Western University Scholarship@Western

**Digitized Theses** 

**Digitized Special Collections** 

2009

# BODY SIZE INDICATORS AND THE EXAMINATION OF STRESS FROM A GROWTH AND DEVELOMENT PERSPECTIVE: A NEW METHOD OF BIOARCHAEOLOGICAL ASSESSMENT

Amy B. Scott

Follow this and additional works at: https://ir.lib.uwo.ca/digitizedtheses

### BODY SIZE INDICATORS AND THE EXAMINATION OF STRESS FROM A GROWTH AND DEVELOMENT PERSPECTIVE: A NEW METHOD OF BIOARCHAEOLOGICAL ASSESSMENT

(Spine Title: Body Size Indicators and Stress: A Growth and Development Perspective)

(Thesis Type: Monograph)

by

Amy B. Scott

Graduate Program in Anthropology

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Arts

The School of Graduate and Postdoctoral Studies The University of Western Ontario London, Ontario, Canada

© Amy B. Scott 2009

#### **ABSTRACT**

The purpose of this thesis research is to introduce a new method to examine childhood stress episodes from adult skeletal remains. Through the use of indicators of adult body size and regression analysis, stress patterns were analyzed in two climatically different populations, the Sadlermiut Inuit of Southampton Island and the Sacred Heart Cemetery population from southwestern Ontario. By comparing body size indicators to one another in sequential order, it was possible to assess at what time during growth and development that certain individuals deviated from their normal growth patterns and experienced stress. As expected, the Sadlermiut and Sacred Heart samples demonstrated different stress patterns that can be linked to the different environmental contexts in which they lived. This research demonstrated the potential utility of this new methodology and the use of growth and development patterns to assess stress, especially when considered in conjunction with other methods.

#### **KEYWORDS:**

growth and development, skeletal stress, body size, body size indicators, bioarchaeological methods, skeletal lesions, Sadlermiut Inuit, Sacred Heart Cemetery, regression analysis, environmental stress, cold climate adaptations

#### **ACKKNOWLEDGEMENTS**

The truly difficult part of writing a thesis is being able to adequately thank all of the people who have made this all possible. First and foremost, I would like to thank my supervisor, Dr. Andrew Nelson. I could not have asked for a better mentor to guide me through this journey. He has helped me grow as an academic and as an individual; I am proud of what we have accomplished together. Thank you also to my advisor, Dr. Christine White, for her continued patience and support over these past two years. I would also like to thank my other thesis committee members, Dr. Ian Colquhoun and Dr. Frank Beier for their input and interest in this project. In addition to my thesis committee, I would like to thank Dr. Anne Keenleyside from Trent University. Anne was instrumental in encouraging me to apply to graduate school and helped to foster my love of anthropology. As a fellow academic and good friend, I owe many of my accomplishments to her.

Despite the long hours of independent work on this project, I do owe many thanks and recognition to the organizations and funding agencies that helped to make all of this possible. Thank you to the Canadian Museum of Civilization and their Memorandum of Cooperation and Understanding with the Inuit Heritage Trust for allowing me to have access to the Sadlermiut skeletal remains and for providing me with excellent resource personnel: Jerry Cybulski, Janet Young, Megan Gardiner and Stacey Christie-Girling. Thank you to the Ottawa Civic Hospital and two extremely accommodating x-ray gurus, Gary Heddon and Ian Byrne, who helped me finish my Sadlermiut research. I would also like to thank the London Diocese, specifically Larry Brennan, Episcopal Director of Administrative Services and Paul Culliton, Catholic Cemeteries Executive Director for allowing me access to the Sacred Heart skeletal remains. I also owe many thanks to D.R.

iv

Poulton and Associates as well as Dr. Michael Spence for their continued help and support during this project. Finally, thank you to the Social Sciences and Humanities Research Council of Canada and Research Western for providing me with the necessary funding to complete this research.

I owe a big thank you to my closest and dearest friend Jennifer Rees, who understands me the most and supports me more than anyone ever could. To all of my Trent friends, I am eternally thankful for having friends who love me just the way I am and for supporting me on all of my academic adventures. I would also like to thank my UWO cohort for supporting me, putting up with me and hanging out with me at the grad club, it has been my pleasure. Drew Wade, thank you for helping me with everything technological; Alexis Dolphin, thank you for offering your advice, time and help with this project; Karyn Olsen thank you for your last minute graphing skills; and finally, thank you to Flannery Surette for being my editor through this whole process, Trent solidarity!

Throughout these past two years, my greatest strength has come from my family. I would like to thank my wonderful grandparents, Isobel and Floyd, Doris and Fred, for their endless love and support. To my big brother Adam, you have been my greatest rolemodel and to have your input on this thesis meant more to me than you can ever imagine. I hope your little sister has done you proud. Finally to my parents, Brenda and Doug: there is really no way for me to express the gratitude and love I have for the two of you. You have provided me with more support and love than any child could ever hope to have. The only reason I have made it where I am today is because of you two and I am so very proud to have parents like you. Thank you now and thank you always.

v

# TABLE OF CONTENTS

| Title Page                                                                                                                                                                                                                                                                                                                                                            | Page<br>i                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| Certificate of Examination                                                                                                                                                                                                                                                                                                                                            | ii                                     |
| Abstract and Keywords                                                                                                                                                                                                                                                                                                                                                 | iii                                    |
| Acknowledgements                                                                                                                                                                                                                                                                                                                                                      | iv                                     |
| Table of Contents                                                                                                                                                                                                                                                                                                                                                     | vi                                     |
| List of Tables                                                                                                                                                                                                                                                                                                                                                        | X                                      |
| List of Figures                                                                                                                                                                                                                                                                                                                                                       | xii                                    |
| List of Appendices                                                                                                                                                                                                                                                                                                                                                    | xiii                                   |
| Chapter 1: Introduction<br>1.1 Purpose and Significance                                                                                                                                                                                                                                                                                                               | 1<br>1                                 |
| 1.2 Research Methodology                                                                                                                                                                                                                                                                                                                                              | 3                                      |
| 1.3 Objectives                                                                                                                                                                                                                                                                                                                                                        | 4                                      |
| 1.4 Research Questions                                                                                                                                                                                                                                                                                                                                                | 5                                      |
| Chapter 2: Literature Review<br>2.1 Introduction                                                                                                                                                                                                                                                                                                                      | 7<br>7                                 |
| <ul> <li>2.2 Archaeological Samples</li> <li>2.2.1 Sadlermiut Inuit History</li> <li>2.2.2 Sadlermiut Skeletal Collection</li> <li>2.2.3 Sacred Heart Cemetery History</li> <li>2.2.4 Sacred Heart Cemetery Skeletal Collection</li> </ul>                                                                                                                            | 7<br>7<br>15<br>15<br>19               |
| <ul> <li>2.3 Stress and Growth</li> <li>2.3.1 Lesion Based Approaches of Stress Analysis</li> <li>2.3.2 Growth and Development Approaches to Stress Analysis</li> <li>2.3.3 Bone Structure and the Effects of Stress</li> <li>2.3.4 Catch-up Growth</li> <li>2.3.5 Patterns of Growth and Development</li> <li>2.3.6 Environment and Body Size/Proportions</li> </ul> | 20<br>21<br>24<br>25<br>28<br>29<br>31 |

| 2.3.7 Body Size                                                                                                                                           | <u>Page</u><br>32 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| <ul> <li>2.4 Considerations and Limitations</li> <li>2.4.1 The Osteological Paradox</li> <li>2.4.2 Longitudinal versus Cross-sectional Studies</li> </ul> | 34<br>34<br>37    |
| 2.5 Conclusions                                                                                                                                           | 38                |
|                                                                                                                                                           |                   |
| Chapter 3: Materials and Methods                                                                                                                          | 39                |
| 3.1 Introduction<br>3.1.1. Osteological Data Collection Methods                                                                                           | 39<br>39          |
| 3.1.2 The Sadlermiut Population Sample                                                                                                                    | 39<br>40          |
| 3.1.3 The Sacred Heart Population Sample                                                                                                                  | 41                |
| 3.2 Data Collection                                                                                                                                       | 41                |
| 3.3 Metric Observations                                                                                                                                   | 43                |
| 3.3.1 Sex Determination                                                                                                                                   | 43                |
| 3.3.2 Age Estimation                                                                                                                                      | 44                |
| 3.3.3 Asymmetry Data<br>3.3.4 Lesion Analysis                                                                                                             | 46                |
| 3.3.5 Stature Estimates                                                                                                                                   | 46<br>48          |
| 3.4 Data Analysis                                                                                                                                         | 49                |
| 3.4.1 The Howells Dataset                                                                                                                                 | 49                |
| 3.4.2 Technical Error of Measurement (TEM)                                                                                                                | 49                |
| 3.4.3 Correlation of Sadlermiut and Sacred Heart BSI Measurements                                                                                         | 52                |
| 3.4.4 r-values and Significant Association                                                                                                                | 53                |
| 3.4.5 Examination of Individual Departures from Underlying Trends                                                                                         | 54                |
| 3.4.6 Growth Fluctuation Pattern Maps and Expectations<br>3.4.7 Skeletal Sequencing and Growth Curves                                                     | 56<br>57          |
| Chapter 4: Results                                                                                                                                        | 60                |
| 4.1 Introduction                                                                                                                                          | 60                |
| 4.2 Proof of Concept: The Howells Dataset                                                                                                                 | 60                |
| 4.3 Sadlermiut and Sacred Heart Correlations                                                                                                              | 61                |
| 4.4 r-values and Significant Association                                                                                                                  | 62                |
| 4.5 Growth Curve Data                                                                                                                                     | 63                |
| 4.6 Examination of Individual Departures from Underlying Trends                                                                                           | 66                |

| 4.6.1 Growth Fluctuation Pattern Map Interpretation                                            | <u>Page</u><br>67 |
|------------------------------------------------------------------------------------------------|-------------------|
| 4.6.2 Growth Fluctuation Summary                                                               | 71                |
| 4.7 Supplementary Data Analysis                                                                | 73                |
| 4.7.1 Enamel Hypoplastic Lesions                                                               | 73                |
| 4.7.2 Harris Lines                                                                             | 75                |
| 4.7.3 Asymmetry                                                                                | 77                |
| 4.7.4 Stature Estimates                                                                        | 81                |
| 4.8 Stress Summary                                                                             | 82                |
| Chapter 5: Discussion                                                                          | 86                |
| 5.1 Introduction                                                                               | 86                |
| 5.2 Correlation Analysis                                                                       | 86                |
| 5.3 r-values and Significant Association                                                       | 89                |
| 5.4 Growth Curve Data                                                                          | 90                |
| 5.5 Growth Fluctuation Pattern Maps: A Discussion of Growth Disruption and Growth Acceleration | 92                |
| 5.6 Sub-sample Growth Disruption and Acceleration Summaries                                    | 97                |
| 5.6.1 Sadlermiut Females                                                                       | 97                |
| 5.6.2 Sacred Heart Females                                                                     | 98                |
| 5.6.3 Sadlermiut Males                                                                         | 99                |
| 5.6.4 Sacred Heart Males                                                                       | 99                |
| 5.7 Non-specificity of Stress Indicators                                                       | 101               |
| 5.8 Adolescence and Skeletal Stress                                                            | 102               |
| 5.9 Adolescence and the Sadlermiut and Sacred Heart Sub-samples                                | 103               |
| 5.9.1 The Sadlermiut and Sacred Heart Females                                                  | 103               |
| 5.9.2 The Sadlermiut and Sacred Heart Males                                                    | 105               |
| 5.10 Sexual Buffering: The Resistance to Stress in Females and Males                           | 106               |
| 5.10.1 Cultural Influence on Sexual Buffering                                                  | 108               |
| 5.10.2 Sexual Buffering among the Sadlermiut and Sacred Heart samples                          | 109               |
| 5.11 Stress and the Environment                                                                | 111               |

| <b>Chapter 6: Conclusions and Future Research</b><br>6.1 Conclusions | <u>Page</u><br>114<br>114 |
|----------------------------------------------------------------------|---------------------------|
| 6.2 Future Research                                                  | 117                       |
| References Cited                                                     | 120                       |
| Appendices                                                           | 133                       |
| Vita                                                                 | 354                       |

## **LIST OF TABLES**

| <u>Table</u> |                                                                                                                                 | <u>Page</u> |
|--------------|---------------------------------------------------------------------------------------------------------------------------------|-------------|
| 3.1          | Sex distribution of the Sadlermiut sample                                                                                       | 40          |
| 3.2          | Age distribution of the Sadlermiut sample                                                                                       | 40          |
| 3.3          | Sex distribution of the Sacred Heart sample                                                                                     | 41          |
| 3.4          | Age distribution of the Sacred Heart sample                                                                                     | 41          |
| 3.5          | Osteological measurement instruments                                                                                            | 43          |
| 3.6          | Test of error measurement (TEM) calculations                                                                                    | 50          |
| 3.7          | Sadlermiut TEM calculations                                                                                                     | 50          |
| 3.8          | Sacred Heart TEM calculations                                                                                                   | 51          |
| 4.1          | Sadlermiut and Sacred Heart adult BSI measurements chosen after final correlation filtering                                     | 61          |
| 4.2          | Sadlermiut and Sacred Heart variable pairs demonstrating sigificant association (%)                                             | 63          |
| 4.3          | Sadlermiut and Sacred Heart female sub-adult callibration summary                                                               | 63          |
| 4.4          | Sadlermiut and Sacred Heart male sub-adult callibration summary                                                                 | 64          |
| 4.5          | XIV-C:115 growth fluctuation pattern map                                                                                        | 69          |
| 4.6          | Sadlermiut and Sacred Heart female average age of growth disruption and acceleration                                            | 71          |
| 4.7          | Sadlermiut and Sacred Heart male average age of growth disruption and acceleration                                              | 72          |
| 4.8          | Sadlermiut and Sacred Heart male and female average<br>number of variable pairs demonstrating disruption or<br>acceleration (%) | 72          |
| 4.9          | Sadlermiut EHL age at formation                                                                                                 | 73          |

Х

|      |                                                                                | Page               |
|------|--------------------------------------------------------------------------------|--------------------|
| 4.10 | Sacred Heart EHL age at formation                                              | <u>1 age</u><br>73 |
| 4.11 | Sadlermiut Harris lines age at formation (left side)                           | 75                 |
| 4.12 | Sacred Heart Harris lines age at formation (left side)                         | 76                 |
| 4.13 | Sadlermiut females asymmetry summary                                           | 78                 |
| 4.14 | Sadlermiut males asymmetry summary                                             | 78                 |
| 4.15 | Sacred Heart females asymmetry summary                                         | 79                 |
| 4.16 | Sacred Heart males asymmetry summary                                           | 80                 |
| 4.17 | Sadlermiut and Sacred Heart female and male stature average (cm)               | 81                 |
| 4.18 | Sadlermiut stress summary                                                      | 84                 |
| 4.19 | Sacred Heart stress summary                                                    | 85                 |
| 5.1  | Sadlermiut and Sacred Heart cranial measurements and final correlation results | 88                 |

# **LIST OF FIGURES**

| Figur | <u>es</u>                                                       | Page |
|-------|-----------------------------------------------------------------|------|
| 2.1   | Southampton Island, Nunavut, Canada                             | 8    |
| 2.2   | Ingersoll, Ontario, Canada                                      | 16   |
| 2.3   | The biases of bioarchaeological excavation                      | 35   |
| 4.1   | Sadlermiut EHL age at formation                                 | 74   |
| 4.2   | Sacred Heart EHL age at formation                               | 74   |
| 4.3   | Sadlermiut Harris lines age at formation (left side)            | 76   |
| 4.4   | Sacred Heart Harris lines age at formation (left side)          | 77   |
| 4.5   | Sadlermiut asymmetry summary                                    | 79   |
| 4.6   | Sacred Heart asymmetry summary                                  | 80   |
| 4.7   | Sadlermiut and Sacred Heart comparative lesion summary          | 82   |
| 4.8   | Sadlermiut female and male lesion summary                       | 83   |
| 4.9   | Sacred Heart female and male lesion summary                     | 83   |
| 5.1   | Sadlermiut and Sacred Heart methods summary (males and females) | 100  |

## **LIST OF APPENDICES**

| Appendix                                                          | Page       |
|-------------------------------------------------------------------|------------|
| A: Skeletal Samples<br>A-1 Sadlermiut skeletal sample             | 133<br>133 |
| A-2 Sacred Heart skeletal sample                                  | 135        |
| B: Body Size Indicator (BSI) Measurements<br>B-1 BSI measurements | 136<br>136 |
| B-2 BSI references                                                | 138        |
| C: Skeletal Recording Forms<br>C-1 Adult skeletal recording form  | 141<br>141 |
| C-2 Sub-adult skeletal recording form                             | 151        |
| <b>D: Raw Data</b> 161<br>D-1 Sadlermiut adult BSI measurements   | 161        |
| D-2 Sadlermiut sub-adult BSI measurements                         | 168        |
| D-3 Sacred Heart adult BSI measurements                           | 175        |
| D-4 Sacred Heart sub-adult BSI measurements                       | 182        |
| <b>E: Supplementary Data</b><br>E-1 EHL age at formation chart    | 189<br>189 |
| E-2 Sadlermiut Harris line measurements                           | 190        |
| E-3 Sacred Heart Harris line measurements                         | 191        |
| E-4 Harris lines age at formation charts (males and females)      | 192        |
| E-5 Sadlermiut females asymmetry calculations and Z-scores        | 193        |
| E-6 Sadlermiut males asymmetry calculations and Z-scores          | 194        |
| E-7 Sacred Heart females asymmetry calculations and Z-scores      | 195        |

| E-8 Sacred Heart males asymmetry calculations and Z-scores                                           | <u>Page</u><br>196 |
|------------------------------------------------------------------------------------------------------|--------------------|
| E-9 Sadlermiut female and male stature estimates                                                     | 197                |
| E-10 Sacred Heart female and male stature estimates                                                  | 197                |
| F: The Howells Dataset<br>F-1 Buriat population cranial correlations<br>(males and females combined) | 198<br>200         |
| F-2 Inugsuk population cranial correlations (males and females combined)                             | 200                |
| F-3 Arikara population cranial correlations (males and females combined)                             | 201                |
| <b>G: Correlation Analyses</b><br>G-1 Sadlermiut females cranial correlations                        | 203<br>203         |
| G-2 Sadlermiut males cranial correlations                                                            | 203                |
| G-3 Sadlermiut females vertebral correlations                                                        | 204                |
| G-4 Sadlermiut males vertebral correlations                                                          | 204                |
| G-5 Sadlermiut females arm correlations                                                              | 205                |
| G-6 Sadlermiut males arm correlations                                                                | 205                |
| G-7 Sadlermiut females leg correlations                                                              | 206                |
| G-8 Sadlermiut males leg correlations                                                                | 206                |
| G-9 Sadlermiut females tarsal and metacarpal correlations                                            | 207                |
| G-10 Sadlermiut males tarsal and metacarpal correlations                                             | 207                |
| G-11 Sacred Heart females cranial correlations                                                       | 208                |
| G-12 Sacred Heart males cranial correlations                                                         | 208                |
| G-13 Sacred Heart females vertebral correlations                                                     | 209                |
| G-14 Sacred Heart males vertebral correlations                                                       | 209                |

|                                                                                                                          | Page       |
|--------------------------------------------------------------------------------------------------------------------------|------------|
| G-15 Sacred Heart females arm correlations                                                                               | 210        |
| G-16 Sacred Heart males arm correlations                                                                                 | 210        |
| G-17 Sacred Heart females leg correlations                                                                               | 211        |
| G-18 Sacred Heart males leg correlations                                                                                 | 211        |
| G-19 Sacred Heart females tarsal and metacarpal correlations                                                             | 212        |
| G-20 Sacred Heart males tarsal and metacarpal correlations                                                               | 212        |
| G-21 Sadlermiut and Sacred Heart final female correlations                                                               | 213        |
| G-22 Sadlermiut and Sacred Heart final male correlations                                                                 | 214        |
| H: R-Values and Statistical Significance                                                                                 | 215        |
| H-1 Sadlermiut and Sacred Heart female BSI chronological<br>re-numbering                                                 | 215        |
| H-2 Sadlermiut and Sacred Heart male BSI chronological re-numbering                                                      | 216        |
| H-3 Sadlermiut females r-values and significant association                                                              | 217        |
| H-4 Sadlermiut males r-values and significant association                                                                | 223        |
| H-5 Sacred Heart females r-values and significant association                                                            | 229        |
| H-6 Sacred Heart males r-values and significant association                                                              | 235        |
| I: Regression Analysis (see attached CD)<br>I-1 Sadlermiut females regression graphs of age successive<br>variable pairs | 241<br>CD2 |
| I-2 Sadlermiut males regression graphs of age successive variable pairs                                                  | CD84       |
| I-3 Sacred Heart females regression graphs of age successive variable pairs                                              | CD155      |

|       |                                                                                          | <b>Page</b> |
|-------|------------------------------------------------------------------------------------------|-------------|
|       | I-4 Sacred Heart males regression graphs of age successive variable pairs                | CD221       |
| J: Gr | owth Sequencing Data<br>J-1 Sadlermiut and Sacred Heart females BSI age at<br>maturation | 242<br>242  |
|       | J-2 Sadlermiut and Sacred Heart males BSI age at maturation                              | 244         |
|       | J-3 Scheuer and Black (2000) skeletal maturation sequencing                              | 244         |
|       | J-4 Sadlermiut females sub-adult calibration data                                        | 246         |
|       | J-5 Sadlermiut males sub-adult calibration data                                          | 249         |
|       | J-6 Sacred Heart females sub-adult calibration data                                      | 252         |
|       | J-7 Sacred Heart males sub-adult calibration data                                        | 255         |
| K: Gı | rowth Fluctuation Patterning Data<br>K-1 Sadlermiut females regression summary           | 258<br>258  |
|       | K-2 Sadlermiut males regression summary                                                  | 266         |
|       | K-3 Sacred Heart females regression summary                                              | 273         |
|       | K-4 Sacred Heart males regression summary                                                | 280         |
|       | K-5 Sadlermiut females growth fluctuation pattern maps                                   | 287         |
|       | K-6 Sadlermiut males growth fluctuation pattern maps                                     | 306         |
|       | K-7 Sacred Heart females grow fluctuation pattern maps                                   | 320         |
|       | K-8 Sacred Heart males growth fluctuation pattern maps                                   | 327         |
|       | K-9 Growth fluctuation pattern maps - Individual summaries                               | 335         |

#### **CHAPTER 1: INTRODUCTION**

#### **1.1 Purpose and Significance**

Growth and development studies from a bioarchaeological perspective are linked to an ever-growing interest in population health. By analyzing the human skeleton and its relatively predictable patterns of growth and development, bioarchaeologists are able to evaluate individual health through a variety of means. The primary purpose of this research is to develop a new method of examining patterns of stress throughout the entire period of growth and development and to assess two different populations adapted to two different environmental regions: the Sadlermiut Inuit (Nunavut) from an Arctic climate and the Sacred Heart Cemetery population (southwestern Ontario) from a temperate climate.

In bioarchaeology, stress is generally assessed through multiple methods of analysis to provide the most complete picture of individual and/or population health. While many of the methods employed by bioarchaeologists focus on skeletal lesions as a means of evaluating stress, this study will focus specifically on patterns of growth and development. During the timeline of growth and development (approximately birth to 20 years of age) many different stress events can drastically affect how the adult skeleton will mature (Rosenfield 1996; Hoppa and FitzGerald 1999). To better understand these stress events and their potential causes, bioarchaeologists must focus upon methods of stress analysis that can be used to examine stress at any age during growth and development.

While the more commonly used lesion-based methodologies of bioarchaeology (enamel hypoplastic lesions, Harris lines, porotic hyperostosis and cribra orbitalia) can

provide relevant information regarding sub-adult stress episodes, they cannot provide information regarding all stages of growth and development. By examining the patterns of growth and development in the skeleton to evaluate stress, this research will attempt to compensate for the problems associated with lesion-based methods of analysis, by providing a means to examine stress at any age during childhood.

Body size (overall stature and/or overall weight) is predominately used in clinical and archaeological research as a means of assessing health (Eveleth and Tanner 1976; Hoppa and FitzGerald 1999; King and Ulijaszek 1999; Bogin 2001; Ruff 2002, 2007). Empirical studies have shown that osteological indicators of body size exist throughout the human skeleton, and can be used to examine overall body stature and overall body weight. While many studies have focused on overall body size as a means to evaluate health, this research project will establish the use of many individual indicators of body size to explore patterns of growth disruption within the human skeleton that may be attributable to stress.

Because reduced body size is generally regarded as an indicator of poor health, as it indicates a disruption of the regular pattern of growth and development, it follows that a reduction in the individual indicators of body size also indicates poor health. Although individuals within a population sample may reach normal overall body size, certain indicators of body size may be smaller or larger than expected if their growth was affected during critical periods of maturation.

The significance of this research is that it will provide another methodology to be used and manipulated by bioarchaeologists to further understand the health of past populations. By better establishing the patterns of stress manifestation within the human

skeleton through new methodologies, bioarchaeologists will be better able to discuss the impact of stress on overall population health. This research will also attempt to correct for the inherent problems encountered when assessing childhood health by attempting to examine stress episodes through the entire span of growth and development. The ultimate goal of establishing this growth and development method is to create a more holistic means of examining past population stress and at what age(s) that stress occurs.

#### **1.2 Research Methodology**

The Sadlermiut Inuit from northern Canada were chosen to represent a coldadapted population who lived under harsh environmental conditions and would have been host to multiple stress factors affecting their overall health. The Sacred Heart Cemetery population from southwestern Ontario was chosen as a comparative population to the Sadlermiut, as they occupied a warmer, temperate climate region. Because of the environmentally distinct regions that these populations occupied, it can be assumed that they experienced different patterns of stress and this research will provide information about these two cultures and their overall health.

In order to evaluate this disruption of growth and development patterns, multiple skeletal measurements referred to as body size indicators (BSIs), will be collected and analyzed. As discussed, a reduction in overall body size can indicate stress during the years of sub-adult growth; therefore, it is presumed that a similar pattern of skeletal size reduction will also appear in the individual indicators of body size. In order to assess these stress events affecting the overall size of each BSI, specific focus will be placed upon the maturation sequence of each skeletal variable. Well-established within the bioarchaeological literature (Anderson *et al.* 1977; McHenry 1992; Aiello and Wood

1994; Porter 1999; Ruff 2002; Spocter and Manger 2007), each of these indictors matures at various times during growth and development and can be ordered into an age at maturation sequence through the use of clinical growth data and sample specific subadult data. Once this maturation sequence is established for both the Sadlermiut and Sacred Heart population samples, correlation analysis will be used to examine the relationships between each BSI. This correlation analysis will demonstrate that real relationships do exist among these skeletal variables ("the smooth" data). Following this initial correlation analysis, linear regression analysis will then be used as the comparative tool to determine if stress was present and at what age during growth and development that stress occurred, as determined from individual departures from the underlying trends of growth and development ("the rough" data). Stress episodes will be evaluated based upon the statistical analysis of each individual, and how they fluctuate above or below the predicted trajectory of the regression line confidence interval for age-successive pairs of BSIs. The age at which that stress occurred will be determined by assessing the duration of when an individual deviates from the normal growth trajectory. Once completed, specific emphasis on population stress patterning will be examined to compare and contrast the stress endured by the Sadlermiut and Sacred Heart population samples.

#### **1.3 Objectives**

This research project aims to further enhance the bioarchaeological understanding of the patterns of growth and development, and the maturation sequencing of the human skeleton. Current models suggest that the human skeleton, controlled by the endocrine system, matures in a predictable pattern with slight deviations between populations (Rosenfield 1996; Humphrey 1998; Van der meulen and Prendergast 2000). It is the goal

of this research to test this model of consistent sequencing patterns, and also to demonstrate that deviations will occur between populations due to various stress factors such as climate. Once established, this research aims to use these stress patterns in conjunction with other stress analysis methods to further explore the numerous causes of stress. Through the establishment of better methods of stress analysis, patterning may emerge that can help to unravel the potential causes of stress within a specific population so that bioarchaeologists can better assess overall health in past populations.

#### **1.4 Research Questions**

For this project some primary research questions are:

- Are there significant correlations between the various body size indicators within the body that can help to predict the timing of specific stress episodes?
- Do individuals show a predictable pattern of stress manifestation that can be tracked and explained through regression analysis and the established growth and development literature?
- Are there distinct differences between the Sadlermiut and Sacred Heart population samples that can be understood in terms of climatic differences?
- Do skeletal indicators of body size provide an accurate reflection of stress episodes sustained during the years of growth and development?
- What is the overall impact of this growth and development method for bioarchaeological stress analysis?

The exploration of these questions will play an integral part of this research project and the understanding of stress and its affect on skeletal growth and development. While Chapter 1 has provided a broad overview of this project, Chapter 2 will focus on the current literature discussing the patterns of growth and development, stress analysis, body size and the environmental impact on body size. Chapter 2 will also introduce some of the considerations and limitations of this research project. Chapter 3 will provide the context of this project with regards to the methodologies and techniques employed to examine stress. Chapter 4 focuses on the results of this research, while Chapter 5 is a discussion of the trends observed in both the Sadlermiut and Sacred Heart samples and how these trends may help to explain the stress endured by these two population samples. Chapter 6 presents the conclusions of this project and future research possibilities.

#### **CHAPTER 2: LITERATURE REVIEW**

#### **2.1 Introduction**

The purpose of this chapter is to provide the background information required for this research project. This chapter will discuss the historical background of both the Sadlermiut and Sacred Heart populations, followed by an outline of the skeletal remains that were examined. Stress analysis, growth and development and body size are also discussed in this chapter with specific attention paid to how stress can affect what is considered normal growth and development. Following this section is a discussion of the potential considerations and limitations for this project, specifically the osteological paradox and longitudinal versus cross-sectional growth and development data collection.

### 2.2 Archaeological Samples

#### **SADLERMIUT**

#### 2.2.1 Sadlermiut Inuit History

The Sadlermiut Inuit, once regarded as a mysterious and unique people, occupied the Southampton and Coats Islands at the northwestern perimeter of Hudson Bay, as shown below in Figure 2.1 (Manning 1942; Maxwell 1985). The Sadlermiut were both geographically and culturally isolated from the surrounding Inuit groups on the neighbouring mainland which delayed European contact up until 1824 (Merbs 1983). After initial contact with the Sadlermiut culture, European visits remained infrequent and minimal until the establishment of a whaling station at the Cape Low site on July 13, 1899 (Ross 1977). This whaling station was established by the Scottish firm Robert Kinnes and Sons and employed three European men along with over 150 non-Sadlermiut Inuit from the mainland (Ross 1977). Despite this encroachment into the Sadlermiut

territory, these elusive people remained on the periphery of the whaling, fur and material

trade economy (Ross 1977).

### <u>Figure 2.1</u>



(after: http://upload.wikimedia.org/wikipedia/commons/4/44/Canada\_provinces\_blank.png)

The success of the Cape Low whaling establishment inevitably led to an increase in European contact with the employed mainland Inuit, as well as the Sadlermiut, whose land was being more frequently visited by whalers (Ross 1977). During the summer season of 1902, the *Active* whaling ship made its usual stops in and around Southampton Island between the three main docking ports: Cape Low, Lake Harbour and Repulse Bay (Ross 1977). It was during this voyage that European disease spread into the Inuit populations and moved across the island as the various Inuit groups began their migratory movements for the coming winter months (Ross 1977). Although various diagnoses have been suggested, severe dysentery or gastric fever have been the most widely accepted causes for this epidemic (Ross 1977). It has been estimated that during the course of the fall and winter months of 1902 and 1903, European disease spread as far as 500 miles north and south of the original outbreak point and eventually subsided at the Native Point site on the southern Bell Peninsula of Southampton Island (Ross 1977). While this outbreak affected multiple Inuit groups, the Sadlermiut were the most affected by symptoms of severe diarrhea which eventually wiped out almost the entire population on both Southampton and Coats Islands during the winter of 1902/1903 (Manning 1942; Ross 1977; Merbs 1983). Despite the suggestion that the Sadlermiut were completely eradicated by this disease, there were five survivors, one adult woman and four children. Upon their discovery by the European whalers during the summer of 1903, they were taken to Repulse Bay and assimilated into the Aivilingmiut culture. However, none of these survivors had any progeny, thereby ending the Sadlermiut lineage (Ross 1977; Merbs 1983; Rowley 1994).

#### Sadlermiut Culture

The cultural title of Sadlermiut (Sagdlirmiut) was originally coined by surrounding Hudson Bay Inuit groups, to denote "the people of the *Sadleg*" which was the Inuit name for Southampton Island (Boaz 1888; Manning 1942). The Sadlermiut were primarily located on the island in an area referred to as *Tunirmiut*, also known as Native Point (Merbs 1983). This Inuit group was characterized as mysterious, unique and described by other neighbouring groups as unusual (Merbs 1983). Much of the information gathered about the Sadlermiut people and their culture was obtained by Therkel Mathiassen from Inuit informants during his early exploration and documentation of Arctic peoples in 1927. Through this establishment of friendship with other Inuit populations, particularly the Aivilik, Mathiassen was able to document the

mystery surrounding the Sadlermiut (Mathiassen 1927). From his early research, Mathiassen discovered that the Sadlermiut were considered to be self-isolating people who refused to marry into other Inuit groups and were characterized by their peculiar dialect which was different from all other surrounding cultures (Mathiassen 1927). Despite their geographic and cultural isolation, the Sadlermiut were regarded by surrounding Inuit groups as very strong and skillful flint knappers, a tradition longforgotten by many other Arctic groups (Maxwell 1985). For the Sadlermiut, trade with the Europeans and other Inuit cultures was largely avoided, as this culture preferred to exploit and use the raw materials from their own geographic region (Maxwell 1985).

Not only did the Sadlermiut avoid trade relations but they also demonstrated various lifeways that were regarded as odd and simplistic by other neighbouring groups. The architecture of the Sadlermiut was regarded as crude and sloppy as their snow houses were poorly constructed and more permanent houses known as *qarmats* were made from stones, sod and whale bones. These *qarmats* were primarily insulated with whale blubber that constantly dripped into the living areas of these homes and covered the inhabitants with grease (Rowley 1994; Hayes *et al.* 2005). The fabrication of tools by the Sadlermiut was also criticized as being simplistic in comparison to other Inuit groups, as the main materials exploited by the Sadlermiut were flint and chert rather than metal that was easily acquired from European traders (Hayes *et al.* 2005). Perhaps the biggest criticism of the Sadlermiut was their appearance and their use of polar bear skin to make pants, which when completed, required the wearer to rub whale blubber on their legs to keep the hide from chafing their skin (Manning 1942; Rowley 1994; Hayes *et al.* 2005). The Sadlermiut also were accused of being constantly unclean, not only because of their

constant use of whale blubber, but because of the build-up of soot inside their homes which inevitably transferred onto their clothes and skin (Hayes *et al.* 2005).

It is important to recognize that some of these early characterizations of the Sadlermiut were based upon the testimonies of mainland Inuit groups who had the tendency to speak poorly about other cultures that practiced lifeways different from their own (Hayes *et al.* 2005). It has been argued by scholars that these differences observed between the Sadlermiut and other Inuit groups were merely adaptations to their isolated geographic position and their ties to the archaeological Dorset Tradition (Rowley 1994).

The Dorset Tradition (eastern Arctic) of the paleo-Inuit was characterized by an unspecialized tool kit that allowed for the exploitation of marine resources and large terrestrial land animals. This Tradition was also characterized by snow houses, more commonly referred to as *igloos* (Maxwell 1985; Hayes *et al.* 2005) and other adaptive techniques which allowed Inuit peoples to withstand the cold temperatures of the Arctic through the exploitation of the environment for subsistence and shelter (Hayes *et al.* 2005). During the Dorset period, many Inuit groups in the east were isolated from the Alaskan Inuit culture (Norton Tradition) which evolved into the Thule Tradition that eventually spread eastward around AD 1000 (Hayes *et al.* 2005). With the widespread dispersion of the Thule Tradition, the Dorset culture began to disappear as Thule tools were more refined and resulted in the better procurement of subsistence and shelter.

However, it has been argued that isolated groups in the east, such as the Sadlermiut, were not as affected by the incoming Thule Tradition and were "survivors of the Dorset culture" (McGhee 1996:233). Because the Sadlermiut differed so greatly from their surrounding mainland neighbours, many scholars have debated the origins of these

unique people, attributing their unusual lifeways to the Dorset Tradition (Collins 1956). Archaeological investigations suggest that the dwelling structures and tool making techniques of the Sadlermiut were more closely related to the Dorset Tradition than the Thule Tradition (Maxwell 1985). Genetic testing has also been carried out on Sadlermiut remains to examine familial relationships and these tests have demonstrated that this culture was genetically influenced in some capacity by the early Dorset people (Hayes *et al.* 2005). Although evidence has been found to demonstrate the Dorset affinities of the Sadlermiut people, some scholars also argue that the surrounding environment and geographic isolation of these people contributed to their unique lifeways.

The geographic landscape of Southampton Island is primarily characterized by its limestone foundation with intermittent marshlands throughout the Bell Peninsula region. This dominant limestone presence explains the Sadlermiut use of limestone rocks to help stabilize and form their semi-permanent dwellings and construct their graves (Manning 1942; Rowley 1994). Wildlife on the island is limited; however, there is a high concentration of polar bears, which were mainly exploited by the Sadlermiut as a clothing and food source (Manning 1942; Rowley 1994). Chert and flint raw material sources are abundant on the island; by having continual access to chert and flint sources, the Sadlermiut were able to make the tools needed to survive without travelling great distances to procure other construction materials (Rowley 1994).

The climate of Southampton Island at the beginning of the twentieth century was relatively similar to other Arctic regions of Canada with an average summer temperature 7.2° to 10° Celsius and an average winter temperature of -15° to -12.2° Celsius (Natural Resources of Canada 2003). The cool climate of Southampton Island also affected the

annual average ground temperature which was recorded between -18° and - 23° Celsius with an average snow depth of 30 to 49 centimeters (Natural Resources of Canada 2003). Rainfall within this region had an annual mean of 201 to 400 millimeters while sunlight hours between the winter and summer months were drastically different. On June 21<sup>st</sup> (summer solstice) the average amount of sunlight per day was 22.03 hours and on December 22<sup>nd</sup> (winter solstice) the average amount of sunlight per day was only 3.34 hours (Natural Resources of Canada 2003). By examining these environmental conditions and the access to raw materials, it becomes clear why some scholars argue that the Sadlermiut were affected the most by their isolated and climactic circumstances, rather than being remnants of the Dorset Tradition. While their unique lifeways may have appeared more akin to the Dorset Tradition, perhaps these survival techniques were merely an adaptation to their harsh environment and continued social isolation rather than a cultural choice to follow a specific Arctic Tradition.

Overall, regardless of their origins, the Sadlermiut can be characterized as being a strong people, accomplished whale hunters and skillful flint knappers. The Sadlermiut mainly subsisted upon marine resources such as small fish and whale but supplemented their diet with large terrestrial animals such as bears (Boaz 1888; Rowley 1994). Although their use of *kayaks* and *umiaks* (both water transportation vessels) is unknown, they did have access to many other tool-types to aid in their survival on Southampton and Coats Islands (Merbs 1983). Archaeological evidence of harpoons, lance heads, bows, sleds, needles, knives and arrows suggest the extensive tool kit of these Arctic people (Merbs 1983). The responsibilities for survival among this group were divided between the sexes, with males and females being responsible for different aspects of daily life.

The Sadlermiut males were responsible for the procurement of food, while the Sadlermiut females were characterized, like many other Inuit women, as being responsible for the preparation of animal hides to make clothing and other implements used in daily life (Merbs 1983).

The Sadlermiut Inuit were a distinct people of the Canadian Arctic and because of their unique nature, different types of stress would have affected the growth and development of their skeletons. Up until European contact in 1824, the Sadlermiut had a long genetic endogamous lineage that was kept closed to outside populations (Merbs 1983). This would suggest that these people were genetically well adapted to their circumstances as specific genes were kept within the gene pool to aid in cold climate survival, as has been argued in Neanderthal studies of skeletal adaptations to cold temperatures (Blumenfeld 2001; Nelson and Thompson 2002). However, it is important to recognize that the Sadlermiut did possess cultural buffers that aided them in their cold climate survival such as their bear skin pants. The isolated geographic position of the Sadlermiut would have also affected subsistence strategies, as only certain food resources would have been available and only during certain times of the year. This lack of reliable food resources could have drastically affected the nutritional content of the Sadlermiut diet. The small group size of the Sadlermiut may have also affected the social roles of males and females. Although males and females had specific roles within the Sadlermiut community, small population numbers may have required an overlap in the social roles of men and women in order to survive. Because of these distinct lifeways the Sadlermiut are assumed to have been exposed to different types of stress not only related to their cold climate environment, but also to genetics, nutrition, sex and social systems.

#### 2.2.2 Sadlermiut Skeletal Collection

The Sadlermiut skeletal collection was originally excavated by Henry Collins in 1954 - 1955 through the National Museum of Natural History, with subsequent excavations throughout 1959 by William Laughlin (Merbs 1983). The original examination of the skeletal remains was carried out by two major institutions, the Smithsonian Institute in Washington D.C. and the University of Wisconsin at Madison (Merbs 1983). The Sadlermiut skeletal remains used in this study were recovered from the Native Point site on the western perimeter of the Bell Peninsula and boast excellent preservation (Merbs 1983). The limestone topography of the Southampton Island provided an excellent preservative as most graves were built into the high alkalinity limestone which protected the remains from the elements and from scavengers (Manning 1942; Merbs 1983). These graves were simple in their construction with a circle of rocks outlining the body and were usually situated overlooking the sea. They also lacked grave goods (Manning 1942; Rowley 1994). Estimates suggest that the skeletal remains recovered from the Native Point region may date back as far as 500 years. It appears however, that many of these individuals were interred around the time of the 1902-1903 epidemic (Merbs 1983).

#### SACRED HEART

#### 2.2.3 Sacred Heart Cemetery History

In contrast to the cold climate region occupied by the Sadlermiut, The Sacred Heart Cemetery population was chosen to represent a temperate climate population for this research project, as shown below in Figure 2.2.



(after: http://upload.wikimedia.org/wikipedia/commons/4/44/Canada\_provinces\_blank.png)

Ingersoll, Ontario was originally founded by Thomas Horner in 1792, but was not truly established until 1795 when Thomas Ingersoll brought 40 families northward from Salem, Massachusetts to settle in the area (Whitwell 1977). At this time the county of Oxford in southwestern Ontario was partially formed and gained full county status in 1798 (Whitwell 1977). Thomas Ingersoll was a well regarded individual in the Niagara region, and had a reputation of devoting his entire wealth and life to the establishment of the Town of Ingersoll. Within a year of his settlement, Thomas Ingersoll had commissioned the construction of roadways and further explored the land surrounding the town with the help of the Six Nations Group (Whitwell 1977). It has been well documented that the Ingersoll pioneers had a good relationship with the Six Nations Group, especially with their chief Joseph Brant (Whitwell 1977). Between 1851 and

1852, the Town of Ingersoll was officially recognized and incorporated as a village and boasted two general stores, a school house, two saw mills and a distillery (Whitwell 1977). The literature discussing the settlement of Ingersoll suggests that despite the difficulties in the early years of town formation during this time period, many people living in Ingersoll were well-off.

