CNN-

based SGS closure model for Kraichnan turbulence in the a posteriori setting. The

performance of any data-driven framework should be assessed based on the model’s
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ability to preserve coherent structures and scaling laws in the a posteriori setting.

The vorticity transport equation can be written as

∂ω

∂t
+ J(ω, ψ) =

1

Re
∇2ω;, (2.33)

J(ω, ψ) =
∂ω

∂x

∂ψ

∂y
− ∂ω

∂y

∂ψ

∂x
, (2.34)

where ω is the vorticity, ψ is the stremfunction, J is the Jacobian (or the nonlinear

term), and Re is the Reynolds number of the flow. The multiscale nature of the flow

is governed by the Reynolds number. If high Reynolds number flow is simulated on

coarse-grid the finest structures of the flow will not be resolved and this can lead to

accumulation of energy at the grid cut-off wavenumber (also referred to as the energy

pile up). The vorticity and streamfunction are related by the conservation of mass

equation given as

∇2ψ = −ω. (2.35)

The coarse-grained LES equations can be written as

∂ω̄

∂t
+ J(ω̄, ψ̄) =

1

Re
∇2ω̄ + Π; ∇2ψ̄ = −ω̄, (2.36)

where Π is the true SGS closure term given by

Π = J(ω̄, ψ̄)− J(ω, ψ). (2.37)

We utilize the CNN architecture discussed in section 2.3 to learn the mapping from

grid-filtered variables to the SGS closure term given in equation 2.37. The CNN model

is trained by giving the whole snapshot of the domain as input and it predicts the

SGS closure term for the whole domain. We compare two different CNN models given

below

CNN-M1 : {ω̄, ψ̄} ∈ R2 → {Π̃} ∈ R1, (2.38)

CNN-M2 : {ω̄, ψ̄, |S̄|, |∇ω̄|} ∈ R4 → {Π̃} ∈ R1, (2.39)

where

|S̄| =
√

4

(
∂2ψ̄

∂x∂y

)2

+

(
∂2ψ̄

∂x2
− ∂2ψ̄

∂y2

)2

, |∇ω̄| =
√(

∂ω̄

∂x

)2

+

(
∂ω̄

∂y

)2

(2.40)
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are eddy-viscosity kernel information input to the framework and Π̃ is the approxima-

tion to the true SGS closure term. The first and second derivative of vorticity and

streamfunction field is embedded in the eddy-viscosity kernels and can be considered

as a data pre-processing step to include prior information in training.

To ensure the numerical stability during a posterior deployment, the approximated

SGS closure term Π̃ is post-processed before directly injecting it into the vorticity

transport equation as given bellow

Π =





Π̃, if (∇2ω̄)(Π̃) > 0

0, otherwise
(2.41)

This post-processing step can be considered as a step similar to positive clipping in

the dynamic Smagorinsky model given in Equation 2.19. This constraint ensures that

the SGS closure term will not be used at points at which the eddy viscosity embedded

in the SGS closure term is negative. The above constraint can also be attributed to

the implicit assumption of positive eddy viscosity in the Boussinesq hypothesis for

functional sub-grid modeling. It should be noted that Equation 2.41 does not allow

the backscatter of enstrophy to ensure numerical stability requirement on a coarse

mesh. However, this constraint still allows for both positive and negative values of the

SGS closure term. This implies that the proposed framework predicts both vorticity

forcing and damping at finer scales with positive and negative values of SGS closure

term respectively.

We utilize second-order spatial discretization for the vorticity transport equation

with the nonlinear Jacobian term discretized using energy conserving Arakawa nu-

merical scheme [11]. We use third-order Runge-Kutta numerical scheme for time

integration with the spectral Poisson solver employed for computing streamfunction

from vorticity at every time step. We train the CNN using the DNS data generated

for Reynolds number Re = 16000 at the grid resolution of 10242 from time t = 0

to 3.5 and filtered to the grid resolution of 1282. The performance of the proposed

framework is illustrated for two Reynolds number, Re = 16000 for which the CNN

is trained, and Re = 32000 which lies outside the training data. We compare the

performance of CNN models against the dynamic Smagorinsky model, which is one

of the widely used SGS closure models in the LES community. Additionally, we also

present results for coarse-grained forward simulation without any model (referred to

as UNS) to show the energy pile at grid cut-off wavenumber.
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We assess the performance of proposed frameworks using several statistical quanti-

ties such as angle-averaged energy spectrum, the time evolution of turbulent kinetic

energy (denoted by TKE) and vorticity variance (denoted by σ2(ω)), and vorticity

structure functions (denoted by Sω). A detailed explanation of the computation of the

angle-averaged energy spectrum can be found in [234]. The turbulent kinetic energy

is computed as

TKE = µ(u2f + v2f ), (2.42)

where uf and vf are the fluctuating components of velocity given by

uf = ū− µ(ū), (2.43)

vf = v̄ − µ(v̄), (2.44)

where µ(a) represents the spatial average of the field variable a. The velocity u, and v

are computed by spectral differentiation of streamfunction as shown below

ū =
∂ψ̄

∂y
; v̄ = −∂ψ̄

∂x
. (2.45)

The vorticity variance at each time step is computed as

σ2(ω̄) = µ((ω̄ − µ(ω̄))2). (2.46)

We compute the vorticity structure function using the formula given by [127] for

two-dimensional turbulence and is shown below

Sω =< |ω̄(x + r)− ω̄(x)|2 >, (2.47)

where <> indicates ensemble averaging, x is the position on the grid, and r is certain

distance from this location.

Figure 2.20 displays the vorticity field at time t = 4.0 for DNS, filtered DNS,

unresolved numerical simulation (UNS), dynamic Smagorinsky model (DSM), and

proposed CNN frameworks fro Reynolds number Re = 16000. The vorticity field for

UNS is heavily contaminated by high wavenumber noise. It can be observed that

the proposed CNN frameworks can significantly reduce the noise and can predict the

coherent structures similar to the DSM simulations.

Figure 2.21 shows the angle-averaged and compensated energy spectrum computed
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Figure 2.20: A posteriori vorticity field at final time t = 4.0 for Re = 16000 for
proposed CNN frameworks. We also provide vorticity field for DNS, filtered DNS
(FDNS), and unresolved numerical simulations (UNS) for comparison.

with the deployment of proposed CNN frameworks in coarse-grained simulations at

Reynolds number Re = 16000. For comparison, we have also included the energy

spectrum for DNS, dynamic Smagorinsky model (DSM), and unresolved numerical

simulation (UNS). It can be observed that the proposed frameworks follow the k−3

scaling law in the inertial subrange which is to be expected for two-dimensional

turbulence. We see no pile up of energy near high wavenumber with proposed

frameworks like in the case of UNS, and the computed energy spectrum is very close to

the DSM. Figure 2.22 displays the time evolution of TKE and vorticity variance from

time t = 0 to t = 4.0 for Re = 16000. We notice that the proposed frameworks follow

a very similar trend for both TKE and vorticity variance as the DSM. Figure 2.23

details the variation of vorticity structure function as the distance of a point from the

grid location increases. It is again observed that the proposed frameworks produce

vorticity structure functions similar to the DSM.

To verify weather proposed CNN frameworks have truly learned the mapping from

coarse-grid variables to SGS closure term and not just remembered the training data,

we deploy the trained CNN models for Reynolds number Re = 32000. The assessment

of the proposed frameworks for this Reynolds number will also give us an insight on

its generalizability. Figure 2.24 shows the qualitative assessment of vorticity field at
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Figure 2.21: A posteriori kinetic-energy spectra (left) and compensated kinetic-energy
spectra (right) for Re = 16000 at t = 4 and at grid resolution N2 = 1282. This
Reynolds number is used for training the CNN.

time t = 4.0 for DNS, filtered DNS, unresolved numerical simulation (UNS), dynamic

Smagorinsky model (DSM), and proposed CNN frameworks for Reynolds number

Re = 32000. The vorticity field for UNS is heavily contaminated with high wavenumber

noise. It can be observed that the proposed CNN frameworks can significantly reduce

the noise and can retain the coherent structures similar to the DSM simulations.

Figure 2.25 reports the angle-averaged and compensated energy spectrum computed

with the deployment of proposed CNN frameworks in coarse-grained simulations at

Reynolds number Re = 32000. For comparison, we have also included energy spectrum

for DNS, dynamic Smagorinsky model (DSM), and unresolved numerical simulation

(UNS). It can be observed that the proposed frameworks follows the k−3 scaling

law in the inertial subrange which is to be expected for two-dimensional turbulence.

We observe no pile up of energy near high wavenumber with proposed frameworks

like in the case of UNS, and the computed energy spectrum is very close to the

DSM. Figure 2.26 shows the time evolution of TKE and vorticity variance from time

t = 0 to t = 4.0 for Re = 32000. We notice that the proposed frameworks follow

a very similar trend for both TKE and vorticity variance as the DSM. Figure 2.27

details the variation of vorticity structure function as the distance of a point from the

grid location increases. It is again observed that the proposed frameworks produces

vorticity structure functions similar to the DSM. The qualitative and quantitative

assessment of the proposed frameworks for Reynolds number Re = 32000 shows a

promise of data-driven methods to learn SGS closure term effectively.
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Figure 2.22: Time evolution of turbulent kinetic energy (left) and vorticity variance
(right) for Re = 16000 at grid resolution N2 = 1282. This Reynolds number is used
for training the CNN.

The proposed CNN frameworks were able to produce the vorticity field and other

statistical quantities similar to the dynamic Smagorinksy model. If we compare the

computational time of the DSM, the proposed CNN frameworks are computationally

faster. The CPU time for the coarse-grained simulation at 1282 with the DSM takes

around 220 seconds. On the other hand, the coarse-grained simulation at 1282 with

CNN models takes around 150 seconds. Therefore, data-driven frameworks have an

advantage in terms of computational overhead compared to traditional closure models.

Our proposed framework can also be considered as a hybrid modeling approach, where

the bulk nature of the flow evolution is retained though governing laws (vorticity-

streamfunction formulation in our test case) and data-driven methods act as a corrector

for statistical fidelity.

2.7 Conclusion

In the present study, we investigated different data-driven turbulence closure frame-

works to learn SGS stresses using coarse-grained field variables. The blending of

data-driven turbulence closure models within a physics-based LES framework presents

the hybrid modeling approach that has the potential to give an accurate prediction of

fluid flows at a less computational cost. The traditional Smagorinsky model is based on

empirical formulas and phenomenological relationships and can either produce insuffi-

cient or excessive dissipation. On the other hand, the optimal map between coarse-grid

field variables and SGS stresses learned by a data-driven framework provides improved
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Figure 2.23: A posteriori vorticity structure functions plotted against r (left) and
log(r) (right) for Re = 16000 . This Reynolds number is used for training the CNN.

prediction compared to the dynamic Smagorinsky model. The importance of the

selection of input features in the prediction of SGS stresses is illustrated for different

data-driven closure models using two-dimensional Kraichnan turbulence as the pro-

totype example. The quantitative analysis using cross-correlation indicates that the

prediction of SGS stresses improves when coarse-grid velocities, velocity gradients, and

their Laplacian are included in input features. The analysis with localized mapping

showed that the improvement in the prediction of SGS stresses is achieved when

information from neighboring points is also included without any significant increase

in the training and deployment time. The CNN mapping provides the most accurate

prediction close to true SGS stresses with less computational overhead for training

because of their invariance and weight sharing property.

The analysis of deployment time for different frameworks points out that data-

driven closure models can give accurate SGS stresses prediction with the same or

less computational overhead as the dynamic Smagorisnky model. The localized

point-to-point mapping with ANN is particularly attractive for practical engineering

applications due to its ability to handle unstructured mesh. The CNN mapping,

on the other hand, seems more suitable for applications where a large amount of

training data is available in the form of snapshots. While intelligent SGS modeling

frameworks can model true SGS stresses accurately, they are prone to numerically

unstable prediction in the a posteriori deployment as shown in recent studies [238, 28].

To exploit the potential of these black-box models in safety critical applications,

we further investigate their robustness in predicting the eddy viscosity coefficient.
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Figure 2.24: A posteriori Vorticity field at final time t = 4.0 for Re = 32000 for
proposed CNN frameworks. We also provide vorticity field for DNS, filtered DNS
(FDNS), and unresolved numerical simulations (UNS) for comparison.

Although limited in their predictive accuracy by utilizing an eddy viscosity model,

we illustrate that the intelligent eddy viscosity approach gives four to eight times

computational speedup with the same accuracy as the DSM.

We analyze the performance of CNN based data-driven SGS closure models in

the a posteriori deployment settings with vorticity-streamfunction formulation for

two-dimensional Kraichnan turbulence. To ensure numerical realizability during de-

ployment, we enforce positive viscosity constraint and inject SGS closure terms at only

those points where the eddy viscosity is positive. Even with this constraint, proposed

CNN models cans predict both positive and negative values of SGS closure term

corresponding to vorticity forcing or damping, respectively. Our statistical analysis of

different quantities suggests that the proposed CNN frameworks are able to produce

a vorticity field similar to the dynamic Smagorinsky model at less computational

overhead. Enforcing numerical realizability constraints during the deployment suggests

that a posteriori analysis should be taken into account when selecting optimal hyper-

parameters of the neural network. One of the ways to take the numerical stability

constraint during deployment into account for optimal neural network architecture

selection is through custom loss function during training. Specifically, we can embed

numerical realizability constraint as a form of regularization to the original loss function
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Figure 2.25: A posteriori kinetic-energy spectra (left) and compensated kinetic-energy
spectra (right) for Re = 32000 at t = 4 and at grid resolution N2 = 1282. This
Reynolds number is not utilized for training and it demonstrates the effectiveness of
the CNN on test data.

(mean squared error in our case) during a priori training of the neural network.

We highlight that the data-driven techniques are in their infancy. Once the trained

model is deployed in a CFD code, a posteriori analysis of data-driven closure models

might give unexpected predictions (i.e., numerically or physically inconsistent). To be

able to use the neural network based model in safety-critical applications, we need

either of the two: interpret the model and figure out when it can fail, or to use neural

networks in a way that we can detect when it fails and produces nonphysical results.

Interpreting a deep neural network with millions of parameters is almost impossible. In

our future work, we will focus on the second approach with an internal sanity checking

mechanism where a black box model helps better modeling of conservation laws, and

conservation mechanism puts a sanity check on the black-box model. Furthermore,

the neural-network architectures employed in this work are fairly simple plain vanilla

versions without any complex structure. The predictive performance of data-driven

closure models can be further improved by constructing more sophisticated architecture

designs like TBNN [213], and generative adversarial networks [123]. In the future,

we would also like to extend these approaches for more complex test cases such

as three-dimensional Kolmogorov turbulence, and geophysical flows. Some of the

frameworks investigated in this study, especially with ANN can be readily extended to

3D turbulent flows. For the CNN framework, the convolutional filter is very important

for an accurate prediction of turbulent flows. The discretization for 3D turbulent

flows is usually non-uniform. For example, in the case of the channel flow, the mesh
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Figure 2.26: Time evolution of turbulent kinetic energy (left) and vorticity variance
(right) for Re = 16000 at grid resolution N2 = 1282. This Reynolds number is not
utilized for training and it demonstrates the effectiveness of the CNN on test data.

is clustered near the wall than away from the wall. For such flows, we might design

special convolutional filters in different regions of the flow.

2.A Derivation of the Smagorinsky Model in 2D Turbulence

From Equation 2.5, the subgrid-scale stresses in 2D field can be written as

τij = uiuj − ūiūj, (2.48)

=
1

2
τkkδij

︸ ︷︷ ︸
kSGSδij

+

(
τij −

1

2
τkkδij

︸ ︷︷ ︸
τdij

)
. (2.49)

The SGS stresses can be written as

τ = kSGSI + τ d, (2.50)

where kSGS = 1
2
τkk is called subgrid-scale kinetic energy (i.e., using the conventional

summation notation with repeating indices, for example, τkk = τ11 + τ22, in 2D). In

Smagorinsky model, we model the deviotoric (traceless) part of SGS stresses as

τ dij = −2νeS̄
d
ij, (2.51)
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Figure 2.27: A posteriori vorticity structure functions plotted against r (left) and
log(r) (right) Re = 32000 . This Reynolds number is not utilized for training and it
demonstrates the effectiveness of the CNN on test data.

where νe is the SGS eddy viscosity, and S̄ij is called resolved strain rate tensor given

by

S̄ij =
1

2

(
∂ūi
∂xj

+
∂ūj
∂xi

)
, (2.52)

where we can write explicity as follows

S̄ =




∂ū
∂x

1
2

(
∂ū
∂y

+ ∂v̄
∂x

)

1
2

(
∂v̄
∂x

+ ∂ū
∂y

)
∂v̄
∂y


 . (2.53)

The trace of the S̄ is zero owing to the continuity equation for incompressible flows.

Therefore, S̄dij = S̄ij and the Smagorinsky model becomes

τ dij = −2νeS̄ij. (2.54)

The eddy viscosity approximation computes νe using the below relation

νe = Ck∆
√
kSGS, (2.55)

where the proportionality constant is often set to Ck = 0.094, and ∆ is the length

scale (usually grid size). The SGS kinetic energy kSGS is computed with the local

equilibrium assumption of the balance between subgrid scale energy production and
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dissipation

S̄ : τ + Cϵ
k1.5SGS

∆
= 0, (2.56)

where the first term in above equation is dissipation flux, second term is production

flux, and the production constant is often set to Cϵ = 1.048. The double inner product

operation : is given by

S̄ : τ = S̄ijτij = S̄11τ11 + S̄12τ12 + S̄21τ21 + S̄22τ22. (2.57)

Substituting Equation 2.50 and 2.54 int Equation 2.56, we get

S̄ : (kSGSI − 2Ck∆
√
kSGSS̄) + Cϵ

k1.5SGS

∆
= 0, (2.58)

√
kSGS

(
Cϵ
∆
kSGS +

√
kSGS S̄ : I︸︷︷︸

S̄ijδij=0

−2Ck∆S̄ : S̄

)
= 0, (2.59)

Cϵ
∆
kSGS − 2Ck∆S̄ : S̄ = 0, (2.60)

From above equations, subgrid-scale kinetic energy can be written as

kSGS =
Ck
Cϵ

∆2(2S̄ : S̄), (2.61)

kSGS =
Ck
Cϵ

∆2|S̄|2, (2.62)

where |S̄| =
√

2S̄ijS̄ij. Furthermore, substituting Equation 2.55 in above Equation,

we get

νe = Ck∆
2

√
Ck
Cϵ
|S̄|. (2.63)

We can define a new constant coefficient as

C2
s = Ck

√
Ck
Cϵ
. (2.64)

where Cs = 0.1678 is called the Smagorinsky coefficient. Finally, we get below

expression for SGS eddy viscosity

νe = C2
s∆2|S̄|, (2.65)
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and the Smagorinsky model, given by Equation 2.51, reads as

τ dij = −2C2
s∆2|S̄|S̄ij. (2.66)

2.B Hyperparameters Optimization

In the appendix, we outline the procedure we followed for selection of hyperparameters

for ANN with point-to-point mapping and neighboring stencil mapping. For ANN,

there are many hyperparameters such as number of neurons, number of hidden layers,

loss function, optimization algorithm, activation function, and batch size etc. If we

use regularization, dropout, or weight decay to avoid overfitting, the design space of

hyperparameters increases further.

We focus on three main hyperparameters of ANN: number of neurons, number of

hidden layers, and learning rate of optimization algorithm. The training data is scaled

between [-1,1] using the minimum and maximum value in the training dataset. We

use ReLU activation function given by ζ(χ) = max(0, χ), where ζ is the activation

function, and χ is the input to the node. We use Adam optimization algorithm

[175] and the batch size is kept constant at 256. Adam optimization algorithm has

three hyperparameters: learning rate α, first moment decay rate β1, and second

moment decay rate β2. We test our ANN for two learning rates α = 0.001, and 0.0001.

The other two hyperparameters in Adam optimization algorithm are β1 = 0.9, and

β2 = 0.999. We employ mean squared error as the loss functions, since it is a regression

problem. We test both ANN with point-to-point mapping and neighboring stencil

mapping for four different number of hidden layers L = 2, 3, 5, 7. The ANN with

point-to-point mapping is tested for four different number of neurons N = 20, 30, 40, 50

and the local-stencil-mapping is tested for N = 40, 60, 80, 100. The number of neurons

is higher in case of local-stencil-mapping because there are more features compared to

point-to-point mapping.

The optimal ANN architecture is selected using multi-dimensional gridsearch

algorithm coupled with k-fold cross-validation. Cross-validation is a procedure used

to determine the performance of the neural network on unseen data. The procedure

consists of dividing the training data into k groups, training the ANN by excluding

each group and evaluating the model’s performance on that group. Therefore, if we

use five-fold cross-validation then the model is trained five times and the performance

index is computed for five groups. Once the performance for each group is available,
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the mean of the performance index is utilized to select optimal hyperparameters. We

use 500 epochs for determining the optimal hyperparameters. A good learning is

achieved when both training loss and validation loss reduce till the learning rate is

minimal. We apply coefficient of determination r2 as the performance index to decide

optimal hyperparameters. The calculation of coefficient of determination is done using

below formula

r2 = 1−
∑

i(yi − ỹi)2∑
i(yi − ȳ)2

, (2.67)

where yi is the true label, ỹ is the predicated label, and ȳ is the mean of true labels.

Figure 2.28 displays the performance index for ANN with point-to-point map-

ping and M3 model for all hyperparameters tested using gridsearch algorithm. It

can be observed that the performance of the network does not change significantly

with hyperparameters and the difference in performance is very small. The optimal

hyperparameters obtained for point-to-point mapping ANN are L = 2, N = 40, and

α = 0.0001. We use the same hyperparameters for other two models M1 and M2

for point-to-point mapping ANN. We see the similar behaviour in case of neighbor-

ing stencil mapping ANN and model M3 as shown in Figure 2.29. The optimal

hyperparameters for neighboring stencil mapping ANN are L = 2, N = 40, and

α = 0.001.
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Figure 2.28: Hyperparameters search using the gridsearch algorithm combined with
five-fold cross validation for the neural network using point-to-point mapping with
M3.

As discussed in Section 2.4.1, we get poor prediction between true and predicted

stresses for point-to-point mapping with model M1. Figure 2.30 shows the PDF

of true and predicted streeses computed with different activation functions. It can

be observed that the predicted stresses are almost same for all activation functions.
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Figure 2.29: Hyperparameters search using the gridsearch algorithm combined with
five-fold cross validation for the neural network using neighboring stencil mapping
with M3.

Therefore, we can conclude that we need additional input features such as velocity

gradients to improve the prediction with point-to-point mapping.
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Figure 2.30: Probability density function for SGS stress distribution with point-to-
point mapping. The ANN is trained using M1 with different activation functions. The
training set consists of 70 time snapshots from time t = 0.0 to t = 3.5 and the model
is tested for 400th snapshot at t = 4.0.

The CNN architecture has similar hyperparameters as the ANN. Additionally,

we need to select the kernel shape and strides for CNNs. Stride is the amount by

which the kernel should shift as it convolves around the volume. We use the stride=1

in both x and y directions. We use 3 × 3 shaped kernel in our CNN architecture.

We check the performance of CNN architecture for different number of hidden layers

L = 2, 4, 6, 8, different number of filters N = 8, 16, 24, 32, and two learning rates.

Figure 2.31 displays the performance index of CNN for different hyperparameters.

The performance of CNN is more sensitive to the learning rate and we observe stable

performance for the learning rate α = 0.001. The performance is almost similar for
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L = 6, 8, 10 with different number of kernels. We can select L = 6 and N = 16, which

has performance index of 0.76. Additionally, we test the CNN architecture with L = 6

and [16, 8, 8, 8, 8, 16] distribution for the number of kernels along hidden layers and

we observed the performance index of 0.75 at less computational cost. Therefore, we

apply L = 6, N = [16, 8, 8, 8, 8, 16], and α = 0.001 as our hyperparameters for the

CNN architecture.
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Figure 2.31: Hyperparameters search using the gridsearch algorithm combined with
five-fold cross validation for CNN mapping with model M3.

2.C CPU Time Measurements

In this study, the pseudo-spectral solver used for DNS is written in Python program-

ming language. The code for coarsening of variables from fine to coarse grid, dynamic

Smagorinsky model code is all written in Python. We use vectorization to get faster

computational performance. The machine learning library Keras is also available in

Python and is used for developing all data-driven closure models. Therefore, the

CPU time reported in our analysis is for codes, which are all developed on the same

platform. We would like to highlight that when the trained model is deployed, it

makes the function for first time and hence it takes slightly more time. Once the

function is created, the CPU time for deployment is less. Therefore, in all our Tables,

we report the CPU time for running the predict function second time since initializing

CUDA kernels might yield a startup overhead as shown in Listing 2.1, where t1 here

has some idle time due to initializing kernels. In our study, we report t2, and we

further verified that t3 - t2 = t2, which illustrate that the reported CPU times are

consistent.
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1 test_time_init = tm.time()

2 y_test = model.predict(ftest)

3 t1 = tm.time() - test_time_init

4

5 test_time_init = tm.time()

6 y_test = model.predict(ftest)

7 t2 = tm.time() - test_time_init

8

9 test_time_init = tm.time()

10 y_test = model.predict(ftest)

11 y_test = model.predict(ftest)

12 t3 = tm.time() - test_time_init

Listing 2.1: Code sample to check the CPU time for data-driven models.

2.D ANN and CNN Architectures

We use open-source Keras library to build our neural networks. It uses TensorFlow

at the backend. Keras is widely used for fast prototyping, advanced research and

production due to its simplicity and faster learning rate. Keras library provides

different options for optimizers, neural network architectures, activation functions,

regularization, dropuout, etc. Any simple neural network architecture can be coded

with few lines of code. The sample code for ANN and CNN used in this work are

listed in Listings 2.2 and 2.3.

1 model = Sequential ()

2

3 input_layer = Input(shape =(nf ,))

4 x = Dense (40, activation=’relu’, use_bias=True)(input_layer)

5 x = Dense (40, activation=’relu’, use_bias=True)(x)

6 output_layer = Dense(nl , activation=’linear ’, use_bias=True)(x)

7 model = Model(input_layer , output_layer)

8 adam = optimizers.Adam(lr=lr , beta_1 =0.9, beta_2 =0.999 , epsilon=None

, decay =0.0, amsgrad=False)

9 model.compile(loss=’mse’, optimizer=adam , metrics =[cod])

Listing 2.2: Sample code for the ANN used in this study.
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1 inputf = Input(shape =(nx ,ny ,nci))

2

3 x = Conv2D (16, (3, 3), activation=’relu’, padding=’same’)(inputf)

4 x = Conv2D(8, (3, 3), activation=’relu’, padding=’same’)(x)

5 x = Conv2D(8, (3, 3), activation=’relu’, padding=’same’)(x)

6 x = Conv2D(8, (3, 3), activation=’relu’, padding=’same’)(x)

7 x = Conv2D(8, (3, 3), activation=’relu’, padding=’same’)(x)

8 x = Conv2D (16, (3, 3), activation=’relu’, padding=’same’)(x)

9

10 output = Conv2D(nco , (3, 3), activation=’linear ’, padding=’same’)(x)

11 model = Model(inputf , output)

12 adam = optimizers.Adam(lr=lr , beta_1 =0.9, beta_2 =0.999 , epsilon=None

, decay =0.0, amsgrad=False)

13 model.compile(loss=’mse’, optimizer=adam , metrics =[cod])

Listing 2.3: Sample code for the CNN used in this study.
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CHAPTER III

Data assimilation Empowered Deep Learning for Subgrid Processes in

Geophysical Flows

The contents of this chapter has been published in Physical Review Fluids (PRF)1.

Abstract: In the past couple of years, there is a proliferation in the use of machine

learning approaches to represent subgrid scale processes in geophysical flows with an

aim to improve the forecasting capability and to accelerate numerical simulations of

these flows. Despite its success for different types of flow, the online deployment of a

data-driven closure model can cause instabilities and biases in modeling the overall

effect of subgrid scale processes, which in turn leads to inaccurate prediction. To tackle

this issue, we exploit the data assimilation technique to correct the physics-based

model coupled with the neural network as a surrogate for unresolved flow dynamics

in multiscale systems. In particular, we use a set of neural network architectures to

learn the correlation between resolved flow variables and the parameterizations of

unresolved flow dynamics and formulate a data assimilation approach to correct the

hybrid model during their online deployment. We illustrate our framework in a set of

applications of the multiscale Lorenz 96 system for which the parameterization model

for unresolved scales is exactly known, and the two-dimensional Kraichnan turbulence

system for which the parameterization model for unresolved scales is not known a

priori. Our analysis, therefore, comprises a predictive dynamical core empowered by

(i) a data-driven closure model for subgrid scale processes, (ii) a data assimilation

approach for forecast error correction, and (iii) both data-driven closure and data

assimilation procedures. We show significant improvement in the long-term prediction

of the underlying chaotic dynamics with our framework compared to using only neural

network parameterizations for future prediction. Moreover, we demonstrate that

these data-driven parameterization models can handle the non-Gaussian statistics of

subgrid scale processes, and effectively improve the accuracy of outer data assimilation

workflow loops in a modular non-intrusive way.

1Pawar, S., & San, O. (2021). Data assimilation empowered neural network parameterizations for
subgrid processes in geophysical flows. Physical Review Fluids, 6(5), 050501.
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3.1 Introduction

Geophysical flows are characterized by the multiscale nature of flows where there is a

massive difference between the largest and smallest scales, and these scales interact

with each other to exchange heat, momentum, and moisture. This makes the numerical

simulations of geophysical flows in which every flow feature is resolved computationally

unmanageable, even though the physical laws governing these processes are well known.

Therefore, the atmosphere and ocean models compute the approximate numerical

solution on the computational grid that consists of O(107) to O(108) grids with a

spacing of O(10 km) to O(100 km). The effect of unresolved scales is taken into account

by using several parameterization schemes, which represent the dynamics of subgrid

scale processes as a function of resolved dynamics [359, 84, 311]. However, the weather

projection is marred by large uncertainties in the parameters of these parameterization

schemes, and also due to incorrect structure of these parameterizations equations itself

[343, 82, 143].

Typically, the parameters of these parameterization schemes are estimated by

the model tuning process based on the observations from experimental and field

measurements or the data generated from high-resolution numerical simulations

[156, 157]. The nonlinear and multiscale nature of geophysical flows makes this tuning

procedure cumbersome and can impede accurate climate prediction [424]. A recent

development in machine learning, particularly deep learning [198], along with the huge

volume of data gathered from high-resolution numerical simulations [262] and remote

sensors measurements [187] offers an alternative to the physics-based parameterization

schemes and can pave the way for improved climate and weather models. Deep learning

approaches have been demonstrated to be successful for different scientific tasks in

Earth system science, such as extreme weather pattern detection [219], precipitation

nowcasting [346], transport process modeling [77], and many more. Deep learning

has also been utilized to represent subgrid scale processes in climate models. Rasp et

al. [316] trained a deep neural network (DNN) to emulate a cloud resolving model

and formulated a procedure to produce stable results in the online deployments

close to the original super-parameterized global circulation model. Gentine et al.

[117] used an ensemble of random forests as a machine learning (ML) algorithm to

parameterize the moist convection and implemented it in a global circulation model.

They demonstrated the stable and robust performance of ML based parameterization

in capturing important climate statistics including precipitation extremes.
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Along with the Earth system science, there is a surge in the application of machine

learning for fluid mechanics. Readers are directed to an excellent review by [50] on

how ML algorithms are being used for augmenting the domain knowledge, automating

tasks such as flow-control and optimization by the fluid mechanics’ community. In a

recent perspective, [46] discuss the strength and limitations of ML based algorithms

to advance fluid mechanics. The closure problem in turbulence modeling is similar to

the parameterization in climate modeling and is encountered in Reynolds-Averaged

Navier-Stokes (RANS) and large eddy simulation (LES) which are widely adopted for

engineering flow simulations. There have been several studies that use ML algorithms

to address the turbulence closure problem [87, 340, 112, 239]. Ling et al. [213]

proposed a novel neural network architecture with embedded Galilean invariance

for the prediction of Reynolds stress anisotropy tensor. Wang et al. [388] employed

random forest as an ML algorithm to reconstruct the discrepancy in RANS-modeled

Reynolds stresses and evaluated its performance for fully developed turbulent flows

and separated flows. Deep learning has also been utilized for LES of turbulent flows,

for example, subgrid scale closure modeling of Kraichnan turbulence [238], decaying

homogeneous isotropic turbulence [28], forced isotropic turbulence [414], compressible

isotropic turbulence [413], and wall-bounded turbulence [354]. The feasibility of deep

learning has been investigated to produce a predictive model for turbulent fluxes,

such as heat fluxes [173] and anomalous fluxes in drift-wave turbulence [136]. In

a recent work, Novati et al. [267] introduced a multi-agent reinforcement learning

framework as an automated discovery tool for turbulence models and applied it to

forced homogeneous isotropic turbulence. Besides turbulence closure modeling, deep

learning has been proved to be very successful for challenging problems such as super-

resolution of turbulent flows [108, 158, 364], data-driven modeling of chaotic systems

[281, 383, 387], reduced order modeling of high-dimensional multiphysics systems

[201, 247, 303, 307], and developing forecast models for complex physical systems

[389, 14, 66].

