
Western University Western University

Scholarship@Western Scholarship@Western

Digitized Theses Digitized Special Collections

2009

Portable Implementation of Digital Ink: Collaboration and Portable Implementation of Digital Ink: Collaboration and

Calligraphy Calligraphy

Rui Hu
Western University

Follow this and additional works at: https://ir.lib.uwo.ca/digitizedtheses

Recommended Citation Recommended Citation
Hu, Rui, "Portable Implementation of Digital Ink: Collaboration and Calligraphy" (2009). Digitized Theses.
3870.
https://ir.lib.uwo.ca/digitizedtheses/3870

This Thesis is brought to you for free and open access by the Digitized Special Collections at
Scholarship@Western. It has been accepted for inclusion in Digitized Theses by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/digitizedtheses
https://ir.lib.uwo.ca/disc
https://ir.lib.uwo.ca/digitizedtheses?utm_source=ir.lib.uwo.ca%2Fdigitizedtheses%2F3870&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/digitizedtheses/3870?utm_source=ir.lib.uwo.ca%2Fdigitizedtheses%2F3870&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

Portable Implementation of Digital Ink: Collaboration and Calligraphy

(Spine Title: Portable Implementation of Digital Ink)

(Thesis format: Monograph)

by

Rui Hu

Graduate Program
in

Computer Science

A thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Science

The School of Graduate and Postdoctoral Studies
The University of Western Ontario

London, Ontario, Canada

© Rui-Hu 2009

THE UNIVERSITY OF WESTERN ONTARIO
THE SCHOOL OF GRADUATE AND POSTDOCTORAL STUDIES

CERTIFICATE OF EXAMINATION

Supervisor:

Dr. Stephen M. Watt

Examination committee:

Dr. Yuri Boykov

Dr. Jacquelyn Burkell

Dr. Mahmoud El-Sakka

The thesis by

Rui Hu

entitled:

Portable Implementation of Digital Ink: Collaboration and Calligraphy

is accepted in partial fulfillment of the
requirements for the degree of

Master of Science

Date Chair of the Thesis Examination Board

Abstract
j

With the widespread availability of Tablet PCs and hand-held pen-based devices,
digital ink applications are becoming increasingly popular across a variety of
domains. These applications typically use Application Program Interfaces (APIs)
and proprietary ink formats that are restricted to single platforms and consequently
lack portability. In this thesis we explore the dimension of portability of both digital
ink and digital ink handling programs. We examine how various APIs and data
formats may be used to provide both low-level and high-level support for platform
independence. We present a framework that collects digital ink on different operating
systems and provides a platform-independent, consistent interface for digital ink
applications. For data portability, we choose InkML to be the data representation as
it provides platform-independent support for both data transmission and higher-level
semantic representation for digital ink. For program portability we have developed a
Java framwork that isolates applications from vendor APIs.

To test our ideas, we have developed two concrete problems. We present InkChat,
a whiteboard application, which allows conducting and archiving portable collabo­
rative sessions that involve synchronized voice and digital ink on a shared canvas.
We also present Calligraphic Board along with two virtual brush models. The Cal­
ligraphic Board collects digital ink from a variety of platforms and renders it with
calligraphic properties. Both the InkChat and Calligraphy Board implementations
use our Java framework and use InkML as the medium to represent the digital ink,
both for rendering it in real time and archiving it for later reference.

Keywords: Digital ink portability, Collaboration, Calligraphy, Pen-based comput­
ing

m

Acknowledgements

From the deepest of my heart, I am grateful to my supervisor, Dr. Stephen M. Watt,
for the care to my life which led me through the early cultural struggling in Canada. I
thank him also for his inspiration with new ideas which made me feel love of my work.

Sincere thanks to my colleagues in the Ontario Research Centre for Computer
Algebra, they are all my friends, offering me advice and assistance which helped me
a lot in the research, especially when I was depressed from failure.

Last but not least, I wish to thank my beloved parents, without their unyeilding
support and endless encouragement, it would not have been possible to write this
thesis. Thank you for the faith in me.

Contents

Certificate of Examination ii

Abstract iii

Acknowledgements iv

Table of Contents v

List of Figures ix

List of Listings xi

1 Introduction 1
1.1 O bjectives.. 2
1.2 Related work .. 4

1.2.1 Inkscape... 4
1.2.2 Inkwell.. 4
1.2.3 Windows Journal and O n e N o te ... 4
1.2.4 QuickSet... 5
1.2.5 InkBoard ... 5
1.2.6 LiveB oard... 5
1.2.7 Tivoli .. 6
1.2.8 Classroom 2000 .. 6
1.2.9 Electronic C halkboard ... 6
1.2.10 InkT racer... 7
1.2.11 Ink And Audio C h a t ... 7

1.3 W3C Multimodal Interaction Working Group ... 7
1.4 Data Representation... 8

1.4.1 Digital Ink Standards... 8

v

1.4.2 Multimodal Data Standards.. 10
1.5 InkML and C om ponents.. 11
1.6 Thesis Organization.. 16
1.7 Acknowledgement... 18

2 Portable Digital Ink Design Issues 19
2.1 Digital Ink D ev ices .. 19

2.1.1 Wacom Tablet and Drivers... 19
2.1.2 UC-Logic Tablet and Drivers .. 20

2.2 Digital Ink Platform A P I s .. 20
2.2.1 Wintab for W in d ow s.. 20
2.2.2 Windows XP Tablet PC S D K .. 21
2.2.3 Windows Presentation Foundation ... 22
2.2.4 XInput for L in u x ... 22
2.2.5 The Linux Wacom P ro je c t ... 23
2.2.6 Cocoa for Mac OS .. 24
2.2.7 Palm O S ... 24
2.2.8 iPhone O S .. 25
2.2.9 Windows Mobile ... 26

2.3 Previous Works on Portability... 27
2.4 A Cross-Platform Digital Ink Framework.. 28

2.4.1 Java Native Interface... 28
2.4.2 Java ME CDC for Mobile D evices.. 32
2.4.3 A Cross-Platform Fram ew ork.. 32

2.5 Summary ... 33

3 Multimodal Collaboration Design Issues 35
3.1 Multimodal In p u t... 36

3.1.1 Voice I n p u t .. 36
3.1.2 Pen I n p u t ... 36
3.1.3 Voice and Pen Multimodal Input .. 37

3.2 Multimodal C ollaboration ... 37
3.2.1 Voice Collaboration... 37
3.2.2 Digital Ink Collaboration.. 38

3.3 Communication... 41
3.3.1 Network Architecture.. 41
3.3.2 S k y p e .. 42

vi

3.4 Summary 44

4 InkChat Architecture 45
4.1 System Architecture ... 45
4.2 Ink Session Streaming and A rchival.. 47
4.3 Ink Session R etrieval... 48
4.4 Canvas Layers............................ 49
4.5 Page M o d e l ... 50
4.6 Conference M o d e .. 51
4.7 Summary ... 52

5 Ink Rendering 53
5.1 InkML Representation.. 54
5.2 Calligraphic Rendering.. 54

5.2.1 Round B r u s h ... 55
5.2.2 Tear Drop B r u s h ... 56

5.3 Summary ... 59

6 InkChat Implementation 61
6.1 InkChat Com ponents... 61
6.2 Data Transm ission... 62
6.3 Ink C apture.. 62
6.4 Ink E ra s in g .. 63

6.4.1 Stroke-Wise Erasing .. 63
6.4.2 Point-Wise E rasing.. 63

6.5 Hit Testing .. 63
6.6 Ink S to r a g e .. 65
6.7 Ink Rendering O b je c t s .. 65
6.8 Ink M etad ata .. 66
6.9 Summary .. 67

Conclusion 68

A InkChat User Manual 73
A .l InkChat Features... 73
A .2 Platform Availability.. 74
A.3 System Requirements.. 74
A.4 Using InkChat... 74

vii

Curriculum Vitae 77

List of Figures

2.1 Linux input subsystem and XInput handler... 23
2.2 Java Native Interface... 28
2.3 A Cross-Platform Framework for Digital Ink Applications..................... 33

3.1 Digital ink stream s.. 39
3.2 Client-Server network architecture... 42
3.3 Peer-to-Peer network architecture... 43
3.4 Skype network architecture .. 43

4.1 InkChat Architecture... 46
4.2 Sending an InkML s tre a m .. 48
4.3 Receiving an InkML s tr e a m .. 48
4.4 Loading an ink sess ion .. 48
4.5 InkChat canvas layers... 49
4.6 InkChat page model ... 50
4.7 The host initiates a stroke in conference m eetin gs................................ 51
4.8 The client initiates a stroke in conference meetings 52

5.1 A simple stroke of Chinese calligraphy... 55
5.2 The model of Round Brush .. 56
5.3 Filling the gap between two successive Round Brush ink points 56
5.4 The model of Tear Drop Brush .. 57
5.5 Tear Drop Brush: The case that the tail end remains.............................. 58
5.6 Tear Drop Brush: The case that the tail end moves................................ 58
5.7 Example of a Chinese calligraphy using Tear Drop Brush....................... 59
5.8 The plot of Tear Drop Brush param eters.. 60

6.1 The system architecture of InkC hat.. 62
6.2 The case that the pen tip hits the trace... 64

IX

6.3 The case that the pen tip does not hit the t r a c e 64
6.4 Trace class diagram .. 66

x

T

List of Listings

1.1 Example of an EMMA f i l e ... 10
1.2 Example of a SMIL f i le .. 11
1.3 Example of the <trace> and <traceFormat> e lem en ts...................... 12
1.4 Example of the <traceGroup> elem ent... 13
1.5 Example of an InkML file .. 14
1.6 Example of the <definitions> element ... 15
1.7 Example of the <inkSource> elem ent.. 16
1.8 Example of the <annotation> e lem en t... 17
2.1 InkProvider.java... 29
2.2 InkProvider.h.. 30
2.3 InkProvider.c.. 31
3.1 Brush changes.. 40
3.2 Trace format changes... 40
3.3 Brush reference... 41

xi

1

Chapter 1

Introduction

Our primary objective of this thesis is to explore the dimension of digital ink porta­
bility. We place our emphasis on cross-platform viability and portable digital ink
representation. We believe such capabilities would be extremely useful in developing
multimodal collaboration applications.

Digital ink technologies have experienced a tremendous change over the past ten
years. It has now been widely used by a variety of electronic devices including Tablet
PCs, PDAs, digital pens, touch sensitive whiteboards, cameras and even cell phones.
Such devices accept pen-based written input and pass it on to recognition software
applications that can convert it into appropriate computer actions. Alternatively,
they can organize it into documents or messages that can be stored for later reference
or exchange with other collaboration participants.

Tied to digital ink is the notion of using a pen as means of input. Pen input is
useful as it is complementary to other input devices. Compared to a keyboard, pen
input is more expressive, it allows two dimensional handwriting and drawings that are
hard to be generated by a keyboard. Compared to mouse, pen input can be natural
as everyone learns to write in school and digital pens give higher maxim resolution.
With the widespread availability of pen input devices, it has become popular to use
pen input in classroom presentations, conference meetings or real-time distributed
conversations.

2

1.1 Objectives

A number of digital ink applications have been developed in the past years follow­
ing the emergence of digital ink. Yet most of these applications lack support for
portability and are hence restricted to a single platform. Even though cross-platform
portability is available, few of them provide many useful ink manipulations on the
user interface. We examined the issues of these applications and found the underlying
problems to be:

• The use of platform-specific APIs
Applications such as Windows Journal retrieves digital ink by invoking the
Windows XP Tablet PC APIs which are restricted to Windows platforms. Such
applications can only work on Windows operating systems and are impossible
to import to others.

• The use of proprietary digital ink formats
The use of proprietary digital ink formats makes host applications lack porta­
bility and limits the ability to interoperate with other applications. For effective
data representation and ease of interchange, portable applications should use
an ink format standard that is not only neat and elegant but also platform-
independent.

• The complexity of portable capture of digital ink
Although pen input devices are able to generate digital ink on almost every
individual platform, there has not been a common approach to capture digital
ink across all these platforms. To implement a portable digital ink application,
developers have to accommodate the detail of each platform. Obviously, this is
costly in effort and will eventually affect the design of the user interface.

One of the possible solutions is to construct the application for each platform
based on the platform-specific APIs and to interchange the data in a standard format.
This, however, will raise other issues. First of all, it increases the time to develop this
application, as it requires developers to understand the APIs for each platform, which
is very costly in time. Secondly, the application is hard to maintain as it requires
maintainers to have a multi-platform background. Last but not least, whenever a
new platform comes out, the application has to be reconstructed, from the bottom
to the top, based on the new platform’s APIs.

3

Having recognized all these issues, the primary objectives of our work are to:

• explore the dimension of digital ink portability

• examine the question of how program code for digital ink applications can be
made portable

• examine the question of which format is most suitable for digital ink represen­
tation

• test the suitability of our model of portability using suitably complex cases.