The Sacred Heart Cemetery was originally situated behind the Sacred Heart Church built in 1847 (Whitwell 1977; D.R. Poulton and Associates 2008). Bought by John Carnegie in March of 1833, this small area of land on the west side of Ingersoll was initially divided into residential lots in the 1840s (D.R. Poulton and Associates 2008). These lots were designated as Carnegie Town which later became amalgamated with the town of Ingersoll (D.R. Poulton and Associates 2008). A small portion of the land was donated by Carnegie to the Toronto Diocese of the Roman Catholic Church and the Sacred Heart Church was erected in 1848 (D.R. Poulton and Associates 2008). Unfortunately, no records have survived to document the opening of the associated Sacred Heart Cemetery but it has been assumed that the cemetery was established in 1847 or shortly after the construction of the church in 1848 (D.R. Poulton and Associates 2008).

In 1879, a new Sacred Heart Church was constructed north of Ingersoll and it is believed that the human remains from the original Scared Heart Cemetery were transferred to the new burial ground around this time (Ingersoll Tribune 1967; Whitwell 1977; Town of Ingersoll 1977). There is some evidence that the new Sacred Heart Cemetery north of the town was in use by 1870, as parish records from the original Sacred Heart Cemetery do not show any funerals occurring after 1869, which suggests

that the original cemetery was full by this time (Walker 1994). Despite the lack of official records as to when the cemetery first opened and when it was officially closed, it is believed that the original Sacred Heart Cemetery was in use between 1847 and 1869 (D.R. Poulton and Associates 2008).

In contrast to the climate of Southampton Island, nineteenth century Ingersoll enjoyed a relatively temperate climate with an average summer temperature between 18° to 21° Celsius and an average winter temperature between 6° to 7° Celsius (Natural Resources of Canada 2003). Annual rainfall in southwestern Ontario at this time was generally between 801 to 1200 millimeters, with an average snow depth in the winter of less than 30 centimeters (Natural Resources of Canada 2003). Also in contrast to the Southampton Island climate, Ingersoll had fewer hours of sunlight during the summer months but significantly more exposure to sunlight during the winter months. On average Ingersoll received 15.13 hours of sunlight on the longest summer day (June 21<sup>st</sup>), while receiving 9.04 hours of sunlight on the shortest winter day (December 22<sup>nd</sup>) (Natural Resources of Canada 2003).

Despite the success of the town of Ingersoll and the well-being of many of its inhabitants, this early pioneer village would have been exposed to particular types of stress aside from the environment, related specifically to diet, social roles and modes of production. Known for its cheese production, the town of Ingersoll was an industrial and agricultural hub in southwestern Ontario (Whitwell 1977). Once settled, the town would have been exposed to various factors of stress related to an agricultural way of life, such as zoonotic diseases spread via domesticated livestock, water-borne diseases from industrial and farm land waste and even a reduction in nutrition, as certain food types

may not have been agriculturally viable in this new region. Along with dietary stress, the people of Ingersoll would have also been exposed to stress based upon their social roles. During this time, road construction and industry were priorities for the town and many young men were recruited to help construct these roadways and establish industry outside of traditional farming at the homestead (Whitwell 1977). Depending on the type of work conducted by the men, biomechanical stress may have increased over time. While the men were busy constructing these roadways and developing industry in Ingersoll, the women were required to tend the farm and the household which would have also increased their own biomechanical stress (Whitwell 1977).

#### 2.2.4 Sacred Heart Skeletal Collection

Characteristic of nineteenth century Christian burial practices, the individuals from the original Sacred Heart Cemetery were mainly oriented east-west and buried in plain wood coffins (D.R. Poulton and Associates 2008). Before the establishment of sawmills in the region, coffins in the early 1800s were generally made by the family from a pine tree that was hollowed out and individuals were interred on family land (Whitwell 1977). The opening of sawmills in the region slightly changed burial practices, as coffins were then constructed from pine or oak planks and a cost was associated with funerals that took place on land owned by religious institutions (Whitwell 1977). It was not until the 1820s that religious organizations began to recognize official meeting places. Once these meeting places were decided upon, cemeteries were then designated as being associated with each of the different religious groups (Whitwell 1977). The skeletal collection excavated from the original Sacred Heart Cemetery site contained male and female adult and sub-adult remains. Further investigation into family plots and

associations has yet to be conducted; however, preliminary studies show that there is variability within this population in regards to overall health. Because the original Sacred Heart Cemetery was the first Catholic cemetery in Ingersoll, these skeletal remains may provide important information about the first pioneers in southwestern Ontario and the types of stress endured at that time (Whitwell 1977).

#### 2.3 Stress and Growth

The main focus of this project is to examine stress in both a cold climate population and a temperate climate population to observe the skeletal changes that took place during growth and development as a result of this stress. For the purpose of this study, stress will be defined as any measurable disturbance that has negative consequences such as disrupted or delayed skeletal growth, usually regarded as an overall reduction in body size or an alteration in the growth of skeletal elements (Goodman and Martin 2002). Some potential causes of stress are: poor nutrition, socio-economic status, psychosocial problems, climate, disease and being a particular sex (Johnston et al. 1982; Hoppa and FitzGerald 1999; Bogin 2001; Ruff 2002). Despite the plasticity of the human body and its ability to adapt, the human skeleton grows in a patterned sequence with certain skeletal elements reaching maturation landmarks at predictable stages of growth (Humphrey 1998; Prokopec 2001). Because these general trends of growth and development are known, and known to be affected by different variables, any deviations from these predictable patterns allow for more insight into the potential vulnerability of the human skeleton during the sub-adult years of life (approximately birth to 20 years of age) (Larsen 1997; Bogin 2001). Deviations from these normal patterns of growth and development are generally associated with stress or stress events that occurred during the

maturation of the adult skeleton. Larsen (1997) argues that three main factors can contribute to stress: the environment, cultural systems, and the resistance of the host to the stress event. Therefore, through the analysis of stress in past populations, information regarding culture, behaviour and health can be explored (Larsen 1997). Unfortunately because stress is generally non-specific in nature and can be the result of many influencing factors, it is often difficult to dissect out the primary cause of stress. Within bioarchaeology stress analysis is beneficial in that it allows for the examination of societal health, at both the individual level and population level, to gain a better understanding of the hardships endured by past peoples. In order to understand past population health trends, stress analysis is best explored through the integration of multiple lines of evidence (Buikstra and Cook 1980; Huss-Ashmore *et al.* 1982; Goodman and Armelagos 1989).

### 2.3.1 Lesion-based Approaches of Stress Analysis

Stress is generally examined in archaeological populations following a lesionbased approach. Currently, there are three dominant lesion-based methods that help bioarchaeologists to understand stress in past populations: enamel hypoplastic lesions, Harris lines and porotic hyperostosis and cribra orbitalia.

Enamel hypoplastic lesions (EHL) are generally identified as lines or pits along the tooth, most commonly found on the anterior teeth (Lewis and Roberts 1997). As the tooth enamel forms, it does so in a predictable pattern as ameloblasts (enamel forming cells) lay down new enamel which will eventually mineralize into fully mature enamel (Larsen 1997). During this process, however, disruptions to the homeostasis of the body caused by stress can affect the process of enamel formation. As a result of stress, the

enamel on the teeth does not fully form and is generally thinned, leaving lines or pits as evidence of a stress event (Goodman and Rose 1990). EHL, created in response to growth disruption, are generally the result of metabolic changes within the body, particularly nutritional deficiencies (Goodman and Armelagos 1988). A primary benefit of this method is the predictability of enamel formation patterns which allows for bioarchaeologists to estimate the age at which the stress event occurred (Blakey and Armelagos 1985; Hutchinson and Larsen 1988). Another benefit of EHL is that they do not remodel over time and remain a permanent indicator of stress (Goodman and Song 1999). However, a primary limitation with this method is that once the permanent teeth have formed and erupted this method can no longer indicate stress, as enamel does not remodel over time; therefore, this method can only provide an assessment of early childhood stress.

Harris lines are another line of evidence used by bioarchaeologists when examining stress in past populations that can provide a chronological age of when stress occurred. Harris lines can manifest on all bones of the body but are best visualized on the distal tibia and distal femur (Larsen 1997). These lines are visible only through x-ray analysis and appear as lines of increased density indicating the resumption of growth after a stress event has passed (Garn *et al.* 1968; Hunt and Hatch 1981; Maat 1984; Byers 1991; Mays 1995). Although Harris lines were originally documented as indicators of rickets, they are now associated with nutritional stress, diseases and traumatic stress (Larsen 1997). Studies show that Harris lines appear most commonly after the initial six months of life and usually plateau around five to six years of age (Clarke and Gindhart 1981). However, despite the benefit of Harris line analysis, a major limitation with this

method is the potential for the disappearance of these lines over time as bone remodels. Another confounding issue is the lack of standardized methods in how bioarchaeologists score and count these lines, making their comparison across populations difficult (Mays 1995; Larsen 1997; Lewis and Roberts 1997).

The third lesion-based method of stress analysis is the examination of porotic hyperostosis and cribra orbitalia. The term porotic hyperostosis was first introduced by Angel in 1966, and can be described as lesions of the cranium located on the parietal bones or the superior surface of the eye orbits, known as cribra orbitalia (Larsen 1997; Roberts and Manchester 2005). Porotic hyperostosis and cribra orbitalia are generally believed to be linked to iron-deficiencies caused by inadequate nutrition, individuals born with a low birth weight or blood loss (Stuart-Macadam 1989). Although the analysis of porotic hyperostosis and cribra orbitalia provides relevant information about stress sustained during the years of growth and development, there has yet to be a method of analysis to accurately date the time at which that stress occurred (Larsen 1997; Roberts and Manchester 2005). As a result, the use of porotic hyperostosis and cribra orbitalia as stress analysis tools can only be used to gain general information concerning the health of a population in relation to anemias. Because this project focuses on the chronological identification of stress events during childhood, the examination of cribra orbitalia and porotic hyperostosis will be omitted.

As outlined above, lesion-based methods of stress analysis are highly regarded by bioarchaeologists in the understanding of health in past populations. The goal of this study is not to discount the use of these lesion-based methods, but rather to enhance and build upon alternative lines of evidence to explore stress and its impact on growth and

development; specifically, to examine how deviations in the patterns of growth and development may provide a more holistic understanding of sub-adult stress.

### 2.3.2 Growth and Development Approaches to Stress Analysis

From an archaeological perspective, stress can be examined from both skeleton lesions and in patterns of growth and development. While lesion-based methods are more abundant and more commonly used, it is the goal of this study to expand the framework of growth and development stress analysis through the use of body size indicators.

While fluctuating asymmetry is currently the only existing method of stress analysis that is used to examine stress episodes from a growth and development perspective, there has been some recent study into the relationship between lesions and skeletal development and how this may be used to better understand stress (Lukacs 2009). Fluctuating asymmetry is defined as the deviation of skeletal formation from symmetrical development, with asymmetry becoming more pronounced as the result of prolonged stress (Palmer and Strobeck 1986; Leung et al. 2000). The reason that stress affects growth is due to a reduction of energy within the body that helps to maintain proper skeletal development during critical periods of skeletal maturation (Sommer 1996). In the archaeological record, higher instances of fluctuating asymmetry in a sample population are generally regarded as evidence of greater levels of "developmental instability" (Albert and Greene 1999; DeLeon 2007:520). The stress agents that have been associated with fluctuating asymmetry are environmental instability (excessive heat or cold), nutritional deficiencies, excessive noise, prenatal chemicals and diabetic fetal environments (Albert and Greene 1999; DeLeon 2007). All of these potential stress agents, which are similar to the factors cited above as possible causes for the appearance

of stress lesions, can provide insight into the type of stress events that may have affected the Sadlermiut and Sacred Heart population samples.

Because this research is dependent on establishing consistency between indicators of stress, both lesion-based approaches (EHL and Harris lines) and a growth and development approach (fluctuating asymmetry) are important considerations for how bioarchaeologists identify and accurately age stress episodes during childhood growth and development.

# 2.3.3 Bone Structure and the Effects of Stress

To understand the mechanisms of stress and the effect of stress on skeletal growth and development, an overview of bone structure is necessary. Bone is a dynamic element of the human body, providing the necessary structure and support to the various systems within the body (Rosenfield 1996). For this discussion it is important to focus on the mechanisms of skeletal formation, specifically how bone is created and maintained within the body and also how the human skeleton grows and develops over time.

Human bone is comprised of both organic and inorganic materials. Collagen is the primary component of human bone and comprises 90% of the bone matrix, while the inorganic component of bone, hydroxyapatite, comprises less than 10% of the bone matrix (White and Folkens 2005). This bone matrix of organic and inorganic materials houses three types of bone cells (osteoblasts, osteocytes and osteoclasts) that contribute to the creation, maintenance and destruction of bone (White and Folkens 2005). Osteoblastic cells are responsible for the formation of bone and are located directly under the periosteal sheath that protects bone. Once these cells become surrounded within the bony matrix, they become osteocyte cells that are responsible for the maintenance of the newly created bone (White and Folkens 2005). Osteoclastic cells, in contrast, are responsible for the destruction or remodeling of bone, most important during the growth and development period of early life (White and Folkens 2005).

Bone growth and development is possible due to the interaction between all three types of bone cells. It is this interaction that allows the bony matrix to remodel through a change in shape and size (White and Folkens 2005). Bone maturation can occur either through intramembranous ossification or through endochondral ossification. Membranous ossification generally occurs in the cranial vault while the majority of bones in the appendicular skeleton begin primarily as a cartilage model (White and Folkens 2005). It is the growth plates, found between the metaphyses and epiphyses of all long bones that allow for growth in bone length as this cartilage model is eventually turned over into bone (Van Der Eerden *et al.* 2003). While bone length is obtained through cell proliferation in the growth plates, bone mass is increased through the interaction of osteoblastic and osteoclastic cells during appositional growth (White and Folkens 2005). These differing processes of skeletal ossification ultimately allow for the maturation of specific skeletal and tissue elements in a particular sequence, so that maximum growth can be attained as these models are turned over into the bony matrix of the adult skeleton (Humphrey 1998; Scheuer and Black 2000).

It is during this period of bone growth and development that disruptions can occur, ultimately affecting the overall size and shape of the adult bone. As discussed above, many different stress variables can affect the skeleton and its maturation; however, the process by which the skeletal system responds to stress is through the release of glucocorticoids into the body. Glucocorticoids are endogenous steroids found

within the human body and are associated with the hypothalamo-pituitary-adrencortical axis (Herman and Cullinan 1997). It is through the release of these steroids that stress becomes manifested within the body bringing about physiological change, particularly in the skeleton (Miller *et al.* 2007). Times of stress, whether environmental, nutritional or social, trigger the release of glucocorticoids into the body as a means to alert the body that stress is occurring while also attempting to maintain homeostasis (Herman and Cullinan 1997). However, long term or chronic stress may saturate the body with high levels of glucocorticoids which can lead to hard tissue damage (Burckhardt 1984; Herman and Cullinan 1997; Manelli and Giustina 2000; Klein 2004; Miller *et al.* 2007).

Glucocorticoids are documented in the clinical literature as having profound effects on bone metabolism by increasing bone resorption and decreasing bone formation through three main processes: the reduction of osteoblastic replication, a decline in the regeneration of osteoblastic cells, and an increase in the death of osteoblastic cells (Manelli and Giustina 2000). All three of these metabolic processes have the negative effect of decreasing bone mass within the body, potentially leading to the biomechanical weakening of the skeleton or a reduction in skeletal size (Klein 2004). Growth plates can also be affected by glucocorticoids as the chondrocyte cells within these plates have a glucocorticoid receptor, whereby allowing these steroids to have direct influence over their localized growth (Van Der Eerden *et al.* 2003). As discussed above, bones have the ability to increase in length and increase in mass; because these two processes are controlled by different mechanisms it can be assumed that glucocorticoids would also affect these processes differently. This suggests that some skeletal elements may be more susceptible to an over saturation of glucocorticoids causing these elements to be reduced

in size. The mechanism of glucocorticoid release, via the hypothalamo-pituitaryadrencortical axis and its effect on bone remodeling, provides an important model for the impact of stress on the growth of skeletal elements. Ultimately, the constant release of glucocorticoids into the body of a chronically stressed individual will affect skeletal mass and may alter their growth outcome if there is a decrease in osteoblastic activity during critical periods of skeletal maturation. It is through this process that stress manifests within the human skeleton and can produce patterns of stress in the Sadlermiut and Sacred Heart samples.

## 2.3.4 Catch-up Growth

Although it may appear that the process of glucocorticoid release into the body during times of stress produces irreversible changes to the human skeleton there is still the potential for growth after a stress episode has passed. Known as catch-up growth, this phenomenon has the potential to return an individual to their normal growth rate if the stress has not been prolonged and if skeletal elements have not surpassed their capacity to grow any further (Boersma and Maarten Wit 1997; Bogin 2001). Catch-up growth is generally regarded as a rapid increase in growth affecting all skeletal elements in a proportional manner (Tanner 1962). However, recent research has suggested that catchup growth may also occur under the control of localized mechanisms within individual growth plates, suggesting that catch-up growth has the potential to differently affect various indicators of body size (Baron *et al.* 1994). This increase in growth (usually described as stature) they would have achieved had stress not delayed or halted their growth progress. When this maturation point is reached, the body re-regulates this process and

returns the growth rate to a normal pace (Bogin 2001). How the body knows when to stop the process of catch-up growth has yet to be determined (Prader *et al.* 1963). While the underlying mechanism of catch-up growth is not fully understood, it is well documented to occur after periods of stress (Tanner 1962; Prader *et al.* 1963; Boersma and Maarten Wit 1997) and can presumably be detected through the analysis of patterns of growth and development.

#### 2.3.5 Patterns of Growth and Development

From this understanding of how stress can affect the growth and development of the human skeleton, it is important to outline and be aware of how the human skeleton should normally mature. The study of normal patterns of growth and development has become an important avenue of research for bioarchaeologists studying the health of past populations. Growth generally refers to "a quantitative increase in size or mass" while development refers to "a progression of changes, either quantitative or qualitative that lead from an undifferentiated or immature state to a highly organized or specialized mature state" (Bogin 2001:283-284).

En route to adult maturity, the modern human skeleton passes through five stages of growth and development: infancy, childhood, juvenile, adolescent and adult (Bogin 2001). Each stage is characterized by different growth and development landmarks when certain skeletal and tissue elements reach their final adult size. Infancy is the first stage of postnatal life and lasts for approximately three years; it is characterized by having faster velocity in growth than any other phase, particularly rapid brain growth (Bogin 2001). The childhood stage encompasses the years of three to seven and is the stage where permanent teeth begin to replace deciduous teeth and the brain reaches its final adult

weight (Bogin 2001). From the age of seven to approximately 13 years is the juvenile stage of growth and development which can be characterized by a slowing of skeletal and tissue growth. However, during the juvenile stage an individual may experience a midgrowth spurt and also during this stage the brain reaches its final adult size (Bogin 2001). The adolescent stage of growth and development does not begin at the same skeletal age for males and females and although this process is highly regulated by genetics, it can be delayed due to various factors such as malnutrition or socio-economic status (Golub 2000; Bogin 2001). Females generally reach adolescence around 12 years while males reach adolescence around 14 years. During this stage, individuals reach sexual maturity and also experience a rapid growth spurt followed by the cessation of growth as the bones of the body fuse with their epiphyses (Bogin 2001). The adult stage, and final stage of growth, begins once an individual has completed their skeletal growth at approximately 20 years of age and continues for the rest of their life until death (Bogin 2001). For this research project, and with regards to the bioarchaeological literature, the term "sub-adult" will refer collectively to all of the stages of growth and development that precede the adult stage (birth to approximately 20 years of age), where an individual still has the capacity to grow. The term "adult" will refer to any individual who has matured beyond the adolescent stage and where all long bone, pelvic, hand, foot and vertebral epiphyses are fused.

From this knowledge of human skeletal patterns of growth and development and the examination of human skeletal remains, bioarchaeologists are able to infer relevant information about skeletal variability in both the individual and the overall population (Larsen 1997). Growth rate within each growth and development stage, although highly

regulated within the body, can be affected by different stress factors such as sex, disease and cultural systems; however, it has been argued that the environment and nutritional status have the most influence on the achieved adult size of an individual (Eveleth and Tanner 1976; Larsen 1997; Bogin 2001). As outlined by Eveleth and Tanner (1976), the final size and shape that an individual attains in adulthood is a direct reflection of the continued interaction between different influences during the period of maturation, more specifically during the five outlined stages of growth and development.

#### 2.3.6 Environment and Body Size/Proportions

As discussed above, stress during the years of growth and development will ultimately affect the growth outcome of an individual. Of particular interest for these two population samples is the interaction between the human body and the environment as a primary stress agent. Morphological adaptation to different climates is governed by the principles of thermoregulation in mammals, including humans, and is described by the rules proposed by Bergmann (1847) and Allen (1877). Bergmann's Rule states that in colder climates mammals grow to a larger body mass to reduce their surface area to volume ratio; Allen's Rule suggests that in colder climates appendages are smaller in relation to overall body size also to reduce the surface area to volume ratio (Eveleth and Tanner 1976; Vrba 1996; Jurmain *et al.* 2004). Explored by multiple authors (Eveleth and Tanner 1976; Y'Edynak 1978; Johnston *et al.* 1982; Blumenfeld 2001; Nelson and Thompson 2002) cold climate adapted human populations are shown to have larger body mass (Bergmann's Rule), and also demonstrate shorter appendages and shorter overall stature (Allen's Rule), relative to warm adapted populations. As outlined by Eveleth and Tanner (1976), bigger does not always mean better, as a smaller body size or smaller body limb proportions may be adaptive in specific environmental circumstances. The goal of this study is to distinguish between these environmental adaptations and other stress influences that may have affected the growth and development of these population samples. It is through this examination of body size and body size indicators that the effects of stress on the underlying adaptations of the Sadlermiut and Sacred Heart people will be studied.

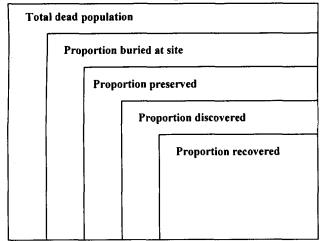
#### 2.3.7 Body Size

Skeletal growth and development normally works in a coordinated manner so that a well-proportioned adult skeleton is the end result of a normal growth and development sequence. Body size can be defined as overall body stature or overall body weight while body size indicators (BSIs) are defined as the various measurements taken throughout the skeleton that have been empirically demonstrated to be correlated to overall body stature or body weight. Because a well-proportioned adult skeleton is dependent on demonstrating a consistent relationship between body size indicators, an individual affected by stress during growth and development should deviate from this relationship among BSIs. Therefore, the examination of body size and its indicators is important to growth and development studies because of the established correlation between body size and stress, as discussed in section 2.3.5. Because different BSIs attain maturity at different ages, it should be possible to link an interruption in the expected pattern of correlation among BSIs to a stress event that occurred during particular years of growth and development and might otherwise be undetectable (cf. Eveleth and Tanner 1976; Hoppa and FitzGerald 1999; King and Ulijaszek 1999; Bogin 2001; Ruff 2002).

The use of body size within a bioarchaeological framework has thus far been mainly focused on studies of overall body size (stature or mass) estimation in fossil hominids. Because no accurate reference population exists to examine body size in fossil hominids, specific cranial and infra-cranial elements have been examined in an attempt to reconstruct the early hominid physique (Anderson *et al.* 1977; McHenry 1992; Aiello and Wood 1994; Porter 1999; Ruff 2002; Spocter and Manger 2007). As discussed by Ruff (2002), studies of hominid body size provide relevant information about past populations, particularly social organization, ecology, health and nutrition and therefore, have value to archaeological studies also assessing body size.

Many scholars recognize the fact that human body proportions can vary considerably between populations and therefore, certain skeletal elements will ultimately be better predictors of body size that others (Ruff 2002). The majority of scholars regard infra-cranial skeletal elements as the best predictors of body size, specifically long bone measurements (Steudel 1980; Jungers 1985; McHenry 1992; Ruff *et al.* 1997; Ruff 2002). There is a clear functional relationship between body size and load bearing capacity; therefore, the most reliable features on the long bones appear to be the articular surfaces which are less affected by activity and provide relatively accurate body size predictions (McHenry 1992; Trinkaus *et al.* 1994; Ruff 2002). This close association of limb bone measurements and body size is believed to be the result of the tight constraints on the limb bones due to the transmission of weight through those bones, as opposed to the cranial or dental features of the skeleton that do not bear weight (Aiello and Wood 1994). However, some scholars do argue that cranial and dental elements also provide accurate measurements to make body size predictions, although the exact mechanism

underlying this association has not yet been explored (Anderson *et al.* 1977; Aiello and Wood 1994; Kappelman 1996; Spocter and Manger 2007). Aiello and Wood (1994), argue that some cranial elements are better indicators of body size and produce higher correlations than other indicators, but that these same biases exist when considering infracranial elements as well. Because of these limitations of cranial and infra-cranial BSIs, both are needed to provide accurate body size estimates as all of these predictors from the human skeleton have some degree of error (Aiello and Wood 1997). It is through the exploration of these error rates in both cranial and infra-cranial measurements that this study will seek the best possible measurements to indicate body size and any deviations from expectations which could indicate the presence of stress. While past studies focused upon the actual prediction of overall body size, this research concentrates on establishing the patterns and relationships between each indicator of body size.


### 2.4 Considerations and Limitations

#### 2.4.1 The Osteological Paradox

Despite the importance of growth and development studies in understanding the health of past populations there are particular limitations that bioarchaeologists must consider. In 1992, Wood and colleagues examined bioarchaeological research from a different perspective in "The Osteological Paradox: Problems of Inferring Prehistoric Health from Skeletal Samples" which focused on the straightforward relationships assumed between the skeletal remains studied by scholars and the health conclusions proposed. Wood *et al.* argued that pathological research based on past populations is reliant on the assumption that skeletal lesions are a direct reflection of health, which they felt needed to be re-examined in light of three issues: demographic non-stationarity,

selective mortality and hidden heterogeneity in risks (Wood *et al.* 1992). Particularly important for this study, and the assessment of Sadlermiut and Sacred Heart health, are the issues of selective mortality and hidden heterogeneity in risks. Selective mortality refers to the concept that bioarchaeologists will never have access to the entire population at risk, and therefore, all information collected will come from a selective and presumably unrepresentative sample of the original population (Wood *et al.* 1992), as shown in Figure 2.3 below.

## **Figure 2.3** The biases of bioarchaeological excavation



(Waldron 1994:13)

The caution for bioarchaeologists is to recognize these biases within the skeletal sample being studied so that the most accurate assessment of population health can be made, as no sample will entirely represent the original population due to multiple factors. For this research, it is recognized that the individuals studied only represent a proportion of the once living Sadlermiut and Sacred Heart populations, and cannot be assumed to represent these populations in their entirety. This research also avoids any demographic conclusions about these sample groups and thus avoids the issue of non-stationarity. The hidden heterogeneity in risks is also an important consideration for this study as different individuals will inevitably respond differently to sources of stress over their lifetime (Wood *et al.* 1992). Although general population assessments are made by bioarchaeologists, it is important to recognize that each individual has a specific level of vulnerability when it comes to various stress events or the risk of death, which may affect the overall health profile of a population. These variances between individuals can be attributed to environmental causes, genetics, social roles and a variety of other influences (Wood *et al.* 1992). Therefore, assumptions made with regard to population health must consider these various factors at the individual level so as to not categorize the entire population under the risks demonstrated by a few individuals.

Another consideration discussed by Wood *et al.* (1992) is how bioarchaeologists approach the presence of lesions on the skeleton. Lesions are generally the primary focus of health and disease analysis, where multiple lesions are generally associated with worse health. However, this assumption has been challenged by Wood *et al.* who argue that "better health makes for worse skeletons" (1992:356). Because the manifestation of lesions into the hard tissue of bone takes time, the individuals who survived long enough to show skeletal lesions are perhaps more healthy than individuals who succumbed to disease or stress immediately and did not have time to produce skeletal lesions (Wood *et al.* 1992). However, this viewpoint has been challenged by Goodman (1993) who argued that Wood *et al.* (1992) devoted too much attention to lesions as a singular line of evidence to examine health and stress. Goodman suggested "the importance of the use of multiple indicators of stress," such as models that contextualize the skeletal indicators of stress and the development of multiple lines of evidence to examine the cultural contexts

of lesions found on the skeleton (Goodman 1993:283,285). In regards to this argument, this study seeks to examine stress from a growth and development perspective as well as a lesion-based perspective, providing an opportunity to assess multiple lines of evidence and to avoid the limitations outlined above.

### 2.4.2 Longitudinal versus Cross-sectional Studies

In growth and development studies, there are two main methods of data collection: longitudinal and cross-sectional. Discussed in detail by Eveleth and Tanner (1976), longitudinal data represent multiple data points for each individual sampled over an extended period, while cross-sectional data are single data points collected for each individual representing one particular point in time; in an archaeological context this would be the time of death. Longitudinal data collection is the methodology used primarily in living populations over the course of many years to gather specific data on how each individual grows and develops (Eveleth and Tanner 1976). However, a major limitation of this method is the time commitment needed by both the researcher and subject and also the resulting small sample sizes as it is difficult to follow many individuals over multiple years of study; furthermore, it is simply impossible with archaeological data (Eveleth and Tanner 1976).

Cross-sectional data collection is the method used primarily by bioarchaeologists who are working with deceased individuals that can only be observed at one particular point in their lifetime. A benefit of the cross-sectional approach is that the growth curve created represents not just one individual but rather multiple individuals from the deceased population (Hoppa and FitzGerald 1999). This population growth curve can be a benefit when conducting cross-population studies where it is more important to recognize overall population patterns rather than the growth patterns of specific individuals (Eveleth and Tanner 1976; Hoppa and FitzGerald 1999). Despite the benefits of the cross-sectional approach there are limitations, particularly the loss of individual variability as one individual can only provide data for the age at which they died and cannot provide any growth velocity data (Eveleth and Tanner 1976). Because the primary focus of this project is on adult measurements to assess growth disruption during the subadult years of life, the limitations discussed here should not hinder the analysis of subadult stress.

#### **2.5 Conclusions**

The purpose of this chapter was to review the Sadlermiut and Sacred Heart population samples, as well as to provide an overview of bioarchaeological inquiry into growth and development studies. Growth and development studies have provided important information regarding individual, as well as population health. In contrast to the predictable patterns of human growth, it is evident that human adaptability and plasticity can affect how the skeleton fully matures. It is through the examination of deviations from those predictable patterns that bioarchaeologists can study stress in past populations and examine the potential causes for skeletal change such as climate, nutrition or social systems. Multiple methods of stress examination have been employed by bioarchaeologists, although most have been lesion-based approaches. Through the use of body size indicators and their correlation to stress events, this study strives to understand how various skeletal interactions can demonstrate the stress endured by both the Sadlermiut Inuit from the Canadian Arctic and the Sacred Heart Cemetery population from southwestern Ontario.

#### **CHAPTER 3: MATERIALS AND METHODS**

#### **3.1 Introduction**

Two populations were used for this study: the Sadlermiut Inuit of Southampton Island, Nunavut and the Sacred Heart Cemetery population from Ingersoll, Ontario. The data gathered from the Sadlermiut and Sacred Heart samples were collected based upon similar osteological data collection methods described below in section 3.1.1. Important to note here is the terminology that will be used throughout the remainder of this thesis when referring to the Sadlermiut and Sacred Heart individuals. "Sample" will be used when referring to the entire adult population sample of either group including both males and females. "Sub-sample" will be used when referring to one of the four specific adult sub-groupings: Sadlermiut females, Sadlermiut males, Sacred Heart females or Sacred Heart males.

### 3.1.1 Osteological Data Collection Methods

The individuals from the Sadlermiut and Sacred Heart collections were chosen using three main criteria: skeletal preservation, age and sex. Satisfactory skeletal preservation (> 50% complete) was the specific criteria for the cranium, the vertebral column and the long bones. Because this study focuses on the manifestation of stress in the adult skeleton, the criteria of age was fulfilled by selecting as many well preserved adult individuals as possible. Attempts were made to collect as many BSI measurements from both young and old adults when possible. Sub-adult samples were also used as tools to calibrate published growth models; therefore, data from the various sub-adult stages of growth and development were collected to provide a sample of the Sadlermiut and Sacred Heart sub-adult populations. Sex was also an important selection criteria in creating a representative sample of the Sadlermiut and Sacred Heart, by sampling an equal number of males and females. Due to the difficulty of sub-adult sex determination, no attempts were made to equally sample sub-adult males or females; individuals were assessed in this case on preservation and age only. However, attempts were made to determine sex for older adolescent individuals if possible.

### 3.1.2 The Sadlermiut Population Sample

The Sadlermiut skeletal collection is housed at the Canadian Museum of Civilization in Gatineau, Quebec, and is a relatively large skeletal collection that was excavated between 1954 and 1955 by Henry Collins and further in 1959 by William Laughlin (Merbs 1983). The Sadlermiut people represented a distinct Inuit culture that was well-established in the Canadian north pre-contact, yet succumbed to disease during the early part of the twentieth century (Manning 1942; Ross 1977; Merbs 1983). This entire skeletal collection is comprised of approximately 110 individuals, 48 of which were used for this study as shown in Appendix A, Table A-1. Tables 3.1 and 3.2 below illustrate the sex and age distributions of the Sadlermiut sample.

#### Table 3.1

| Sex distribution of the Sudier mildt sumple | Sex | distribution | of the Sadlermiu | t sample |
|---------------------------------------------|-----|--------------|------------------|----------|
|---------------------------------------------|-----|--------------|------------------|----------|

| Age       | Male | Female | Unknown | Total |
|-----------|------|--------|---------|-------|
| Adult     | 16   | 17     | 0       | 33    |
| Sub-adult | 2    | 0      | 13      | 15    |
| Total     | 18   | 17     | 13      | 48    |

#### Table 3.2

| Age       | Male | Female | Unknown | Total |
|-----------|------|--------|---------|-------|
| 0-10 yrs  | 0    | 0      | 8       | 8     |
| 11-20 yrs | 2    | 0      | 5       | 7     |
| 21-30 yrs | 4    | 2      | 0       | 6     |
| 31-40 yrs | 3    | 3      | 0       | 6     |
| 41-50 yrs | 7    | 5      | 0       | 12    |
| 50+ yrs   | 2    | 7      | 0       | 9     |
| Total     | 18   | 17     | 13      | 48    |

## 3.1.3 The Sacred Heart Population Sample

The Sacred Heart population is currently housed at The University of Western Ontario under the supervision of Dr. Michael Spence and Dr. Andrew Nelson. This midnineteenth century Roman Catholic cemetery was excavated during the spring of 2008 under the direction of archaeological consultants D.R. Poulton and Associates Inc. (Poulton 2008). Currently there are no surviving records as to when the original Sacred Heart Cemetery was officially opened for interment or when it was officially closed, although estimates suggest that the cemetery could have been open as early as 1847 and was potentially in use until 1870 (Poulton 2008). This skeletal collection is comprised of 112 individuals, 30 of whom were used in this study: 20 adult and 10 sub-adult individuals as shown in Appendix A, Table A-2. Tables 3.3 and 3.4 below illustrate the sex and age distributions of the Sacred Heart sample.

#### **Table 3.3**

| Age       | Male | Female | Unknown | Total |
|-----------|------|--------|---------|-------|
| Adult     | 10   | 10     | 0       | 20    |
| Sub-adult | 2    | 1      | 7       | 10    |
| Total     | 12   | 11     | 7       | 30    |

# <u>Table 3.4</u>

Age distribution of the Sacred Heart sample

| Age       | Male | Female | Unknown | Total |
|-----------|------|--------|---------|-------|
| 0-10 yrs  | 0    | 0      | 7       | 7     |
| 11-20 yrs | 2    | 1      | 0       | 3     |
| 21-30 yrs | 0    | 2      | 0       | 2     |
| 31-40 yrs | 3    | 2      | 0       | 5     |
| 41-50 yrs | 4    | 2      | 0       | 6     |
| 50+ yrs   | 3    | 4      | 0       | 7     |
| Total     | 12   | 11     | 7       | 30    |

# 3.2 Data Collection

Since the primary purpose of this study was to examine episodes of stress through

the disruption of growth, a series of measurements empirically shown to indicate adult

body size (BSIs) that mature at different ages were collected as shown in Appendix B. Table B-1. The BSI measurements examined in this study were collected from various literature sources that discuss the role of metric observations to make assessments about body size in past populations (Anderson et al. 1977; McHenry 1992; Aiello and Wood 1994; Porter 1999; Ruff 2002; Spocter and Manger 2007). Each measurement was chosen based on its position within the body, as well as the age at which the skeletal element reached maturity. The main goal was to include as many skeletal elements as possible which matured at various ages between birth and 20 years of age. The BSIs chosen for this study were measured following the standards established by Buikstra and Ubelaker in Standards for Data Collection from Human Skeletal Remains (1994). Although body size measurements are not specifically discussed by Buikstra and Ubelaker, metric measurements outlined by Moore-Jansen et al. (1994) were used that establish specific skeletal landmarks in the body that increase the consistency of metric observations. This primary reference material was used for the majority of the measurements taken on the long bones as well as the cranium with more specific BSI measurement criteria taken from other sources of reference. Each measurement, the associated skeletal element, what it indicates and the reference from where the information was attained is listed in Appendix B, Table B-2. In order to permit the assessment of fluctuating asymmetry, both left and right side measurements were taken for all of the long bones as well as the tarsals and metatarsals. Measurements for the crania however, were limited to the left side only as many of the Sadlermiut crania were damaged due to taphonomic processes and excavation damage. In order to remain consistent in measuring techniques, the Sacred Heart cranial material was also assessed on the left side only. All skeletal measurement

data were collected on a standard osteological inventory form as shown in Appendix C,

Tables C-1 and C-2. All raw data pertaining to the BSI measurements collected for the

Sadlermiut and Sacred Heart samples can be found in Appendix D, Tables D-1, D-2, D-3

and D-4.

### **3.3 Metric Observations**

For this study, measurements were taken consistently with one of four types of measuring instruments: osteometric board, fiber-glass coated measuring tape, digital calipers and spreading calipers. Listed below in Table 3.5 is the osteological instrument used to measure each type of skeletal element.

| Tak | le | 3.5 |  |
|-----|----|-----|--|
| -   |    |     |  |

| Osteological | measurement | instruments |
|--------------|-------------|-------------|
|--------------|-------------|-------------|

| Skeletal Element    | Measurement Instrument                                                 |
|---------------------|------------------------------------------------------------------------|
| Cranium             | digital calipers, spreading calipers                                   |
| Vertebrae           | digital calipers                                                       |
| Long Bones          | osteometric board, digital calipers, fiber-glass coated measuring tape |
| Tarsals/Metatarsals | digital calipers                                                       |

All osteological instruments were used in the same way between the Sadlermiut and Sacred Heart population samples and measurements were taken following standard osteological practices.

### **3.3.1 Sex Determination**

Adult sex assignment for this study was based upon both pelvic and cranial characteristics. The pelvic characteristics used to determine sex were the three traits of Phenice (1969): ventral arc, sub-pubic concavity and the ischiopubic ramus ridge. The greater sciatic notch and the preauricular sulcus were also used as traits to determine sex, as outlined by Buikstra and Ubelaker (1994). Supplementary data from five cranial traits were also used to determine sex: the nuchal crest, the mastoid processes, the supra-orbital

margins, the glabella and the mental eminence (Acsadi and Nemeskeri 1970). Each individual was given a score for each trait and determined to be either male or female; however, if sex could not be determined, the individual was regarded as an unknown and omitted from the adult sample of this study.

Sub-adult sex determination was only completed when all three pelvic bones (ilium, ischium and pubis) were fully fused and assessed as being past puberty when pelvic differences become more pronounced between the sexes. This fusion is evident at approximately 15 years for females and 17 years for males (Bogin 2001).

#### **3.3.2 Age Estimation**

Age estimation for all adults in this study was based primarily on the analysis of the pubic symphyses. The Todd (1921) and Suchey-Brooks (1990) methods were both used to estimate age based on the morphological changes of the symphseal faces. Both of these aging methods were used in this study in an attempt to avoid the limitations imposed by each method, specifically the lack of sex differentiation with the Todd method and the large age ranges provided by the Suchey-Brooks method. By using the data collected from both aging methods the best possible age estimation was attained. The auricular surface was also assessed to determine age based on the Lovejoy *et al.* (1985) method. This method was used primarily when individuals could not be assessed using either the Todd or Suchey-Brooks methods. If an instance arose where these three aging techniques of the pelvis did not agree, age estimation was based upon the method where the most criteria were fulfilled as outlined in *Standards for Data Collection from Human Skeletal Remains* (1994).

Cranial observations were also used to help determine age at death, specifically cranial suture closure, a method developed by multiple researchers (Buikstra and Ubelaker 1994). The use of cranial suture closure to determine age at death is not as accurate or reliable as pubic aging techniques due to the variation of when the sutures actually fuse (Masset 1989); therefore, this method only supplemented the pelvic methods discussed above.

Sub-adult age at death estimates for these two population samples were based on dental eruption and epiphyseal fusion in the long bones. Dental eruption examination was completed using the dental sequencing diagram developed by Ubelaker (1989) for American Aboriginal populations. Although this dental sequencing diagram is based on American Aboriginal populations, it is still regarded as an accurate assessment of the dental eruption sequence for other archaeological populations (Ubelaker 1989; Smith 2005). Long bone epiphyseal closure was scored based on the idealized timeframe of growth and development established by Scheuer and Black (2000), and through the scoring system established in *Standards for Data Collection from Human Skeletal Remains* (1994). These two aging techniques were used together whenever possible to determine an accurate age at death estimate for all sub-adults. However, if these two aging techniques did not agree with one another, the dental eruption age estimate was used, as it has been argued that dental eruption is less affected by external stress than bones within the body and can be assumed to show a more accurate reflection of age at death (Hoppa and FitzGerald 1999).

### 3.3.3 Asymmetry Data

Asymmetry data were collected on all of the long bones, tarsals and metatarsals to help assess fluctuating asymmetry as another indicator of stress. These data were collected by measuring both the left and right sides of each BSI located in the arms, legs, tarsals and metacarpals. The measurements taken from the left and right sides were combined in the following equation to provide the percentage of how the left side of the body compared to the right side

$$= \frac{R - L}{R} \times 100$$

R = right side measurement L = left side measurement

This percentage for each measurement was then inserted into SPSS 16.0 to calculate means and Z-scores. If certain variables fell outside of the acceptable Z-score range of 1.0, it was considered to demonstrate that the asymmetry present between the left and right sides differed significantly from the mean and was of interest for this study.

## 3.3.4 Lesion Analysis

Data regarding skeletal lesions that indicate stress were also collected from the two population samples with specific emphasis on enamel hypoplastic lesions (EHL), and Harris lines. These lesion data were collected as supplementary data to aid in the final analysis of childhood stress.

EHL were scored based upon the methods discussed by Goodman *et al.* (1984, 1990) with analysis of all permanent teeth, except the third molars. EHL were only recorded if the lesion bands or pits were visible through the use of a magnifying glass and a desk lamp. If dental wear, damage or calculus obstructed the view of the teeth, EHL were not recorded. If EHL were identified on any teeth (mandibular or maxillary),

measurements from the lesion to the cemento-enamel junction were taken and recorded in accordance to the method proposed by Swardstedt (1966) to determine the EHL age at formation. The measurements taken were then compared to the age at formation growth chart designed by Swardstedt (1966), as seen in Appendix E, Table E-1, to determine an approximate age of when each EHL was formed on the tooth.