Despite the development of deep learning algorithms as a powerful tool to extract

spatio-temporal patterns from the data, these methods are criticized for their black-

box nature and are prone to produce physically inconsistent results due to their

lack of generalizability [98, 385]. Moreover, the increase in spatial and temporal

dimensionalities raises a computational challenge in terms of the training. Hence, it is

essential to integrate machine learning with physics-based modeling to address the

challenge of interpretability, physical consistency, and computational burden [318].
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One way to combine machine learning with physics-based modeling is by incorporating

physical conservation laws into training through a regularization term added to the

loss function of a neural network [309, 364, 308, 405, 94]. Another way is to change

the structure of neural network architecture to enforce physical conservation laws as

hard constraints [249, 227]. The hybrid modeling in which a sub-model within the

physics-based model is replaced by machine learning methods is another approach to

address the limitation of pure data-driven methods [318, 77, 166]. One of the issues

with hybrid models is that the trained neural network often suffers from instability once

they are deployed in the forward model. For example, a small change in the training

dataset or the input and output vector of the neural network led to unpredictable

blow-ups in the global circulation model that employs a neural network to emulate

cloud resolving model [316, 314]. Similarly, Brenowitz et al. [48] found that the

nonphysical correlations learned by neural networks were the cause of instabilities in

their online deployment within the global circulation model [47] and developed an

approach to ensure stability. Wu et al. [407] highlighted the gap between a priori and

a posteriori performance of data-driven Reynolds stress closure models as the RANS

equations with such model can be ill-conditioned. Therefore, even though data-driven

turbulence closure models predicted better closure terms, their online deployment does

not lead to significant improvement in the mean velocity field prediction [112, 388].

Wu et al. [407] proposed a metric to evaluate the conditioning of RANS equations

in the a priori settings and showed that the implicit treatment of Reynolds stresses

leads to reduced error in mean velocity prediction.

Data assimilation (DA) is a well-established discipline where observations are

blended with the model to take uncertainties into account for improving the numerical

prediction of the system [206, 348, 97, 411, 423, 17] and can be applied to achieve

accurate prediction in hybrid models that employ data-driven model as a sub-model for

some processes (for example subgrid scale processes). DA tools are being extensively

utilized in geoscience and numerical weather forecast centers to correct background

predictions based on a combination of heterogeneous measurement data coming from

ground observations and satellite remote-sensing. These techniques have been also

investigated recently for integrating experimental data into large-eddy simulations

of engineering flows [191, 254, 74, 72]. In a DA workflow, we merge forward model

predictions with observational data. However, it has been often remarked that

no-model is correct but some of them are useful. In typical DA studies and twin

experiments, therefore, the subgrid scale processes have been modeled as Gaussian
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noise due to a lack of structural information on their mechanisms. If we would know

their dynamics either structurally or functionally, for sure it would be wise to include

them in the model before a DA analysis is executed. However, the subgrid scale

processes in turbulent flows often cannot be accurately modeled by Gaussian noise,

and ML methodologies can be adopted to get a grip on subgrid scale processes. Hence,

we put forth a neural network based statistical learning approach to improve model

uncertainty and incorporate this information as a data-driven closure term to the

forward model. We examine how the forecast error reduces due by including ML

based closure term to the underlying forward model. Indeed, the integration of DA

with ML methodologies holds immense potential in various fields of physical science

[209, 207, 370, 38, 44] and we demonstrate this through our study.

In this work, we propose a neural network closure framework in developing hybrid

physics-ML models supplemented with DA for multiscale systems. In particular, we

advocate the use of sequential DA techniques to improve the state estimate of the

system by incorporating observations into a model equipped with neural network

parameterization schemes for unresolved physics. To this end, we use real-time

measurements to regularize ML empowered predictive tools through ensemble Kalman

filter based approach. Our first example a two-level Lorenz 96 model [222] for

our numerical experiments since it generates a controllable test case for advancing

turbulence parameterization theories, especially in the age of data-driven models. The

Lorenz 96 is an idealized model of atmospheric circulation and is used widely to test

research ideas [196, 163, 137, 378]. Even though the dynamics of both large and small

scales are known exactly for a two-level Lorenz 96 model, it is very difficult to predict

it because of the strong interplay between fast and slow subsystems. Therefore, we

select this multiscale model for the assessments of data-driven closures for capturing

the physics of subgrid scales. Since we use an “explicit” evolution equation for the

closure parameterizations, we can easily assess the data-driven models in a posteriori

simulations. This often comprises a challenging task in LES computations since the

low-pass filtering operation is “implicitly” applied to the governing equations. We

further extend our framework to Kraichnan turbulence [181], where it is shown that

the DA improves the state estimate of the hybrid physics-ML model and this leads

to better prediction for statistical properties like kinetic energy spectra and vorticity

structure functions in comparison with high-fidelity direct numerical simulation (DNS).

Our approach is multifaceted in at least two ways. We first show that the infusion of

the DA approaches improves the forecasting quality of predictive models equipped
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with data-driven parameterizations. Second, we also demonstrate that the data-

driven parameterizations help significantly to reduce forecast errors in DA workflows.

Therefore, our modular framework can be considered as a way to incorporate real-time

observations that are prevalent in today’s weather forecast station into hybrid models

constituted from a physics-based model as the dynamical core of the system, and a

data-driven model to describe unresolved physics.

This chapter is structured as follows. In Section 3.2, we discuss the problem of

parameterizations using a two-level Lorenz 96 model and Kraichnan turbulence as a

prototypical examples. Section 3.3 details two types of neural network utilized in this

study for learning the mapping between resolved variables and parameterizations of

unresolved scales. We explain the methodology of sequential data assimilation and

ensemble Kalman filter based algorithms in Section 3.4. In Section 3.5, we discuss the

findings of our numerical experiments with a two-level Lorenz 96 model and Kraichnan

turbulence. Finally, we conclude with the summary and direction for future work in

Section 3.6.

3.2 Parameterizations in Multiscale Systems

3.2.1 Two-level Lorenz 96 model

In this section, we describe the two-level variant of the Lorenz 96 model proposed

by Lorenz [222]. This model has been extensively investigated to study stochastic

parameterization schemes[277, 403, 73], scale-adaptive parameterizations[381], and

neural network parameterizations[314, 402]. The two-level Lorenz 96 model can be

written as

dXi

dt
= −Xi−1(Xi−2 −Xi+1)−Xi −

hc

b

J∑

j=1

Yj,i + F, (3.1)

dYj,i
dt

= −cbYj+1,i(Yj+2,i − Yj−1,i)− cYj,i +
hc

b
Xi, (3.2)

where Equation 3.1 represents the evolution of slow, high-amplitude variables Xi (i =

1, . . . , n), and Equation 3.2 provides the evolution of a coupled fast, low-amplitude

variable Yj,i (j = 1, . . . , J). We use n = 36 and J = 10 in our computational

experiments. We utilize c = 10 and b = 10, which implies that the small scales

fluctuate 10 times faster than the larger scales. Also, the coupling coefficient h

between two scales is equal to 1 and the forcing is set at F = 10 to make both
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variables exhibit the chaotic behavior. The boundary conditions for the slow and fast

variables are detained in Section 3.5 along with the generation of initial condition for

the two-level Lorenz 96 system.

In parameterization research, small scale variables are not resolved and their effect

is typically parameterized as a function of resolved large scale variables. A forecast

model for the resolved variables given in Equation 3.1 can be constructed with the

parameterization for unresolved variables as follows

dX̃i

dt
= −X̃i−1(X̃i−2 − X̃i+1)− X̃i −

hc

b
Gi + F, (3.3)

where the tilde is used to denote the fact that the parameterization Gi is used to

represent the effect of unresolved variables. Typically, the parameterizations is a

function of resolved variables and can be written mathematically as

J∑

j=1

Yj,i :≈ Gi = N(X̃), (3.4)

where N(·) is the nonlinear mapping of resolved variables to the parameterizations

at the ith grid point. This mapping can be based on certain physical arguments or

can also be learned with any data-driven methods. Therefore in parameterization

research for multiscale systems, the underlying physical laws governing the dynamics

of resolved variables are assumed to be known exactly, and the effect of unresolved

variables is considered through parameterizations Gi. If we use data-driven methods

to represent the parameterization Gi, then the forecast model given in Equation 3.3

can be considered as a hybrid model. Our main objective in this work is to improve

the forecasting capability of multiscale systems that are represented by a hybrid

model embedded with data-driven parameterizations and we achieve this through data

assimilation techniques.

3.2.2 Kraichnan Turbulence

Here, we summarize the mathematical background of subgrid-scale parameterizations

in the LES of two-dimensional turbulence. Even though two-dimensional turbulence

cannot be realized in practice, it is extensively used for modeling geophysical flows in

the atmosphere and ocean [42, 39]. The confinement of fluid turbulence to two spatial
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dimensions leads to Kraichnan–Batchelor–Leith (KBL) theory of dual cascade with

an inverse energy cascade to larger scales and direct enstrophy cascade to smaller

scales. The non-dimensional vorticity transport equation for incompressible flows can

be written as

∂ω

∂t
+ J(ω, ψ) =

1

Re
∇2ω, (3.5)

J(ω, ψ) =
∂ω

∂x

∂ψ

∂y
− ∂ω

∂y

∂ψ

∂x
, (3.6)

where ω is the vorticity, ψ is the stremfunction, J is the Jacobian (or the nonlinear

term), and Re is the Reynolds number of the flow. The vorticity and streamfunction

are related to each other through the Poisson equation given by

∇2ψ = −ω. (3.7)

The governing equations for LES are obtained by applying a low-pass filtering operation,

and the filtered vorticity transport equation can be written as

∂ω

∂t
+ J(ω, ψ) =

1

Re
∇2ω. (3.8)

The above equation can be rewritten as

∂ω

∂t
+ J(ω, ψ) =

1

Re
∇2ω + Π, (3.9)

where the overbar quantities represent filtered variables and are evolved on a grid which

is significantly coarse than required for the DNS. The effect of the unresolved scales

due to truncation of high wavenumber flow scales is encompassed in a subgrid-scale

source term Π and must be modeled. Mathematically, the true source term Π can be

expressed as

Π = J(ω, ψ)− J(ω, ψ). (3.10)

The approximation of subgrid processes plays an important role in determining the

accuracy of large-scale flows and therefore the subgrid-scale parameterizations are

critical to accurate LES simulations of geophysical flows [103]. Different models have

been proposed in the literature for subgrid-scale parameterizations in geophysical flows

[350, 204, 102, 90, 337, 234], and remains an active area of research due to complexity

of the subgrid-scale closure modeling. In the present work, we put forth a data-driven

60



framework based on a neural network to predict the approximate value of the source

term Π as a function of resolved flow variables on the coarser grid. One of the main

advantages of data-driven closure modeling is that they are computationally faster

than dynamic closure modeling procedure that involves several test filtering operations

[340, 284, 276].

3.3 Neural Network Parameterizations

The parameterization problem in multiscale flows can be posed as a regression problem

where the mapping between resolved scales and unresolved scales has to be determined.

We consider supervised class of machine learning algorithms, where the optimal map

between inputs and outputs is learned. In this section, we describe an artificial neural

network (ANN) also called as multilayer perceptron, and convolutional neural network

(CNN) to build data-driven parameterization models.

3.3.1 Artificial Neural Network

An artificial neural network is made up of several layers consisting of the predefined

number of neurons. Each neuron consists of certain coefficients called weights and

some bias. The weight determines how significant certain input feature is to the

output. The input from the previous layer is multiplied by a weight matrix as shown

below

Sl = WlX l−1, (3.11)

where X l−1 is the output of the (l − 1)th layer, Wl is the matrix of weights for the lth

layer. The summation of the above input-weight product and the bias is then passed

through a node’s activation function which is usually some nonlinear function. The

introduction of nonlinearity through activation function allows the neural network to

learn highly complex relations between the input and output. The output of the lth

layer can be written as

X l = ζ(Sl +Bl), (3.12)

where Bl is the vector of biasing parameters for the lth layer and ζ is the activation

function. If there are L layers between the input and the output in a neural network,

then the output of the neural network can be represented mathematically as follows

Ỹ = ζL(WL, BL, . . . , ζ2(W
2, B2, ζ1(W

1, B1,X ))), (3.13)
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where X and Ỹ are the input and output of the ANN, respectively. There are

several activation functions that provides different nonlinearity. Some of the widely

used activation functions are sigmoid ζ(ϕ) = 1/(1 + e−ϕ), hyperbolic tangent (tanh)

ζ(ϕ) = (eϕ − e−ϕ)/(eϕ + e−ϕ), and rectified linear unit (ReLU) ζ(ϕ) = max[0, ϕ].

The matrix W and B are determined through the minimization of the loss function

(for example mean squared error between true and predicted labels). The gradient

of the objective function with respect to weights and biases are calculated with the

backpropagation algorithm. The optimization algorithms like the stochastic gradient

descent method [175] provide a rapid way to learn optimal weights. The training

procedure for ANN can be summarized as:

• The input and output of the neural network are specified along with some initial

weights initialization for neurons.

• The training data is run through the network to produce output Ỹ whose true

label is Y .

• The derivative of the objective function with each of the training weight is

computed using the chain rule.

• The weights are then updated based on the learning rate and the optimization

algorithm.

We continue to iterate through this procedure until convergence or the maximum

number of iterations is reached. There are different ways in which the relationship

between resolved and unresolved variables in multiscale systems can be learned with

the ANN. The most common method is to employ point-to-point mapping, where the

input features at a single grid point are utilized to learn the output labels at that

point [413, 417, 112]. Another method is to include the information at neighboring

grid points to determine the output label at a single point [238, 284]. For a two-level

Lorenz system, we train our ANN by including information at different number of

neighboring grid points and assess how does this additional information affects in

learning the correlation between resolved and unresolved variables. We investigate
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three types of ANN models and they can be written as

ANN-3 : {Xi−1, Xi, Xi+1} ∈ R3 → {G̃i} ∈ R1, (3.14)

ANN-5 : {Xi−2 . . . , Xi+2} ∈ R5 → {G̃i} ∈ R1, (3.15)

ANN-7 : {Xi−3 . . . , Xi+3} ∈ R7 → {G̃i} ∈ R1, (3.16)

where G̃i is the predicted parameterization at ith grid point and Xi is the resolved

variable. For the training, we assume that the resolved variables and the parameteriza-

tions are known exactly and are computed by solving Equation 3.1 and Equation 3.2

in a coupled manner. For all ANN architectures used in this study, we apply two

hidden layers with 40 neurons and ReLU activation function for all hidden layers. For

the output layer, the linear activation function is used. The ANN is trained using an

Adam optimizer for 300 iterations.

3.3.2 Convolutional Neural Network

The convolutional neural network (CNN) is particularly attractive when the data is

in the form of two-dimensional images [199]. Here, we present the CNN architecture

assuming that the input and output of the neural network have the structure of

two-dimensional images. This formulation can be easily applied to one-dimensional

images when the dimension in one direction is collapsed to one. The Conv layers

are the fundamental building blocks of the CNN. Each Conv layer has a predefined

number of filters (also called kernels) whose weights have to be learned using the

backpropagation algorithm. The shape of the filter is usually smaller than the actual

image and it extends through the full depth of the input volume from the previous

layer. For example, if the input to the CNN has 256× 256× 1 dimension where 1 is

the number of input features, the kernels of the first Conv layer can have 3× 3× 1

shape. During the forward propagation, the filter is convolved across the width and

height of the input volume to produce the two-dimensional map. The two-dimensional

map is constructed by computing the dot product between the weights of the filter

and the input volume at any position and then sliding it over the whole volume.

Mathematically the convolution operation corresponding to one filter can be written

as

Slij =

∆i/2∑

p=−∆i/2

∆j/2∑

q=−∆j/2

∆k/2∑

r=−∆k/2

Wl
pqrX l−1

i+p j+q k+r +Bpqr, (3.17)
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where ∆i, ∆j, ∆k are the sizes of filter in each direction, Wl
pqr are the entries of

the filter for lth Conv layer, Bpqr is the biasing parameter, and X l−1
ijk is the input

from (l − 1)th layer. Each Conv layer will have a set of predefined filters and the

two-dimensional map produced by each filter is then stacked in the depth dimension

to produce a three-dimensional output volume. This output volume is passed through

an activation function to produce a nonlinear map between inputs and outputs. The

output of the lth layer is given by

X l
ijk = ζ(Slijk), (3.18)

where ζ is the activation function. It should be noted that as we convolve the filter

across the input volume, the size of the input volume shrinks in height and width

dimension. Therefore, it is common practice to pad the input volume with zeros called

zero-padding. The zero-padding permits us to control the shape of the output volume

and is used in our neural network parameterization framework to preserve the shape

so that input and output width and height are the same. The main advantage of CNN

is its weight sharing property because the filter of the smaller size is shared across the

whole image which is larger in size. This allows CNN to handle large data without the

significant computational overhead. The CNN mapping for learning parameterizations

in a two-level Lorenz model can be mathematically presented as

CNN : {X1, . . . , Xn} ∈ Rn → {G̃1, . . . G̃n} ∈ Rn, (3.19)

where Xi is the resolved variable and G̃i is the predicted parameterization. Therefore,

the solution at a single time step corresponds to one training example for training the

CNN. In our CNN architecture, we use only one hidden layer between the input and

output. This hidden layer has 128 filters with 7× 1 shape. We apply ReLU activation

function for all hidden layers and the linear activation function for the output layer.

Also, the zero-padding is used to keep the input and output shape the same. The

CNN is trained with an Adam optimizer for 400 iterations. The hyperparameters

of both ANN and CNN architectures were obtained through parametric study for

a different number of neurons/filters and the number of hidden layers. 80% of the

total data selected randomly was used for training and the remaining 20% of the data

was used for validation. The selection of hyperparameters is done in such a way that

the mean squared error between the actual and predicted parameterization drops
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smoothly for both training and validation dataset so that overfitting is avoided and our

model generalizes well to the unseen data. There are other methods like regularization,

dropout, ensembling from different models, early stopping that can be adopted to

prevent overfitting. An extensive hyperparameter search can be carried out for complex

geophysical flows using neural architecture search packages like DeepHyper[229] and

Tune[211].

For the two-dimensional turbulence, we learn the source term Π as a function

of resolved flow variables, i.e., the vorticity ω, the streamfunction ψ, and two eddy-

viscosity kernels as input features. The use of eddy-viscosity kernels as input features

can be considered as a feature engineering step where certain important quantities are

pre-computed and the neural network is presented with it as raw input features so as to

facilitate the faster training and robust prediction. The CNN map for two-dimensional

turbulence can be mathematically written as

CNN : {ω̄, ψ̄, |S̄|, |∇ω̄|} → {Π̃}, (3.20)

where Π̃ is the predicted source term, |S̄| is the Smagorinsky kernel, and |∇ω̄| is the

Leith kernel. The Smagorinsky and Leith kernels are computed as follow

|S̄| =
√

4

(
∂2ψ̄

∂x∂y

)2

+

(
∂2ψ̄

∂x2
− ∂2ψ̄

∂y2

)2

, (3.21)

|∇ω̄| =
√(

∂ω̄

∂x

)2

+

(
∂ω̄

∂y

)2

. (3.22)

The CNN architecture to learn the parameterization model for Kraichnan turbulence

consist of 6 hidden layers and 16 filters in each hidden layers. The size of the filter

in each hidden layer is 3× 3 and the ReLU activation function is utilized for hidden

layers. The training is performed for 800 epochs using the Adam optimizer. We note

here that the predicted source term by the CNN is further post-processed during

the deployment before it is injected into the vorticity transport equation to ensure

numerical stability and we detail that procedure in Section 3.5.

3.4 Data Assimilation

As highlighted in many studies, neural network parameterizations suffer from insta-

bilities and biases once the trained model is deployed in a forward solver [316, 316,
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47, 48, 407]. From our numerical experiments with the two-level Lorenz system, we

observe that the forward model with only neural network parameterizations delivers

accurate prediction only up to some time and after that the model starts deviating

from the true trajectory. In order to address this issue and improve the long-term

forecast with hybrid models, we utilize the data assimilation (DA) to incorporate

noisy measurements for the prediction of future state. The main theme of DA is to

extract the information from observational data to correct dynamical models and

improve their prediction. There is a rich literature on DA[206, 348, 97, 115, 397]

and here we discuss only sequential data assimilation problem and then outline the

algorithm procedure for perturbed observations ensemble Kalman filter (EnKF), and

the deterministic ensemble Kalman filter (DEnKF).

We consider the dynamical system whose evolution can be represented as

xk+1 = Mtk→tk+1
(xk) + wk+1, (3.23)

where xk ∈ Rn is the state of the dynamical system at discrete time tk, M : Rn → Rn

is the nonlinear model operator that defines the evolution of the system. The term

wk+1 denotes the model noise that takes into account any type of uncertainty in the

model that can be attributed to boundary conditions, imperfect models, etc. Let

zk ∈ Rm be observations of the state vector obtained from noisy measurements and

cane be written as

zk = h(xk) + vk, (3.24)

where h(·) is a nonlinear function that maps Rn → Rm, and vk ∈ Rm is the measure-

ment noise. We assume that the measurement noise is a white Gaussian noise with

zero mean and the covariance matrix Rk, i.e., vk ∼ N (0,Rk). Additionally, the noise

vectors wk and vk are assumed to be uncorrelated to each other at all time steps.

The sequential data assimilation can be considered as a problem of estimating the

state xk of the system given the observations up to time tk, i.e., z1, . . . , zk. When

we utilize observations to estimate the state of the system, we say that the data are

assimilated into the model. We will use the notation x̂k to denote an analyzed state

of the system at time tk when all of the observations up to and including time tk are

used in determining the state of the system. When all the observations before (but

not including) time tk are utilized for estimating the state of the system, then we call

it the forecast estimate and denote it as xfk .
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The ensemble Kalman filter (EnKF) [54] follows the Monte Carlo approach to

approximate the probability distribution in the Kalman filter equations [161]. We

start by initializing the state of the system for different ensemble members as follows

X̂0(i) = m0 + y0(i), i = 1 . . . N (3.25)

where y0(i) ∼ N (0,P0), m0 is some assumed mean state of the system, P0 is the

initial covariance error matrix, and N is the number of ensemble members. The

propagation of the state for each ensemble over the time interval [tk, tk+1] can be

written as

Xf
k+1(i) = Mtk→tk+1

(X̂k(i)) + wk+1. (3.26)

The term wk+1 accounting for model imperfections is usually assumed to be Gaussian

noise. In this study, we consider the model error by means of multiplicative inflation

[9] and without loss of generality we set wk+1 = 0. The prior state and the prior

covariance matrix are approximated using the sample mean and error covariance

matrix Pf
k+1 as follows

xfk+1 =
1

N

N∑

i=1

Xf
k+1(i), (3.27)

Ef
k+1(i) = Xf

k+1(i)− xfk+1, (3.28)

Pf
k+1 =

1

N − 1

N∑

i=1

Ef
k+1(i)(E

f
k+1(i))

T. (3.29)

Once the observations are available at time tk+1, we generate N realizations of

perturbed observations as follows

Zk+1(i) = zk+1 + vk+1(i), (3.30)

where vk+1(i) ∼ N (0,Rk+1). Each member of the forecast ensemble Xf
k+1(i) is

analyzed using the Kalman filter formulae as shown below

X̂k+1(i) = Xf
k+1(i) + Kk+1[Zk+1(i)− h(Xf

k+1(i))], (3.31)

Kk+1 = Pf
k+1H

T
k+1[Hk+1P

f
k+1H

T
k+1 + Rk+1]

−1, (3.32)
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where H ∈ Rm×n is the Jacobian of observation function h(·). The analysis state

estimate at time tk+1 is computed using the sample mean of all ensemble members as

x̂k+1 =
1

N

N∑

i=1

X̂k+1(i). (3.33)

In order to take model imperfections into account, all ensemble members are updated

by applying inflation to all ensemble anomalies as follows

X̂k+1(i)← x̂k+1 + λ · (X̂k+1(i)− x̂k+1), (3.34)

where λ is the inflation factor. The inflation also helps to address the problem of

covariance underestimation due to small number of ensembles [97]. The inflation

factor can either be a scalar or it can be made space and time dependent to improve

the filter performance [7, 18]. In this study, we use the constant value of the inflation

factor over the entire space at all times.

As a variant of the low-rank sequential nonlinear filtering framework, we also utilize

the deterministic EnKF (DEnKF) algorithm proposed by Sakov et al. [331] for the

data assimilation. We start the DEnKF algorithm by initializing the state estimate

for all ensemble members similar to the EnKF algorithm as given in Equation 3.25.

The anomalies between the forecast estimate of all ensembles and its sample mean

(calculated using Equation 3.27) is

Af
k+1(i) = Xf

k+1(i)− xfk+1. (3.35)

Once the observations are available at time tk+1, the forecast state estimate is assimi-

lated using the Kalman filter analysis equation as follows

x̂k+1 = xfk+1 + Kk+1[zk+1 − h(xfk+1)]. (3.36)

Here, the Kalman gain matrix is computed using its square root version (without

storing or computing Pf
k+1 explicitly) as follows

Kk+1 =
Afk+1(Hk+1Afk+1)

T

N − 1

[
(Hk+1Afk+1)(Hk+1Afk+1)

T

N − 1
+ Rk+1

]−1

, (3.37)

where H ∈ Rm×n is the Jacobian of the observation operator (i.e., Hkl = ∂hk
∂xl

), and
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the matrix Afk+1 ∈ Rn×N is concatenated as follows

Afk+1 = [Af
k+1(1),Af

k+1(2), . . . ,Af
k+1(N)]. (3.38)

The anomalies for all ensemble members are then updated separately with half the

Kalman gain as shown below

Âk+1(i) = Af
k+1(i)−

1

2
Kk+1Hk+1A

f
k+1(i). (3.39)

The analysis state for all ensemble members is obtained by adding ensemble anomalies

and can be written as

X̂k+1(i) = x̂k+1 + λ · Âk+1(i), (3.40)

where λ is the inflation factor. We validate our implementation of the DEnKF

algorithm using the one-level Lorenz 96 model and is detailed in Appendix 3.A.

3.5 Numerical Experiments

In the following, we present the findings of our numerical experiments with a two-level

Lorenz 96 model and Kraichnan turbulence.

3.5.1 Two-level Lorenz 96 model

In this subsection, we discuss the results of numerical experiments with a two-level

variant of the Lorenz 96 system embedded with neural network parameterizations for

the unresolved variables. We utilize the fourth-order Runge-Kutta numerical scheme

with a time step ∆t = 0.001 for temporal integration of the Lorenz 96 model. We

apply the periodic boundary condition for the slow variables, i.e., Xi−n = Xi+n = Xi.

The fast variables are extended by letting Yj,i−n = Yj,i+n = Yj,i, Yj−J,i = Yj,i−1,

and Yj+J,i = Yj,i+1. The physical initial condition is computed by starting with an

equilibrium condition at time t = −5 for slow variables. The equilibrium condition

for slow variables is Xi = F for i ∈ 1, 2, . . . , n. We perturb the equilibrium solution

for the 18th state variable as X18 = F + 0.01. At the time t = −5, the fast variables

are assigned with random numbers between −F/10 to F/10. We integrate a two-level

Lorenz 96 model by solving both Equation 3.1 and Equation 3.2 in a coupled manner

up to time t = 0. With this initial condition (i.e., at t = 0), we generate the training
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data for neural networks by integrating the two-level Lorenz 96 model from t = 0 to

t = 10. Therefore, we gather 10,000 temporal snapshots to generate the training data.

For all our numerical experiments, we use 80% of the data to train the neural network

and 20% data to validate the training. We assess the performance of a trained neural

network by deploying it in a forecast model for temporal integration between time

t = 10 to t = 20. Therefore, there is no overlap between the data used for training and

testing. Since the neural network has not seen the testing data during the training,

the performance of neural network parameterizations in this temporal region will give

us an insight on its generalizability to unseen data.

First, we present results for ANN based parameterizations trained using neigh-

boring stencil mapping as discussed in Section 3.3.1. Figure 3.1 displays the full

state trajectory of the Lorenz 96 model from time t = 10 to t = 20 computed by

solving both the evolution of slow and fast variables (i.e., True) and with ANN based

parameterizations for fast variables (i.e., ANN-3, ANN-5, ANN-7). The difference

between the true solution field and the predicted solution field is also depicted in

Figure 3.1. It can be observed that the predicted solution field starts deviating from

the true solution field at around t ≈ 12 for all ANN-based parameterizations.

Next, we illustrate how the prediction of a two-level Lorenz 96 model with neural

network parameterizations can be improved using sequential data assimilation by

incorporating noisy observations in the future state prediction. For our twin experiment,

we obtain observations by adding noise drawn from the Gaussian distribution with zero

mean and the covariance matrix Rk, i.e., vk ∼ N (0,Rk). We use Rk = σ2
b I, where σb

is the standard deviation of measurement noise and is set at σb = 1. We assume that

observations are sparse in space and are collected at every 10th time step. The number of

ensemble members used for all numerical experiments is N = 30. We present two levels

of observation density in space for the DA. For the first case, we employ observations

at [X4, X8, . . . , X36] ∈ R9 for the assimilation. The second set of observations consists

of 50% of the full state of the system, i.e., [X2, X4, . . . , X36] ∈ R18. In Figure 3.2, we

provide the full state trajectory prediction for the ANN-5 parameterization without any

DA and with DA for two sets of observations. We can observe that there is a substantial

improvement in the long-term prediction even with only 25% of the observations

incorporated through the DEnKF algorithm. The results in Figure 3.2 provide the

evidence for the good performance of the present framework in achieving accurate

long-term prediction for hybrid models embedded with data-driven parameterizations.

Therefore, the present framework can lead to accurate forecasting by exploiting online
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Figure 3.1: Full state trajectory of the multiscale Lorenz 96 model with the closure
term computed using the different neighboring stencil mapping feedforward ANN
architecture.

measurements coming from various types of sensor networks and can find applications

in different fields like climate modeling, turbulence closure modeling where the subgrid

scale parameterizations are unavoidable.

Figure 3.3 illustrates the time evolution of the full state trajectory of a two-level

Lorenz 96 model with CNN based parameterizations for unresolved scales. CNN

is fed with the entire state of the slow variables as an input and it calculates the

parameterizations of fast variables at all grid points. From Figure 3.3, we can deduce

that the predicted state trajectory starts deviating from the true state at around t ≈ 12

when only CNN based parameterizations are employed in the forward model of slow

variables. When we incorporate observations through DA, we observe considerable

improvement in the state prediction over a longer period.

Based on results presented in Figure 3.2 and Figure 3.3, we can notice that the error

is slightly higher between time t = 18 to t = 20 for the CNN based parameterizations

empowered with DA. One reason for the inaccurate forecast can be attributed to
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Figure 3.2: Full state trajectory of the multiscale Lorenz 96 model with the closure
term computed using the five-point neighboring stencil mapping feedforward ANN
architecture and the DEnKF used for data assimilation.

the uncertainty in the prediction of parameterizations by CNN. We highlight here

that both ANN-5 and CNN architectures used in this study have similar number of

trainable parameters. However, we see a better performance of the ANN-5 architecture

over CNN due to a more number of training examples in the case of the ANN. For the

ANN, every single point of the two-level Lorenz 96 system is one training example and

therefore a single time snapshot of the training data leads to 36 samples for training.

However, in the case of CNN, the total number of training samples is equal to the

total number of time snapshots available for training. Therefore, we observe the better

performance of the ANN-5 over CNN.

Another potential reason for this discrepancy can be the stochastic nature of the

parameterization model. The true parameterization model in itself is stochastic and

might not follow a Gaussian distribution. To isolate the source of error, we integrate

the forecast model for a two-level Lorenz 96 model without any parameterizations.

The two-level Lorenz 96 model with no parameterizations is equivalent to setting
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Figure 3.3: Full state trajectory of the multiscale Lorenz 96 model with the closure
term computed using the CNN architecture and the DEnKF used for data assimilation

the coupling coefficient h = 0 in Equation 3.1 and it reduces to one-level Lorenz 96

model as presented in Equation 3.46. We note here that the observations used for

data assimilation are the same as the numerical experiments with a two-level Lorenz

96 model. Therefore, the effect of unresolved scales is embedded in observations.

The parameterization of fast variables (i.e.,hc
b

∑J
j=1 Yj,i term in Equation 3.1) can be

considered as an added noise to the true state of the system for a one-level Lorenz 96

model presented in Equation 3.46.