In particular, we wish to have digital ink application code be portable across
multiple platforms. Today’s platforms capture digital ink in various data structures
and report it using different mechanisms. For example, on Windows platforms, digital
ink is captured in Wintab packets or Stroke objects and reported by the Wintab
interface or the Windows XP Tablet PC APIs. The same thing can be done using the
XInput events and the Linux Input Subsystem on Linux platforms, or the NSEvent
objects and the Cocoa Framework on Mac OS X. We describe all of these in some
detail later. Obviously, portability among such a range of mechanisms requires a
well-structured framework that can handle the details of each platform and model
digital ink input in a platform-independent way. Applications that build on top of
this framework could then collect digital ink on these platforms without knowing the
underlying details. Chapter 2 examines the design issues of this framework.

At the same time, we also wish to have digital ink data be platform-independent.
We explain why InkML is most suitable and how it works. Chapter 3 addresses this
question of digital ink format.

In summary, we wish to understand what is required to have digital ink applica­
tions that we “write once and run anywhere” .

4

1.2 Related work

1.2.1 Inkscape

Inkscape [2] is an open source vector graphics editor application. It can accept digital
ink from a pen and save it using Scalable Vector Graphics (SVG) [16] format. SVG is
the specifications of an XML-based file format for describing two dimensional vector
images. Compared to bitmap images, SVG images have many advantages such as
smaller hie size, resolution independence and easy of resizing. But as a side-effect,
SVG format limits the ability to modify the contents of images, especially for digital
ink objects. For instance, when an eraser is used to erase a small part of an ink
stroke. The remaining stroke may be in a curved shape that is hard to implement in
an SVG format image. Also, an SVG image is not suitable for ink recognition which
may require analysis of each ink point.

1.2.2 Inkwell

Inkwell, also known as Ink, refers to the handwriting recognition software developed
by Apple. Inc. It is restricted to Mac OS X. Inkwell allows one to write text in
handwriting and then convert to typed text. Currently, it supports English, French
and German writing. Inkwell can also be used to draw a sketch and insert it to any
place that can display a picture. Inkwell uses platform-dependent APIs and thus
cannot be exported to other operating systems.

1.2.3 Windows Journal and OneNote

Windows Journal is a note taking application developed by Microsoft. It has been
integrated in Windows XP, Windows Vista and Windows 7. The user interface allows
users to switch among pens, highlighters and erasers, move items around the page,
insert original calendar information for meetings and save ink to files. As Windows
Journal uses the Windows XP Tablet PC SDK [23], it is restricted to Windows plat­
forms and thus cannot be exported to other operating systems. Windows OneNote
is another windows application, which is similar to Windows Journal, but more elab­
orate and suffering the same portability limitations.

5

1.2.4 QuickSet

QuickSet [15] was a multimodal framework used by the US Navy and US Marine
Corps to set up training scenarios and to control virtual environments. It accepts
voice and pen input, communicating via a wireless LAN through an agent architec­
ture to a number of systems. The system could recognize voice input with certain
responses. If the voice interaction was not feasible, it could still analyze digital ink
and then give several possible interpretations, such as platoon, mortar, fortified line,
etc. This demonstrated that a multimodal interaction enabled a better and more
efficient communication.

1.2.5 InkBoard

InkBoard was a whiteboard system which allowed for graphical collaboration and de­
sign, including network-shared ink strokes and audio/video conferencing capabilities
[30]. It was developed by the MIT Intelligent Engineering System Lab and published
in 2004. It integrated the Microsoft Conference XP research technology and thus
limited itself to a Windows environment.

1.2.6 LiveBoard

LiveBoard [14] was developed by the Xerox Palo Alto Research Center in 1990. It
aimed to provide a basis for slide presentations and group meetings. It was basically
a large display system with interactive ability to communicate with a multi-state
cordless pen. LiveBoard made use of an Xll-based bitmap paint application to
render the digital ink generated by the pen, and then projected the image to the
large display. LiveBoard had some drawbacks. It could remember the drawing on
the pages and recover them when necessary. But this only refers to the final version.
Moreover, it was next to impossible to conduct collaborative operations at a stroke
level.

6

1.2.7 Tivoli

Tivoli [31] was an extension of LiveBoard. It overcame the limitations of LiveBoard
by making use of stroke objects, as opposed to pixel map images. These stroke objects
were represented and manipulated by a proprietary Software Development Kit (SDK).
In seeking to improve the collaboration capability, Tivoli can enable multiple cordless
pens for multiple users.

1.2.8 Classroom 2000

The Classroom 2000 project [9] was developed at Georgia Tech. It was published
by Gregory D. Abowd et al. [9] in 1998. Its primary purpose was to create an
environment to capture as much of activity as possible from the classroom experience.
It included tools to automate the production of lecture notes and to assist students
in reliving the lecture. The recorded materials could be accessed via Web browsers.
This application did not support real-time distributed collaboration, as the lecture
materials had to be uploaded to a server before it could be accessed.

1.2.9 Electronic Chalkboard

In addition to the advantages of traditional blackboards, Electronic Chalkboard [17]
integrates itself with distance education tool. Thus makes it possible to load images
and interactive programs directly from a hard-drive or the Internet. It is also able to
interact with computer algebra systems and to display computation results. Remote
lectures or meetings are applicable using this system with a minimum requirement
of a Java-enabled browser. Electronic Chalkboard allows geographically separated
participants to see the objects as exactly same as they appear on the blackboard, and
to hear the voice in a manner similar to local participants do. The lectures showing on
the blackboard can be automatically recorded during the transmission and be viewed
on the Web in real time. The architecture of the Electronic Chalkboard is quite
simple. The server is running on a local machine which is connected to some pen
input devices. And it is responsible for transmitting audio, video and images over
time. On the remote machines, three applets are in charge of receiving streaming
data and displaying on screen. However, Electronic Chalkboard has limitations. As
the content on blackboard is saved as images, it is impossible to conduct stroke-wise

7

operations on client side and consequently makes the communication as an one way
street.

1.2.10 InkTracer

InkTracer was developed by the Ontario Research Centre for Computer Algebra (OR-
CCA) [5]. It was a Java application designed for ink animation. It can parse an
InkML file, retrieve stroke information, and then render it on a canvas. InkTracer
can also convert ink strokes to an animated GIF image which records each phase of
the rendering, from the beginning to the end.

1.2.11 Ink And Audio Chat

InkAndAudio Chat [32] was developed by the Ontario Research Centre for Computer
Algebra (ORCCA) [5] in 2008. It was a collaborative whiteboard application that
allowed conducting and archiving communication sessions involving audio and ink
on a shared canvas. It uses WAV and InkML as the media to represent the data,
and Skype, an application that handles voice calls over the Internet, as the back­
bone for data transmission. InkAndAudio Chat was a good attempt to use InkML
for data representation, but a number of good features of InkML were not imple­
mented by this application. These include brush change, trace format change, context
change, context reference, ink metadata and ink annotation. It also lacked support
for page navigation which requires InkML document parsing. InkAndAudio Chat is
also platform-dependent. It was implemented using C # and the .NET technologies.
As a result, it can only run on Windows platforms.

1.3 W 3C Multimodal Interaction Working Group

The W3C Multimodal Interaction Working Group [18] was launched in 2002. As
a part of the World Wide Web Consortium (W3C), it seeks to extend the Web and
allows users to select the most suitable combination of interaction mode for their
current needs, including any disabilities. It also aims to help developers provide an
effective user interface for whichever modes users select [18]. With the effort of the

8

W3C Multimodal Interaction Working Group, several new standards such as InkML
[11], EMMA [13], etc. were developed to meet the needs involved in multimodal
interaction.

1.4 Data Representation

1.4.1 Digital Ink Standards

Ink format standards should provide useful features for note taking and sharing,
real-time distributed conversations, conference meetings, and classroom presenta­
tions. Even more importantly, they should be platform-independent, which allows
host applications to work on different operating systems. Digital ink technologies
have evolved over years and are becoming more and more popular, as they provide
a natural mode other than keyboards and mice for computer input. These technolo­
gies have been used by a number of devices, such as Tablet PCs, PDAs and GPS
receivers. These devices share a common point of portability which require digital
ink to be represented in a flexible way.

Various ink format standards do exist today and some of them have been widely
used. We describe these briefly below.

Jot

The Jot [12] standard was established in 1992 as a joint work of Slate, Lotus, GO,
Microsoft, Apple, General Magic and other corporations. It was the first attempt
to define a format for ink storage and interchange. As an initial specification, its
primary purpose was to allow digital ink applications to run on small platforms such
as PDAs and old Tablet PCs. These platforms in practice lacked memory space
and consequently had limited ability for real time sharing. In addition, Jot provided
little support for memory-intensive digital ink manipulations such as resizing strokes,
modifying the color of strokes and deleting strokes.

9

Unipen

The Unipen [19] standard came into existence in 1994. It incorporated features of
internal formats of several institutions, including IBM, Apple, Microsoft, Slate, HP,
AT&T, NICI, GO and CIC. The primary purpose was for technical and scientific
research use. As a result, it contained a lot of metadata to describe the ink captured
from a digitizer, which would require large memory space and powerful processors. It
was well suited to represent collection of handwriting samples, but not particularly
well suited for other applications.

ISF

Ink Serialized Format (ISF) [22] is a Microsoft proprietary ink format that is mainly
used on mobile devices such as PDAs, Tablet PCs and Ultra-Mobile PCs. ISF is
restricted to Windows platforms and thus is not a good choice for applications made
for portability.

SVG

Scalable Vector Graphics (SVG) [16] as an open standard has been underdeveloped
by the World Wide Web Consortium(W3C) since 1999. It is an XML-based file
format for describing two dimensional vector graphics. SVG has many advantages
such smaller file size, resolution independence and ease of resizing. But as a side-
effect, SVG format limits the ability to modify the contents of images, especially for
digital ink objects. While it can represent curves, it is not well suited to represent
the nuance of digital ink strokes.

InkML

Ink Markup Language (InkML) [11] is an open and up-to-date standard which is
released by the W3C Multimodal Interaction Working Group [18]. It provides a
standard format to represent digital ink generated by a stylus or an electronic pen.
It also provides support for a wide range of hardware devices. It is a platform-
independent format that can be used by applications on a variety of operating systems.
A more detailed discussion can be seen in the section 1.5.

10

<emma:emma version="1.0"
xmlns:emma = "http ://www.w3.org/2003/04/emma"
xmlns :xsi = "http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www. w3 .org/2003/04/emma
http ://www.w3.org/TR/2009/REC-emma-20090210/emma.xsd"

xmlns = "http ://www.example.com/example">
<emma:one-of id = "rl" emma: start = "1087995961542"

emma:end=”1087995963542"
emma:mediurn="acoustic" emma:mode="voice">

<emma: interpretation id = "intl" emma:confidence = "0.75"
emma:tokens="flights from boston to denver">

<origin>Boston</origin>
<destination >Denver </destinât ion >

</emma: interpretation >
<emma:interpretation id="int2" emma:confidence="0.68"
emma:tokens="flights from austin to denver">

<origin>Austin</origin>
<destination>Denver</destination>

</emma:interpretation>
</emma: one-of >

</emma:emma >
Listing 1.1: Example of an EMMA file

1.4.2 Multimodal Data Standards

EM M A

Extensible MultiModal Annotation markup language (EMMA) [13] is developed by
the W3C Multimodal Interaction Working Group. It aims to represent semantic
interpretations of user input including speech, natural language text and digital ink.
EMMA can be used as a standard data interchange format between components of a
multimodal system. It defines means for recognizers to annotate application specific
data with information such as confidence scores, time stamps, input mode (e.g. key
strokes, speech or pen), alternative recognition hypotheses, and partial recognition
results.

An example of EMMA file is shown in Listing 1.1, from [13].

In this example, there are two possible interpretations for the speech input. The
confidence scores and tokens associated with this input are annotated using the
emma: conf idence and the emma: tokens attribute of each < emma: in terp rétâ t ion>

http://www.w3.org/2003/04/emma
http://www.w3.org/2001/XMLSchema-instance
http://www
http://www.w3.org/TR/2009/REC-emma-20090210/emma.xsd
http://www.example.com/example

11

<smil>
<body>

<seq repeatCount="3">

</seq>
</body>

</smil>
Listing 1.2: Example of a SMIL file

element. Both interpretations have same timestamps and contain application-specific
semantics that involves in the elements of < o r ig in > and < d estin ation > .

SMIL

Synchronized Multimedia Integration Language (SMIL) [10] is an XML-based lan­
guage that allows authors to conduct interactive multimedia presentations. The lat­
est edition is in version 3. It defines markups for timing, layout, animations, visual
transitions and media embedding and allows presentations of media items including
image, video, audio and text as well as links to other SMIL presentations. An example
of SMIL file is shown in Listing 1.2, from [10].

This SMIL file plays each listed image for 5 seconds in the shown sequence with
a repeat of 3 times. SMIL is useful. But it does not provide directly support for ren­
dering digital ink. One can only use the <brush> element of the brushMedia module
in SMIL, to paint a particular section of a window. W3C is, however, examining how
to best use SMIL together with InkML.

1.5 InkML and Components

Ink Markup Language (InkML) [11, 36], introduced briefly in the previous section, is
an XML format under development for pen-based applications that can store, manip­
ulate and exchange digital ink. It provides a standard data format for representation
of digital ink generated by a stylus or an electronic pen. InkML also provides support
for a wide range of hardware devices. With the emergence of InkML as an open
standard, a wide variety of applications have been using it for data representation. It

12

<traceFormat >
<channel name="X" type="integer"/>
<channel name="Y" type="integer"/>
<channel name="F" type="integer"/>

</traceFormat>
<trace >

1125 18432 257, 1128 18441 270, 1134 18452 278,
1136 18459 275

</trace >
Listing 1.3: Example of the <trace> and <traceFormat> elements

is a platform-independent standard that can be used by applications on a variety of
operating systems.