Harris lines were assessed through x-ray analysis on all adult tibiae from both the Sadlermiut and Sacred Heart samples. Left and right complete adult tibiae were used and were x-rayed on an anterior posterior and medial lateral planes to increase the visibility of any possible Harris lines. All Sadlermiut x-rays were taken at the Ottawa Civic Hospital with a Siemens MX DR unit with a source to image distance of 100.0cm. Technical factors used on each image were a kVp value of 50, 3.2 mAs and a 0.6 mm focal spot size. These images were produced by a digital imaging software system, Siemens Diamond view #11, which was specifically formatted for the tibia and fibula using the image algorithm that was a combined high contrast extremity algorithm. All Sacred Heart x-rays were taken at The University of Western Ontario on Kodak X-Sight G/RA high contrast diagnostic film with a Faxitron cabinet x-ray system with a source to film distance of 61.0cm. All x-ray settings remained consistent between each individual with a kVp value of 60, 0.2 mAs, a focal spot of 0.5mm and an exposure time of three seconds. The Harris line x-ray films from the Sacred Heart sample were then scanned into a personal computer and analyzed and measured in Adobe Photoshop using the invert and ruler tool functions. Harris lines were only counted if they fulfilled the two criteria outlined by Maat (1984) and Mays (1995): 1) the lesion must cross over the half-way mark on the tibial shaft and 2) the lesion must be visible in both the anterior posterior xray and the medial lateral x-ray. Any Harris lines identified were then measured from the lesion to the distal end of the tibia (see Appendix E, Tables E-2 and E-3) and inserted into the formula below.

T = total length of the mature tibia (including the styloid process)D = the measurement from the Harris line to the distal end of the tibia (Byers 1991)

Once calculated, this formula provided a percentage for each Harris line recorded which was then compared to an age at formation chart for males and females as shown in Appendix E, Table E-4 taken from Byers (1991). Because the source to distance measurements were not consistent between samples this caused different magnification of the bone in each sample (Faxitron = 104.3 magnification and Siemens = 102.6 magnification). To compensate for this problem, all Sacred Heart measurements were reduced by 1.7% to equalize the magnification.

## **3.3.5 Stature Estimates**

Stature estimates were calculated for both the Sadlermiut and Sacred Heart samples to be compared to the final BSI analysis of this project. Because stature estimates are often used in bioarchaeology to assess the health of past populations (Haviland 1967; Nickens 1976; Danforth 1994) these estimates will provide another line of evidence to assess stress impact on both population samples. Following the calculation established by Feldesman *et al.* (1990) maximum femur length was inserted into the formula below for each adult individual providing a stature estimate. This formula was used as it has been shown by Feldesman *et al.* (1990) that this ratio can be applied to multiple populations regardless of ethnicity.

#### Stature (cm) = femur length (cm) x 100 / 26.74

26.74 = mean ratio of femur length to stature across populations (Feldesman *et al.* 1990)

#### **3.4 Data Analysis**

For this research project, two initial analyses were performed: a correlation analysis of cranial measurements from the Howells dataset, and a technical error of measurement (TEM) analysis on the Sadlermiut and Sacred Heart skeletal samples. The Howells dataset and the TEM calculations were primarily used to help validate the goals of this project as well as to verify the accuracy of the metric observations that were collected.

#### 3.4.1 The Howells Dataset

The Howells dataset (1973) is made up of various cranial measurements from different geographic regions, and was investigated in the early stages of this project as a proof of concept that correlations do exist between indicators of body size within the cranium. By using these empirical data to examine these correlations within the body, this project continued forward in an attempt to further establish correlations in the infracranial skeleton. However, because the final BSIs examined in this project did not include multiple cranial measurements (see sections 4.3 and 5.3), the Howells data used in this initial proof of concept study can be found as a separate case study in Appendix F.

## 3.4.2 Technical Error of Measurement (TEM)

Technical error of measurement (TEM) is a re-check method which is an "accuracy index" to examine the quality of measurements taken by one observer (Knapp 1992; Perini *et al.* 2005). This examination is completed by taking re-check measurements of approximately 20 variables and calculating the relative TEM values for each individual, whereby determining whether or not the relative TEM value falls within an acceptable range of intra-observer error (< 1.5%) (Perini et al. 2005). Both relative and absolute TEM values must be calculated in order to assess the intra-observer error. Illustrated in Table 3.6 below are the equations used to calculate absolute TEM and relative TEM.

#### Table 3.6 Test of error measurement (TEM) calculations

| Calculation  | Equation                                        |
|--------------|-------------------------------------------------|
| Absolute TEM | $\sqrt{\sum \frac{\mathrm{di}^2}{2\mathrm{n}}}$ |
| Relative TEM | <u>TEM</u> x 100<br>VAV                         |

 $\sum d^2$  = summations of deviations raised to the second power  $\overline{n}$  = total number of variables i = the number of deviations TEM = technical error of measurement expressed in % VAV = variable average value (Perini et al. 2005)

For this project, TEM calculations were completed for 10 random adult

individuals (five males and five females) and five random sub-adults individuals from

both the Sadlermiut and Scared Heart samples. Below in Tables 3.7 and 3.8 are the

results of the TEM calculations for both groups.

### Table 3.7

| Skeleton # | Sex | Adult/Sub-<br>adult | Absolute<br>TEM | Relative<br>TEM (%) | Acceptable? | Comments |
|------------|-----|---------------------|-----------------|---------------------|-------------|----------|
| XIV-C:112  | F   | Adult               | 0.87            | 1.21                | YES         |          |
| XIV-C:149  | F   | Adult               | 0.71            | 1.12                | YES         |          |
| XIV-C:192  | F   | Adult               | 0.70            | 1.05                | YES         |          |
| XIV-C:219  | F   | Adult               | 0.61            | 0.89                | YES         |          |
| XIV-C:104  | F   | Adult               | 2.72            | 4.11                | NO          |          |
| XIV-C:126  | M   | Adult               | 0.92            | 1.37                | YES         |          |
| XIV-C:156  | M   | Adult               | 2.52            | 3.52                | NO          |          |
| XIV-C:157  | M   | Adult               | 0.59            | 0.86                | YES         |          |
| XIV-C:216  | M   | Adult               | 0.93            | 1.29                | YES         |          |
| XIV-C:117  | Μ   | Adult               | 1.11            | 1.56                | NO          |          |
| XIV-C:158  | ?M  | Sub-adult           | 0.64            | 1.01                | YES         |          |

#### Table 3.7 continued

| XIV-C:146 | M | Sub-adult | 0.99 | 1.47 | YES |      |
|-----------|---|-----------|------|------|-----|------|
| XIV-C:193 | M | Sub-adult | 1.83 | 2.67 | NO  |      |
| XIV-C:220 | ? | Sub-adult | 0.66 | 1.14 | YES | N=16 |
| XIV-C:76  | ? | Sub-adult | 1.09 | 1.73 | NO  | N=10 |

Range of acceptability for Relative TEM < 1.5 %

(XIV-C:220 and 76 have a reduced N-value due to missing skeletal elements)

# <u>Table 3.8</u>

### Sacred Heart TEM calculations

|            |     | Adult/Sub- | Absolute | Relative |             |              |
|------------|-----|------------|----------|----------|-------------|--------------|
| Skeleton # | Sex | adult      | TEM      | TEM (%)  | Acceptable? | Comments     |
| 120        | F   | Adult      | 0.75     | 1.05     | YES         | N=19         |
| 5          | F   | Adult      | 0.92     | 1.54     | NO          | N=19         |
| 124B       | F   | Adult      | 0.58     | 1.03     | YES         | N=19         |
| 71         | F   | Adult      | 0.66     | 0.97     | YES         |              |
| 24         | F   | Adult      | 0.62     | 0.97     | YES         | N=19         |
| 33         | M   | Adult      | 0.55     | 0.75     | YES         | N=19         |
| 145        | M   | Adult      | 0.69     | 0.99     | YES         |              |
| 30         | M   | Adult      | 0.43     | 0.56     | YES         |              |
| 64         | M   | Adult      | 0.92     | 1.24     | YES         |              |
| 83         | M   | Adult      | 0.68     | 0.94     | YES         |              |
| 63         | M   | Sub-adult  | 0.39     | 0.69     | YES         | N=19         |
| 90         | F   | Sub-adult  | 0.65     | 1.01     | YES         |              |
| 66A        | ?   | Sub-adult  | 0.72     | 1.76     | NO          | <u>N</u> =6  |
| 12         | ?   | Sub-adult  | 0.54     | 0.87     | YES         | <u>N=</u> 17 |
| 67         | ?   | Sub-adult  | 0.43     | 0.92     | YES         | N=13         |

Range of acceptability for Relative TEM < 1.5%

(Skeleton #s 120, 5, 124B, 24, 33, 63, 66A, 12 and 67 have reduced N-values due to missing skeletal elements)

As shown above, the majority of these TEM calculations demonstrated that measurements taken for this study fell within the acceptable range. However, in the cases where this acceptability was not achieved, possible sources of error may include: difficulty in identifying specific skeletal landmarks where measurements were taken, the time of day the measurements were taken, or post-mortem damage to the remains. Rather than reduce the total number of individuals analyzed and therefore, the number of possible comparisons in this study, no individuals were omitted; however, results using the individuals who did not meet the TEM standards will be examined carefully with regard to these particular measurements.

### 3.4.3 Correlation of Sadlermiut and Sacred Heart BSI Measurements

Statistical correlation is defined as a measure of the linear relationship between two variables which either demonstrates a strong relationship or a loosely associated relationship depending upon how the variables interact with one another (Banning 2000). The purpose of determining correlation among BSIs for this project was to identify specific, highly correlated measurements that would provide the best possible suite of BSIs to examine childhood stress episodes. Also, because this project hopes to address stress differences between females and males, sex specific correlation matrices were calculated for both the Sadlermiut and Sacred Heart samples to determine if similar BSIs were correlated within the male and female sub-samples. BSI measurements were first divided into skeletal element and compared to one another (cranial, vertebral, arms, legs and tarsals/metacarpals). In order to determine which BSIs were the most highly correlated within each skeletal element grouping, only BSIs that were correlated at the 0.05 or 0.01 level of significance to at least two other BSI measurements were considered for the final BSI list.

After this preliminary correlation analysis, the BSIs that were selected from each skeletal element grouping were compared by sex and population to determine the best overall BSIs (that is, showed strong correlation to most other BSIs) that equally represented both population samples. When possible, redundant BSI measurements were removed from the study (i.e. midshaft circumference vs. minimum midshaft circumference). In instances such as this, to decide which BSI should be removed, results from the preliminary skeletal element correlation analysis were used and the BSI showing the best correlation to other measurements was kept in this study while the other, less strongly correlated measurement was omitted. To reduce the BSI measurement list further, anterior posterior and medial lateral measurements of limb bones were used to calculate the cross-sectional area of the bone. Because many of these skeletal elements were not rectangular in nature, the area of an ellipsis was calculated using the following formula:

$$A = \Pi/4(L \times W)$$

A = area of ellipsis  $\Pi = 3.14$ L = length W = width (Nelson 1995)

Once the final BSI list was compiled for both males and females, a final correlation analysis was done to ensure that all BSI measurements chosen were correlated to one another, and also that the measurements chosen matured at various times during the growth and development period.

#### 3.4.4 r-values and Significant Association

After correlation analysis was complete and the most highly correlated BSIs were established, each BSI was then put into a chronological pairing based upon the maturation timing of each BSI (V1:V2, V1:V3, V1:V4...). After this chronological variable pairing, r-values were then calculated to determine the significant association between each BSI measurement in a pairing and how much of the variability in the sample could be explained through the line of best fit (Sokal and Rohlf 1981). The rvalue was an important tool for this project as it explained the probability of these correlations happening by chance alone through a measure of interdependence. The rsquared value, also known as the coefficient of determination, determined the variation of Y explained by X and whether X could significantly explain the pattern of Y (Sokal and Rohlf 1981). The underlying assumption here was that if these individual BSIs are highly correlated to body size, then they should also be highly correlated with each other.

To determine the r-values, each sample was divided by sex and tested separately through the SPSS 16.0 regression function. r-values and r-squared values were both recorded, as well as the t-test significance value to determine if the slope of the linear relationship was significantly different from zero. If the t-test significance value fell below 0.05, then the null hypothesis ( $H_0 =$  no relationship exists between BSI X and BSI Y) was rejected suggesting that there was a true relationship between the two BSIs being tested. However, if the significance value was above 0.050, then the null hypothesis was accepted demonstrating that no true relationship existed between the two BSIs. All tests of correlation between variable pairs in which the null hypothesis was rejected were then used in the final regression analysis of this project to determine episodes of stress and the timing of that specific stress.

# 3.4.5 Examination of Individual Departures from Underlying Trends

The examination of individual departures from underlying trends was undertaken using regression analysis. Much like correlation, regression analysis examines the relationship between variables; however, while correlation establishes the strength of a relationship, regression analysis determines the nature of that relationship (Shennan 1997). The nature of the BSIs and how they interact with one another becomes an important consideration for this study in the establishment of a new methodology, and can be used to identify individuals who depart from the expected relationships among different BSIs. In order for a new methodology to be developed using BSIs, the interconnected nature of the skeleton must be well-established to help better understand the effects of stress. As discussed by Shennan (1997), the use of statistics in archaeology allows researchers to empirically observe patterns in past populations rather than just assuming that these patterns exist (Shennan 1997), which is paramount for this research project.

For this analysis, regression analysis was completed for each adult sample further divided by sex, as it is well documented that males and females grow and develop at different rates (Frayer and Wolpoff 1985; Bogin 2001). Though the use of SPSS 16.0, BSI measurements were examined in successive chronological pairs with the younger maturing BSI always positioned on the X-axis and the later maturing BSI positioned on the Y-axis. 95% confidence intervals were also calculated during regression analysis to demonstrate the pattern of dispersal for the majority of individuals to use as a landmark for the determination of departures from the underlying trend. By examining the BSIs in successive chronological pairs it was possible to determine when individuals initially fell outside the confidence intervals and when they returned to the predicted trajectory of their sub-sample. By manipulating the regression output calculated by SPSS, the data for each individual were then arranged into a regression summary to identify the specific periods when individuals had negative residuals (below the confidence interval) and positive residuals (above the confidence interval) and the severity of these fluctuations. It was expected that this summary would illustrate a clear timeline of growth disruption or acceleration that could be used to examine periods of stress; unfortunately, this clarity was not achieved. In an attempt to compensate for this lack of clarity these regression summaries were again re-arranged into growth fluctuation pattern maps for each individual.

#### 3.4.6 Growth Fluctuation Pattern Maps and Expectations

In order to assess the patterns of growth disruption and growth acceleration pattern maps were used to pinpoint significant growth fluctuations. These patterns maps provided a visual representation of the growth fluctuation occurring in each individual and the timeline of when these growth fluctuations began and finished. To calculate the age ranges of these growth fluctuations, specific focus was placed upon the Y variable. The Y variable in all BSI pairings was the later maturing variable; therefore, while the Y variable still had the capacity to fluctuate above or below the confidence intervals, the X variable would have already achieved its final adult outcome and no longer had the capacity to grow. Therefore, the X variable provided the lower limit of the age range while the Y variable provided the upper limit of this age range. Because growth fluctuation may occur naturally within the skeleton as an individual grows and develops, the identification of significant fluctuations was achieved through an examination of the overlapping age ranges of negative and positive residuals in each individual. This examination of overlapping fluctuation patterns demonstrated significant periods of disruption and acceleration. Therefore, by examining the patterns of when the age ranges from multiple BSIs pairs overlapped, the timeframe of when growth disruption and acceleration most commonly occurred in each individual was narrowed down.

With regards to normal growth fluctuations it was assumed that isolated growth disruption or acceleration periods departing from the sub-sample trends were mere "noise" and did not directly contribute to the establishment of an accurate timeline of disruption or acceleration. Because the age ranges between each BSI pair could be quite large depending on when the Y variable reached maturation, this fluctuation "noise" was

inevitably created. However, once these age ranges of disruption and acceleration were narrowed down by analyzing the overlapping age ranges of BSI pairs this "noise" was diminished and presumably did not affect the overall growth fluctuation patterns of this study.

#### 3.4.7 Skeletal Sequencing and Growth Curves

It is well established in bioarchaeology that no two populations grow and develop in exactly the same manner (Eveleth and Tanner 1976; Hoppa and FitzGerald 1999; Bogin 2001). These differences in growth and development can be attributed to many different factors such as sex, genetics, nutrition, climate and status; therefore, the creation of a universal growth curve for all skeletal elements is virtually impossible (Eveleth and Tanner 1976; Hoppa and FitzGerald 1999; Bogin 2001). Because populations can be stressed by various factors, the age at which adult maturation occurs for specific skeletal elements will change between populations; however, the sequencing of when these elements reach maturation should remain the same (Humphrey 1998). The reason behind this universal sequencing pattern is the mechanism of how bones initially form. It has been suggested that the bones of the human body form in response to the overlying soft tissues, and because certain soft tissues must mature before others, it can be assumed that the underlying skeletal structure should also mature in a predictable way (Rosenfield 1996; Humphrey 1998; Scheuer and Black 2000).

For this study, skeletal sequencing becomes an important consideration for the establishment of idealized growth curves, as the timing of this sequencing within cold climate populations and temperate climate populations will allow for the refinement of the age range of when stress occurred. To create these idealized growth curves, a standard

timeframe of skeletal growth maturation was compiled using Scheuer and Black (2000). This standard, as seen in Appendix J, Table J-3, is an idealized prediction of how all humankind should grow and develop. The sub-adult data collected from both the Sadlermiut and Sacred Heart samples were tested against this idealized prediction of growth and development to demonstrate how these specific populations grew in comparison to the ideal. By plotting the various sub-adult BSI measurement data, a proportional growth curve of each sample emerged demonstrating when each BSI reached adult maturity. To establish this proportionate scale, a sample-specific average was calculated from all adult measurements of each BSI to determine the 100% mark to which all other measurements would be compared (cf. Thompson and Nelson 2000). All sub-adult measurements were then converted into a percentage and compared to the adult average to determine the age of maturation for each BSI in both population samples. This population specific growth curve could then be compared back to the idealized patterns outlined by Scheuer and Black (2000) to determine the differences in the age at maturation of each BSI measurement. The importance of this sample calibration was to provide an accurate age estimation of when stress affected the skeleton; by incorporating both sample specific and idealized data.

The argument can be made that these idealized growth curves are created based upon healthy standards, and therefore using deceased sub-adults as calibration tools would not reflect the patterns of healthy children, even in ancient populations. With regards to the Sadlermiut and Sacred Heart samples, all steps were taken to examine subadult remains that lacked any outward signs of pathological lesions in an attempt to create the best possible sample specific growth curve. However, it is recognized that these children may have been exposed to stress that did not have adequate time to manifest within the skeleton before the time of death, as discussed in Chapter 2, section 2.4.1.

#### CHAPTER 4: RESULTS

### 4.1 Introduction

The purpose of this chapter is to outline the results of this project, with specific emphasis on the similarities and differences between the Sadlermiut and Sacred Heart population samples. Beginning with an overview of the correlation and regression analyses, followed by a discussion of the supplementary lesion and growth and development data, this chapter will provide the information needed to further discuss and explore stress within these two population samples.

#### 4.2 Proof of Concept: The Howells Dataset

Correlation analysis was used for this study after the initial establishment of correlation and proof of concept among BSIs within the cranium using the Howells dataset. As discussed in Appendix F, Tables F-1, F-2 and F-3, the examination of the Buriat Siberian sample, the Inugsuk Greenland sample and the Early Arikara South Dakota sample all demonstrated significant correlations between the six cranial BSIs chosen from the body size literature (maximum cranial length, upper facial height, maximum orbital height, maximum orbital breadth, biorbital breadth and foramen magnum length). These significant correlations were important to establish first, that relationships between BSIs existed and second, that they were consistent between populations. From this initial analysis it was evident that significant correlations did exist between specific BSIs; however, the BSIs that did show correlation did not seem to be consistent across these samples. While most of the cranial variables in these three sample groups were correlated in a similar way, there was some variability in the correlation results. All three population samples were however, analyzed with both sexes combined

which may explain why some correlations were not as strong between certain BSIs. Overall the use of the Howells dataset provided the necessary data to establish that correlation patterns among BSIs within the cranium do exist so that further investigation into the infra-cranial skeleton could be undertaken.

### 4.3 Sadlermiut and Sacred Heart Correlations

From this initial proof of concept, the Sadlermiut and Sacred Heart adult BSI measurements were then inserted into correlation matrices that were divided first by population sample and then by sex, in an attempt to create cohesive sub-samples for analysis. These sub-samples were then divided by skeletal element as shown in Appendix G, Tables G-1 to G-20. Through these complete matrices, certain BSIs were shown to have significant correlations while others did not; therefore, the significantly correlated BSIs that were correlated to at least two other BSIs were chosen from each skeletal grouping and were analyzed in a final correlation matrix seen in Appendix G, Tables G-21 and G-22. The final list of these BSIs measurements is shown below in Table 4.1.

<u>Table 4.1</u> Sadlermiut and Sacred Heart adult BSI measurements chosen after final correlation filtering

| FEMALES                             | MALES                                                   |
|-------------------------------------|---------------------------------------------------------|
| 3. Upper facial breadth             | 3. Upper facial breadth                                 |
| 4. Biorbital breadth                | 20/21. C7 superior surface area                         |
| 11. Maximum cranial height          | 22/23. T12 superior surface area                        |
| 12/13. Foramen magnum area          | 24/25. L1 superior surface area                         |
| 14. Interorbital breadth            | 26/27. L5 superior surface area                         |
| 17. Maximum breadth of the mandible | 28. Sacrum anteroposterior diameter of superior surface |
| 24/25. L1 superior surface area     | 32. Bi-iliac breadth                                    |
| 26/27. L5 superior surface area     | 34. Midshaft circumference                              |
| 28/29. Sacrum superior surface area | 37. Distal joint breadth                                |
| 33. Maximum humerus length          | 39. Capitual height                                     |
| 34. Midshaft circumference          | 40. Maximum ulna length                                 |
| 37. Distal joint breadth            | 42. Transverse diameter of radius head                  |

### Table 4.1 continued

| 38. Anteroposterior diameter of head       | 44. Maximum superior/inferior diameter of head |
|--------------------------------------------|------------------------------------------------|
| 39. Capitual height                        | 45. Femur head breadth                         |
| 40. Maximum ulna length                    | 48. Biepicondylar diameter of distal femur     |
| 41. Maximum radius length                  | 50. Maximum femur length                       |
| 44. Maximum superior/inferior diameter of  |                                                |
| head                                       | 52. Midshaft width                             |
| 45. Femur head breadth                     | 53. Maximum tibia length                       |
| 48. Biepicondylar diameter of distal femur | 55. Proximal tibia breadth                     |
| 50. Maximum femur length                   | 56/57. Talar facet area                        |
| 51. Midshaft circumference                 | 58. Anteroposterior diameter of proximal tibia |
| 53. Maximum tibia length                   | 59. Tibia midshaft width                       |
| 57. Transverse diameter of talar facet     | 60. Maximum fibula length                      |
| 59. Tibia midshaft width                   | 62. Patella maximum breadth                    |
| 60. Maximum fibula length                  | 64. Maximum length of calcaneus                |
| 64. Maximum length of calcaneus            | 65. Posterior length of calcaneus              |
| 66. Maximum length of talus                | 68. Articulated height of calcaneus/talus      |
| TOTAL BSIs = 27                            | TOTAL BSIs = 27                                |

It becomes clear from this final BSI list, that males and females demonstrated different patterns of significant correlations among these BSI measurements. Females showed far more correlation among cranial variables, while males demonstrated more correlation within the vertebral column. Males also demonstrated higher BSI correlations within the foot bones. It is important to note that these trends in sex differences appeared to be consistent across both population samples.

### 4.4 r-values and Significant Association

Once the final set of 27 BSIs was culled from the original dataset, these variables were re-numbered into their chronological maturation order (Appendix H, Tables H-1 and H-2) facilitating further exploration into variable correlation via r and r-squared values shown in Appendix H, Tables H-3, H-4, H-5 and H-6. By calculating the r and rsquared values for each of the BSI pairs, the null hypothesis ( $H_0$  = no relationship exists between BSI X and BSI Y) was either accepted or rejected. Below Table 4.2 illustrates the percentage of variable pairs for each population that demonstrated significant association. These variable pairs from each sub-sample were then further manipulated through regression analysis.

## <u>Table 4.2</u> Sadlermiut and Sacred Heart variable pairs demonstrating significant association (%)

|              | Females | Males |
|--------------|---------|-------|
| Sadlermiut   | 47      | 40    |
| Sacred Heart | 38      | 39    |

The Sadlermiut sub-sample, in general, showed a larger number of variable pairs that demonstrated significant association, with the Sadlermiut females demonstrating more significantly associated variable pairs than the males. While the preliminary correlation matrices demonstrated that females and males do not necessarily show the same correlation patterns in all skeletal elements, the final variables pairs in each sub-sample demonstrating significant association diminished these differences allowing for similar BSIs to be compared in both sexes.

### 4.5 Growth Curve Data

The importance of establishing a population specific growth curve was to aid in the overall designation of the age at which a stress event would have occurred by examining whether the sample specific growth curves were similar to the idealized Scheuer and Black model. To create these sample specific growth curves, data were collected on sub-adults from each sample to calibrate the idealized growth curve as show below in Tables 4.3 and 4.4.

**Table 4.3** 

| Sadlermiut and | Sacred Heart | female sub-adult | calibration | summary |
|----------------|--------------|------------------|-------------|---------|
|                |              |                  |             |         |

|                             | А                 | Age at Maturation (years) |                             |  |  |  |  |  |  |  |  |  |
|-----------------------------|-------------------|---------------------------|-----------------------------|--|--|--|--|--|--|--|--|--|
| Body Size Indicators        | Scheuer and Black | Sadlermiut<br>Calibration | Sacred Heart<br>Calibration |  |  |  |  |  |  |  |  |  |
| 3. Upper facial breadth     | 3.0               | 8.0                       | 19.0                        |  |  |  |  |  |  |  |  |  |
| 4. Biorbital breadth        | 3.0               | 8.0                       | 19.0                        |  |  |  |  |  |  |  |  |  |
| 66. Maximum length of talus | 9.0               | 10.5                      | 19.0                        |  |  |  |  |  |  |  |  |  |

### Table 4.3 continued

| Table 4.5 continued                    |      |      |      |
|----------------------------------------|------|------|------|
| 28/29. Sacrum superior surface area    | 10.0 | 17.5 | 19.0 |
| 37. Humerus distal joint breadth       | 11.0 | 17.5 | 19.0 |
| 39. Humerus capitual height            | 11.0 | 17.5 | 19.0 |
| 33. Maximum humerus length             | 11.5 | 17.5 | 19.0 |
| 34. Humerus midshaft                   |      |      |      |
| circumference                          | 12.0 | 17.5 | 19.0 |
| 59. Tibia midshaft width               | 12.0 | 10.0 | 19.0 |
| 51. Femur midshaft circumference       | 12.0 | 10.0 | 19.0 |
| 11. Maximum cranial height             | 13.0 | 8.0  | 9.0  |
| 14. Interorbital breadth               | 13.0 | 10.0 | 9.0  |
| 17. Maximum breath of the              |      |      |      |
| mandible                               | 13.0 | 10.5 | 19.0 |
| 12/13. Foramen magnum area             | 13.5 | 10.5 | 9.0  |
| 44. Femur max. superior/inferior       |      |      |      |
| diameter of head                       | 14.0 | 10.5 | 19.0 |
| 45. Femur head breadth                 | 14.0 | 10.5 | 19.0 |
| 50. Maximum femur length               | 14.0 | 10.5 | 19.0 |
| 60. Maximum fibula length              | 14.0 | 17.5 | 19.0 |
| 38. Humerus anteroposterior            |      |      |      |
| diameter of head                       | 15.0 | 17.5 | 19.0 |
| 53. Maximum tibia length               | 15.0 | 10.5 | 19.0 |
| 57. Tibia transverse diameter of talar |      |      |      |
| facet                                  | 15.0 | 10.5 | 9.0  |
| 41. Maximum radius length              | 15.0 | 17.5 | 19.0 |
| 64. Maximum length of calcaneus        | 15.5 | 17.5 | 9.0  |
| 40. Maximum ulna length                | 16.0 | 17.5 | 9.0  |
| 48. Biepicondylar diameter of distal   |      |      |      |
| femur                                  | 16.0 | 10.0 | 19.0 |
| 24/25. L1 superior surface area        | 20.0 | 17.5 | 19.0 |
| 26/27. L5 superior surface area        | 20.0 | 17.5 | 9.0  |

# Table 4.4 Sadlermiut and Sacred Heart males sub-adult calibration summary

|                                                   | A                 | ge at Maturation (yea     | nrs)                        |  |  |  |
|---------------------------------------------------|-------------------|---------------------------|-----------------------------|--|--|--|
| Body Size Indicators                              | Scheuer and Black | Sadlermiut<br>Calibration | Sacred Heart<br>Calibration |  |  |  |
| 3. Upper facial breadth                           | 3.0               | 19.5                      | 19.0                        |  |  |  |
| 20/21. C7 superior surface area                   | 4.5               | 18.5                      | 15.5                        |  |  |  |
| 28. Sacrum anterior height of first segment       | 10.0              | 19.5                      | 15.5                        |  |  |  |
| 34. Humerus midshaft circumference                | 12.0              | 18.5                      | 15.5                        |  |  |  |
| 52. Femur midshaft width                          | 12.0              | 19.5                      | 15.5                        |  |  |  |
| 59. Tibia midshaft width                          | 12.0              | 18.5                      | 15.5                        |  |  |  |
| 37. Humerus distal joint breadth                  | 13.5              | 19.5                      | 15.5                        |  |  |  |
| 39. Humerus capitual height                       | 13.5              | 18.5                      | 19.0                        |  |  |  |
| 62. Patella maximum breadth                       | 16.0              | 19.5                      | 19.0                        |  |  |  |
| 42. Transverse diameter of radius head            | 16.5              | 18.5                      | 15.5                        |  |  |  |
| 56/57. Talar facet area                           | 16.5              | 18.5                      | 19.0                        |  |  |  |
| 60. Maximum fibula length                         | 17.0              | 18.5                      | 19.0                        |  |  |  |
| 44. Femur max. superior/inferior diameter of head | 17.5              | 18.5                      | 19.0                        |  |  |  |
| 45. Femur head breadth                            | 17.5              | 19.5                      | 15.5                        |  |  |  |
| 48. Biepicondylar diameter of distal femur        | 17.5              | 18.5                      | 15.5                        |  |  |  |

### Table 4.4 continued

| 50. Maximum femur length                       | 17.5 | 18.5 | 19.0    |
|------------------------------------------------|------|------|---------|
| 53. Maximum tibia length                       | 18.4 | 19.5 | 19.0    |
| 55. Proximal tibia breadth                     | 18.4 | 18.5 | 15.5    |
| 58. Anteroposterior diameter of proximal tibia | 18.4 | 18.5 | 15.5    |
| 40. Maximum ulna length                        | 18.5 | 19.5 | 15.5    |
| 64. Maximum length of calcaneus                | 19.0 | 19.5 | 19.0    |
| 65. Posterior length of calcaneus              | 19.0 | 19.5 | 19.0    |
| 68. Articulated height of calcaneus/talus      | 19.0 | 18.5 | 15.5    |
| 22/23. T12 superior surface area               | 20.0 | 19.5 | 19.0    |
| 24/25. L1 superior surface area                | 20.0 | 19.5 | 19.0    |
| 26/27. L5 superior surface area                | 20.0 | 18.5 | 19.0    |
| 32. Bi-iliac breadth                           | 21.5 | 17.5 | no data |

\* no data refers to when no sub-adult data was available for that BSI

Because many of the sub-adult individuals did not reach the 100% mark of adult size, the highest percentage of adult growth attained was accepted as the best possible representation of adult size. The age at which this highest percentage of adult size was achieved was then recorded as the age of adult maturation as shown in Appendix J, Tables J-4, J-5, J-6 and J-7. From the data collected, the Sadlermiut female BSIs consistently matured earlier than the Sacred Heart female BSIs but in the male subsamples both groups showed similar BSI maturation ages. Unfortunately, due to missing data and the small sample size of sub-adult individuals, there were many gaps within these population growth curves, particularly the Sacred Heart females. Without an equal representation of individuals at all stages of growth and development the creation of these growth curves were limited to data pertaining only to older sub-adult individuals. Therefore, it appeared that all BSIs matured at a later age than predicted in the idealized growth curve, as there were not enough data from younger individuals to accurately assess the age of adult maturation. Also, because sub-adult individuals cannot be sexed accurately this may also have biased the results in terms of defining the age of maturation, as females consistently mature earlier than males. Although consistencies between the idealized growth curve and the sample specific growth curves did exist, there were too many gaps to avoid the use of the idealized growth curve. Therefore, the idealized growth curve was accepted as the best possible representation of normal growth sequencing in these two samples and the sample specific data was largely avoided due to significant gaps in the dataset.

### 4.6 Examination of Individual Departures from Underlying Trends

Regression analysis was used for this study to assess stress in each population sample as well as in each individual to examine the departures from the underlying trends. By analyzing the specific timing of when individuals fell outside the confidence intervals of the rest of their sub-group, the age range in which a stress event occurred was determined. Through a further examination of the BSIs affected by stress within each of these sub-sample groups, further insight into the potential causes of stress was gained. In order to manipulate each of these variables through regression analysis as simply as possible, each BSI was assigned a number according to its chronological maturation and paired in sequential order to all other BSIs (V1:V2, V1:V3, V1:V4...). Appendix I, Figures I-1, I-2, I-3 and I-4 illustrate the original regression analyses of all variable pairs in each sub-sample. Appendix K, Tables K-1, K-2, K-3 and K-4 provide the regression summary data of these analyses by documenting the individuals who fell above (+) or below (-) the confidence intervals in each variable pairing. Through the combination of these two data sources described, a final growth fluctuation pattern map was created for each individual to illustrate the specific age ranges of growth disruption and growth acceleration, as shown in Appendix K, Tables K-5, K-6, K-7 and K-8. These growth fluctuations are briefly summarized for each individual in Appendix K (K-9). Below is an example of how these growth fluctuations were interpreted, with specific emphasis on the patterns of growth disruption and growth acceleration.

### 4.6.1 Growth Fluctuation Pattern Map Interpretation

This section will focus on how the growth fluctuation pattern maps were interpreted for each adult individual to determine periods of growth disruption, growth acceleration and periods of normal fluctuation (noise), as outlined previously in Chapter 3, section 3.4.6. Individual XIV-C:155 (see Table 4.5) will be used as an example from the Sadlermiut female sub-sample to describe the interpretation of these growth fluctuation pattern maps.

### XIV-C:155

XIV-C:155 showed growth acceleration during the early years of childhood, with the Y variable of these first four pairings maturing at various ages. Three of these four maturation ages were over 10 years of age, establishing a large age range of growth acceleration. As discussed in section 3.4.6, although the Y variable, compared to the earlier maturing X variable, may produce a large age range of acceleration this needs to be further narrowed by examining the overlapping patterns of different variable pairings to one another. From the data collected on these first four variable pairings, acceleration appeared to have occurred between three and 20 years of age. However, this age range was too broad to accurately identify the specific period of acceleration. Following this period of early growth acceleration was a more clearly defined period of growth disruption between the ages of 11 and 15 years. This age range of growth disruption was established by examining when the disruption patterns of each variable pair most frequently overlapped. Although some of the variable pairs showed disruption beginning before 11 years (established from the X BSI) and continued after 15 years (established from the Y BSI), the most common period for all of these pairings to overlap was between 11 and 15 years. The main variables that were affected by this disruption were the maximum femur length, fibula length and the humeral head. During this period of growth disruption, there was also evidence of growth acceleration in V8, V9, V11, V16, V18 and V23 (humerus midshaft circumference, tibia midshaft width, maximum cranial height, femur head breadth, maximum fibula length and maximum calcaneus length) between the ages of 12 and 15 years. The determination of whether growth disruption or acceleration was significant and not merely extra "noise" was made if: 1) multiple variable pairings demonstrated a similar age range of confidence interval deviation, or 2) the same Y variable showed similar fluctuations in multiple variable pairings. Interestingly, XIV-C:155 showed both types of significant deviation. During her growth acceleration period between 12 and 15 years multiple variable pairs showed a similar time frame of stress with the different Y variables reaching maturity at a similar time, while her final acceleration period that occurred between 15 and 20 years was characterized by the same two Y variables (V26 and V27) being affected in multiple pairings. Overall, it became clear that XIV-C:155 had multiple growth fluctuations during her growth and development period. Although she did experience early childhood acceleration before 10 years of age, when comparing that early data with the acceleration data between 12 and 15 years, it was clear that this early childhood fluctuation was merely "noise." This early period of acceleration did not have significant overlap in the early years of growth but did fall into the overlapping pattern of the second acceleration

period between 12 and 15 years. Therefore, this individual exhibited, early childhood "noise" followed by a period of disruption between 11 and 15 years with corresponding acceleration between 12 and 15 years concluding with a final period of acceleration between 15 and 20 years. It was possible to distinguish these two separate periods of acceleration in this individual as the Y variables of these overlapping pairings showed two distinct stop periods at 15 and 20 years of age. XIV-C:155 was an individual who demonstrated considerable fluctuation above and below the 95% confidence interval for the Sadlermiut female sub-sample. As a result of this continuous fluctuation during the years of growth and development, it was not surprising that her overall stature was short when compared to the rest of the Sadlermiut female sub-sample. While the average stature estimate for the Sadlermiut females was 151.86cm, the stature estimate for XIV-C:155 was 150.00cm, suggesting that perhaps continual growth disturbance and acceleration during her maturation may have affected her overall achieved stature.

| Age    | 3 | 4 | 5 | 6 | 7 | 8       | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
|--------|---|---|---|---|---|---------|---|----|----|----|----|----|----|----|----|----|----|----|
| V1:V2  | + |   |   |   |   |         |   |    |    |    |    |    |    |    |    |    |    |    |
| V1:V4  | + | + | + | + | + | +       | + | +  |    |    |    |    |    |    |    |    |    |    |
| V1:V11 | + | + | + | + | + | +       | + | +  | +  | +  | +  |    |    |    |    |    |    |    |
| V2:V26 | + | + | + | + | + | +       | + | +  | +  | +  | +  | +  | +  | +  | +  | +  | +  | +  |
| V3:V7  |   |   |   |   |   |         | - | -  | -  |    |    |    |    |    |    |    |    |    |
| V3:V8  |   |   |   |   |   |         | + | +  | +  | +  |    |    |    |    |    |    |    |    |
| V3:V15 |   |   |   |   |   |         | - | -  | -  | -  | -  |    |    |    |    |    |    |    |
| V3:V17 |   |   |   |   |   |         | - | -  | -  | -  | -  | -  |    |    |    |    |    |    |
| V3:V18 |   |   |   |   |   |         | - | -  | -  | -  | -  | -  |    |    |    |    |    |    |
| V3:V19 |   |   |   |   |   |         | - | -  | -  | -  | -  | -  | -  |    |    |    |    |    |
| V3:V20 |   |   |   |   |   |         | - | -  | -  | -  | -  | -  | -  |    |    |    |    |    |
| V3:V22 |   |   |   |   |   |         | - | -  | -  | -  | -  | -  | -  |    |    |    |    |    |
| V3:V24 |   |   |   |   |   |         | - | -  | -  | -  | -  | -  | -  | -  |    |    |    |    |
| V4:V6  |   |   |   |   |   |         |   | +  | +  |    |    |    |    |    |    |    |    |    |
| V4:V7  | T |   |   |   |   |         |   | -  | -  |    |    |    |    |    |    |    |    |    |
| V4:V8  |   |   |   | [ |   |         |   | +  | +  | +  |    |    |    |    |    |    |    |    |
| V4:V9  |   |   |   |   | [ |         |   | +  | +  | +  |    | 1  |    | 1  |    |    |    |    |
| V4:V11 |   |   |   | [ |   | · · · · |   | +  | +  | +  | +  |    |    |    |    |    |    |    |

| <u>Table 4.5</u> |             |         |     |
|------------------|-------------|---------|-----|
| XIV-C:155 growth | fluctuation | pattern | map |

| Age              | 3            | 4            | 5                | 6        | 7        | 8        | 9              | 10       | 11       | 12       | 13       | 14       | 15       | 16       | 17       | 18       | 19       | 20       |
|------------------|--------------|--------------|------------------|----------|----------|----------|----------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| V4:V19           |              |              |                  |          |          |          |                | -        | -        | -        | -        | -        | -        |          |          |          |          |          |
| V4:V22           |              |              |                  |          |          |          |                | -        | -        | -        | -        | -        | -        |          |          |          |          |          |
| V4:V26           |              | 1            |                  |          |          |          |                | +        | +        | +        | +        | +        | +        | +        | +        | +        | +        | +        |
| V5:V6            |              |              | 1                |          |          |          |                |          | +        |          | 1        |          |          |          |          |          | •        |          |
| V5:V8            | 1            |              | 1                |          |          |          |                |          | +        | +        |          |          |          |          |          |          |          |          |
| V5:V22           | 1            | 1            |                  |          | 1        |          |                |          | -        | -        | -        | -        | -        |          |          |          |          |          |
| V5:V24           |              |              |                  |          |          | 1        |                |          | -        | -        | -        | -        | -        | -        |          |          |          |          |
| V5:V27           |              |              |                  |          |          |          |                |          | +        | +        | +        | +        | +        | +        | +        | +        | +        | +        |
| V6:V7            |              |              |                  |          |          | t        |                |          | -        |          |          | <u> </u> |          |          |          |          |          |          |
| V6:V8            | <u> </u>     |              |                  | 1        |          |          |                |          | +        | +        |          |          |          |          |          |          |          |          |
| V6:V17           |              |              |                  | 1        |          | 1        |                | 1        | -        | -        | -        | -        |          |          |          |          |          |          |
| V6:V18           |              |              |                  | 1        |          |          |                |          | -        | -        | -        | -        |          | 1        |          |          | †        |          |
| V6:V19           |              |              | <u> </u>         | 1        |          |          |                |          | -        | -        | -        | -        | -        |          |          |          | 1        |          |
| V6:V20           |              |              | 1                | †        |          |          |                |          | -        | -        | -        | -        | -        |          | <u> </u> | 1        |          |          |
| V6:V22           |              |              |                  | +        | <u>†</u> |          | 1              |          | -        | _        | -        | -        | -        |          |          | †        |          |          |
| V6:V24           |              |              |                  |          | 1        |          | İ              |          | -        | - 1      | -        | -        | -        | -        |          | 1        |          |          |
| V7:V8            | 1            |              |                  |          |          |          | 1              |          | +        | +        |          |          |          |          |          | 1        |          |          |
| V7:V9            | <u>†</u>     |              |                  |          |          |          |                |          | +        | +        |          |          |          |          |          |          |          |          |
| V7:V15           | +            | 1            | <u> </u>         | -        |          | <u> </u> | <u> </u>       |          | -        | -        | -        | -        |          |          |          | 1        |          |          |
| V7:V16           |              | 1            | 1                |          | [        |          |                |          | +        | +        | +        | +        |          |          |          | 1        | <u> </u> | <u>├</u> |
| V7:V18           | +            | †            | 1                |          |          |          |                |          | +        | +        | +        | +        |          |          |          |          |          | †        |
| V7:V23           | <u> </u>     |              |                  | †        | ŀ        |          |                |          | +        | +        | +        | +        | +        |          |          |          |          |          |
| V7:V26           | 1            |              |                  |          |          |          |                |          | +        | +        | +        | +        | +        | +        | +        | +        | +        | +        |
| V7:V27           |              |              | <u>  · · · ·</u> | 1        |          |          |                |          | +        | +        | +        | +        | +        | +        | +        | +        | +        | +        |
| V8:V15           |              | <del> </del> |                  | <u> </u> |          |          |                |          |          | -        | -        | -        |          |          |          |          |          |          |
| V8:V19           |              |              |                  |          |          |          |                |          |          | -        | -        | -        | -        | <b> </b> |          | 1        |          |          |
| V8:V20           |              |              | 1                |          |          |          |                |          |          | -        |          | -        | -        | <u> </u> |          |          |          | +        |
| V8:V22           |              |              |                  | · ·      |          |          | <u> </u>       |          |          | -        | -        | -        | -        |          |          | 1        |          | <u> </u> |
| V8:V22           |              |              |                  |          |          |          |                |          |          | -        | -        | - 1      | -        | -        |          |          | <u> </u> | <u> </u> |
| V8:V24<br>V9:V10 |              |              |                  |          | $\vdash$ |          |                |          |          | -        |          | <b> </b> |          |          |          | 1        | 1        | +        |
| V9:V20           |              |              | 1                |          | <b> </b> |          |                |          | -        | -        | -        | -        | -        |          |          | <u> </u> |          |          |
| V9:V22           |              |              | <u>†</u>         | <u> </u> |          |          |                |          |          | -        | -        | <u> </u> | -        | 1        |          | 1        |          |          |
| V10:V15          | <del> </del> | 1            | +                | 1        |          | <u>†</u> |                |          |          | -        | -        | -        |          |          |          |          |          | <u> </u> |
| V10:V16          | 1            | +            | <u> </u>         | 1        |          |          |                |          |          | +        | +        | +        |          |          |          | 1        | 1        | 1        |
| V10:V22          | 1            |              | +                | 1        |          | 1        |                |          |          | -        | -        | -        | -        |          |          |          |          |          |
| V10:V24          | -            |              |                  |          |          | <u> </u> |                |          |          | _        | -        | <u> </u> | -        | -        |          |          |          | <u> </u> |
| V15:V16          |              |              | 1                | 1        |          |          |                |          |          |          | †        | +        |          |          | †        | <u> </u> |          | t        |
| V15:V23          |              | 1            | 1                | 1        |          |          |                | <u> </u> |          | <u> </u> |          | +        | +        |          |          |          |          | <u> </u> |
| V15:V25          |              | <b>†</b>     | 1                | 1        |          | 1        |                |          |          |          |          | -        | <u> </u> |          |          | 1        | †        | †        |
| V16:V17          | <u> </u>     | <u> </u>     | 1                | 1        |          | <u> </u> | 1              | <u> </u> |          |          |          | -        |          | 1        |          | <u> </u> | 1        | 1        |
| V16:V19          |              |              | <del> </del>     | <u> </u> |          |          | †              |          |          |          | <b> </b> | -        | -        | <u> </u> | <u> </u> | <u> </u> | 1        | 1        |
| V16:V19          | +            | +            | 1                | 1        |          | †        |                |          | 1        |          |          | -        | -        | <u> </u> |          | <u>†</u> |          | <u> </u> |
| V16:V20          | +            | <del> </del> | +                |          |          | +        | <u>  · · -</u> | <u> </u> | <u> </u> |          |          |          | -        |          | <b>†</b> |          | <b> </b> | +        |
| V16:V21          |              | <u> </u>     | +                | +        |          |          |                |          | -        |          |          |          | -        |          |          |          |          | +        |
| V16:V22          | <u> </u>     | -            | +                | +        | +        |          |                |          |          |          | 1        | -        | -        | -        |          | <u> </u> |          | 1        |
|                  |              |              | +                | $\vdash$ | <b> </b> | <u> </u> |                | <u> </u> |          |          | <u> </u> |          |          | -        | <u> </u> |          | <u> </u> | +        |
| V17:V22          | +            | <u> </u>     | -                |          |          | -        | +              | <u> </u> | <u> </u> | <u> </u> | <u> </u> | -<br>+   | -<br>+   | -        | -        |          |          | ╂───     |
| V17:V23          | <u> </u>     | 1            |                  | 1        | L        | L        | L              | L        |          |          | 1        | L.+      | L        | l        | L        | L        | I        | <u> </u> |

| Age     | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
|---------|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|
| V17:V24 |   |   |   |   |   |   |   |    |    |    |    | -  | -  | -  |    |    |    |    |
| V17:V26 |   |   |   |   |   |   |   |    |    |    |    | +  | +  | +  | +  | +  | +  | +  |
| V18:V20 |   |   |   |   |   |   |   |    |    |    |    | -  | -  |    |    |    |    |    |
| V18:V22 |   |   |   |   |   |   |   |    |    |    |    | -  | -  |    |    |    |    |    |
| V18:V24 |   |   |   |   |   |   |   |    |    |    |    | -  | -  | -  |    |    |    |    |
| V19:V23 |   |   |   |   |   |   |   |    |    |    |    |    | +  |    |    |    |    |    |
| V20:V23 |   |   |   |   |   |   |   |    |    |    |    |    | +  |    |    |    |    |    |
| V20:V26 |   |   |   |   |   |   |   |    |    |    |    |    | +  | +  | +  | +  | +  | +  |
| V21:V23 |   |   |   |   |   |   |   |    |    |    |    |    | +  |    |    |    |    |    |
| V21:V26 |   |   |   | 1 |   |   |   |    |    |    |    |    | +  | +  | +  | +  | +  | +  |
| V22:V23 |   |   |   |   |   |   |   |    |    |    |    |    | +  |    |    |    |    |    |
| V22:V26 |   |   |   |   |   |   |   |    |    |    |    |    | +  | +  | +  | +  | +  | +  |
| V22:V27 |   |   |   |   |   |   |   |    |    |    |    |    | +  | +  | +  | +  | +  | +  |
| V23:V24 |   |   |   |   |   |   |   |    |    |    |    |    | -  | -  |    |    |    |    |

By describing in detail the fluctuation patterns of XIV-C:155, it is possible to understand the underlying mechanics of how these individual growth fluctuation pattern maps help to clarify and identify the disruption and acceleration patterns seen in these population samples which contributes to the osteobiography of each individual (Saul and Saul 1989). Below is a growth fluctuation summary describing the general trends of disruption and acceleration that were observed in the Sadlermiut and Sacred Heart subsamples.