In Figure 3.4, we report the true state of a two-level Lorenz 96 model and also

the predicted state trajectory using the DA framework with no parameterization. We

provide the results for three sets of observations utilized in DA. The observations are

incorporated at every 10th time step of the model through assimilation stage. We can

observe that, even when 100% of the full state is observable, we do not recover the

true state trajectory of a two-level Lorenz 96 model. With this observation, we can

conclude that it is essential to incorporate parameterization of unresolved scales into

a forward model of the DA procedure to recover the accurate state trajectory. The
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root mean squared error between the assimilated states and true states for three sets

of observations is provided in Table 3.1.
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Figure 3.4: Full state trajectory of the multiscale Lorenz 96 model with no closure
for subgrid processes. The observation data for the DEnKF algorithm is obtained by
adding measurement noise to the exact solution of the multiscale Lorenz 96 system.

In this numerical experiment with the truncated model, the observations include

the effect of unresolved scales and can be considered as an added noise. The sequential

DA methods based on Kalman filters deliver a considerably accurate solution when

the model and observations noise is drawn from a Gaussian distribution and enough

observations are provided. If the parameterization of unresolved scales follows a

Gaussian distribution, we should be able to recover the accurate state of the system

as the density of observations is increased. However, as reported in Figure 3.4, there

is a high level of inaccuracy even when 100% of the state is observable. Therefore,

we can conclude that there is a considerable benefit of including neural network

parameterizations compared to using no parameterization in the forecast model. The

results provided in Figure 3.2 and Figure 3.3 also shows that the neural network

parameterizations can capture the non-Gaussian statistics of subgrid scale processes
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and this leads to accurate forecasting over a longer period. There are other DA

approaches that deal with non-Gaussian distributions for noise vectors [208, 8, 10,

429, 58, 266]. We restrict ourselves to the DEnKF algorithm for DA in this study and

plan to explore other DA algorithms in our future work.

We assess the quantitative performance of different numerical experiments per-

formed in this study using the root mean squared error (RMSE) between the true

and predicted state of slow variables in a two-level Lorenz 96 model. The RMSE is

computed as shown below

RMSE =

√√√√ 1

n

1

nt

n∑

i=1

nt∑

k=1

(
XT
i (tk)−XP

i (tk)
)2
, (3.41)

where XT
i is the true state of the system and XP

i is the predicted state of the system.

Table 3.1 reports the RMSE for a two-level Lorenz 96 model for all cases investigated

in this work. We can see that the RMSE is very high when we do not use any

parameterizations for unresolved scales even when measurements for an entire state of

the system are incorporated through DA. The data assimilation alone can not account

for the effect of unresolved scales, even though their effect is present in the observations

data. Therefore, it is imperative to include parameterizations of fast variables in the

forecast model of slow variables. We observe that the ANN architecture provides

slightly more accurate results than the CNN based parameterizations for fast variables.

Also, the RMSE is minimum for the ANN-3 parameterizations and we observe a

slight increase in RMSE by including more neighboring information. One potential

reason for this observation can be the use of the same hyperparameters for all ANN

architectures. However, this change is very small and the RMSE is the same order of

magnitude for all types of neural network parameterizations. The RMSE is almost the

same when 25% or 50% of the full state of the system is observed in data assimilation

framework.

We highlight here that in the previous numerical experiment with the truncated

model, we assumed that our forecast model is a true model. However, often the

forecast models in DA are imperfect, and the model error introduced due to truncation

of the sub-model is usually either modeled using the Gaussian noise or covariance

inflation. Indeed, the ensemble Kalman filter framework is very well established and,

to the extent that if modeling errors can be represented as zero-mean with a simple

correlation structure, then the DA is very effective at correcting model errors. For
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Table 3.1: Quantitative assessment of different neural network parameterizations for
subgrid scale processes using the total root mean square error given by Equation (3.41).

Framework RMSE

Only neural network parameterizations
ANN-3 3.38
ANN-5 3.73
ANN-7 3.77
CNN 3.79

Only data assimilation
No parameterizations (m = 9) 5.11
No parameterizations (m = 18) 4.30
No parameterizations (m = 36) 3.92

Neural network parameterizations with data assimilation
ANN-5 (m = 9) 0.52
ANN-5 (m = 18) 0.53
CNN (m = 9) 2.13
CNN (m = 18) 2.20

example, Brajard et al. [44] utilized a Gaussian noise with zero mean and a certain

value of standard deviation (optimized by tuning experiments) to account for the model

error arising due to truncation of the parameterizations in a two-level Lorenz system.

Similarly, Attia et al. [18] proposed a variational framework for adaptive tuning of

inflation and localization parameters and demonstrated its successful performance

for a two-level Lorenz system. For a fair comparison with neural network-based

parameterizations, we repeat the numerical experiments with the truncated model for

different values of inflation factor. We keep the number of ensembles fixed at N = 30,

and the inflation factor is varied from 1.0 to 1.05 with an increment of 0.01. Figure 3.5

reports the RMSE for the truncated model for different inflation factors, and we can

notice that with the proper choice of inflation factor and sufficient observations, the

truncated model can also predict the true state of the two-level Lorenz system. In

contrast to Figure 3.4, Figure 3.6 depicts the full state trajectory of the two-level

Lorenz system estimated using the DEnKF algorithm with the inflation factor λ = 1.03

for three sets of observations. Overall, the results presented in Figure 3.5 suggest that

the true state of the two-level Lorenz system can be determined when more than 50%

of the state is observable, and a proper value of inflation factor is employed for the DA

with the truncated model. Moreover, the prediction of the true state of the system
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with neural network-based parameterization can be further improved by applying the

inflation and the RMSE for different values of the inflation factor for CNN-based

parameterization model are also shown in Figure 3.5. It can be clearly seen that there

is a significant accuracy gain by adding the CNN based parameterizations for almost

all configurations.
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Figure 3.5: The root mean squared error for different values of the inflation factor for
three sets of observations. The number of ensembles is kept fixed at N = 30 for all
sets of observations.

3.5.2 Kraichnan Turbulence

We now characterize the performance of the EnKF algorithm, as described in Sec-

tion 3.4, to estimate the state of the two-dimensional turbulence system when ob-

servation from high fidelity simulation are available. This test set-up is particularly

challenging because of the modeling of unresolved scales in the LES solver, which is

employed as the forecast model for two-dimensional turbulence. The performance

of the EnKF algorithm is impacted by the choice of the model and the forecast

model should be accurate enough for error control techniques like covariance inflation,

covariance localization, stochastic forcing, etc. to work. As we will see, if the effect of

unresolved scales are not modeled, even the EnKF algorithm with high value of the

inflation factor does not improve the state estimate of the two-dimensional turbulence

system.

The governing equations for the two-dimensional turbulence are numerically solved

using the second-order finite difference discretization. The nonlinear Jacobian term is

discretized with the energy-conserving Arakawa [12] numerical scheme. A third-order
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Figure 3.6: Full state trajectory of the multiscale Lorenz 96 model with no closure for
subgrid processes and for the inflation factor λ = 1.03. The observation data for the
DEnKF algorithm is obtained by adding measurement noise to the exact solution of
the multiscale Lorenz 96 system.

total-variation-diminishing Runge-Kutta scheme is used for the temporal integration

and a spectral Poisson solver is utilized to update streamfunction from the vorticity

[124]. The computational domain is square in shape with dimensions [0, 2π]× [0, 2π]

in x and y directions, respectively, and the periodic boundary condition is applied

in both x and y directions. The training data for CNN is generated by carrying out

the DNS at Re = 8000 for two different initial conditions (independent of the truth

model) on a grid resolution of 512× 512 and then collecting total 800 snapshots (400

for each initial condition) between time t = −2 to t = 2. The initial condition is

assigned in such a way that the maximum value of the initial energy spectra occurs

at wavenumber Kp = 10. Further details of the randomization process for the initial

condition can be found in related work [336]. The DNS data is coarsened to the

64× 64 grid resolution using the spectral cutoff filter. The coarsened flow variables

are then used to compute input features and labels for developing the data-driven
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subgrid-scale parameterization model as discussed in Section 3.3.2. Once the CNN is

trained, it is deployed in the forecast model from time t = 0 to t = 4. We highlight

that the data from time t = 2 to t = 4 is not seen during the training.

The predicted source term Π̃ has negative eddy viscosities embedded in it and

needs to be post-processed before directly injecting it into the solver [238]. The

numerical stability is ensured during the a posteriori deployment by truncating the

learned source term Π̃ corresponding to negative numerical viscosities as follows

Π =





Π̃, if (∇2ω̄)(Π̃) > 0

0, otherwise
(3.42)

In addition to truncating the source term corresponding to negative eddy viscosity, the

truncation is also applied at points where the local eddy viscosity is greater than the

local-average average eddy viscosity. This truncation scheme can be mathematically

expressed as

Πi,j =





Π̃i,j, if νi,j > νi,j

0, otherwise
(3.43)

where the eddy viscosity ν is computed as

νi,j =
Π̃i,j

∇2ω̄
, (3.44)

and the local-averaged eddy viscosity νi,j is calculated using the mean filtering kernel of

size 3× 3. This additional truncation scheme given in Equation 3.43 aids in preserving

the statistical quantities like the kinetic energy spectra close to the DNS solution

as compared to utilizing only negative eddy viscosity truncation scheme. In terms

of the computational cost, the data-driven subgrid-scale parameterization model is

significantly fast compared to the dynamic Smagorinksy model (DSM) [285] and we

observed up to 30% reduction in computational speed in the a posteriori runs with

the CNN based closure model.

The ‘truth’ solution for the data assimilation is obtained by solving the vorticity

transport equation with a grid resolution 512×512 for the Reynolds number Re = 8000

and then applying the spectral cutoff filter to get the filtered DNS solution on the

coarse grid with resolution 64 × 64. Other methods like multigridding can also be

adopted to relax the solution from fine grid to coarse grid [299]. The DNS solution is
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generated from time t = −2 to t = 0 with ∆t = 1× 10−3. The assimilation is started

at time t = 0 once the turbulence is developed and the initial transience from t = −2

to t = 0 is discarded. The observations are assimilated at every 10th time step of the

forecast model. The synthetic observations are generated by sampling vorticity field

at 32× 32 (corresponding to 25% of the full state of the system) equidistant points in

x and y directions from the filtered DNS solution and then contaminating them with

the Gaussian noise, i.e., vk ∼ N (0,Rk), where Rk = σ2
b I. We set observation noise at

σ2
b = 2.

The initialization of the ensemble members also plays an important role in the

performance of the EnKF algorithm [148], especially in the initial period of the DA.

There are different ways that have been used for the initialization of ensemble members

in DA of turbulent flows, such as, using the solution field separated by a certain time

from the turbulent flow simulation [72], adding random perturbation to mean flow

solution [74]. We initialize all ensemble ensemble members by adding a random

perturbations drawn from N (0,P0) to the filtered DNS solution at time t = 0. The

initial covariance matrix is set at P0 = σ2
0I, where σ2

0 = 1.
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Figure 3.7: Average RMSE of the compensated energy spectra for different combina-
tions of the inflation factor and number of ensembles. The RMSE is averaged over
the inertial range (i.e., from K = 8 to K = 32) considering data from t = 2 to t = 4.

We illustrate the performance of the EnKF algorithm for three different types

of forecast models. The first forecast model is the unresolved numerical simulation

(UNS), where subgrid-scale parameterization is completely discarded. In the second

forecast model, the dynamic Smagorinsky model (DSM) [118, 212] is used for modeling

the source term in LES simulation. The third forecast model consists of utilizing the

CNN based subgrid-scale parameterization. For a fair comparison of the application

of the EnKF algorithm to three different models, we run experiments with different

combinations of the number of ensemble members and the inflation factor. The number
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of ensemble members is increased from 40 to 120 with an increment of 20 and the

inflation factor is varied from 1.0 to 1.5 with an increment of 0.1. This gives us 30

different numerical experiments for each model. The performance of each numerical

experiment is evaluated by computing the RMSE between the compensated kinetic

energy spectra for the state estimated by the EnKF algorithm and the filtered DNS

solution. The energy spectra is considered over the inertial range, i.e., between K = 8

to K = 32 and for 200 snapshots stored over the last half of the experiment timespan

(from time t = 2 to t = 4). The RMSE results for these numerical experiments are

shown in Figure 3.7. Results in Figure 3.7 suggest that the RMSE for the UNS model

is significantly higher than the DSM and CNN model. The solution field predicted by

UNS has a significant error due to the truncation of subgrid-scale parameterization

and an increase in the number of ensembles or the inflation factor does not seem

to help improve the state of the system predicted by the UNS model. The average

RMSE for both DSM and CNN models is of a similar magnitude. Moreover, Figure 3.7

indicates that the lower RMSE occurs at less number of ensembles for the CNN model

with a moderate inflation factor (i.e., 1.2-1.3).

We evaluate the performance of different models through kinetic energy spectra

calculation and second-order vorticity structure functions. We compute the vorticity

structure function using the formula given by [127] for two-dimensional turbulence

and is shown below

Sω(r) =< |ω̄(x + r)− ω̄(x)|2 >, (3.45)

where <> indicates ensemble averaging, x is the position on the grid, and r is certain

distance from this location.

Figure 3.8 displays the kinetic energy spectra at final time t = 4 obtained with

different models for Re = 8000. We can observe that there is an accumulation of the

energy near grid cutoff wavenumber in the case of the UNS model. The UNS-EnKF

model is not able to correct the state estimate of the system due to very high noise in

the forward model. We see an improvement in the energy spectra predicted by the

DSM-EnKF and CNN-EnKF model compared to utilizing only the parameterization

model. We note here that the kinetic energy spectra for the filtered DNS solution

is identical to the DNS spectra till the grid cutoff wavenumber due to the use of a

spectral cutoff filter. Figure 3.9 depicts the second-order vorticity structure functions

at final time t = 4 where the evaluation with the FDNS shows that the EnKF is

successful in improving the prediction of the vorticity structure function for both
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DSM and CNN model. We do not observe any improvement in the vorticity structure

function prediction for the UNS model, which again emphasizes the importance of

using an accurate forecast model in data assimilation.
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Figure 3.8: A posteriori kinetic energy spectra at t = 4 at Nx ×Ny = 64× 64 grid
resolution for different models. The number of ensembles and the inflation factor for
the EnKF algorithm for different models corresponds to minimum value of the average
RMSE between the compensated energy spectra for the filtered DNS solution and
the solution predicted with different models. The EnKF related parameters are N =
40, λ = 1.0 for UNS-EnKF, N = 120, λ = 1.3 for DSM-EnKF, and N = 40, λ = 1.3
for CNN-EnKF.

3.6 Concluding Remarks

The data-driven methods are successful in discovering model-free parameterizations

from high-fidelity numerical simulations or experimental measurements and offers

an alternative to parameterization models based on empirical or phenomenological

arguments. The data-driven parameterization models are also computationally faster

and are suitable for sequential data assimilation where multiple forward runs of

a forecast model are required. To this end, we introduce a framework to apply

data assimilation methods to the physics-based model embedded with data-driven

parameterizations to achieve accurate long-term forecast in multiscale systems. We

demonstrate that the forecasting capability of hybrid models can be significantly

improved by exploiting online measurements from various types of sensor networks.

Specifically, we use neural networks to learn the relation between resolved scales and

the effect of unresolved scales (i.e., parameterizations). The deployment of the trained

neural network in the forward simulation provides accurate prediction up to a short
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Figure 3.9: A posteriori second-order vorticity structure functions plotted against r
for Re = 8000 at Nx×Ny = 64× 64 grid resolution with different models used for the
subgrid scale closure.

period and then there is a large discrepancy between true and predicted state of the

system. To address this issue and to improve the long-term prediction, we exploit the

sparse observations data through data assimilation.

We illustrate this framework for a two-scale variant of the Lorenz 96 model which

consists of fast and slow variables whose dynamics are exactly known and for Kraichnan

turbulence where the parameterization model for unresolved scales is not known a

priori. We obtain a considerable improvement in the prediction for both test cases

by combining neural network parameterizations and data assimilation compared to

employing only neural network parameterizations. We also found that including an

ML based closure term seems to capture non-Gaussian statistics and significantly

improve the forecast error. Based on our numerical experiments with data assimilation

empowered neural network parameterizations, we can conclude that improving machine

learning-based model prediction with data assimilation methods offers a promising

research direction. We also highlight that the inaccuracy associated with data-driven

parameterizations can be tackled with data assimilation error control techniques like

covariance inflation, covariance localization, stochastic forcing, etc.

Our future work aims at leveraging the underlying physical conservation laws

into neural network training to produce physically consistent parameterizations. As

the deep learning field is evolving rapidly, we can integrate modern neural network

architectures and training methodology into our framework to attain higher accuracy.

In the present framework, we employ the ensemble Kalman filter based algorithms
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for data assimilation. This algorithm gives accurate prediction when the uncertainty

in model and observations follows a Gaussian distribution. We plan to investigate

other data assimilation approaches like maximum likelihood ensemble filter methods

that can handle the non-Gaussian nature of uncertainty in the mathematical model

to get further improvement in the accuracy prediction. We will also test the present

framework for more complex turbulent flows as a part of our future effort. Finally,

we conclude by reemphasizing that the integration of data assimilation with hybrid

physics-ML models can be effectively used for modeling of multiscale systems.

3.A Validation of the Deterministic Ensemble-Kalman Filter

In this Appendix, we provide results of data assimilation with the DEnKF algorithm

for one level Lorenz 96 model. The one level Lorenz 96 model is given as

dXi

dt
= −Xi−1(Xi−2 −Xi+1)−Xi + F, (3.46)

for i ∈ 1, 2, . . . , 36 and F = 10. The above model is completely deterministic as there

is no parameterization of the unresolved scales. We use the similar settings as the

two-level variant of the Lorenz 96 model for temporal integration using the fourth-order

Runge-Kutta numerical scheme. The true initial condition is generated by integrating

the solution starting from an equilibrium condition from t = −5 to t = 0. For all

ensemble members, we start with an initial condition obtained by perturbing the true

initial condition with a noise drawn from the Gaussian distribution with zero mean

and the variance of 1× 10−2. The observations are generated for data assimilation by

adding a measurement noise from the Gaussian distribution with zero mean and the

variance of σ2
b = 1 (i.e, Rk = I) to the true state of the system. The observations are

assumed to be available at every 10th time step, similar to the two-level variant of the

Lorenz 96 model.

As depicted in Figure 3.10, we can conclude that the DEnKF can correct the

erroneous trajectory even when only 9 observations are employed for data assimilation.

As the amount of observations is increased to 18, we observe a reduction in the

error. We reiterate here that, we have complete control over the model (since it is

deterministic) in the numerical experiments with a one-level Lorenz 96 model. As we

introduce fast scale variables, the evolution of slow variables in a two-level Lorenz 96

model is no longer deterministic and simple Kalman filter based algorithms might not
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be enough to give accurate prediction over a longer period.
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Figure 3.10: Full state trajectory of the Lorenz 96 model with the the DEnKF
algorithm.
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CHAPTER IV

Frame-invariant Neural Network Closures for Kraichnan Turbulence

The contents of this chapter is under review at Physica A: Statistical Mechanics and

its Applications.1.

Abstract: The numerical simulation of geophysical and atmospheric flows has to

rely on the parameterization of subgrid scale processes due to their limited spatial

resolution. Despite substantial progress in developing parameterization (or closure)

models for subgrid scale (SGS) processes using semi-empirical physical principles, they

remain imperfect and can lead to inaccurate predictions. In recent years, machine

learning has been successful in extracting complex patterns from high-resolution

spatio-temporal data, leading to improved parameterization models, and ultimately

better coarse grid prediction. However, the inability to satisfy known physics and

poor generalization hinders the application of these models for real-world problems.

In this work, we propose a frame invariant closure approach to improve the accuracy

and generalizability of deep learning-based subgrid scale closure models by embedding

physical symmetries directly into the structure of the neural network. Specifically, we

utilized specialized layers within the convolutional neural network in such a way that

desired constraints are theoretically guaranteed without the need for any regularization

terms. We demonstrate our framework for a two-dimensional decaying turbulence test

case mostly characterized by the forward enstrophy cascade. We show that our frame

invariant SGS model (i) accurately predicts the subgrid scale forcing, (ii) respects

the physical symmetries such as translation, Galilean, and rotation invariance, (iii)

is numerical stable when implemented in coarse-grid simulation, and (iv) generalizes

to different initial conditions and Reynolds number. This work builds a bridge

between extensive physics-based theories and data-driven modeling paradigms, and

thus represents a promising step towards the development of physically consistent

data-driven turbulence closure models.

1Pawar, S., San, O., Rasheed, A., & Vedula, P. (2022). Frame invariant neural network closures
for Kraichnan turbulence. arXiv preprint arXiv:2201.02928.
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4.1 Introduction

Computational modeling of turbulent flows remains a key issue in many engineering

and geophysical applications. Turbulence involves a wide range of spatio-temporal

scales that makes the direct numerical simulation (DNS) computationally infeasible for

many complex systems. Coarse-graining approaches like large eddy simulation (LES)

alleviate the computational burden by resolving only large and intermediate scales of

the flow. The non-linearity of the Navier-Stokes equations introduces a subgrid scale

(SGS) closure problem in LES which can be addressed via modeling of unresolved

scales on the resolved flow quantities. The choice of the SGS model directly affects the

accuracy of LES-based solution, and, therefore, the SGS modeling has been an active

area of research for the past few decades [297, 330, 33, 244]. The development of

SGS models has largely been driven by physical insights, mathematical considerations,

and often problem-specific intuition. More recently, the availability of data from

observations and high-resolution simulation along with advances in hardware and

algorithms has fuelled interest in the development of data-driven turbulence models

[87, 29, 50, 46].

The initial efforts towards data-driven SGS modeling include training a neural

network to predict computationally expensive SGS model for channel flow [340] with

the aim to speed-up LES. Similar frameworks includes applying neural network to

determine the eddy-viscosity of the dynamic Smagorinsky model [276, 284], SGS model

classification and blending [236], and reinforcement learning to predict SGS dissipation

coefficient [268]. Deep learning (DL) has been applied to discovering new SGS models

from the DNS data without any assumption of prior structural or functional form of

the model [112, 238, 413, 391, 316, 110, 283]. The data-driven approach that employs

convolutional neural network for learning the SGS model has also been used for different

problems like two-dimensional decaying turbulence [284, 286, 128], three-dimensional

decaying homogeneous isotropic turbulence [28], momentum forcing in ocean models

[40], and subgrid-scale scalar flux modeling [105]. Moreover, neural networks have

also been utilized to learn the optimal map between filtered and unfiltered variables

in the approximate deconvolution framework for SGS modeling [237, 420]. Apart

from SGS closure modeling, machine learning (ML) and in particular DL is being

increasingly applied for different problems in fluid mechanics, like superresolution of

turbulent flows [108, 170], Reynolds-Average Navier-Stokes (RANS) closure modeling

[406, 279, 356], data assimilation [408, 15, 224, 53], spatio-temporal forecasting of
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fluid flows [66, 65, 67] and reduced-order modeling [412, 409, 16, 2].

Despite their early success, ML models are faced with an array of challenges, such

as poor generalization, lack of interpretability, and in some cases, violation of the

known governing laws of the physical systems. For example, the SGS model derived

through supervised learning may be numerically unstable, and diverge from the original

trajectory, and this issue is exposed in many studies [238, 407, 28, 258]. These issues

can be addressed by leveraging our prior knowledge about the physical systems into

an ML model. Readers are referred to recent review articles on physics-informed

machine learning [164, 167] that detail different methods of incorporating physics

into ML models and discuss the capabilities and limitations of these methods. In

the context of SGS modeling, there are many ways to embed physical constraints

into the ML model. One such method for constructing a robust and generalizable

SGS model is through the selection of suitable non-dimensionalized input and output

quantities of the ML model to ensure that the known symmetries are respected [300].

Another class of methods pertains to the customized neural network architectures that

encode the prior physical or mathematical knowledge as hard constraints. Some of the

examples of this methods applied in fluid dynamics are tensor basis neural network

[213], transformation invariant neural network [105], physics-embedded neural network

[249], spatial transformer [62, 179], and equivariant networks [390, 347, 129].

In this work, we address the challenges associated with data-driven turbulence

modeling by introducing a frame invariant convolutional neural network (FI-CNN) for

SGS closure model discovery. Specifically, we select model inputs that are Galilean

invariant, and replace the convolution operation with group convolutions [70, 395]

to embed rotation invariance. Therefore, the FI-CNN preserves various symmetries,

including translation, Galilean, and rotation both during training and inference. This

makes the FI-CNN framework physically consistent and robust to extrapolation, and

consequently, it produces accurate and stable results in their a posteriori deployment.

We demonstrate our framework for two-dimensional turbulence which is often used as

a prototypical test case for large-scale geophysical flows [39, 42]. Although we focus

on SGS closure model development in this study, this framework has a promising

application for many scientific problems where physical symmetries are very common.

For example, there are several invariant finite-difference schemes based on equivariant

moving frames that preserve Lie symmetries that have been developed for the solution

of partial differential equations (PDEs) via consideration of modified forms of the

underlying PDEs [275, 273, 274]. These symmetries can be exploited along with
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data-driven discretization [21] to design numerical schemes that are more accurate

than their non-invariant counterpart.

This chapter is organized as follows. In Sec 4.2, the symmetries of Navier-Stokes

equations and the SGS closure modeling problem for two-dimensional turbulence is

introduced. The detailed procedure on how to embed frame symmetries, including

translation, Galilean, and rotation invariance within the CNN is provided in Sec 4.3.

In Sec 4.4, the details on data generation and training are discussed. The performance

of the FI-CNN in the a priori and a posteriori settings along with a detailed discussion

of the results are presented in Sec 4.5. Finally, the concluding remarks and summary

of the work are given in Sec 4.6.

4.2 SGS Closure Modeling

4.2.1 Symmetries of Navier-Stokes Equations

The Navier-Stokes equations governing incompressible fluid flows can be written in

primitive variable (velocity–pressure) form as

∇ · u = 0, (4.1)

∂u

∂t
+ u · ∇u = −1

ρ
∇p+ ν∇2u, (4.2)

where u is the velocity, p is the pressure, ρ is the density, and ν is the kinematic

viscosity of the fluid. The governing equations for LES (also called as the filtered

Navier-Stokes equations) are obtained by applying a spatial filter operation and it can

be written as follows

∇ · ū = 0, (4.3)

∂ū

∂t
+ ū · ∇ū = −1

ρ
∇p̄+ ν∇2ū +∇ · (ūū− uu)︸ ︷︷ ︸

τSGS

, (4.4)

where the overbar is used to denote the filtered variables and τ SGS is subgrid-scale

stress tensor. The problem of determining subgrid-scale stress tensor τ SGS using the

filtered variables is called the subgrid scale closure problem in LES.

There are many possible SGS closure models and any mathematical, physical

constraints will lead to a specific type of SGS model. Requirements such as frame

89



invariance, realizability, finite kinetic energy can act as guiding principles for a

satisfactory SGS closure model, and readers are referred to [33] for more details. The

frame invariance constraint on the SGS model is derived by enforcing the symmetry of

the original Navier-Stokes equations [330, 297, 269, 33] upon the filtered Navier-Stokes

equations with the SGS closure model. Let G denote a group of transformation acting

on space-time functions u(x, t). We say that the group G is a symmetry group of the

Navier-Stokes equations if, for all u which are solutions of the Navier-Stokes equations,

and all g ∈ G, the function gu is also a solution [107]. The frame invariance constraint

involves preservation of the symmetry property of the original Navier-Stokes equations

to translation, Galilean, and rotation transformations, and they can be written as

follows

• Space-translation: gspaceδ u(x, t) = u(x − δ, t), ∀δ ∈ R3, where gspaceδ is the

space-translation operator with the arbitrary displacement δ.

• Galilean transformation: gGal
α u(x, t) = u(x−αt, t) + α, ∀α ∈ R3, where gGal

α

is the Galilean operator and α is a fixed but arbitrary constant vector.

• Space-rotations: grotA u(x, t) = Au(A−1x, t), where grotA is the rotation operation

and A ∈ SO(3).

Imposing the symmetry preservation constraint give some structure to the the SGS

model, and this insights have been extensively used in turbulence models [353, 330, 33].

We make use of these symmetries as physical constraints while building a frame

invariant data-driven SGS model.

4.2.2 Two-dimensional Turbulence

In this work, we are interested in the SGS modeling for two-dimensional turbulence

that is usually applied for modeling geophysical flows in the atmosphere and ocean

[42, 39] where rotation and stratification dominate, and the most efficient way to

model it is using the vorticity transport equation. Taking the curl of Eq. 4.2 yields

the Navier-Stokes equations in vorticity-velocity formulation, and, for incompressible

fluid flows, it can be written as follows

∂ω

∂t
+ (u · ∇)ω = ν∇2ω, (4.5)
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where ω is the vorticity, and for two-dimensional flows, we have ω = ∂v/∂x −
∂u/∂y. A scalar function called the streamfunction is defined in such a way that the

continuity equation is satisfied if the velocity expressed in terms of the streamfunction

is substituted in the continuity equation. This leads to the definition of velocity in

terms of the streamfunction as follows

u =
∂ψ

∂y
, v = −∂ψ

∂x
, (4.6)

where ψ is the streamfunction. The Poisson equation relating the vorticity and

streamfunction is obtained by substituting the above velocity components in the

definition of vorticity. Thus, we have

∇2ψ = −ω. (4.7)

It is convenient to write Eq. 4.5 in the vorticity-streamfunction formulation as follows

∂ω

∂t
+ J(ω, ψ) =

1

Re
∇2ω, (4.8)

J(ω, ψ) =
∂ω

∂x

∂ψ

∂y
− ∂ω

∂y

∂ψ

∂x
, (4.9)

where J(·, ·) is the Jacobian (or the nonlinear term), and Re is the Reynolds number

of the flow. The above equation is also called the vorticity transport equation.

The filtered Navier-Stokes equations for two-dimensional turbulence is obtained by

applying a spatial filtering operation to Eq 4.8 as follows

∂ω

∂t
+ J(ω, ψ) =

1

Re
∇2ω. (4.10)

The above equation can be rewritten as

∂ω

∂t
+ J(ω, ψ) =

1

Re
∇2ω + Π, (4.11)

where the overbar quantities represent filtered variables and are evolved on a grid that

is significantly coarse compared to the DNS resolution. The effect of the unresolved

scales due to truncation of high wavenumber flow scales is encapsulated in a subgrid

scale (SGS) source term Π and must be modeled solely based on the resolved variables
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(ω, ψ). Mathematically, the true SGS source term Π can be expressed as

Π = J(ω, ψ)− J(ω, ψ). (4.12)

The functional and structural models are the most commonly used approaches for

modeling the SGS closure term in LES of turbulent flows [330]. The functional models

are based on the concept of eddy viscosity where the effect of unresolved scales are

approximated by artificial dissipation [350, 204]. The functional models can be further

improved by dynamic adaptations of the coefficients that control the dissipation of

the model and are determined adaptively by the use of a low-pass spatial test filter

[118, 212, 102]. Although the dynamic formulation allows for spatial and temporal

variation of coefficients in the eddy viscosity model, the ensemble averaging procedure

does not allow for true back-scattering in order to limit the growth of numerical

instabilities during the a posteriori testing [176, 153]. The structural models on the

other hand aim at obtaining an accurate approximation of the SGS term and are

based on the approximate deconvolution procedure [362, 337] and scale-similarity

arguments [22]. Scale-similarity models address the SGS closure term by extrapolation

from the smallest resolved scales to unresolved scales and have found to be the most

accurate in a priori testing [330, 341]. However, numerical instabilities have been

reported with scale-similarity models, and this has led to development of many mixed

models with additional eddy viscosity term for stability reasons [197, 217, 234]. More

recently, data-driven methods are emerging as a new paradigm to build turbulence

closure models by extracting information from the data, and are seen as the potential

applications to address the limitations of existing SGS models [87, 29, 86].

4.3 Frame Invariant SGS Closure Model

In this work, we consider the frame invariance property that must be satisfied by any

SGS model and demonstrate how to include them within a neural network as hard

constraints. The SGS source term Π is approximated using a neural network as shown

below

Π̃ ≈M(ω̄, ψ̄), (4.13)

where M is a neural network-based model, and Π̃ is the approximation of true

SGS source term Π. We remark here that the vorticity is defined using the spatial

derivative of the velocity field, and, therefore it is invariant to Galilean transformations.
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Additionally, the streamfunction is computed using the vorticity, and therefore both

the inputs to our model are Galilean invariant. We now discuss how to embed the

translation and rotational invariance/symmetry properties into the neural network-

based model.