After considering various alternatives, we arrived at a design using InkML, not
only because it is an open and up-to-date standard which supports portability, but
also for it provides application-defined channels to support sophisticated ink repre­
sentation.

The <trace> and <traceFormat> Element

The fundamental data element in an InkML document is the <trace> element. It
is used to record the data captured by digitizers. The coordinates sequence inside a
<trace> element represents a collection of contiguous ink points, which are encoded
in terms of the specification given by the <traceFormat> element. In particular,
the <traceFormat> element allows applications to define their own channels to sup­
port sophisticated ink representations. Each application-defined channel provides a
coordinate value for each ink point. For example the ink point (x , y, /) can specify a
three-channel trace format, applications may arbitrarily define the x and y to indicate
the position of the ink point, and the / to represent the pen tip force.

Listing 1.3 shows an exmaple of the <trace> and the <traceFormat> elements.

13

The <traceGroup> Element

The <traceGroup> element is used to represent a collection of successive traces which
share common characteristics, such as the same brush type, color, trace format, etc.

Listing 1.4 shows a collection of traces which share the same brush characteristics.

<def init ions >
<brush id="TearDropBrush " >

<color>blue<color>
<width>4</width>
<length>9</length>

</brush>
</def init ions >
<traceGroup brushRef="#TearDropBrush">

<trace>35 41 27, 36 44 28, 39 45 30, 41 44 28</trace>
<trace >150 141 78, 149 141 75, 146 143 70</trace>

</traceGroup>
Listing 1.4: Example of the <traceGroup> element

The <ink> Element

All InkML documents are well-formed XML documents that comply to the syn­
tax rules. The < in k> element is the root element of any InkML document. All
the content of an InkML document is contained within a single < ink> element.
When combining InkML and other XML elements within applications, qualifiers
may be used to disambiguate elements from different namespaces. Various allowed
sub-elements are enclosed within the < ink> element. These allowed sub-elements
include: < d e fin it io n s > , < con text> , < tra ce> , <traceGroup>, <traceView>,
<annotation> and <annotationXML>. These can occur any number of times, in
any order.

An example of an InkML file is shown in Listing 1.5, which represents five ink
traces, from [11].

14

<ink>
<trace >

10 0, 9 14, 8 28, 7 42, 6 56, 6 70, 8 84, 8 98, 8 112,
9 126, 10 140, 13 154, 14 168, 17 182, 18 188, 23 174,
30 160, 38 147, 49 135, 58 124, 72 121, 77 135, 80 149,
82 163, 84 177, 87 191, 93 205

</trace >
<trace >

130 155, 144 159 , 158 160 , 170 154, 179 143 , 179 129 ,
166 125, 152 128 , 140 136 , 131 149 , 126 163 , 124 177 ,
128 190, 137 200 , 150 208 , 163 210 , 178 208 , 192 201 ,
205 192, 214 180

</trace >
<trace >

227 50, 226 64, 225 78 , 227 92 , 228 106 , 228 120 , 229
134, 230 148 , 234 162 , 235 176 , 238 190 , 241 204

</trace >
<trace >

282 45, 281 59, 284 73 , 285 00 -vl 287 101 , 288 115 , 290
129, 291
213

143 , 294 157 , 294 171, 294 185 , 296 199 , 300

</trace >
<trace >

366 130, 359 143 , 354 157 , 349 171 , 352 185 , 359 197 ,
371 204, 385 205 , 398 202 , 408 191 , 413 177 , 413 163 ,
405 150, 392 143 , 378 141 , 365 150

< /trace >
< /ink>

Listing 1.5: Example of an InkML file

The <definitions> Element

The <definitions> element is a container which is used to make content
reusable. The allowed sub-elements within the <definitions> elements in­
clude: <brush>, <canvas>, <canvasTransform>, <context>, <inkSource>,
<mapping>, <timestamp>, <trace>, <traceFormat>, <traceGroup> and
<traceView>. These elements can be referenced from other elements by us­
ing the attributes of brushRef, canvasRef, canvasTransformRef, contextRef,,
inkSourceRef,, mappingRef, timestampRef and traceFormatRef.

Listing 1.6 shows an exmaple of the <def initions> element, from [11].

15

< ink>
<def initions >

<brush xml :id="redPen"/>
<brush xml :id="bluePen"/>
<traceFormat xml :id="normal"/>
<traceFormat xml:id="noForce"/>
<context xml :id="context 1"

brushRef = "#redPen"
traceFormatRef="#normal"/>

<context xml :id = "context2"
contextRef="#contextl"
brushRef="#bluePen"/>

</definitions>
<context contextRef="#context2" traceFormatRef="#noForce"/>
<context xml :id="context3"/>

</ink>
Listing 1.6: Example of the <definitions> element

The <inkSource> Element

The ink format and attributes vary from device to device. For applications communi­
cating with different hardware it becomes necessary to record metadata about the ink
format and quality. This is accomplished in the <inkSource> element. It records
basic information about the hardware devices as well as the ink format. In particular,
information such as a digitizer’s dimension, sampling rate, latency as well as trace
format and channel properties can be represented.

Listing 1.7 shows an exmaple of the <inkSource> element, from [11].

The <annotation> Element

The <annotation> element is useful as it provides a mechanism for inserting simple
textual information in InkML documents. For instance, it may be used to give ground
truth or recognition results or disambiguate ink traces from eraser traces. Or it may be
used to inform remote clients that the local user is doing page navigation operations.

Listing 1.8 shows an exmaple of the <annotation> element, from [11].

16

<inkSource xml:id = "mytablet"
manufacturer = "Example.com"
model = "ExampleTab 2000 USB"
specificationRef="http://www.example.com/products/

exampletab/2000usb.html">
<traceFormat href="#XYF"/>
<sampleRate uniform="True" value="200"/>
<activeArea size="A6" height="100" width="130" units="mm"/>
<srcProperty name="weight" value="100" units="g"/>
< channelPropert ies >

<resolution channel="X"
<resolution channel="Y"
<channelProperty

channel="Y"
name="peakRate"
value = "50"
units="cm/s">

<resolution channel="F" value="1024" units="dev"/>
</channelPropert ies >

</inkSource >
Listing 1.7: Example of the <inkSource> element

value = "5000"
value = "5000"

units="1/in"/>
units="1/in"/>

1.6 Thesis Organization

The primary objective of this thesis is to explore the dimension of digital ink portabil­
ity. We investigate available APIs on a variety of platforms and examine the question
of which format is most suitable to represent digital ink for both streaming and
archival purposes. We propose a cross-platform framework that can collect digital
ink from a variety platforms and provide a platform-independent, consistent interface
to digital ink applications. InkChat and Calligraphy Board are the implementations
to demonstrate our ideas.

The rest of this thesis is organized as follows:

In Chapter 2 we explore available APIs on a variety of platforms and propose a
cross-platform framework for portable digital ink applications.

In Chapter 3 we investigate the design issues involved in multimodal collaboration
and explain how we use InkML to stream digital ink.

In Chapter 4 we present the system architecture of InkChat. We focus on how
InkChat sends and receives synchronized voice and digital ink as well as archives

http://www.example.com/products/

17

<ink xmlns:dc="http://dublincore.org/documents/ 2001 / 10/ 26 / dcmi
-namespace/">

<annotation type ="descript ion">A Sample of Einstein’s
Writings</annotation >

<annotation type="writer">Albert Einstein</annotation>
<annotation type = "contentCategory">Text/en</annotation>
< annotation type = "language" encoding = "IS0639">en</annotation >
<annotation dc:language="en"/>

<trace id="tracel">

</trace >
ctraceGroup id="tgl">

<annotation type="truth">Hello World</annotation>
<traceGroup >

< annotation type = "truth">Hello</annotation >
<trace> ... </trace>

</traceGroup>
<traceGroup >

< annotation type = "truth">World</annotation >
<trace> ... </trace>

</traceGroup >
</traceGroup >

<traceView href="#tgl">
<annotation type = "style">Cursive </annotation >

</traceview >
</ink >

Listing 1.8: Example of the <annotation> element

these data. We also explain how each canvas layer works and how to support page
navigation.

In Chapter 5 we present Calligraphy Board along with two virtual brush types.
We explain our approach that makes use of InkML to represent sophisticated digital
ink and to render it with calligraphic properties.

In Chapter 6 we describe the implementation of InkChat. We also explain how
we capture digital ink as well as how we manage the data.

We conclude with a brief discussion and suggest directions for future work.

http://dublincore.org/documents/2001/10/26/dcmi

18

We also present a user manual in the appendix to help users to use InkChat.

1.7 Acknowledgement

The design of the two ink applications described in this thesis was done jointly with
my supervisor, Dr, Stephen Watt. The implementation of InkChat was done in
collaboration with Michael Friesen.

19

Chapter 2

Portable Digital Ink Design Issues

Digital ink technologies have evolved over past years. Its usage in form filling, free­
hand input, document annotation and collaboration has been well recognized by more
and more users. Today, pen input is almost everywhere, from big whiteboard systems
to small PDAs, from portable Tablet PCs to smart iPhones, a number of known
digital ink applications have been developed to run on these platforms. However,
most of these applications use platform-specific APIs or proprietary ink formats and
consequently lack portability.

One of our objectives of this thesis is to explore the dimension of digital ink porta­
bility. We focus on examining the availability of APIs on a variety of platforms and try
to answer how to make digital ink applications viable across platforms. We believe
such capability would be useful especially in developing multimodal collaboration
applications.

2.1 Digital Ink Devices

2.1.1 Wacom Tablet and Drivers

Wacom [8] is one of the largest graphics tablet manufacturers in the world. It is
well-known for its patented cordless, battery-free, pressure-sensitive and tilt-enabled
digital pen. Wacom tablet samples X , Y coordinates, pressure, timestamp and tilt
angle (if supported). Samples are collected at a high frequency, and hence this device

20

has been widely used in the fields of handwriting recognition, graphical design and
so on.

In addition, Wacom tablet technology has been integrated by most Tablet PC
leading manufacturers, such as Hewlett-Packet, Toshiba, Lenovo, Acer. With an
Wacom supported PC, one can simply write on the screen and save the note in
handwriting format or convert it to typed text.

Wacom currently provides official support of tablet drivers on two types of plat­
form, Windows (Windows 98SE, Windows Me, Windows 2000, Windows XP, Win­
dows XP x64, Windows Vista and Windows 7) and Mac OS (Mac OS 9 and Mac OS
X). Wacom also provides tablet driver support for Linux through an open source 3rd
party project, called The Linux Wacom Project [4].

2.1.2 UC-Logic Tablet and Drivers

UC-Logic [7] also offers graphics tablet models. The digital ink is generated by a
wireless digital pen and then sent to a computer through a USB cable or wireless.
UC-Logic provides official support of tablet drivers on Windows (Windows 98SE,
Windows 2000, Windows XP and Windows Vista) and Mac OS (Mac OS X 10.2.6 or
later).

2.2 Digital Ink Platform APIs

Pen input has been supported by most platforms. Each platform typically uses dis­
crete APIs to collect digital ink. We will explore these APIs below.

2.2.1 Wintab for Windows

Wintab [29] is the industry standard for accessing graphics tablet features on Windows
platforms. It provides a standardized programming interface to digitizing tablets,
three dimensional position sensors, and other pointing devices. It has been defined
by a group of leading digitizer manufacturers and application developers such as
Wacom, Hitachi, GTCO, CalComp, Genius and OCE .

21

Wintab has been implemented using C + + and works as a low-level interface that
directly communicates with tablet drivers. It claims many advantages including:

1. Reliability
Wintab has been widely used for over 10 years for its good design and reliability
by a number of well-known software products including Photoshop, Illustrator,
etc.

2. Easy Accessibility
Wintab’s APIs are open to public and are accessible from Java applications
through JNI.

2.2.2 Windows XP Tablet PC SDK

Windows XP Tablet PC SDK [23] provides both low-level and high-level support for
digital ink. It enables input and output of handwriting data on a Tablet PC as well
as interchange of these data with other computers. Windows XP Tablet PC SDK
divided the APIs into three categories in terms of their functions:

1. Tablet input
The Tablet input API manages pen-specific features, such as the various side-
buttons on a pen, and collects digital ink and gestures. It contains two concrete
classes, InkCollector and InkOverlay, to facilitate tablet input in the implemen­
tation.

2. Ink data management
The Ink Data Management API handles ink manipulation and ink storage. It
provides assistance on ink operations such as changing ink strokes and their
properties, connecting and splitting strokes, rendering and erasing strokes. The
Ink Data Management API stores digital ink in two types of object, stroke and
ink. The stroke object is the fundamental block of an ink document which is
represented by the ink object. The ink object may contain a collection of strokes
and each of them cannot exist without an ink object as its owner.