### 4.6.2 Growth Fluctuation Summary

Although there were subtle differences between each of the four sub-samples in regards to growth disruption and acceleration, particular patterns did emerge between the males and females as shown below in Tables 4.6 and 4.7.

<u>Table 4.6</u> Sadlermiut and Sacred Heart female average age of growth disruption and acceleration

|              | Disruption (-) | Acceleration (+) |
|--------------|----------------|------------------|
| Sadlermiut   | 11.0-15.0      | 15.0-20.0        |
| Sacred Heart | 9.0-16.0       | 9.0-15.0         |

<u>Table 4.7</u> Sadlermiut and Sacred Heart male average age of growth disruption and acceleration

|              | Disruption (-) | Acceleration (+) |
|--------------|----------------|------------------|
| Sadlermiut   | 12.0-17.0      | 12.0-17.0        |
| Sacred Heart | 12.0-17.0      | 12.0-17.0        |

As shown here, the Sadlermiut and Sacred Heart males both had similar patterns of combined growth disruption and acceleration occurring between 12 and 17 years of age. The females of these samples however, showed far less consistent fluctuation patterns; the Sadlermiut females experienced growth disruption beginning at 11 years of age, while the Sacred Heart females experienced disruption at nine years of age. The Sadlermiut females beginning at 15 years of age. Also important to note when comparing these four different sub-samples, is the average number of variables pairs that either fell above or below the confidence intervals established for each sub-sample. As mentioned above, of the variable pairings in each sub-group, only a certain percentage of these pairs fluctuated either above or below the confidence intervals. Below in Table 4.8 is a summary of each of the four sub-samples used in this study.

#### **Table 4.8**

Sadlermiut and Sacred Heart male and female average number of variable pairs demonstrating disruption or acceleration (%)

|              | Females | Males |
|--------------|---------|-------|
| Sadlermiut   | 31      | 27    |
| Sacred Heart | 22      | 24    |

As illustrated here, the Sadlermiut female sub-sample showed the highest frequency of fluctuation among variable pairs per individual, followed by the Sadlermiut males, the Sacred Heart males, and finally the Sacred Heart females.

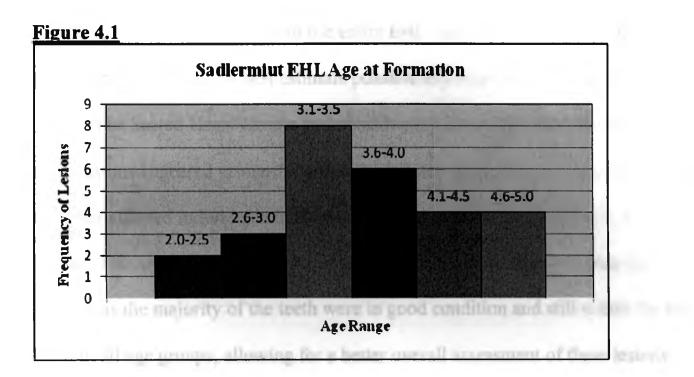
### 4.7 Supplementary Data Analysis

The primary purpose of collecting supplementary data (EHL, Harris lines, asymmetry data and stature estimates) from both population samples was to examine stress from a broad perspective, using both lesion-based and growth and developmentbased methods of stress analysis.

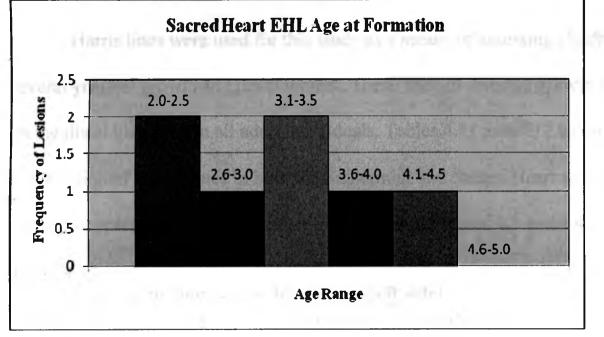
### 4.7.1 Enamel Hypoplastic Lesions

As discussed, EHL are important indicators of early childhood stress, and data were collected on all available adult teeth for each individual. The EHL age at formation data for the Sadlermiut and Sacred Heart samples is seen below in Tables 4.9 and 4.10 with a graphic representation illustrated in Figures 4.1 and 4.2.

| Sadlermiut EHI |     |              | <u> </u>                          |
|----------------|-----|--------------|-----------------------------------|
| Skeleton #     | Sex | # of Lesions | EHL Age at Formation (yrs)        |
| XIV-C:246      | М   | 3            | 3.3, 3.5, 5.0                     |
| XIV-C:243      | М   | 4            | 3.5, 3.7, 4.7, 5.0                |
| XIV-C:182      | М   | 7            | 2.7, 3.3, 3.5, 3.7, 4.0, 4.3, 4.5 |
| XIV-C:181      | М   | 4            | 2.7, 4.0, 4.3, 5.0                |
| XIV-C:155      | F   | 1            | 4.0                               |
| XIV-C:117      | М   | 6            | 2.0, 2.5, 3.3, 3.5, 4.0, 4.5      |
| XIV-C:111      | М   | 2            | 2.7, 3.1                          |


(following Goodman et al. 1980, modified from Swardstedt 1966)

### **Table 4.10**


### Sacred Heart EHL age at formation

| Skeleton # | Sex | # of Lesions | EHL Age at Formation (yrs) |
|------------|-----|--------------|----------------------------|
| 33         | M   | 1            | 2.0                        |
| 71         | F   | 1            | 3.5                        |
| 139        | M   | 5            | 2.0, 3.0, 3.5, 4.0, 4.5    |

(following Goodman et al. 1980, modified from Swardstedt 1966)







The Sadlermiut sample, in comparison to the Sacred Heart sample, demonstrated a higher frequency of EHL with all of these stress events occurring under the age of five years between the infancy and childhood stages of growth and development. Seven individuals from the Sadlermiut sample were shown to have EHL, six were male and one was female (XIV-C:155). Interestingly, she was the only individual to have only one EHL present. However, it is important to consider that within the Sadlermiut sample, many older adult individuals did not have any teeth present during data collection. As a result, this sample

cannot be considered to represent the entire EHL frequency within the once living population, but rather the best estimate possible as a representative sample.

The Sacred Heart sample had considerably fewer EHL than the Sadlermiut, and these lesions appeared primarily within the infancy stage of growth and development. Of the three affected individuals in the Sacred Heart sample, two were male and one was female. The Sacred Heart EHL summary is arguably more complete than the Sadlermiut sample, as the majority of the teeth were in good condition and still within the alveolar bone in all age groups, allowing for a better overall assessment of these lesions.

### 4.7.2 Harris Lines

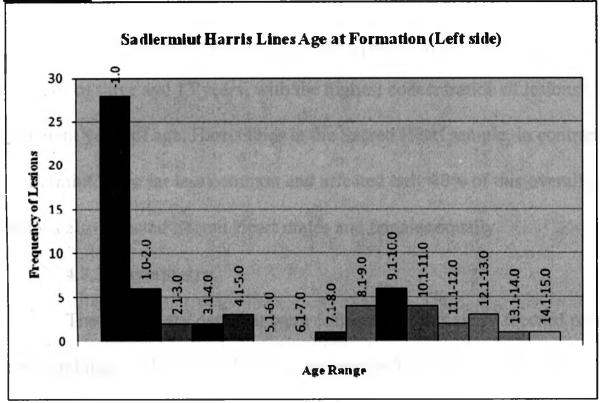
Harris lines were used for this study as a means of assessing childhood stress over several years of growth and development. These lines of arrested growth were examined on the distal tibia only in all adult individuals. Tables 4.11 and 4.12 below outline the age at formation of Harris lines in both the Sadlermiut and Sacred Heart samples followed by a graphic representation of the lesion frequencies in Figures 4.3 and 4.4.

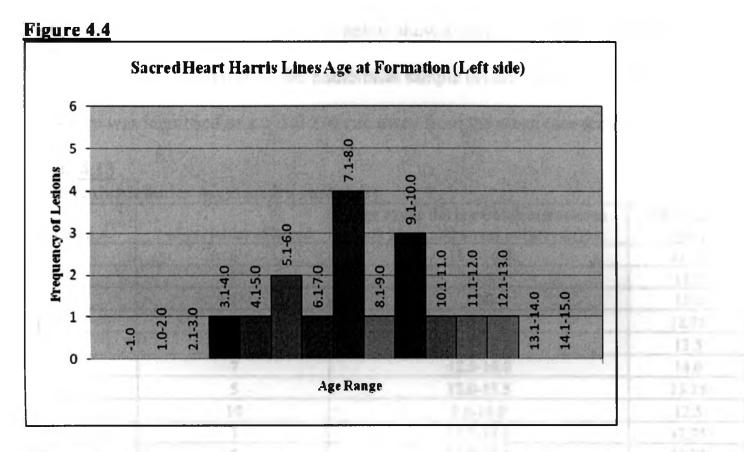
| Skeleton # | Sex | # of Lesions | Harris Line Age at Formation (yrs) |
|------------|-----|--------------|------------------------------------|
| XIV-C:111  | М   | 3            | <1.0, 4.0-5.0, 8.0-9.0             |
| XIV-C:98   | F   | 5            | 7.0-12.0                           |
| XIV-C:112  | F   | 3            | <1.0, 9.0-10.0                     |
| XIV-C:126  | М   | 0            | /                                  |
| XIV-C:99   | М   | 3            | <1.0, 11.0-13.0                    |
| XIV-C:100  | F   | 2            | <1.0, 9.0-10.0                     |
| XIV-C:230  | М   | 0*           | /                                  |
| XIV-C:219  | F   | 3            | 1.0-2.0, 10.0-11.0                 |
| XIV-C:104  | F   | 1            | <1.0                               |
| XIV-C:216  | М   | 1            | <1.0                               |
| XIV-C:221  | F   | 1            | <1.0                               |
| XIV-C:246  | М   | 1            | <1.0                               |
| XIV-C:217  | М   | 2            | <1.0                               |
| XIV-C:181  | M   | 3            | <1.0, 10.0-11.0, 12.0-13.0         |
| XIV-C:183  | F   | 2            | <1.0, 8.0-9.0                      |
| XIV-C:101  | M   | 3            | <1.0, 1.0-2.0, 12.0-13.0           |

Table 4.11

### Table 4.11 continued

| XIV-C:175 | F | 3 | <1.0, 2.0-3.0, 8.0-9.0           |
|-----------|---|---|----------------------------------|
| XIV-C:149 | F | 6 | <1.0, 1.0-5.0                    |
| XIV-C:105 | F | 2 | 1.0-2.0, 3.0-4.0                 |
| XIV-C:103 | F | 2 | <1.0                             |
| XIV-C:156 | М | 1 | <1.0                             |
| XIV-C:157 | M | 0 | /                                |
| XIV-C:155 | F | 6 | <1.0, 1.0-2.0, 4.0-5.0, 9.0-10.0 |
| XIV-C:145 | F | 1 | <1.0                             |
| XIV-C:153 | F | 3 | <1.0, 9.0-11.0                   |
| XIV-C:74  | M | 1 | <1.0                             |
| XIV-C:182 | M | 1 | <1.0                             |
| XIV-C:148 | F | 0 | 1                                |
| XIV-C:179 | М | 0 | 1                                |
| XIV-C:243 | М | 4 | <1.0, 9.0-10.0, 13.0-15.0        |


(Byers 1991)


## <u>Table 4.12</u> Sacred Heart Harris lines age at formation (left side)

| Skeleton # | Sex | # of Lesions | Harris Line Age at Formation (yrs)     |
|------------|-----|--------------|----------------------------------------|
| 5          | F   | 3            | 5.0-6.0, 7.0-9.0                       |
| 9          | F   | 1            | 5.0-6.0                                |
| 55         | М   | 1            | 7.0-8.0                                |
| 64         | М   | 4            | 4.0-5.0, 8.0-9.0, 10.0-11.0, 13.0-14.0 |
| 83         | M   | 1            | 3.0-4.0                                |
| 97         | F   | 2            | 6.0-7.0, 9.0-10.0                      |
| 122        | F   | 1            | 7.0-8.0                                |
| 139        | М   | 3            | 9.0-12.0                               |

(Byers 1991)

## Figure 4.3



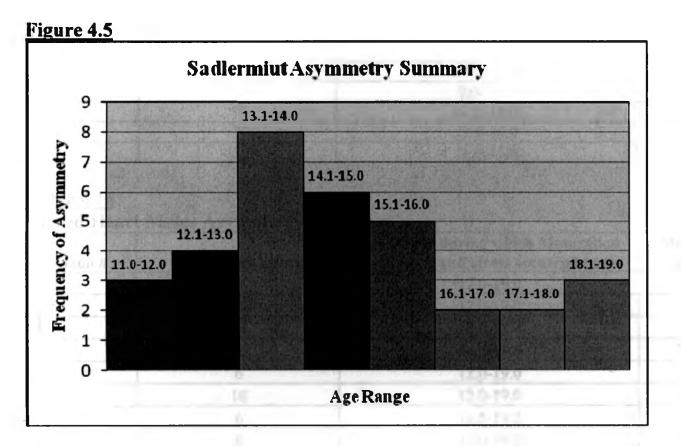


Within the Sadlermiut sample, there was a general tendency for Harris lines to appear first before the age of one year, after which these lines were most common during the childhood and juvenile stages of growth and development. The Sadlermiut also showed an equal distribution of Harris lines between males and females with these lesions affecting 91% of this overall sample.

The age at formation of Harris lines within the Scared Heart sample occurred primarily during the childhood and juvenile phases of growth and development, between the ages of three and 13 years, with the highest concentration of lesions between seven and eight years of age. Harris lines in the Sacred Heart sample, in contrast to the Sadlermiut, were far less common and affected only 40% of this overall sample. These lesions also affected Sacred Heart males and females equally.

### 4.7.3 Asymmetry

The asymmetry data that were collected for this study focused primarily on the arms and legs of all adult individuals as seen in Appendix E, Tables E-5, E-6, E-7 and E-


8. Tables 4.13 and 4.14 and Figure 4.5 below show a summary of the significant asymmetry data collected from the Sadlermiut sample divided by sex. Significant departure was identified as x > 1.0 Z-score away from the mean (see section 3.3.3).

| Skeleton # | # of variables affected | Age range during which maturation took place and stress occurred (yrs) | Midpoint<br>(yrs) |
|------------|-------------------------|------------------------------------------------------------------------|-------------------|
| 96         | 5                       | 11.5-16.0                                                              | 13.75             |
| 112        | 1                       | 11.5                                                                   | 11.5              |
| 175        | 1                       | 15.0                                                                   | 15.0              |
| 105        | 4                       | 11.5-14.0                                                              | 12.75             |
| 145        | 3                       | 12.0-15.0                                                              | 13.5              |
| 149        | 7                       | 12.0-16.0                                                              | 14.0              |
| 153        | 5                       | 12.0-15.5                                                              | 13.75             |
| 103        | 10                      | 9.0-16.0                                                               | 12.5              |
| 104        | 3                       | 11.5-14.0                                                              | 12.75             |
| 98         | 5                       | 12.0-15.5                                                              | 13.75             |
| 155        | 5                       | 9.0-14.0                                                               | 11.5              |
| 219        | 5                       | 12.0-15.0                                                              | 13.5              |
| 183        | 7                       | 11.0-16.0                                                              | 13.5              |
| 148        | 1                       | 15.0                                                                   | 15.0              |
| 100        | 2                       | 11.0-15.0                                                              | 13.0              |
| 192        | 5                       | 11.5-16.0                                                              | 13.75             |
| 221        | 2                       | 14.0-15.0                                                              | 14.5              |

<u>Table 4.13</u> Sadlermiut females asymmetry summary

## <u>Table 4.14</u> Sadlermiut males asymmetry summary

|            |                         | Age range during which maturation    | Midpoint |
|------------|-------------------------|--------------------------------------|----------|
| Skeleton # | # of variables affected | took place and stress occurred (yrs) | (yrs)    |
| 230        | 2                       | 12.0                                 | 12.0     |
| 74         | 3                       | 12.0-18.4                            | 15.2     |
| 117        | 9                       | 12.0-18.5                            | 15.25    |
| 126        | 3                       | 17.5-19.0                            | 18.25    |
| 246        | 5                       | 17.0-19.0                            | 18.0     |
| 111        | 5                       | 12.0-18.5                            | 15.25    |
| 243        | 2                       | 13.5-17.5                            | 15.5     |
| 216        | 2                       | 17.0                                 | 17.0     |
| 217        | 5                       | 12.0-17.5                            | 14.75    |
| 179        | 5                       | 12.0-19.0                            | 15.5     |
| 182        | 3                       | 13.5-16.5                            | 15.0     |
| 157        | 5                       | 16.5-18.4                            | 17.45    |
| 181        | 8                       | 17.5-19.0                            | 18.25    |
| 101        | 4                       | 17.5-19.0                            | 18.25    |
| 156        | 3                       | 12.0-17.5                            | 14.75    |
| 99         | 5                       | 13.5-19.0                            | 16.25    |

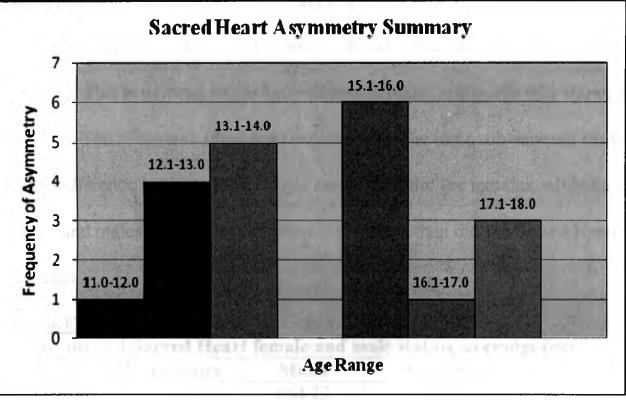


While males and females from the Sadlermiut sample demonstrated a similar frequency in variables affected by significant asymmetry, the females did show more asymmetry in their arms than did the males. Females also demonstrated their asymmetry in earlier maturing BSIs, whereas the asymmetry among males was more common in later maturing BSIs. Within this population sample the most common variable showing asymmetry in females was BSI #59 (tibia midshaft width) and in males, BSI #56/57 (talar facet area) and #59 (tibia midshaft width) were the most common. Overall, the Sadlermiut sample generally showed asymmetry during the early adolescent stage of growth between 13 and 16 years. Below in Tables 4.15, 4.16 and Figure 4.6 are the results of the Sacred Heart asymmetry analysis.

### <u>Table 4.15</u> Sacred Heart females asymmetry summary

| Skeleton # | # of variables affected | Age Range during which Maturation took place and stress occurred (yrs) | Midpoint<br>(yrs) |
|------------|-------------------------|------------------------------------------------------------------------|-------------------|
| 88         | 6                       | 9.0-15.0                                                               | 12.0              |
| 24         | 7                       | 11.5-16.0                                                              | 13.75             |
| 9          | 4                       | 11.0-15.0                                                              | 13.0              |
| 120        | 6                       | 12.0-15.0                                                              | 13.5              |

### Table 4.15 continued


| 124B | 2 | 11.0-15.5 | 13.25 |
|------|---|-----------|-------|
| 97   | 3 | 11.0-15.0 | 13.0  |
| 71   | 8 | 9.0-15.5  | 12.25 |
| 5    | 9 | 11.0-16.0 | 13.5  |
| 114  | 7 | 11.0-16.0 | 13.5  |
| 122  | 3 | 11.0-15.0 | 13.0  |

### **Table 4.16**

Sacred Heart Males Asymmetry Summary

| Skeleton # | # of variables affected | Age Range during which Maturation<br>took place and stress occurred (yrs) | Midpoint<br>(yrs) |  |
|------------|-------------------------|---------------------------------------------------------------------------|-------------------|--|
| 139        | 3                       | 12.0-19.0                                                                 | 15.5              |  |
| 115        | 2                       | 17.0-19.0                                                                 | 18.0              |  |
| 145        | 6                       | 12.0-18.4                                                                 | 15.2              |  |
| 30         | 5                       | 16.5-19.0                                                                 | 17.75             |  |
| 72         | 6                       | 12.0-19.0                                                                 | 15.5              |  |
| 33         | 10                      | 12.0-19.0                                                                 | 15.5              |  |
| 73         | 6                       | 16.5-19.0                                                                 | 17.75             |  |
| 64         | 8                       | 12.0-19.0                                                                 | 15.5              |  |
| 83         | 9                       | 12.0-19.0                                                                 | 15.5              |  |
| 55         | 5                       | 13.5-19.0                                                                 | 16.25             |  |

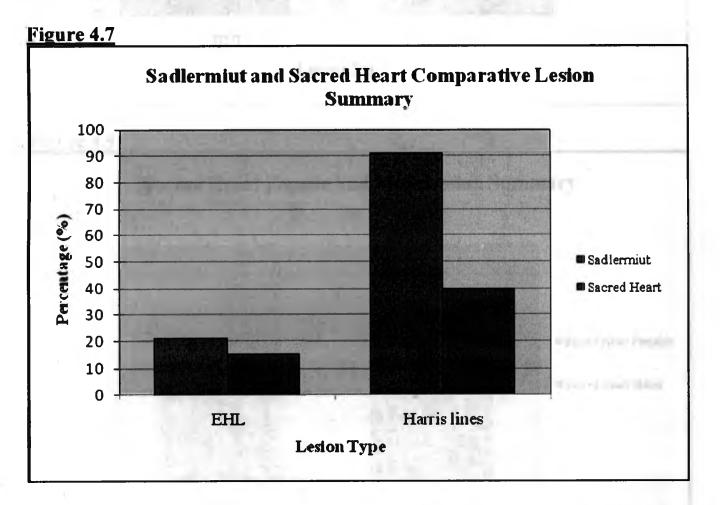




Comparable to the Sadlermiut sample, the Sacred Heart individuals also showed a relatively equal distribution of significant asymmetry between males and females. However, in contrast to the Sadlermiut males, the Sacred Heart males showed significant asymmetry in their arms. In this population, the females demonstrated asymmetry more frequently during the juvenile stage of growth and development, while the males generally experienced asymmetry during the adolescent stage. The most commonly affected variable in females was BSI #37 (humerus distal joint breadth) while the most commonly affected variable in males was BSI #50 (maximum femoral length). Overall the Sacred Heart sample showed a spike in asymmetry later than the Sadlermiut sample occurring between 15 and 16 years of age with no asymmetry present between 14 and 15 years.

### **4.7.4 Stature Estimates**

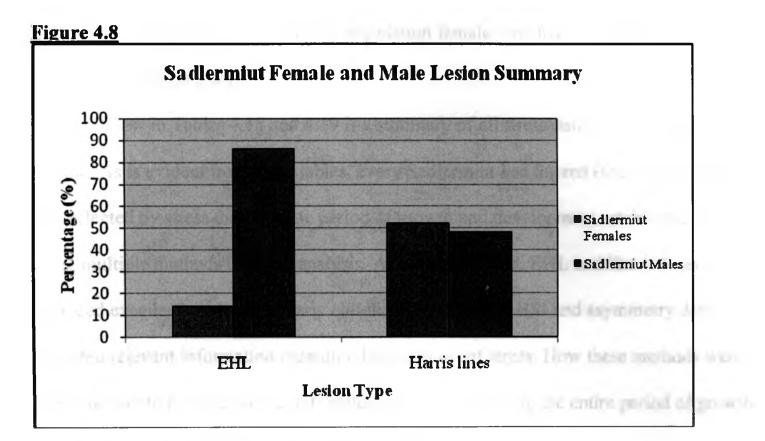
The stature estimates calculated for both populations demonstrated that the Sadlermiut females and males were, on average, shorter in stature than the Sacred Heart sample (see Appendix E, Tables E-9 and E-10). As shown below in Table 4.17, the Sadlermiut female average stature was 151.86cm, while the male stature average was 164.22cm. This is contrast to the Sacred Heart females and males who showed average statures of 160.55cm and 176.44cm, respectively. The male sub-samples showed a greater difference between their stature means than did the females, while the Sadlermiut females and males showed less difference in stature than did the Sacred Heart females and males.


| <u>Table 4.17</u>                                                 |  |
|-------------------------------------------------------------------|--|
| Sadlermiut and Sacred Heart female and male stature averages (cm) |  |

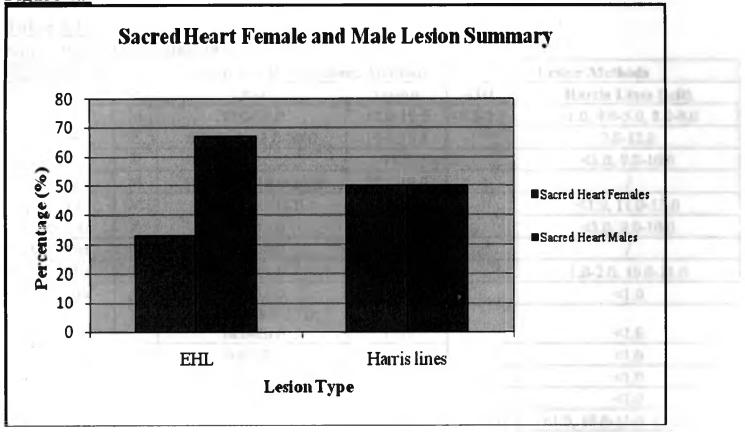
|              | Females | Males  | Difference |
|--------------|---------|--------|------------|
| Sadlermiut   | 151.86  | 164.22 | 12.36      |
| Sacred Heart | 160.55  | 176.44 | 15.89      |
| Difference   | 8.69    | 12.20  |            |

81

### 4.8 Stress Summary


As shown in the lesion summaries below, the Sadlermiut sample was far more affected by stress lesions than the Sacred Heart sample. As a general trend, Harris lines were more frequent than EHL in the both samples. While EHL lesions showed a similar frequency between the Sadlermiut and Sacred Heart samples, Harris lines were much more prevalent in the Sadlermiut sample. Figure 4.6 below represents the percentage of these lesion frequencies within each sample.




Below in Figures 4.8 and 4.9 is a similar lesion summary for both populations based upon

sex.

The second states of the second secon







From this summary it was evident that males were generally more affected by stress lesions than females within both populations; however, there were exceptions to this. In the Sadlermiut population the females appeared to show slightly higher frequencies of Harris lines, while in the Sacred Heart population females and males showed an equal frequency of Harris lines.

Below in Tables 4.18 and 4.19 is a summary of all stress data for each population sample. As is evident from these tables, every Sadlermiut and Sacred Heart individual was affected by stress during some period of growth and development established by using multiple methods of stress analysis. As a general trend, EHL and Harris lines provided excellent coverage of early childhood stress while BSI and asymmetry data provided relevant information regarding later periods of stress. How these methods were used together to provide an accurate reflection of stress during the entire period of growth and development will be further explored in Chapter 5.

|            | Growth and Developme |                           | nt Methods |         | Lesion Methods             |  |
|------------|----------------------|---------------------------|------------|---------|----------------------------|--|
| Skeleton # | Sex                  | BSI                       | Asymm      | EHL     | Harris Lines (left)        |  |
| XIV-C:111  | M                    | 10.0-16.0                 | 12.0-18.5  | 2.7-3.1 | <1.0, 4.0-5.0, 8.0-9.0     |  |
| XIV-C:98   | F                    | 9.0-14.0, 15.0-20.0       | 12.0-15.5  |         | 7.0-12.0                   |  |
| XIV-C:112  | F                    |                           | 11.5       |         | <1.0, 9.0-10.0             |  |
| XIV-C:126  | M                    | 10.0-17.0, 18.0-20.0      | 17.5-19.0  |         | /                          |  |
| XIV-C:99   | М                    | 12.0, 13.0-17.0           | 13.5-19.0  |         | <1.0, 11.0-13.0            |  |
| XIV-C:100  | F                    | 11.0-15.0                 | 11.0-15.0  |         | <1.0, 9.0-10.0             |  |
| XIV-C:230  | M                    | 12.0-20.0                 | 12.0       |         | /                          |  |
| XIV-C:219  | F                    | 11.0-15.0                 | 12.0-15.0  |         | 1.0-2.0, 10.0-11.0         |  |
| XIV-C:104  | F                    | 11.0-14.0                 | 11.5-14.0  |         | <1.0                       |  |
|            | M                    | 4.0-10.0, 13.0-17.0,      |            |         |                            |  |
| XIV-C:216  |                      | 18.0-20.0                 | 17.0       |         | <1.0                       |  |
| XIV-C:221  | F                    | 9.0-12.0                  | 14.0-15.0  |         | <1.0                       |  |
| XIV-C:246  | M                    | 4.0-10.0, 13.0-17.0       | 17.0-19.0  | 3.3-5.0 | <1.0                       |  |
| XIV-C:217  | M                    | 13.0-17.0                 | 12.0-17.5  |         | <1.0                       |  |
| XIV-C:181  | M                    |                           | 17.5-19.0  | 2.7-5.0 | <1.0, 10.0-11.0, 12.0-13.0 |  |
| XIV-C:183  | F                    | 11.0-15.0                 | 11.0-16.0  |         | <1.0, 8.0-9.0              |  |
| XIV-C:101  | Μ                    | 13.0-17.0                 | 17.5-19.0  |         | <1.0, 1.0-2.0, 12.0-13.0   |  |
| XIV-C:175  | F                    | 3.0-15.0, 11.0-15.0       | 15.0       |         | <1.0, 2.0-3.0, 8.0-9.0     |  |
|            | F                    | 3.0-10.0, 9.0-14.0, 16.0- |            |         |                            |  |
| XIV-C:149  |                      | 20.0                      | 12.0-16.0  |         | <1.0, 1.0-5.0              |  |
| XIV-C:105  | F                    | 12.0-15.0                 | 11.5-14.0  |         | 1.0-2.0, 3.0-4.0           |  |
| XIV-C:103  | F                    | 12.0-16.0                 | 9.0-16.0   |         | <1.0                       |  |
| XIV-C:156  | М                    | 16.0-20.0                 | 12.0-17.5  |         | <1.0                       |  |
| XIV-C:157  | M                    | 10.0-17.0                 | 16.5-18.4  |         |                            |  |

<u>Table 4.18</u> Sadlermiut stress summary

### Table 4.18 continued

| XIV-C:155 | F | 11.0-15.0            | 9.0-14.0  | 4.0     | <1.0, 1.0-2.0, 4.0-5.0, 9.0-10.0 |
|-----------|---|----------------------|-----------|---------|----------------------------------|
| XIV-C:145 | F | 15.0-16.0            | 12.0-15.0 |         | <1.0                             |
| XIV-C:153 | F | 11.0-14.0            | 12.0-15.5 |         | <1.0, 9.0-11.0                   |
| XIV-C:74  | M | 13.0-18.0            | 12.0-18.4 |         | <1.0                             |
| XIV-C:182 | M | 10.0-17.0            | 13.5-16.5 | 2.7-4.5 | <1.0                             |
| XIV-C:148 | F | 9.0, 12.0-15.0       | 15.0      |         | /                                |
| XIV-C:179 | M | 13.0-16.0, 17.0-19.0 | 12.0-19.0 |         | /                                |
| XIV-C:243 | M | 12.0-17.0            | 13.5-17.5 | 3.5-5.0 | <1.0, 9.0-10.0, 13.0-15.0        |
| XIV-C:117 | M | 10.0-20.0            | 12.0-18.5 | 2.0-4.5 |                                  |
| XIV-C:192 | F | 3.0-10.0, 9.0-12.0   | 11.5-16.0 |         |                                  |
| XIV-C:96  | F | 11.0-15.0, 15.0-20.0 | 11.5-16.0 |         |                                  |

# Table 4.19Sacred Heart stress summary

|            |     | Growth and Deve           | 1              |         |                                           |
|------------|-----|---------------------------|----------------|---------|-------------------------------------------|
|            |     | Methods                   | Lesion Methods |         |                                           |
| Skeleton # | Sex | BSI                       | Asymm          | EHL     | Harris Lines (left)                       |
| 5          | F   | 12.0-14.0                 | 11.0-16.0      |         | 5.0-6.0, 7.0-9.0                          |
| 9          | F   | 3.0-11.0, 11.0-14.0       | 11.0-15.0      |         | 5.0-6.0                                   |
| 55         | M   | 13.0-16.0                 | 13.5-19.0      |         | 7.0-8.0                                   |
| 64         | М   | 10.0-20.0, 13.0-18.0      | 12.0-19.0      |         | 4.0-5.0, 8.0-9.0, 10.0-11.0,<br>13.0-14.0 |
| 83         | M   | 4.0-20.0, 12.0-18.0       | 12.0-19.0      |         | 3.0-4.0                                   |
| 97         | F   |                           | 11.0-15.0      |         | 6.0-7.0, 9.0-10.0                         |
| 122        | F   |                           | 11.0-15.0      |         | 7.0-8.0                                   |
| 139        | M   | 13.0-20.0                 | 12.0-19.0      | 2.0-4.5 | 9.0-12.0                                  |
| 33         | M   | 16.0-18.0, 19.0-20.0      | 12.0-19.0      | 2.0     |                                           |
| 71         | F   | 12.0-15.0                 | 9.0-15.5       | 3.5     |                                           |
| 30         | M   |                           | 16.5-19.0      |         |                                           |
| 115        | M   | 12.0-17.0, 20.0           | 17.0-19.0      |         |                                           |
| 124B       | F   | 3.0-10.0, 12.0-14.0, 20.0 | 11.0-15.5      |         |                                           |
| 88         | F   | 9.0-12.0                  | 9.0-15.0       |         |                                           |
| 24         | F   | 9.0-13.0, 14.0-16.0       | 11.5-16.0      |         |                                           |
| 120        | F   | <10.0                     | 12.0-15.0      |         |                                           |
| 114        | F   | 13.0-15.0                 | 11.0-16.0      |         |                                           |
| 145        | M   | 10.0-17.0                 | 12.0-18.4      |         |                                           |
| 72         | M   | 16.0-18.0                 | 12.0-19.0      |         |                                           |
| 73         | M   | 12.0-17.0, 18.0-20.0      | 16.5-19.0      |         |                                           |

#### **CHAPTER 5: DISCUSSION**

### **5.1 Introduction**

The main goal of this project was to establish a new method of stress analysis to minimize the inherent problems associated with the more commonly used lesion-based methods of analysis. From a growth and development perspective, this project assessed various BSIs throughout the skeleton to determine whether stress was present and the timeframe in which that stress occurred. Through the use of correlation and regression analyses, the underlying patterns of stress for each population sample were revealed and further allowed for the investigation of the timing of stress that may have affected the Sadlermiut and Sacred Heart population samples.

Although the Sadlermiut and Scared Heart population samples showed variability within and between each sub-sample, they did show some evident trends in their growth and development patterns, particularly between the sexes. However, despite these trends in growth patterns, specific fluctuation patterns were still not easily defined in these samples. Although the methods with which these growth disruption and acceleration periods were assessed provided relevant information, further investigation into the BSIs affected and where they fell along the regression line must be undertaken. This further investigation can provide the data needed to better understand the disruption and acceleration events that occurred, and how the Sadlermiut and Sacred Heart responded to these periods of growth fluctuation.

### 5.2 Correlation Analysis

Correlation analysis was used for this project as the primary method to establish that real relationships were present between the different BSIs selected from the bioarchaeological literature, in order to establish the baseline against which each individual was compared. Although over half (43) of the original 70 BSI measurements collected from each population sample were omitted in the final selection of all BSIs, there was still a generous age range between the BSIs to be further used for regression analysis (Appendix J, J-1 and J-2). Seeing as the primary goal of this research was to establish the best possible suite of BSI measurements, it was expected that this original list of 70 measurements would be significantly minimized to fulfill two criteria: 1) that the most highly correlated BSIs were represented and 2) that a significant age range was covered in regards to the sub-adult years of growth and development.

It is important to recognize, however, that these correlation outcomes may very likely change when studying different populations as was evident in the Howells dataset study. The three population samples chosen from Howells showed similar correlations between the six cranial BSIs; however, these correlation results were not identical in all three groups suggesting some variability in these correlations. This change in correlation outcomes may make it difficult to maintain the two criteria outlined above in other populations, and requires this method to be retuned for every sample studied. As discussed briefly in Chapter 4, another limitation of the correlation analysis conducted on the Sadlermiut and Sacred Heart samples was the complete omission of some skeletal elements, specifically the cranium. Although 16 cranial measurements were originally recorded for each individual, many of these measurements did not correlate well with other infra-cranial measurements as shown below in Table 5.1.

87

#### Table 5.1

### Sadlermiut and Sacred Heart cranial measurements and final correlation results

| Original Cranial BSI Measurements            | Males         | Females        |
|----------------------------------------------|---------------|----------------|
| Maximum Cranial Breadth                      |               |                |
| Maximum Cranial Length                       |               |                |
| Upper Facial Breadth                         | *             | *              |
| Biorbital Breadth                            |               | *              |
| Maximum Orbital Height                       |               |                |
| Maximum Orbital Breadth                      |               |                |
| Postorbital Breadth                          |               |                |
| Biporionic Breadth                           |               |                |
| Occipital Condyle Length                     |               |                |
| Occipital Condyle breadth                    |               |                |
| Maximum Cranial Height                       |               | *              |
| Foramen Magnum Area                          |               | *              |
| Interorbital Breadth                         |               | *              |
| Chin Depth                                   |               |                |
| Maximum Breadth of the Mandible              |               | *              |
| Palate Length                                |               |                |
| * = BSIs that were correlated to variables i | n the infra-c | cranial skelet |

As a result of these measurements being omitted, particularly among the Sadlermiut and Sacred Heart males, the final list of BSIs representing the very early years of life was greatly reduced as many of these cranial BSIs mature in the childhood and juvenile stages of growth (Aiello and Wood 1994; Raxter *et al.* 2006; Spocter and Manger 2007).