4.3.1 Translation Invariance

In this work, we employ the convolutional neural network (CNN) for learning the SGS

closure model based on filtered vorticity and streamfunction as the model inputs. The

CNN is an attractive choice for high-dimensional data and it does not suffer from the

curse of dimensionality due to its weight-sharing feature. The CNN is composed of

many convolutional layers and each of the layers is parameterized by filters, also called

kernels, that has to be learned through training. Let
¯
f,

¯
k : R2 → RNc be vector-valued

two-dimensional features and kernel, i.e.,
¯
f = (f1, · · · , fNc) and

¯
k = (k1, · · · , kNc),

then the convolutional operation can be defined as

(
¯
k ⋆

¯
f)(x) =

Nc∑

c=1

∫

R2

kc(x− x′)fc(x
′)dx′, (4.14)

where x′ is a dummy variable spanning over R2 space. The convolutional layer maps a

feature vector
¯
f (l−1) : R2 → RNl−1 with Nl−1 channels to feature vector

¯
f (l) : R2 → RNl

using a set of Nl kernels k(l) := (
¯
k
(l)
1 , · · · ,¯k

(l)
Nl

) and this operation can be defined as

¯
f (l) = ζ(k(l) ⋆

¯
f (l−1)) := ζ(

¯
k
(l)
1 ⋆

¯
f (l−1), · · · ,

¯
k
(l)
Nl
⋆

¯
f (l−1)), (4.15)

where ζ is an activation function. The parameters of the kernel are shared for the

whole image as the kernel is convolved relative to the position about x and this aspect

of the relative motion makes the CNN translation invariant. Although we present the

convolution operation with continuous kernels, convolutional layers are equipped with

discretized-filtering operations in their practical implementation. From here on, we

refer to the model build using convolutional layers and nonlinear activation function as

MCNN. The inputs to our model are the vorticity and streamfunction and the output

is the SGS source term. Therefore, the learning map for MCNN can be expressed as

MCNN : {ω̄, ψ̄} ∈ R2 → R2 7→ {Π̃} ∈ R2 → R1, (4.16)

where Π̃ is the predicted SGS source term.
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4.3.2 Rotation Invariance

The rotational invariance of the SGS model requires that it maps as a tensor under

the coordinate rotation [330]. As discussed in Section 4.3.1, the CNN is often invariant

to only translation and not for other groups of transformations. However, there are

recent developments on this front to exploit polar mapping of input images to convert

rotation to translation [171]. In this work, we apply the group equivariant convolutions

within the E(2)-CNN framework [394] for embedding rotational symmetry. The first

roto-translation equivariant CNN was called the group convolutional neural network

(GCNN) and it considered the rotations by multiples of π/2 [70]. The GCNN was

further augmented by defining filters in terms of the steerable basis that are equivariant

to rotations by multiples of 2π/N , with N > 4 [396]. The E(2)-CNN library is based

on the framework of steerable CNNs [71, 395] and it has different options for the group

that takes the form of the semi-direct group H = R2 ⋊G where the group G ≤ O(2)

(here O(2) is the group of continuous rotations and reflections). For example, the

group H = R2 ⋊ SO(2) = SE(2) is the semi-direct product of the group of planar

translations R2 and continuous rotations SO(2). In this work, we utilize the cyclic

group G = CN containing the discrete rotations of 2π/N (i.e., H = R2 ⋊ CN). For a

large value of N , the difference between continuous rotations and discrete rotations is

indistinguishable due to space discretization.

A full understanding of the steerable CNNs requires some knowledge of the group

representation theory, but the implementation of the steerable CNNs is similar to

ordinary CNNs. Readers are suggested to read Weiler and Cesa [394] and references

therein for a more comprehensive discussion on the general framework of steerable

CNNs. Here, we briefly explain the G-equivariant convolutions. A G-convolution

between a vector-valued two-dimensional image
¯
f : R2 → RNc and a filter

¯
k : R2 → RNc

where
¯
f = (f1, · · · , fNc) and

¯
k = (k1, · · · , kNc) can be expressed as follows

(
¯
k⋆̃

¯
f)(g) =

Nc∑

c=1

∫

R2

kc(g
−1x′)fc(x

′)dx′, (4.17)

where g = (x, θ) ∈ H = R2 ⋊ CN , x′ ∈ R2, and ⋆̃ denotes the group correlation

operation under joint translation and rotation. This operation corresponds to lifting of

the data on two-dimensional space to the data that lives on a three-dimensional position

orientation space H. The first layer maps a two-dimensional image
¯
f (l−1) : R2 → RNl−1

with Nl−1 channels at (l − 1)th layer to H vector image
¯
F (l) : H → RNl using a set of
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Nl kernels k(l) := (
¯
k
(l)
1 , · · · ,¯k

(l)
Nl

) as follows

¯
F (l) = ζ(k(l)⋆̃

¯
f (l−1)) := ζ(

¯
k
(l)
1 ⋆̃

¯
f (l−1), · · · ,

¯
k
(l)
Nl
⋆̃
¯
f (l−1)). (4.18)

Since the
¯
F is a function on H, the filters from the second layer onward should also

be functions on H. The subsequent group convolutions are defined as [396, 30]

(
¯
K⋆̃

¯
F )(g) =

Nc∑

c=1

∫

H

Kc(g
−1h)Fc(h)dh. (4.19)

A group convolution layer is defined by a set of H kernels K := (
¯
K

(l)
1 , · · ·

¯
K

(l)
Nl

) that

maps
¯
F (l−1) with Nl−1 channels to

¯
F (l) with Nl channels as shown below

¯
F (l) = ζ(K(l)⋆̃

¯
F (l−1)) := ζ(

¯
K

(l)
1 ⋆̃

¯
F (l−1), · · · ,

¯
K

(l)
Nl
⋆̃
¯
F (l−1)). (4.20)

Finally, the feature field at the last layer can be synthesized from H space to R2

space. The user interface of the E(2)-CNN library [394] hides most of the intricacies

of group theory, solutions of the steerable kernels space constraints, and requires users

to specify only the transformation laws of the feature spaces. We use the regular

representation for all hidden layers and the action of regular representation is given

by permutation matrices (Appendix B in [394]). From here on, the model built using

the equivariant CNN is called as MFI-CNN. The learning map for MFI-CNN is same as

the MCNN given in Eq. 4.16.

4.4 Data Generation and Training

The parameters of the neural network based SGS models are learned through supervised

training that requires a set of labeled inputs and outputs, usually obtained from direct

numerical simulation (DNS). The dataset should encompass a range of dynamics that

is expected to be reproduced by the SGS model. The data for training is generated

from DNS of two-dimensional Kraichnan turbulence in a doubly periodic square

domain with Lx × Ly = [0, 2π] × [0, 2π], and the domain is discretized using 20482

degrees of freedom. Our DNS solver is based on a second-order accurate energy-

conserving Arakawa scheme [12] for the nonlinear Jacobian and second-order accurate

finite-difference scheme for the Laplacian of the vorticity. The elliptic equation for the

relationship between the streamfunction and vorticity is solved using a second-order
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accurate FFT-based Poisson solver, and the time integration is performed with a

third-order accurate Runge-Kutta method. The vorticity distribution at the start of

the simulation is initialized based on the energy spectrum given by [271]

E(k) = Ak4exp

(
−
(
k

kp

)2)
, (4.21)

where A = 4k−5
p /3π and k = |k| =

√
k2x + k2y. For our numerical experiments, we use

kp = 10. The initial vorticity distribution in Fourier space is obtained through the

introduction of random phase as follows

ω̃(k) =

√
k

π
E(k) eiξ(k), (4.22)

where the phase function is given by ξ(k) = ϕ(k) + η(k). Here, ϕ(k) and η(k) are

independent random values chosen in [0, 2π] at each grid point in the first quadrant of

the kx− ky plane (i.e., kx, ky ≥ 0). The phase function for other quadrants is obtained

through conjugate relations as follows

ξ(k) = −ϕ(k) + η(k) for kx < 0 and ky ≥ 0, (4.23)

ξ(k) = −ϕ(k)− η(k) for kx < 0 and ky < 0, (4.24)

ξ(k) = ϕ(k)− η(k) for kx ≥ 0 and ky < 0, (4.25)

(4.26)

Further details on the problem setup and the numerical schemes can be found in our

previous work [234]. Different realizations of the initial vorticity field can be obtained

by using different phase functions with a different seed for random value generation.

The DNS is performed from time t = 0 to t = 4 with the time step ∆t = 5× 10−4.

In the Kraichnan turbulence problem, the initial vorticity field is dominated by a

population of vortices and small-scale structure starts appearing as the flow evolves.

The initial spin-up time from t = 0 to 0.5 is neglected and we start collecting the

data for training from time t = 0.5. From time t ≈ 0.5, the flow has started following

Kraichnan–Batchelor–Leith (KBL) theory [181, 24, 204] of energy cascade where

energy is transferred from the smaller scales to the larger scales. From time t ≈ 0.5

onward, large coherent vortices start emerging through vortex merging mechanism and

viscous dissipation of small-scale structures. The vorticity field and angle-averaged
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energy spectrum are displayed in Fig. 4.1 and we can see that the energy spectrum

has started exhibiting k−3 scaling from approximately t = 0.5.

Figure 4.1: Visualization of the vorticity field and energy spectrum at different time
instances for Re = 16000 with grid resolution 2048× 2048.

The data for training a neural network-based SGS model is stored at every 20∆t,

i.e., we have 350 snapshots of the vorticity and streamfunction between t = 0.5 to

4.0. We emphasize here that the neural network-based SGS model is trained only for

a single Reynolds number Re = 16000 and we assess the performance of the model

for Reynolds number up to Re = 128000. The filtered DNS data for training is

obtained by first applying a Gaussian filter transfer function to the DNS data and

then coarse-graining the filtered solution to the LES grid [421, 128]. The Gaussian

filter provides a smooth transition between resolved and subgrid scales and is also

positive definite in physical and wave space [294, 324]. Additionally, our numerical

solver is in physical space, and therefore we select the Gaussian filter instead of a

spectral cut-off filter. The coarse-grid level for LES is 2562 which corresponds to 64

times fewer spatial degrees of freedom compared to DNS.

We do not pre-process the filtered DNS data before training as the DNS data is
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generated from a non-dimensionalized vorticity transport equation. The total data is

divided into 80% of the data for training and 20% for the validation set. While the

input and output of bothMCNN andMFI-CNN are the same, the user needs to specify

the type of representation for intermediate feature field while constructing an FI-CNN

[394], similar to the number of kernels for CNN. We use the kernel size of 5 × 5,

six hidden layers and ReLU activation function for the MCNN and MFI-CNN. The

number of kernels for the CNN and FI-CNN models is set to 30 and 16, respectively.

With these hyperparameters, the number of trainable parameters is roughly the

same around O(1.1 × 105) for both models. Both the models are trained for 100

iterations using an Adam optimizer. Fig. 4.2 shows the history of training loss versus

iterations for both neural network-based SGS models and we can observe that the loss

for MFI-CNN is almost one order magnitude less than the loss for MCNN. This can

be attributed to rotational invariances incorporated in the MFI-CNN against MCNN,

which is only invariant to translation and Galilean transformation. For both neural

network-based SGS models, we use the parameters (i.e., weights) corresponding to

minimum validation loss obtained while training the neural network.

Figure 4.2: History of the training loss versus iterations for MCNN and MFI-CNN.

4.5 Numerical Results

In this section, we first outline the numerical results of our framework in the a priori

settings where the neural network-based models are utilized in predicting the SGS

source term. We analyze the capability of MCNN and MFI-CNN in incorporating the

frame-invariance property over the testing data. Then, we present the results of a

posteriori LES coupled with neural network-based SGS models and evaluate their
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performance using numerous statistical metrics.

Before we present our results for the Kraichnan turbulence problem, we illustrate

the capability of CNN and FI-CNN models to satisfy rotational equivariance using

a simple example of a vortex merging test case. In this test case, two vortices of

the same sign are separated by a certain distance from each other along a parallel

axis and the merging of vortices occurs ending as a single, nearly axisymmetric, final

vortex [384]. The CNN and FI-CNN models are trained using the data generated

for horizontally aligned vortices initial condition, i.e., the vorticity field shown in

the top row and first column in Figure 4.3. During the inference, both CNN and

FI-CNN models are able to predict the SGS source term with a sufficient level of

accuracy. However, if we test the CNN model for vertically aligned vortices (bottom

row and first column in Figure 4.3), we observe that the predicted SGS source term is

inaccurate and the rotational equivarince is not satisfied. However, the FI-CNN model

is successful in preserving the rotational symmetry and correctly captures the 90◦

rotation of the SGS source term. Therefore, by designing a model that respects certain

physical symmetries, we can guarantee that the network is robust and generalizes well

to different scenarios.

Figure 4.3: Illustration of rotational symmetry for the initial vorticity field of two
Gaussian-distributed vortices. The CNN and FI-CNN models are trained using the
data generated for horizontally aligned vortices, i.e., the top row and first column.
When data-driven models are used for vertically aligned vortices, the CNN model fails
to capture the rotational equivariance (the bottom row and third column), while the
FI-CNN model correctly captures the rotational equivariance (the bottom row and
fourth column).
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4.5.1 A Priori Investigation

Here, we assess the performance of neural network-based models in predicting the

SGS source term compared to the true SGS source term for the out-of-training data.

The out-of-training data is obtained for a different initial condition and corresponds

to 70 snapshots stored randomly between time t = 0.5 to t = 4.0. We remark here

that the initial energy spectrum for the testing data is also given by Eq. 4.21 and

the difference is due to a different phase function. Fig. 4.4 displays the probability

distribution function and cumulative distribution function for the test data. There

is a very good agreement between the true SGS source term and the predicted SGS

source term from both models. However, we notice that theMFI-CNN is more accurate

near the tails of the distribution (Fig 4.4, left) compared to MCNN. This difference

is also observable in the cumulative distribution function of true and predicted SGS

source terms and is highlighted in the zoom-in portion (Fig 4.4, right). Based on these

results, we may conclude that both neural network-based SGS model has learned the

relationship between filtered quantities and the SGS source term. Both models are

able to produce viable physical results for the completely unseen data with similar

physics.

Figure 4.4: Probability distribution function (left) and cumulative distribution function
(right) of the SGS source term over the entire testing dataset. The testing dataset
corresponds to 70 snapshots selected randomly between time t = 0.5 to t = 4.0 for
the initial condition different from the one used in training and σ is the standard
deviation of the data.

Next, we evaluate neural network-based models in respecting rotational symmetry

on the test data. Specifically, we perturbed the test data based on the rotation

transformation, and generate multiple test datasets. Then, we compute the root mean

squared error (RMSE) for each dataset, and calculate the expected value and variance
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Table 4.1: Evaluation of the rotational symmetry constraints provided by MCNN and
MFI-CNN. The expected value and variance of the root mean squared error on the
SGS source term predicted by both models is computed from many realizations (20
ensembles) on the testing data. The testing dataset corresponds to 70 snapshots
selected randomly for the initial condition different from the one used for training.
The rotational angle A is sampled uniformly between [0◦, 360◦] in the multiple of 90◦

and is used in the rotational operator grotA . The Pearson’s cross-correlation coefficient
between the predicted SGS source term and the filtered DNS solution is computed as
P(X, Y ) = cov(X, Y )/σXσY .

Metric MCNN MFI-CNN

E[L] 10.6941 7.3462

σ[L] 4.2442 ×10−2 5.6587 ×10−8

P(X, Y ) 0.9600 0.9776

for all test datasets. The rotation matrix A is sampled uniformly between [0◦, 360◦] in

the multiple of 90◦. If the rotation symmetry constraint is satisfied strictly, then the

RMSE will be the same for each test dataset leading to zero variance for the RMSE

metric. The results in Table 4.1 demonstrate the remarkable ability of MFI-CNN to

respect the rotation symmetry in contrast to MCNN which violates this symmetry.

Furthermore, the expected value of RMSE for MFI-CNN is one order of magnitude

lower thanMCNN and is consistent with the training loss (Fig. 4.2). The performance

of both models is substantially accurate in terms of the Pearson’s cross-correlation

coefficient, withMFI-CNN slightly better thanMCNN. We note here that it is relatively

straightforward to embed Galilean invariance constraint within neural network-based

SGS model through intelligent selection of model inputs, and translation invariance

through simple CNN. However, incorporating rotational symmetry in a neural network-

based SGS model is more complex and requires special consideration. Although a

relatively simple method like data augmentation can be utilized to impose the rotation

symmetry as a soft constraint, it does not satisfy rotation invariance strictly [105].

The strict enforcement of rotation symmetry is challenging and requires the use of

tailored neural network architecture, such as equivariant CNN.

4.5.2 A Posteriori Deployment

We now evaluate the performance of neural network-based SGS models in the LES

of Kraichnan turbulence. The spatial resolution for LES is reduced by a factor of

eight in each direction and this gives us 2562 degrees of freedom. The time step for
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LES simulation is ten times larger compared to the DNS, i.e., ∆tLES = 5 × 10−3.

The performance of neural network-based SGS models is compared with the widely

used dynamic Smagorinsky model (DSM) [118, 212]. The a posteriori deployment

is a rigorous task for any data-driven SGS model due to the presence of numerical

instabilities, and the challenges and remedies have been highlighted in many studies

[238, 236, 235, 128, 28, 360, 426]. For example, Maulik et al. [238] and Zhou et al.

[426] achieved the stable LES results by truncating SGS source term corresponding

to negative eddy viscosity. Stoffer et al. [360] attained stable a posteriori results by

resorting to artificially introducing additional dissipation (via eddy-viscosity models).

Guan et al. [128] provided sufficient amount of data during training to obtain a stable

a posteriori results. While the exact reason for this behavior is unknown, several

issues such as error accumulation, aliasing errors, numerical instability, extrapolation

beyond the training data, chaotic nature of turbulence, presence of multiple attractors

might be responsible for unstable a posteriori simulation [28, 360, 29, 258].

From our a posteriori simulation, it is revealed that MCNN is unstable, while

MFI-CNN is able to produce a stable and physical solution without any kind of clipping

or by adding artificial dissipation. We note here that, perhapsMCNN can also achieve

stable a posteriori simulation, provided there is sufficient data available for training

or some kind of post-processing is carried out for the predicted SGS source term.

However, our main motivation in this work is to construct a physically consistent

data-driven SGS model that can be trained in a data-sparse regime and is also stable in

the a posteriori simulation. We assess the performance of our a posteriori simulation

using several statistical metrics and compare it with the statistics from filtered DNS

solution. The turbulent kinetic energy at time tk is computed as follows

TKE(tk) = λ(u2f (tk) + v2f (tk)), (4.27)

where uf and vf are the fluctuating components of velocity given by

uf = ū− λ(ū), (4.28)

vf = v̄ − λ(v̄), (4.29)

where λ(a) represents the spatial average of the field variable a. The velocity ū, and v̄

102



are computed by spectral differentiation of streamfunction as shown below

ū =
∂ψ̄

∂y
; v̄ = −∂ψ̄

∂x
. (4.30)

The vorticity variance at each time step is computed as

σ2 = λ((ω̄ − λ(ω̄))2). (4.31)

We compare the kinetic-energy spectra and the vorticity structure function at

intermediate time t = 2.0 and at final time t = 4.0 with the k−3 scaling which is

observed in two-dimensional turbulence based on the classical KBL theory. The

vorticity structure function is calculated using the formula given by [127] for two-

dimensional turbulence as follows

Sω =< |ω̄(x + r)− ω̄(x)|2 >, (4.32)

where <> indicates ensemble averaging, x is the position on the grid, and r is certain

distance from this location. The PDF of the vorticity increment is utilized to assess

the capability of SGS models in predicting the coherent vortices in the flow. The

vorticity increments at different separations r is defined as

δω(r) = ω(x + r)− ω(r). (4.33)

We reiterate here that neural network-based SGS models are trained using the

data for Reynolds number Re = 16000 and a single initial condition. Once the models

are trained, the LES coupled with SGS models is performed for Reynolds number up

to Re = 128000 and for five different initial conditions. Fig. 4.5 shows the evolution

of turbulent kinetic energy and vorticity variance for LES runs with five different

initial conditions and for several Reynolds numbers. For all the LES runs, we initialize

the vorticity field at t = 0.5 after the initial spin-up period using the filtered DNS

solution. We can observe that the model MCNN is stable only for short time and

quickly becomes unstable after t ≈ 2.0 even for Reynolds number Re = 16000 which

was included in the training. In contrast to MCNN, model MFI-CNN is stable for all

test cases conducted here without any post-processing of the predicted SGS source

term. The ensemble averaging procedure in DSM leads to highly dissipative results

and is noticeable in the overprediction of the energy decay rate. The results of the
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LES runs with MFI-CNN have the best agreement with filtered DNS solution for both

turbulent kinetic energy and the vorticity variance.

Figure 4.5: The time evolution of the turbulent kinetic energy TKE(tk) normalized
by the initial turbulent kinetic energy TKE(t0) (top row) and vorticity variance
(bottom row) for different Reynolds numbers at 2562 grid resolution. The solid line
shows the mean from LES runs for five different initial conditions and the shaded
area corresponds to one standard deviation. The LES simulation starts at t = 0.5
after the initial spin-up time (i.e., once the turbulence has set in). The CNN and
FI-CNN models are trained using the data generated from a single initial condition at
Reynolds number Re = 16000.

Fig. 4.6 displays the kinetic-energy spectra at intermediate time t = 2.0 and at final

time t = 4.0 obtained from LES runs with five different initial conditions for multiple

Reynolds number. Although the LES runs coupled with MCNN is stable at t = 2.0,

the solution is unphysical as seen by the energy pile up near grid cutoff wavenumbers.

This behavior is also illustrated in Fig. 4.7 through a large value of vorticity structure

function at t = 2.0 across all Reynolds numbers. The LES runs with MCNN has

diverged around t ≈ 2.5 (see Fig. 4.5), and, therefore the kinetic-energy spectra and

vorticity structure function are missing at t = 4.0 in Fig. 4.6 and Fig. 4.7, respectively.

There is a very good agreement between the kinetic-energy spectra for LES runs

with MFI-CNN and filtered DNS solution, especially in the inertial subrange and k−3

theoretical scaling is captured accurately. From Fig. 4.7, we can see that the model

MFI-CNN is successful in producing the r3/2 scaling [183] for the vorticity structure

function at small scales and it gradually flattens near the large scales. The excessive
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dissipation of DSM is also illustrated in Fig. 4.6 and Fig. 4.7 via mismatch between

kinetic-energy spectra and vorticity structure function between DSM and filtered DNS

solution. The successful performance of LES runs with MFI-CNN demonstrates that

incorporating frame symmetries as hard constraints has been effective in stabilizing

the coarse-grid simulation and in ensuring generalized learning across different initial

conditions and Reynolds numbers.

Figure 4.6: A posteriori kinetic-energy spectra for different Reynolds numbers at
t = 2.0 (top row) and t = 4.0 (bottom row). These results are obtained from LES
runs with five different initial conditions and only mean kinetic energy spectrum is
shown. Note here that the CNN model has diverged and the kinetic-energy spectra
for the CNN model is missing at the final time t = 4.0 (bottom row).

Figs. 4.8-4.11 provides the visualization of vorticity field and probability density

function (PDF) of vorticity increments for Reynolds number Re = 16000 to Re =

128000 computed using the filtered DNS solution, LES with DSM model, and LES

with MFI-CNN at final time t = 4.0. We remark here that these results correspond to

only one initial condition that is different from the one used for training the neural

network-based SGS models. Even though the LES with DSM model is successful in

capturing large-scale structures in the flow, it fails to capture the small-scale structure

due to excessive dissipation. The LES with MFI-CNN is able to capture both large-

and small-scale structures in the flow, and this can be ascertained to the stabilizing

property of MFI-CNN in the a posteriori deployment without any post-processing of

the predicted SGS source term. Qualitatively, the vorticity field obtained from LES
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Figure 4.7: A posteriori second-order vorticity structure for different Reynolds numbers
at t = 2.0 (top row) and t = 4.0 (bottom row). These results are obtained from LES
runs with five different initial conditions and the solid line shows the mean vorticity
structure and the shaded area corresponds to one standard deviation. Note here that
the CNN model has diverged and the vorticity structure for the CNN model is not
present at the final time t = 4.0 (bottom row).

with model MFI-CNN is very similar to the filtered DNS solution. The similarity in

the shape of the PDF of vorticity increments as shown in Figs. 4.8-4.11 suggests

the scale-invariant statistics of turbulence at all Reynolds numbers investigated in

this study. The shape of the PDF of vorticity increments predicted by the LES

with MFI-CNN matches with the shape of the filtered DNS solution, and the heavy

exponential tails in the PDF are related to the presence of coherent vortices in the

flow. These heavy exponential tails are missing in the PDF of the solution obtained

from LES with DSM, and it follows the Gaussian distribution.

Next, we examine the robustness of the neural network-based SGS model by training

an ensemble of neural networks using randomization-based approaches where different

random initialization of weights are utilized for generating ensembles. Specifically,

we train five neural networks for both models MCNN and MFI-CNN using the same

dataset as discussed in Section 4.4. This method is also applied to quantify the

model-form uncertainty in deep learning [192]. Fig. 4.12 shows the time evolution of

turbulent kinetic energy and vorticity variance at different Reynolds numbers. The

time evolution of the TKE in Fig. 4.12 implies that the weights of the neural networks
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Figure 4.8: Snapshots of the vorticity distribution for Re = 16000 taken at final time t =
4.0 (top row) from different models and compared qualitatively against the FDNS solu-
tion. The bottom row displays the probability density function P (δω) of the vorticity
increments δω for separations r = 2π/256, 2π/128, 2π/64, 2π/32, 2π/16, 2π/8, and2π/4
computed from different models at Re = 16000. A Gaussian distribution is given in
gray dashed line for comparison. We also note that the plain vanilla CNN becomes
numerically unstable and unbounded before t = 4.0.

for MFI-CNN are learned in such a way that the final models are overall dissipative in

nature (as indicated by the solid line for mean from different LES runs). The vorticity

variance predicted by the model MFI-CNN is more accurate compared to DSM and is

very close to the filtered DNS solution.

Fig. 4.13 depicts the kinetic-energy spectra at intermediate time t = 2.0 and at

final time t = 4.0 obtained from LES runs for a single initial condition with different

network-based SGS models for multiple Reynolds numbers. We observe the energy

pile up near grid cutoff wavenumbers for the LES runs coupled with MCNN and

this suggests that the solution is unphysical. This behavior is also demonstrated in

Fig. 4.14 through a large value of vorticity structure function at t = 2.0 across all

Reynolds numbers. The LES runs with MCNN has diverged around t ≈ 2.5 (as seen

by large TKE in Fig. 4.12), and, therefore the kinetic-energy spectra and vorticity

107



Figure 4.9: Snapshots of the vorticity distribution for Re = 32000 taken at final time t =
4.0 (top row) from different models and compared qualitatively against the FDNS solu-
tion. The bottom row displays the probability density function P (δω) of the vorticity
increments δω for separations r = 2π/256, 2π/128, 2π/64, 2π/32, 2π/16, 2π/8, and2π/4
computed from different models at Re = 32000. A Gaussian distribution is given in
gray dashed line for comparison. We also note that the plain vanilla CNN becomes
numerically unstable and unbounded before t = 4.0.
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Figure 4.10: Snapshots of the vorticity distribution for Re = 64000 taken
at final time t = 4.0 (top row) from different models and compared quali-
tatively against the FDNS solution. The bottom row displays the probabil-
ity density function P (δω) of the vorticity increments δω for separations r =
2π/256, 2π/128, 2π/64, 2π/32, 2π/16, 2π/8, and2π/4 computed from different models
at Re = 64000. A Gaussian distribution is given in gray dashed line for comparison.
We also note that the plain vanilla CNN becomes numerically unstable and unbounded
before t = 4.0.

structure function are missing at t = 4.0 in Fig. 4.13 and Fig. 4.14, respectively. The

kinetic-energy spectra for LES runs with MFI-CNN is highly accurate and shows an

excellent agreement with the filtered DNS solution, especially in the inertial subrange.

The small uncertainty band also suggests that an ensemble of neural networks have

produced very similar statistics forMFI-CNN. Fig. 4.14 shows that the modelMFI-CNN

is successful in capturing the r3/2 scaling for the vorticity structure function at small

scales and flattening near large scales. With this numerical experiment, we can

establish that the MFI-CNN is robust, trustworthy, and stable in the LES, and it also

ensures generalizable learning across different initial conditions and Reynolds numbers.
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Figure 4.11: Snapshots of the vorticity distribution for Re = 128000 taken
at final time t = 4.0 (top row) from different models and compared quali-
tatively against the FDNS solution. The bottom row displays the probabil-
ity density function P (δω) of the vorticity increments δω for separations r =
2π/256, 2π/128, 2π/64, 2π/32, 2π/16, 2π/8, and2π/4 computed from different models
at Re = 128000. A Gaussian distribution is given in gray dashed line for comparison.
We also note that the plain vanilla CNN becomes numerically unstable and unbounded
before t = 4.0.

4.6 Concluding Remarks

Closure modeling in fluid dynamics simulations refers to parameterizing the interactions

between high-fidelity and coarse-fidelity descriptions. In this study, we explore data-

driven closure modeling strategies to improve both the accuracy and generalizability

of such residual models. The motivation behind data-driven closure modeling stems

from the fact that most of the existing SGS models are derived based on physical

and mathematical considerations, and might not account for the important transfer

of kinetic energy from small scales to large scales (i.e., back-scatter) [140]. However,

pure data-driven models can lead to physically inconsistent results [164] and might

violate the known physical constraints. To address this limitation of pure data-driven

models, we apply a frame invariant neural network architecture aiming at embedding
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Figure 4.12: The time evolution of the turbulent kinetic energy TKE(tk) normalized by
the initial turbulent kinetic energy TKE(t0) (top row) and vorticity variance (bottom
row) for different Reynolds numbers at 2562 grid resolution. The LES simulation
starts at t = 0.5 after the initial spin-up time (i.e., once the turbulence has set in).
For the CNN and FI-CNN models, an ensemble of neural networks is trained using the
data generated from a single initial condition at Reynolds number Re = 16000 with
different weights initialization. The solid line shows the mean from LES runs for a
single initial condition with different trained networks and the shaded area corresponds
to one standard deviation.

physical symmetries directly into the structure of the convolutional neural networks.

Thus, our model theoretically guarantees the frame symmetries, including translation,

Galilean, and rotation invariance both during training and inference. The embedding

of physical symmetries as hard constraints not only improves the accuracy of the

model but notably improves the generalization of the model, and eventually makes

the model stable in their a posteriori deployment without any clipping.

We test the proposed framework for subgrid-scale modeling of Kraichnan turbulence

in a priori and a posteriori settings. The performance of the proposed framework is

evaluated using several metrics like kinetic energy spectra, vorticity structure, and

vorticity increments. Based on our analysis, we concluded that symmetry preservation

has the potential to improve the accuracy, generalizability, and stability of the SGS

model, besides embedding important geometric properties of the underlying PDEs

into deep learning models. This work also illustrates a broader lesson on how to

combine machine learning with physics for scientific computing. It may be argued
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Figure 4.13: A posteriori kinetic-energy spectra for different Reynolds numbers at
t = 2.0 (top row) and t = 4.0 (bottom row). The solid line shows the mean from LES
runs for a single initial condition with different trained networks and the shaded area
corresponds to one standard deviation. Note here that the CNN model has already
diverged and the kinetic-energy spectra for the CNN model is missing at the final
time t = 4.0 (bottom row).

that two-dimensional turbulence is far from reality. However, it is generally considered

as a canonical testbed for geophysical turbulence in the atmosphere and oceans. Our

future development will be focused on scaling up the proposed frame invariant closure

modeling framework to solve more realistic three-dimensional turbulent flows. Another

interesting avenue is to apply this framework for learning parameterization models

for realistic geophysical flows with stratification, the Earth rotation, and Beta plane

effects, paving the way for improved weather and climate prediction.
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Figure 4.14: A posteriori second-order vorticity structure for different Reynolds
numbers at t = 2.0 (top row) and t = 4.0 (bottom row). The solid line shows the
mean from LES runs for a single initial condition with different trained networks and
the shaded area corresponds to one standard deviation. Note here that the CNN
model has diverged and the vorticity structure for the CNN model is not present at
the final time t = 4.0 (bottom row).

113



CHAPTER V

Concatenated Neural Networks for Multi-fidelity Information Fusion

The contents of this chapter has been published at Scientific Reports1.

Abstract:Recently, computational modeling has shifted towards the use of statis-

tical inference, deep learning, and other data-driven modeling frameworks. Although

this shift in modeling holds promise in many applications like design optimization

and real-time control by lowering the computational burden, training deep learning

models needs a huge amount of data. This big data is not always available for scientific

problems and leads to poorly generalizable data-driven models. This gap can be

furnished by leveraging information from physics-based models. Exploiting prior

knowledge about the problem at hand, this study puts forth a physics-guided machine

learning (PGML) approach to build more tailored, effective, and efficient surrogate

models. For our analysis, without losing its generalizability and modularity, we focus

on the development of predictive models for laminar and turbulent boundary layer

flows. In particular, we combine the self-similarity solution and power-law velocity

profile (low-fidelity models) with the noisy data obtained either from experiments

or computational fluid dynamics simulations (high-fidelity models) through a con-

catenated neural network. We illustrate how the knowledge from these simplified

models results in reducing uncertainties associated with deep learning models applied

to boundary layer flow prediction problems. The proposed multi-fidelity information

fusion framework produces physically consistent models that attempt to achieve better

generalization than data-driven models obtained purely based on data. While we

demonstrate our framework for a problem relevant to fluid mechanics, its workflow and

principles can be adopted for many scientific problems where empirical, analytical, or

simplified models are prevalent. In line with grand demands in novel PGML principles,

this work builds a bridge between extensive physics-based theories and data-driven

modeling paradigms and paves the way for using hybrid physics and machine learning

modeling approaches for next-generation digital twin technologies.