3. Ink recognition
The Ink Recognition API is concerned with tablet computing. It is targeted
to suggest possible textual interpretations for digital ink. The Ink Recognition

22

API uses language-specific recognition engines that are designed for different
countries. As a result, it is hard to evaluate its recognition accuracy in gen­
eral. But compared to other existing technologies, the Tablet PC Platform PC
Platform’s English recognizer is fairly accurate when analyzing cursive English.

Windows XP Tablet PC SDK is also supported by the Microsoft .NET Framework.

2.2.3 Windows Presentation Foundation

The Windows Presentation Foundation (WPF) [25] is a graphical subsystem for ren­
dering user interfaces on Windows platforms. That is part of the Microsoft .NET
Framework. WPF is designed to provide user interface features such as transparency,
gradients and transforms. It provides native support for digital ink. The tablet input,
ink management and ink recognition APIs that originally contained in Windows XP
Tablet PC SDK have been put together in the <InkCanvas> element with all of their
functionalities.

2.2.4 XInput for Linux

The Linux platform makes use of a different approach to handle device input. Input
devices, such as keyboards, mice, tablets, joysticks and a wide range of other devices
that undertake the interaction between users and the command line or a graphical
user interface, are protected and managed by the Linux kernel. Being part of the
Linux kernel, the input subsystem can access these devices through special hardware
interfaces such as serial ports, PS/2 ports, parallel ports and Universal Serial Bus. It
provides a range of APIs that expose the device input to users in a device-independent
way. The architecture of the Linux input subsystem is shown in Figure 2.1.

There are three components of the Linux input subsystem: drivers, input core and
handlers. The drivers interact with low-level input hardware where they collect input
events in real time. These events are then converted into standard format before
being sent to the input core. In addition to registering and unregistering devices,
the input core dispatches the standard events to appropriate handlers. The handlers
convert received events into a format required by a particular API and eventually
push them to appropriate applications in the user space.

23

Drivers Handlers User Space

Console
Subsystem

Game
Applications

Digital Ink
Applications

Figure 2.1: Linux input subsystem and XInput handler

The input subsystem includes almost all useful handlers. The keyboard handler
interacts with command line, the mouse handler for manipulating a pointing device on
X Window System, the joystick handler for game control, etc. There is also a special
handler called XInput handler which pushes general input to user space applications.
This handler is based on the idea of transparency and delivers XInput events directly
to particular applications without converting to an API-specific format.

The capture of digital ink is undertaken by XInput handler. Tablet driver interacts
with hardware, filters device input and sends it to the Linux input subsystem. The
Linux input subsystem converts the input to XInput events and then directly delivers
them to user space applications through the XInput handler. The XInput handler is
useful as it makes user space applications close to the input source and hence allows
more primitive operations on the raw data.

2.2.5 The Linux Wacom Project

The Linux Wacom project [4] is an open source project that manages the drivers,
libraries and documentation for configuring and running Wacom tablets on Linux
platforms. Current tablets fall into two categories, serial tablets including most Tablet
PCs and USB tablets. The Linux Wacom Project provides driver support for both of
them.

24

Serial tablet is connected to a COM port and can be directly accessed by opening
an appropriate device, usually /dev/ttySO. The Wacom tablet driver is responsible
for finding the appropriate device and reporting input events to the Linux input
subsystem. The Linux input subsystem will then push these events to the user space.

Unlike the serial tablet, USB tablet is connected to a Universal Serial Bus port.
When user plug in the tablet, the tablet driver registers itself with the USB subsystem
and then notifies the Linux input subsystem that it is ready for streaming data. The
user applications can access the data events by opening an appropriate device such
as /dev/input/eventO.

2.2.6 Cocoa for Mac OS

Cocoa is one the five major available APIs dedicated to Mac OS X. Most Cocoa APIs
are implemented in Objective-C, an object-oriented extension to C used extensively
by Apple. It uses a dynamic runtime to execute application events [20].

In Mac OS X, there are two types of tablet event: proximity event and pointer
event. The proximity events are generated whenever a pen is placed near tablet
or removed from tablet. They contain information about which function is being
used (the stylus or the eraser) and its capabilities. The pointer events may follow
proximity events and contain current state of the pen including position, pressure,
timestamp and tilt angle.

In Cocoa, tablet events are packed in NSEvent [20], a class that contains infor­
mation about an input action. These events arrive via the event queue and will then
be dispatched by the NSApplication class which manages the main event loop of an
application. Each is sent to either a proximity event handler or a pointer event
handler depending on the event type. Both handler process received events and make
appropriate actions.

2.2.7 Palm OS

Palm OS is an embedded operating system initally developed by Palm Inc. It is
normally used by Personal Digital Assistants (PDAs) which often come along with a
pen. Devices using Palm OS have native support for pen input. Digital ink generated

25

by a pen will be converted to Palm OS pen input events. These events are categorized
into three primitive types: penDownEvent, penUpEvent and penMoveEvent. The
penDownEvent is fired by Palm OS event manager the first time the pen touches the
digitizer. It contains window-relative position of the pen in pixels, i.e. number of
pixels from left and top of the window boundary, and the number of taps received
at this position. The penMoveEvent may follow the penDownEvent and passes pen
movement information, including window-relative position of the pen in pixels, to its
listeners. If the pen is lifted from the digitizer, the penUpEvent will be fired by Palm
OS event manager. In addition to recording tap numbers, this event also contains two
types of position information: display-relative position and window-relative position.
The display-relative position describes the start point and the end point of current
stroke. And the window-relative position represents the position relative to current
window. By exploring the Palm OS SDK [26], we did not find it has API support for
retrieving pressure and timestamp from a pen input event.

Palm OS APIs are implemented in the C language. They provide official support
for Java Virtual Machine (JVM) which allows users to install and run Java applica­
tions on Palm PDAs. Taking advantage of the Java Native Interface, we can access
pen input using Java, convert it to a platform-independent format and ultimately
send it to portable digital ink applications.

2.2.8 iPhone OS

The iPhone OS is used on the iPhone and the iPod Touch devices from Apple Inc.
Instead of input using a pen, it accepts finger input on a multi-touch screen. Finger
input affords a different level of precision compared to pen input. If a finger taps on
the screen, the contact area would approximately be an ellipse rather than a point
as when using a pen. Also the tap pressure may be not uniformly distributed among
that area. The iPhone OS analyzes all these information and computes a single touch
point to represent the contact area.

The iPhone OS uses Cocoa Touch, a framework based on Cocoa [20], which pro­
vides direct support for handling user input. Just as with Cocoa, Cocoa Touch is
built based on an event-driven architecture. If one or more finger taps are made on
the screen, it will fire input events and route them to appropriate responders. Cocoa
Touch currently supports two types of input event: touch event and motion event.

26

Both are represented by the UIEvent class which uses a type property to distinguish
them.

The touch event contains information including the position of the finger, the
number of taps received on the screen, the touch phases (down, moved and up) and
the timestamp. Cocoa Touch manages active applications in a responder chain. It is
a linked series of responder objects to which an event or action message is applied.
When a touch event is generated, the iPhone OS traverses the responder chain to
find an appropriate responder to handle it. The responder may render it on screen
or keep it for later processing.

Motion events are fired when users move device in a certain way, such as shaking
it. The iPhone OS evaluates and tests if it meets certain criteria. If so, it will interpret
it as a gesture and create an UIEvent object to represent it. This motion event is
then sent to the current active application for processing.

According to the iPhone OS SDK agreement 3.3.2, “An application may not itself
install or launch other executable code by any means, including without limitation
through the use of a plug-in architecture, calling other frameworks, other APIs or
otherwise. No interpreted code may be downloaded or used in an application except
for code that is interpreted and run by Apple’s Documented APIs and built-in inter­
preter^) [21]” , since JVM allows Java applications to run without calling iPhone OS
native APIs. It is obviously clear that neither Java nor Python are allowed on the
iPhone OS. A possible solution for running Java applications on the iPhone OS is to
translate Java code to Objective-C code through cross-compilation. This will be part
of our future work.

2.2.9 Windows Mobile

Windows Mobile [24] is a compact operating system developed by Microsoft. It was
designed for smartphones and mobile devices. Windows Mobile is based on Windows
CE, an earlier Windows operating system for embedded systems. Most devices using
Windows Mobile come with a pen and allow users to write on the screen instead of
typing commands.

The current Windows Mobile is in its sixth version. It provides API support for
digital ink. It offers a subset of the Windows XP Tablet PC SDK and its successor

27

Microsoft.Ink of the .NET Framework, including ink collection, data management,
rendering, and recognition. It also provides ink controls to support note-taking sce­
nario.

In seeking to interoperate with other applications running on Windows platforms,
Windows Mobile natively supports Ink Serialized Format (ISF), a propriety format
from Microsoft.

Windows Mobile pen input APIs are implemented in C and C + + language. Taking
advantage of the Java Native Interface, we can collect digital ink from Windows
Mobile devices and push it to high-level Java applications.

2.3 Previous Works on Portability

Previous work on digital ink portability has been conducted at the Ontario Research
Centre for Computer Algebra. These include the theses of Xiaojie Wu [38] and Amit
Regmi [32].

Wu’s work focused on the conversions among UNIPEN, Jot and InkML in order to
achieve data portability. Partial platform portability was also achieved in this work.
It investigated two ink APIs, the IBM CrossPad API and the Microsoft Tablet PC
SDK API, and developed an abstract API on top of them. This abstract API was
partially implemented.

Regmi’s work was based on the idea of portable multimodal collaboration. It
developed a collaborative whiteboard application which provided cross-platform sup­
port for Windows, Linux and Mac OS X. It used InkML to exchange data. However,
such portability still remained on the data level and was restricted to certain plat­
forms. The implementation of the application varied from platform to platform. The
whiteboard client for Windows was implemented in C #. It used the .NET Framework
and was thus restricted to Windows platforms. The whiteboard client for Linux and
Mac OS X was implemented in Python. Although Python supports cross-platform
portability, the client was constructed using Linux-specific or Mac OS X-specific APIs
and thus could not be ported to other platforms.

28

2.4 A Cross-Platform Digital Ink Framework

We suggest to develop portable digital ink applications using Java as it provides
strong portability and applications can run on any Java Virtual Machine regardless
of system architecture. For platforms that do not support Java directly, the Java
code can be compiled to C or another native language.

2.4.1 Java Native Interface

The Java Native Interface (JNI) [34] is part of the Java platform and is designed to
incorporate native code written in programming languages such as C, Objective-C and
C + + , together with code written in Java. Taking advantage of the JNI, programmers
can make their Java applications interact with system-specific legacy code. Figure
2.2 illustrates how Java applications interact with native libraries. Java applications
are written in the Java programming language and can be compiled to a machine-
independent binary class format. The class can run on any JVM implementation in
the host environment. Being part of JVM, the JNI can connect Java applications and
native libraries and allow Java code to invoke native code and vice versa.

Java application Native libraries

N /
Host environment

Figure 2.2: Java Native Interface

To use the JNI technology, one must first write a Java class which declares at least
one native method. See Listing 2.1 for an example. The InkProvider class declares
three native methods. Each native method’s declaration contains a native modifier
to indicate that this method will be implemented in another language. Before the
native methods can be called, the InkProvider class must load the native library
that implements these methods. This can be done by the static initializer of the
InkProvider class.

29

public class InkProvider {

/* *
* Load native libraray
*/

static {
System. loadLibraryC InkProvider") ;

>

/* *
* A native method that retrieves X coordinate
* of the pen
*
* ©return int
* The X coordinate of the pen
*/

public static native int getPositionX();

/ * *
* A native method that retrieves Y coordinate
* of the pen
*
* ©return int
* The Y coordinate of the pen
*/

public static native int getPositionY();

/ * *
* A native method that tests if the pen touches
* the digitizer
*
* ©return boolean
* If the pen touches the digiter ,
* return true;
* Otherwise , return false
*/

public static native boolean isPenDownO;

// Other methods

>
Listing 2.1: InkProvider .java

30

Having defined the InkProvider class, we need to compile the source file using the
javac compiler. A InkProvider. class file will be generated in the current directory.

A JNI header file is useful when implementing the native methods in C language.
This can be obtained by running javah on the InkProvider. class file.

javah -jni InkProvider

This command will generate a file named InkProvider .h, as shown in Listing 2.2.
It provides three function prototypes for the native methods. Each prototype specifies
its return value type and that it accepts two arguments. The first argument is the
JNIEnv interface pointer which allows native methods to access data structures in
the JVM. The second argument is a reference to the InkProvider object from which
the method is invoked.

The native methods must be implemented complying with the prototypes specified

#include <jni.h>

/* Header for class InkProvider */
#ifndef _Included_InkProvider
#define _Included_InkProvider
#ifdef __cplusplus
extern "C" {
endif

JNIEXPORT jint JNICALL Java_InkProvider_getPositionX
(JNIEnv *, jobject);

JNIEXPORT jint JNICALL Java_InkProvider_getPositionY
(JNIEnv *, jobject);

JNIEXPORT jboolean JNICALL Java.InkProvider_isPenDown
(JNIEnv *, jobject);

#ifdef __cplusplus
>
endif
endif

Listing 2.2: InkProvider.h

31

#include <jni.h>
#include <stdio.h>
#include "InkProvider.h "

// Retrieves the X coordiniate
JNIEXPORT jint JNICALL Java_InkProvider_getPositionX(JNIEnv *,

j obj ect) {
// Get the X coordinate
const int x = penlnputEvent->x ;

return x;
}

// Retrieves the Y coordiniate
JNIEXPORT jint JNICALL Java_InkProvider_getPositionY(JNIEnv *,

jobject) {
// Get the Y coordinate
const int y = penlnputEvent->y;

>
return y;

// Tests if the pen is down
JNIEXPORT jboolean JNICALL Java_InkProvider_isPenDown(JNIEnv

*, j obj ect) {
if(penDown is true) return true;
else return false;

>
Listing 2.3: InkProvider.c

in the header file, as shown in Listing 2.3. For a proof-of-concept, the native methods
get pen input data from the system and return it to the InkProvider class.