Although the goal of this research was to collect data from BSIs covering the entire age range of growth and development, future research focused on early childhood stress episodes may benefit from the examination of cranial BSIs only, as they provide coverage of the childhood and juvenile stages of growth and development. By using the cranial BSIs already well established within the bioarchaeological literature (Aiello and Wood 1994; Kappelman 1996; Raxter *et al.* 2006; Spocter and Manger 2007) and the correlation results from the Howells dataset study, presumably these cranial measurements may still be used within this methodological framework to provide relevant stress information on the early formative years of growth and development, with the caveat that infra-cranial skeletal elements are better proxies to calculate overall body stature or body weight (McHenry 1992; Ruff 2002).

### 5.3 r-values and Significant Association

The r-values and the t-test of significant association calculated for each variable pair, derived from the final BSI list of 27 measurements, were important for this research to establish the probability of these correlations happening by chance and also to explore whether the size of individual variables was actually being explained by ultimate adult body size. Through this analysis of association, it became clear that the original BSI list would need to be further narrowed as certain BSIs did not necessarily correlate well with all other 26 BSIs. As outlined in Table 4.2, not one of the four sub-samples showed significant association over 50% in the variables pairs analyzed. This would suggest that although the final 27 BSIs were correlated to one another, only certain pairings of these variables showed significant association. Although a sufficient age range was covered in the original 27 BSIs (see Appendix J, Tables J-1 and J-2), the process of determining significant association further omitted certain measurements. As a general trend, many of the BSIs used for this study matured during the adolescent stage of growth and development with multiple indicators between the years of 10 and 20. The majority of earlier maturing BSIs ended up being omitted in both the male and female sub-samples, as they did not satisfy the selective criteria, leaving a spotty coverage between three and 10 years. Thus while the full range of coverage for this method was approximately three to 20 years, the best coverage period was between 10 to 20 years.

However, with the further omission of the earlier maturing BSIs for both sample groups the differences between males and females and their 27 correlated BSIs were minimized. As discussed, the females originally showed more correlation among their cranial variables and the males had higher correlations among their vertebral BSIs. As a result of testing for significance of association among variables, the differences between males and females were equalized, revealing similar trends in the final BSIs that showed significant association with each other.

#### 5.4 Growth Curve Data

The main purpose in compiling growth curve data from both clinical and population specific data was to define the age ranges of adult maturation for each BSI in each sample. As discussed, Scheuer and Black (2000) was used to create the idealized model in which the human skeleton is expected to grow. It was the goal of this project to then supplement this idealized growth curve with more specific data from each sample to calibrate the idealized model. As shown in Appendix J, Tables J-4, J-5, J-6 and J-7, the data collected from both the Sadlermiut and Sacred Heart sub-adults did not provide sufficient data to substantiate this type of model or alter the idealized maturation ages. While each sample did provide some information regarding the maturation timing of each BSI, inevitable gaps in the data were present. Therefore, this idealized model was accepted as the best possible growth curve to determine skeletal sequencing and the age of adult maturation for each BSI.

Because the recovery of sub-adult skeletal material is fraught with preservation issues due to a less dense skeletal structure and a higher organic composition (Currey and Butler 1975; Specker *et al.* 1987; Gordon and Buikstra 1981), many of the younger subadult remains were damaged or incomplete, affecting which BSIs could be measured. It was the older sub-adult individuals within these samples that were the most complete, thereby creating a bias in the data being collected for growth curve calibration. If a BSI is predicted to reach adult maturation in the juvenile stage of growth but there is no sub-adult individual that represents that age range, then the presence of adult-sized BSIs in adolescent individuals make it appear that the BSI reaches maturity later than it should. As a result of this sampling issue, many of the BSIs for both the Sadlermiut and Sacred Heart samples appeared to have a far later maturation period than predicted from the idealized growth trajectory.

Despite the inherent biases in this method of growth curve calibration, there are important data to be recovered in the assessment of BSI maturation. If it was possible to work with a larger sub-adult sample with the majority of BSIs recovered, then there would be great potential for this method of analysis. The major drawbacks in using these two samples were a lack of sub-adult individuals, specifically within the juvenile stage of growth, and missing or damaged skeletal elements for individuals of all ages. Because there are fewer BSIs that reach adult maturity during the juvenile stage of growth, it was imperative to collect sufficient data from individuals whose age at death is within this timeframe. Although it is recognized that the growth curve created from the Scheuer and Black (2000) reference is idealized, it was accepted as the best possible means to assess the age of maturation for each BSI. Because it is known that the sequence when certain BSIs reach maturation is consistent across populations (Humphrey 1998), this growth curve does provide accurate sequencing information regarding both sample populations. However, it must be cautioned that the age ranges produced through regression analysis are a best estimate only from the data collected in this study. If provided with adequate data to satisfactorily calibrate the idealized growth curve, the resulting age ranges of growth acceleration and disruption for the Sadlermiut and Sacred Heart samples may very well have shifted up or down in age.

## 5.5 Growth Fluctuation Pattern Maps: A Discussion of Growth Disruption and Growth Acceleration

This method of data arrangement proved to be quite successful for determining the lower-most and upper most-limits of growth disruption and growth acceleration among the BSIs used for this study. The creation of these pattern maps allowed for the regression analysis results to be arranged by individual to track the overlapping patterns of growth disruption and growth acceleration. Seeing where these variable pair age ranges overlapped helped to narrow down the timeframe of when growth disruption and acceleration was occurring. By compiling the data in this way, it was possible to assess these patterns of growth fluctuation to determine if these periods of instability were the result of stress, natural growth spurts or catch-up growth. If these periods of growth fluctuation were merely random "noise," then the distinct patterns of growth disruption and fluctuation would not be present as shown in Figure 5.1 (pg. 100). Although there is some evidence of "noise" in specific individuals, the growth patterns of each sub-sample reveal that true patterns of fluctuation do exist.

For this analysis, growth disruption was interpreted as stress caused by external factors, as stress is generally defined as a fluctuation of growth that may result in decreased body size and presumably the indicators of body size (Larsen 1997; Goodman and Martin 2002) which was evident in individuals who continually fell below the confidence interval over a given period. However, in contrast to the patterns of growth

disruption, growth acceleration was not as easily defined and needs to be discussed in further detail.

While growth disruption periods could be confidently equated only to periods of stress that negatively affected BSI size, growth acceleration periods were far more difficult to categorize due to the normal acceleration periods that are expected to occur during maturation. These normal periods of growth acceleration occur during the juvenile and adolescent stages of growth and are known as growth spurts (Bogin 2001). Because these growth spurts occur naturally across populations (Golub 2000), it becomes difficult to distinguish between normal growth acceleration and acceleration occurring as the result of catch-up growth following the cessation of stress. For the purposes of this project it was assumed that if a natural growth spurt was occurring then acceleration would be present at seven years of age (the juvenile spurt) and between 11-13 years of age (the adolescent spurt) (Bogin 2001). It was also assumed that if a natural growth spurt was occurring then it was possible to still see growth disruption in other BSIs. While stress events may have been affecting certain BSIs during these periods of natural acceleration, all other BSIs not being affected by disruption were assumed to begin the natural growth spurt, thereby potentially showing growth disruption and acceleration during a similar time period but in different BSIs.

In contrast to the pattern of natural growth spurts, it is also important to outline the expectations of stress-induced growth acceleration, also referred to as catch-up growth. While natural growth acceleration is regulated to a specific time period within the juvenile and adolescent stages of growth, acceleration caused by stress may appear during any time period of growth. However, stress-induced acceleration was predicted to only occur after a stress event had passed as per the expectations of catch-up growth discussed in Chapter 2, section 2.3.4. Therefore, while natural growth acceleration can occur during the same time period as growth disruption in different BSIs, catch-up growth should only be visible after a stress event has completely passed.

It is important to recognize that not all acceleration periods visible in the four subsamples conformed to natural growth spurts or catch-up growth periods discussed above. As mentioned in Chapter 4, section 4.6.2 the growth fluctuations visible in each of the four sub-samples provided relevant information on developmental stability. It has been argued that if the human skeleton is exposed to prolonged stress then multiple deviations from the norm should be visible in multiple skeletal elements as the body struggles to maintain homeostasis (Albert and Greene 1997; Cardoso 2007). Through the analysis of these growth fluctuation patterns in each sub-sample it was assumed that individuals who showed high levels of fluctuation among their variable pairs were likely more stressed than individuals showing less fluctuation. Therefore, growth acceleration periods that did not fall within the parameters of normal growth spurts or catch-up growth were assumed to represent this instability fluctuation. Overall, it is important to recognize that individuals who showed growth acceleration outside the defined periods of natural acceleration and catch-up growth may appear to have been less stressed, as certain BSIs were larger in size than the rest of the sub-sample. However, these individuals may in fact have been more stressed due to developmental instability as they constantly fluctuated above and below the confidence intervals of their sub-sample.

To summarize the preceding section, when examining the growth disruption and growth acceleration patterns in each of the four sub-samples, it was assumed that growth

94

disruption only indicates periods of stress. In contrast, growth acceleration may be explained by three different processes: 1) natural growth acceleration during the growth spurt time periods, 2) catch-up growth occurring after a stress event has passed or 3) acceleration that does not fall within the parameters of normal acceleration or catch-up growth and is most likely growth fluctuation that may be contributing to developmental instability in an individual.

Other explanations regarding the growth disruption and growth acceleration patterns of these sub-samples are possible and will be discussed here. For instance, when examining growth disruption and acceleration the argument can be made that these fluctuations above or below the confidence intervals may be congenital anomalies affecting certain individuals of the sub-sample and not necessarily the product of stress, normal growth spurts or catch-up growth events.

The Sadlermiut were a distinctly endogamous society due to their social and geographic isolation on Southampton Island and the Sacred Heart population may have also practiced a loose type of endogamy as they established their community in the wilderness of southwestern Ontario, with only 40 family groups and a lack of neighbouring European settlers in this region (Whitwell 1977). Based upon this information, it can be argued that congenital anomalies may have very likely affected multiple individuals of the community because of a reduced gene pool, which would allow for similar patterns of growth disruption or acceleration to be noted in various individuals. However, as discussed by Roberts and Manchester (2005), individuals plagued with congenital anomalies are less likely to reproduce and pass along their condition to a future generation. Also, while congenital anomalies are known to have the

potential to affect all regions of the skeleton (cranium, spine, pelvis, hands and feet) (Roberts and Manchester 2005), the individuals from this study showed a consistency among the skeletal elements being affected, specifically the arm and leg bones. Congenital anomalies also tend to have very clear skeletal stigmata (Roberts and Manchester 2005) which would be evident in a general pathological examination of skeletal remains, none of which were evident in the Sadlermiut or Sacred Heart samples. While congenital anomalies may have been present in some individuals examined, the above evidence suggests that the overall patterns of growth fluctuation in these four subsamples were most likely the result of an external source of stress.

Another potential cause of these growth fluctuations, specifically growth disruption, is the possibility of genetically smaller individuals within a population. It has been well documented in hominid, archaeological and modern literature that populations in northern Arctic environments generally have different body proportions than individuals living within a warmer, temperate climate (Eveleth and Tanner 1976; Y'Edynak 1978; Johnston *et al.* 1982; Nelson and Thompson 2002). Therefore, it can be argued that an individual with small stature is not necessarily indicative of past stress in that individual, but could simply represent the low end of normal population variability. However, as long as a small person's BSIs maintain the proportional relationship seen in the rest of the sub-sample, no growth disruption will be detected. The benefit of this method is that the trajectory calculated is specific to each population sub-sample and the average relationship between variable pairs. Therefore, while small (or large) individuals will simply slide up or down the regression lines the individuals deviating away from this trajectory truly represent the outliers of the group, regardless of their overall body size.

96

Although there are multiple explanations for the patterns of growth disruption and growth acceleration seen in these sub-samples it is assumed that the parameters outlined above provide the most accurate interpretation for this analysis.

As discussed in Chapter 4, section 4.6.2 the Sadlermiut and Sacred Heart subsamples showed distinct periods of growth disruption and growth acceleration occurring generally in the late juvenile stage and throughout the adolescent stage of growth and development. Below is a discussion of each sub-sample and the general trends of growth fluctuation through BSI analysis, as well as the incorporation of all supplementary data.

#### 5.6 Sub-sample Growth Disruption and Acceleration Summaries

### **5.6.1 Sadlermiut Females**

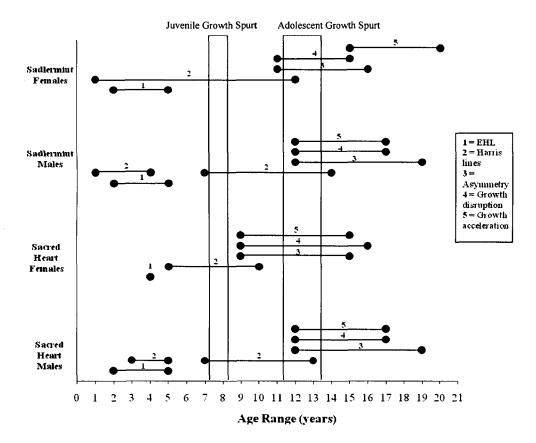
While the Sadlermiut females showed evidence of early childhood growth disruption through the analysis of EHL (two years to five years) and Harris lines (> one year to 12 years), BSI analysis was only able to identify growth disruption between the ages of 11 and 15 years, as shown below in Figure 5.1. The asymmetry data collected for this sub-sample, similar to the BSI data, also demonstrated a stress period between 11 and 16 years. This period of disruption was then followed by growth acceleration between 15 and 20 years of age. In line with the argument made above, the acceleration pattern noted in this sub-sample is most likely catch-up growth, suggesting that the level of stress endured by the Sadlermiut females was extreme enough to preclude any acceleration until the stress had passed. There was no evidence of natural growth spurts occurring within this sub-sample, reiterating the magnitude of stress endured by these females. Of the four sub-samples the Sadlermiut females showed the greatest frequency of fluctuation per individual, suggesting that these females were continually exposed to developmental

instability during the period of growth and development. With regards to stature estimates, the Sadlermiut females were, on average, the shortest sub-sample. Although these stature estimates did not provide direct evidence to suggest stress, they did provide a good indication of overall growth fluctuation patterns and potentially of interference with a normal growth spurt. Individuals mainly falling below the sub-sample confidence interval were generally shorter, while individual consistently falling above the confidence interval were generally taller than the rest of the sub-sample.

# 5.6.2 Sacred Heart Females

Similar to the Sadlermiut female sub-sample, the Sacred Heart females showed evidence of early childhood stress through the examination of EHL (3.5 years). Harris line data, although mainly present during the childhood stage of growth (five years to 10 years with a peak at seven years) did show some overlap with BSI and asymmetry data between nine and 10 years of age. In this Sacred Heart female sub-sample, growth disruption illustrated in the BSI and asymmetry data, was generally present between nine and 16 years of age as shown below in Figure 5.1. During this same time period growth acceleration was also present between nine and 15 years of age, which does not fall within the timeframe of natural growth spurts. Because this acceleration period did not begin during one of the natural growth spurt periods or after a stress event had passed (catch-up growth), it can be assumed that this acceleration is part of a pattern of growth fluctuation affecting the developmental stability of this sub-sample. Similar to the Sadlermiut females, the average stature estimate for this sub-sample did not provide direct evidence of stress; however, as discussed above, the individual estimates of stature were good indicators of the individual patterns of growth fluctuation.

#### 5.6.3 Sadlermiut Males


The Sadlermiut males showed an early period of stress through the analysis of EHL (two years to five years) and Harris lines (one year to four years and seven years to 14 years). However, the Harris line data also overlapped with the growth disruption period evident in both BSI and asymmetry analyses, as shown below in Figure 5.1. Growth disruption in this sub-sample generally began at 12 years of age with growth acceleration also beginning at 12 years of age. Because the adolescent growth spurt is known to begin in males and females between approximately 11-13 years of age, it can be assumed that the growth acceleration period experienced by the Sadlermiut males is representative of the normal adolescent growth spurt. Therefore, while some BSIs were being affected by stress, other BSIs were accelerating in growth during this growth spurt period. Similar to the female sub-samples, all stature estimates calculated for the Sadlermiut males were more indicative of individual fluctuation patterns rather than indicative of chronic stress.

### **5.6.4 Sacred Heart Males**

Similar to the Sadlermiut male sub-sample, the Sacred Heart males also showed early childhood stress through the examination of EHL (two years to five years). While the Sadlermiut male sub-sample showed Harris line stress between one and four years and seven and 14 years with peaks at one year and nine years, the Sacred Heart males showed Harris line stress between three and five years and seven and 14 years with a peak at 11 years. The BSI and asymmetry data collected for the Sacred Heart male subsample mainly showed disruption occurring between 12 and 17 years and acceleration occurring during the same time period. Because the beginning of this acceleration fell within the adolescent growth spurt period, it was assumed that the acceleration exhibited in this sub-sample represented the normal growth spurt pattern of adolescence. The average stature estimate of the Sacred Heart male sub-sample was by far the tallest of all four sub-groups. Similar to the other three sub-samples, these data were better suited to examine individual fluctuation patterns rather than specific patterns of stress.

By establishing the general trends of growth disruption and the varying causes of growth acceleration in these sub-samples along with the patterns of different stress indicators, it becomes easier to address the potential causes of these fluctuations and how this may have affected the overall health of the Sadlermiut and Sacred Heart samples.





#### 5.7 Non-specificity of Stress Indicators

As discussed earlier, skeletal stress can be caused by multiple factors and can produce skeletal changes as a result of disrupted or delayed growth and development (Goodman and Martin 2002). Some potential stress variables are: poor nutrition, socioeconomic status, migration, sex, genetics and climate (Johnston et al. 1975; Delemarrevan de Waal 1993; Hoppa and FitzGerald 1999; Bogin 2001; Ruff 2002). Because the presence of the skeletal stress markers (EHL, Harris lines, fluctuating asymmetry and BSI analysis) can be caused by a variety of different variables, bioarchaeologists are not able to succinctly link specific stress processes to specific skeletal changes. While there is evidence that some stress variables may contribute to some specific skeletal changes within the human body, these stressors and their skeletal impact still remain largely nonspecific (Goodman et al. 1984). Although this inherent non-specificity of stress indicators is a constant consideration for bioarchaeological research, certain patterns can emerge with regards to stress timelines and the use of multiple indicators to examine stress periods during growth and development (Goodman et al. 1984). Although there may be multiple variables causing skeletal stress to become manifest, the timeline of when that stress specifically occurred may help bioarchaeologists to more conclusively explore the type of stress present and why it is occurring during a specific time period of growth and development. A well established example of this would be the examination of EHL and how the timing of these lesions has been linked to periods of weaning within different cultures (Goodman and Rose 1990).

#### 5.8 Adolescence and Skeletal Stress

It has been well documented that during the adolescent stage of growth and development, both males and females experience a rapid acceleration of growth with regards to body mass and body stature (Bogin 2001), which can be a potential source of physiological stress. This acceleration within the body pertains to nearly all tissues in the body, including the skeletal system which is highly correlated to puberty and can manifest the many stresses of adolescence (Delemarre-van de Waal 1993). At the onset of puberty in the human body, both males and females experience a variety of different changes requiring far more energy in order to grow and develop these systems properly (Bogin 2001). Although heredity provides the basis of all growth potential within the body, multiple factors can affect whether or not an individual will reach their genetic growth potential (Delemarre-van de Waal 1993). During the adolescent stage of growth and development it has been documented that individuals can be exposed to potential stress factors as they require more calories, proper nutrients, develop sex-dependent immune systems responses, experience psychosocial stress and can be exposed to specific diseases that do not openly manifest within the body until puberty is reached and the growth spurt is completed (Delemarre-van de Waal 1993; Golub 2000). Although the mortality rate during adolescence in archaeological and modern populations is generally regarded as low (Golub 2000), it is clear that this time period of growth and development is fraught with many potential stress variables to be considered for both the Sadlermiut and Sacred Heart samples.

#### 5.9 Adolescence and the Sadlermiut and Sacred Heart Sub-samples

## 5.9.1 Sadlermiut and Sacred Heart Females

As discussed above, the Sadlermiut females displayed a distinctive pattern of growth disruption and acceleration beginning at the onset of adolescence. The goal now is to explain why stress was visible in this population during this time period. Although the movement into the adolescent stage of growth may be slightly different in different cultures, one key element experienced by all females during this time period is the onset of menarche. The onset of menarche for females generally signifies the beginning of adolescence but has been found to be highly variable between populations (Bogin 2001; Thomas et al. 2001; Gluckman and Hanson 2006). It has been argued that variation in the timing of menarche is tied to body fat distribution (Lassek and Gaulin 2007), skeletal development (Elizondo 1992), genetics (Campbell and Udry 1995), nutrition (Cole 2000), the environment (Golub 2000), broken households (Campbell and Udry 1995) and ethnic affiliations (Freedman et al. 2002). Regardless of the primary initiator of menarche, this process can be identified as a potential stress to the skeletal system of females. Generally menarche begins after the maximum velocity growth rates are reached in body stature and body weight (Tanner 1962; Frisch and Revelle 1970). Due to the very nature of menarche and the continual loss of iron during each monthly cycle, many young women lacking the proper nutritional intake may well have suffered stress during these early years of menarche while their body still continued to grow and develop. Discussed by Condon (1987) and Kozlov and Vershubsky (2003), the average onset of menarche in Arctic populations generally ranges between 13 and 15 years of age, while the average onset of menarche in historical American and European populations is approximately 13

to 14 years of age (Laslett 1971). This later onset of menarche in Arctic populations is most likely tied to environmental conditions, such as inadequate nutrition (Cole 2000), that may restrain the proper development of these young women and delay their maturation. It is assumed that the onset of menarche in addition to other adolescent stresses contributed to the growth disruption experienced by the Sadlermiut females.

In contrast to the Sadlermiut females, however, are the Sacred Heart females, who did not experience a similar pattern of growth disruption during their onset of menarche. This difference between the female sub-samples may be due to other external sources of stress that may have affected the female response to menarche and the beginning of adolescence. While the Sadlermiut females may have been plagued with more external stress such as nutritional deficiencies contributing to their adolescent stress period, the Sacred Heart females may have had a smoother transition into the adolescent stage of growth with less contributing factors exacerbating the already known stresses of adolescence. While the Sacred Heart females may appear to be less affected by stress overall, it is important to recognize that these individuals were not stress free. These females were affected by a distinct period of growth disruption in the late juvenile stage of growth, perhaps the result of nineteenth century cultural factors not yet understood. However, because this period of growth disruption coincided with growth acceleration suggests that this fluctuation may have also been the result of developmental instability during this time period where these females were both fluctuating above and below the confidence intervals of their sub-sample. The fluctuation experienced by the Sacred Heart females was far less than the other three sub-samples, suggesting that while these females

experienced some sort of stress it was not as easily defined or long term when compared to the Sadlermiut females or male sub-samples.

#### 5.9.2 Sadlermiut and Sacred Heart Males

In contrast to the females of this study, the males from both the Sadlermiut and Sacred Heart sub-samples experienced similar periods of growth disruption and acceleration. Both male samples, on average experienced these growth fluctuations between 12 and 17 years of age. Akin to the Sadlermiut female sub-sample, this time period of growth fluctuation is consistent with the time frame of adolescence (Bogin 2001). Although males do not experience the stress of menarche, they are still faced with similar stresses during this period of growth and development. A primary obstacle faced by the growing skeletal system is the acquisition of proper nutrients and calories (Delemarre-van de Waal 1993). During this time period of growth males and females begin to differ significantly in body size, both in stature and in weight, and develop secondary sexual characteristics. The product of this physical differentiation is known as sexual dimorphism (Grey and Wolfe 1982). Therefore, when males enter the adolescent stage of growth, their bodies can be physiologically stressed by the constraints of growing a large body size in a short period of time, especially if the proper nutrients are not available within their surrounding environment. The psychosocial stress of early adolescence may also play a role in the skeletal development noted in these males. An example of this may be the psychological stress associated with being socially recognized as a man in different societies. As discussed by Condon (1987), in many Arctic groups females demonstrate their maturity through the onset of menarche; however, males must prove their maturity by demonstrating their strength through their hunting abilities. While both males and females are exposed to the psychosocial stress of adolescence perhaps the cultural expectations put onto males to physically display their maturity makes this transition much more stressful.

As briefly mentioned above, another potential cause of stress during the adolescent stage of growth is the maturation of the immune system. During this stage of growth the immune system undergoes changes that are sex-dependent and it has been documented that during this sex-differentiation the male immune system is not as responsive as the female immune system (Golub 2000). Although this difference between male and female susceptibility to stress has a genetic basis referred to as sexual buffering, the changes to the immune system during adolescence may further increase the male susceptibility to external stressors. Despite the evident stress affecting both male subsamples, it appears that this early adolescent stress was present but did not affect the normal progress of the adolescent growth spurt for these sub-samples which appeared as growth acceleration at the same time as growth disruption.

### 5.10 Sexual Buffering: The Resistance to Stress in Females and Males

Sexual buffering is generally regarded as a process by which females appear to be genetically programmed to be resistant to certain types of stress (Stinson 1985). Males appear to be more sensitive to environmental or cultural stressors during critical growth periods that will affect their overall stature in adulthood (Stinson 1985). Theoretically, sexual buffering is based on the concept that females must remain hearty in order to successfully reproduce while the male is the expendable sex, as only one male is needed to seed a population (Stinson 1985). This concept of sexual buffering can be examined both empirically and theoretically. Empirical evidence of sexual buffering is generally

observed by examining the maturation rates of males and females as well as their overall body size and responses to stress.

From the moment of conception male embryos are more fragile than female embryos (Catalano and Brunckner 2006). Empirical data for ratios of male to female embryos reveal that males are actually more readily conceived than females, but are confronted with far more in-utero complications such as brain damage, congenital abnormalities, and cerebral palsy (Kraemer 2000). Male embryos also suffer a higher rate of spontaneous abortion in the womb (Catalano and Brunckner 2006). It is important to recognize here that this fragility in the womb continues through life for the male embryos that do survive, as they are more vulnerable to environmental and cultural stress (Catalano and Brunckner 2006). Patterns of growth and development in early life also reflect this dichotomy between male and female buffering, as females generally develop faster than males, specifically in tooth eruption, sexual maturation, and skeletal development (Flory 1935).

From a theoretical perspective, females are assumed to be buffered against stress more than males for reproductive and nurturing purposes. Even at a microscopic level, male and female sex cell production exhibits this buffering. When faced with stress, female sex cell production continues within the gonads while males, exposed to a similar stress, show a reduction in sex cell production in the gonads (Hunt and Hassold 2002). This suggests that during times of stress the female reproductive system allows sex cell production to continue in order to promote reproduction while the male sex cells recognize the stress and diminish in number. Although sexual buffering appears to be anchored in genetics, this buffering can be affected by cultural processes that favour one sex over the other.

# 5.10.1 Cultural Influence on Sexual Buffering

As argued in this thesis, when an individual is confronted with stress during the period of growth and development their skeleton can be affected as a result. If sexual buffering is acting naturally on a population, bioarchaeologists would expect that males would be more affected by stress than females (Stinson 1985). However, the intrusion of cultural preferences or practices onto this natural process can change the expression of sexual buffering in skeletal remains and needs to be considered (Stinson 1985). Once the cultural practices of a population infringe on sexual buffering, not only does sex need to be considered when examining stress but also the social roles that males and females are expected to play within their community, which may be invisible archaeologically (Armelagos 1998). However, as explored by Storey (1998) in her study of the Maya, the archaeological examination of dietary patterns, textiles, iconography, etc. may make some of these social and gender roles become more evident, providing insight into the processes of sexual buffering in past populations. These social roles often affect the access males and females have to certain privileges in society and those privileges can drastically affect their growth and development (Armelagos 1998). The importance in examining social roles for bioarchaeologists is how the social roles of males and females ultimately affect their health, specifically their overall body size and development of individual skeletal elements (Storey 1998). Generally males are more preferred than females in society and this has been documented in both past and present populations (Storey 1998). This preference can usually be linked to economic value and social

prestige of males over females who are limited to domestic and reproductive value (Storey 1998). However, it is important to note that specific social roles are not always easy to define; this is the case among the Sadlermiut and Sacred Heart population samples.

### 5.10.2 Sexual Buffering among the Sadlermiut and Sacred Heart

It was expected that if sexual buffering was occurring naturally in the Sadlermiut and Sacred Heart samples, then the females would show less evidence of stress than the males. However, if the Sadlermiut or Sacred Heart females demonstrated more stress than the males it was assumed that cultural influences were affecting the natural occurrence of sexual buffering.

Based on the sexual buffering literature and the growth and development trends noted for each population sample, it became clear that the sexual buffering patterns expected to emerge were not clearly evident within these four sub-samples. In general, the Sadlermiut females demonstrated more stress than the Sadlermiut males. Although both sub-samples had distinct periods of stress, the acceleration periods following these stress events suggest that the stress endured by the Sadlermiut females was more severe. While the normal adolescent growth spurt was evident in the male sub-sample, the females only experienced catch-up growth acceleration in late adolescence after the stress event had passed, suggesting a more chronic and long term type of stress. The Sadlermiut females also endured the longest period of continual Harris line stress with overlapping periods of EHL stress and asymmetry stress. While the Sadlermiut males also showed considerable stress when examining Harris lines and EHL, these periods of stress were not continuous periods of disruption. The tremendous growth fluctuations experienced by the Sadlermiut females also suggested higher levels of stress as their bodies were constantly trying to regulate their skeletal system in response to both episodes of disruption and acceleration.

The data collected from the Sacred Heart females suggested that this sub-sample was the least stressed in comparison to the other three sub-samples. As discussed above, the Sacred Heart females showed the least amount of growth fluctuation and continual stress when examining EHL and Harris lines, and showed the least amount of skeletal lesions. In comparison to the female sub-sample, the Sacred Heart males had longer periods of continual stress, particularly when examining Harris lines, and had an overall higher frequency of skeletal lesions. The Sacred Heart male sub-sample also showed more growth fluctuation than the female sub-sample, suggesting more developmental instability in the males.

As discussed above, it was assumed that if sexual buffering was occurring normally then females would appear less stressed than males, but if sexual buffering was being hindered by cultural stresses then the differences between males and females and their response to stress would be less apparent. Within these four sub-samples it was clear that the Sadlermiut females were more stressed than the Sadlermiut males when examining all lines of evidence. However, in the Sacred Heart sample the females appeared to be less stressed than the males when examining all lines of evidence. From these results a general conclusion can be made that sexual buffering was acting naturally on the Sacred Heart sample with females showing less stress than males; however, in the Sadlermiut sample it was assumed that some type of cultural stress was affecting the expected pattern of sexual buffering as the Sadlermiut females were considerably more stressed than the males. A very probable explanation of this apparent difference is the distinct environmental regions in which these individuals lived which would have encroached on all aspects of daily life and how these individuals were affected by stress.

# 5.11 Stress and the Environment

As discussed above, the specific causes of stress are difficult to identify in bioarchaeological research. Further investigation into these mechanisms and how they function in response to external influences will ultimately aid bioarchaeologists in their understanding of how stress directly affects the human skeleton. From this examination of the Sadlermiut and Sacred Heart samples it became clear that many of the potential stressors affecting their skeletons, either through the creation of lesions or the alteration of the patterns of growth and development, are all linked to the environmental regions in which these individuals lived. As discussed, the physical environment can have a significant effect on the genetically determined body proportions of a population; however, it is important to recognize that many of the other external stress factors are also created as a consequence of the physical environment.

Within a cold Arctic environment the Sadlermiut would have constantly struggled to attain enough food high in nutritional content that they needed to survive, ultimately affecting their patterns of growth and development. This population would likely have also been exposed to psychosocial stress as a result of their social isolation from other surrounding Inuit groups. Also reduced sunlight hours during the winter months (see section 2.2.1) may have increased the prevalence of Arctic hysteria, a well documented psychosocial stress brought on by a reduced photoperiod during the winter season (So 1980). Because this population was endogamous, the Sadlermiut may also have been

111

exposed to various congenital conditions within their own community group, fostering specific types of physiological stress. Depending on the social structure of the Sadlermiut, access to resources may have been divided between the sexes, creating a type of social stress which may have contributed to the higher levels of growth disruption evident among the Sadlermiut females. Although these stress factors are not directly linked with a cold environment, it is clear that this type of environment will ultimately foster specific types of stress due to the very nature of survival within this region. While long term natural selection may have selected for adaptations to the cold temperature such as thermoregulatory adaptation of limb proportions, it is important to recognize the many other stress factors within this cold region that would have affected Sadlermiut health.

When examining the Sacred Heart sample it also became clear that the stress experienced by these individuals was related to the environment in which they occupied. In general, the Sacred Heart males and females showed far less stress than the Sadlermiut in regards to the supplementary stress data. This low frequency of stress makes sense in the context of the environment in which these people lived, as their access to food would have been more consistent because of the availability of agricultural products. Psychosocial stress may have been diminished, as these Sacred Heart individuals were regarded as social people interacting in a positive manner with surrounding First Nation groups. Disease threat would have also been diminished among these individuals as they had emigrated from Europe and mostly likely had a strong resistance to the common pathogens in the region. Despite the Sacred Heart individuals demonstrating less susceptibility to stress in their temperate environment, it is important to recognize that

112

while these individuals did experience stress, it appeared minimized when compared to the harsher environmental conditions of the Sadlermiut. Living conditions for archaeological populations are generally regarded as poor in comparison to modern Western standards (Steckel and Rose 2002); individuals lived short lives filled with many hardships only to be further challenged by their surrounding physical environmental.

#### **CHAPTER 6: CONCLUSIONS AND FUTURE RESEARCH**

# **6.1 Conclusions**

The primary goal of this research project was to develop a new method to examine stress from a growth and development perspective. While the primary methods of stress analysis within the bioarchaeological discipline generally examine skeletal lesions to assess stress, this research focused more on what the patterns of growth and development could reveal about the manifestation of stress. The established body size literature (Anderson *et al.* 1977; McHenry 1992; Aiello and Wood 1994; Porter 1999; Ruff 2002; Spocter and Manger 2007) was used as the basis to select individual indicators of body size that were used to examine how stress manifests within the skeleton. Although it has been documented that stress can be caused by multiple factors (Johnston *et al.* 1975; Delemarre-van de Waal 1993; Hoppa and FitzGerald 1999; Bogin 2001; Ruff 2002), environmental stress was examined as a primary stress factor affecting these two populations. In order to analyze the stress response to environmental factors two climatically distinct populations were examined, the Sadlermiut Inuit and Sacred Heart Cemetery, who occupied a cold climate in the Canadian Arctic and a temperate climate in southwestern Ontario, respectively.

In order to assess the effects of stress in the skeleton using BSIs, the relationship between these variables needed to be established through the use of correlation analysis followed by t-tests of significant association. All BSIs shown to be highly correlated and significantly associated were interpreted as being correlated via a common control mechanism tuned to the final adult body size. The BSIs were then ordered into a chronological sequence denoting the age of maturation for each variable. Once this sequence was established, regression analysis was then used to examine individuals who deviated from the normal growth trajectory of the group. Individuals falling above the confidence interval were interpreted as demonstrating growth acceleration, while individuals falling below the confidence interval were thought to indicate growth disruption. Through an analysis of these disruption and acceleration patterns a growth fluctuation pattern map was created for each of the sample populations divided by sex to track the overall patterns of disruption and acceleration of these groups.

One of the primary goals of this project was to assess the utility of body size indicators to assess stress within the human skeleton and whether or not these indicators showed significant correlations to one another. As is evident from the general growth fluctuations in both sample populations, the use of BSIs to assess stress has great potential in bioarchaeological research. Because the correlations between these indicators do exist and provide a sufficient age range of maturation, their use is viable to determine stress at any age during the years of growth and development.

With regards to the predictable patterns of growth disruption and acceleration demonstrated in each sub-sample, this method does provide relevant information to examine population sample patterns. The assessment of regression analysis data through the growth fluctuation pattern maps made specific trends of growth disruption and acceleration clear, allowing for the further investigation of stress within these subsamples. Through this analysis of growth fluctuations, along with supplementary stress lesion data from both samples, it became clear that the Sadlermiut and Sacred Heart population samples both experienced stress during a similar time period of growth; however, the magnitude of that stress was dependent upon the environment in which they occupied.

By using multiple lines of evidence to examine the stress patterns of these two population samples it became evident that each method was an important contributor to the overall outcome of this research. While EHL and Harris lines were excellent indicators of early childhood and juvenile stress events, BSI and asymmetry data were better suited to define the adolescence periods of stress. Through the integration of these multiple methods a more complete analysis of the Sadlermiut and Sacred Heart samples was possible, demonstrating the benefit and importance of using multiple lines of evidence in bioarchaeological research.

The Sadlermiut population sample was clearly more affected by stress than the Sacred Heart sample. As was evident from both supplementary data and from the BSI method explored in this research, the Sadlermiut individuals were continually plagued by stress from the very beginning of childhood into the adolescent stages of growth. The Sadlermiut females, in contrast to the expected patterns of sexual buffering, were more stressed than the Sadlermiut males suggesting additional cultural stresses affecting females in this population. While the males of this population appeared to have overcome their stress before the adolescent growth spurt, the stress experienced by the females continued through this period, followed by a period of catch-up growth in late adolescence. The significant stress experience by the males and females of this sample was partially due to the biological changes of adolescence but also due to the harsh environment that they occupied. Scarce food resources, social isolation, and disease were all potential causes of the stress that manifested within the Sadlermiut skeletal remains, ultimately compounding the biological stress of adolescent maturation.

In contrast to the Sadlermiut, the Sacred Heart population sample was far less affected by stress during their period of growth and development. This sample showed stress mainly occurring during the late juvenile stage and early adolescent stage of maturation. The supplementary data showed that the Sacred Heart females were far less affected by stress than the males and that stress was most likely short-term and not severe. While the Sadlermiut demonstrated stress during the early childhood stage of growth, the Sacred Heart males and females generally tended to show stress later on. The Sacred Heart males appeared to have been stressed by the biological changes of adolescence but then quickly began the adolescent growth spurt, while the females demonstrated stress through growth fluctuations above and below the confidence intervals. Although these individuals were stressed during growth and development their temperate climate provided more shelter from environmental stressors. Because this population relied on agriculture, food sources were readily available, social isolation was not as extreme as the Sadlermiut and disease manifestation may have been minimal due to population resistance to European diseases. Overall, the Sacred Heart individuals were stressed but in comparison to the hardships suffered by the Sadlermiut their temperate environment acted as a buffer to potential sources of stress.

### **6.2 Future Research**

Although this research project established the utility of using BSIs to examine stress episodes in archaeological populations, future research into how growth and development patterns can indicate stress must be undertaken with regards to bone biology. While patterns of growth and development and skeletal lesions may indicate stress, it is important to further investigate the thresholds by which these indicators of stress manifest within the skeleton, specifically why some indicators of stress may be more prevalent than others (cf. Dolphin 2000). By understanding these thresholds as well as the underlying biological processes, bioarchaeologists will be better equipped to discern the type of stress occurring, the time period of when that stress affected the body and finally the magnitude of stress. Another important consideration is how these differences in threshold may be linked to the underlying biological processes of bone formation and how these mechanisms respond to stress. While the different mechanisms of bone growth (length vs. mass) may help to explain why some BSIs are more readily affected by stress, further investigation into these processes and their affect on bone development is needed to fully understand how stress manifests within the skeleton.

Further investigation into patterns of variability among BSIs is also important to examine the possibility of selecting earlier maturing BSIs that may fill in some of the inevitable gaps in the age range of BSI maturation. A larger list of BSIs may also open up the possibility of further correlations among certain indicators that will also help to create a more complete BSI age range for examination.

The skeletal mechanism of growth acceleration is also an important area of study that could aid in this method of stress analysis. By better understanding the adolescent growth spurt, catch-up growth and growth fluctuation it is possible that these acceleration processes may be more clearly differentiated in future research, providing further insight into how the skeletal system responds to stress via growth acceleration.

118

Finally, it is important to recognize that future research into the methods of stress analysis is needed. As discussed, stress is considered non-specific and the sources of stress are difficult to clearly define. However, through the integration of multiple methods of analysis from different perspectives, this non-specificity of stress may be addressed through supplementary comparative data, timeline information and skeletal threshold data. By developing further methods of stress analysis from multiple perspectives, skeletal stress will eventually become less of an enigma to the bioarchaeologists who seek to uncover the health patterns of past populations.

### **REFERENCES CITED**

Acsadi, G. and J. Nemeskeri

1970 History of Human Life Span and Mortality. Akademiai Kiado, Budapest.

Aiello, Leslie C. and Bernard A. Wood.

- 1994 Cranial variables as predictors of hominine body mass. American Journal of *Physical Anthropology*. 95:409-426.
- Albert, A.M. and D.L. Greene
- 1999 Bilateral asymmetry in skeletal growth and maturation as an indicator of environmental stress. *American Journal of Physical Anthropology*. 110:341-349.

Allen, J.A.

1877 The influence of physical conditions in the genesis of species. *Radial Review*. 1:108-140.

Anderson, D.L., G.W. Thompson and F. Popovich

1977 Tooth, chin, bone and body size correlations. *American Journal of Physical Anthropology.* 46:7-12.

Angel, J. Lawrence

1966 Porotic hyperostosis, anemias, malarias, and marshes in the prehistoric eastern Mediterranean. *Science*. 153(3737):360-363.

Armelagos, George J.

1998 Introduction: Sex, Gender and Health Status in Prehistoric and Contemporary Populations. Sex and Gender in a Paleopathological Perspective. Anne L. Grauer and Patricia Stuart-Macadam (eds). Cambridge: Cambridge University Press. Pp.1-10.

Banning, E.B.

2000 The Archaeologist's Laboratory: The Analysis of Archaeological Data. New York: Kluwer Academic/Plenum Publishers.

Baron, J., K.O. Klien, M.J. Colli, J.A. Yanovski, J.A. Novosad, J.D. Bacher and G.B. Cutler Jr.

1994 Catch-up growth after glucocorticoids excess: A mechanism intrinsic to the growth plate. *Endocrinology*. 135(4):1367-71.

Bergmann, C.

1847 Ueber die Verhaeltnisse der Waermeoekonornie der Thiere zu ihrer Groesse. *Goettinger Studien*, Part 1:595-708.

#### Blakey M.L., George J. Armelagos

1985 Deciduous enamel defects in prehistoric Americans from Dickson Mounds: prenatal and postnatal stress. *American Journal of Physical Anthropology*. 66(4): 371-380.

#### Blumenfeld, Jodi

2001 Neandertal Facial Morphology and Cold Adaptation. MA Thesis, The University of Western Ontario.

#### Boaz, Franz

1888 The Central Eskimo. Toronto: Coles Publishing Company Ltd.

# Boersma and Jan Maarten Wit

1997 Catch-up Growth. Endocrine Reviews. 18(5):646-661.

#### Bogin, Barry

2001 The Growth of Humanity. New York: Wiely-Liss, Inc.

Brooks, S.T. and J.M. Suchey

1990 Skeletal age determination based on the os pubis: A comparison of the Acsadi-Nemeskeri and Suchey-Brooks methods. *Human Evolution*. 5:227-238.

#### Buikstra, Jane E. and D.C. Cook.

1980 Paleopathology: An American account. *Annual Reviews of Anthropology*. 9:433-470.

## Buikstra, Jane E. and Douglas H. Ubelaker

1994 Standards for Data Collection from Human Skeletal Remains. Arkansas: Arkansas Archeological Survey Research Series.

#### Byers, Steve

1991 Technical note: Calculation of age at formation of radiopaque transverse lines. *American Journal of Physical Anthropology*. 85:339-343.

#### Campbell, Benjamin C. and J. Richard Udry

1995 Stress and age at menarche of mothers and daughters. *Journal of Biosocial Science*. 27:127-134.

### Cardoso, Hugo

2007 Environmental effects on skeletal versus dental developments. *American Journal* of *Physical Anthropology*. 132(2):223-233.