1Pawar, S., San, O., Vedula, P., Rasheed, A., & Kvamsdal, T. (2022). Multi-fidelity information
fusion with concatenated neural networks. Scientific Reports, 12(1), 1-13.
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5.1 Introduction

The modeling of spatiotemporal dynamics of multiscale and multiphysics systems

is an open problem relevant to many scientific and engineering applications. For

instance, wind energy is a highly complex system whose dynamics is governed by

global atmospheric processes to turbulent boundary layer formed around the blades that

span nine orders of magnitudes [379]. Over the past several decades, we have improved

our understanding of such multiphysics systems by developing accurate numerical

models for governing equations of the system, such as Navier-Stokes equations for

fluid flows. However, these numerical models can be computationally prohibitive,

especially for nonlinear multiscale systems, and their use in real-time optimization and

control is scarce. The recent advancement in machine learning (ML) and deep learning

(DL) holds the great potential for tackling the challenge of modeling and analysis

of high-dimensional systems and has been successful in diverse applications, such as

fluid mechanics [51], earth science [318], and material science [342]. These advances

have been driven by a vast amount of data generated from high-resolution numerical

simulations, experimental and satellite measurements, and computing power along with

the emergence of effective and efficient algorithms that can extract relevant patterns

from the data. ML/DL techniques has been successfully applied for turbulence closure

modeling [87], super-resolution of climate data [358], predicting clustered weather

patterns [61], reduced-order modeling [104], and many more.

ML/DL models are capable of providing insights from data, exploiting these

insights in building predictive tools, and continuously updating themselves as the

new streams of data get available. Despite these advantages, ML/DL techniques lack

interpretability and suffer from the curse of dimensionality. The interpretability issue

can be addressed by understanding the physical implications of ML/DL models [240],

and understanding the neural network correlations discovered from the data [255, 89].

By the curse of dimensionality, we mean that DL models are data-hungry in nature.

For instance, Bonavita and Laloyaux [41] showed that the amount of the training data

for nonlinear dynamical systems grows exponentially with the dimensionality of the

system. Furthermore, pure ML/DL models lead to poor extrapolation/generalization,

i.e., they fit the observations data very well, but predictions may be poor and physically

inconsistent for data beyond the distribution of the training dataset. To this end,

physics-informed learning algorithms that leverage prior knowledge based on the

physical and mathematical understanding of the system are proposed in several studies
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Figure 5.1: The proposed multi-fidelity information fusion framework. The prediction
from the low-fidelity models (e.g., self-similarity solution or law of the wall) is concate-
nated with the latent variables at the certain hidden layer of the neural network. An
ensemble of neural networks is trained using the negative log-likelihood loss function to
estimate the uncertainty associated with the prediction. Here, x refers to independent
variables or design parameters, or y indicates the quantities of interest, and h(x)
represents a low-fidelity or simplified model that is fast-to-compute.

[164].

There are two main techniques based on inductive biases, and learning biases to

embed physics into ML/DL models in combination with the observations data [164].

Inductive biases techniques relate to building tailored ML/DL model architecture that

exploits the prior knowledge about the problem at hand to build physically consistent

data-driven models. The representative examples includes embedding invariance

property into neural network architecture [213, 421], imposing conservation laws of

physical quantities or analytical constraints into neural network [249, 34, 126], using

prediction from simplified models as the bias [287], enhancing feature space [238],

and adopting equivariant transformer networks [367]. The other approach based on

learning biases imposes constraints such as governing equations in a soft manner by

penalizing the loss function of ML/DL models. Some of the examples of this approach

pertain to physics-informed neural networks [309], statistically constrained generative

adversarial networks [405], and Bayesian framework with auto-regressive model [116].

There is also a class of hybrid analysis and modeling approaches that utilizes pure

data-driven and physics-based models in tandem [335]. While many methods have

been demonstrated to be successful in enforcing physics into ML/DL models, they

offer many possibilities to fuse domain knowledge to improve the generalizability and

data efficiency of data-driven models [167].
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In this work, we introduce a physics-guided machine learning (PGML) fraamework

based on tailored neural network architecture that utilizes a concatenation layer for

surrogate modeling of high-fidelity data given the solution from a computationally

inexpensive low-fidelity model. There is a hierarchy of numerical models ranging from

simple empirical relations to highly accurate numerical discretization-based models

across all scientific disciplines. For example, flow around airfoils can be modeled

using tools extending from panel methods [139] to the fully resolved direct numerical

simulation (DNS) [252]. Another example is the wake modeling of wind turbines,

where fast but typically inaccurate analytical models are adopted for tasks like layout

optimization and wind farm control [13]. However these models are insufficient

to take the unsteady nature of interactions of turbine wake with other wakes as

well as atmospheric turbulence into account, and such effects can be modeled with

computationally demanding but accurate models like large-eddy simulation (LES)

[49]. Our work draws inspiration from these multi-fidelity modeling approaches and

exploits the real-time prediction from low-fidelity models to inform a DL model of

high-fidelity observations. The information fusion from the multi-fidelity sources of

data leads to a robust and generalizable surrogate model in comparison to a purely

data-driven model trained solely on high-fidelity data.

Figure 5.1 graphically illustrates the proposed data fusion approach from multi-

modal data streams in the process of generating PGML models. As shown in Figure 5.1,

a data-driven model can be constructed using the data obtained from high-resolution

simulations and experimental measurements. The PGML framework further aug-

ments the ML model with the information from a low-fidelity representation of the

system (such as analytical models, scaling laws, empirical relations, etc.). Ensemble

of PGML models is trained using both the sources of data along with the uncertainty

quantification mechanism that finally gives the predictive model to be employed in

online tasks. In a nutshell, our work puts forth a novel data-driven framework to take

prior knowledge about the system into account when generating a black-box deep

learning predictive model. How should we inject physics and domain knowledge into

machine learning models? How deep learning can be constructed as a trustworthy

approach toward more accurate real-time prediction of nonlinear complex systems

such as turbulent flows? These are the fundamental research questions that we tackle

in this paper, and provide our insights about these questions.

We demonstrate the application of our framework for boundary layer flows. Bound-

ary layer phenomenon is one of the most important flows and is of engineering concern
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in many scientific and industrial applications [351]. The behavior of flow in the

boundary layer has implications on the drag force in ship hulls and aircraft, the

energy required to move oil through pipes, and the distribution of heat in the atmo-

sphere [159, 36, 410]. Given that boundary layer flows are prevalent in engineering

applications, building a computationally efficient and accurate surrogate model is

of paramount importance for online tasks like boundary layer control to achieve

lift enhancement, noise mitigation, drag reduction, and wall cooling. Additionally,

boundary layer flows can be described using hierarchies of models that have different

levels of fidelity spanning analytical models to DNS and hence represent an interesting

test case for illustrating the effectiveness of PGML framework. While in this work we

consider only two levels of fidelity, the proposed framework can be applied for blending

information from various levels of fidelity. Moreover, the neural architecture search

tools can be utilized to discover more complex and optimal architectures automatically

[92].

5.2 Methods

In this Section, we first provide the details of the concatenated neural network

architecture as a PGML framework that blends the information from models of

different levels of fidelity and then present the deep ensemble method used to quantify

the uncertainty associated with the prediction. Then, we discuss the multi-fidelity

data fusion for laminar and turbulent boundary layer flows over a flat plate.

5.2.1 Multi-fidelity Concatenated Neural Network

A neural network is a computational graph composed of several layers consisting of

the predefined number of neurons. Each neuron is associated with certain coefficients

called weights and some bias. The input from the previous layer is multiplied by a

weight matrix as shown below

Sl = WlXl−1, (5.1)

where Xl−1 is the output of the (l− 1)th layer, Wl is the matrix of weights for the lth

layer, and Sl is the input-weight product. The summation of the above input-weight

product and the bias is then passed through a node’s activation function which is

usually some nonlinear function. The introduction of nonlinearity through activation

function allows the neural network to learn highly complex relations between the input
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and output. The output of the lth layer can be written as

Xl = ζ(Sl + Bl), (5.2)

where Bl is the vector of biasing parameters for the lth layer and ζ is the activation

function. If there are NL layers between the input and the output in a neural network,

then the neural network mapping F : X→ Y(X) can be represented as follows

Y = ζNL
(·;ΘNL

) ◦ · · · ◦ ζ2(·;Θ2) ◦ ζ1(X;Θ1) (5.3)

where Θ represents the weight and bias of the corresponding layer of the neural network

and Y is the final output of the neural network. For the concatenated neural network,

the information from the low-fidelity model is injected at a certain intermediate layer

of the neural network as follows

Y = ζNL
(·;ΘNL

) ◦ · · · ◦ C(ζi(·;Θi), h(X))︸ ︷︷ ︸
Concatenation layer

◦ · · · ◦ ζ1(X;Θ1), (5.4)

where C(·, ·) represents the concatenation operation and the information from the low-

fidelity model, i.e., h(X) is injected at ith layer, and Θi are the trainable parameters

of the corresponding layer. The concatenation operator takes the latent variables at

a particular layer and combines them with information from the low-fidelity model

to return a vector. Specifically, if the ith layer has Di neurons and h(X) ∈ RDh ,

the input to the (i+ 1)th layer will be in RDi+Dh . During the training of the neural

network, the weights of the neural network are updated using the backpropagation

and gradient descent algorithm. The backpropagation algorithm involves computation

of the gradient of the loss function with respect to each of the trainable parameters

and the trainable parameters are updated using a gradient descent algorithm. In a

concatenated neural network, the prediction from the low-fidelity model is injected at

an intermediate layer of the network. Therefore, the low-fidelity model prediction is

also the input feature to the network, and the training does not involve computing

the gradient of the loss function with respect to this injected feature. However, the

number of trainable parameters is increased and the change in the number of trainable

parameters will depend on the dimension of the low-fidelity data and the number of

neurons in the subsequent hidden layer.

One important caveat in a concatenated neural network is the selection of an
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appropriate intermediate layer at which to inject the low-fidelity model information,

and tools like automated machine learning (AutoML) [152] can be applied to automate

this search. The concatenation operator given by Equation 5.4 can also be applied to

all hidden layers simultaneously as

Y = ζNL
(·;ΘNL

)◦C(ζNL−1(·;ΘNL−1), h(X)) ◦ · · · ◦ C(ζi(·;Θi), h(X)) ◦ · · · ◦ C(ζ1(·;Θ1), h(X))︸ ︷︷ ︸
Concatenation layers

.

(5.5)

We highlight here that the proposed PGML framework is modular and Equation 5.5

can be generalized for fusing information from multiple low-fidelity models. However,

we dedicate this study to investigate the feasibility of the proposed PGML framework

for only two levels of approximations. An additional optimization problem can be

constructed to search the best architecture in terms of relevant hyperparameters such

as the number of hidden layers, and the location and sparsity of the concatenation

structure. Such auto PGML investigations will be a topic that we will pursue in our

future works.

5.2.2 Deep Ensembles: Training and Prediction

Deep learning algorithms like neural networks approximate the mapping from inputs

to outputs using trainable parameters called weights and biases. The parameters of

the neural network are determined through the minimization of the loss function. The

prediction from the neural network is usually a point estimate, i.e., continuous outputs

for regression tasks and discrete classes for classification problems. However, the

information about the confidence in the model’s prediction might be crucial for many

scientific applications [5]. The uncertainty estimates can also be useful for applications

like sensor placement and Bayesian optimization. In this study, we apply the deep

ensembles algorithm for estimating the probabilistic distribution function (PDF) of

output conditioned on the inputs [192]. While there are state-of-the-art methods like

Bayesian neural networks [261] that quantifies uncertainty by learning the distribution

of weights, deep ensembles is adopted due to their simplicity and scalability.

Here, we briefly discuss the uncertainty quantification mechanism of deep ensembles.

We assume that our training dataset D consists of N samples D = {Xi,Yi}Ni=1, where

X ∈ RP represents the P−dimensional features and the label is Q−dimensional, i.e.,

Y ∈ RQ. A neural network is trained by minimizing the loss function L(Y, Ỹ(X; Θ)),

where Ỹ is the predicted label from a neural network parameterized by Θ (i.e.,
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trainable parameters of the whole neural network). The most common loss function

for regression tasks is the mean squared error (MSE) between true and predicted labels

averaged over all samples in the dataset. The MSE loss function does not give an

estimate of the probability distribution of P(Ỹ|X) and hence the uncertainty estimate

is usually absent with the prediction from neural networks.

In order to quantify the predictive uncertainty, the neural network is trained to

output the mean and variance of the Gaussian distribution in the output layer. The

weights of the neural network are determined by minimizing the negative log-likelihood

L as follows

Θ = arg minΘ[L], where L =
N∑

i=1

1

2
logσ2(Xi) +

(Yi − µ(Xi))
2

2σ2(Xi)
, (5.6)

where the mean µ and the variance σ2 are parameterized by the neural network. The

positivity constraint is enforced for the variance by passing the output corresponding

to variance of distribution though the softplus function log(1 + exp(·)), and adding a

minimum variance (for example 10−6) for numerical stability. If we assume the variance

to be constant in Equation 5.6 (i.e., it does not depend on input features), then the

negative log-likelihood loss function becomes analogous to the MSE loss function.

Therefore, from a probabilistic point of view, minimizing the MSE is equivalent to

minimizing negative log-likelihood with an assumption of Gaussian distribution with

constant standard deviation [76, 263].

The ensemble of neural networks has been demonstrated to be successful in

improving the predictive performance of machine learning models [80]. There are

broadly two methods of generating ensembles, (i) randomization-based approaches

where the ensembles can be trained in parallel without any interaction, and (ii)

boosting-based approaches where the ensembles are trained sequentially [99]. The

randomization procedure for generating ensembles of neural networks should be such

that prediction from individual models are de-correlated and each individual models

are strong (i.e., high accuracy). In this work, the random initialization of weights of

the neural network is used for generating ensembles. There are other schemes such

as bagging where the ensembles of neural networks are trained on a different subset

of the original training data. However, random initialization is better than bagging

for improving predictive accuracy and uncertainty [192, 203]. This simple and yet

robust randomization approach is highly scalable as it allows for distributed training
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of neural networks and can be applied to many scientific problems. For computing

the predictive probability distribution, we approximate the ensemble prediction as a

Gaussian whose mean and variance are computed as follows

µ∗(X) =
1

M

M∑

j=1

µΘj
(X), (5.7)

σ2
∗(X) =

1

M

M∑

j=1

(σ2
Θj

(X) + µ2
Θj

(X))− µ2
∗(X), (5.8)

where µΘj
and σΘj

is the mean and standard deviation of predicted probability

distribution by the jth neural network. We employ an ensemble of five neural

networks in this study (i.e., M = 5).

5.2.3 Multi-fidelity Data Fusion for Laminar Boundary Layer

The first test case considered in this study is the laminar boundary layer flow. Boundary

layer flows can be characterized by dividing the flow into two regions, one inside the

boundary layer where the viscosity dominates and one outside the boundary layer

where the effect of viscosity can be neglected. The low-fidelity model considered for

laminar flow is the steady-state two-dimensional laminar boundary layer described

using Blasius equation [400]. The core idea behind Blasius equation is transforming

a partial differential equation (PDE) comprised of the flat plate boundary layer

equations, with zero pressure gradient, into a single ordinary differential equation

(ODE) by using a similarity solution approach. The derivation of the Blasius equation

can be found in many texts on fluid mechanics and we describe only the final form.

The Blasius equation and its boundary conditions can be written as

2f ′′′ + ff ′′ = 0, (5.9)

f(0) = f ′(0) = 0, f ′(∞) = 1, (5.10)

where f(η) is a function of similarity variable η. The similarity variable η is defined as

η = y
√
u∞/(xν), where y is the direction normal to the plate, x is the direction along

its length with zero being the leading edge, u∞ is the freestream velocity, and ν is

the kinematic viscosity of the fluid. The third-order ODE is first split into a coupled

system of three first-order ODEs. Then we apply the shooting method to determine

the initial value for f ′′(0), and the first-order ODEs are numerically integrated with
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the fourth-order Runge-Kutta scheme [251]. The velocity profile from the Blasius

solution can be determined using the relation ū = u∞f
′, where overbar symbol is

used to indicate the low-fidelity model estimate. The high-fidelity observations are

generated by solving the RANS equations with the PISO algorithm [155] available

in OpenFoam. We get the velocity (components along streamwise and wall-normal

directions) and the pressure distribution from CFD simulation. The Reynolds number

based on the length of the flat plate used for generating data is ReL = 5× 104, where

L is the length of the flat plate. The training data for the concatenated neural network

is sampled from the whole domain and the velocity field is contaminated by adding

a white Gaussian noise with zero mean and a standard deviation of 0.05. Advanced

sampling methods like Latin hypercube sampling, clustered sampling can be utilized

to reduce the number of samples required for training and we will consider this as

part of our future work.

For the laminar boundary layer reconstruction task, the input to the neural network

is the location of the sensor, i.e., X = [x, y], where x and y are the positions of the

sensors in streamwise and wall-normal directions. The output of the neural network

is the probability distribution of u, v, p represented by their mean and standard

deviation, where u is the velocity in the streamwise direction, v is the velocity in the

wall-normal direction, and p is the pressure at the sensor’s location. Additionally, the

velocity profile obtained from the Blasius solution is used as the low-fidelity model,

i.e., h(X) = [ū]. Following our previous discussion, the problem formulation can be

written as

{µ(X), σ(X)} = F(X, h(X)), P(Y|X, h(X)) = N (µ∗(X), σ∗(X)). (5.11)

5.2.4 Multi-fidelity Data Fusion for Turbulent Boundary Layer

The boundary layer around the flat plate transitions to turbulence at high Reynolds

number. Before the advent of supercomputing, it was not possible to numerically solve

the Navier-Stokes equations for turbulent flows and fluid dynamicists had to resort to

experimental studies to derive empirical relations for high Reynolds number flows. In

this study, the low-fidelity approximation for the turbulent boundary layer is obtained

using the one-seventh power law. The one-seventh power law [59] for computing the

mean (or ensemble-averaged) velocity profile for flat-plate turbulent boundary layer is
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Concatenation

Data collected from sparse sensors (high-fidelity)

Self-similarity solution (low-fidelity)
Predicted standard deviation

Predicted mean

Ensembles of neural networks trained using 
negative log-likelihood loss function

Figure 5.2: Illustration of the multi-fidelity data-fusion framework applied to the
laminar flat plate boundary layer prediction task. The self-similarity Blasius solution
is replaced by the one-seventh power law when applying to the turbulent boundary
layer flows.

given as follows

ū

u∞
≈





(
y
δ

)1/7
for y ≤ δ,

1 for y > δ,
(5.12)

where u∞ is the freestream velocity, y is the direction normal to the plate, and the

turbulent boundary layer thickness δ is computed as follows [59]

δ ≈ 0.38x

(Rex)1/5
, (5.13)

where Rex is the Reynolds number at a given x-location. There are many such

empirical relations available to approximate turbulent boundary layers such as the

log law, and Spalding’s law of the wall [352]. The high-fidelity data is generated for

the flat-plate turbulent boundary layer with zero pressure gradient by solving the

incompressible RANS equations with the SIMPLE algorithm and k−ω-SST turbulent

model implemented in OpenFoam. The Reynolds number based on the length of the

flat plate for turbulent boundary layer simulation is ReL = 1× 107. One important

parameter in turbulence modeling is the dimensionless distance in the normal direction

called wall y+ and is defined as y+ =
√
yuτ/ν, where uτ is the friction velocity. The

friction velocity is calculated based on the wall shear stress as uτ =
√
τw/ρ. The
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mesh is refined near the flat plate in such a way that the near-wall y+ is below 5.

The locations for collecting the data are sampled in such a way that more points

are clustered near the leading edge and the wall, and are contaminated by adding a

white Gaussian noise with zero mean and a standard deviation of 1.0 to mimic the

measurement error. The formulation of turbulent boundary layer reconstruction is

similar to the laminar boundary reconstruction as given in Equation 5.11 except for

the low-fidelity model. The low-fidelity model prediction for turbulent boundary layer

flow is calculated using Equation 5.12.

For both laminar and turbulent boundary layer reconstruction problem, we use

a neural network with three hidden layers and twenty neurons in each hidden layer.

The three hidden layers were found to be enough for providing sufficiently accurate

prediction and hence we chose this architecture to reduce the computational overhead

of training and inference. The prediction from the low-fidelity model is concatenated

at the second hidden layer. Specifically, the equation for the concatenated neural

network employed in this study can be written as follows

Y = ζ4(·;Θ4) ◦ ζ3(X;Θ3) ◦ C(ζ2(·;Θ2), h(X))︸ ︷︷ ︸
Concatenation layer

◦ζ1(X;Θ1), (5.14)

where ζ1, ζ2, ζ3 are the ReLU activation functions, and ζ4 is the linear activation

function. The neural network architecture shown in Figure 5.2 is representative of

the network used within the proposed multi-fidelity data-fusion framework for the

boundary layer reconstruction task. In terms of the trainable parameters, the ML

model has 1,026 parameters, and the PGML model has 1,046 parameters.

5.3 Results and Discussion

In this section, we demonstrate the capability of the proposed approach presented in

Methods section to reconstruct laminar and turbulent boundary layer flows around

the flat plate.

Laminar flow past a flat plate

We refer to a simple feed-forward neural network as the machine learning (ML) model

and the concatenated neural network augmented with low-fidelity data is called the

physics-guided machine learning (PGML) model. The ML model is trained solely
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Figure 5.3: Boundary layer prediction for laminar flat plate flow at x/L = 0.5 along
with the observations used for training the ML and PGML model. The amount of
observations data used for training the model is 10% (left), 30% (middle), and 50%
(right). The shaded area corresponds to two standard deviation (2-SD) band.

based on the high-fidelity data, while the PGML model uses the prediction from

a physics-based low-fidelity model (Blasius equations, see Equation 5.9 and 5.10)

along with the high-fidelity data. Figure 5.3 shows the profile of the horizontal

component of velocity versus distance from the wall, at the location x/L = 0.5, for

different amounts of data used for training the ML and PGML models. The velocity is

normalized with the freestream velocity and the vertical distance is normalized using

the boundary layer thickness for laminar flow over the flat plate. The ML model fails

to capture the accurate velocity profile when the velocity field information at 10% of

locations within the computational domain is utilized for training. The mean velocity

profile predicted by the PGML model is highly accurate even with just 10% of the

observations. The predicted mean velocity profile is also accompanied by a confidence

interval spanning one standard deviation (SD) on either side of the mean velocity

profile and is an outcome of the uncertainty quantification mechanism built into deep

ensembles. Deep ensembles achieve uncertainty quantification by training an ensemble

of neural networks with the negative log-likelihood loss function. The uncertainty
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estimate associated with the PGML model is lower than the ML model and this

is particularly notable near the wall within the boundary layer, i.e., for y/δ < 0.8.

However, we note that the prediction of laminar flow past a flat plate is a relatively

simple task and therefore even the ML model is giving sufficiently accurate prediction.

The improvement in the prediction by the PGML framework is noticeable for the

turbulent flow past a flat plate, which will be presented in the following section.

Turbulent flow past a flat plate

Next, we evaluate the performance of the proposed PGML approach for reconstruction

of turbulent boundary layer flow over a (smooth) flat plate. The prior knowledge

we concatenate in this case is the one-seventh power law velocity profile (i.e., see

Equation 5.12). Figure 5.4 displays the variation of the normalized velocity profile in

the vertical direction at x/L = 0.5 for different amounts of data used for training the

ML and PGML models. We can observe that the ML model performs very poorly for

the data-sparse regime (i.e., 5% and 10% of the observations). Such situations are

very common in scientific applications where a collection of high-fidelity data either

from experiments or numerical simulations can be prohibitive. The PGML model on

the other hand leads to an accurate prediction by exploiting the correlation between

low- and high-fidelity data. The prediction from the ML model is also not reliable

as indicated by the high width of the confidence band. Figure 5.5 shows the velocity

profile in the near-wall region to illustrate how well the boundary condition is satisfied

by the prediction obtained from both ML and PGML models. The velocity field

predicted by the ML model is highly inaccurate in the near-wall region even when

30% of the observations are available for training. The PGML model provides very

accurate prediction even in the low-data regime, and the prediction improves further

as more data is used for training. The PGML model captures the slope of the velocity

profile at the wall with very high accuracy. The slope of the boundary layer profile

∂u/∂y at the wall determines the skin friction drag along the wall. This quantity is

not predicted accurately with the ML model and this can lead to poor estimation

of the quantity of interests like the total drag. The PGML model is successful in

predicting the correct slope of the velocity profile at the wall and therefore will lead

to a more accurate estimation of total drag.

Figures 5.6- 5.8 shows the spatial variation of the predicted mean of the velocity

field, confidence interval of two standard deviations, and the error with respect to
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the true velocity field near the wall region for 5%, 10%, and 30% of the training

data, respectively. As the training data increases, the error decreases for both ML

and PGML models. The confidence estimate associated with the PGML model is

substantially higher (i.e., lower uncertainty) than the ML model for all three datasets.

Moreover, the error of the PGML model is greatly reduced compared to the ML model.

One other benefit of constructing a PGML approach is its modular nature that can

provide an opportunity of bridging the gap between domain-specific knowledge and

physics-agnostic models.
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Figure 5.4: Boundary layer prediction for turbulent flat plate flow at x/L = 0.5 along
with the observations used for training the ML and PGML model. The amount of
observations data used for training the model is 5% (left), 10% (middle), and 30%
(right). The shaded area corresponds to two standard deviation (2-SD) band.

In our previous numerical experiments, we focused on the reconstruction task

within the interpolation region. Both ML and PGML models were trained using the

data sampled from the whole domain, i.e., up to L = 2.0, where L is the length of

the flat plate. In our next numerical experiments, we sample observations only from

the region till L = 1.5. Therefore, the region between L = 1.5 to L = 2.0 corresponds

to the extrapolation region. We quantify the performance of the ML and PGML

model using the variation of root mean squared error (RMSE) percentage along the
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Figure 5.5: Boundary layer prediction in the near-wall region for turbulent flat plate
flow at x/L = 0.5 along with the observations used for training the ML and PGML
model. The amount of observations data used for training the model is 5% (left), 10%
(middle), and 30% (right). The shaded area corresponds to two standard deviation
(2-SD) band.

streamwise direction as follows

RMSE(x) = 100×
(

1

Ny

Ny∑

j=1

(
uT (yj)− uP (yj)

uT (yj)

)2)1/2

(5.15)

where uT is the velocity of the high-fidelity model, uP is the velocity predicted from

the data-driven model, Ny is the spatial resolution in the wall-normal direction. From

Figure 5.9, we can see that the RMSE increases substantially in the extrapolation

region for the ML model, especially when the observations are very sparse, i.e., 5% of

the data. This is a well-known limitation of DL models to extrapolate poorly in the

absence of dense data. The PGML model on the other hand has RMSE almost one

order of magnitude less than the ML model in the interpolation region. Additionally,

the increase in RMSE is not significant in the extrapolation region. This shows

that the PGML model is robust for the unseen condition, and it performs well for

out-of-distribution examples.
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Figure 5.6: Prediction of the turbulent flat plate boundary layer with 5% of data
used for training the ML and PGML model. The error is calculated as the difference
between the true flow field and the flow field predicted by ML and PGML models.
The figure is created by Matplotlib v3.5.1 [151].

5.4 Concluding Remarks

This study aims to develop a physics-guided machine learning (PGML) framework

to improve data-driven models using prior knowledge from low-fidelity models. The

PGML is a new deep neural network architecture that makes it possible to inject

known physics during the training and deployment processes to reduce uncertainty and

consequently improve the trade-off between efficiency and accuracy. Our design of a

hierarchically sequential learning algorithm allows us to embed simplified theories, low

order models, or empirical laws directly into deep learning models. These physics-based

injections assist the neural network models in constraining the output to a manifold of

the physically consistent solution and leads to improved reliability and generalizability.

The PGML model trained using the deep ensembles algorithm provides us an estimate

of the uncertainty associated with the prediction. This uncertainty information can be

used for several applications like active learning, sensor placement, and optimization.

Some of the questions addressed in this study are as follows

• How prior information on the physics of the problem can be used to improve

black-box machine learning models?

• Can a concatenated neural network architecture augmented with a simplified or

empirical model outperform a pure data-driven reconstruction model?
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Figure 5.7: Prediction of the turbulent flat plate boundary layer with 10% of data
used for training the ML and PGML model. The error is calculated as the difference
between the true flow field and the flow field predicted by ML and PGML models.
The figure is created by Matplotlib v3.5.1 [151].

• How can these data-driven predictive models be quantified regarding their

uncertainties?

• What is the generalizability of predictive performance across ML and PGML

architectures, when these are applied to unseen conditions?

To provide a proof-of-concept of the PGML framework, we use the laminar and

turbulent flow over a flat plate as the prototypical test cases where the self-similar

solution is used as the low-fidelity model, and Reynolds-Averaged Navier-Stokes

equations (RANS) is a high-fidelity model. Although our notion of high-fidelity here

is relative to the selected low-fidelity model, the chief idea, which is scalable with

different notions, is to use low-fidelity models to restrict the neural network to a

manifold, such that less data is required to train the network and to improve its

predictive capability under extrapolation. Our analysis indicates that an injection

of the empirical relations like one-seventh power law improves the predictive model

significantly for estimating canonical turbulent flat plate boundary layer flows. We

found that the PGML outperforms its ML counterpart by reducing the RMSE to

nearly an order of magnitude lower levels. We also demonstrated that the proposed

PGML framework substantially reduces the model uncertainty even when only sparse

observations are available. Furthermore, generalizability of results is also supported

when we integrate our predictive models for unseen conditions. Specifically, the RMSE
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Figure 5.8: Prediction of the turbulent flat plate boundary layer with 30% of data
used for training the ML and PGML model. The error is calculated as the difference
between the true flow field and the flow field predicted by ML and PGML models.
The figure is created by Matplotlib v3.5.1 [151].

distributions for the ML model (with respect to true data) are around 20% and 30%

for interpolation and extrapolation regions, respectively. However, the PGML model

has superior performance in both interpolation and extrapolation regions with the

RMSE distribution in the range of 3%. For laminar flows, we also showed that a

PGML approach (via injecting the Blasius solution) outperforms the ML approach.

The Blasius approximation can also be extended for heat transfer problems (based

on Falkner-Skan solutions) and for strongly nonlinear problems using non-similarity

solutions [210].

The concatenated neural networks are capable of discovering a correlation between

low- and high-fidelity data allowing for smaller training dataset sizes, training time,

and improved extrapolation performance. Therefore, the PGML model has a great

potential for a vast number of physical systems where a hierarchy of models is commonly

used. The proposed framework is very modular and can be applied to a wide range

of problems in fluid mechanics. Additionally, the framework is compatible with

different neural network architectures making it suitable for complex high-dimensional

problems. For example, one can treat the flow over a two-dimensional cylinder as the

low-fidelity model for reconstructing the flow around a three-dimensional cylinder.

Another interesting example is the wake prediction behind wind turbines, where

analytical wake models can serve as the low-fidelity model for high-fidelity models like
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RANS solver. One of the challenges with the PGML framework is coupling of steady

and unsteady solver, i.e., RANS as the low-fidelity model and large eddy simulation

(LES) as the high-fidelity model. If one is interested only in the time-averaged

quantities from LES simulation, injecting information from the RANS solution within

the neural network will help in pruning the space of possible solutions. We plan to

extend the PGML framework for these high-dimensional systems with more complex

low- and high-fidelity data fusion in our future studies. We also highlight that the

PGML approach could be useful for generating physics consistent initial conditions to

accelerate large-scale high-fidelity computations with eliminating non-physical initial

transient time.
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CHAPTER VI

Concatenated Neural Networks for Projection-based Reduced Order

Modeling

The contents of this chapter has been published in Physical of Fluids (POF)1.

Abstract: The unprecedented amount of data generated from experiments, field

observations, and large-scale numerical simulations at a wide range of spatio-temporal

scales have enabled the rapid advancement of data-driven and especially deep learning

models in the field of fluid mechanics. Although these methods are proven successful

for many applications, there is a grand challenge of improving their generalizability.

This is particularly essential when data-driven models are employed within outer-loop

applications like optimization. In this work, we put forth a physics-guided machine

learning (PGML) framework that leverages the interpretable physics-based model with

a deep learning model. Leveraging a concatenated neural network design from multi-

modal data sources, the PGML framework is capable of enhancing the generalizability

of data-driven models and effectively protect against or inform about the inaccurate

predictions resulting from extrapolation. We apply the PGML framework as a novel

model fusion approach combining the physics-based Galerkin projection model and

long-short term memory (LSTM) network for parametric model order reduction of

fluid flows. We demonstrate the improved generalizability of the PGML framework

against a purely data-driven approach through the injection of physics features into

intermediate LSTM layers. Our quantitative analysis shows that the overall model

uncertainty can be reduced through the PGML approach especially for test data

coming from a distribution different than the training data. Moreover, we demonstrate

that our approach can be used as an inverse diagnostic tool providing a confidence

score associated with models and observations. The proposed framework also allows for

multi-fidelity computing by making use of low-fidelity models in the online deployment

of quantified data-driven models.