The last step is to build native libraries. Different operating systems support
different ways to do this. A shared object library named liblnkProvider. so will
be created on Solaris and Linux machines. And a dynamic link library (DLL)
InkProvider. dll will be created on Windows.

To assure that the InkProvider class works properly, the native library must be
saved in one of the directories in the native library path. This can be accomplished by
setting the java command line option, -Djava. library .path, to the location where
the native library resides.

32

2.4.2 Java ME CDC for Mobile Devices

Java Platform Mirco Edition (Java ME) with Connected Limited Device Configura­
tion (CLDC) [28] was developed by Sun Microsystems Inc. It only provides a base set
of application programming interfaces and a virtual machine for resource-constrained
devices like cell phones, pagers, and PDAs. Compared to Java Platform Standard
Edition (Java SE), it provides limited feature support when developing Java appli­
cations. At the same time, it does not support the JNI, which means that it is
impossible for Java applications to collect pen input data by this way.

Fortunately, Java ME defines an alternative, the Connected Device Configuration
(CDC) HotSpot Implementation [27]. Its principal goal is to adapt Java SE technol­
ogy from desktop systems to mobile devices. It uses the JNI as its native method
support framework. Taking advantage of Java ME CDC, it becomes possible for Java
applications to collect digital ink using the JNI.

2.4.3 A Cross-Platform Framework

Having explored available APIs on a variety of platforms including Windows, Win­
dows Mobile, Linux, Mac OS X and Palm OS, we propose a framework that can
capture digital ink across these platforms and provide a platform-independent, con­
sistent interface to digital ink applications. This framework is illustrated in Figure
2.3.

This framework contains two layers, the platform layer and the JNI layer. The
platform layer receives digital ink input from drivers and passes the data on to the
upper interfaces, Wintab for Windows, XInput for Linux/Unix and Cocoa for Mac
OS. As a rule, these interfaces push the data to user space in a platform-specific way
and describe each data event inconsistently. For instance, Windows packs data events
in Wintab packets which benefit Windows applications. On Linux or Unix platforms,
the data events will be described using XInput events. On Mac OS platforms, the
data events will be represented by the NSEvent objects which are restricted to Mac
OS. Obviously, this puts all responsibility for event conformance on the shoulders of
applications’ implementation, which requires a huge effort. We desire that developers
do not need to focus on the platform-dependence but on the functionality design.
This leads to the design of the JNI layer.

33

Java Digital Ink Applications

JNILayer

Platform Layer

Java ME CDC
+

JNI Invocation

Java ME CDC
+

JNI Invocation
JNI Invocation JNI InvocationJNI Invocation

Figure 2.3: A Cross-Platform Framework for Digital Ink Applications

The JNI layer interacts with the platform layer and provides platform-
independent, consistent APIs to digital ink applications. It is implemented using
Java. As the Wintab, XInput, Cocoa, Palm OS pen input APIs and Windows Mobile
pen input APIs are all implemented in C-like languages, the JNI layer can invoke them
using the JNI. The JNI layer collects digital ink input from the platform layer, con­
verts it to platform-independent events and then dispatches to digital ink applications.
The benefit of doing so is that it saves developers from complex platform-dependence
and allows them to focus on the functionality design, which eventually brings digital
ink portability and useful manipulations.

2.5 Summary

In this chapter we have explored available digital ink input APIs on a variety of
platforms including Windows, Windows Mobile, Linux, Mac OS X and Palm OS.
We have identified their similarities as well as their differences. We have proposed a
cross-platform framework that can collect digital ink in all these settings and provide
a platform-independent, consistent interface for digital ink applications. We use the

34

JNI to invoke native libraries. For platforms that do not support Java directly, the
Java code can be compiled to C or another native language.

35

Chapter 3

Multimodal Collaboration Design
Issues

A number of applications have been developed in the past years to accommodate
the needs of multimodal interaction. One of the most useful applications is the
whiteboard system, where multiple users collaborate by means of voice, digital ink,
text and video on a shared canvas. However, these systems normally use complex or
proprietary formats for data exchange which consequently lead to poor portability
and inter changeability. For instance, the use of proprietary ink formats such as
Microsoft ISF(Ink Serialized Format) restricts applications to Windows environments.
If another application wishes to interact with these applications but is running on a
different platform or using a different data format, interoperability is not possible.

On the other hand, it would be useful for collaborative whiteboards to have strong
portability, not just running on one operating system but many. There would also
be a neat and elegant medium for flexible data exchange with other applications.
Meanwhile, an improved rendering system along with several useful virtual brushes
would eventually benefit users so that it looks as real as if it were written on a paper.
It should also allow users to conduct various operations on the user interface, such as
erasing by stroke, erasing by point, drag and dropping, copy and paste and so on.

Having identified this gap, the primary objective of this chapter were to analyze
the design issues involved in multimodal collaboration.

36

3.1 Multimodal Input

Multimodal input is useful as it provides versatile means for users to interact with
computers. These input modalities include keyboard, mouse, voice, pen, video and
so on. We will focus on the voice input and pen input in this section, and explore
their capabilities in collaborative environments.

3.1.1 Voice Input

Voice input is a fast and natural way to interact with computers. Most people speak
faster than they can type or manipulate a mouse. Notably, certain people with
physical disabilities prefer operating their computers simply by speaking. Voice input

-is hands-free, which is useful if one is driving. Also, voice input is flexible, one does
not have to sit in front of computer: it is possible to use voice input while sitting,
standing, or reclining. Although a headset microphone is typically required, it is
still possible to use build-in microphones or other setups that don’t require daily
assistance.

3.1.2 Pen Input

With the widespread availability of pen-based devices such as Tablet PCs, PDAs
and even cell phones, pen input starts playing an important role in human computer
interaction. Pen input is a natural and powerful input modality since everyone learns
to write in school. It is versatile as it provides more gestures and motions available
compared to mouse and keyboard input. Pen input is also expressive. It is typically
two dimensional and for some advanced digital pen it even supports three dimension
(pressure sensitive). As a result, it can easily express symbols, signs and graphics.
This is true especially in mathematics, as most of mathematical notations are two
dimensional, with elements of both handwriting and drawing. These are hard to
understand by the means of voice, keyboard or mouse, but could be easily expressed
using a pen.

37

3.1.3 Voice and Pen Multimodal Input

We choose voice and pen as the input modalities for collaboration as together they
add more benefits than either alone.

The advantages of voice and pen multimodal collaboration include:

1. Portability
Most computing platforms support both voice and pen input.

2. Easy to use
No extra assistance with setup is required to use voice and pen input.

3. Complementary input modality
Both voice and pen input can work independently and simultaneously. One can
write and speak at the same time, or separately.

4. Adaptive to the environment
In some cases, one can singly use voice input as it is fast and requires less
attention. If it is extremely noisy or requires expressive illustration, it becomes
useful to use pen input.

3.2 Multimodal Collaboration

3.2.1 Voice Collaboration

With the emergence of VoIP and net phones in late 1990s, voice collaboration has
become more and more prevalent as it provides users real-time communication services
such as IP telephony, conference calls, voice controls and so on. Today, these services
have been integrated into many known collaborative applications, such as IBM Lotus
Sametime Unified Telephony, Google Wave and so on. Such applications help users
easily find, reach and collaborate with each other.

Voice collaboration is not just concerned with collaborating with another person
using voice, it is actually more than that. For instance, people with disabilities may
find it difficult to operate a computer using a keyboard or a mouse. It would be

38

helpful if they could control the computer using voice. The computer would then try
to recognize the voice and conduct appropriate operations.

We integrate voice collaboration along with digital ink collaboration into our
whiteboard system, as we believe that they are complementary with each other in
that the combination will provide a real-time, effective and expressive communication
for our users.

3.2.2 Digital Ink Collaboration

As discussed earlier, pen input provides a natural and convenient way to interact
with computers. One of the most useful applications is the collaborative whiteboard,
where multiple users send and receive digital ink messages by using pen input devices
to write and draw on a shared canvas. This shared canvas may be blank or already
contained some shared information such as a map,an image or previous ink work.

The whiteboard is useful but at the same time the implementation is challenging,
especially when the collaborative environments are heterogeneous. Different pen de­
vices may have different properties. For instance, some digital pens only support two
channels input, i.e. X and Y coordinate. While, advanced digital pens may allow
three or even more channels input, i.e. X, Y, pen tip force, tilt angle and so on.

For portable representation and flexible interchange of digital ink, it is impor­
tant to save it in a platform-independent and open standard format. Fortunately,
InkML provides a wide range of features to support such capabilities. To achieve
portability, InkML describes each pen device using an <inSource> element with a
list of sub-elements, <traceFormat>, <sampleRate>, <latency>, <activeArea>,
<srcProperty>, <channelProperties>, which in turn specifies the trace format,
sampling rate, latency, resolution, additional ink source properties and channel prop­
erties. Digital ink generated by the pen will be represented by <trace> elements,
conforming to the pen device properties. New traces will then be either streamed to
other collaboration participants or archived in file system for later processing.

InkML streams digital ink based on the concept of context. The context is repre­
sented by the <context> element which contains various associated aspects, includ­
ing <canvas>, ccanvasTransform>, <traceFormat>, <inkSource>, <brush>,
<timestamp>. Initially, each ink collaboration participant sets up a default context

39

and listens to context changes. This is similar to a event-driven model in that context
changes will be made when <context>, <traceFormat> and <brush> elements are
received. In practice, these elements will intersperse among digital ink streams, see
Figure 3.1.

Participant A

ccontext brush Ref="#pen"/>

<trace id="01"> </trace>

ccontext brush Ref="#erayon"/>

ctrace id="02"> c/trace>

ctrace id="03"> c/trace>

ccontext traceForm atRef="#XYP"/>

ctrace id="04"> </trace>

Participant B

Figure 3.1: Digital ink streams

As each trace is associated with a context, the trace cannot be parsed properly
until its associated context has been established with receivers by means of sending a
<context>, <traceFormat> or <brush> element. This may increase transmission
overhead when it only switches among a few favored contexts. See Listing 3.1 and
Listing 3.2 for instance. Listing 3.1 shows a scenario of brush changes. It first changes
current brush to “pen” and processes trace “01” . It then changes the current brush to
“crayon” as the Cbrush id=" crayon" /> is received. Later, it switches the current
brush back to “pen” and processes trace “03” and trace “04” . Listing 3.2 shows a
scenario of trace format changes. It switches from trace format “XY” to “XYP” and
then switches back.

Obviously, sending the Cbrush id="pen"> and the CtraceFormat name="XY">
element twice is unnecessary as receivers already know the “pen” and the “XY” trace
format the first time they were used. A smarter way to do this is to save reusable
elements in the Cdef in it io n s > element. These reusable elements can be referenced
by other elements using appropriate syntax. See Listing 3.3 for instance, the trace
“01” refers to the “pen” brush and the trace “07” refers to the “crayon” brush.
Initially, each ink collaboration participant can set up default definitions. If the asso-

40

< b r u s h i d = "p e n "/>
< t r a c e i d = " 0 1 " > 4 5 o>CN 47
< b r u s h i d = " c r a y o n "/>
< t r a c e i d = " 0 2 " > 3 7 22 , 34
< b r u s h i d = "p e n "/>
< t r a c e i d = " 0 3 " > 2 1 41 , 21
< t r a c e i d = " 0 4 " > 3 0 oCO 28

26 , 50 26 , 52 23</trace >

19, 33 19</trace>

45, 23 44, 25 40</trace >
26 , 28 26 , 27 25</trace >

Listing 3.1: Brush changes

<traceFormat id="XY">
<channel name="X
<channel name="Y

</traceFormat>
<trace id="01”>37 22 15,
<traceFormat id="XYP">

<channel name="X
<channel name="Y
<channel name="P

</traceFormat>
<trace id=”02">21 45 15,
<traceFormat id="XY">

<channel name="X
<channel name="Y

</traceFormat>
<trace id="03">21 41, 21
ctrace id="04">30 30, 28

type=1" int eger " >
type=1" int eger " >

47 26 , 23 44, 25 40</trace>

type='11 int eger " >
type=1’ int eger ">
type =11 integer " >

34 19 :18 , 33 19 12</trace>

type=11 int eger ">
type=11 int eger " >

45 , 23 44, 25 40</trace >
26 , 28 26 , 27 25</trace >

Listing 3.2: Trace format changes

ciated context of a trace is already included in the definitions, instead of establishing
the context with receivers by broadcasting a complete <con text> , <traceForm at>
or <brush> element, we can specify the context using the trace’s contextRef and
brushRef attributes. When the trace is received by other participants, the associ­
ated context can be set up by dereferencing the contextRef and brushRef attributes.