#### Catalano, Ralph and Tim Bruckner

2006 Male lifespan and the secondary sex ratio. *American Journal of Human Biology*. 18:783-790.

Clarke, Stephen K. and Patricia S. Gindhart

1981 Commonality in peak age of early-childhood morbidity across cultures and over time. *Current Anthropology*. 22: 574-575.

## Cole, T.J.

2000 Secular trends in growth. Proceedings of the Nutrition Society. 59:317-324.

#### Collins, Henry

1956 Archaeological investigation on Southampton and Coats Island, Northwest Territories. *Annual Report National Museum of Canada* 1954-55. Bulletin 142:82-113.

### Condon, Richard G.

1987 Inuit Youth: Growth and Change in the Canadian Arctic. New Brunswick: Rutgers University Press.

#### Currey J.D. and G. Butler

1975 The mechanical bone properties of bone tissue in children. *Journal of Bone and Joint Surgery*. 57A:810-814.

#### Danforth, M.E.

1994 Stature change in prehistoric Maya of the southern Maya lowlands. Latin American Antiquity 5:206-211.

### Delemarre-van de Waal, Henrietta A.

1993 Environmental factors influencing growth and pubertal development. Environmental Health Perspectives. 101(2):39-44.

#### DeLeon, Valerie B.

2007 Fluctuating asymmetry and stress in a medieval Nubian population. *American Journal of Physical Anthropology*. 132:520-534.

# Dolphin, Alexis

2000 A Comparison of two Postclassic Maya Communities using Enamel Hypoplastic Indicators of Juvenile Health: Marco Gonzalez and San Pedro, Belize. MA Thesis, The University of Western Ontario.

#### Elizondo, S.

1992 Age at menarche: its relation to linear and ponderal growth. *Annals of Human Biology*. 19:197-199.

## Eveleth, Phyllis B. and James M. Tanner

1976 Worldwide Variation in Human Growth, 2<sup>nd</sup> Edition. Cambridge: Cambridge University Press.

Feldesman, Marc R., Kleckner, J. Geffory and John K. Lundy

1990 Femur/stature ratio and estimates of stature in mid- and late-Pleistocene fossil hominids. *American Journal of Physical Anthropology*. 83:359-372.

Flory, Charles D.

1935 Sex differences in skeletal development. Child Development. 6(3):205-212.

Frayer, David W., Milford H. Wolpoff

1985 Sexual dimorphism. Annual Review of Anthropology. 14:429-473.

Freedman, David S., Laura Kettel Khan, Mary K. Serdula, William H. Dietz, Sathanur R. Srinivasan and Gerald S. Berenson.

2002 Relation of age at menarche to race, time period and anthropometric dimensions: The Bogalusa Heart Study. *Pediatrics*. 110(4):1-7.

Frisch, Rose E. and Roger Revelle

1970 Height and weight at menarche and a hypothesis of critical body weights and adolescent events. *Science*. 169(3943):397-399.

Garn, S.M., F.N. Silverman, K.P. Hertzog and C.G. Rohmann.

1968 Lines and bands of increased density. Their implications to growth and development. *Medical Radiography and Photography*. 44(3):58-89.

Gluckman, PD. and MA Hanson

2006 Evolution, development and timing of puberty. *Trends in Endocrinology and Metabolism*. 17:7-12.

Golub, Mari, S.

2000 Adolescent health and the environment. *Environmental Health Perspectives*. 108(4):355-362.

Goodman, Alan H.

1993 On the interpretation of health from skeletal remains. *Current Anthropology*. 34(3):281-288.

Goodman, Alan H. and George J. Armelagos

1988 Childhood stress and decreased longevity in a prehistoric population. *American Anthropologist.* 90:936-944.

Goodman, Alan H. and George J. Armelagos

1989 Infant and childhood morbidity and mortality risks in archaeological populations. *World Archaeology*. 21(2): 225-243.

Goodman, Alan H., Armelagos, George J. and J.C. Rose

1980 Enamel hypoplasias as indicators of stress in three prehistoric populations from Illinois. *Human Biology*. 52:515-528.

Goodman, Alan, H. and Debora L. Martin

2002 Reconstructing health profiles from skeletal remains. *The Backbone of History: Health and Nutrition in the Western Hemisphere*. Richard H. Steckel and Jerome C. Rose (eds). Cambridge: Cambridge University Press. Pp.11-60.

Goodman, Alan, H., Debora L. Martin, George J. Armelagos and George Clark

1984 Indicators of stress from bone and teeth. *Paleopathology at the Origins of Agriculture*. Mark N. Cohen and George J. Armelagos (eds). Orlando: Academic Press, Inc. Pp.13-49.

Goodman, Alan H. and Jerome C. Rose

1990 Assessment of systematic physiological perturbations from dental enamel hypoplasias and associated histological structures. *American Journal of Physical Anthropology.* 33: 59-110.

Goodman, Alan H. and Rhan-Ju Song

1999 Sources of variation in estimated ages at formation of linear enamel hypoplasias. *Human Growth in the Past: Studies from Bones and Teeth.* Robert D. Hoppa and Charles M. FitzGerald (eds). Cambridge: Cambridge University Press. Pp.210-240.

Gordon, C.C. and J.E. Buikstra

1981 Soil pH, bone preservation and sampling bias at mortuary sites. *American Antiquity*. 46(2):566-571.

Grey, J.P. and L.D. Wolfe

1982 Height and sexual dimorphism of stature among human societies. American Journal of Physical Anthropology. 53:441-456.

Hayes, M Geoffrey, Joan Brenner Coltrain, Dennis H. O'Rourke

2005 Molecular archaeology of the Dorset, Thule and Sadlermiut. *Contributions to the Study of the Dorset Paleo-Eskimos.* Patricia D. Sutherland (ed). Gatineau: Canadian Museum of Civilization.

Haviland, W.A.

1967 Stature at Tikal, Guatemala: Implications for ancient Maya demography and social organization. *American Antiquity* 32:316-325.

Herman, James P. and William E. Cullinan

1997 Neurocircuitry of stress: Central control of the hypothalamo-pituitaryadrencortical axis. *Trends in Neurosciences*. 20(2):78-84. Hoppa, Robert D. and Charles M. FitzGerald

1999 From head to toe: Integrating studies from bones and teeth in physical anthropology. *Human Growth in the Past: Studies from Bones and Teeth*. Robert D. Hoppa and Charles M. FitzGerald (eds). Cambridge: Cambridge University Press. Pp.1-31.

#### Howells, W.W.

1973 Cranial Variation in Man: A Study by Multivariate Analysis of Patterns of Difference among Recent Human Populations. Cambridge: Harvard University Peabody Museum of Archaeology and Ethnology.

Humphrey, Louise T.

1998 Growth patterns in the modern human skeleton. *American Journal of Physical Anthropology.* 105:57-72.

Hunt, Patricia A. and Terry J. Hassold

2002 Sex matters in meiosis. Science, New Series. 296(5576):2181-2183.

Hunt Jr., Edward E. amd James W. Hatch

1981 The estimation of age at death and ages of formation of transverse lines from measurements of human long bones. *American Journal of Physical Anthropology*. 54:461-469.

Huss-Ashmore, R., A.H. Goodman, and G.J. Armelagos

1982 Nutritional inference from paleopathology. *Advances in Archaeological Method and Theory*. 5:395-474.

Hutchinson, Dale L. and Clark Spencer Larsen

1988 Determination of stress episode duration from linear enamel hypoplasias: A case study from St. Catherines Island, Georgia. *Human Biology* .60(1):93-110.

Ingersoll Tribune

1967 Pioneer Cemeteries. Centennial Edition 1867-1967.

Johnson, Francis E., William A. Laughlin, Albert B. Harper and Arthur E. Ensroth
 Physical growth of St. Lawrence Island Eskimos: Body size, proportion, and
 composition. *American Journal of Physical Anthropology*. 58:397-401.

Jungers, W.L.

1985 Body size and scaling of limb proportions in primates. *Size and Scaling in Primate Biology*. W.L. Jungers (ed). New York: Plenum Press.

Jurmain, Robert, Lynn Kilgore, Wenda Trevathan and Harry Nelson

2004 Essentials of Physical Anthropology Fifth Edition. Belmont: Thompson Wadsworth.

Kappelman, John

1996 The evolution of body mass and relative brain size in fossil hominids. *Journal of Human Evolution*. 30:243-276.

King, Sarah E. and Stanley J. Ulijaszek

1999 Invisible insults during growth and development: Contemporary theories and past populations. Human Growth in the Past: Studies from Bones and Teeth. Robert D. Hoppa and Charles M. FitzGerald (eds). Cambridge: Cambridge University Press. Pp.161-182.

Klein, Gordon L.

- 2004 Glucocorticoid-induced bone loss in children. *Clinical Reviews in Bone and Mineral Metabolism*. 2(1):37-52.
- Knapp, Thomas R.
- 1992 Technical error of measurement: A methodological critique. Notes and Comments. *American Journal of Physical Anthropology*. 87:235-236.

Kozlov, A. and G. Vershubsky

2003 Children's growth and body mass in the north, sub-arctic and arctic. *International Journal of Anthropology*. 18(3):161-167.

Kraemer, Sebastian

2000 The fragile male. British Medical Journal. 321:1609-1612.

Larsen, Clark Spencer

- 1997 Bioarchaeology: Interpreting Behaviour from the Human Skeleton. Cambridge: Cambridge University Press.
- Laslett, Peter
- 1971 Age at menarche in Europe since the eighteenth century. Journal of Interdisciplinary History. 2(2):221-236.

Lassek, William D. and Steven J.C. Gaulin

2007 Brief Communication: Menarche related to fat distribution. American Journal of *Physical Anthropology*. 133:1147-1151.

# Leung, Brian, Mark R. Forbes and David Houle

2000 Fluctuating asymmetry as a bioindicator of stress: Comparing efficacy of analyses involving multiple traits. *The American Naturalist*. 155(1):101-115.

Lewis, Mary and Charlotte Roberts

1997 Growing pains: The interpretation of stress indicators. *International Journal of* Osteoarchaeology. 7(6):581-586.

Lovejoy, C.O., R.S. Meindl, T.R. Pryzbeck and R.P. Mensforth

1985 Chronological metamorphosis of the auricular surface of the ilium: A new method for the determination of age at death. *American Journal of Physical Anthropology.* 68:15-28.

# Lukacs, John R.

2009 Markers of physiological stress in juvenile bonobos (*Pan paniscus*): Are enamel hypoplasia, skeletal development and tooth size interrelated? *American Journal of Physical Anthropology*. 139:339-352.

Maat, George J.R.

1984 Dating and rating of Harris lines. *American Journal of Physical Anthropology*. 63:291-299.

## Manelli, F., A. Giustina

2000 Glucocorticoid-induced osteoporosis. Trends in Endocrinology Metabolism. 11(3):79-85.

# Manning, T.H.

1942 Remarks on the physiography, Eskimo, and mammals of Southampton Island. *Canadian Geographic Journal.* 24-25:17-33.

#### Masset, C.

1989 Age Estimation on the Basis of Cranial Sutures. Age Markers in the Human Skeleton. M.Y. Iscan (ed). Illinois: Charles C Thomas. Pp.71-103.

#### Mathiassen, Therkel

1927 Archaeology of the Central Eskimos. Report of the Fifth Thule Expedition 1921-24. Volume 4. Copenhagen.

### Maxwell, Moreau S.

1985 Prehistory of the Eastern Arctic. Orlando: Academic Press, Inc.

### Mays, S.

1995 The relationship between Harris lines and other aspects of skeletal development in adults and juveniles. *Journal of Archaeological Science*. 22: 511-520.

# McGhee, Robert

1996 Ancient People of the Arctic. Vancouver: UBC Press.

#### McHenry, Henry M.

1992 Body size and proportions in early hominids. *American Journal of Physical Anthropology.* 87:407-431. Merbs, Charles F.

1983 Patterns of Activity-Induced Pathology in a Canadian Inuit Population. Archaeological Survey of Canada, National Museum of Man Mercury Series, No.119. Ottawa: National Museum of Canada.

Miller, Gregory E., Edith Chen and Eric S. Zhou

2007 If it goes up, must it come down? Chronic stress and the HPA axis in humans. *Psychological Bulletin.* 133(1):25-45.

Moore-Jansen, P.M. S.D. Ousley and R.L. Jantz

1994 Data Collection Procedures for Forensic Skeletal Material. Report of Investigations No.48, Department of Anthropology, University of Tennessee, Knoxville.

Natural Resources of Canada

2003 Maps and Archives. Electronic document, http://atlas.nrcan.gc.ca/site/English/index.html, accessed January 1, 2009.

### Nelson, Andrew John

1995 Cortical Bone Thickness in the Primate and Hominid Postcranium: Taxonomy and Allometry. PhD Dissertation, University of California Department of Anthropology, Los Angeles.

#### Nelson, Andrew J. and Jennifer L. Thompson

2002 Adolescent postcranial growth in *Homo neanderthalensis*. *Human Evolution through Developmental Change*. N. Minugh-Purvis and K. McNamara (eds). Baltimore: John Hopkins University Press. Pp.442-463.

Nickens, P.

1976 Stature reduction as an adaptive response to food production in Mesoamerica. *Journal of Archaeological Science* 3:31-41.

Palmer, A.R. and C. Strobeck

1986 Fluctuating asymmetry: Measurement, analysis and patterns. *Annual Review of Ecology and Systematic*. 17:391-421.

Perini, Talita Adao, Glauber Lameira de Oliveira, Juliana dos Santos Ornellas and Fatima Palha de Oliveira.

2005 Technical error of measurement in anthropometry. *Rev Bras Med Esporte*. 11(1):86-90.

Phenice, T.

1969 A newly developed visual method of sexing the os pubis. *American Journal of Physical Anthropology*. 30:297-301.

Porter, A.M.W.

1999 The prediction of physique from the skeleton. *International Journal of Osteoarchaeology*. 9:102-115.

### Poulton, D.R. and Associated Ltd.

2008 The 2008 Stage 1 & 3 Archaeological Assessmentof the Former Sacred Heart Cemetery, 119 John Street, Town of Ingersoll, Oxford County, Ontario. Submitted to B.W. Conn Homes Ltd. CIF#P053-118-2008: Corporate Project#08-08. 1-33.

Prader, A., J.M. Tanner and G.A. von Harnack

1963 Catch-Up growth following illness or starvation: An example of developmental canalization in Man. *The Journal of Pediatrics*. 62(5):646-659.

### Prokopec, M.

2001 Differential rate of growth of the human body parts. *Perspectives in Human Growth, Development and Maturation*. Parasmani Dasgupta and Roland Hauspie (eds). Dordrecht: Kluwer Academic Publishers. Pp.313-320.

Raxter, Michelle, Benjamin M. Auerbach and Christopher B. Ruff

2006 Revision of the Fully technique for estimating statures. *American Journal of Physical Anthropology*. 130:374-384.

### Roberts, Charlotte and Keith Manchester

2005 The Archaeology of Disease. Third Edition. New York: Cornell University Press.

### Rosenfield, Robert L. MD

1996 Essentials of growth diagnosis. Endocrinology and Metabolism Clinics of North America. 25(3):743-758.

### Ross, W. Gillies

1977 Whaling and the decline of Native populations. *Arctic Anthropology*. 14(2):1-8.

### Rowley, Susan

1994 The Sadlermiut: Mysterious or misunderstood. *Threads of Arctic Prehistory: Papers in Honour of William E. Taylor Jr.*. David A. Morrison and Jean-Luc Pilon (eds). Washington: University of Washington Press. Pp.361-384.

### Ruff, Christopher

- 2002 Variation in human body size and shape. *Annual Review of Anthropology*. 31:211-232.
- 2007 Body size prediction from juvenile skeletal remains. American Journal of *Physical Anthropology.* 133:698-716.

Ruff, Christopher, Erik Trinkhaus and Trenton W. Holliday

1997 Body mass and encephalization in Pleistocene Homo. Nature. 387: 173-176.

Saul, Frank P. and Julie Mather Saul

1989 Osteobiography: A Maya Example. *Reconstruction of Life from the Skeleton*. Mehmet Yasar Iscan amd Kenneth A.R. Kennedy (eds). New York: Wiley-Liss, Inc. Pp.287-303.

### Scheuer, Louise and Sue Black

2000 Developmental Juvenile Osteology. Oxford: Elsevier Academic Press.

### Shennan, Stephen

1997 *Quantifying Archaeology, Second Edition*. Edinburgh: Edinburgh University Press.

### Smith, Emilie L.

2005 A Test of Ubelaker's Method of Estimating Subadult Age from the Dentition. MA Thesis, University of Indianapolis Archaeology and Forensics Laboratory, Indianapolis.

### So, Joseph K.

1980 Human biological adaptation to Arctic and Subarctic zones. *Annual Review of Anthropology*. 9:63-82.

### Sokal, Robert R. and James Rohlf

1981 Biometry: The Principles and Practice of Statistics in Biological Research, Second Edition. New York: W.H. Freeman.

Sommer, C.

1996 Ecotoxicology and developmental stability as an in-situ monitor of adaptation. *Ambio.* 25:374-376.

Specker, B.L., W. Brazerol, R.C. Tsang, R. Levin, J Searcy and J Steichen

1987 Bone mineral content in children 1 to 6 years of age. American Journal of Diseased Children. 141:343-344.

### Spocter, Muhammad A. and Paul R. Manger

2007 The use of cranial variables for the estimation of body mass in fossil hominids. *American Journal of Physical Anthropology*. 134:92-105.

### Steckel, Richard H. and Jerome C. Rose

2002 The Backbone of History: Health and Nutrition in the Western Hemisphere. New York: Cambridge University Press.

### Steudel, K.

1980 New estimates of early hominid body size. American Journal of Physical Anthropology. 52:63-70.

### Stinson, Sara

1985 Sex differences in environmental sensitivity during growth and development. *Yearbook of Physical Anthropology.* 28:123-147.

### Storey, Rebecca

1998 The mothers and daughters of a patrilineal civilization: The health of females among the Late Classic Maya of Copan, Honduras. *Sex and Gender in a Paleopathological Perspective.* Anne L. Grauer and Patricia Stuart-Macadam (eds). Cambridge: Cambridge University Press. Pp.133-148.

### Stuart-Macadam, P.

1989 Porotic hyperostosis: Relationship between orbital and vault lesions. *American Journal of Physical Anthropology*. 80:187-193.

### Swardstedt, T.

1966 Odontological Aspects of a Medieval Population from the Province of Jamtland/Mid-Sweden. Stockholm: Tiden Barnangen, AB.

### Tanner, J.M.

1962 *Growth at Adolescence, Second Edition.* Oxford: Blackwell Scientific Publications.

Thomas, F, F. Renaud, E. Benefice, T. De Meeus and JF. Gluegan

2001 International variability of ages at menarche and menopause: patterns and determinants. *Human Biology*. 73:271-290.

Thompson, Jennifer L. and Andrew J. Nelson

- 2000 The place of Neandertals in the evolution of hominid patterns of growth and development. *Journal of Human Evolution*. 38:475-495.
- Todd, T.W.
- 1921 Age changes in the pubic bone, 1: The white male pubis. *American Journal of Physical Anthropology.* 3:285-334.

### Town of Ingersoll

1977 Ingersoll: Our Heritage. Published by the Town of Ingersoll.

### Trinkaus, E., S.E. Churchill and C.B. Ruff

1994 Postcranial robusticity in *Homo*. II. Humeral bilateral asymmetry and bone plasticity. *American Journal of Physical Anthropology*. 93:1-34.

Ubelaker, Douglas H.

1989 Human Skeletal Remains, 2<sup>nd</sup> Edition. Washington, D.C.: Taraxacum Press.

### Van Der Eerden, B.C.J., M. Karperien and J.M. Wit

2003 Systemic and Local Regulation of the Growth Plate. *Endocrine Reviews*. 24(6):782-801.

Van der meulen, Marjolein C. H. and Patrick J. Prendergast

2000 Mechanics in skeletal development, adaptation and disease. *Philosophical Transactions: Mathematical, Physical and Engineering Sciences.* 358(1766):565-578.

Vrba, Elisabeth S.

1996 Climate, heterochrony, and human evolution. *Journal of Anthropological Research*. 52(1):1-28.

### Waldron, Tony

1994 Counting the Dead: The Epidemiology of Skeletal Populations. New York: Wiley and Sons.

### Walker, Dan

1994 Records of Sacred Heart Parish Ingersoll, Ontario 1850-1874. Volume 1. Delhi: Norsim Research and Publishing.

White, Tim D. and Pieter A. Folkens

2005 The Human Bone Manual. Burlington: Elsevier Academic Press.

Whitwell, Henry W.

1977 Town of Ingersoll: Our Heritage. Ingersoll: H.W. Whitwell.

Wood, James W., George R. Milner, Henry C. Harpending and Kenneth M. Weiss
1992 The osteological paradox: Problems of inferring prehistoric health from skeletal samples. *Current Anthropology*. 33(4):343-370.

Y'Edynak, Gloria

1978 Long bone growth in western Eskimo and Aleut skeletons. *American Journal of Physical Anthropology*. 45(3): 569-574.

### A-1 Sadlermiut skeletal sample

| Skeleton # | Adult/Sub-Adult | Age           | Sex |
|------------|-----------------|---------------|-----|
| XIV-C:96   | adult           | 25.0-40.0     | F   |
| XIV-C:112  | adult           | 25.0-35.0     | F   |
| XIV-C:175  | adult           | 30.0-40.0     | F   |
| XIV-C:105  | adult           | 30.0-45.0     | F   |
| XIV-C:145  | adult           | 35.0-45.0     | F   |
| XIV-C:149  | adult           | 40.0-50.0     | F   |
| XIV-C:153  | adult           | 40.0-60.0     | F   |
| XIV-C:103  | adult           | 45.0-55.0     | F   |
| XIV-C:104  | adult           | 45.0-55.0     | F   |
| XIV-C:98   | adult           | 45.0-60.0     | F   |
| XIV-C:155  | adult           | 50.0+         | F   |
| XIV-C:219  | adult           | 55.0-60.0     | F   |
| XIV-C:183  | adult           | 55.0+         | ?F  |
| XIV-C:148  | adult           | 55.0+         | F   |
| XIV-C:100  | adult           | 60.0+         | F   |
| XIV-C:192  | adult           | 60.0+         | F   |
| XIV-C:221  | adult           | 60.0+         | F   |
| XIV-C:230  | adult           | 25.0-30.0     | М   |
| XIV-C:74   | adult           | 25.0-35.0     | М   |
| XIV-C:117  | adult           | 25.0-35.0     | М   |
| XIV-C:126  | adult           | 25.0-35.0     | М   |
| XIV-C:246  | adult           | 30.0-40.0     | М   |
| XIV-C:111  | adult           | 30.0-60.0     | М   |
| XIV-C:243  | adult           | 35.0-45.0     | М   |
| XIV-C:216  | adult           | 40.0-45.0     | М   |
| XIV-C:217  | adult           | 40.0-45.0     | М   |
| XIV-C:179  | adult           | 40.0-50.0     | М   |
| XIV-C:182  | adult           | 45.0-50.0     | M   |
| XIV-C:157  | adult           | 45.0-55.0     | М   |
| XIV-C:181  | adult           | 45.0-55.0     | М   |
| XIV-C:101  | adult           | 45.0-60.0     | М   |
| XIV-C:156  | adult           | 50.0+         | М   |
| XIV-C:99   | adult           | 50.0-60.0     | М   |
| XIV-C:122  | sub-adult       | B-2.0 mons.   | ?   |
| XIV-C:107  | sub-adult       | 3.0-9.0 mons. | ?   |
| XIV-C:120  | sub-adult       | 8.0 mons1.4   | ?   |
| XIV-C:77   | sub-adult       | 1.0-2.0       | ?   |
| XIV-C:79   | sub-adult       | 1.0-2.0       | ?   |
| XIV-C:78   | sub-adult       | 4.0-8.0       | ?   |
| XIV-C:118  | sub-adult       | 5.0-8.0       | ?   |
| XIV-C:76   | sub-adult       | 6.0-10.0      | ?   |
| XIV-C:124  | sub-adult       | 8.0-12.0      | ?   |
| XIV-C:220  | sub-adult       | 9.0-12.0      | ?   |

| XIV-C:75  | sub-adult | 9.0-14.0  | ?  |
|-----------|-----------|-----------|----|
| XIV-C:158 | sub-adult | 13.0-16.0 | ?M |
| XIV-C:73  | sub-adult | 15.0-20.0 | ?  |
| XIV-C:146 | sub-adult | 17.0-20.0 | М  |
| XIV-C:193 | sub-adult | 18.0-21.0 | М  |

Legend: mons. = months M = male F = female ? = unknown/questionable

| Skeleton # | Adult/Sub-Adult | Age             | Sex |
|------------|-----------------|-----------------|-----|
| 88         | Adult           | 20.0-24.0       | F   |
| 24         | Adult           | 22.0-29.0       | F   |
| 9          | Adult           | 35.0-39.0       | F   |
| 120        | Adult           | 35.0-39.0       | F   |
| 124B       | Adult           | 40.0-45.0       | F   |
| 97         | Adult           | 40.0-50.0       | F   |
| 71         | Adult           | 45.0-60.0       | F   |
| 5          | Adult           | 50.0-59.0       | F   |
| 114        | Adult           | 50.0+           | F   |
| 122        | Adult           | 50.0+           | F   |
| 139        | Adult           | 30.0-35.0       | M   |
| 115        | Adult           | 35.0-39.0       | M   |
| 145        | Adult           | 35.0-45.0       | M   |
| 30         | Adult           | 40.0-45.0       | M   |
| 72         | Adult           | 40.0-45.0       | М   |
| 33         | Adult           | 40.0-49.0       | М   |
| 73         | Adult           | 40.0-50.0       | М   |
| 64         | Adult           | 45.0-60.0       | M   |
| 83         | Adult           | 50.0-60.0       | М   |
| 55         | Adult           | 60.0+           | M   |
| 56         | Sub-adult       | 3.0mons-6.0mons | ?   |
| 44         | Sub-adult       | 6.0mons-1.0     | ?   |
| 66A        | Sub-adult       | 2.5-3.5         | ?   |
| 25         | Sub-adult       | 3.0-4.0         | ?   |
| 36         | Sub-adult       | 4.0-6.0         | ?   |
| 67         | Sub-adult       | 5.0-7.0         | ?   |
| 12         | Sub-adult       | 8.0-10.0        | ?   |
| 141        | Sub-adult       | 14.0-17.0       | M   |
| 63         | Sub-adult       | 18.0-20.0       | М   |
| 90         | Sub-adult       | 18.0-20.0       | F   |

### A-2 Sacred Heart skeletal sample

### Legend

mons. = months

M = male

F = female

? = unknown/questionable

### APPENDIX B: BODY SIZE INDICATOR (BSI) MEASUREMENTS

### **B-1 BSI measurements**

### **Cranium**

- 1. Maximum Cranial Breadth
- 2. Maximum Cranial Length
- 3. Upper Facial Breadth
- 4. Biorbital Breadth
- 5. Maximum Orbital Height
- 6. Maximum Orbital Breadth
- 7. Postorbital Breadth
- 8. Biporionic Breadth
- 9. Occipital Condyle Length
- 10. Occipital Condyle breadth
- 11. Maximum Cranial Height
- 12. Foramen Magnum Length
- 13. Foramen Magnum Breadth
- 14. Interorbital Breadth
- 15. lateral incisors/canines mesiodistal width
- 16. Chin Depth
- 17. Maximum Breadth of the Mandible
- 18. maxilla intercanine breadth
- 19. Palate Length

### <u>Vertebrae</u>

20. C7 anteroposterior diameter of superior surface

21. C7 transverse diameter of superior surface

22. T12 anteroposterior diameter of superior surface

23. T12 transverse diameter of superior surface

24. L1 anteroposterior diameter of superior surface

25. L1 transverse diameter of superior surface

26. L5 anteroposterior diameter of superior surface

27. L5 transverse diameter of superior surface

28. Sacrum anteroposterior diameter of superior surface

29. Sacrum transverse diameter of superior surface

- 30. Sacrum anterior height of first segment
- 31. Maximum height of C2-L5
- 32. Bi-iliac breadth

### <u>Humerus</u>

- 33. Maximum humerus length
- 34. Midshaft circumference
- 35. Minimum midshaft circumference
- 36. Distal epiphysis breadth
- 37. Distal joint breadth
- 38. Anteroposterior diameter of head
- 39. Capitual height

### <u>Ulna/Radius</u>

- 40. Maximum ulna length
- 41. Maximum radius length
- 42. Transverse diameter of radius head
- 43. Total arm length humerus/radius

### <u>Femur</u>

44. Maximum superior/inferior diameter of head

45. Femur head breadth

46. Anteroposterior diameter of shaft

- inferior of lesser trochanter
- 47. Transverse diameter of shaft inferior
- of lesser trochanter
- 48. Biepicondylar diameter of distal femur
- 49. Anteroposterior diameter of distal shaft
- 50. Maximum femur length
- 51. Midshaft circumference
- 52. Midshaft width
- <u>Tibia/Fibula</u>
- 53. Maximum tibia length
- 54. Tibia midshaft circumference
- 55. Proximal tibia breadth

56. Anteroposterior diameter of talar facet

57. Transverse diameter of talar facet 58. Anteroposterior diameter of

proximal tibia

- 59. Tibia midshaft width
- 60. Maximum fibula length
- 61. Total leg length femur/fibula
- 62. Patella maximum breadth
- 63. Ankle width tibia/fibula/talus/ calcaneus

Calcaneus/Talus

64. Maximum length of calcaneus

65. Posterior length of calcaneus

66. Maximum length of talus

67. Transverse diameter of tibial facet 68. Articulated height of calcaneus/talus

Metacarpals

69. Second metacarpal length 70. Second metacarpal breadth

### **B-2 BSI references**

| Bone      | Measurement                                                                 | Reference               | Indicates           |
|-----------|-----------------------------------------------------------------------------|-------------------------|---------------------|
|           | maximum width with tibia, fibula, calcaneus and talus                       |                         |                     |
| ankle     | articulated                                                                 | Porter 1999             | body weight/stature |
| ~-        | anteroposterior diameter of the superior aspect on the                      |                         |                     |
| C7        | vertebral body                                                              | McHenry 1992            | body weight         |
| C7        | transverse diameters of the superior aspect on the vertebral body           | McHenry 1992            | body weight         |
| calcaneus | maximum length of the calcaneus as taken parallel to the long axis          | Holland 1995            | body stature        |
| calcaneus | posterior length of the calcaneus                                           | Holland 1995            | body stature        |
| cranium   | maximum cranial breadth                                                     | Porter 1999             | body weight         |
| cranium   | maximum cranial length                                                      | Spocter and Manger 2007 | body weight         |
| cranium   | upper facial breadth                                                        | Spocter and Manger 2007 | body weight         |
| cranium   | biorbital breadth                                                           | Spocter and Manger 2007 | body weight         |
| cranium   | maximum orbital height                                                      | Spocter and Manger 2007 | body weight         |
| cranium   | maximum orbital breadth                                                     | Spocter and Manger 2007 | body weight         |
| cranium   | orbital area                                                                | Spocter and Manger 2007 | body weight         |
| cranium   | interorbital breadth                                                        | Aiello and Wood 1994    | body weight         |
| cranium   | postorbital breadth                                                         | Aiello and Wood 1994    | body weight         |
| cranium   | biporionic breadth                                                          | Aiello and Wood 1994    | body weight         |
| cranium   | occipital condyle length                                                    | Aiello and Wood 1994    | body weight         |
| cranium   | occipital condyle breadth                                                   | Aiello and Wood 1994    | body weight         |
| cranium   | occipital condyle area                                                      | Aiello and Wood 1994    | body weight         |
| cranium   | basion-bregma height                                                        | Raxter et al 2006       | body stature        |
| femur     | maximum superoinferior diameter of the femoral head                         | McHenry 1992            | body weight         |
| femur     | anteroposterior diameter of femoral shaft inferior to the lesser trochanter | McHenry 1992            | body weight         |

|                | transverse diameter of the femoral shaft inferior to the lesser |                         |                     |
|----------------|-----------------------------------------------------------------|-------------------------|---------------------|
| femur          | trochanter                                                      | McHenry 1992            | body weight         |
| femur          | biepicondylar diameter of the distal femur                      | McHenry 1992            | body weight         |
| femur          | shaft anteroposterior diameter of the distal femur              | McHenry 1992            | body weight         |
| femur          | femoral head breadth                                            | Ruff 2002               | body weight         |
| femur          | maximum femur length                                            | Trotter and Gleser 1958 | body stature        |
| femur          | midshaft circumference                                          | Aiello and Wood 1994    | body weight         |
| femur          | midshaft width                                                  | Porter 1999             | body weight/stature |
| femur/fibula   | total leg length                                                | Porter 1999             | body stature        |
| fibula         | maximum fibula length                                           | Trotter and Gleser 1958 | body stature        |
| foramen magnum | maximum length (anterior to posterior)                          | Spocter and Manger 2007 | body weight         |
| foramen magnum | maximum breadth                                                 | Spocter and Manger 2007 | body weight         |
| foramen magnum | total area                                                      | Spocter and Manger 2007 | body weight         |
| humerus        | maximum humerus length                                          | Trotter and Gleser 1958 | body stature        |
| humerus        | midshaft circumference                                          | Aiello and Wood 1994    | body weight         |
| humerus        | minimum shaft circumference                                     | Aiello and Wood 1994    | body weight         |
| humerus        | distal epiphyseal breadth                                       | Aiello and Wood 1994    | body weight         |
| humerus        | distal joint breadth                                            | Aiello and Wood 1994    | body weight         |
| humerus        | maximum anterior posterior diameter of humerus head             | McHenry 1992            | body weight         |
| humerus        | capitual height                                                 | McHenry 1992            | body weight         |
| humerus/radius | total arm length                                                | Porter 1999             | body stature        |
| L1             | anteroposterior diameter of superior surface                    | Porter 1999             | body weight/stature |
| L1             | transverse diameter of superior surface                         | Porter 1999             | body weight/stature |
| L5             | anteroposterior diameter of superior surface                    | McHenry 1992            | body weight         |
| L5             | transverse diameter of superior surface                         | McHenry 1992            | body weight         |
| mandible       | lateral incisors and canines mesiodistal widths                 | Anderson et al 1977     | body weight         |
| mandible       | chin depth (males)                                              | Anderson et al 1977     | body stature        |
| mandible       | maximum width                                                   | Porter 1999             | body weight         |

| ·               |                                                                  |                         |                     |
|-----------------|------------------------------------------------------------------|-------------------------|---------------------|
| maxilla         | intercanine breadth                                              | Aiello and Wood 1994    | body weight         |
| maxilla         | palate length                                                    | Aiello and Wood 1994    | body weight         |
| metacarpal      | second metacarpal length                                         | Anderson et al 1977     | body weight/stature |
| metacarpal      | second metacarpal width                                          | Anderson et al 1977     | body weight/stature |
| patella         | maximum width                                                    | Porter 1999             | body weight/stature |
| pelvis          | bi-iliac breadth                                                 | Porter 1999             | body stature        |
| radius          | mediolateral diameter of the radial head                         | McHenry 1992            | body weight         |
| radius          | maximum radius length                                            | Trotter and Gleser 1958 | body stature        |
| sacrum          | anteroposterior diameter of superior surface                     | McHenry 1992            | body weight         |
| sacrum          | transverse diameter of superior surface                          | McHenry 1992            | body weight         |
| sacrum          | anterior height of first segment                                 | Raxter et al 2006       | body stature        |
| T12             | anteroposterior diameter of superior surface                     | McHenry 1992            | body weight         |
| T12             | transverse diameter of superior surface                          | McHenry 1992            | body weight         |
| talus           | mediolateral diameter of the tibial facet                        | McHenry 1992            | body weight         |
| talus           | maximum length of the talus                                      | Holland 1995            | body stature        |
| talus/calcaneus | articulated height                                               | Raxter et al 2006       | body stature        |
| tibia           | anteroposterior diameters of the talar facet on the distal tibia | McHenry 1992            | body weight         |
| tibia           | transverse diameter of the talar facet on the distal tibia       | McHenry 1992            | body weight         |
| tibia           | anteroposterior diameter of proximal tibia                       | McHenry 1992            | body weight         |
| tibia           | maximum tibia length                                             | Trotter and Gleser 1958 | body stature        |
| tibia           | midshaft circumference                                           | Aiello and Wood 1994    | body weight         |
| tibia           | proximal breadth                                                 | Aiello and Wood 1994    | body weight         |
| tibia           | midshaft width                                                   | Porter 1999             | body weight/stature |
| ulna            | maximum ulna length                                              | Trotter and Gleser 1958 | body stature        |
| vertebrae       | maximum height of C2-L5                                          | Raxter et al 2006       | body stature        |

### **APPENDIX C: SKELETAL RECORDING FORMS**

### C-1 Adult skeletal recording form

Burial/Skeleton Number:

Site Location:

Housed At:

Recorded By:

Date Recorded:

# $\frac{Skeletal Inventory}{\sqrt{2} = present}$

/ = missing

### **Cranial Bones and Joint Surfaces**

|           | LEFT | RIGHT |
|-----------|------|-------|
| Frontal   |      |       |
| Parietal  |      |       |
| Occipital |      |       |
| Temporal  |      |       |
| Sphenoid  |      |       |
| Zygomatic |      |       |
| Maxilla   |      |       |
| Palatine  |      |       |
| Mandible  |      |       |

### **Post-Cranial Bones and Joint Surfaces**

|         | LEFT | RIGHT |
|---------|------|-------|
| Patella |      |       |
| Sacrum  |      |       |
| Ilium   |      |       |
| Ischium |      |       |
| Pubis   |      |       |

### Vertebrae (individual)

|     | Centrum | Neural Arch |
|-----|---------|-------------|
| C7  |         |             |
| T12 |         |             |
| L1  |         |             |
| L5  |         |             |

### Vertebrae (grouped)

|        | Centrum | Neural Arch |
|--------|---------|-------------|
| C1-6   |         |             |
| T1-T11 |         |             |
| L2-4   |         |             |

### Hand Bones

|                            | LEFT | RIGHT |
|----------------------------|------|-------|
| 2 <sup>nd</sup> Metacarpal |      |       |

### Tarsals

| Tarsals   |      |       |  |  |
|-----------|------|-------|--|--|
|           | LEFT | RIGHT |  |  |
| Talus     |      |       |  |  |
| Calcaneus |      |       |  |  |

### Long Bones

|               | Prox. Epip | Prox. Third | Middle Third | Distal Third | Distal Epip |
|---------------|------------|-------------|--------------|--------------|-------------|
| Left Humerus  |            |             |              |              |             |
| Right Humerus |            |             |              |              |             |
| Left Radius   |            |             |              |              |             |
| Right Radius  |            |             |              |              |             |
| Left Ulna     |            |             |              |              |             |
| Right Ulna    |            |             |              |              |             |
| Left Femur    |            |             |              |              |             |
| Right Femur   |            |             |              |              |             |
| Left Tibia    |            |             |              |              |             |
| Right Tibia   |            |             |              |              |             |
| Left Fibula   |            |             |              |              |             |
| Right Fibula  |            |             |              |              |             |

Comments:

C. Marrier

A STREET OF THE OWNER 
### Sexing

1 = female (< 3) 2 = ambiguous (3) 3 = male (> 3)

| Pelvis                        | LEFT | RIGHT |
|-------------------------------|------|-------|
| Ventral Arc (1-3)             |      |       |
| Subpubic Concavity (1-3)      |      |       |
| Ischiopubic Ramus Ridge (1-3) |      |       |
| Greater Sciatic Notch (1-5)   |      |       |
| Preauricular Sulcus (1-4)     |      |       |

Estimated Sex, Pelvis:

| Cranium                   | LEFT | CENTER | RIGHT |
|---------------------------|------|--------|-------|
| Nuchal Crest (1-5)        |      |        | /     |
| Mastoid Process (1-5)     |      |        |       |
| Supraorbital Margin (1-5) |      | /      |       |
| Glabella (1-5)            | /    |        | /     |
| Mental Eminence (1-5)     | /    |        | /     |

Estimated Sex, Cranium:

### Sex Determination:

- \_\_\_\_\_ Probable Female
- \_\_\_\_\_ Female
- \_\_\_\_\_ Ambiguous
- Probable Male
- \_\_\_\_\_ Male

### Comments:

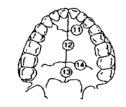
### Aging

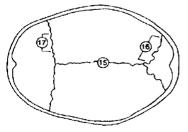
| Pelvis                              | LEFT | RIGHT |
|-------------------------------------|------|-------|
| Pubic Symphysis (Todd 1-10)         |      |       |
| Pubic Symphysis (Suchey-Brooks 1-6) |      |       |
| Auricular Surface (1-8)             |      |       |

Todd: \_\_\_\_\_ =

Suchey-Brooks: \_\_\_\_\_=


Auricular Surface: \_\_\_\_\_ =


Comments:


### **Cranial Suture Closure**

- / = unobservable/missing
- 1 = minimal closure
- 2 = significant closure
- 3 =complete obliteration

| External Cranial Vault      |  |
|-----------------------------|--|
| 1) Midlambdoid              |  |
| 2) Lambda                   |  |
| 3) Obelion                  |  |
| 4) Anterior Sagittal        |  |
| 5) Bregma                   |  |
| 6) Midcoronal               |  |
| 7) Pterion                  |  |
| 8) Sphenofrontal            |  |
| 9) Inferior Sphenotemporal  |  |
| 10) Superior Sphenotemporal |  |

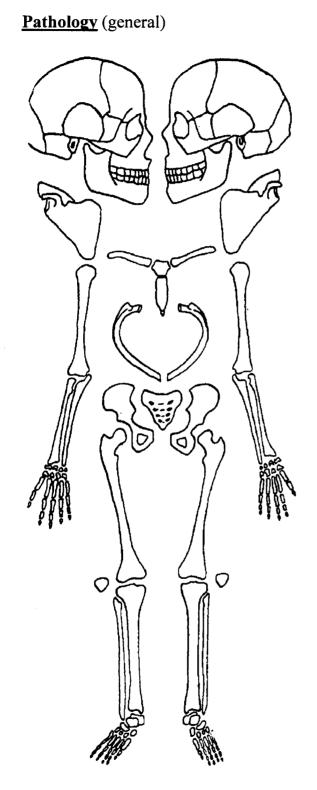






| Palate                        |   |
|-------------------------------|---|
| 11) Incisive                  | _ |
| 12) Anterior Median Palatine  |   |
| 13) Posterior Median Palatine |   |
| 14) Transverse Palatine       |   |

| Internal Cranial Vault |  |
|------------------------|--|
| 15) Sagittal           |  |
| 16) Left Lambdoid      |  |
| 17) Left Coronal       |  |


Vault Composite Score: \_\_\_\_ =

Lateral-Anterior Composite Score: \_\_\_\_ =

### Estimated Age:

\_\_\_\_\_ yrs. - \_\_\_\_\_ yrs.