1Pawar, S., San, O., Nair, A., Rasheed, A., & Kvamsdal, T. (2021). Model fusion with physics-
guided machine learning: Projection-based reduced-order modeling. Physics of Fluids, 33(6), 067123.
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6.1 Introduction

Data-driven approaches are emerging as the new paradigm in computational modeling

of various problems in different branches of science and engineering, including fluid

dynamics [51, 46]. The universal approximation capability of neural networks [145]

makes them the powerful algorithm for complicated problems like turbulence closure

modeling [87], spatio-temporal super-resolution [109], state-estimation [259], and

nonlinear model order reduction [202]. One of the key issues with deep learning is

that they exhibit poor generalizability, i.e., they produce inaccurate prediction when

the test data is from a distribution far from that of the training data. This adversely

affects the trustworthiness of neural networks for scientific applications and embedding

the known physics to enhance the generalizability is a challenge and opportunity for

data-driven algorithm developments [166, 318, 313, 167].

While many techniques have sought to enforce physics into data-driven models, such

as regularizing the neural network with the governing equations or statistical constraints

[309, 405, 116], imposing conservation of physical quantities directly into neural network

[35, 249], embedding invariance property into neural network architecture [213, 421],

and incorporating inductive biases to respect exact conservation laws [126], they

offer many possibilities to fuse domain knowledge to improve the generalizability and

explainability of these models [167]. In this work, we propose the physics-guided

machine learning (PGML) framework that can answer the question of how to hybridize

data-driven (i.e., non-intrusive) and first-principles (i.e., intrusive) approaches that

are often utilized in fluid dynamics applications. The PGML framework is based on a

composite modeling strategy where the physics-based model is integrated within the

neural network architecture leading to a more generalizable learning engine.

The high-dimensional and multiscale nature of fluid flows makes the numerical

discretization methods computationally infeasible for many practical applications.

There are several techniques that aim at constructing the lower-order representation

of high-dimensional systems that can capture the essential features and are computa-

tionally orders of magnitude faster than full order model [326, 31, 369]. These reduced

order models (ROMs) are particularly appealing for outer-loop applications, such as

data assimilation [56, 357, 242], uncertainty quantification [131], model predictive

control [113, 149] that require multiple evaluations of a model for multiple inputs.

Proper orthogonal decomposition (POD) [144] and dynamic mode decomposition [189]

enabled ROMs are some of the most widely used methods among the fluid dynamics
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community. POD is often combined with Galerkin projection (GP) to model the

dynamics of the ROM [319, 325]. One of the limitations of intrusive approaches

like GP is that it requires the complete knowledge about the equations governing

the system’s dynamics. However, for many physical systems, the exact governing

equations are not available due to imperfect knowledge about the system. For example,

in many geophysical flows we might not have accurate models for processes such as

wind forcing, bottom friction, stratification, and other parameterization [184].

Lately, equation-free or non-intrusive reduced order modeling (NIROM) has drawn

great attention in the fluid mechanics community due to its flexibility and efficiency

for systems with incomplete dynamics and is undergoing rapid development with

various algorithms emerging from different perspectives [419]. In most of the NIROMs,

the main idea is to employ deep learning methods to construct nonlinear manifold

[122, 202, 231] and to model the temporal dynamics of ROMs [415, 306, 392, 130].

Despite the success of NIROMs for many complex nonlinear problems, the naive

deployment of NIROMs in multi-query applications is limited because they lack

connection with the physics-based model and might suffer from poor performance

in extrapolation regime [223]. Therefore, the hybrid modeling approach that can

overcome these drawbacks is warranted and to this end, we apply the PGML framework

that exploits the Galerkin projection model for the known physics and long-short term

memory (LSTM) neural network to model the unknown physics. We remark here

that the ideas from other approaches like physics-reinforced neural network (PRNN)

[64] and physics-embedded convolutional autoencoder (PhyCAE) [249] can be easily

integrated within the proposed PGML framework. Furthermore, improving model

predictions with composite models involving the composition (e.g., addition) of two

models has been shown to be effective, for example, in the field of computer experiments

using the nonstationary Gaussian processes [20, 79, 216, 75]. Such composite models

use one model to learn the global trends in the data and another to learn the local

volatility, thereby together enhancing predictions. In this case, the second model is

trained to predict the residual of the first model. We also refer readers to an interesting

discussion on improving predictions of such computer experiments using a small-scale

measurement error term called nugget [125], where the authors highlighted that the

nugget term can lead to enhanced surrogate models with better statistical properties.

In this study, we consider a dynamical system whose evolution is governed by
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partial differential equations (PDEs) such as the Navier-Stokes equations as follows

u̇ = f(u;x, t;µ), (6.1)

where u is the prognostic variable that depends on a set of parameters, f is the

nonlinear function that fully represents the physical processes and conservation laws,

and µ ∈ RNp is the parameterization such as Reynolds or Rayleigh numbers, and Np

refers to the number of parameters. Then, we can split f using a notion of known-

physics (i.e., f̂) and unknown-physics (i.e, π) parts. More precisely, f̂ refers to the

model’s dynamical core (i.e., a semi-discretized function of PDEs of mass, momentum,

energy conservation laws etc). However, there could be unknown physics that might

not be covered within the physics-based dynamical core model f̂ . For example, π

might refer to the physical and chemical processes that are either unknown or too

complex to be modeled (e.g., precipitation, long and short wave atmospheric radiation,

clouds, constituency transport, and chemical reactions, or any forcing function that is

not modeled in f̂). The augmented representation can then be written at an abstract

level as

u̇ = f̂(u;x, t;µ) + π(u;x, t;µ), (6.2)

where π encompasses all the unknown processes and parameterizations. To differentiate

the solutions between the full and partial physics, let’s assume that we have a physics-

based (but incomplete) model

u̇ = f̂(u;x, t;µ). (6.3)

Here, we can define δu as a natural way to quantify the unknown physics π as follows

δu =

√
||u1 − u2||2
||u2||2

, (6.4)

where u1 is the solution of Eq. 6.3 (i.e., without π), u2 is the solution of Eq. 6.2 with

π, and || · || is the L2 norm. One can easily quantify the level of unknown processes

using the definition given by Eq. 6.4, i.e. δu→ 0 when π → 0. On the other hand, a

higher value of δu means that our known physical model f̂ is poor.

The chief motivation behind the PGML framework is to exploit domain knowledge

to produce generalizable data-driven models. We demonstrate the application of the
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PGML framework to fuse intrusive and non-intrusive parametric projection-based

ROMs for incomplete dynamical systems that can be represented using Eq. 6.3. Apart

from improving the extrapolation performance of data-driven models, the PGML

framework can also be considered as an enabler for multi-fidelity computing through

a synergistic combination of low-cost/low-fidelity models with the high-fidelity data.

The field of multi-fidelity computing is gaining attention in computational science

and engineering, as it provides a way to utilize computationally cheap approximate

models with high-fidelity observations [290, 292]. This is particularly relevant to fluid

mechanics applications where there is a wealth of simplified models like potential

flow theory, Blasius boundary layer model, and continuum Darcy/pipe flow model.

One of the major challenges in multi-fidelity computing is determining the correlation

between low and high fidelity models, and the neural networks employed within the

PGML framework are capable of discovering this nonlinear relation. This first step

in the assessment of the new PGML model shows that the proposed hybrid reduced

order modeling framework could represent a viable tool for emerging digital twin

applications [313], where low fidelity models are often employed for computational

efficiency. Nonetheless, with available streams of observational data from the real

physical asset, PGML can enhance the fidelity of the whole system.

This chapter is structured as follows. We introduce the parametric ROM framework

in Section 6.2. We then discuss the a specific formulation of the PGML framework in

Section 6.3 for combining the domain knowledge with data. The numerical results for

the two-dimensional vorticity transport equation are detailed in Section 6.4. Finally,

Section 6.5 will present conclusions and ideas for the future work.

6.2 Parametric ROM Framework

The first step in parametric ROMs is the dimensionality reduction. We choose proper

orthogonal decomposition (POD) to compute the linear orthogonal basis functions.

POD is one of the most popular technique for dimensionality reduction in the fluid

mechanics community [349, 32]. POD provides the linear basis functions that minimizes

the error between the true data and its projection in the L2 sense compared to all

linear basis functions of the same dimension. Given the Ns snapshots of the data for

a variable of interest in the physical system, we can form the matrix A as follows

A =

[
u(1),u(2), . . . ,u(Ns)

]
∈ RN×Ns (6.5)
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where u(k) ∈ RN corresponds to individual snapshot of the solution in time. Then, we

perform the singular value decomposition (SVD) as follows

A = WΣV T =
Ns∑

k=1

σkwkv
T
k , (6.6)

where W ∈ RN×Ns is a matrix with orthonormal columns which represent the left-

singular vectors, V ∈ RNs×Ns is matrix with orthonormal columns representing the

right-singular vectors, and Σ ∈ RNs×Ns is a matrix with non-negative diagonal entries,

called singular values, arranged such that σ1 ≥ σ2 ≥ · · · ≥ σNs ≥ 0. In dimensionality

reduction, only the first Nr columns of W and V are retained along with the upper-left

Nr × Nr sub-matrix of Σ. The singular values σi give a measure of the quality of

information that is retailed in Nr-order approximation of the matrix A. The Nr

columns of W are referred to as the POD modes or basis functions, denoted as

Φµ = {ϕk}Nr
k=1. The amount of the energy retained by POD modes can be computed

using the quantity called the relative information content (RIC) as follows

RIC(Nr) =

∑Nr

j=1 σ
2
j∑Ns

j=1 σ
2
j

(6.7)

We utilize the Grassmann manifold interpolation [6, 428] to compute the basis

functions for a new set of parameters from available POD basis function computed

in the offline phase. In the offline phase, we calculate a set of POD basis functions

{Φi}Nc
i=1 corresponding to a set of parameters {µi}Nc

i=1, where Nc is the number of

parameterized data sets (e.g., Nc = 4 in this study since we utilize data snapshots

from Re = {200, 400, 600, 800} in our training). The Grassman manifold interpolation

consists of choosing a reference point S0 corresponding to the basis set Φ0, and then

mapping each point Si to a matrix Γi which represents a point on the tangent space

at S0 using logarithmic map LogS0
as follows

(Φi −Φ0Φ
T
0Φi)(Φ

T
0Φi)

−1 = W iΣiV
T
i , (6.8)

Γi = W itan−1(Σi)V
T
i . (6.9)

The matrix Γt corresponding to target operating point µt is computed by interpolating

the corresponding entries of matrices {Γi}Nc
i=1. When Np = 1 (e.g., µ ∈ {Re} in this
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work), typically Lagrange-type interpolation method is applied as follows

Γt =
Nc∑

i=1

( Nc∏

j=1
j ̸=i

µt − µj
µi − µj

)
Γi. (6.10)

The POD basis functions Φt corresponding to the test parameter µt is computed

using the exponential mapping as follows

Γt = W tΣtV
T
t , (6.11)

Φt = [Φ0V tcos(Σt) + W tsin(Σt)]V
T
t , (6.12)

where the trigonometric operators apply only to diagonal elements.

Once the basis functions corresponding to the test operating point are computed,

the reduced order representation of the high-dimensional state u(x, t;µ) is

u(x, t;µ) ≈ ur(x, t;µ) = Φµa(t;µ), (6.13)

where a(t;µ) ∈ RNr is the reduced state on the basis functions and is also called as

the modal coefficients and Φµ is the POD basis functions for a set of parameters µ.

The ROM is obtained by substituting the low-rank approximation given in Eq. 6.13

into the full order model defined in Eq. 6.2 and then taking the inner product with

test basis functions to yield a system of Nr ordinary differential equations (ODEs).

For many fluid mechanics problems, the mechanistic description of some variables

or processes is not available or insufficient for the desired task (i.e., the term π(·) is

unknown). Therefore, the physics-based intrusive approaches like Galerkin projection

ROM (GROM) provide us

ȧ = ΦT
µf(Φµa;x, t;µ). (6.14)

We note here that in GROM, the test basis functions are the same as the trial basis

which allows us to make use of the orthonormality, i.e., ΦT
µΦµ = INr .

One of the limitation with intrusive ROMs like GROM is that the governing

equations of the system have to be known exactly. If the governing equations are not

known exactly, the effect of unknown dynamics is truncated in GROMs and accurate

prediction is not achieved. This issue is mitigated in NIROMs that exploit machine
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(a) ML (e.g., LSTM) (b) PGML (e.g., LSTM+GROM)

Figure 6.1: General schematic of the PGML framework. The PGML is a modular deep
neural network architecture that makes it possible to inject known physics during the
training and deployment processes to reduce uncertainty, and consequently improve
the trade-off between efficiency and accuracy. Of particular interest, in this chapter we
consider (a) an end-to-end non-intrusive model reduction approach using a recurrent
neural network architecture based on the LSTM, and (b) its PGML version with the
GROM features embedded into the LSTM layers. As one of the main features of the
PGML framework, we can concatenate additional features into the middle layers of
neural networks without breaking the neural network training process.

learning (ML) algorithms to learn the reduced order dynamics from the observed data

[419]. The training data for the ML algorithm can be generated by using the same

data used for computing the POD basis functions as follows

α(t;µ) = ⟨u(x, t;µ),Φµ⟩, (6.15)

where α is the data projection coefficient, and the angle-parentheses refer to the

Euclidean inner product defined as ⟨p, q⟩ = pTq. The neural network is one of

the most successful algorithms for learning the dynamics on reduced order basis

functions. However, as the complexity of the problems increases, the number of

trainable parameters quickly explodes and neural networks suffer from high epistemic

uncertainty associated with limited training data. We address this problem by

hybridizing intrusive and non-intrusive approaches through our PGML framework.

More specifically, in Section 6.3 we present a PGML approach to combine a data-driven

neural network model and a projection-based ROM for improved model generalizability.
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Figure 6.2: Proposed physics-guided machine learning (PGML) framework for reduced
order modeling, where the physics-based features are directly embedded into hidden
layers of the neural network along with learned latent variables. Here, the physics-
based features obtained by GROM assist the LSTM based neural network models in
constraining the output to a manifold of the physically more realizable solution, and
lead to improved generalizability for the extrapolation regime beyond the training
data sets.

6.3 Physics-guided Machine Learning (PGML) Framework

In this Section, we detail different components of the proposed PGML framework

for modeling the reduced order representation of the high-dimensional nonlinear

dynamical system. In a broader sense, the PGML is a modular approach to leverage

the interpretable physics based model with a deep learning model. Thus, the PGML

makes it possible to inject known physics during the training and deployment processes

to reduce uncertainty, and consequently improve the trade-off between efficiency and

accuracy. Since it relies on injecting additional features into the internal layers of

neural networks as shown in Figure 6.1, it can be also viewed as a highly generic

approach to embed simplified theories, physics-based kernels or features directly into

deep neural network models. For example, in our recent study on aerodynamics load

calculations [287], we show that embedding a panel method significantly improves the

deep learning based surrogate models (e.g., achieved approximately 75% reduction in

uncertainty). In this chapter, our aim is to demonstrate how the PGML combines

physical information with POD based GROM, and explore numerically how these

physics-based features assist the neural network models in constraining the output to a
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manifold of the physically more realizable solution and lead to improved generalizability

for the extrapolation regime beyond the training data sets. Moreover, we study the

sensitivity of the layer-wise location of the physics injection. Here, we highlight that

there are more advanced hyperparameter tuning methods on designing automated

neural network architectures (e.g., using genetic algorithms [377]), and these automated

machine learning approaches can be utilized to find the optimal layer(s) to inject the

physics in the PGML architectures, a topic we would like to explore in our future

studies.

Different components of the PGML framework for ROM are illustrated in Figure 6.2.

First, we present the formulation of the LSTM neural network for time series modeling

and then discuss its application within the PGML framework. In a typical ML

algorithm for time series modeling, the model is trained on a time series of observable

{o(1), . . . ,o(T )}, where o ∈ Rdo , sampled at a fixed time interval. The LSTM neural

network is one of the most popular ML algorithms for time-series modeling due to its

ability to model long-term temporal dependencies without suffering from the vanishing

gradient problem of recurrent neural network [142]. Recently, LSTM has also been

very successful in modeling high-dimensional spatio-temporal chaotic systems and for

ROMs [281, 382, 230, 383, 133]. The general functional form of the models used for

time series forecasting can be written as

h(t) = fhh (o(t),h(t−1)), (6.16)

õ(t+1) = f oh(h(t)), (6.17)

where o(t) is the current observable and õ(t+1) is the forecast for the observable

at the next time step o(t+1) and h(t) ∈ Rdh is the hidden state. Here. fhh is the

hidden-to-hidden mapping and f oh is the hidden-to-output mapping.

The LSTM mitigates the issue with vanishing (or exploding) gradient by employing

the gating mechanism that allows information to be forgotten. The equations that

implicitly define the hidden-to-hidden mapping from hidden state from the previous

time step (i.e., h(t−1)) and input vector at the current time step (i.e., o(t)) to the
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forecast hidden state (i.e., h(t)) can be written as

g
(t)
f = σf (Wf [h(t−1),o(t)] + bf ), (6.18)

g
(t)
i = σi(Wi[h

(t−1),o(t)] + bi), (6.19)

c̃(t) = tanh(Wc[h
(t−1),o(t)] + bc), (6.20)

c(t) = g
(t)
f ⊙ c(t−1) + g

(t)
i ⊙ c̃(t), (6.21)

g(t)
o = σo(Wo[h

(t−1),o(t)] + bo), (6.22)

h(t) = g(t)
o ⊙ tanh(c(t)), (6.23)

where g
(t)
f , g

(t)
i , g

(t)
o ∈ Rdh are the forget gate, input gate, and output gate, respectively.

The o(t) ∈ Rdo is the input vector at time t, h(t) ∈ Rdh is the hidden state, c(t) ∈ Rdh

is the cell state, Wf , Wi, Wc, Wo ∈ Rdh×(dh+do) are the weight matrices, and

bf , bi, bc, bo ∈ Rdh are the bias vectors. The symbol ⊙ denotes the element-wise

multiplication, and σ is the sigmoid activation function. The activation functions

σf , σi, σo are sigmoids. The hidden-to-output mapping is given by a fully connected

layer with a linear activation function as follows

õ(t+1) = Woh
t, (6.24)

where Wo ∈ Rdo×dh .

When we apply the LSTM neural network for building NIROMs, the reduced order

state of the system at a future time step, i.e., α(t+1), is learned as the function of a

short history of d past temporally consecutive reduced order states as follows

α(t+1) = F(z(t), z(t−1), . . . ,z(t−d+1)

︸ ︷︷ ︸
z(t):(t−d+1)

;θ), (6.25)

where F(· ;θ) is the nonlinear function parameterized by a set of parameters θ,

and z refers to input features consisting of the POD modal coefficients and a set of

parameters governing the system, i.e., z ∈ RNr+Np . The LSTM is trained using the

backpropagation through time (BPTT) algorithm and the parameters are optimized

as

θ∗ = arg minθ
1

N − d+ 1

N∑

n=d

||F(z(t):(t−d+1)
︸ ︷︷ ︸

ζ

;θ)−α(t+1)||22. (6.26)

We employ (Nl − 1) LSTM layers and a single dense layer with a linear activation
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function as the last layer. Therefore, the ML model can be written as

FML(ζ;θ) = hNl
(·;ΘNl

) ◦ · · · ◦ h2(·;Θ2) ◦ h1(ζ;Θ1), (6.27)

where the output of each LSTM layer (i = 1, . . . , Nl − 1) is hi(·;Θi) ∈ Rd×Nh and the

last dense layer maps the final hidden state to the output, i.e., hNl
(·;ΘNl

) : RNh → RNr .

Here, Nh is the number of hidden units in the LSTM cell and we use the constant

number of hidden units across all LSTM layers.

In the PGML framework, the features extracted from the physics-based model are

embedded into the ith intermediate hidden layer along with the latent variables as

follows

FPGML(ζ;θ) = hNl
(·;ΘNl

) ◦ · · · ◦ C(hi(·;Θi),a
(t):(t−d+1))︸ ︷︷ ︸

Physics injection

◦ · · · ◦ h1(ζ;Θ1), (6.28)

where C(·, ·) represents the concatenation operation and a are the physics-based

features (i.e., the GROM modal coefficients). Therefore, the output of ith layer will be

in Rd×(Nr+Nh). We highlight here that the physics-based features are embedded only at

a single layer of the neural network. Therefore, at which layer shall the physics-based

features be embedded becomes another hyperparameter of the PGML framework.

While some guidelines or rule of thumb can be established based on the interplay

between known and unknown physics, a thorough systematic investigation is needed.

Methods like layer-wise relevance propagation can be adopted to bring interpretability

to complex neural networks in the PGML framework and we consider it as part of

our future work. The physics-based features assist the LSTM network in constraining

the output to a manifold of the physically realizable solution and leads to improved

generalizability for the extrapolation regime. Even though we demonstrate the PGML

framework for POD-ROM, we emphasize here that the PGML framework is highly

modular and can also be applied to nonlinear, cluster-based, and network-based ROMs.

For example, we do not need to restrict to only linear basis construction methods

like POD and the PGML framework can be easily extended to nonlinear manifold

generation methods like convolutional autoencoders [122, 202, 91].

6.4 Vortex Merging Experiments

We apply the PGML framework to the two-dimensional vorticity transport equation

for the vortex merger problem as a prototypical test case. This problem involves
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the study of the merging of two co-rotating vortices. The two-dimensional vorticity

transport equation can be written as

∂ω

∂t
+ J(ω, ψ) =

1

Re
∇2ω + π(x, t;µ), (6.29)

∇2ψ = −ω, (6.30)

where ω is the vorticity defined as ω = ∇× u, u = [u, v]T is the velocity vector, ψ is

the streamfunction, Re is the Reynolds number parameterizing the system and π(·)
represent the unknown physics. Using the notion introduced in Eq. 6.3, we can rewrite

Eq. 6.29 as
∂ω

∂t
= f̂(x, t;µ) + π(x, t;µ), (6.31)

where

f̂(x, t;µ) =
1

Re
∇2ω − J(ω, ψ). (6.32)

The two terms on the right hand side of Eq. 6.32, i.e., the linear Laplacian term

and the nonlinear Jacobian term represent the known physics of the system and are

defined as follows

∇2ω =
∂2ω

∂x2
+
∂2ω

∂y2
, (6.33)

J(ω, ψ) =
∂ψ

∂y

∂ω

∂x
− ∂ψ

∂x

∂ω

∂y
. (6.34)

To demonstrate the proposed PGML framework for ROMs, we assume that π is

unknown. Therefore, for the best case scenario, the known processes can be represented

by
∂ω

∂t
+ J(ω, ψ) =

1

Re
∇2ω, (6.35)

together with the kinematic relationship given by Eq. 6.30. As discussed in Section 6.2,

the reduced order approximation of the vorticity and streamfunction fields can be

written as

ω(x, y, t) ≈
Nr∑

k=1

ak(t)ϕ
ω
k (x, y), (6.36)

ψ(x, y, t) ≈
Nr∑

k=1

ak(t)ϕ
ψ
k (x, y), (6.37)
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The vorticity and streamfunction share the same time dependent modal coefficients

as they are both related by the kinematic relationship given in Eq. 6.30. Furthermore,

the POD basis functions of the streamfunction can be obtained by solving the below

Poisson equation

∇2ϕψk = −ϕωk . (6.38)

The GROM for the vorticity transport equations considering only the known physics

can be written as

ȧ = La + aTNa, (6.39)

or more explicitly,

dak
dt

=
Nr∑

i=1

Likai +
Nr∑

i=1

Nr∑

j=1

Nij
k aiaj, (6.40)

where L and N are the linear and nonlinear operators. We highlight that the model

provided by Eq. 6.40 does not have access to the unknown processes π. Since it has

access to the transport operators given by Eq. 6.32, it is thus referred to a physics-

based model (i.e., an intrusive reduced order model) in this work, even though its

basis functions are generated from data. Instead of the POD basis function expansion

provided by Eq. 6.36-6.37, one can generalize the model using a standard Fourier

Galerkin approach [334], completely eliminating the dependency on a pre-recorded

data set on building a physics based ROM. The linear and nonlinear operators for the

vorticity transport equation are as follows

Lik =

〈
1

Re
∇2ϕωi , ϕ

ω
k

〉
, (6.41)

Nijk =

〈
− J(ϕωi , ϕ

ψ
j ), ϕωk

〉
, (6.42)

where the angle-parentheses refer to the Euclidean inner product defined as ⟨x,y⟩ =

xTy =
∑N

i=1 xiyi. We apply the third-order Adams-Bashforth (AB3) numerical scheme

to solve the system of ODEs given in Eq. 6.40. In discrete sense, the update formula

can be written as

a
(n+1)
k = a

(n)
k + ∆t

s∑

q=0

βqG(a
(n−q)
k ), (6.43)

where s and βq are the constants corresponding to AB3 scheme, which are s = 2, β0 =

23/12, β1 = −16/12, and β2 = 5/12. Here, the operator G(ak) is the right hand side
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of Eq. 6.40 as follows

G(ak) =
Nr∑

i=1

Likai +
Nr∑

i=1

Nr∑

j=1

Nij
k aiaj. (6.44)

We start with an initial vorticity field of two Gaussian-distributed vortices,

ω(x, y, 0) = exp
(
−π

[
(x− x1)2 + (y − y1)2

])

+ exp
(
−π

[
(x− x2)2 + (y − y2)2

])
, (6.45)

where their centers are initially located at (x1, y1) = (3π/4, π) and (x2, y2) = (5π/4, π).

We utilize an arbitrary array of decaying Taylor-Green vortices as the unknown

processes parameterized by µ = {Re} i.e., we have

π(x, y, t; Re) = −γ e−t/Recos(3x)cos(3y). (6.46)

The parameter γ controls the strength of unknown physics compared to the known

physics. The synthetic data for building the ROM is generated by solving Eq. 6.29

on the computational domain (x, y) ∈ [0, 2π] with periodic boundary conditions

and 2562 spatial discretization. The system is evolved for 20 time units with a

time-step size of ∆t = 1 × 10−3. The data snapshots for the training are ob-

tained for Re = {200, 400, 600, 800} and the trained models are evaluated for Re =

{1000, 1500, 2000, 3000}. Specifically, the physical variable of interest is the vorticity

field, i.e., u = {ω} and the unknown source term π(·) is given in Eq. 6.46. We retain

Nr = 8 POD modes for all Reynolds numbers and these POD modes captures more

than 99% of the energy of the system as illustrated in Fig. 6.3. Instantaneous snapshots

of the vorticity field for different Reynolds numbers at different time instances are

displayed in Fig. 6.4. We note here that the vorticity field shown in Fig. 6.4 is obtained

by solving the vorticity transport equation assuming that there is no unknown physics,

i.e., setting γ = 0.0.

The LSTM network in the ML model consists of Nl = 5 layers with the first four

layers as the LSTM layers and the dense layer with a linear activation function as the

output layer. Each LSTM layer has Nh = 80 hidden units and tanh activation function

is applied. From our experimentation with the hyperparameters, we found that the

results were not improving by employing deeper network architecture and in some

cases, deeper networks led to poor performance due to overfitting. We utilize d = 3,
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Figure 6.3: Amount of the kinetic energy captured by each POD modes.

i.e., the state of the system for three previous time steps are used to predict the future

state. Since we are using the information of only d past temporally consecutive states

as the input, the LSTM can capture dependencies up to d previous time steps. During

the online deployment, the initial condition for the first d time steps is provided. This

information is used to predict the forecast state at (d+ 1)th time step. Then the state

of the system from 2−(d+1) is used to predict the forecast state at (d+2)th time step.

This procedure is continued until the final time step. The PGML framework also uses

the same LSTM network architecture and the features from the Galerkin projection

model (i.e., GROM modal coefficients) are embedded into the third LSTM layer. We

reiterate here that the layer at which the physics based features should be embedded

is another hyperparameter of PGML framework and methods like neural architecture

search can be used for complex problems [229]. The online deployment of the PGML

framework is similar to the ML framework. We characterize the generalizability of

the ML and PGML model through uncertainty estimate computed using the deep

ensembles method where ensemble of neural networks are trained with different

initialization of parameters [372, 138, 193]. In deep ensembles method, the prediction

from the ensemble of neural networks is interpreted as the epistemic uncertainty.

Despite the simplicity of this method, it is appealing due to its scalability and strong

empirical results showing that the uncertainty estimate is as good as the Bayesian
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neural networks [193]. The quantitative performance for ML and PGML framework is

measured through the statistics of the weighted root mean squared error (WRMSE)

defined as

ϵ(i) =
Nr∑

k=1

λk

(
1

Nt

Nt∑

n=1

(α
(n)
k − α̃

(n)
k (i))2

)1/2

, (6.47)

where λk = σ2
k/(

∑Nr

j=1 σ
2
j ) represents the energy in each POD mode and α̃k(i) is the

prediction of the modal coefficients for ith ensemble. Each neural network in the

ensemble set is initiated by using a different initial seed. The statistics of the WRMSE,

i.e., the mean and the standard deviation are computed as follows

ϵ̄ =
1

Ne

Ne∑

i=1

ϵ(i), sϵ =

(∑Ne

i=1(ϵ(i)− ϵ̄)2
Ne − 1

)1/2

, (6.48)

where Ne is the size of ensemble of the neural network. We set Ne = 30 for both ML

and PGML models in our study.

Fig. 6.5 shows the temporal evolution of selected modal coefficients predicted

by true projection, GP, ML, and PGML models at Re = 1500 for γ = 0.01. The

ensemble-averaged modal coefficients predicted by the PGML model matches very

accurately with the true projection compared to the GP and ML model. We also

observe that the ensemble-average prediction by the ML model is also improved

compared to the GP model. However, the prediction of the ML model is marred by

high uncertainty compared to the PGML model prediction. From Fig. 6.4, we can

notice that the flow is topologically very similar at different Reynolds numbers and

the main difference is in the amplitude of the vorticity field. Therefore, the task of

extrapolation for this problem is not very challenging for neural networks. However, in

this study, we demonstrate the proof of concept to show the benefit of PGML over a

purely data-driven ML model, and evaluating the PGML framework for topologically

different data sets is a part of our future work. Fig. 6.6 depicts the evolution of

selected modal coefficients predicted by true projection, GP, ML, and PGML models

at Re = 3000 for γ = 0.01. The ensemble-averaged modal coefficient predicted by

the ML model is very inaccurate with high uncertainty as the test Reynolds number

is significantly different from the training Reynolds numbers. The magnitude of the

unknown source term is relatively small for γ = 0.01, and the GP model can predict

the modal coefficient with sufficient accuracy. The PGML model achieves the most
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accurate prediction with less uncertainty as shown in Fig. 6.6. Here, we would like

to emphasize that the accuracy of any supervised ML approach mostly depends on

the quality and relevance of the training data set. Even though all ML models are

trained from the same data set, the underpinning optimization problem yields different

predictor model (i.e., a different local minimum) at each realization due to random

initialization of the weights. One of our chief goals in developing the PGML approach

is to reduce the uncertainty of these predictor models through an information or

knowledge injection process. Our numerical results support that the uncertainty of the

ML models could be improved significantly through injection of the GROM features

that are derived from the known part of the governing equations.

In Fig. 6.7, the temporal evolution of the last mode (i.e., a8) predicted by true

projection, GP, ML, and PGML model is displayed for different magnitudes of the

unknown source term. Overall, we can observe that the PGML framework can predict

the modal coefficients with high confidence up to γ = 0.04 and the prediction for

γ = 0.1 is less certain. One of the reasons behind inaccurate prediction at γ = 0.1 can

be due to a very poor correlation between the known physics in the GP model and

the actual physics of the system.

We also evaluate the capability of GP, ML, and PGML framework in reconstructing

the vorticity field using the RMSE between the true vorticity field and the predicted

vorticity field. The RMSE is defined as

RMSE(t) =

(
1

N

N∑

i=1

(
ωT (xi, t)− ωR(xi, t)

)2)1/2

, (6.49)

where N is the spatial resolution (i.e., N = Nx × Ny), ωT is the true projection

of the vorticity field, and ωR is the vorticity field predicted by ROM (computed

using Eq. 6.36). The ωR is computed using the ensemble-averaged modal coefficients

predicted by ML and PGML model. Fig. 6.8 shows the time evolution of RMSE for

different magnitudes of the source term at Re = 1000 and Re = 1500. We can observe

that when the complete physics of the vortex-merging process is known (i.e., γ = 0.0),

the RMSE for both ML and PGML framework is less than the GP model at Re =

1000. However, at Re = 1500, the RMSE for the ML model is higher than the GP

model. This is due to the poor extrapolation capability of a purely data-driven ML

model. On the other hand, the PGML model can successfully use the physics-based

information from the GP model leading to less RMSE compared to both GP and ML
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models. The vorticity field predicted by the GP model quickly diverges from the true

vorticity field in the presence of unknown physics and overall the PGML prediction

is better than the ML model as illustrated in Fig. 6.8. The difference between the

vorticity field at the final time t = 20 predicted by true projection modal coefficients

and GP, ML, and PGML models is depicted in Fig. 6.9.