41

<trace id="01" brushRef="#pen">22 5, 23 7, 25 10</trace>

<trace id="07" brushRef="#crayon">29 25, 30 25</trace>
Listing 3.3: Brush reference

3.3 Communication

3.3.1 Network Architecture

There are a number of network architectures available when considering the commu­
nication issues involved in whiteboard systems. We focus our analysis on the two
most popular ones: Client-Server networks and Peer-to-Peer networks.

Client-Server networks

A Client-Server Network is a distributed network architecture that separates tasks
and work loads between servers and clients, as shown in Figure 3.2. Each of the clients
sends data requests to one or more connected servers. In turn, servers may reject these
requests or accept them, process them, and return the requested information to the
client. Standard networked functions such as email exchange, website and database
access are based on this model.

The Client-Server’s data storage is centralized. Only the server administrator has
permission to update data. This may become bottleneck when designing collabora­
tion applications. As opposed to keep data in one place, collaborative applications
require that data and resources can be distributed and shared among participants. In
collaborative applications, each participant should be able to work on a independent
part or cooperate with others interactively.

The Client-Server networks also lack robustness. Should a critical server fail, the
client’s communication can be broken.

42

Figure 3.2: Client-Server network architecture

Peer-to-Peer networks

A Peer-to-Peer network, also known as P2P, is a distributed network architecture
where each participant shares a portion of resources that are also available to the
others. This is illustrated in Figure 3.3. In contrast to the Client-Server networks
that keep data centralized on a server and only the administrator has permission to
update it, the P2P networks allow each participant to make changes to his or her data
copy and to directly share it with the others without communicating via a “server” .
This feature is very suitable for collaboration applications. Moreover, the distributed
nature of P2P networks also increases robustness. It enables peers to directly find
data without relying on a centralized index server.

3.3.2 Skype

Skype is a software application that allows user to communicate by voice and video
as well as the text messaging. It has experienced a rapid growth in popular use since
it was launched. It has become the present worldwide leader in VoIP. Skype uses
an overlay Peer-to-Peer network which is a compromise between a pure Peer-to-Peer
network and a Client-Server network. It organizes its nodes into two levels, normal
node and super node, as shown in Figure 3.4.

43

Figure 3.3: Peer-to-Peer network architecture

Any node with a public address having sufficient CPU, memory and network band­
width can be a candidate to become a super node. This super node interconnected
with the other super nodes that helps relay queries and acts as a proxy connection to
normal nodes behind firewalls. Each normal node keeps an index of super nodes and
can get involved by connecting to one of them. Such a decentralized distributed net­
work is more robust than a traditional Client-Server network. Meanwhile, compared
to a pure Peer-to-Peer network, the super nodes improve network scalability.

Figure 3.4: Skype network architecture

44

As discussed earlier, collaboration applications require that data can be easily
collected and shared among its participants. With the distributed nature, Skype
network is right for this job. We decided to use Skype as the backbone to transmit
data over clients also based on the following considerations.

• Cross-platform availability
Skype has a number of versions exist for different operating systems, includ­
ing Linux, Linux-based Maemo, Mac OS X, iPhone OS, Microsoft Windows,
Windows Mobile and even Sony’s PSP.

• API accessibility
The Skype APIs are publicly available and have been encapsulated in many pro­
gramming languages including Java, Python and C #. These wrapper libraries
make it possible to develop portable collaboration applications using Skype.

• Cost effective
Skype client can be freely downloaded from its website and along with free
IM, VoIP and file transfer functions. It only requires a computer with Skype
installed and the Internet access to use its services.

• Reliable and secure service
Skype provides reliable services even in miscellaneous networks. Moreover,
Skype uses secure communication, any data transmitted between Skype clients
will be encrypted. This encryption cannot be disabled and is invisible to users.

3.4 Summary

We have chosen voice and pen as our input modalities in collaboration as they together
add more benefits than either alone. We have identified the design issues involved
in digital ink collaboration. We have also illustrated how we use InkML to stream
digital ink in heterogeneous environments. We have reviewed the Client-Server and
Peer-to-Peer network types, and have found that the Skype combination is suitable
for multimodal collaboration applications.

45

Chapter 4

InkChat Architecture

InkChat is a Java-based, portable collaborative whiteboard system which allows con­
ducting conversations involving voice and digital ink on a shared canvas. This chapter
illustrates InkChat’s design and its architecture.

4.1 System Architecture

InkChat makes use of the cross-platform framework presented in the Section 2.4.3,
whose primary purpose is to collect digital ink from a variety of platforms and to
provide a platform-independent, consistent interface for digital ink applications.

Figure 4.1 illustrates the architecture of InkChat. The lowest layer is the platform
APIs layer. One of the design goals of InkChat is to be portable. We expect that
InkChat can interact with these platform APIs and capture digital ink regardless
of its operating platform. As these APIs are typically implemented in C or C-like
languages, we use the JNI to invoke their functionalities.

The Digital Ink Cross-Platform Framework consists of two types of components.
The Ink Provider provides a platform-independent, consistent interface to upper dig­
ital ink applications. It also provides a prototype for its concrete, platform-specific
Ink Providers, including Windows Ink Provider, Linux/Unix Ink Provider, Mac OS
Ink Provider, Palm Ink Provider and Windows Mobile Ink Provider. Each of these
Ink Provider classes implements the prototype. It works like an agent that invokes

46

Digital Ink Cross-Platform Framework

Figure 4.1: InkChat Architecture

platform APIs and responds to the application’s requests. This whole layer is imple­
mented using Java.

InkChat consists of four components and each of them is in charge of a particular
responsibility. The Ink Management component accepts digital ink input from the
cross-platform framework and converts it to an appropriate object for processing. This
may involve noise removal, pen down, pen up, pen movement and non-contact pen
pointing. It is also responsible for ink manipulations on the user interface. If an eraser
is being used on the canvas, the Ink Management component continues detecting
whether a target object is selected. If so, the object may be immediately removed
from the canvas. In seeking to seamlessly work with other digital ink applications

47

that may use other ink formats, the Ink Management component should also have
the flexibility to interchange the data.

The Ink Archival component interacts with a file system. It documents user’s ink
work and saves it using a standard format. It can also load ink files from the file
system and pass data on to the Ink Management component. The Ink Management
component may change the contents of the file and replace it.

The Ink Rendering component does ink rendering work. It contains a collection
of brushes. See Chapter 5 for a description of brush types. Some of the brushes are
pressure sensitive and some are not. The Ink Rendering component should render
ink strokes in terms of the brush type.

The Ink Sharing component handles ink transmission with other InkChat clients.
It is controlled by the Ink Management component and being active for sending and
receiving ink objects through the Skype networks.

4.2 Ink Session Streaming and Archival

InkChat exchanges digital ink by sending and receiving InkML streams. Figure 4.2
shows the procedure of sending an InkML stream. An ink stroke is a collection of ink
points. Each point consists of several coordinate values recording its position, pen tip
force and so on. When an ink stroke is captured by the interface, the Ink Management
component will encapsulate it as an InkML trace with additional information such as
the current context and notify the Ink Sharing component that the InkML trace is
ready to be sent. The trace will then be sent as an InkML stream to its destinations
through the Skype networks by calling the Skype APIs. Meanwhile the Ink Archival
component will also archive the InkML trace in the local file system. All ink strokes
can be re-rendered by loading files from the file system when requested by the user
interface.

Fig 4.3 shows the procedure of receiving an InkML stream. The Ink Sharing
component passes any received InkML stream on to the Ink Management component.
The Ink Management component will then parse the stream, retrieve its self-contained
context and then convert it to an ink stroke for rendering. Meanwhile, these InkML
streams will be saved in InkML files which are kept in the local file system. Such

48

<trace>___ </trace>

Ink Stroke
<trace>___</trace>

InkML Stream

InkML File

Figure 4.2: Sending an InkML stream

mechanism ensures that all participants can share consistent copies of the current ink
session. This is helpful when users wish to pause and continue a conversation.

InkML Stream
<trace>___</trace>

<trace>___ </trace>

Ink Stroke

InkML File

Figure 4.3: Receiving an InkML stream

4.3 Ink Session Retrieval

Users may wish to load a previously recorded ink session. This is implemented by
loading an InkML file and retrieving all the information contained. As discussed
earlier, contextual elements are defined within a <def initions> element. Figure
4.4 shows the procedure of retrieving an ink session from an InkML file. InkChat first
loads the InkML file. The Ink Management component parses the <def initions>
element and saves all contextual information to the current ink session. It then
parses all traces and converts them to various ink stroke objects in terms of their
corresponding contextual information. Meanwhile, these ink stroke objects will be
processed at once.

<definitions>___ </definitions>
<context>___ </context>
<trace>___ </trace>
<trace>___</trace>

Ink Strokes

Figure 4.4: Loading an ink session

49

4.4 Canvas Layers

InkChat’s canvas consists of three equal size layers, as shown in Figure 4.5. The
bottom layer, the Image Canvas, is used to load images. Users can switch the con­
versation themes by loading various background images, such as calendars, music
script paper and so on. The middle layer, the Ink Canvas, does the rendering work.
All kinds of brushes, including erasers, work on this layer. These brushes draw ink
points reported by the tablet driver or received from other participants. This layer is
transparent and thus leaves the Image Canvas visible. The top layer is the Selection
Canvas, it is like a sheet of glass over all the other layers. Users can select part of
their ink work by drawing a selection free-hand with a stylus, while pressing it against
the tablet (or, for a pointer, holding down the left mouse button). When lifting the
stylus, the selection will be closed by connecting the current location to the start
location with a straight line. All ink strokes contained by that area will be selected
and passed on to the next operations, such as erasing, copy and paste, drag and drop
and so on. The selection Canvas is useful as it also can be used to intercept input
events. For instance, in teaching mode where only the teacher is allowed to write on
the shared canvas while students can only view it, all input events on students’ side
can be intercepted by the Selection Canvas.

|LL||UL, mi, !--- ---------- — —

Image Canvas

Ink Canvas

Selection Canvas

Transparent

Transparent

Figure 4.5: InkChat, canvas layers

50

In addition to the three layers, InkChat also provides a flexible way to add more
layers for application needs. When adding a new layer to the canvas, one must
specify its depth as an integer. InkChat positions its layers in terms of their depth.
The higher the number, the closer the component is to the “top” position. If two
layers has the same depth, the relationship between the two layers is determined by
which layer is added first. The first layer added will be overlapped by the ones added
later.

4.5 Page Model

InkChat also supports a page model. The page model is useful when a user wishes
to cover multiple topics in one session or to save and load in the middle of his or her
document work. In both cases, the current page will first be saved to the file system
as an InkML file. Then the Ink Canvas will send a page request to the file system to
check if the next page is already available. If so, the Ink Canvas will load and parse
the InkML file. It will then render the digital ink and allow the user to continue to
work on that page. Otherwise, a new page will be created in the interface. Figure
4.6 illustrates the working procedure of the page model.

Figure 4.6: InkChat page model

If the user is involved in a multi-party conversation, the local client may send and
receive InkML annotation streams to synchronize their page numbers. Such capability
would be useful if InkChat is being applied in a distance learning environment.

51

4.6 Conference Mode

InkChat supports a conference mode where more than two participants can be in­
volved in one conversation. The conference is initiated by the host which has a
connection with every other participant. Audio routing to other participants is han­
dled by the Skype client internally and is written to the corresponding WAV hies
using the Skype API. Digital ink routing shares the same mechanism that each ink
stroke will be broadcast by the host to all participants except the initiator. Figure
4.7 and Figure 4.8 show the two cases when a host and when a client initiate a stroke.

Figure 4.7: The host initiates a stroke in conference meetings

As shown in Figure 4.7, if a stroke is initiated by the host, it will be broadcast to
all the clients.

As shown in Figure 4.8, if a stroke is initiated by a client, it will be sent to the
host and then broadcast to all the other clients.

52

(i f e ' r Ù

Figure 4.8: The client initiates a stroke in conference meetings

4.7 Summary

In this chapter we have presented the architecture of InkChat and have described
the functionality of each component. We have also explained how InkChat handles
ink streaming and archival, how different canvas layers work together to facilitate ink
operations and how InkChat broadcasts ink messages.

53

Chapter 5

Ink Rendering

Although digital ink technologies have evolved over years, the “brushes” used by
digital ink applications are still far simpler than real brushes. They are normally
two dimensional, only recording X and Y coordinates. Few of them have support to
record additional information such as pen tilt angle, pen tip force, timestamp etc.
which are essential when simulating more complex writing instruments.

Various brush models have been developed and used on computers to simulate hair
brush properties. One of the earliest attempts is that of Steve Strassmann [33]. It
describes an investigation into a realistic model of painting. It simulated the behaviors
of a brush with wet paint on paper. Wong and Ip [37] presented an approach to
simulate the physical process of brush strokes creation using a parameterized model
which captures the brush’s 3D geometric parameters, the brush hair properties as
well as the variations of ink deposition along a stroke trajectory.

Our work is similar to those in that we all keep track of each ink point and calculate
its contour to simulate brush properties. Our work is also apart of those as we are
using InkML, an open and up-to-date standard, to represent and render digital ink.