Comments:



| Comments:        |
|------------------|
| <u>Community</u> |
|                  |
|                  |
|                  |
|                  |
|                  |
|                  |
|                  |
|                  |
|                  |
|                  |
|                  |
|                  |
|                  |
|                  |
|                  |
|                  |
|                  |
|                  |
|                  |

### <u>Stress Indicators</u> Enamel Hypoplasic Lesions Teeth involved:

Lesion description (Pits or Lines):

Distance from cemento-enamel junction:

\_\_\_\_\_

Comments:

**Porotic Hyperostosis/Cribra Orbitalia:** Location(s):

Healed/Unhealed:

Severity (light, moderate, severe):

Comments:

Harris Lines: Location:

Number of lines:

% of diaphysis crossed:

Comments:

BSI Measurements \* All measurements are in millimeters (mm) and to one decimal place

### Cranium

|                           | Measurement |
|---------------------------|-------------|
| max. cranial breadth      |             |
| max. cranial length       |             |
| upper facial breadth      |             |
| biorbital breadth         |             |
| max. orbital height       |             |
| max. orbital breadth      |             |
| postorbital breadth       |             |
| biporionic breadth        |             |
| occipital condyle length  |             |
| occipital condyle breadth |             |
| basion-bregma height      |             |
| foramen mag. length       |             |
| foramen mag. breadth      |             |
| interorbital breadth      |             |

### Mandible/Maxilla

|                                            | Measurement |
|--------------------------------------------|-------------|
| lateral incisors/canines mesiodistal width |             |
| chin depth (males)                         |             |
| max. breadth of mandible                   |             |
| maxilla intercanine breadth                |             |
| palate length                              |             |

### Vertebrae

|                                              | Measurement |
|----------------------------------------------|-------------|
| C7 anteroposterior diameter of sup. surface  |             |
| C7 transverse diameter of sup. surface       |             |
| T12 anteroposterior diameter of sup. surface |             |
| T12 transverse diameter of sup. surface      |             |
| L1 anteroposterior diameter of sup. surface  |             |
| L1 transverse diameter of sup. surface       |             |

| L5 anteroposterior diameter of sup. surface     |  |
|-------------------------------------------------|--|
| L5 transverse diameter of sup. surface          |  |
| sacrum anteroposterior diameter of sup. surface |  |
| sacrum transverse diameter of sup. surface      |  |
| sacrum anterior height of first segment         |  |
| maximum height of C2-L5                         |  |
| bi-iliac breadth                                |  |

### Humerus

r

|                                  | LEFT | RIGHT |
|----------------------------------|------|-------|
| max. humerus length              |      |       |
| midshaft circumference           |      |       |
| min. midshaft circumference      |      |       |
| distal epiphysis breadth         |      |       |
| distal joint breadth             |      |       |
| anteroposterior diameter of head |      |       |
| capitual height                  |      |       |

### Ulna/Radius

|                                    | LEFT | RIGHT |
|------------------------------------|------|-------|
| max. ulna length                   |      |       |
| max. radius length                 |      |       |
| transverse diameter of radius head |      |       |
| total arm length humerus/radius    |      |       |

### Femur

|                                                                 | LEFT  | RIGHT |
|-----------------------------------------------------------------|-------|-------|
| max. sup/infer. diameter of head                                |       |       |
| femur head breadth                                              |       |       |
| anteroposterior diameter of shaft inferior of lesser trochanter |       |       |
| transverse diameter of shaft inferior of lesser trochanter      |       |       |
| biepicondylar diameter of distal femur                          | ····· |       |
| anteroposterior diameter of distal shaft                        |       |       |
| max. femur length                                               |       |       |
| midshaft circumference                                          |       |       |
| midshaft width                                                  |       |       |

### Tibia/Fibula

|                                            | LEFT | RIGHT |
|--------------------------------------------|------|-------|
| max. tibia length                          |      |       |
| tibia midshaft circumference               |      |       |
| proximal tibia breadth                     |      |       |
| anteroposterior diameter of talar facet    |      |       |
| transverse diameter of talar facet         |      |       |
| anteroposterior diameter of proximal tibia |      |       |

| tibia midshaft width                     |  |
|------------------------------------------|--|
| max. fibula length                       |  |
| total leg length femur/fibula            |  |
| patella max. breadth                     |  |
| ankle width tibia/fibula/talus/calcaneus |  |

### **Calcaneus/Talus**

|                                       | LEFT | RIGHT |
|---------------------------------------|------|-------|
| max. length of calcaneus              |      |       |
| posterior length of calcaneus         |      |       |
| max. length of talus                  |      |       |
| transverse diameter of tibial facet   |      |       |
| articulated height of calcaneus/talus |      |       |

### Metacarpals

|                           | LEFT | RIGHT |
|---------------------------|------|-------|
| second metacarpal length  |      |       |
| second metacarpal breadth |      |       |

### Comments:

### C-2 Sub-adult skeletal recording form

Burial/Skeleton Number:

Site Location:

Housed At:

Recorded By:

Date Recorded:

# $\frac{\text{Skeletal Inventory}}{\sqrt{1-1}}$

 $\sqrt{-1}$  = present / = missing

and the second 
### **Cranial Bones and Joint Surfaces**

|           | LEFT | RIGHT |
|-----------|------|-------|
| Frontal   |      |       |
| Parietal  |      |       |
| Occipital |      |       |
| Temporal  |      |       |
| Sphenoid  |      |       |
| Zygomatic |      |       |
| Maxilla   |      |       |
| Palatine  |      |       |
| Mandible  |      |       |

### Post-Cranial Bones and Joint Surfaces

|         | LEFT | RIGHT |
|---------|------|-------|
| Patella |      |       |
| Sacrum  |      |       |
| Ilium   |      |       |
| Ischium |      |       |
| Pubis   |      |       |

### Vertebrae (individual)

|     | Centrum | Neural Arch |
|-----|---------|-------------|
| C7  |         |             |
| T12 |         |             |
| Ll  |         |             |
| L5  |         |             |

### Vertebrae (grouped)

|        | Centrum | Neural Arch |
|--------|---------|-------------|
| C1-6   |         |             |
| T1-T11 |         |             |
| L2-4   |         |             |

### Hand Bones

|                            | LEFT | RIGHT |
|----------------------------|------|-------|
| 2 <sup>nd</sup> Metacarpal |      |       |

### Tarsals

|           | LEFT | RIGHT |
|-----------|------|-------|
| Talus     |      |       |
| Calcaneus |      |       |

### Long Bones

the second se

| Dong Dones           | Prox. Epip | Prox. Third | Middle Third | Distal Third | Distal Epip |
|----------------------|------------|-------------|--------------|--------------|-------------|
| Left Humerus         |            |             |              |              |             |
| <b>Right Humerus</b> |            |             |              |              |             |
| Left Radius          |            |             |              |              |             |
| Right Radius         |            |             |              |              |             |
| Left Ulna            |            |             |              |              |             |
| Right Ulna           |            |             |              |              |             |
| Left Femur           |            |             |              |              |             |
| Right Femur          |            |             |              |              |             |
| Left Tibia           |            |             |              |              |             |
| Right Tibia          |            |             |              |              |             |
| Left Fibula          |            |             |              |              |             |
| Right Fibula         |            |             |              |              |             |

Comments:

### Aging

- / = unobservable/missing
- 0 = open

والمنافعة والمتفافعة والمتقام والمنافعة والمنافعة والمنافعة والمنافعة والمتعافية والمنافعة والمنافع

- 1 = partial union
- 2 =complete union

### **Epiphyseal Fusion**

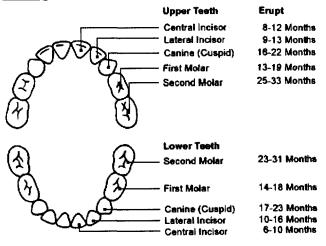
| Bone               | Epiphysis          | Stage of Union |
|--------------------|--------------------|----------------|
| Cervical vertebrae | superior           |                |
|                    | inferior           |                |
| Thoracic Vertebrae | superior           |                |
|                    | inferior           |                |
| Lumbar Vertebrae   | superior           |                |
|                    | inferior           |                |
| Radius             | proximal           |                |
|                    | distal             |                |
| Ulna               | proximal           |                |
|                    | distal             |                |
| Pelvis             | illiac crest       |                |
|                    | ischial tuberosity |                |
| Femur              | head               |                |
|                    | greater trochanter |                |
|                    | lesser trochanter  |                |
|                    | distal             |                |
| Tibia              | proximal           |                |
|                    | distal             |                |
| Fibula             | proximal           |                |
|                    | distal             |                |

Age estimate based on epiphyseal union:

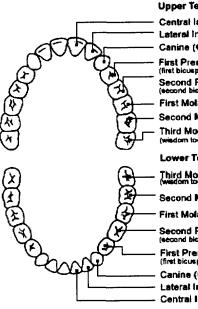
Fetal \_\_\_\_\_

b- 5 years \_\_\_\_\_

5-10 years \_\_\_\_\_ 10-15 years \_\_\_\_\_


15-20 years \_\_\_\_\_

20+ years \_\_\_\_\_


### Comments:

### **Dental Maturation**

### Primary Teeth



### Secondary Teeth



| ieeth                                  | Erupt                                |
|----------------------------------------|--------------------------------------|
| Incisor                                | 7-8 Years                            |
| Incisor                                | 8-9 Years                            |
| (Cuspid)                               | 11-12 Years                          |
| emolar<br>spid)                        | 10-11 Years                          |
| Premolar<br>icuspid)                   | 10-12 Years                          |
| dar                                    | 6-7 Years                            |
| Molar                                  | 12-13 Years                          |
| olar<br>Dolh)                          | 17-21 Years                          |
| Teeth                                  | Erupt                                |
| olar<br>Moci                           | 17-21 Years                          |
|                                        |                                      |
| Molar                                  | 11-13 Years                          |
| Molar<br>dar                           | 11-13 Yeart<br>6-7 Yeart             |
|                                        |                                      |
| ələr<br>Premolar                       | 6-7 Years                            |
| ilar<br>Premolar<br>icuspid)<br>emolar | 6-7 Yean<br>11-12 Yean               |
| emolar<br>bicuspid)<br>emolar<br>spid) | 6-7 Yean<br>11-12 Yean<br>10-12 Yean |

Age Estimate based on dental eruption:

### Estimated Age:

\_\_\_\_\_ yrs. - \_\_\_\_ yrs.

### Comments:

# Pathology (general) Comments: 2 D D $\mathcal{O}$ 0

### Stress Indicators Enamel Hypoplasic Lesions Teeth involved:

Lesion description (Pits or Lines):

Distance from cemento-enamel junction:

Comments:

**Porotic Hyperostosis/Cribra Orbitalia:** Location(s):

Healed/Unhealed:

Severity (light, moderate, severe):

Comments:

Harris Lines: Location:

Number of lines:

### % of diaphysis crossed:

### Comments:

BSI Measurements \* All measurements are in millimeters (mm) and to one decimal place

### Cranium

|                           | Measurement |
|---------------------------|-------------|
| max. cranial breadth      |             |
| max. cranial length       |             |
| upper facial breadth      |             |
| biorbital breadth         |             |
| max. orbital height       |             |
| max. orbital breadth      |             |
| postorbital breadth       |             |
| biporionic breadth        |             |
| occipital condyle length  |             |
| occipital condyle breadth |             |
| basion-bregma height      |             |
| foramen mag. length       |             |
| foramen mag. breadth      |             |
| interorbital breadth      |             |

### Mandible/Maxilla

|                                            | Measurement |
|--------------------------------------------|-------------|
| lateral incisors/canines mesiodistal width |             |
| chin depth (males)                         |             |
| max. breadth of mandible                   |             |
| maxilla intercanine breadth                |             |
| palate length                              |             |

### Vertebrae

|                                              | Measurement |
|----------------------------------------------|-------------|
| C7 anteroposterior diameter of sup. surface  |             |
| C7 transverse diameter of sup. surface       |             |
| T12 anteroposterior diameter of sup. surface |             |
| T12 transverse diameter of sup. surface      |             |
| L1 anteroposterior diameter of sup. surface  |             |
| L1 transverse diameter of sup. surface       |             |

| L5 anteroposterior diameter of sup. surface     |  |
|-------------------------------------------------|--|
| L5 transverse diameter of sup. surface          |  |
| sacrum anteroposterior diameter of sup. surface |  |
| sacrum transverse diameter of sup. surface      |  |
| sacrum anterior height of first segment         |  |
| maximum height of C2-L5                         |  |
| bi-iliac breadth                                |  |

### Humerus

|                                  | LEFT | RIGHT |
|----------------------------------|------|-------|
| max. humerus length              |      |       |
| midshaft circumference           |      |       |
| min. midshaft circumference      |      |       |
| distal epiphysis breadth         |      |       |
| distal joint breadth             |      |       |
| anteroposterior diameter of head |      |       |
| capitual height                  |      |       |

### Ulna/Radius

|                                    | LEFT | RIGHT |
|------------------------------------|------|-------|
| max. ulna length                   |      |       |
| max. radius length                 |      |       |
| transverse diameter of radius head |      |       |
| total arm length humerus/radius    |      |       |

### Femur

|                                                                 | LEFT | RIGHT |
|-----------------------------------------------------------------|------|-------|
| max. sup/infer. diameter of head                                |      |       |
| femur head breadth                                              |      |       |
| anteroposterior diameter of shaft inferior of lesser trochanter |      |       |
| transverse diameter of shaft inferior of lesser trochanter      |      |       |
| biepicondylar diameter of distal femur                          |      |       |
| anteroposterior diameter of distal shaft                        |      |       |
| max. femur length                                               |      |       |
| midshaft circumference                                          |      |       |
| midshaft width                                                  |      |       |

### Tibia/Fibula

|                                            | LEFT | RIGHT |
|--------------------------------------------|------|-------|
| max. tibia length                          |      |       |
| tibia midshaft circumference               |      |       |
| proximal tibia breadth                     |      |       |
| anteroposterior diameter of talar facet    |      |       |
| transverse diameter of talar facet         |      |       |
| anteroposterior diameter of proximal tibia |      |       |

| tibia midshaft width                     |  |
|------------------------------------------|--|
| max. fibula length                       |  |
| total leg length femur/fibula            |  |
| patella max. breadth                     |  |
| ankle width tibia/fibula/talus/calcaneus |  |

### Calcaneus/Talus

|                                       | LEFT | RIGHT |
|---------------------------------------|------|-------|
| max. length of calcaneus              |      |       |
| posterior length of calcaneus         |      |       |
| max. length of talus                  |      |       |
| transverse diameter of tibial facet   |      |       |
| articulated height of calcaneus/talus |      |       |

### Metacarpals

|                           | LEFT | RIGHT |
|---------------------------|------|-------|
| second metacarpal length  |      |       |
| second metacarpal breadth |      |       |

### Comments:

-

in the second

### APPENDIX D: RAW DATA

### D-1 Sadlermiut adult BSI measurements (mm)

| BSI Measurements (original numbering see Appendix B, B-1) |           |     |       |       |       |              |      |      |              |              |      |      |       |      |      |      |
|-----------------------------------------------------------|-----------|-----|-------|-------|-------|--------------|------|------|--------------|--------------|------|------|-------|------|------|------|
| Skeleton #                                                | Age       | Sex | 1     | 2     | 3     | 4            | 5    | 6    | 7            | 8            | 9    | 10   | 11    | 12   | 13   | 14   |
| XIV-C:96                                                  | 25.0-40.0 | F   | 125.0 | 189.0 |       |              |      |      |              |              |      |      |       |      |      | 22.7 |
| XIV-C:112                                                 | 25.0-35.0 | F   | 131.0 | 180.0 | 108.0 | <b>98.3</b>  | 37.8 | 42.9 | 89.7         | 109.0        | 26.0 | 10.3 | 138.0 | 34.9 | 29.1 | 20.8 |
| XIV-C:175                                                 | 30.0-40.0 | F   |       | 173.0 | 102.0 | 94,4         | 34.6 | 36.7 | 92.9         |              | 22.8 | 12.8 |       | 35.5 | 29.3 | 20.4 |
| XIV-C:105                                                 | 30.0-45.0 | F   | 120.0 | 176.0 | 101.0 | 90,6         | 33.3 | 39.5 | 96.1         | 106.5        | 23.7 | 12.2 | 127.0 | 35.2 | 27.9 | 16.8 |
| XIV-C:145                                                 | 35.0-45.0 | F   | 128.0 | 174.0 |       |              |      |      |              |              |      |      |       |      |      | 20.6 |
| XIV-C:149                                                 | 40.0-50.0 | F   | 126.0 | 169.0 | 101.0 | 94. <b>8</b> | 36.9 | 40.6 | 92.4         | 107.6        | 21.8 | 11.4 | 124.0 | 36.5 | 31.1 | 20.8 |
| XIV-C:153                                                 | 40.0-60.0 | F   | 132.0 | 181.0 | 104.0 | 97.4         | 35.3 | 41.5 | 94.9         | 105.1        |      |      | 133.0 |      |      | 20.2 |
| XIV-C:103                                                 | 45.0-55.0 | F   | 131.0 | 182.0 | 107.0 | 97.3         | 39.2 | 42.3 | 98.2         | 112.8        | 28.5 | 11.4 | 136.0 | 38.2 | 29.5 | 19.8 |
| XIV-C:104                                                 | 45.0-55.0 | F   | 126.0 | 178.0 | 108.0 | 102.2        | 37.1 | 43.1 | 94.5         | 107.1        | 25.0 | 11.5 | 132.0 | 39.9 | 30.9 | 20.7 |
| XIV-C:98                                                  | 45.0-60.0 | F   | 110.0 | 180.0 | 103.0 | 93,3         | 33.7 | 39.9 | 86.4         | <b>99</b> .0 | 21.3 | 10.6 | 128.0 | 38.8 | 30.5 | 18.3 |
| XIV-C:155                                                 | 50.0+     | F   | 129.0 | 174.0 | 101.0 | 96.5         | 37.0 | 38.4 | 92.6         | 108.9        | 23.8 | 12.8 | 138.0 | 35.4 | 33.1 | 21.2 |
| XIV-C:219                                                 | 55.0-60.0 | F   | 129.0 | 183.0 | 108.0 | 97.6         | 38.2 | 39.7 | 94.4         | 107.5        | 24.1 | 14.4 | 136.0 | 36.2 | 30.0 | 22.1 |
| XIV-C:183                                                 | 55.0+     | ?F  | 131.0 | 175.0 | 101.0 | 96.0         | 40.5 | 41.0 | 93.0         | 104.9        | 25.7 | 14.9 | 129   | 36   | 26.9 | 17.0 |
| XIV-C:148                                                 | 55.0+     | F   | 127.0 | 168.0 | 97.0  | 93.1         | 33.9 | 39.6 | 87.3         | 99.1         | 22.9 | 11.6 | 131.0 | 33.5 | 29.6 | 20.5 |
| XIV-C:100                                                 | 60.0+     | F   |       |       | 104.9 | 96.3         |      |      | 90.2         |              | 21.5 | 14.4 |       | 39.6 | 30.6 | 21.4 |
| XIV-C:192                                                 | 60.0+     | F   | 139.0 | 185.0 | 109.0 | <b>96.8</b>  | 37.8 | 39.3 | 102.3        | 105.9        | 19.5 | 11.8 | 139.0 |      | 31.7 | 23.6 |
| XIV-C:221                                                 | 60.0+     | F   | 130.0 | 180.0 | 105.0 | 97.2         | 35.9 | 39.5 | 92.9         | 104.5        | 25.2 | 12.3 | 139.0 | 38.2 | 31.5 | 19.7 |
| XIV-C:230                                                 | 25.0-30.0 | М   | 133.0 | 187.0 | 113.0 | 101.4        | 36.8 | 40.1 | 102.2        | 114.1        | 22.8 | 13.8 | 131.0 | 40.2 | 35.5 | 22.3 |
| XIV-C:74                                                  | 25.0-35.0 | М   |       |       |       |              |      |      |              |              |      |      |       |      |      |      |
| XIV-C:117                                                 | 25.0-35.0 | М   | 135.0 | 185.0 | 112.0 | 101.6        | 36.5 | 41.8 | <b>99</b> .7 | 119.5        | 23.5 | 13.5 | 141.0 | 39.2 | 30.2 | 22.7 |
| XIV-C:126                                                 | 25.0-35.0 | М   | 134.0 | 182.0 | 110.0 | 101.8        | 35.6 | 42.4 | 95.0         | 111.3        | 27.2 | 14.3 | 135.0 | 36.6 | 30.8 |      |
| XIV-C:246                                                 | 30.0-40.0 | М   | 131.0 | 181.0 | 106,0 | 97.2         | 39.4 | 41.5 | 95.4         | 110.3        | 25.6 |      | 134.0 | 34.1 | 33.5 | 20.0 |
| XIV-C:111                                                 | 30.0-60.0 | М   | 133.0 | 185.0 | 110.0 | 102.2        | 37.6 | 43.1 | 99.5         | 113.6        | 27.7 | 12.0 | 139.0 | 39.6 | 30.9 | 22.5 |
| XIV-C:243                                                 | 35.0-45.0 | м   | 139.0 | 174.0 | 106.0 | 96.4         | 38,5 | 39.6 | 97.3         | 115.8        | 25.3 | 14.7 | 140.0 | 38.0 | 30.5 | 18.5 |
| XIV-C:216                                                 | 40.0-45.0 | М   | 136.0 | 176.0 | 103.0 | 95.7         | 37.3 | 37.7 | 93.9         | 110.2        | 26.1 | 13.9 | 140.0 | 38.9 | 33.6 | 21.5 |
| XIV-C:217                                                 | 40.0-45.0 | м   | 133.0 | 191.0 | 111.0 | 99.0         | 36.6 | 41.2 | 96.2         | 116.9        | 23.7 | 14.5 | 139.0 | 41.3 | 30.5 | 18.5 |
| XIV-C:179                                                 | 40.0-50.0 | м   | 132.0 | 181.0 | 111.0 | 101.6        | 39.4 | 40.4 | 101.4        | 110.3        | 26.8 | 13.9 | 145.0 | 39.7 | 30.5 | 21.0 |
| XIV-C:182                                                 | 45.0-50.0 | м   | 136.0 | 186.0 | 112.0 | 102.9        | 40.5 | 43.3 | 95.4         | 118          | 23.4 | 13.5 | 136   | 33.8 | 32.2 | 15.8 |
| XIV-C:157                                                 | 45.0-55.0 | м   | 138.0 | 180.0 | 111.0 | 101.8        | 36.1 | 41.5 | 101.7        | 111.5        | 22.2 | 13.3 | 135.0 | 35.2 | 31.4 | 22.9 |
| XIV-C:181                                                 | 45.0-55.0 | м   | 134.0 | 187.0 | 109.0 | 101.8        | 38.9 | 41.5 | 96.9         |              |      |      |       |      |      | 24.2 |
| XIV-C:101                                                 | 45.0-60.0 | м   |       |       |       |              |      |      |              |              |      |      |       |      |      |      |
| XIV-C:156                                                 | 50.0+     | М   | 131.0 | 181.0 | 104.0 | 96.3         | 40.1 | 41.9 | 92.3         | 110.9        | 25.7 | 11.5 | 140.0 | 39.9 | 34.2 | 18.8 |
| XIV-C:99                                                  | 50.0-60.0 | М   |       |       |       |              |      |      |              |              |      |      |       | L    | l    |      |

BSI Measurements (original numbering see Appendix B, B-1)

| 15  | 16   | 17    | 18   | 19   | 20   | 21   | 22   | 23   | 24   | 25   | 26   | 27   | 28   | 29   | 30           | 31 | 32    |
|-----|------|-------|------|------|------|------|------|------|------|------|------|------|------|------|--------------|----|-------|
|     |      |       |      | 53.9 | 18.2 | 26.6 | 29.7 | 38.2 |      |      | 31.9 | 46.6 |      |      |              |    | 1     |
|     | 33.4 | 107.0 | 25.3 | 55.6 | 18.9 | 23.6 | 32.6 | 38.2 | 33.5 | 43.3 | 43.8 | 56.9 | 36.5 | 57.3 | 31.0         |    | T     |
| 7.6 |      |       | 23.2 | 51.4 | 15.6 | 21.2 | 26.2 | 36.5 | 27.3 | 39.1 | 31.4 | 47.2 | 29.5 | 44.9 | 27.0         |    |       |
|     | 37.8 | 97.0  |      | 49.4 |      |      |      |      |      |      |      |      |      |      |              |    |       |
|     |      |       |      |      | 16.7 | 26.8 | 31.1 | 44.6 | 32.7 | 43.6 | 39.0 | 59.8 | 33.2 | 61.7 | <b>28</b> .1 |    | 253.0 |
|     | 31.1 | 101.4 | 22.9 | 49.0 | 15   |      | 29.7 | 40.1 | 28.1 | 39.8 | 26.1 | 49.0 | 24.0 | 50.2 | 30.6         |    | 257.0 |
|     | 36.0 | 97.7  |      | 52.9 |      |      |      |      |      |      |      |      |      | Γ    |              |    |       |
|     | 30.1 | 114.9 | 23.6 | 55.9 | 18.1 | 24.3 | 28.5 | 39.5 | 28.8 | 42.1 |      | 56.8 | 31.4 | 57.6 | 26.5         |    |       |
|     | 32.5 | 103.2 | 24.7 | 54.7 | 16.1 |      |      |      | 32.8 |      |      |      | 31.2 | 59,3 | 27.5         |    | 274.0 |
|     | 26.0 | 92.4  | 24.3 | 53.4 |      |      | 28.6 | 37.2 | 29.2 | 39.8 | 32.7 | 46.8 | 29.5 | 50.3 | 26.2         |    | 1     |
| 7.9 |      | 103.2 |      | 51.1 | 16.8 | 25.4 | 32.7 | 40.3 | 32.1 | 43.1 | 35.4 | 56.8 | 30.8 | 57.8 | 32.8         |    | 280.0 |
| 7.1 |      | 110.9 | 24   | 49.7 | 16.0 | 20.0 | 28.2 | 39.4 | 29.5 | 41.7 | 35.9 | 52.9 | 38.6 | 57.4 | 28.4         |    | 280.0 |
|     |      | 86.2  | 21.1 | 49.1 | 17.9 | 24.5 | 32.0 | 39.6 | 32.8 | 40.4 |      | 50.2 | 32.2 | 51.4 | 23.8         |    | 272.0 |
|     | 26.8 | 97.4  |      | 44.5 |      |      |      |      |      |      |      |      |      |      |              |    |       |
|     | 25.7 | 117.1 | 21.8 | 54.1 |      |      | 17.5 | 26.1 | 32.6 | 41.9 | 1    | 52.6 | 33.1 | 52.9 | 27.7         |    | 285.0 |
|     |      | 104.2 | 25.9 | 54.1 | 16.2 | 23.4 | 33.5 | 39.9 | 34.3 | 41.6 |      | 53.4 | 32.1 | 53.4 | 29.4         |    |       |
|     |      | 99.9  |      | 49.5 | 16.4 | 24.4 | 29.5 | 41.2 | 31.0 | 42.5 | 36.9 | 52.7 | 32.8 | 53.6 | 28.0         |    | 280.0 |
| 8.5 |      |       | 26.8 | 55.7 | 16.2 | 22.9 | 27.6 | 35.6 | 31.6 | 42.1 | 35.2 | 53.3 | 34.1 | 52.6 | 27.8         |    | 276.0 |
|     |      |       |      |      |      |      | 29.0 | 44.7 | 31.0 | 45.9 | 35.6 | 57.9 | 26.2 | 44.1 | 25.7         |    |       |
|     | 37.0 | 113.2 | 24.1 | 55.3 | 17.4 | 29.4 | 35.3 | 43.4 | 36.2 | 44.8 | 38.0 | 54.7 | 36.7 | 58.8 | 25.6         |    | 264.0 |
|     | 36.2 | 115.6 | 26.0 | 55.9 | 19.7 | 28.0 | 31.8 | 44.8 | 31.1 | 45.6 | 37.3 | 59.2 | 34.7 | 60.5 | 29.9         |    | 257.0 |
|     | 38.6 | 104.4 | 24.4 | 53.7 | 18.5 | 28.2 | 31.1 | 45.4 | 32.7 | 46.4 | 36.5 | 56.7 | 31.6 | 48.2 | 29.8         |    | 260.0 |
|     | 34.4 | 115.1 | 26.4 | 53.5 | 18.3 | 25.2 |      |      |      |      | 36.5 | 56.9 | 32.7 | 56.9 | 26.9         |    | Ι     |
|     | 33.9 | 112.5 | 25.9 | 52.0 | 17.5 | 23.8 |      |      | 31.8 | 44.2 | 34.8 | 55.8 | 34.4 | 56.4 | 27.7         |    |       |
|     | 32.3 | 120.7 |      | 50.5 | 16.3 | 24.8 | 32.4 | 46.7 | 34   | 46.9 | 35.8 |      | 28.4 | 57.7 | 27.1         |    | 258.0 |
|     | 36.1 | 118.3 | 24.3 | 57.0 | 19.0 | 28.0 | 32.7 | 44.1 | 33.7 | 47.8 |      |      | 33.9 | 56.4 | 25.9         |    | 270.0 |
|     | 36.6 | 117.7 | 19.4 | 52.7 | 19.0 | 33.6 | 33.3 | 46.6 | 35,3 | 46.9 | 41.3 | 59.5 | 38.5 | 62.3 | 28.5         |    | 284.0 |
|     | 36.1 | 121.7 | 27.3 | 51.1 | 18.3 | 25.2 | 34.9 | 46.5 | 38.0 | 49.1 | 34.8 | 55.6 | 32.7 | 49   | 29.1         |    | 278.0 |
| 8.1 | 37.2 | 111.9 | 24.3 | 52.6 | 15.9 | 25.8 | 34.3 | 42.2 | 34.4 | 44.3 | 37.2 | 54,3 | 30.8 | 53.0 | 29.9         |    | 259.0 |
|     | 37.1 | 110.4 |      | 55.1 | 23.3 | 30.8 | 40.0 | 52.2 | 40.7 | 54.1 | 41.5 | 66.3 | 39.0 |      | 35.4         |    | 294.0 |
|     |      |       |      |      |      |      | 29.7 | 44.2 | 32.2 | 41.4 | 34.9 | 50.9 | 24.9 | 54.2 | 22.7         |    | 260.0 |
| 5.4 | 37.0 | 109.4 |      | 46.6 | 17.3 | 26.4 | 33.8 | 41.2 | 35.7 | 47.1 | 34.6 | 60.8 | 34,3 | 54.2 | 29.3         |    | 286.0 |

| LEFT  | LEFT | LEFT | LEFT | LEFT | LEFT | LEFT | LEFT  | LEFT  | LEFT | LEFT  | LEFT | LEFT | LEFT | LEFT | LEFT | LEFT | LEFT  |
|-------|------|------|------|------|------|------|-------|-------|------|-------|------|------|------|------|------|------|-------|
| 33    | 34   | 35   | 36   | 37   | 38   | 39   | 40    | 41    | 42   | 43    | 44   | 45   | 46   | 47   | 48   | 49   | 50    |
| 282.0 | 63.0 | 58.0 | 52.9 | 39.6 | 37.8 | 17.9 | 222.0 | 202.0 | 18,6 | 484.0 | 41.4 | 43.9 | 29.0 | 29.3 | 77.8 | 28.0 | 422.0 |
| 319.0 | 65.0 | 61.0 | 54.9 | 40.8 | 42.8 | 19.4 | 253.0 | 233.0 | 20.5 | 552.0 | 46.4 | 46.3 | 27.7 | 28.5 | 75.9 | 30.6 | 452.0 |
| 241.0 | 54.0 | 50.0 | 49.1 | 38.6 | 35.2 | 16.6 | 198.0 | 175.0 | 17.6 | 416.0 | 37.8 | 38.8 | 23.9 | 24.3 | 68.0 | 23.9 | 358.0 |
| 276.0 | 62.0 | 55.0 | 54.5 | 38.8 | 40.6 | 17.8 | 220.0 | 200.0 | 20.3 | 476.0 | 43.6 | 41.8 | 24.9 | 27.2 |      | 26.5 | 390.0 |
| 307.0 | 66.0 | 62.0 | 59.0 | 42.3 | 44.2 | 18.8 | 232.0 | 214.0 | 21.3 | 521.0 |      |      |      |      |      |      |       |
| 279.0 | 55.0 | 48.0 | 51.8 | 38.2 | 36.8 | 17.7 | 223,0 | 198.0 | 18.7 | 477.0 | 41.2 | 41.5 | 24.5 | 27.4 | 73.6 | 30.8 | 410.0 |
| 280.0 | 64.0 | 54.0 | 51.1 | 40.2 | 39.2 | 18.4 | 215.0 | 198.0 | 20.3 | 478.0 | 43.1 | 42.7 | 23.9 | 27.9 |      | 26.7 | 398.0 |
| 278.0 | 62.0 | 55.0 | 56.9 | 40.8 | 40.2 | 18.5 | 231.0 | 210.0 | 18.6 | 488.0 | 42.9 | 42.8 | 24.7 | 32.3 | 69.0 | 25.0 | 404.0 |
| 287.0 | 57.0 | 52.0 | 51.9 | 38.3 | 37.9 | 17.5 | 216.0 | 198.0 | 18.1 | 485.0 | 42.2 | 42.9 | 26.2 | 28.3 | 76.0 | 25.1 | 401.0 |
| 276.0 | 61.0 | 55,0 | 54.6 | 39.1 | 43.6 | 16.5 | 220.0 | 202.0 | 19.5 | 478.0 | 44.0 | 44.2 | 24.9 | 28.0 | 77.5 | 27.8 | 412.0 |
| 271.0 | 65.0 | 55.0 | 52.5 | 39.1 | 38.2 | 18.7 | 210.0 | 191.0 | 20.4 | 462.0 | 40.5 | 44.5 | 27.9 | 30.8 | 75.3 | 29.0 | 401.0 |
| 291.0 | 60.0 | 57.0 | 52.9 | 39.1 | 41.0 | 18.5 | 221.0 | 198.0 | 16.6 | 489.0 | 42.8 | 44.0 | 25.9 | 28.7 | 74.9 | 27.5 | 414.0 |
| 281.0 | 57.0 | 55.0 | 54.6 | 41.3 | 40.1 | 17.7 | 210.0 | 191.0 | 19.9 | 472.0 | 41.6 | 42.6 | 25.9 | 27.2 | 76.1 | 26.1 | 416.0 |
| 250.0 | 56.0 | 48.0 | 47.0 | 36,1 | 35.2 | 16.1 | 196.0 | 175.0 | 16.9 | 425.0 | 41.0 | 41.2 | 24.2 | 27.8 | 72.8 | 27.9 | 370.0 |
| 296.0 | 64.0 | 57.0 | 55.0 | 40,1 | 41.8 | 18.2 |       | 208.0 | 21.1 | 504.0 |      |      |      |      |      |      |       |
| 283.0 | 57.0 | 53.0 | 54.5 | 39.0 | 38.1 | 16.8 | 230.0 | 207.0 | 17.4 | 490.0 | 42.4 | 43.4 | 25.1 | 24.8 | 72.5 | 23.8 | 413.0 |
| 287.0 | 59.0 | 52.0 | 54.0 | 40.5 | 40.3 | 19.5 | 221.0 | 204.0 | 19.3 | 491.0 | 43.4 | 44.9 | 24.5 | 27.6 | 76.2 | 25.4 | 430.0 |
| 325.0 | 68.0 | 62.0 | 59.9 | 45.1 | 45.7 | 18.7 | 254.0 | 229.0 | 21.0 | 554.0 | 44,9 | 48.2 | 29.9 | 30.0 | 82.0 | 31.8 | 473.0 |
| 301.0 | 67.0 | 63.0 | 57.0 | 42.0 | 40.0 | 20.8 | 241.0 | 223.0 | 21.7 | 524.0 |      |      |      |      |      |      |       |
| 304.0 | 67.0 | 67.0 | 62.3 | 44.6 | 44.2 | 20.2 | 227.0 | 205.0 | 20.4 | 509.0 | 50.7 | 50,3 | 25.0 | 33.5 | 84.0 | 29.8 | 429.0 |
| 293.0 | 71.0 | 66.0 | 60.1 | 45.4 | 43.4 | 20.9 | 231.0 | 215.0 | 20.9 | 508.0 | 47.7 | 47.3 | 26.9 | 35,2 | 83.9 | 33.8 | 435.0 |
| 295.0 | 71.0 | 64.0 | 57.8 | 46.9 | 46.4 | 20.5 | 233.0 | 211.0 | 20.2 | 506.0 | 48.9 | 49.8 | 28.1 | 30.5 | 83.4 | 34.1 | 432.0 |
| 312.0 | 65.0 | 62.0 | 59.3 | 42.2 | 40.5 | 19.5 | 247.0 | 225.0 | 19.4 | 537.0 | 47.9 | 47.3 | 27.6 | 34.2 | 83.2 | 30.3 | 418.0 |
| 309.0 | 69.0 | 66.0 | 57.8 | 42.1 | 44.1 | 18.7 | 244.0 | 227.0 | 19.5 | 536.0 | 44.9 | 46.5 | 29.6 | 28.2 | 79.0 | 30.4 | 454.0 |
| 306.0 | 73.0 | 66.0 | 60.5 | 49.3 | 45.3 | 20.0 | 239.0 | 215.0 | 23.8 | 521.0 | 47.2 |      | 28.6 | 29.3 | 86.5 | 30.2 | 441.0 |
| 313.0 | 66.0 | 63.0 | 63.3 | 45.6 | 47.3 | 20.7 | 238.0 | 221.0 | 21.0 | 551.0 | 44.0 | 47.7 | 30.9 | 27.5 | 82.1 | 31.5 | 443.0 |
| 287.0 | 74.0 | 67.0 | 60.4 | 47.1 | 49.8 | 20.5 |       |       | 20.8 |       | 48.1 | 51.0 | 28.7 | 27.0 |      |      | 436.0 |
| 293.0 | 77.0 | 71.0 | 64.6 | 45.5 | 43.9 | 20.9 | 239.0 | 216.0 | 20.3 | 509.0 | 45.5 | 47.4 | 29.3 | 30.3 | 84.6 | 33.4 | 421.0 |
| 305.0 | 63.0 | 60.0 | 55.7 | 43.8 | 43.6 | 18.5 | 237.0 | 214.0 | 20.1 | 519.0 | 40.2 | 44.7 | 25.6 | 25.6 | 75.6 | 27.1 | 439.0 |
| 294.0 | 74.0 | 68.0 | 61.8 | 48.4 | 49.3 | 21.5 | 232.0 | 213.0 |      | 507.0 | 48.7 | 51.7 | 31.4 | 36.0 | 89.6 | 37.2 | 455.0 |
| 286.0 | 65.0 | 60.0 | 55.7 | 41.4 | 42.8 | 18.0 | 230.0 | 210.0 | 19.6 | 496.0 | 43.8 | 40.7 | 25.2 | 29.5 | 79.2 | 27.5 | 409.0 |
| 315.0 | 72.0 | 65.0 | 60.3 | 46.4 | 48.0 | 21.2 | 226.0 | 207.0 | 22.0 | 522.0 | 47.9 | 50.8 | 30.4 | 35.6 | 89.6 | 36.4 | 452.0 |
| 295.0 | 77.0 | 64.0 | 64.2 | 45.5 | 43.8 | 21.2 | 238.0 | 218.0 | 23.1 | 513.0 | 49.2 | 47.8 | 28.3 | 34,5 | 84.3 | 30.2 | 450.0 |

| LEFT  | LEFT | LEFT  | LEFT | LEFT | LEFT | LEFT | LEFT | LEFT | LEFT  | LEFT  | LEFT | LEFT | LEFT | LEFT | LEFT | LEFT | LEFT |
|-------|------|-------|------|------|------|------|------|------|-------|-------|------|------|------|------|------|------|------|
| 51    | 52   | 53    | 54   | 55   | 56   | 57   | 58   | 59   | 60    | 61    | 62   | 63   | 64   | 65   | 66   | 67   | 68   |
| 93.0  | 28.1 | 333.0 | 83.0 | 70,7 | 24.6 | 32.3 | 40,2 | 22.2 |       |       |      |      | 68.9 | 50.9 |      |      |      |
| 94.0  | 27.5 | 371.0 | 79.0 | 68.4 | 27.1 | 31.7 | 48.1 | 20.3 | 363.0 | 815.0 | 42.6 | 64.7 | 74.8 | 52.3 | 57.0 | 30.2 | 67.0 |
| 71.0  | 22.0 | 289.0 | 73.0 | 63.4 | 27.5 | 26.2 | 46,5 | 16.1 |       |       |      |      | 63.2 | 44.0 | 46.7 | 25.5 | 67.0 |
| 82.0  | 25.1 | 316.0 | 72.0 |      | 24.3 | 32.0 | 48.7 | 18.0 | 307.0 | 697.0 |      | 60.9 | 74.0 | 53.0 | 53.1 | 30.3 | 63.3 |
|       |      | 355.0 | 81.0 | 72.2 | 29.4 | 32.9 | 49.3 | 22.6 | 346.0 |       | 45.1 | 65.9 | 76.7 | 53.8 | 57.0 | 28.7 | 78.0 |
| 81.0  | 25.6 | 337.0 | 70.0 | 68.9 | 25.1 | 27.6 | 46.0 | 17.6 | 327.0 | 737.0 |      | 60.6 | 70.0 | 46.0 | 54.4 | 26.9 | 74.0 |
| 79.0  | 25.4 | 314.0 | 71.0 |      |      |      |      | 19.9 | 305.0 | 703.0 |      |      | 69.1 | 47.0 |      |      |      |
| 82.0  | 26.0 | 335.0 | 74.0 | 64.4 | 26.3 | 29.7 | 45.6 | 18.9 | 320.0 | 724.0 | 44.1 | 58.9 |      |      | 54.1 | 27.8 |      |
| 85.0  | 26.5 | 318.0 | 74.0 | 68.1 | 26.9 | 31.8 | 44.0 | 19.5 | 307.0 | 708.0 | 42.6 | 60.8 | 70.3 | 48.8 |      | 29.9 |      |
| 85.0  | 25.2 | 323.0 | 75.0 | 72.8 | 23.6 | 29.3 | 47.7 | 18.5 | 315.0 | 727.0 | 43.7 | 61.9 | 69.5 | 49.8 | 55.5 | 26.6 | 61.1 |
| 83.0  | 26.3 | 315.0 | 72.0 | 67.0 | 28.6 | 29.7 | 48.7 | 20.1 | 311.0 | 712.0 | 42.1 |      | 72.5 | 52.4 | 55.3 | 25.9 | 73.0 |
| 84.0  | 25.4 | 318.0 | 75.0 | 66.7 | 31.1 | 29.8 | 46.5 | 18.8 | 312.0 | 726.0 | 41.8 |      | 70.3 | 51.5 |      |      |      |
| 84.0  | 25.1 | 327.0 | 72.0 | 67.8 | 29.3 | 32.0 | 49,4 | 16.5 | 316.0 | 732.0 | 42.1 |      | 68.2 | 48.3 | 53.1 | 28.5 | 73.0 |
| 79.0  | 25.7 | 289.0 | 69.0 | 65.2 | 24.8 | 28.9 | 46.3 | 18.2 | 276.0 | 646.0 |      | 62.3 |      |      | 51.9 | 26.4 |      |
|       |      | 338.0 | 78.0 | 66.4 | 23.8 | 28.5 | 49.3 | 20.6 | 330.0 |       |      | 59.5 | 68.8 | 51.5 |      |      |      |
| 82.0  | 24.5 | 328.0 | 71.0 | 65.3 | 30.4 | 31.9 | 45.6 | 18.3 | 314.0 | 727.0 | 41.2 |      |      |      | 54.1 | 30.0 |      |
| 77.0  | 24.1 | 331.0 | 69.0 |      | 28.8 | 31.1 |      | 17.5 | 321.0 | 751.0 | 43.1 |      | 71,5 | 51.2 | 55.9 | 29.7 | 76.0 |
| 93.0  | 28.8 |       | 86,0 | 75.6 |      |      |      | 22.2 | 364.0 | 837.0 |      |      |      |      |      |      |      |
|       | _    | 353.0 | 80.0 | 76.2 | 24.0 | 32.3 | 44.1 | 20.9 | 353.0 |       |      | 67.2 | 70.8 | 44.4 | 56.0 | 28.7 | 59.2 |
| 91.0  | 28.9 | 348.0 | 80.0 | 77.9 | 32.7 | 36.9 | 51.6 | 18.8 | 338.0 | 767.0 | 46.3 | 69.9 | 76.6 | 51.3 | 61.8 | 30.2 | 67.4 |
| 93.0  | 28.0 | 349.0 | 82.0 | 76.8 | 27.5 | 35.0 | 52.7 | 23.4 | 346.0 | 781.0 | 48.2 | 70.3 | 77.0 | 55.7 | 60.4 | 31.9 | 75.0 |
| 90.0  | 26.8 | 338.0 | 74.0 | 73.7 | 34.2 | 35.8 | 53.6 | 21.5 | 321.0 | 753.0 | 46,2 |      | 74,5 | 55.1 | 57.9 | 32.0 | 79.0 |
| 110.0 | 34.8 | 362.0 | 85.0 | 73.6 | 26.0 | 33.2 | 49.9 | 23.8 | 351.0 | 769.0 | 43.4 | 71.1 | 83.9 | 59.4 | 58.5 | 31.5 |      |
| 93.0  | 25.2 | 353.0 | 84.0 | 72.5 | 34.3 | 31.9 | 52.7 | 22.3 | 353.0 | 807.0 |      |      | 73.5 | 52.5 | 57.1 | 29.9 | 76.0 |
| 95.0  | 29.2 | 351.0 | 82.0 | 76.5 |      | 41.3 | 56,9 | 22.1 | 325.0 | 766.0 | 45.8 |      | 77.7 | 54.6 | 62.0 | 31.6 | 79.0 |
| 92.0  | 26.5 | 340.0 | 85.0 |      | 29.8 | 32.8 |      | 20.3 | 335.0 | 778.0 |      |      | 75.5 | 56.5 | 56.7 | 30.6 |      |
| 92.0  | 28.8 | 332.0 | 87.0 | 78.9 | 39.4 | 32.4 | 57.5 | 23.1 | 329.0 | 765.0 |      |      | 77.0 | 55.9 | 58.0 | 29.3 | 79.0 |
| 96.0  | 30.2 | 335.0 | 83.0 | 78.3 | 29.7 | 36.9 | 53.4 | 22.9 | 336.0 | 757.0 | 48.5 |      | 75.3 | 54.6 | 58.2 | 32.4 | 78.0 |
| 85.0  | 25.8 | 340.0 | 74.0 | 70.5 | 30.8 | 34.7 | 52.3 | 20.6 | 336.0 | 775.0 | 42.0 |      |      |      | 59.4 | 30.6 |      |
| 105.0 | 31.9 | 346.0 | 88.0 | 81.8 | 32.0 | 35.1 | 62.3 | 25.2 | 340.0 | 795.0 | 51.2 |      | 89.2 | 66.1 | 65.2 | 32.2 | 88.0 |
| 83.0  | 25.6 | 324.0 | 78.0 | 70.8 | 25.9 | 31.3 | 47.9 | 20.1 |       |       | 42.3 |      | 70.6 | 48.7 | 56.8 | 28.4 | 62.6 |
| 96.0  | 31.4 | 349.0 | 87.0 | 80.2 | 34.8 | 32.0 | 55.1 | 23.3 | 346.0 | 798.0 | 47.6 |      | 86.1 | 59.7 | 61.2 | 30.9 | 87.0 |
| 96.0  | 30.4 | 359.0 | 87.0 | 77.4 | 26.0 | 31.7 | 53.3 | 21.5 | 351.0 | 801.0 | 49.9 | 72.4 | 80.8 | 57.6 |      | L    |      |