Table 6.1 reports the quantitative analysis of GP, ML, and PGML models at

Re = {1000, 1500} for different magnitudes of the unknown source term. For the ML

and PGML models, the WRMSE mentioned in Table 6.1 are calculated using Eq. 6.50

and its statistics is computed with Eq. 6.48. For the GP model, we report WRMSE

computed by using

ϵ =
Nr∑

k=1

λk

(
1

Nt

Nt∑

n=1

(α
(n)
k − a

(n)
k )2

)1/2

, (6.50)

where αk is the set of true projection coefficients, and ak refers to the GROM coefficients.

In Table 6.1, γ = 0.0 corresponds to the special case where the physics is completely

available to us. In that case, if the closure error is also negligible there is no need

to build such a stochastic learning machine (i.e., a neural network derived from true

projection coefficients), so a physics-based model (e.g., GP) will provide an accurate

prediction. Moreover, as verified by Table 6.1, we would expect that the GP approach

should indeed yield more accurate results than the ML (or PGML) approach drawn

from true projection coefficients, since the GP captures almost 100% of RIC at γ = 0.0.

Furthermore, from Table 6.1 we can see that the WRMSE for the ML model is

considerably higher for Re = 1500 at γ = 0.0 due to the poor extrapolation ability of

pure data-driven models. However, the WRMSE for the PGML model is significantly

lower than the ML. Yet, the WRMSE for the PGML model slightly higher than the

GP model even though the reconstructed vorticity field is more accurate as illustrated

in Fig. 6.8. The WRMSE assigns more weightage to the first few modes and therefore

the inaccurate prediction for dominant modes leads to a higher value of WRMSE

for the PGML model. Being the primary focus of this study, for higher values of γ,

the dynamics of the system is not known exactly and it gives us an opportunity to

introduce a stochastic neural network model as a predictive engine. As demonstrated

in Table 6.1, the trustworthiness of the pure data-driven ML model is less due to the

high value of the uncertainty in the prediction (i.e., high standard deviation as shown

in parenthesis). However, once we incorporate physics-based features from the GP

model in the PGML framework, the uncertainty in the prediction is reduced by almost
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one order magnitude.

We also consider the hypothetical situation where δu = 0.94 (so the physics is

almost completely unknown and as shown in Figure 6.9, and unknown physics severely

dominates the vortex merging processes), then it is not surprising that the PGML

framework would not be in favor of the standard ML because of the injection of the

unrepresentative physics. Considering a false-negative analogy, this further verifies the

success of the PGML methodology and will automatically indicate that the injected

physics is not representative of the underlying processes. In fact, this feature of the

PGML framework could act as a diagnostic approach in many digital twin applications

to physical systems. There are numerous simulation packages specifically designed

for modeling and computing f̂ in these systems. On the other hand, exhaustive

data sets become more and more available to generate versatile machine learning

based predictive models. To this end, a confidence score δu defined in Eq. 6.4 can

be utilized to assess the relative modeling strength of principled and data-driven

models, where lower δu might indicate that the principled model is a reliable tool

and the physics-based features from the principled model should be incorporated into

data-driven models. This diagnostic aspect and the investigation of such an adaptive

composite model will be the subject of our future studies.

To further investigate the limits of the proposed PGML approach, we carry out

the quantitative analysis for Re = 2000 and Re = 3000. Table 6.2 lists the WRMSE

and its statistics defined by Eq. 6.48 for higher Reynolds numbers. It can be observed

that the WRMSE and the uncertainty in the prediction are significantly lower for

the PGML model compared to the ML model for both Reynolds numbers. For all

the numerical experiments conducted at different δu levels, it can be concluded that

the PGML approach leads to significantly more accurate results compared to the ML

approach, which clearly demonstrates the feasibility of the proposed physics injection

approach for the projection based reduced order models.

Furthermore, we reiterate here that GROM features can be embedded at any layer

of the neural network or perhaps at all hidden layers. We investigate the effect of

embedding GROM features at the specific layer of the neural network and present

the quantitative results in Table 6.3 for γ = 0.01 at different Reynolds numbers. We

notice that the ensemble-averaged (i.e., Ne = 30 ensembles from different initialization)

WRMSE and the uncertainty estimate is minimum at all Reynolds numbers when

the GROM features are embedded at each of the hidden layers of the neural network.

Although our systematic comparison in Table 6.3 highlights the underlying trends, the
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γ
Re = 1000 Re = 1500

δu GP ML PGML δu GP ML PGML

0.00 0.00 0.075 0.262
(0.190)

0.064
(0.012)

0.00 0.138 0.959
(0.632)

0.192
(0.024)

0.01 0.25 1.564 0.258
(0.194)

0.110
(0.012)

0.26 1.563 0.852
(0.521)

0.300
(0.029)

0.02 0.46 6.033 0.316
(0.113)

0.181
(0.026)

0.47 6.061 0.998
(0.458)

0.498
(0.040)

0.03 0.61 12.809 0.465
(0.387)

0.259
(0.040)

0.62 12.905 1.352
(0.582)

0.784
(0.092)

0.04 0.72 20.843 0.726
(0.591)

0.312
(0.047)

0.72 21.082 1.828
(0.992)

1.116
(0.149)

0.10 0.94 70.935 1.910
(0.804)

1.424
(0.356)

0.94 71.923 5.252
(2.387)

5.842
(6.227)

Table 6.1: The mean of weighted root mean square error ϵ̄ (and its standard deviation
sϵ) defined by Eq. 6.48 in predicting the modal coefficients for the vortex merging
flows at Re = {1000, 1500}. The training has been performed using data for Re =
{200, 400, 600, 800}. Note that the control parameter γ adjusts the relative strength
between known-physics and unknown-physics (i.e., γ = 0 refers to the special case
when physics is fully known), and δu quantifies the level of unknown processes.

optimal neural network architecture for the PGML framework can be discovered using

techniques like AutoML [135] and we consider this as part of our future work. Moreover,

it is also worth mentioning that we intentionally use the same architecture in our

comparisons between the ML and PGML models throughout our study. Intuitively,

a PGML model might result in a simpler (fewer hyperparameters) model than a

physics-agnostic ML model.

6.5 Discussion and Conclusion

Although advanced machine learning (ML) models like deep learning networks are

powerful tools for finding patterns in complicated datasets, the number of trainable

parameters (weights) quickly explodes as these neural network models become complex,

adversely affecting their interpretability and hence their trustworthiness. Our chief aim

in this study is to illustrate how physics can be injected into these neural networks to

improve the trustworthiness of the overall system. With this in mind, we introduce a
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γ
Re = 2000 Re = 3000

δu GP ML PGML δu GP ML PGML

0.00 0.00 0.221 4.087
(2.179)

0.331
(0.062)

0.00 0.360 6.017
(0.833)

0.595
(0.147)

0.01 0.26 1.564 3.542
(2.003)

0.503
(0.086)

0.27 1.563 5.636
(0.904)

0.867
(0.219)

0.02 0.48 6.033 4.412
(2.297)

0.809
(0.095)

0.48 6.061 7.309
(1.036)

1.542
(0.474)

0.03 0.63 12.809 5.046
(2.364)

1.441
(0.342)

0.64 12.905 10.813
(2.811)

3.345
(1.071)

0.04 0.73 20.843 6.402
(3.409)

2.384
(0.589)

0.74 21.082 15.439
(3.931)

5.813
(1.519)

0.10 0.94 70.935 17.672
(14.194)

11.353
(6.816)

0.95 71.923 45.863
(13.155)

31.468
(9.623)

Table 6.2: The mean of weighted root mean square error ϵ̄ (and its standard deviation
sϵ) defined by Eq. 6.48 in predicting the modal coefficients for the vortex merging
flows at Re = {2000, 3000}. The training has been performed using data for Re =
{200, 400, 600, 800}.

physics-guided ML (PGML) framework that fuses first-principles with neural-network

models, and explore complementary physics versus statistics issues that arise in the

development of the PGML framework. The PGML framework puts particular emphasis

on the physics-based features and embeds them at an intermediate layer of the neural

network. The robustness of the PGML framework is successfully demonstrated for

the vortex-merging process in the presence of an array of Taylor-Green vortices as

the unknown source term. Our results indicate that the PGML framework can

give considerably accurate prediction in the extrapolation regime compared to its

counterpart, i.e., pure data-driven ML model. The physics-based features from the

GP model also ensures that the model uncertainty in the neural network prediction is

reduced. The PGML framework is able to achieve very accurate prediction with a

very small uncertainty at Reynolds number substantially different from the training.

Finally, we also emphasize that the PGML framework is highly modular, and it

naturally allows for the multi-fidelity model fusion in different branches of science and

engineering.

The natural extension of the present study is to assess the PGML framework for

much more complex flows, where there is a significant variation between the train
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Model Re = 1000 Re = 1500 Re = 2000 Re = 3000

PGML-1 0.108 (0.018) 0.259 (0.030) 0.446 (0.071) 1.119 (0.507)

PGML-2 0.114 (0.015) 0.286 (0.023) 0.450 (0.055) 0.774 (0.157)

PGML-3 0.110 (0.012) 0.300 (0.029) 0.503 (0.086) 0.867 (0.219)

PGML-A 0.108 (0.012) 0.267 (0.033) 0.397 (0.057) 0.596 (0.093)

Table 6.3: The mean of weighted root mean square error ϵ̄ (and its standard deviation
sϵ) defined by Eq. 6.48 in predicting the modal coefficients for the vortex merging flows
in case of γ = 0.01 at different Reynolds numbers. The training has been performed
using data for Re = {200, 400, 600, 800} and the physics-based features are embedded
at different intermediate layer of the neural network. For example, in PGML-1 model,
the GROM features are embedded at the first hidden layer. For the PGML-A model,
GROM features are embedded at each hidden layer of the neural network.

and test data. Other unanswered questions are understanding how neural network

assigns importance to physics-based features, at which layer shall the physics-based

features be embedded, and methods from machine learning community can be utilized

for this [323, 255]. Another direction for future work will be to use other uncertainty

quantification methods like Monte Carlo dropouts, Bayesian neural networks to

quantify model uncertainty.

Moreover, the PGML approach might lead to modular data-driven workflows

across multiple scientific domains. Such design of a hierarchically sequential learning

algorithm allows the embedding of simplified theories, possible symmetries, space-time

correlations, scaling laws, and other physics-based kernels, multimodal data sources

or features directly into deep neural network models. These physics-based features

often assist the deep neural network models in constraining the output to a manifold

of the physically realizable solution. Consequently, this concatenated neural network

design can lead to improved generalizability for the extrapolation regime beyond

the training data sets, as illustrated in this chapter in the context of projection

based model reduction. In our future studies, we will also exploit how to develop an

automatic-PGML framework to determine the optimal architecture for multifidelity

physics injection.
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Figure 6.4: Temporal evolution of the vorticity field at different time instances for
several Reynolds number investigated in this study. We note here that the vorticity
field is presented for γ = 0.0.
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Figure 6.5: Temporal evolution of selected modal coefficients for the vortex-merger
test case at Re = 1500 and γ = 0.01. The ML (left) and PGML (right) represent the
average of the modal coefficients predicted by all neural networks trained using MSE
loss function with different seeds for initialization of the parameters. Although the
ensemble-averaged ML model provides more accurate predictions than the GP model,
there is a large standard deviation (SD) band over all ML model predictions.
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Figure 6.6: Temporal evolution of selected modal coefficients for the vortex-merger
test case at Re = 3000 and γ = 0.01. The ML (left) and PGML (right) represent the
average of the modal coefficients predicted by all neural networks trained using MSE
loss function with different seeds for initialization of the parameters. The ensemble-
averaged ML model provides very inaccurate predictions than the GP model and there
is a large standard deviation (SD) band over all ML model predictions.
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Figure 6.7: Temporal evolution of the last modal coefficient for the vortex-merger test
case at Re = 1500 and for different magnitudes of the source term. The dashed red
curve represent the average of the modal coefficients predicted by ML model (left),
the PGML model (right).
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Figure 6.9: The error in the prediction of the vorticity field at the final time t = 20
for the GP model (top), ML model (middle), and PGML model (bottom). The error
corresponds to the vortex-merger test case at Re = 1500.
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CHAPTER VII

Data Assimilation in Latent Space with Non-intrusive Reduced Order

Models

The contents of this chapter is under review at Journal of Advances in Modeling Earth

Systems1.

Abstract: There is a growing interest in developing data-driven reduced-order

models for atmospheric and oceanic flows that are trained on data obtained either

from high-resolution simulations or satellite observations. The data-driven models

are non-intrusive in nature and offer significant computational savings compared to

large-scale numerical models. These low-dimensional models can be utilized to reduce

the computational burden of generating forecasts and estimating model uncertainty

without losing the key information needed for data assimilation to produce accurate

state estimates. This paper aims at exploring an equation-free surrogate modeling

approach at the intersection of machine learning and data assimilation in Earth system

modeling. With this objective, we introduce an end-to-end non-intrusive reduced-order

modeling (NIROM) framework equipped with contributions in modal decomposition,

time series prediction, optimal sensor placement, and sequential data assimilation.

Specifically, we use proper orthogonal decomposition (POD) to identify the dominant

structures of the flow, and a long short-term memory network to model the dynamics

of the POD modes. The NIROM is integrated within the deterministic ensemble

Kalman filter (DEnKF) to incorporate sparse and noisy observations at optimal

sensor locations obtained through QR pivoting. The feasibility and the benefit of

the proposed framework are demonstrated for the NOAA Optimum Interpolation

Sea Surface Temperature (SST) V2 dataset. Our results indicate that the NIROM is

stable for long-term forecasting and can model dynamics of SST with a reasonable

level of accuracy. Furthermore, the prediction accuracy of the NIROM gets improved

by almost one order of magnitude by the DEnKF algorithm.

1Pawar, S., & San, O. (2022). Equation-free surrogate modeling of geophysical flows at the
intersection of machine learning and data assimilation. arXiv preprint arXiv:2205.13410.
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7.1 Introduction

The integration of models and observations has greatly transformed the predictions

of the Earth system, including weather forecasts and climate projections [119, 26].

Observations can be either used to estimate the initial condition for the prediction

that is consistent with the present state of the Earth system through the process

of data assimilation or to reduce model errors by advancing the representation of

certain processes within a model. Data assimilation (DA) is a well-established method

that involves combining information coming from the forecast model with available

observations and are used extensively in numerical weather prediction (NWP) [221,

305, 260]. DA can also be viewed from the Bayesian perspective that involves fusing

data (observations) with the prior knowledge (i.e., mathematical representation of

physical processes; model output) to obtain an estimate of the distribution of the true

state of the process [401, 162].

DA methods are usually classified into two types, variational approaches and

sequential approaches [206]. Variational DA is formulated as the constrained optimiza-

tion problem defined by a cost function to minimize the discrepancy between the prior

knowledge (i.e., the computational model) and observations. On the other hand, the

sequential DA involves evolving the state of the system with background information

until observations get available, and then updating the system’s state. One of the key

components of the DA cycle is the forecast model. The forecast models used within

DA are based on solving the governing equations or the best approximation of physical

processes numerically using spatial and temporal discretization on a computational

grid [27]. Despite their success, the current forecast models have difficulty representing

complex processes like turbulence, convection and clouds [418, 312] leading to high

uncertainty in the prediction [422]. Additionally, the computational cost of ensemble

forecasting (using many realizations with perturbed initial conditions) with numerical

models is huge. As a result, the forecast model is one of the major limiting factors in

DA, and this has spurred interest in using data-driven methods for the Earth system

modeling that can deliver both computational efficiency and better representation of

physical processes derived from data [85, 43].

Data-driven methods have been applied to a wide range of problems in Earth

system modeling [318]. For example, machine learning approaches have been explored

for parameterization of subgrid-scale processes [316, 110, 40], precipitation nowcasting

[345], superresolution of wind and solar data [358], and weather forecasting [399].
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Some of the studies with the data-driven weather prediction (DDWP) have already

started showing promising results with similar if not superior performance compared

to state-of-the-art NWP models [344, 282, 317]. These DDWP models leverage

deep learning methods like a convolutional neural network, Fourier neural operator,

and recurrent neural network that are trained on data obtained from reanalysis

products [315]. Furthermore, data-driven models can be augmented by taking up the

information from physical knowledge, or at least respecting the conservation properties

[167, 164, 60, 154]. Some of the work towards these directions include enforcing the

physical laws or statistical constraint into the loss function [309, 405], tailoring the

architecture design to enforce certain symmetry or conservation laws [249, 34, 288],

symbolic regression for equation discovery [421], and end-to-end learning strategy

[106].

These studies indicate that ML has the potential to improve scientific knowledge

(and hence models), especially when we cannot express our understanding in the form of

mathematical equations in physics-based models [114, 52]. DA could benefit a lot from

ML, where a forecast model is replaced with a hybrid model that incorporates a neural

network as a component of the physical model [150, 286] or as a complete replacement

with a data-driven model for forecasting and state estimation [63, 291]. Another

advantage of an ML-based emulator is the quick computation of backpropagation

gradient with automatic differentiation that can be used as a replacement for expensive

adjoint solvers within variational DA [232, 69]. Similarly, some of the challenges with

ML such as handling uncertain and sparsely sampled data can be mitigated with

DA. Brajard et al. [45] proposed a two-step process to learn the parameterization

of unresolved processes where a neural network was trained to learn the model error

obtained from the analysis state of the truncated model. Some other works at the

intersection of DA and ML include iterative application of neural network and DA

to learn the chaotic dynamics [44], enforcing conservation of mass constraint in DA

[327], and for building tangent-linear and adjoint models of parameterization schemes

in variational DA [134].

In this work, we seek to build a data-driven surrogate model trained on the analysis

data and integrate it with a sequential DA cycle. More specifically, we will focus

on a class of data-driven methods that are based on projection-based reduced-order

modeling (ROM). These methods first extract the recurrent spatial structures from the

high-dimensional data using singular value decomposition or convolutional autoencoder

[51, 256]. The next step is to either solve the projected governing equations on the
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dominant modes [333, 57] or learn the projected dynamics with data-driven methods

[392, 306, 278]. The recurrent neural network is one of the most popular algorithms

in modeling the dynamics of lower-dimensional latent space, and has been applied for

a wide range of applications [419, 2]. One of the advantages of using projection-based

ROM as a surrogate model is that it allows for DA on a reduced-order space rather

than on a full-state and this latent assimilation framework leads to substantial speed

improvement in contrast to DA [304, 4, 215, 293]. The key challenge with latent

assimilation is to link the real-time observations in physical space with the latent

observation space [68]. Our approach for latent observation space construction is by

first identifying the near-optimal sensor locations using QR pivoting and then using

the measurements at these discrete locations for reconstruction on a tailored basis

[226].

This chapter is organized as follows. In Section 7.2.1, the surrogate modeling

with proper orthogonal decomposition (POD) for dimensionality reduction, and a

long short-term memory (LSTM) network for modeling dynamics is discussed. The

detailed discussion on the deterministic ensemble Kalman filter (DEnKF) is provided

in Section 7.2.2. The computation of the latent observation space is described

in Section 7.2.3. In Section 7.3, the performance of the proposed framework is

demonstrated for the NOAA Optimum Interpolation (OI) Sea Surface Temperature

(SST) V2 dataset. Finally, concluding remarks are provided in Section 7.4.

7.2 Methods

In this section, we introduce different components of the proposed framework includ-

ing surrogate modeling, sequential data assimilation, and optimal sensor placement

strategy. The surrogate model is based on the projection-based model order reduction

which relies on proper orthogonal decomposition (POD) and a recurrent neural network

to model the dynamics of the latent space. This surrogate model is integrated within

the sequential data assimilation to correct the forecast using real-time observations.

The latent observation space is obtained by first reconstructing the full state from

point sensor measurements and then projecting it onto POD bases.

7.2.1 Surrogate Modeling

Our surrogate model is constructed using the projection-based reduced-order modeling

where the high-dimensional system is first compressed to a low-dimensional system and
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the dynamics of the low-dimensional system is modeled. The compression is achieved

by projecting the high-dimensional data onto a set of optimal linear basis functions

obtained via POD [349, 32]. POD provides the optimal linear basis functions as they

minimize the error between the true data and its projection in the L2 sense compared

to all other linear basis functions of the same dimension. Given the Ns snapshots of

the data for a state variable x ∈ Rn, we can form the matrix A as follows

A =

[
x(1),x(2), . . . ,x(Ns)

]
∈ Rn×Ns , (7.1)

where x(k) corresponds to an individual snapshot in time. Then, we perform the

reduced singular value decomposition (SVD) as follows

A = UΣV T =
Ns∑

k=1

σkukv
T
k , (7.2)

where U ∈ Rn×Ns is a matrix with orthonormal columns which corresponds to the

left-singular vectors, V ∈ RNs×Ns is matrix with orthonormal columns representing

the right-singular vectors, and Σ ∈ RNs×Ns is a matrix with non-negative diagonal

entries, called singular values, and are arranged such that σ1 ≥ σ2 ≥ · · · ≥ σNs ≥ 0.

For the dimensionality reduction task, only the first Nr columns of U and V (denoted

as U and V ) are retained along with the upper-left Nr×Nr sub-matrix of Σ (denoted

as Σ). The reduced-order approximation of the matrix A can be written as follows

A = U Σ V
T
. (7.3)

The total L2 error between the snapshot data matrix A and its reduced-order

approximation A satisfies the following equalities [376]

∥A−A∥2 = inf
B∈Rn×Ns

rank(B)≤Nr

∥A−B∥2 = σNr+1, (7.4)

where ∥·∥2 is the matrix-2 norm. Equation 7.4 states that across all possible matrices

B ∈ Rn×Ns of rank Nr or less, the matrix A provides the best approximation in the L2

sense and the error between A and its Nr-order approximation A equals σNr+1. From

here on, the Nr columns of U are called as the POD modes or basis functions and we

denote them as Φ = {ϕk}Nr
k=1. Once the POD modes are obtained, the compressed
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latent space for a single state vector x can be written as

α = ΦTx, (7.5)

where α is the reduced-order approximation of the full state vector x and is also

referred to as the POD modal coefficients. The reconstruction of the state vector is

then computed as

x = Φα = ΦΦTx, (7.6)

where x is the optimal reconstruction of full state vector x. The number of retained

modes, i.e., Nr, is decided based on the variance of the data captured by the retained

modes. The singular values σi give a measure of the quality of information that

is retailed in Nr-order approximation of the matrix A. The amount of the energy

retained by POD modes can be calculated using the quantity called the relative

information content (RIC) as follows

RIC(Nr) =

∑Nr

j=1 σ
2
j∑Ns

j=1 σ
2
j

(7.7)

The second step of the surrogate modeling is to model the evolution of the latent

variables. If the exact equations governing the physical system are known, intrusive

approaches like Galerkin projection can be applied to build the ROM. The ROM is

obtained by substituting the low-rank approximation into the full order model and

then taking the inner product with test basis functions to yield a system of Nr ordinary

differential equations (ODEs). However, for geophysical systems, the exact governing

equations are unavailable or insufficient for the desired purpose (for example due to

coarse grid resolution). On the other hand, the reasonably accurate and complete

observational data for the evolution of the state of the system has been collected

for many decades. This situation makes the equation-free techniques for predicting

the future state of the dynamical system very attractive for multiscale and chaotic

dynamical system modeling [168, 382, 281]. Recently, machine learning methods based

on recurrent neural network have been applied successfully in many studies to build

the non-intrusive ROM [419].

We apply the long short-term memory (LSTM) neural network to model the

evolution of the latent variables. LSTM has been successfully applied in many studies

dealing with modeling high-dimensional spatio-temporal chaotic dynamics of physical
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systems [306, 248, 383]. LSTM is a type of recurrent neural network (RNN) that can

capture the long-term dependencies in the evolution of time series data [142]. RNNs

contain loops that allow them to persist information from one time step to another

and can be expressed as

h(t) = fh→h(o
(t),h(t−1)), (7.8)

õ(t+1) = fh→o(h
(t)), (7.9)

where h(t) ∈ Rdh is the hidden state at time t, o(t) ∈ Rdh is the input vector at time t,

fh→h is the hidden to hidden mapping, and fh→o is the hidden to output mapping.

The output of the model is the forecast õ(t+1) at time step t+ 1.

One of the limitations of RNNs is vanishing (or exploding) gradient to capture

the long-term dependencies. This problem occurs because the gradient is multiplied

with the weight matrix repetitively during backpropagation through time (BPTT)

[398]. The LSTM mitigates this issue by employing a memory cell composed of gating

mechanism that decides which information to memorized or forgotten. The equations

that implicitly define the mapping from hidden state of the previous time step (i.e.,

h(t−1)) and input vector at the current time step (i.e., o(t)) to the forecast hidden state

(i.e., h(t)) can be written as follows

g
(t)
f = σ(Wf [h(t−1),o(t)] + bf ), (7.10)

g
(t)
i = σ(Wi[h

(t−1),o(t)] + bi), (7.11)

c̃(t) = tanh(Wc[h
(t−1),o(t)] + bc), (7.12)

c(t) = g
(t)
f ⊙ c(t−1) + g

(t)
i ⊙ c̃(t), (7.13)

g(t)
o = σ(Wo[h

(t−1),o(t)] + bo), (7.14)

h(t) = g(t)
o ⊙ tanh(c(t)), (7.15)

where g
(t)
f , g

(t)
i , g

(t)
o ∈ Rdh are the forget gate, input gate, and output gate, respectively.

The o(t) ∈ Rdi is the input vector at time t, h(t) ∈ Rdh is the hidden state, c(t) ∈ Rdh

is the cell state, Wf , Wi, Wc, Wo ∈ Rdh×(dh+di) are the weight matrices, and

bf , bi, bc, bo ∈ Rdh are the bias vectors. The symbol ⊙ denotes the element-wise

multiplication, and σ is the sigmoid activation function, i.e., σ(x) = (1/(1 + e−x)).

The above set of equations are unfolded in time to model the temporal dependencies

in predicting future state o(t+1) given o(t), o(t−1), · · · , o(t−l). The l is referred to as the
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lookback window which governs how much amount of the old temporal information is

required to forecast the future state of the system accurately.

When we utilize the LSTM network for constructing a surrogate model, the reduced-

order state of the system at a future time step, i.e., α(k+1), is learned as the function

of a short history of l past temporally consecutive reduced-order states as follows

α(k+1) = F (α(k),α(k−1), . . . ,α(k−l+1)

︸ ︷︷ ︸
α(k):(k−l+1)

;θ), (7.16)

where F (· ;θ) is the nonlinear function parameterized by a set of parameters θ, and

α is the low-dimensional approximation of the full state vector, i.e., the POD modal

coefficients given in Eq. 7.5. Since the surrogate model does not use any governing

equations of the system, it is also referred to as the non-intrusive reduced-order model

(NIROM).

7.2.2 Data Assimilation

We consider the dynamical system whose evolution can be represented as

x(k+1) = M tk→tk+1
(x(k)) + w(k+1), (7.17)

where x(k) ∈ Rn is the state of the system at discrete time tk, and M tk→tk+1
: Rn → Rn

is the nonlinear model operator that defines the evolution of the system over the

interval [tk, tk+1]. The term w(k+1) denotes the model error that takes into account

any type of uncertainty in the model that can be attributed to boundary conditions,

imperfect models, etc. Let z(k) ∈ Rm be observations of the state vector obtained

from sparse, noisy measurements and can be written as

z(k+1) = q(x(k+1)) + v(k+1), (7.18)

where q(·) is a nonlinear function that maps Rn → Rm, and v(k+1) ∈ Rm is the

measurement noise. We assume that the measurement noise is a white Gaussian

noise with zero mean and the covariance matrix R(k+1), i.e., v(k+1) ∼ N (0,R(k+1)).

Additionally, the noise vectors w(k+1) and v(k+1) are assumed to be uncorrelated to

each other at all time steps.

The sequential DA can be considered as a Bayesian inference framework that

estimates the state x(k+1) of the system given the observations up to time tk+1, i.e.,
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z(1), . . . ,z(k+1). When we utilize observations to estimate the state of the system, we

say that the data are assimilated into the model, and use the notation x̂(k+1) to denote

an analyzed state estimate of the system at time tk+1. When all the observations before

(but not including) time tk+1 are applied for estimating the state of the system, then

we call it the forecast estimate and denote it as x
(k+1)
f . The ensemble Kalman filter

(EnKF) [54] follows the Monte Carlo estimation method to approximate the covariance

matrix in the Kalman filter equations [161]. Instead of modeling the exact evolution of

a probability density function under nonlinear dynamics, ensemble methods maintain

an empirical approximation to the target distribution in the form of a set of ensemble

members X̂
(k)

(i) for i = 1 . . . N . We begin by initializing the state of the system

for different ensemble members X̂
(0)

(i) drawn from the distribution N (x̂(0),P (0)),

where x̂(0) represents the best-known state estimate at time t0, and P (0) is the initial

covariance error matrix.

The propagation of the state for each ensemble member over the time interval

[tk, tk+1] can be written as

X
(k+1)
f (i) = M tk→tk+1

(X̂
(k)

(i)) + w(k+1). (7.19)

The prior state and the covariance matrix are approximated using the sample mean

and error covariance matrix P
(k+1)
f as follows

x
(k+1)
f =

1

N

N∑

i=1

X
(k+1)
f (i), (7.20)

A
(k+1)
f (i) = X

(k+1)
f (i)− x

(k+1)
f , (7.21)

P
(k+1)
f =

1

N − 1

N∑

i=1

A
(k+1)
f (i)(A

(k+1)
f (i))T, (7.22)

where the superscript T denotes the transpose, and A
(k+1)
f (i) is the anomalies between

the forecast estimate for the ith ensemble and the sample mean. Once the observations

get available at time tk+1, the forecast state estimate is assimilated using the Kalman

filter analysis equation as follows

x̂(k+1) = x
(k+1)
f + K(k+1)[z(k+1) − q(x

(k+1)
f )]. (7.23)

Unlike the EnKF algorithm, the DEnKF does not employ any perturbed observa-
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tions. The Kalman gain matrix is computed using its square root version (without

storing or computing P
(k+1)
f explicitly) as follows

K(k+1) =
A(k+1)
f (Q(k+1)A(k+1)

f )T

N − 1

[
(Q(k+1)A(k+1)

f )(Q(k+1)A(k+1)
f )T

N − 1
+ R(k+1)

]−1

,

(7.24)

where Q ∈ Rm×n is the Jacobian of the observation operator (i.e., Qkl = ∂qk
∂xl

), and the

matrix A(k+1)
f ∈ Rn×N is concatenated as follows

A(k+1)
f = [A

(k+1)
f (1),A

(k+1)
f (2), . . . ,A

(k+1)
f (N)]. (7.25)

The anomalies for all ensemble members are then updated separately with half the

Kalman gain as shown below

Â
(k+1)

(i) = A
(k+1)
f (i)− 1

2
K(k+1)Q(k+1)A

(k+1)
f (i). (7.26)

The state for all ensemble members is updated by adding ensemble anomalies to

analysis state estimate and can be written as

X̂
(k+1)

(i) = x̂(k+1) + λ · Â(k+1)
(i), (7.27)

where λ is the inflation factor to account for modeling errors. Inflation and covariance

localization approaches are usually used in the EnKF framework to mitigate small

number of ensembles [147, 19, 1]. The above ensembles are used as initial ensembles

for the next assimilation cycle and the procedure is continued.

The DA procedure described so far corresponds to the full state vector of the

system. However, in this study, the forward model is replaced with the surrogate

model, and therefore, we perform the data assimilation in the latent space. The similar

ideas have also been used in other studies that deals with the data assimilation for

reduced-order models [4, 293, 232]. Once the LSTM network is trained, it is used to

forecast the future state of the POD modal coefficients in an auto-regressive manner

[283]. The evolution of the reduced-order model over the interval [tk, tk+1] with the

LSTM network is given as follows

α
(k+1)
f = F tk→tk+1

(α̂(k)), (7.28)
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where α
(k+1)
f is the low-dimensional forecast estimate of the system, and α̂(k) is the

low-dimensional analyzed state of the system at time tk. Once the observations at time

tk+1 gets available, they need to be processed to obtain the latent observations α̃(k+1).

Usually, the observations are available at very few sparse locations, i.e., m << n,

and therefore, they need to be mapped from observation-space Rm to state-space

Rn through some reconstruction technique. Peyron et al. [293] used the simple

interpolation to learn this mapping while applying data assimilation to the indoor air

quality problem. We utilize the POD reconstruction augmented with QR pivoting for

learning the map from observations to full state, and its further details are provided

in Section 7.2.3. The analysis equation in the latent space can be written as follows

α̂(k+1) = α
(k+1)
f + K̃

(k+1)
[α̃(k+1) − q(α̃

(k+1)
f )]. (7.29)

The Kalman gain matrix in Eq.7.29 is calculated as follows

K̃
(k+1)

=
Ã(k+1)
f (Q̃

(k+1)Ã(k+1)
f )T

N − 1

[
(Q̃

(k+1)Ã(k+1)
f )(Q̃

(k+1)Ã(k+1)
f )T

N − 1
+ R̃

(k+1)
]−1

,

(7.30)

where Q̃ ∈ RNr×Nr is the Jacobian of the latent observation operator, and the matrix

Ã(k+1)
f ∈ RNr×N is formed in latent space similar to Eq.7.25.