We present Calligraphy Board along with two virtual brush models in this chapter.
The Calligraphy Board uses the framework proposed in the Section 2.4.3. It collects
digital ink from a variety of platforms and renders it with calligraphic properties. We
will leave the framework implementation to Chapter 6 and focus on the design of the
two virtual brush types.

54

5.1 InkML Representation

After considering various alternatives, we arrived at a design using InkML, as it pro­
vides application-defined channels to support sophisticated ink representation. Each
application-defined channel provides a coordinate value at each ink point, e.g. as for
an InkML point (re, y , r, l, 0) which specifies a five-channel trace format. Applications
may arbitrarily define x, y to indicate the position of an ink point, r, l to measure the
brush head radius and the tail length, 6 to represent the rotation angle of the brush
tail. Such feature is extremely useful as it allows applications to flexibly represent
ink strokes and to render them with various properties according to the context.

Taking advantage of InkML, we propose a approach to render sophisticated digital
ink. we first capture digital ink and retrieve information such as coordinates, pen tip
pressure, timestamp and tilt angle from pen-based devices. We then simulate the
dynamic brush shapes by calculating the contour at each ink point. Finally we can
render it in terms of the brush type.

To demonstrate our ideas, we have developed two virtual brushes. Both of them
can render digital ink with calligraphic properties.

5.2 Calligraphic Rendering

With the widespread availability of pen-based devices, it becomes interesting to ren­
der digital ink with calligraphic properties. This is particular useful when aesthetic
and decorative effect are desired. Calligraphy, especially Chinese calligraphy, cannot
be aesthetic without stroke width variations. Therefore, rendering digital ink with
calligraphic properties is not as easy as drawing a set of ink points and connecting
them using simple lines or curves, but must embody the brush physical properties
and express calligraphers’ writing style.

We take Chinese calligraphy for an example. Since the brush is made of soft hairs,
there are abundant width variations even in one simple stroke, as shown in Figure
5.1. A stoke normally gets fat at the beginning as calligraphers push hard when the
brush tip drops on the paper. Then it gets thinner while the brush is moving. Once
the brush reaches the stroke end, its tip suddenly turns back and the stroke gets fat
again due to the delay of the brush tail.

55

Figure 5.1: A simple stroke of Chinese calligraphy.

We see that calligraphy cannot be rendered using simple lines or curves due to its
stroke width variations. We thus use a different approach: instead of simply connect­
ing ink points, we calculate the contour of each ink point to simulate the dynamic
brush shapes while it is moving. Obviously, different brush types result in differ­
ent two dimensional contours of an ink point. Even using the same brush, different
pressures may cause contour size and shape variations. Therefore, after capturing
digital ink from pen-based devices, we convert it to brush-oriented parameters and
then render it in terms of the brush type.

We start from the Round Brush. We have also developed a more sophisticated one,
the Tear Drop Brush, to simulate Chinese calligraphy. The following two subsections
illustrate the two brushes individually.

5.2.1 Round Brush

The Round Brush, as its name suggests, draws each ink point as a filled circle. We
use three parameters to model the Round Brush, as shown in Figure 5.2, x, y to
indicate the position and r to measure the circle radius which is a function of pen tip
pressure. Basically, the harder you press the brush, the larger the circle you would
get. In our approach, the radius of the circle r is directly proportional to the pressure
p, where A; is a constant.

r = k x p

Pen-based devices work with a certain sampling rate. A higher sampling rate indicates
it samples more ink points in a unit time and leads to a greater chance that two
successive circles would overlap. A lower sampling rate indicates it samples fewer
ink points in a unit time and leads to a smaller chance that two successive circles

56

(x , y)

Figure 5.2: The model of Round Brush

would overlap. In addition, if the brush moves fast, the chance of overlapping would
correspondingly decrease. Practically two successive circles do not overlap if the brush
is moving. Even if they are overlapped, there is a great chance that they are not fully
overlapped. As long as full overlap does not exit, there will be a gap between each
pair of successive circles. In seeking to have a smooth rendering, we fill the gaps using
the method shown in Figure 5.3.

Figure 5.3: Filling the gap between two successive Round Brush ink points

As shown in Figure 5.3, as long as two successive circles do not fully overlap, we
calculate their external tangents and color the area determined by the four tangent
points. Otherwise, we do nothing as either circle is covered by the other.

5.2.2 Tear Drop Brush

The idea of the Tear Drop Brush comes from the Round Brush and it is more sophis­
ticated. Holding a brush upright and pressing the tip on to paper, then lifting it up

57

quickly, would leave a round dot. If you then press the tip on to paper and drag it
for a tiny distance, there would be a dot that looks like a tear drop left on the paper.
Finally, if you press the brush very hard, the soft hair would spread out and the ink
mark would become a fat round dot again. Based on this idea, we use five parameters
to model the Tear Drop Brush, as shown in Figure 5.4, x and y indicate the position
of the ink point, r represents the head radius, 6 indicates the rotation angle of the
tail, and l measures the tail length, the distance from the circle center to the tail end.

Figure 5.4: The model of Tear Drop Brush

In principle, the head radius should be a function of pressure. The harder you
press the brush, the larger the radius would be. In our approach, we set the radius r
to be directly proportional to the pressure p, where A; is a constant.

r = k x p

The tail length l ranges from r to L, the length of the brush hair. Its value depends
on the distance between the old tail end and the new ink point.

We can describe this using what is called the ’’ donkey wagon” model. Imagine the
tail end of the tear drop shape is a wagon on a rope being pulled by a donkey at the
center of the head. When the donkey changes direction the wagon follows the rope,
which will be a straight line to the donkey’s current position. If the donkey moves in a
direction that makes the rope lose, then the wagon stays in the same place. Likewise,
there are two cases when moving the Tear Drop Brush. If the distance between the
old tail end and the new ink point is smaller than L, the new tail end would stay at
its original place and we fill the area as shown in Figure 5.5. If the distance exceeds
L, the new tail end would move to somewhere on the line determined by the old tail

1

58

end and the new ink point, while the tail length becomes L. And we fill the area as
shown in Figure 5.6

L

Figure 5.5: Tear Drop Brush: The case that the tail end remains.

L y

Figure 5.6: Tear Drop Brush: The case that the tail end moves.

In the implementation, we retrieve coordinates and pen tip pressure at each ink
point from a Wacom tablet running on Ubuntu 8.10. We convert it to the Tear Drop
Brush parameters and then save them into InkML points (x , y , r, 6, /). An example
image of the Tear Drop Brush calligraphy can be seen in Figure 5.7. Figure 5.8 shows
the plot of the first stroke of Figure 5.7.

59

Figure 5.7: Example of a Chinese calligraphy using Tear Drop Brush.

5.3 Summary

In this chapter we have described how to use InkML to represent sophisticated digital
ink formats. To demonstrate this idea, we have presented two virtual brush types, the
Round Brush and the Tear Drop Brush, which can render digital ink with calligraphic
properties.

60

(a) The calligraphic ink stroke to plot

(b) The plot of x coordinates (c) The plot of y coordinates

|
1

(d) The plot of the head radius (e) The plot of the tail length
Figure 5.8: The plot of Tear Drop Brush parameters

61

Chapter 6

InkChat Implementation

6.1 InkChat Components

InkChat makes use of Skype as the backbone for sending and receiving data and
thus provides reliable data exchange over miscellaneous networks. Figure 6.1 shows
the framework of InkChat. Because InkChat handles data exchange using Skype, the
underlying communication protocol is hidden so it does not matter whether App2App
or Conference mode is being used. The Skype APIs can be accessed by calling the
methods wrapped in Skype4Java [6], an open source library which enables developers
to make add-ons on multiple platforms and to use good IDEs, libraries and framework.

The InkML Toolkit parses InkML streams as well as InkML documents. When an
InkML trace is received by a client, it parses the InkML trace and converts it to an
ink stroke for a real-time rendering. When loading ink is requested by the interface,
the InkML Toolkit parses a complete InkML document, converts all InkML traces
to ink strokes and records the InkML definitions and contexts for the following ink
sessions.

The JPen [3] library is an open source library that works with different operating
systems. It collects digital ink reported by a tablet driver. It was implemented on
an event/listener architecture. Each digital ink or digital ink gesture that is reported
by a tablet driver will be fired as an event to its listeners. The InkChat interface
is responsible to handle these events and conducts corresponding operations, such as

62

Figure 6.1: The system architecture of InkChat

brush switching, stroke-wise erasing, point-wise erasing, color and theme switching,
ink saving and loading, page navigation, copy and paste, etc.

6.2 Data Transmission

As discussed earlier, the Skype network is most suitable for multimodal collaboration.
InkChat uses Skype as the backbone to send and receive data over clients. Skype
APIs can be accessed using Skype4Java, a wrapper library built on top of the Skype
APIs. It handles the connection between an InkChat interface and a Skype client. It
sends voice and digital ink using separate data channels to avoid transmission delay.

6.3 Ink Capture

InkChat makes use of the JPen library to capture digital ink across platforms. The
JPen library is a Java-based library that uses the JNI to invoke platform-specific APIs.
Currently, JPen can capture digital ink on Windows (Wintab), Linux (XInput) and
Mac OS X (Cocoa).

63

6.4 Ink Erasing

The Ink Erasing function is used when users wish to edit their current or previous ink
work. InkChat provides two types of ink erasing, stroke-wise erasing and point-wise
erasing.

6.4.1 Stroke-Wise Erasing

The stroke-wise erasing uses the hit testing approach that will be discussed in the
Section 6.5 to detect whether a stroke is selected. If so, it removes the target stroke
from the canvas and re-renders the other strokes that may be affected. We re-render
these strokes in their original sequence to keep color layers in line.

6.4.2 Point-Wise Erasing

The point-wise erasing erases part of a stroke instead of removing the whole stroke
from the canvas. A stroke may be split into pieces when using point-wise erasing.
This requires the application to detect at which part the stroke is broken up.

Point-wise erasing uses the hit testing approach as well, which returns a collection
of ink points that need to be removed from a certain stroke. It then reforms the
remaining ink points to compose new strokes and calculates the properties for each,
including starting time and duration. The new strokes are then saved in a sequence
of starting time.

6.5 Hit Testing

We call the procedure of detecting whether a pen is at or near an existing ink stroke
“hit testing” . Figure 6.2 and Figure 6.3 illustrate our approach for hit testing.

Each trace consists of a collection of ink points. We calculate its bounding box
when a pen is writing on the canvas. We first detect whether the pen tip is contained
by the bounding box of any trace. If so, we record that trace as being of interest.
There may be several traces of interest. We then go through all the traces of interest

64

B ounding Box

• Pen Tip

Figure 6.2: The case that the pen tip hits the trace

Bounding Box

Hounding Htst

• • • Target Trace

• Pen Tip

Figure 6.3: The case that the pen tip does not hit the trace

and detect whether any of their ink points are contained by the pen tip circle. The
radius of the circle varies depends on the precision required. If so, we say that trace
is affected.

65

6.6 Ink Storage

InkChat stores digital ink using InkML format. A trace is converted to an InkML
stream once it is captured on the canvas. InkChat automatically saves it to the current
ink session before sending to the other participants. Once the stream is received by
a participant, InkChat immediately parses the stream and saves it to the current ink
session. Once the conversation is finished or saving ink is requested by the interface,
InkChat writes the current ink session into InkML files and saves them in the file
system.

InkChat also supports loading digital ink from InkML files. It parses the files
based on a InkML schema which validates the InkML files. InkChat makes use of
the HP InkML Toolkit [1] to parse InkML fragments and InkML documents. InkML
Toolkit is an open source library that was developed by HP Labs, India. It includes a
set of tools to work with InkML data. We modified and refined this library to make
it consistent with our InkChat application.

6.7 Ink Rendering Objects

InkChat renders digital ink using three types of brushes, the Round Brush, the Pixel
Brush and the Eraser. The Round Brush is pressure sensitive and uses the rendering
approach presented in the Section 5.2.1. The Pixel Brush is pressure insensitive. It.
renders each ink point as a dot and connects them using straight lines. The Eraser
has the same color as the canvas background. In our implementation, we set the
eraser shape to be a circle with a default radius. In erasing by point mode, the eraser
moves across a stroke and may split the stroke into two or more pieces.

We classify ink strokes according to the brush types used to create them. Figure
6.4 shows the relationships between these classes.

The Trace class is an abstract class that defines a prototype of an ink trace. It
contains several abstract methods which derived classes are required to implement.
The EraserTrace class directly extends the Trace class. In addition to the attributes
inherited, it defines eraserSize and erasingMode attributes to record the eraser size
and the erasing mode. We use the BasicTrace class to represent a primitive trace
that is generated by a pen. As InkChat is designed for collaboration, any of the

66

Figure 6.4: Trace class diagram

instances should contain enough information so that they can be processed without
a context. The RoundBrushTrace class extends the BasicTrace class. It represents
a trace rendered by a Round Brush. It uses brushWidth to record the physical width
of the Round Brush. It also overrides the methods inherited from the BasicTrace.
The PixelTrace class extends the BasicTrace class and represents a trace generated
by a Pixel Brush.

6.8 Ink Metadata

Digital ink applications sometimes need a mechanism to represent metadata or seman­
tics in addition to ink objects. This can be accomplished using the <annotation>
element in InkML. In the InkChat implementation, we use the <annotation> ele­
ment to synchronize user’s page numbers as well as conversation themes.