7.2.3 Reconstruction from Discrete Sensor Locations

As discussed previously, we need to reconstruct the full state of the system from limited

number of discrete sensor locations. The low-rank approximation methods based on

POD modes are one of the most popular method for the reconstruction task, where the

sensor data is used to estimate the POD modal coefficients [83, 226]. Additionally, the

QR decomposition with column pivoting is used for the near-optimal sensor placement

in contrast to random sensor placement. We are interested in estimating the full state

of the system given the sensor measurements s ∈ Rm at discrete locations. For this

case, we have si = xj for some 1 ≤ i ≤ m and 1 ≤ j ≤ n. We can write this as follows

s = Θx, (7.31)
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where Θ ∈ Rm×n is constructed by taking m rows of n× n identity matrix. Therefore,

each row of the matrix Θ will consist of all zeros except for the corresponding

observation location, where it will have the value of one. We use the first m POD

modes obtained from singular value decomposition of the matrix A given in Eq. 7.1

for the reconstruction task and is denoted as Ψ ∈ Rn×m (i.e., the first m columns of

U). The Ψ is also referred to as the tailored basis functions in the literature. The

approximation of the full state is given by

x ≈ x̃ = Ψa, (7.32)

where a ∈ Rm. Once the sensor measurements gets available, the POD modal

coefficients for the new sample can be calculated as follows

s ≈ ΘΨa, (7.33)

a = (ΘΨ)−1s. (7.34)

Once the POD modal coefficients for the new sample is determined, the full state

of the system can be reconstructed using Eq. 7.32. The latent observations for data

assimilation are computed by projecting the reconstructed data onto the POD basis

functions Φ as follows

α̃ = ΦT x̃. (7.35)

So far, we did not discuss the choice of the matrix Θ. The choice of the sensor

locations can have a significant impact on the accuracy of the full state reconstruction.

The sensor locations can be chosen either randomly or based on some heuristics

or intuition of the physical problem. There are several techniques like optimal

experimental design [160] and Bayesian criteria [185] that can be used to determine

the optimal sensor locations for moderately sized problems. The QR factorization is a

powerful and robust data-driven method to determine the near-optimal sensor locations

solely based on the data [83, 226]. In this method, we perform the QR decomposition

with column pivoting of the matrix ΨT . The QR decomposition calculates a column

permutation matrix CT ∈ Rn×n, an orthogonal matrix Q ∈ Rm×m, and an upper

triangular matrix R ∈ Rm×n such that ΨTCT = QR. The greedy approximation of

the optimal sensor locations is obtained from the first m rows of matrix C, i.e., by

setting Θ = C, where C corresponds to first m rows of the matrix C [226, 404]. We

note here that one can also use the QR decomposition method for oversampled case,
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where the number of sensor exceeds the number of tailored basis functions used for

reconstruction.

7.3 Results and Discussion

We first describe the NOAA Optimum Interpolation (OI) Sea Surface Temperature

(SST) V2 dataset used in this study for building a surrogate model and then integrating

it within the data assimilation cycle. Then we present our numerical experimental

results where we analyze the performance of our surrogate model and surrogate model

assisted data assimilation framework.

7.3.1 Dataset and Preprocessing

We use the NOAA OI SST V2 analysis dataset for building our surrogate model. The

analysis uses in situ (ship and buoy) and satellite SSTs plus SSTs simulated by the

sea-ice cover. Before computing the analysis, the satellite data is adjusted for biases

using the method of Reynolds [321] and Reynolds and Marsico [322]. This dataset

consists of the weekly average sea surface temperature on a 1◦ latitude × 1◦ longitude

global grid (180 × 360). The SST dataset exhibits a strong periodic structure due

to seasonal fluctuations. Despite this seasonal periodicity, complex ocean dynamics

lead to rich flow physics in this dataset. This dataset has been used in number of

recent studies on flow reconstruction [55], geophysical emulation [229], and dynamic

mode decomposition [190]. Here, we use the data from October 1981 to December

2000 (1000 snapshots) for building a surrogate model and the data from January 2001

to June 2018 (914 snapshots) for comparing the performance of the surrogate model

for forecasting.

7.3.2 Numerical Experiments

In this subsection, we detail the numerical experiment design to assess the performance

of NIROM and the integration of NIROM with DA, i.e., NIROM-DA. First, we use

the data from October 1981 to December 2000 (1000 snapshots) to identify the POD

basis functions. The masking operation is used to remove the data that correspond to

the land area prior to its utilization for surrogate modeling. The temporal mean is also

subtracted from the data and the POD is carried out for the unsteady component of

the SST field. The first four POD modes capture approximately 90% of the variance
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of the data and are enough to capture the long-term and seasonal trends in the SST.

Therefore, we fix Nr = 4 in this study. The first four POD bases computed with

POD are shown in Fig. 7.1. The next step is to train the LSTM network to learn the

dynamics of a reduced-order system and a lookback window of l = 4 is used. Once

the LSTM is trained, the model is deployed in auto-regressive manner for dynamical

system forecasting. In the auto-regressive deployment, the initial condition for l time

steps is used to predict the forecast state of the system at (l + 1)th time step. Then

the state of the system from (2) − (l + 1) is used to determine the forecast state

at (l + 2)th time step. The LSTM network architecture used in this study employs

skip-connection after every hidden layer and is displayed in Fig. 7.2. The input and

output data for training the LSTM network is scaled between [−1, 1] to accelerate

the training. The LSTM network utilizes three layers of stacked cells, 80 neurons per

LSTM cell, and a ReLU activation function. The LSTM network is trained using an

Adam optimizer with the learning rate of 1× 10−3 and the weights of the network are

initialized with the random normal initializer. The hyperparameters of the network

are determined based on previous studies [289], and considerations of computational

efficiency.

Figure 7.1: The first four leading POD modes extracted from the SST dataset. The
temporal mean was subtracted from the data and the POD modes are computed for
he unsteady component of the SST field.

Once the surrogate model for SST is built, it is integrated into the DA cycle. The

performance of the NIROM-DA framework is analyzed using a twin experiment for
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the period of January 2001 to June 2018. This data was not utilized in any stage of

the NIROM construction. This ensures that there is no overlap in the training and

online deployment of the surrogate model. For our twin experiment, the observations

are generated by adding noise drawn from the Gaussian distribution with zero mean

and the covariance matrix Rk, i.e., vk ∼ N (0,Rk). We use Rk = σ2
bI, where σb is

the standard deviation of measurement noise and is set at σb = 1. The observations

are assumed to be collected only at discrete locations and the sensor locations are

determined using the QR pivoting. We utilize only 300 discrete sensors for the

reconstruction and this corresponds to less than 1% of the full state of the system.

This number is also very close to the optimal rank truncation threshold determined for

this dataset from previous studies [226]. The number of tailored basis functions is also

set equal to the number of sensors to avoid the intractable computation associated with

the oversampled case. As discussed in Section 7.2.3, the tailored basis functions are just

the POD modes, and we can measure the variance of the data captured by these modes

using their singular values. The first 300 POD modes capture approximately more

than 99.5% of the variance of the data and this leads to the improved reconstruction

of small-scale features. Fig. 7.3 depicts the near-optimal sensor locations determined

through QR pivoting.

Figure 7.2: LSTM network architectures used for modeling the dynamics of reduced-
order dynamical system. The LSTM is trained to predict the future forecast state of
the system based on the previous four consecutive states of the system.

The initialization of ensembles is very important for the sequential DA [148]. We
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Figure 7.3: Optimal sensor locations for reconstruction obtained using QR. These
locations are informative about the ocean dynamics in contrast to random selection of
sensor locations.

experimented with three methods for initialization of ensembles, the first method

is using random snapshots collected over some time to initialize the ensembles, the

second one is adding random perturbation to the full state and then projecting it onto

POD basis functions, and the third method is to add a random perturbation to the

reduced-order state of the system. The first method is not suitable for our problem

because of the seasonality in the dataset and this leads to the phase difference between

the initial condition of ensembles. The second method did not lead to sufficient

variability in the initial condition of the ensembles. The third approach ensures that

the initial condition for all ensembles is sufficiently different without having any phase

difference. Since we are doing both the forecast and data assimilation in latent space,

the approach of adding a random perturbation to the true latent space is more suitable

for our problem. Once all the ensembles are initialized, the forecasting is started using

the NIROM in an auto-regressive manner. The observations are assimilated every third

week to correct the initial condition for the future forecast. As discussed previously,

the latent observations are obtained by first reconstructing the full state using the

information at discrete sensor locations and tailored basis functions. The full state is

then projected onto POD modes to compute latent observations for assimilation. The

number of ensembles is set at 40 and the inflation factor of 1.5 is used to account for

model error.

Fig. 7.4 shows the evolution of POD modal coefficients for the forecasting period,
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Figure 7.4: Evolution of the POD modal coefficients for the forecasting (i.e., 2001-2018
period) of the sea surface temperature data. Predictions are started with an ensemble
of 40 noisy observations.

i.e., 2001-2018. The POD modal coefficients can be interpreted as the contribution of

different spatial frequencies (i.e., basis functions) in the evolving flow. One can observe

that the first three modal coefficients are responsible for capturing the seasonal

dynamics, and hence do not exhibit strong chaotic behavior. The fourth modal

coefficient is significantly more chaotic than the first three modal coefficients due to

the stochastic nature of small-scale fluctuations. The prediction from the NIROM

is quite accurate in the initial period and the error gradually increases with time.

This is a well-known limitation of the auto-regressive deployment of the LSTM for

modeling the evolution of dynamical systems [339, 229] and can be attributed to the

error accumulation over time. The difference is particularly considerable for the first

modal coefficient where there is a large phase difference between the true dynamics

and predicted dynamics near the final time. Similar errors are also observed for the

second and third modal coefficients along with a very inaccurate prediction for the

179



fourth modal coefficient. The NIROM-DA framework can provide an analysis state

that is very close to the true modal coefficients. The phase difference between the

true and analyzed modal coefficients is very small leading to accurate modeling of

seasonal dynamics. The analysis state of the fourth modal coefficient is also very close

to the true state, meaning that the small-scale fluctuations are captured accurately

with the NIROM-DA framework.

Figure 7.5: The RMSE (in degree Celsius) for the forecast (i.e., 2001-2018 period)
between the projection of observed weekly average SST data onto four POD modes
and the forecast obtained from NIROM, and NIROM-DA approaches.

Next, we analyze the performance of NIROM and NIROM-DA frameworks in the

reconstruction of the temperature field. The temperature field is reconstructed using

the predicted modal coefficients and the POD basis functions with Eq. 7.6. We note

here that the performance of our surrogate model strategy is limited by the number

of POD modes used and the energy captured by those POD modes. Thus, we can

at the most recover the true projection (TP) of the analysis temperature field (also

referred to as the FOM) onto the POD modes. One can also interpret TP as the

filtered version of the analysis temperature field. Thus, for our analysis, the root

mean squared error (RMSE) is computed between the TP temperature field and the

reconstructed temperature field from NIROM and NIROM-DA frameworks. Fig. 7.5

displays the evolution of RMSE in degrees Celsius for the forecasting period. Overall

the RMSE for NIROM-DA is one order of magnitude less than using only NIROM for

the prediction. The probability density of the RMSE for NIROM and NIROM-DA
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Figure 7.6: The distribution of the forecast RMSE in degree Celsius for NIROM (left)
and NIROM-DA (right).

approaches is displayed in Fig. 7.6. The RMSE for NIROM lies mostly between 0.5◦

Celsius to 1.5◦ Celsius, while the RMSE for NIROM-DA is mostly centered around

0.2◦ Celsius. This shows that a pure data-driven surrogate model can be built by

exploiting the observational data collected over many decades and it can provide

a sufficient level of accuracy in forecasting. Furthermore, the prediction from the

forecast model can be improved using online sensor measurement in a computationally

efficient manner using latent assimilation.

The quantitative findings for the NIROM and NIROM-DA frameworks are further

supported by the visualization of the temperature field at two different times. Fig. 7.7

displays the temperature field on September 14, 2009 and the temperature field on

June 21, 2018 is shown in Fig. 7.8. As we are retaining only four POD modes for

the surrogate model, some of the small-scale features of the exact temperature field

(i.e., FOM) are not captured by TP. While these small-scale features can be captured

by retaining a large number of POD modes, training a recurrent neural network to

learn the dynamics of lower-energy POD modes will require additional treatment.

One potential solution for this can be the non-linear proper orthogonal decomposition

(NLPOD) where an autoencoder is used to compress a large number of POD modal

coefficients [3]. From Fig. 7.7, it is seen that even though larger structures in the flow

are captured by NIROM, the error is higher for NIROM compared to NIROM-DA,

especially in the northern hemisphere region. Similar observations are also noted
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Figure 7.7: Sample averaged temperature forecasts in degrees Celsius for the week of
September 14, 2009. The FOM corresponds to actual observed averaged sea surface
temperature and the TP corresponds to the projection of the FOM data onto four
POD modes. The error for NIROM and NIROM-DA are calculated as the difference
between the TP field and the predicted field.

in Fig. 7.8, where the error for NIROM is larger than the NIROM-DA in both the

northern and southern hemisphere regions.

7.4 Concluding Remarks

In this chapter, we propose a novel framework to construct a non-intrusive reduced or-

der model (NIROM) for geophysical flow emulation and integrate this low-dimensional

model within the deterministic ensemble Kalman filter (DEnKF) algorithm to assim-

ilate sparse and noisy observations in the latent space. The NIROM is based on a

proper-orthogonal decomposition to identify the dominant modes from the data and

then uses a recurrent neural network to learn the dynamics of low-dimensional latent

space. This surrogate modeling strategy exploits the archival of observational data

without relying on any kind of governing equations. One of the critical components
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Figure 7.8: Sample averaged temperature forecasts in degrees Celsius for the week
of June 21, 2018. The FOM corresponds to actual observed averaged sea surface
temperature and the TP corresponds to the projection of the FOM data onto four
POD modes. The error for NIROM and NIROM-DA are calculated as the difference
between the TP field and the predicted field.

of the proposed framework is the reconstruction of full state form sparse and noisy

discrete sensor measurement. This is achieved using the least square estimation to

map the information at near-optimal sensor locations determined through QR pivoting

to the full state of the system. The latent observations for assimilation are generated

by projecting this full state onto the POD modes.

We demonstrate the performance of our framework for the NOAA Optimum

Interpolation Sea Surface Temperature (SST) analysis dataset. The NIROM is able

to achieve a stable long-range forecast along with predicting larger structures in the

temperature field with a sufficient level of accuracy. Once the NIROM is integrated

within the DEnKF, the prediction is improved quantitatively by almost one order of

magnitude. The results show that the NIROM can be readily coupled with the DA

and latent space trajectory can be corrected every time sparse and noisy observations

183



get available. With this framework, the computational saving is achieved through the

replacement of a forward numerical solver with a data-driven model, and assimilation

in latent space in contrast to the full state of the system. The proposed framework is

extremely flexible and other algorithms can be easily accommodated. For example,

one can use algorithms like convolutional autoencoder for dimensionality reduction, or

shallow decoder for the reconstruction of full state from sparse discrete measurements.

Furthermore, the NIROM can be easily differentiated with automatic differentiation

and can be utilized in variational DA settings.

Finally, we point out that there is a number of future research directions that one

can take. One such future direction is to improve the performance of the surrogate

model by incorporating more modes to capture the low-energy content and frameworks

like non-linear proper orthogonal decomposition [3] can be exploited for that. Another

future research direction is to enhance the robustness of a long short-term memory

network by reducing error accumulation during its auto-regressive deployment [339].

Our future work will also include exploring multi-fidelity data assimilation where a

few ensembles of high-fidelity numerical solvers will be complemented with a large

ensemble of data-driven models for forecasting [298] and employ a shallow decoder for

full state reconstruction [94].
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CHAPTER VIII

Conclusions and Future Work

This dissertation detailed different physics-guided machine learning (PGML) frame-

works relevant to two key problems in modeling turbulent fluid flows, i.e., closure

model discovery and model order reduction. The PGML-based closure modeling has

emerged as a promising alternative for large eddy simulation (LES) of geophysical

turbulent flows that do not rely on any prior assumption about turbulence physics

and learns from big data using physical constraints. The PGML-based model order

reduction framework along with uncertainty quantification reduces the computational

cost of a partial-differential equation solver and can be integrated with many online

tasks like data assimilation, optimization, and optimal control. Figure 8.1 summarizes

different components of physics-guided machine learning approaches proposed in this

dissertation and applied to different scientific benchmark problems.

8.1 Summary of Study

In Chapter II, we investigated different data-driven subgrid scale (SGS) closure

models for two-dimensional Kraichnan turbulence in the a priori settings. We il-

lustrate the numerically stable deployment of CNN-based SGS closure models in a

posteriori simulations and recover average turbulence statistics similar to the dynamic

Smagorinsky model. The data-driven SGS model is computationally much faster

compared to the dynamic Smagorinsky model and can be further augmented with the

known physics.

In Chapter III, we presented a data assimilation (DA) framework to integrate

sparse and noisy observations into a hybrid model where the dynamical core of the

system is modeled using known governing equations and the subgrid processes are

considered with a deep learning model. This framework is demonstrated for the two-

level Lorenz 96 system and Kraichnan turbulence. This framework leads to significant

improvement in the long-term prediction for both systems against using only the

truncated model with DA and just using a hybrid model without DA.

185



Figure 8.1: Summary of physics-guided machine learning models applied to different
scientific applications.

In Chapter IV, we propose a novel neural network-based SGS model for LES of

turbulent fluid flows. This model is based on customized convolutional neural network

architecture that incorporates translation, Galilean, and rotation invariances as hard

constraints and guarantees them up to the discretization error. This framework is

demonstrated for two-dimensional decaying turbulence test case and we show that our

frame invariant SGS model (i) accurately predicts the subgrid scale forcing, (ii) respects

the physical symmetries such as translation, Galilean, and rotation invariance, (iii) is

numerical stable when implemented in coarse-grid simulation, and (iv) generalizes to

different initial conditions and Reynolds number. Our numerical results show that the

frame invariant SGS model provides the best agreement for several statistical metrics

with the filtered DNS solution.

In Chapter V, a concatenated neural network architecture is proposed as a model

fusion framework to exploit the data coming from models with different levels of fidelity.

Additionally, the framework predicts the uncertainty associated with the prediction,

and thus safeguards against the inaccurate prediction in the extrapolation region.

This framework is applied to laminar and turbulent boundary layer flow over a flat

plate, and improved results are obtained with very sparse data. In Chapter VI, the

concatenated neural network framework with uncertainty quantification is extended

to projection-based reduced-order models and the framework is illustrated for the
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vortex-merging experiment. It is shown that the framework can provide accurate

prediction even in the extrapolation region, while the pure data-driven model fails.

Chapter VII presents an end-to-end framework to integrating non-intrusive

reduced-order model with sequential data assimilation. Particularly, measurements

at optimal sensor locations are used for obtaining the full state using the linear

reconstruction method, and then the full state is mapped to latent observational

space for assimilation. The use of a surrogate model instead of a full order model

and assimilation in latent space makes this framework computationally efficient. The

complete framework is demonstrated for the forecasting of weekly average sea surface

temperature by using the previously stored satellite observations to construct a

surrogate model.

8.2 Future Work

The studies presented in this dissertation opens some interesting questions and provides

many opportunities for future research.

• The turbulence closure model approaches proposed in this study are flow specific,

meaning that the closure model developed using the data generated for one type

of flow may not generalize well to a different type of flow. This is a fundamental

challenge with any data-driven method. Transfer learning and meta-learning

are two techniques that can be explored to tackle this issue. Transfer learning is

a method that focuses on storing knowledge gained while solving one problem

and applying it to solve a different but related problem. Using transfer learning,

the accuracy of a neural network trained using data generated for one Reynolds

number can be improved by using very few snapshots of training data for different

Reynolds numbers [363, 128, 129]. There are many open questions while applying

transfer learning to turbulence closure discovery problems, such as, what are the

optimal layers to retrain; what exactly is learned during transfer learning; and

how much variation should be there in the data. Another promising approach

is meta-learning which is a training framework for generalizing deep learning

models to different problems [380]. The main idea of meta-learning is to extract

prior information from a set of tasks that allow for efficient learning on a new

task. Within the context of meta-learning, one can train the model using the

data for different canonical turbulence datasets, and then during the adaptation

phase, we can focus on the quick acquisition of knowledge to learn task-specific
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parameters.

• The uncertainty quantification (UQ) will continue to become more important for

surrogate modeling before it can be used for critical applications and decision-

making [301]. There are many sources of uncertainties with PGML modeling,

such as noisy and limited data, selection of hyperparameters or overparametriza-

tion of ML models, and incorrect specification of physical constraints. The

systematic modeling of different sources of uncertainties using advanced deep

learning methods like Bayesian neural network and generative adversarial net-

work is a fruitful avenue for future research. The UQ information from these

deep learning models can be exploited with active learning, i.e., re-adjusting the

mean and uncertainty prediction in the light of new data. This can play a key

role in dealing with a lack of labeled data which is particularly important for

rare and extreme events.

• The interpretability is another major challenge with data-driven methods. While

incorporating physics is closely coupled to model interpretability, it is important

to interpret how the model has optimized the data. The model introspection

challenge is even more pronounced for nonlinear methods like deep learning which

usually has thousands of parameters and sufficient nonlinearity. The techniques

such as feature importance, feature visualization [270, 165], and neural network

dissection [25] can be investigated in future studies to decompose the decision

process of PGML models into human-interpretable steps. The interpretable

steps may include connecting abstract representations to known physical laws

or prior knowledge about the problem.

• The PGML approaches proposed in this study are validated for two-dimensional

benchmark problems with a structured grid. Most of the atmospheric and oceanic

flows are well approximated with two-dimensional turbulence. However, for some

applications, three-dimensional modeling is necessary to capture the behavior

of rotating, stratified fluids. Furthermore, an unstructured mesh is usually

preferred for complex geometries, especially in engineering applications. Graph

neural network is a potential choice for simulation of fluid mechanics system

that requires unstructured domain and meshes [338] and can be investigated

in future studies for both closure model discovery and model order reduction

problems. When it comes to applying ML for high-dimensional systems, the key
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computational challenges are the large data involved and the associated training

time and scalability. Both model- and data-parallelization can be used in future

studies to assess the scalability of training ML models for scientific problems.

Another interesting future research direction can be to map ML parallelization

techniques which are mostly developed for cloud and distributed systems to

high-performance computing machines. The integration of python-based ML

libraries with legacy CFD simulation codes which are mostly written in Fortran

or C/C++ has unique challenges and opportunities that can be explored in

future studies.
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[59] Yunus A.. Çengel and John M.. Cimbala. Fluid Mechanics: Fundamentals and

Applications. McGraw-Hill, New York, 2010.

195



[60] Matthew Chantry, Hannah Christensen, Peter Dueben, and Tim Palmer. Oppor-

tunities and challenges for machine learning in weather and climate modelling:

hard, medium and soft ai, 2021.

[61] Ashesh Chattopadhyay, Pedram Hassanzadeh, and Saba Pasha. Predicting

clustered weather patterns: A test case for applications of convolutional neural

networks to spatio-temporal climate data. Scientific Reports, 10(1):1–13, 2020.

[62] Ashesh Chattopadhyay, Mustafa Mustafa, Pedram Hassanzadeh, Eviatar Bach,

and Karthik Kashinath. Towards physically consistent data-driven weather

forecasting: Integrating data assimilation with equivariance-preserving spa-

tial transformers in a case study with era5. Geoscientific Model Development

Discussions, pages 1–23, 2021.

[63] Ashesh Chattopadhyay, Mustafa Mustafa, Pedram Hassanzadeh, Eviatar Bach,

and Karthik Kashinath. Towards physics-inspired data-driven weather forecast-

ing: integrating data assimilation with a deep spatial-transformer-based u-net

in a case study with era5. Geoscientific Model Development, 15(5):2221–2237,

2022.

[64] Wenqian Chen, Qian Wang, Jan S Hesthaven, and Chuhua Zhang. Physics-

informed machine learning for reduced-order modeling of nonlinear problems.

Journal of Computational Physics, 446:110666, 2021.

[65] M Cheng, F Fang, CC Pain, and I M Navon. An advanced hybrid deep adversarial

autoencoder for parameterized nonlinear fluid flow modelling. Computer Methods

in Applied Mechanics and Engineering, 372:113375, 2020.

[66] M Cheng, Fangxin Fang, Christopher C Pain, and I M Navon. Data-driven

modelling of nonlinear spatio-temporal fluid flows using a deep convolutional

generative adversarial network. Computer Methods in Applied Mechanics and

Engineering, 365:113000, 2020.

[67] Meiling Cheng, Fangxin Fang, I M Navon, and CC Pain. A real-time flow

forecasting with deep convolutional generative adversarial network: Application

to flooding event in Denmark. Physics of Fluids, 33(5):056602, 2021.

[68] Sibo Cheng, Jianhua Chen, Charitos Anastasiou, Panagiota Angeli, Omar K

Matar, Yi-Ke Guo, Christopher C Pain, and Rossella Arcucci. Generalised latent

196



assimilation in heterogeneous reduced spaces with machine learning surrogate

models. arXiv preprint arXiv:2204.03497, 2022.

[69] Austin Chennault, Andrey A Popov, Amit N Subrahmanya, Rachel Cooper,

Anuj Karpatne, and Adrian Sandu. Adjoint-matching neural network surrogates

for fast 4d-var data assimilation. arXiv preprint arXiv:2111.08626, 2021.

[70] Taco Cohen and Max Welling. Group equivariant convolutional networks. In

International conference on machine learning, pages 2990–2999. PMLR, 2016.

[71] Taco S Cohen and Max Welling. Steerable cnns. arXiv preprint arXiv:1612.08498,

2016.

[72] CH Colburn, JB Cessna, and TR Bewley. State estimation in wall-bounded

flow systems. Part 3. The ensemble Kalman filter. Journal of Fluid Mechanics,

682:289, 2011.

[73] Daan Crommelin and Eric Vanden-Eijnden. Subgrid-scale parameterization with

conditional markov chains. Journal of the Atmospheric Sciences, 65(8):2661–

2675, 2008.

[74] Andre FC da Silva and Tim Colonius. Ensemble-based state estimator for

aerodynamic flows. AIAA Journal, 56(7):2568–2578, 2018.

[75] Casey B Davis, Christopher M Hans, and Thomas J Santner. Prediction of

non-stationary response functions using a bayesian composite gaussian process.

Computational Statistics & Data Analysis, 154:107083, 2021.

[76] Anthony Christopher Davison. Statistical models, volume 11. Cambridge Uni-

versity Press, Cambridge, 2003.

[77] Emmanuel de Bezenac, Arthur Pajot, and Patrick Gallinari. Deep learning

for physical processes: Incorporating prior scientific knowledge. Journal of

Statistical Mechanics: Theory and Experiment, 2019(12):124009, 2019.

[78] James W Deardorff. A numerical study of three-dimensional turbulent channel

flow at large Reynolds numbers. Journal of Fluid Mechanics, 41(2):453–480,

1970.

197



[79] X Deng, C Devon Lin, K-W Liu, and RK Rowe. Additive gaussian process

for computer models with qualitative and quantitative factors. Technometrics,

59(3):283–292, 2017.

[80] Thomas G Dietterich. Ensemble methods in machine learning. In International

workshop on multiple classifier systems, pages 1–15. Springer, Berlin, 2000.

[81] Chao Dong, Chen Change Loy, and Xiaoou Tang. Accelerating the super-

resolution convolutional neural network. In European conference on computer

vision, pages 391–407. Springer, 2016.

[82] David Draper. Assessment and propagation of model uncertainty. Journal of

the Royal Statistical Society: Series B (Methodological), 57(1):45–70, 1995.

[83] Zlatko Drmac and Serkan Gugercin. A new selection operator for the discrete

empirical interpolation method—improved a priori error bound and extensions.

SIAM Journal on Scientific Computing, 38(2):A631–A648, 2016.

[84] Jinqiao Duan and Balasubramanya Nadiga. Stochastic parameterization for large

eddy simulation of geophysical flows. Proceedings of the American Mathematical

Society, 135(4):1187–1196, 2007.

[85] Peter D Dueben and Peter Bauer. Challenges and design choices for global

weather and climate models based on machine learning. Geoscientific Model

Development, 11(10):3999–4009, 2018.

[86] Karthik Duraisamy. Perspectives on machine learning-augmented reynolds-

averaged and large eddy simulation models of turbulence. Physical Review

Fluids, 6(5):050504, 2021.

[87] Karthik Duraisamy, Gianluca Iaccarino, and Heng Xiao. Turbulence modeling

in the age of data. Annual Review of Fluid Mechanics, 51:357–377, 2019.

[88] Paul A Durbin. Near-wall turbulence closure modeling without “damping

functions”. Theoretical and Computational Fluid Dynamics, 3(1):1–13, 1991.

[89] Imme Ebert-Uphoff and Kyle Hilburn. Evaluation, tuning, and interpretation of

neural networks for working with images in meteorological applications. Bulletin

of the American Meteorological Society, 101(12):E2149–E2170, 2020.

198



[90] Carsten Eden and Richard J Greatbatch. Towards a mesoscale eddy closure.

Ocean Modelling, 20(3):223–239, 2008.

[91] Hamidreza Eivazi, Hadi Veisi, Mohammad Hossein Naderi, and Vahid Esfahanian.

Deep neural networks for nonlinear model order reduction of unsteady flows.

Physics of Fluids, 32(10):105104, 2020.

[92] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture

search: A survey. The Journal of Machine Learning Research, 20(1):1997–2017,

2019.

[93] N Benjamin Erichson, Lionel Mathelin, Zhewei Yao, Steven L Brunton,

Michael W Mahoney, and J Nathan Kutz. Shallow learning for fluid flow recon-

struction with limited sensors and limited data. arXiv preprint arXiv:1902.07358,

2019.

[94] N Benjamin Erichson, Lionel Mathelin, Zhewei Yao, Steven L Brunton,

Michael W Mahoney, and J Nathan Kutz. Shallow neural networks for fluid

flow reconstruction with limited sensors. Proceedings of the Royal Society A,

476(2238):20200097, 2020.

[95] N Benjamin Erichson, Michael Muehlebach, and Michael W Mahoney. Physics-

informed autoencoders for Lyapunov-stable fluid flow prediction. arXiv preprint

arXiv:1905.10866, 2019.

[96] Gordon Erlebacher, M Yousuff Hussaini, Charles G Speziale, and Thomas A

Zang. Toward the large-eddy simulation of compressible turbulent flows. Journal

of Fluid Mechanics, 238:155–185, 1992.

[97] Geir Evensen. Data assimilation: the ensemble Kalman filter. Springer Science

& Business Media, 2009.

[98] James H Faghmous, Arindam Banerjee, Shashi Shekhar, Michael Steinbach,

Vipin Kumar, Auroop R Ganguly, and Nagiza Samatova. Theory-guided data

science for climate change. Computer, 47(11):74–78, 2014.

[99] Artur J Ferreira and Mário AT Figueiredo. Boosting algorithms: A review of

methods, theory, and applications. In Ensemble machine learning, pages 35–85.

Springer, Berlin, 2012.

199



[100] Matthias Fey, Jan Eric Lenssen, Frank Weichert, and Heinrich Müller.

SplineCNN: Fast geometric deep learning with continuous B-spline kernels.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-

nition, pages 869–877, 2018.

[101] AM Foley. Uncertainty in regional climate modelling: A review. Progress in

Physical Geography, 34(5):647–670, 2010.

[102] Jorgen S Frederiksen and Steven M Kepert. Dynamical subgrid-scale parameter-

izations from direct numerical simulations. Journal of the Atmospheric Sciences,

63(11):3006–3019, 2006.

[103] Jorgen S Frederiksen, Terence J O’Kane, and Meelis J Zidikheri. Subgrid

modelling for geophysical flows. Philosophical Transactions of the Royal Society

A: Mathematical, Physical and Engineering Sciences, 371(1982):20120166, 2013.

[104] Stefania Fresca, Luca Dede, and Andrea Manzoni. A comprehensive deep

learning-based approach to reduced order modeling of nonlinear time-dependent

parametrized pdes. Journal of Scientific Computing, 87(2):1–36, 2021.

[105] Hugo Frezat, Guillaume Balarac, Julien Le Sommer, Ronan Fablet, and Re-

douane Lguensat. Physical invariance in neural networks for subgrid-scale scalar

flux modeling. Physical Review Fluids, 6(2):024607, 2021.

[106] Hugo Frezat, Julien Le Sommer, Ronan Fablet, Guillaume Balarac, and

Redouane Lguensat. A posteriori learning for quasi-geostrophic turbulence

parametrization. arXiv preprint arXiv:2204.03911, 2022.
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