InkChat currently recognizes 7 types of annotation. There are:

67

• CLEAR
Clear the canvas.

• PAGEUP
Go to the previous page.

• PAGEDOWN
Go to the next page.

• PAGEJJUM
Go to the page specified by the NUM.

• LOADINK_FILENAME
Load ink from a file specified by the FILENAME.

• THEME-FILENAME
Switch to the theme by loading the background image FILENAME.

• DEFAULTHEME
Switch back to the default theme.

When the corresponding actions are conducted on the interface, InkChat sends
these annotations to the other conversation participants. Once InkChat receives
these annotations, it parses the markup language, retrieves attached information and
conducts appropriate actions in the receiving client.

InkChat also provides extensibility to add more annotations. We plan to imple­
ment non-contact pointing, where the pen moves near the digitizer without touching
it, so the other participants can see where it points at.

6.9 Summary

This chapter has provided the details of the InkChat architecture. We have gone
through all its components and described how they are structured for portability. We
have also explained how the user operations are performed on the interface, and how
clients interact.

68

Conclusion

The primary objective of this thesis was to explore the dimension of digital ink porta­
bility, both of digital ink data and of digital ink application code. Our goal was to
be able to have applications that we can “write once and run anywhere” .

To support cross-platform viability, we have presented a framework that can han­
dle the details of a variety of platforms and provide a consistent, platform-independent
interface for digital ink applications. Applications that build on top of this frame­
work can collect digital ink across all the supported platforms without knowing their
details. InkChat and Calligraphy Board are two implementations we developed to
demonstrate our framework’s cross-platform viability. They both use the framework
and work bn a variety of platforms.

To support platform-independent data representation, we have evaluated several
ink format standards including JOT, Unipen, ISF, SVG and InkML. We have cho­
sen InkML as our data representation as it provides both digital ink streaming and
archival support independent of platforms. Both InkChat and Calligraphy Board
make use of InkML as the medium to represent digital ink. InkChat also implemented
InkML context features to support ink collaboration in heterogeneous environments.

There are a number of interesting directions that can be pursued to pursue in the
future. We plan to explore digital ink portability on platforms without Java such as
the iPhone OS. We are also interested in issues that would arise in introducing video
and text support.

69

Bibliography

[1] Tnkml toolkit, h t tp : //in k m ltk . sou rce forge . n et/, (valid on December 22,
2009).

[2] Inkscape. h ttp ://w w w .inkscape.org . (valid on December 22, 2009).

[3] Jpen library, h ttp ://sou rce forge .n et/ap p s/m ed iaw ik i/jp en /in d ex .p h p ?
title=Main_Page. (valid on December 22, 2009).

[4] The linux wacom project, h ttp ://lin u xw a com .sou rce forge .n et/. (valid on
December 22, 2009).

[5] Ontario research centre for computer algebra, h ttp s : / / www. o r c c a . on . ca. (valid
on December 22, 2009).

[6] Skype4java. h ttp s : / /d e v e lo p e r . skype. com/wiki/Java_API. (valid on Decem­
ber 22, 2009).

[7] Uc-logic technology corp. h ttp ://w w w .u c-log ic .com . (valid on December 22,
2009).

[8] Wacom co. ltd. http://www.wacom.com/index.html. (valid on December 22,
2009).

[9] Gregory D. Abowd, Jason Brotherton, and Janak Bhalodia. Classroom 2000:
A system for capturing and accessing multimedia classroom experiences. In
CHI’98: CHI 98 conference summary on Human factors in computing systems,
pages 20-21, New York, NY, USA, 1998. ACM.

[10] Dick Bulterman, Jack Jansen, Pablo Cesar, Sjoerd Mullender, Eric Hyche,
Marisa DeMeglio, Julien Quint, Hiroshi Kawamura, Daniel Week, Xabiel Garca
Paeda, David Melendi, Samuel Cruz-Lara, Marcin Hanclik, Daniel F. Zucker,

http://www.inkscape.org
http://sourceforge.net/apps/mediawiki/jpen/index.php
http://linuxwacom.sourceforge.net/
http://www.uc-logic.com
http://www.wacom.com/index.html

70

and Thierry Michel. Synchronized multimedia integration language (smil 3.0).
http://www.w3.org/TR/SMIL3/. (valid on December 22, 2009).

[11] Yi-Min Chee, Max Froumentin, and Stephen Watt. Ink markup language
(InkML). http://www.w3.org/TR/InkM L/. (valid on December 22, 2009).

[12] Slate Corporation. Jot - a specification for an ink storage and interchange format.
h t tp ://u n ip e n .n ic i .k u n .n l/jo t .h tm l. (valid on December 22, 2009).

[13] Michael Johnston (Editor). Extensible multimodal annotation markup language
(EMMA). http://www.w3.org/TR/emma/. (valid on December 22, 2009).

[14] Scott Elrod, Richard Bruce, Rich Gold, David Goldberg, Frank Halasz, William
Janssen, David Lee, Kim McCall, Elin Pedersen, Ken Pier, John Tang, and
Brent Welch. Liveboard: A large interactive display supporting group meetings,
presentations and remote collaboration. In CHI’92: Proceddings of the SIGCHI
conference on Human factors in computing systems, pages 599-607, New York,
NY, USA, 1992. ACM.

[15] P. R. Cohen et al. Quickset: multimodal interaction for distributed applications.
In MULTIMEDIA ’97 Fifth ACM international conference on Multimedia, pages
31-40. ACM, 1997.

[16] Jon Ferraiolo, Fujisawa Jun, and Dean Jackson(editors). Scalable vector graphics
(svg) 1.1 specification. http://www.w3.org/TR/SVG/. (valid on December 22,
2009).

[17] Gerald Friedland, Lars Knipping, Raul Rojas, and Ernesto Tapia. Teaching with
an intelligent electronic chalkboard. In ETP’04•' Proceedings of the 2004 ACM
SIGMM workshop on Effective telepresence, pages 16-23, New York, NY, USA,
2004. ACM.

[18] The W3C Multimodal Interaction Working Group, http://w w w .w 3.org/2002/
mmi/. (valid on December 22, 2009).

[19] Isabella Guyon. Unipen 1.0 format definition, http://w w w .unipen.org/
dataformats.html. (valid on December 22, 2009).

[20] Apple Inc. Cocoa: The objective-c programming language, http -.//developer.
apple.com. (valid on December 22, 2009).

http://www.w3.org/TR/SMIL3/
http://www.w3.org/TR/InkML/
http://unipen.nici.kun.nl/jot.html
http://www.w3.org/TR/emma/
http://www.w3.org/TR/SVG/
http://www.w3.org/2002/
http://www.unipen.org/

1

[21] Apple Inc. iphone sdk agreement, http://adcdownload.apple.com/iphone/
iphone_sdk_3. 1 . 2_final/ea0574_iphone_sdk.pdf. (valid on December 22,
2009).

[22] Microsoft Inc. Ink serialized format specification, http: //download.microsoft.
com/download/0/B/E/0BE8BDD7-E5E8-422A-ABFD-4342ED7AD886/
InkSerializedFormat(ISF)Specification.pdf. (valid on December 22,
2009).

[23] Microsoft Inc. Microsoft windows xp tablet pc edition software development
kit 1.7. http ://www.microsoft.com/downloads/details.aspx?familyid=
B46D4B83-A821-40BC-AA85-C9EE3D6E9699&displaylang=en. (valid on Decem­
ber 22, 2009).

[24] Microsoft Inc. Windows mobile 6 professional and standard software devel­
opment kits refresh, http://www.microsoft.com/downloads/details.aspx?
FamilyID=06111A3A-A651-4745-88EF-3D48091A390B&displaylang=en. (valid
on December 22, 2009).

[25] Microsoft Inc. Windows presentation foundation, http://msdn.microsoft.
com/en-us/library/ms754130.aspx. (valid on December 22, 2009).

[26] Palm Inc. Palm api guide. https://pdnet.palm.com/regac/pdn/
PalmOSAPIGuide/index.html. (valid on December 22, 2009).

[27] Sun Microsystems Inc. Cdc runtime guide, http://java.sun.com/javame/
reference/docs/cdc_runtime_guide.pdf. (valid on December 22, 2009).

[28] Sun Microsystems Inc. The connected limited device configuration (cldc) hotspot
implementation, http://java.sun.com/products/cldc. (valid on December
22, 2009).

[29] LCS/Telegraphics. Wintab interface specification 1.1. http://www.wacomeng.
com/devsupport/downloads/pc/wtlptl. zip. (valid on December 22, 2009).

[30] Hai Ning, John R. Williams, Alexander H. Slocum, and Abel Sanchez. Inkboard
- tablet pc enabled design oriented learning. In CATE, pages 154-160, 2004.

[31] Elin Ronby Pedersen, Kim McCall, Thomas P. Moran, and Frank G. Halasz.
Tivoli: an electronic whiteboard for informal workgroup meetings. In CHT93:

71

http://adcdownload.apple.com/iphone/
http://www.microsoft.com/downloads/details.aspx?familyid=
http://www.microsoft.com/downloads/details.aspx
http://msdn.microsoft
https://pdnet.palm.com/regac/pdn/
http://java.sun.com/javame/
http://java.sun.com/products/cldc
http://www.wacomeng

72

1

Proceddings of the INTERACT’93 and CHP93 conference on Human factors in
computing systems, pages 391-398, New York, NY, USA, 1993. ACM.

[32] Amit Regmi. Supporting multimodal collaboration with digital ink and audio.
Master’s thesis, The University of Western Ontario, 2009.

[33] Steve Strassmann. Hairy brushes. In SIGGRAPH’86, pages 225-232, 1986.

[34] Inc. Sun Microsystems. The java native interface, http: / / j ava. sun. com/docs/
books/jni/download/jni.pdf. (valid on December 22, 2009).

[35] Ltd. Wacom Co. Wacom enhanced graphics driver, http://www.wacom.com/
tabletpc/driver. cfm. (valid on December 22, 2009).

[36] Stephen M. Watt. New aspects of inkml for pen-based computing. In Interna­
tional Conference on Document Analysis and Recognition(ICDAR), pages 457-
460, Curitiba, Brazil, September 2007. IEEE Computer Society.

[37] Helena T. F. Wong and Horace H. S. Ip. Virtual brush: a model-based synthesis
of Chinese calligraphy. In Computers Graphics, pages 24(1): 99-113, 2000.

[38] Xiaojie Wu. Achieving interoperability of pen computing with heterogeneous
devices and digital ink formats. Master’s thesis, The University of Western
Ontario, 2004.

http://www.wacom.com/

Appendix A

InkChat User Manual

This appendix provides a user manual of the InkChat application.

A .l InkChat Features

InkChat provides the following features:

• Peer-to-Peer Conversation

• Conference Meeting

• Pressure sensitive brush

• Pressure insensitive brush

• Color Switching

• Stroke-Wise Erasing

• Point-Wise Erasing

• Theme Switching

• Voice Saving

• Ink Saving

• Ink Loading

74

• Page Navigation

A .2 Platform Availability

InkChat has been tested on the following operating systems:

InkChat Platform Availability
Operating System Computer Architecture Skype Version

Windows XP x86 Skype 3.6.4.244
Windows Vista x86 Skype 4.0.0.226
Windows Vista x64 Skype 4.0.0.226

Windows 7 x86 Skype 4.0.0.226
Ubuntu 8.10 x86 Skype 2.0.0.72
Ubuntu 9.04 x86 Skype 2.0.0.72

Testing on Mac OS X is in beta.

A .3 System Requirements

InkChat requires a basic environment to run the application, including:

• Java Runtime Environment (JRE) 1.6 or above

• Skype client

On Windows platforms, one may need to install the Wacom Enhanced Graphics
driver [35] to enable the pressure-sensitivity and additional side-switch functionality.

A .4 Using InkChat

To start and end a conversation:

1. Start and login to the Skype client

2. Start the InkChat application
On Windows, run run.bat
On Linux, run bash run. sh

3. Select one or more users from the available user list

4. Click the Start chat button to initiate a conversation

5. Click the Hang up button when done

To save the current page:

1. Go to the File->Save Ink

2. Specify a name and a path to save the file

3. Click the Save button to save

To load ink from an InkML file:

1. Go to the File->Load Ink

2. Specify the path of the InkML file

3. Click the Open button to load

To switch conversation themes:

1. Go to the Edit->Canvas Background

2. Select a theme from the list

3. Or click Customize to load a customized theme

4. Select Default to switch back to the default theme

To use a brush:

1. Select a brush from the brush list

2. Press the pen on the digitizer or click the left mouse button and

76

To use an eraser:

1. Select an erasing type (Stroke-wise erasing and Point-wise erasing) from the
eraser list

2. Keep the pen up-side-down or hold the right mouse button and cross the stroke
being erased

To navigate pages:

1. Click the Page Up button to go to the previous page

2. Click the Page Down button to go to the next page or create a new page

To pick up a brush color:

1. Click the Color button to open an color palette

2. Pick a color and click DK

	Portable Implementation of Digital Ink: Collaboration and Calligraphy
	Recommended Citation

	tmp.1681137943.pdf.jNEs1