| LEFT | LEFT | RIGHT |
|------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 69   | 70   | 33    | 34    | 35    | 36    | 37    | 38    | 39    | 40    | 41    | 42    | 43    | 44    | 45    | 46    | 47    | 48    |
|      |      | 292.0 | 66.0  | 63.0  | 54.3  | 41.5  | 40.7  | 19,3  | 230.0 | 206.0 | 19.0  | 498.0 |       |       |       |       |       |
|      | 6.9  | 329.0 | 68.0  | 63.0  | 54,5  | 42.3  | 42.0  | 19.3  | 254.0 | 234.0 | 20.4  | 563.0 | 46.9  | 47.2  | 27.6  | 31,4  | 77.5  |
|      |      | 244.0 | 56.0  | 54.0  | 50.4  | 38.4  | 36.5  | 16.9  | 198.0 | 177.0 | 17.5  | 421.0 | 37.4  | 39.3  | 23.0  | 23.6  |       |
|      |      | 286.0 | 62.0  | 57.0  | 54.9  | 42.2  | 40.4  | 17.5  | 222.0 | 205.0 | 21.3  | 491.0 |       | 43.2  | 24.7  | 28.6  | 76.8  |
|      | 7.2  | 312.0 | 71.0  | 62.0  | 59.3  | 42.7  | 41.4  | 18.6  | 234.0 | 217.0 | 21.4  | 529.0 |       |       |       |       |       |
|      | 6.6  | 285.0 | 59.0  | 52,0  | 53.4  | 38.3  | 37.2  | 18.1  | 225.0 | 200.0 | 19.2  | 485.0 | 41.7  | 41.6  | 26.4  | 29.8  | 67.9  |
|      |      | 288.0 | 63.0  | 56.0  | 51.9  | 39.7  | 36.4  | 19.1  | 214.0 | 200.0 | 20.0  | 488.0 | 42.8  | 43.8  | 23.0  | 27.8  | 73.0  |
|      | 6.2  | 283.0 | 62.0  | 55.0  | 56.4  | 41.0  | 40.5  | 18.0  |       |       |       |       | 41.5  | 42.7  | 24.8  | 30.6  | 74.1  |
|      | 6.3  | 288.0 | 61.0  | 55.0  | 54.8  | 39.6  | 37.0  | 17.2  |       |       | [     |       | 42.0  | 42.7  | 26.2  | 30,5  |       |
|      |      | 282.0 | 66.0  | 58,0  | 56,5  | 40.9  | 45.I  | 17.1  | 219.0 | 201.0 | 19.2  | 483.0 | 44.1  | 44,5  | 25.3  | 30.6  | 79.1  |
|      | 7.0  | 278.0 | 69.0  | 58.0  | 53.1  | 39,3  | 38.1  | 17.5  | 213.0 | 195.0 | 18.9  | 473.0 | 40.9  | 43.7  | 27.1  | 31.2  | 76.1  |
|      |      | 298.0 | 63.0  | 60.0  | 53.9  | 41.6  | 40.7  | 19.2  | 223.0 | 200.0 | 19.0  | 498.0 | 42.9  | 43.3  | 26.4  | 30.2  | 76.2  |
|      |      | 287.0 | 60.0  | 57.0  | 55.2  | 18.0  | 40.4  | 17.9  | 216.0 | 198.0 | 20.6  | 485.0 | 41.2  | 41.8  | 25.5  | 29.3  | 76.8  |
|      | 6.7  | 257.0 | 60.0  | 51.0  | 48.4  | 37.2  | 36.1  | 15.9  | 200.0 | 179.0 | 18.1  | 436.0 | 41.4  | 41.2  | 24.3  | 28.5  | 74.2  |
|      |      | 300.0 | 66.0  | 57.0  | 54.0  | 40.7  | 41.5  | 19.3  | 225.0 | 201.0 | 22.0  | 501.0 |       |       |       |       |       |
|      |      | 286.0 | 59.0  | 53.0  | 55.8  | 41.1  | 38.0  | 16.8  | 226.0 | 204.0 | 18.1  | 490.0 | 42.6  | 44.0  | 23.4  | 27.6  | 73.7  |
|      | 6.4  | 291.0 | 61.0  | 54.0  | 54.8  | 42.1  | 40.9  | 19.8  | 221.0 | 206.0 | 19.7  | 497.0 | 43.4  | 45.4  | 24.9  | 28.8  | 76.1  |
|      | 8.0  | 330.0 | 68.0  | 63.0  | 59.4  | 45.1  | 45.2  | 18.5  | 254.0 |       |       |       | 44.3  | 48.0  | 30.9  | 28.8  | 81.5  |
|      | 7.2  | 307.0 | 72.0  | 65.0  | 58.9  | 43.3  | 41.6  | 21.0  | 243.0 |       | 20.1  |       |       |       |       |       |       |
|      | 6.9  | 311.0 | 70.0  | 68.0  | 63.0  | 46.2  | 43.6  | 20.4  | 233.0 |       |       |       | 50.2  | 49.3  | 26.0  | 30.5  | 85.4  |
|      | 8.1  | 298.0 | 75.0  | 67.0  | 61.2  | 45.0  | 43.7  | 20.9  | 234.0 |       |       |       | 47.7  | 47.4  | 27.7  | 34,3  | 85.3  |
|      | 7.8  | 302.0 | 73.0  | 63.0  | 58.4  | 47.1  | 47.1  | 20.3  | 229,0 |       |       |       | 50.6  | 51,9  | 29.1  | 33.9  | 84.0  |
|      | 7.9  | 314.0 | 69.0  | 67.0  | 61.7  | 44.7  | 41.9  | 18.9  | 253.0 |       |       |       | 47.7  | 48.3  | 26.8  | 33.6  | 82.7  |
|      |      | 312.0 | 72.0  | 69.0  | 58.7  | 44.0  | 46.0  | 18.0  | 246.0 |       |       |       | 42.5  | 46.8  | 28.0  | 29.8  | 79.9  |
|      | 7.1  | 315.0 | 74.0  | 69.0  | 63.3  | 49.0  | 46.9  | 19.5  | 240.0 |       |       |       | 47.3  | 49.2  | 26.6  | 30.7  | 86.6  |
|      | 8.1  | 321.0 | 75.0  | 68.0  | 62.5  | 48.6  | 48.0  | 20.4  | 241.0 |       |       |       | 44.5  | 48.9  | 28.8  | 29.5  | 83,5  |
|      |      | 299.0 | 73.0  | 70,0  | 61.9  | 47.4  | 48.9  | 20.4  | 241.0 |       |       |       | 47.5  | 51.7  | 28.5  | 32.1  |       |
|      | 7.4  | 297.0 | 82.0  | 73.0  | 64.9  | 47.1  | 45.0  | 21.7  | 243.0 |       |       |       | 45.4  | 49.2  | 29.4  | 30,7  | 84.6  |
|      |      | 304.0 | 65.0  | 63.0  | 57.7  | 44.1  | 43.7  | 18.7  | 239.0 | 218.0 | 20.6  | 522.0 | 43.6  | 45.8  | 25.4  | 27.8  | 74,3  |
|      | 7.3  | 304.0 | 79.0  | 69.0  | 60,9  | 49.8  | 49.9  | 21.4  | 230.0 |       |       |       | 45.9  | 51.1  | 31.7  | 34,5  | 91.2  |
|      |      |       |       |       |       |       |       |       |       |       |       |       | 43.0  | 44.3  | 25.2  | 30.5  |       |
|      | 9.5  | 316.0 | 74.0  | 68.0  | 61.6  | 47.8  | 46.9  | 22.0  | 230.0 |       |       |       | 44.9  | 51.3  | 29.7  | 35.1  | 89.1  |
|      | 7.6  | 301.0 | 80.0  | 69.0  | 64.5  | 42.7  | 43.2  | 20.6  | 243.0 |       |       |       | 48.7  | 48.8  | 27.7  | 35.0  | 85.2  |

| RIGHT | RIGHT | RIGHT        | RIGHT | RIGHT | RIGHT | RIGHT | RIGHT | RIGHT | RIGHT | RIGHT | RIGHT | RIGHT | RIGHT | RIGHT | RIGHT | RIGHT | RIGHT |
|-------|-------|--------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 49    | 50    | 51           | 52    | 53    | 54    | 55    | 56    | 57    | 58    | 59    | 60    | 61    | 62    | 63    | 64    | 65    | 66    |
|       |       |              |       | 336.0 | 83.0  | 70.2  | 26.2  | 33.3  | 41.0  | 22.9  | 320.0 |       |       | 66.1  | 71.5  | 49.9  | 54.5  |
| 30.5  | 453.0 | 94.0         | 27.2  | 373.0 | 80.0  | 70.0  | 26.4  | 32.3  | 47.2  | 21.3  | 366.0 | 819.0 | 42.7  | 66.7  | 74.6  | 52.0  | 56.6  |
| 25.5  | 361.0 | 72.0         | 21.9  | 292.0 | 69.0  | 64.6  | 25.9  | 25.8  | 45.4  | 16.5  |       |       |       |       |       |       |       |
| 27.3  | 393.0 | 83.0         | 25.5  | 317.0 | 75.0  | 65.7  | 25.2  | 32.5  | 48.4  | 17.8  | 308.0 | 701.0 |       | 63.2  | 74.1  | 51.3  | 52.2  |
|       |       |              |       | 359.0 | 81.0  | 71.5  | 31.2  | 31.8  | 49.2  | 22.8  | 348.0 |       |       | 66.3  | 78.0  | 53.7  |       |
| 28.0  | 406.0 | 81.0         | 26.0  | 335.0 | 73.0  | 70.0  | 25.2  | 29.4  | 45.3  | 18.8  | 324.0 | 730.0 | 41.4  | 60.8  | 69.4  | 48.4  |       |
| 25.4  | 396.0 | 77.0         | 25.1  | 314.0 | 70.0  | 63.4  |       |       | 45.9  | 19.3  | 304.0 | 700.0 | 40.0  |       | 66.9  | 46.6  |       |
| 24.2  | 409.0 | 80,0         | 26.6  | 335.0 | 75.0  | 66.9  | 26.4  | 28.6  | 45.4  | 18.4  | 323.0 | 732.0 | 42.6  | 58.4  | 71.3  | 51.6  | 53.0  |
| 25.7  | 407.0 | 85.0         | 26.1  | 321.0 | 77.0  | 69.8  | 26.7  | 32.2  | 44.4  | 20.7  | 309.0 | 716.0 | 42.7  | 61.1  | 71.8  | 49.4  |       |
| 27.4  | 414.0 | 83.0         | 25.6  | 328.0 | 76.0  | 73.4  | 24.5  | 31.3  | 50.2  | 19.0  | 316.0 | 730.0 | 45.1  | 62.9  | 71.7  | 51.7  | 55.2  |
| 30.1  | 403.0 | 87.0         | 27.4  | 319.0 | 74.0  | 69.2  | 33.6  | 29.1  | 49,4  | 21.4  | 310.0 | 713.0 | 41.8  |       | 71.6  | 51.8  | 56,6  |
| 25.3  | 411.0 | 88.0         | 26.0  | 324.0 | 77.0  | 69.0  | 30.2  | 30.7  | 47.9  | 18.6  | 314.0 | 725.0 |       |       | 71.4  | 52.2  |       |
| 25.0  | 411.0 | 85.0         | 25.9  | 328.0 | 73.0  | 68.9  | 27.8  | 33.0  | 48.7  | 17.5  | 313.0 | 724.0 | 41.7  |       | 68.9  | 49.8  | 53.3  |
| 28.6  | 373.0 | 80.0         | 26.2  | 288.0 | 68.0  | 66.7  | 25.6  | 28.7  | 45.4  | 18.5  | 277.0 | 650.0 |       | 58.6  | 69.0  | 49.9  | 51.1  |
|       |       |              |       |       | 80.0  | 66.7  |       |       | 49.5  | 21.3  |       |       |       |       |       |       | 50.5  |
| 23.5  | 413.0 | 82.0         | 24.7  | 326.0 | 70.0  | 66.6  |       | 31.4  |       | 19.2  | 317.0 | 730.0 |       |       |       |       | 53.3  |
| 25.5  | 428.0 | 79.0         | 24.4  | 331.0 | 69.0  | 66.7  | 27.9  | 32.6  | 52.9  | 17.4  | 317.0 | 745.0 | 42.5  |       | 71.2  | 51.1  | 55,9  |
| 30.8  | 476.0 | 101.0        | 30.3  | 373.0 | 85.0  | 74.6  | 36.9  | 32.4  | 55.9  | 21.8  | 363.0 | 839.0 | 46.6  |       |       |       | 62.5  |
|       |       |              |       | 353.0 | 82.0  | 69.3  | 24.1  | 32.2  | 46.9  | 20.2  |       |       |       |       | 67.6  | 45.0  | 55.9  |
| 30.4  | 435.0 | 91.0         | 22.1  | 347.0 | 80.0  | 77.8  | 28.9  | 37.6  | 53.6  | 20.6  | 334.0 | 769.0 | 47.3  | 71.8  | 75.3  | 51.1  | 60.8  |
| 33.6  | 434.0 | 92.0         | 28.5  | 347.0 | 83.0  | 79.3  | 30.0  | 36.5  | 52.9  | 23.7  |       |       | 47.0  |       | 79.5  | 57.5  | 60.2  |
| 34.3  | 429.0 | 95.0         | 26.8  | 346.0 | 79.0  |       | 36.8  | 36.5  | 53.4  | 22.7  | 326   | 755   | 45.6  |       | 76.6  | 55.3  | 58.3  |
| 31.4  | 445.0 | 89.0         | 28.1  | 368.0 | 90.0  | 73.8  | 27.0  | 35.0  | 51.2  | 24.6  | 352.0 | 797.0 | 43.3  | 73.1  | 83.1  | 59.1  | 59.1  |
| 28.7  | 451.0 | 93.0         | 26.8  | 357.0 | 86.0  | 74.1  | 33.8  | 32.0  | 1     | 22.3  | 351.0 | 802.0 |       |       | 75.4  | 54.2  | 56.7  |
| 31.7  | 444.0 | 94.0         | 29.3  | 350.0 | 89.0  | 76.2  | 31.7  | 35.2  | 55.5  | 22.7  | 338.0 | 782.0 |       |       | 79.5  | 54.5  | 59.9  |
| 32.7  | 447.0 | <b>98</b> .0 | 26.9  | 339.0 | 86.0  | 72.9  | 35.9  | 33.5  | 55.6  | 21.2  | 327.0 | 774.0 | 49.3  |       | 76.7  | 58.4  | 57.1  |
| 34.7  | 437.0 | 95.0         | 29.2  | 334.0 | 87.0  | 80.7  | 35.5  | 31.6  | 58.0  | 22.6  | 330.0 | 767.0 |       |       | 77.0  | 55.1  | 58.6  |
| 30.6  | 429.0 | 92.0         | 27.9  | 337.0 | 83.0  | 78.9  | 34.3  | 40.1  | 52.2  | 22.8  | 338.0 | 767.0 | 46.4  |       | 75.4  | 54.9  | 58.0  |
| 26.9  | 432.0 | 86.0         | 26.9  | 341.0 | 78.0  | 71.6  | 29.3  | 33.7  | 50.2  | 20.8  | 333.0 | 765.0 | 42.0  |       | 79.8  | 53.6  | 59.0  |
| 36.2  | 452.0 | 105.0        | 31.8  | 338.0 | 89.0  | 81.8  | 34.3  | 34.7  | 58.7  | 24.8  | 331.0 | 783.0 | 51.5  |       | 89.6  | 64.8  | 64.0  |
|       |       |              |       | 324.0 | 80.0  | 66.4  | 27.5  | 33.1  | 46.9  | 21.4  |       |       |       |       | 72.6  | 52.0  | 55.7  |
| 35.0  | 454.0 | 100.0        | 30.5  | 350.0 | 87.0  | 80.9  | 30.2  | 32.9  | 56.0  | 25.1  | 341.0 | 795.0 |       |       | 84.5  | 59.9  | 61.9  |
| 32.2  | 444.0 | 95.0         | 30.0  | 365.0 | 91.0  | 74.8  | 25.8  | 34.4  | 53.8  | 24.0  | 353.0 | 797.0 | 50.7  | 75.8  | 79.7  | 61.2  | 65.5  |

÷

•

| RIGHT | RIGHT | RIGHT | RIGHT |
|-------|-------|-------|-------|
| 67    | 68    | 69    | 70    |
| 28.8  | 76.0  | 61.3  | 8.4   |
| 29.9  | 65.2  |       | 7.7   |
|       |       |       |       |
| 27.9  | 61.0  |       | 7.4   |
|       |       |       |       |
|       |       |       | _     |
|       |       |       | 6.6   |
| 27.6  | 59.2  |       |       |
|       |       |       |       |
| 26.7  | 63.6  |       | 7.7   |
| 25.8  |       |       |       |
|       |       |       | 6.5   |
| 28.5  | 73.0  |       |       |
| 25.9  | 70.0  |       | 6.8   |
| 26.6  | 56.2  |       |       |
| 30.0  |       |       |       |
| 29.1  | 75.0  |       |       |
| 31.0  |       |       | 8.7   |
| 28.9  | 66.3  |       | 7.4   |
| 31.6  | 69.1  |       | 7.2   |
| 33.2  | 74.0  |       | 7.9   |
| 32.6  | 79.0  |       | 8.5   |
| 31.3  | 72.1  |       | 8.2   |
| 30.8  | 79.0  |       | 8.1   |
| 32.9  | 76.0  |       | 7.5   |
| 30.0  | 78.0  |       |       |
| 28.9  | 76.0  |       |       |
| 31.9  | 79.0  | 1     | 8.0   |
| 30.8  | 82.0  | 1     | 7.3   |
| 30.8  | 87.0  | 1     | 8.2   |
| 28.0  | 61.1  |       |       |
| 31.1  | 88.0  |       | 8.5   |
| 32.4  | 67.0  |       | 7.6   |

## D-2 Sadlermiut sub-adult BSI measurements (mm)

| Skeleton # | Age           | Sex | 1     | 2     | 3     | 4    | 5    | 6    | 7     | 8        | 9    | 10   | 11    | 12   | 13   | 14   |
|------------|---------------|-----|-------|-------|-------|------|------|------|-------|----------|------|------|-------|------|------|------|
| XIV-C:122  | B-2.0 mons.   | ?   |       |       | 55.0  | 52.5 |      |      | 50.1  | <u> </u> | 9,3  | 6.1  |       |      |      | 10.9 |
| XIV-C:107  | 3.0-9.0 mons. | ?   |       |       |       |      |      | [    |       |          | 10.9 | 6.5  |       |      |      |      |
| XIV-C:120  | 8.0 mons1.4   | ?   | 103.4 |       | 62.9  | 58.2 |      | 23.3 | 60.9  | <u> </u> | 13.1 | 8.0  |       |      |      | 14.0 |
| XIV-C:77   | 1.0-2.0       | ?   | 110.0 |       | 67.8  | 61.4 |      | 26.4 | 64.0  |          | 15.4 | 7.9  |       | 36.1 | 23.3 | 15.1 |
| XIV-C:79   | 1.0-2.0       | ?   | 106.0 |       | 71.5  | 66.0 |      | 25.4 | 70.6  |          |      |      | 1     |      |      | 16.9 |
| XIV-C:78   | 4.0-8.0       | ?   |       |       |       |      |      |      |       |          |      |      |       |      |      |      |
| XIV-C:118  | 5.0-8.0       | ?   |       |       |       |      | 30.5 | 35.1 |       |          |      |      | 1     |      |      | 18.4 |
| XIV-C:76   | 6.0-10.0      | ?   | 135.0 | 172.0 | 98.0  | 88.0 | 34.8 | 39.3 | 103.7 | 100.3    | 24.4 | 10.0 | 133.0 | 35.9 | 27.4 | 17.6 |
| XIV-C:124  | 8.0-12.0      | ?   |       |       | 96.2  | 88.5 | 36.1 | 34.9 | 94.0  |          |      |      |       |      |      | 19.0 |
| XIV-C:220  | 9.0-12.0      | ?   | 129.0 | 165.0 | 91.0  | 85,4 | 33.5 | 35.0 | 84.7  | 93.1     | 21.7 | 12.1 | 126.0 | 36.8 | 29.8 | 18.9 |
| XIV-C:75   | 9.0-14.0      | ?   |       |       |       |      |      | t    |       |          |      |      |       |      |      |      |
| XIV-C:158  | 13.0-16.0     | ?M  | 132.0 | 180.0 | 102.0 | 93.0 | 38.1 | 37.1 | 91.9  | 102.7    | 23.8 | 12.5 | 129.0 | 38.5 | 29.1 | 18.2 |
| XIV-C:73   | 15.0-20.0     | ?   |       |       |       |      |      |      |       |          |      |      |       |      |      |      |
| XIV-C:146  | 17.0-20.0     | м   | 137.0 | 174.0 | 102.0 | 92.4 | 34.2 | 37.5 | 97.7  | 102.0    | 25.1 | 12.0 | 136.0 | 37.0 | 29.9 | 20.8 |
| XIV-C:193  | 18.0-21.0     | м   | 133.0 | 180.0 | 109.0 | 98.5 | 36.2 | 39.4 | 95,8  | 113.4    | 26.2 | 13.2 | 127.0 | 37.7 | 30.4 | 23.1 |

BSI Measurements (original numbering see Appendix B, B-1)

.

100 C

| 15  | 16   | 17    | 18   | 19   | 20   | 21   | 22   | 23    | 24    | 25   | 26   | 27   | 28   | 29   | 30   | 31 | 32    |
|-----|------|-------|------|------|------|------|------|-------|-------|------|------|------|------|------|------|----|-------|
|     | 11.7 | 48.3  |      |      |      |      |      |       |       |      |      |      |      |      |      |    |       |
|     | 14.4 | 58,8  |      |      |      |      |      |       |       |      |      |      |      |      |      |    |       |
|     | 15.9 | 55.9  |      |      |      |      |      |       |       |      |      |      |      |      |      |    |       |
|     | 18.3 | 65.8  | 19.3 | 30.6 |      |      |      |       |       |      |      |      |      | 1    |      |    |       |
|     | 17.3 | 61.4  |      |      |      |      |      |       |       |      |      |      |      |      |      |    |       |
|     | 23.3 | 80.9  |      |      |      |      |      |       |       |      |      |      |      |      |      |    |       |
|     | 24.1 | 75.2  |      | 28.5 |      |      |      |       |       |      |      |      |      | [    |      |    |       |
|     | 28.9 | 87.3  | 24.6 | 43.9 | 13.3 | 20.9 | 20.4 | 28.9  | 22.8  | 30.0 | 23.0 | 38.2 | 20.6 | 39.0 | 18.9 |    | 182.0 |
|     | 28.0 | 86.5  | 22.6 | 45.3 |      |      | 19.7 | 27.1  | 19.8  | 30.3 | 23.3 | 40.0 | 21.7 |      | 16.5 |    |       |
|     | 29.5 | 88,0  | 21.6 | 39.3 | 13.5 | 22.8 | 22.7 | 30.4  | 21.9  | 31.3 |      |      |      | 22.8 |      |    |       |
|     |      |       |      |      | 14.1 | 22.7 |      |       | 23.3* | 30,9 | 25.7 | 39.1 | 23.3 | 38.8 | 19.6 |    | 203.0 |
| 8.1 | 31.2 | 108.3 | 23.3 | 52.5 | 15.1 | 24.5 | 28.2 | 35.9  | 29.7  | 37.9 | 32.8 | 52.3 | 28.4 | 53.9 | 26.6 |    | 244.0 |
|     |      |       |      |      |      |      | 26.7 | 38.5* | 29.0  | 41.4 | 29.8 | 48.2 | 28.7 | 51.7 | 27.2 |    | 253.0 |
|     | 31.6 | 101.9 | 20.9 | 46.5 | 16.9 | 24.4 | 29.3 | 37.9  | 32.9  | 36.4 | 36.3 | 54.5 | 27.9 | 59.9 | 27.1 |    |       |
|     | 35.5 | 109.1 | 25.5 | 49.5 | 15.1 |      | 31.0 | 42.7  | 32.0  | 43.7 | 32.4 | 55.3 | 30.9 | 61.2 | 27.8 |    | 250.0 |

·

| LEFT  | LEFT | LEFT | LEFT | LEFT | LEFT | LEFT | LEFT  | LEFT  | LEFT | LEFT  | LEFT  | LEFT | LEFT | LEFT | LEFT | LEFT | LEFT  |
|-------|------|------|------|------|------|------|-------|-------|------|-------|-------|------|------|------|------|------|-------|
| 33    | 34   | 35   | 36   | 37   | 38   | 39   | 40    | 41    | 42   | 43    | 44    | 45   | 46   | 47   | 48   | 49   | 50    |
| 63.0  | 17.0 | 17.0 |      |      |      |      | 58.0  | 50.0  |      | 113.0 |       |      | 7.4  | 7.6  |      | 9.1  | 72.0  |
|       |      |      |      |      |      |      | 69.0  | 61.0  |      |       |       |      |      |      |      |      |       |
| 89.0  | 25.0 | 25.0 |      |      |      |      | 76.0  |       |      |       |       |      | 10.3 | 13.7 |      | 11.5 | 110.0 |
| 94.0  | 33.0 | 30.0 |      |      |      |      | 81.0  | 69.0  |      | 163.0 |       |      | 12.0 | 13.0 |      | 11.3 | 122.0 |
| 87.0  | 32.0 | 31.0 |      |      |      |      |       | 67.0  |      | 154.0 |       |      |      |      |      |      |       |
|       |      |      |      |      |      |      |       | 106.0 |      |       |       |      |      |      |      |      |       |
| 146.0 | 39.0 | 38.0 |      |      |      |      |       | 103.0 |      | 249.0 |       |      | 14.7 | 18.4 |      | 16.5 | 195.0 |
|       |      |      |      |      | 25.5 |      |       | 131.0 |      |       |       |      |      |      |      |      |       |
| 168.0 | 41.0 | 38.0 |      |      |      |      | 137.0 | 122.0 |      | 290.0 | 29.3  | 29.0 | 17.1 | 23.8 | 56.2 | 21.3 | 236.0 |
| 203.0 | 40.0 | 40.0 |      |      |      |      | 157.0 | 143.0 |      | 346.0 | 34.5  | 35.5 | 17.2 | 21.3 |      | 23.6 | 276.0 |
|       |      |      |      |      |      |      |       | 144.0 |      |       |       |      |      |      |      |      |       |
| 263.0 | 52.0 | 49.0 | 49.2 | 37.2 | 34.6 | 17.5 | 212.0 | 188.0 |      | 451.0 | 42.2  | 42.7 | 23.4 | 29.6 | 71.8 | 26.7 | 385.0 |
| 262.0 | 60.0 | 55.0 | 51.0 | 37.1 | 31.1 | 17.9 | 208.0 | 185.0 | 17.3 | 447.0 |       |      |      |      |      |      |       |
| 294.0 | 62.0 | 57.0 | 53.9 | 40.5 | 39.6 | 18.3 | 218.0 | 193.0 | 20.0 | 487.0 | 44. L | 42.4 | 25.7 | 29.6 | 79.7 | 31.9 | 433.0 |
|       |      |      | 57.5 | 42.2 | 43.7 | 18.2 | 238.0 | 218.0 | 18.9 |       | 42.6  | 45.3 | 24.8 | 26.8 | 77.2 | 30.1 | 434.0 |

.

| 51   | 52   | 53    | 54   | 55   | 56   | 57   | 58   | 59   | 60    | 61    | 62   | 63   | 64   | 65   | 66   | 67   | 68   |
|------|------|-------|------|------|------|------|------|------|-------|-------|------|------|------|------|------|------|------|
| 21.0 | 6.0  | 62.0  | 20.0 | 14.1 |      |      | 11.8 | 5.5  | 58.0  | 130.0 |      |      |      |      |      |      |      |
|      |      | 77.0  | 25.0 | 16.3 |      |      | 12.0 | 6.4  |       |       |      |      |      |      |      |      |      |
| 29.0 | 7.6  | 88.0  | 29.0 | 22.1 |      |      | 14.5 | 7.5  | 88.0  | 198.0 |      |      |      |      |      |      |      |
| 36.0 | 11.1 | 97.0  | 34.0 | 26.0 |      |      | 15.9 | 8.8  | 94.0  | 216.0 |      |      |      |      |      |      |      |
|      |      | 90.0  | 32.0 | 21.3 |      |      | 14,4 | 8.9  |       |       |      |      |      |      |      |      | I    |
|      |      |       |      |      |      |      |      |      |       |       |      |      |      |      |      |      |      |
| 46.0 | 14.4 | 146.0 | 42.0 | 36.6 |      |      | 22.0 | 11.2 | 150.0 | 345.0 |      |      | 36.2 | 20.6 |      |      |      |
|      |      |       |      | 48   |      |      |      |      |       |       |      |      |      |      |      |      |      |
| 54.0 | 17.4 | 180.0 | 49.0 | 40,4 |      |      | 28.4 | 14.3 |       |       |      |      |      |      | 38.4 | 22.6 |      |
| 53.0 | 17.2 | 217.0 | 50.0 | 56.6 | 22.4 | 25.2 | 40.3 | 12.5 | 213.0 | 489.0 | 30.4 |      | 54.9 | 35.2 | 44.3 | 22.4 | 44.8 |
|      |      |       |      |      |      |      |      |      |       |       |      |      |      |      |      |      |      |
| 80.0 | 25.7 | 320.0 | 68.0 | 65.4 | 27.1 | 29.8 | 44.8 | 17.5 | 308.0 | 693.0 | 35.4 |      | 66.6 | 43.2 | 53.0 | 27.2 | 69.0 |
|      |      |       |      |      |      |      |      |      | 308.0 |       | 40.6 |      | 68.9 | 51.0 |      |      |      |
| 80.0 | 25.3 | 335.0 | 72.0 | 75.3 | 30.3 | 32.5 | 52.0 | 21.6 | 337.0 | 770.0 | 43.8 | 71.6 | 73.7 | 51.6 | 58.6 | 28.1 | 75.0 |
| 87.0 | 26.4 | 346.0 | 75.0 | 69.8 | 28.8 | 32.7 | 51.1 | 19.7 | 334.0 | 768.0 | 45.6 |      | 77.3 | 55.2 |      |      |      |

| 69   | 70  | 33    | 34   | 35   | 36   | 37      | 38   | 39   | 40    | 41    | 42   | 43    | 44   | 45       | 46   | 47   | 48       |
|------|-----|-------|------|------|------|---------|------|------|-------|-------|------|-------|------|----------|------|------|----------|
|      |     | 63.0  | 17.0 | 17.0 |      | [       |      |      | 58.0  | 50.0  |      | 113.0 |      |          | 7.6  | 7.8  |          |
|      |     |       |      |      |      |         |      |      | 69.0  | 59.0  |      |       |      |          | 8.8  | 8.9  |          |
|      | 1   |       |      |      |      |         |      | 1    | 76.0* | 67.0  |      |       | 1    | <b></b>  | 10.0 | 13.6 |          |
|      |     | 96.0  | 32.0 | 30.0 |      |         |      |      | 80.0  | 70.0  |      | 166.0 |      |          | 12.3 | 13.4 | 1        |
|      | 1   | 88.0  | 33.0 | 28.0 |      |         |      |      | 78.0  |       | 1    |       |      |          | 11.6 | 14.6 |          |
|      |     |       |      |      |      | · · · · |      |      |       | 107.0 |      |       |      |          |      |      |          |
|      |     | 148.0 | 39.0 | 38.0 |      |         |      |      | 121.0 | 103.0 | 1    | 251.0 |      |          | 14.8 | 17.8 |          |
|      |     |       |      |      |      | 1       | 26.5 |      |       | 133.0 |      |       |      | 1        |      |      |          |
|      |     | 168.0 | 43.0 | 38.0 |      |         |      |      | 138.0 | 123.0 |      | 291.0 | 29.2 | 29.3     | 16.7 | 23.1 | 52.8     |
|      |     | 205.0 | 40.0 | 40.0 | 39.1 | 31.8    | 30.9 | 13.5 | 158.0 | 141.0 |      | 346.0 |      | t        | 16.8 | 24.1 | t        |
|      |     |       |      |      |      | 1       |      | 1    |       | 143.0 |      |       |      | · · · ·  |      |      |          |
| 52.4 | 6.2 | 270.0 | 55.0 | 52.0 | 52.1 | 39.0    | 36.3 | 16.7 | 214.0 | 189.0 | 16.8 | 459.0 |      | Ì        |      |      | <u> </u> |
|      | 6.6 | 267.0 | 60,0 | 55.0 | 53.6 | 37.9    | 30.8 | 20.2 | 209.0 | 188.0 | 18.2 | 455.0 |      | <u> </u> |      |      |          |
|      | 6.9 | 300.0 | 62.0 | 56.0 | 56.2 | 41.4    | 43.5 | 18.1 | 216.0 | 195.0 | 19.0 | 495.0 | 45.1 | 45.8     | 24.4 | 29.4 | 82.1     |
|      | 6.4 | 297.0 | 63.0 | 59.0 | 57.2 | 42.2    | 42.4 | 17.6 | 238.0 | 219.0 | 19.1 | 516.0 | 42.1 | 44.9     | 23.9 | 29.3 | 78.0     |

LEFT LEFT RIGHT 
| 49   | 50    | 51   | 52   | 53    | 54   | 55   | 56   | 57   | 58   | 59   | 60    | 61    | 62   | 63   | 64   | 65       | 66   |
|------|-------|------|------|-------|------|------|------|------|------|------|-------|-------|------|------|------|----------|------|
| 9.2  | 73.0  | 20.0 | 6.1  | 62.0  | 21.0 | 14.6 |      |      | 12.0 | 5.7  | 60,0  | 133.0 |      |      |      |          |      |
| 8.9  | 95.0  | 34.0 | 6,8  | 78.0  | 25.0 | 16.5 |      |      | 11.2 | 6.3  |       |       |      | 1    |      |          |      |
| 9.9  | 110.0 | 30,0 | 8.3  | 88.0  | 29.0 | 21.5 |      |      | 14.5 | 7.5  | 88.0  | 198.0 |      |      |      |          |      |
| 11.5 | 121.0 | 36.0 | 11.5 | 97.0  | 33,0 | 26.1 |      |      | 15.3 | 9.1  | 95.0  | 216.0 |      |      |      |          |      |
| 13.6 | 110.0 | 33.0 | 9.8  | 91.0  | 32.0 | 24.0 |      |      | 14.2 | 9.3  |       | ļ     |      |      |      |          |      |
| 16.4 | 195.0 | 46.0 | 14.2 | 146.0 | 44.0 | 36.8 |      |      | 22.4 | 11.3 | 150.0 | 345.0 |      |      |      | <u> </u> |      |
|      |       |      |      |       |      |      |      |      | 27.5 |      |       |       |      |      |      |          |      |
| 21.5 | 235.0 | 53.0 | 17.2 | 177.0 | 48.0 | 44.1 |      |      | 28.0 | 13.4 | 178.0 | 413.0 |      |      | 1    | <u> </u> | 38.6 |
| 24.3 | 278.0 | 52.0 | 16.9 | 218.0 | 51.0 | 55.4 | 21.9 | 26.4 | 39.5 | 12.7 | 214.0 | 492.0 | 29.5 |      | 54.4 | 34.9     | 46.4 |
|      |       |      |      | 300.0 | 68.0 | 66.0 | 28.1 | 29.7 |      | 18.1 | 293.0 |       | 36.6 |      | 66.5 | 44.7     | 53.2 |
|      |       |      |      | 316.0 | 72.0 | 63.4 | 24.4 | 28.6 |      | 19.6 | 310.0 |       | 40.8 |      | 70.0 | 50.4     |      |
| 31.2 | 438.0 | 83.0 | 26.2 | 329.0 | 74.0 | 76.3 | 29.0 | 31.0 | 49.8 | 21.5 | 333.0 | 771.0 |      | 70.9 | 73.4 | 51.5     | 57.5 |
| 28.2 | 435.0 | 90.0 | 25.4 | 353.0 | 76.0 | 71.2 | 27.8 | 34.0 | 53.1 | 19.6 | 338.0 | 773.0 |      |      | 77.7 | 56.5     | 60.3 |

RIGHT RIGHT RIGHT RIGHT RIGHT RIGHT RIGHT RIGHT RIGHT RIGHT RIGHT RIGHT RIGHT RIGHT RIGHT RIGHT RIGHT RIGHT

-----

# RIGHT RIGHT RIGHT RIGHT

and the production of the second s

| 67   | 68   | 69   | 70  |
|------|------|------|-----|
|      |      |      |     |
|      |      |      |     |
|      | ·    |      |     |
|      |      |      |     |
|      |      |      |     |
|      |      |      |     |
|      |      |      |     |
| 21.3 |      | 34.3 | 5.7 |
| 22.9 | 50.4 |      |     |
|      |      |      |     |
| 27.6 | 69.0 |      |     |
|      |      |      | 6.0 |
| 28.5 | 71.0 |      | 7.4 |
| 29.4 | 77.0 |      |     |

# D-3 Sacred Heart adult BSI measurements (mm)

|            | -         |     | TOI MICHOUSE | Chickens (ong | Sinui numoer | ing see Appe | $\frac{1}{100}$ , $D$ , $D$ -1) |      |       |       |      |      |       |      |
|------------|-----------|-----|--------------|---------------|--------------|--------------|---------------------------------|------|-------|-------|------|------|-------|------|
| Skeleton # | Age       | Sex | 1            | 2             | 3            | 4            | 5                               | 6    | 7     | 8     | 9    | 10   | 11    | 12   |
| 88         | 20.0-24.0 | F   | 137.0        | 172.0         | 101.0        | 94.7         | 34.6                            | 38.6 | 94.6  | 106.4 | 25.4 | 11.0 | 130.0 | 38.4 |
| 24         | 22.0-29.0 | F   | 139.0        | 169.0         | <b>97</b> .0 | 89.7         | 36.2                            | 38.9 | 94.2  | 98.1  | 21.7 | 8.4  | 120.0 | 36.9 |
| 9          | 35.0-39.0 | F   | 139.0        | 186.0         | 103.0        | 95.6         | 32.2                            | 38.4 | 92.2  | 98.9  | 27.6 | 12.2 | 126.0 | 37.5 |
| 120        | 35.0-39.0 | F   | 140.0        | 183.0         | 104.0        | 95.9         | 36.1                            | 37.2 | 93.1  | 101.3 | 22.9 | 10.8 | 123.0 | 36.7 |
| 124B       | 40.0-45.0 | F   | 132.0        | 179.0         | 106.0        | <b>99.8</b>  | 37.8                            | 41.2 | 102.9 | 101.7 | 19.3 | 12.6 | 130.0 | 37.9 |
| 97         | 40.0-50.0 | F   | 136.0        | 188.0         | 105.0        | 97.8         | 33.8                            | 37.7 | 96.6  | 105.5 | 26.9 | 13.6 | 134.0 | 37.9 |
| 71         | 45.0-60.0 | F   | 138.0        | 174.0         | 100.0        |              | 33.8                            | 36.3 | 97.5  | 93.4  | 22.6 | 13.4 | 129.0 | 36.3 |
| 5          | 50.0-59.0 | F   |              | 178.0         | 95.0         | 88,3         | 32.3                            | 36.6 | 93.5  | 92.5  | 17.0 | 10.0 | 121.0 | 32.0 |
| 114        | 50.0+     | F   | 139.0        |               | 100.0        | 94.4         | 35.7                            | 38.6 | 92.7  | 97.2  | 21.2 | 15.0 | 132.0 | 35.4 |
| 122        | 50.0+     | F   | 123.0        | 181.0         | 103.0        | 96.7         | 32.7                            | 39.7 | 100.3 | 95.4  |      |      |       |      |
| 139        | 30.0-35.0 | М   | 136.0        | -             | 102.0        | 91.6         | 29.8                            | 38.3 | 95.1  |       |      |      |       |      |
| 115        | 35.0-39.0 | М   | 141.0        | 195.0         | 107.0        | 99.0         | 36.6                            | 38.3 | 100.4 | 109.4 | 18.9 | 14.6 | 130.0 | 35.5 |
| 145        | 35.0-45.0 | М   | 137.0        | 182.0         |              |              | 33.7                            | 39.8 | 94.8  | 102.9 | 21.6 | 15.6 | 130.0 | 37.4 |
| 30         | 40.0-45.0 | М   | 141.0        | 193.0         | 108.0        | 98.8         | 40.0                            | 41.6 | 105.4 | 104.3 | 26.0 | 13.7 | 137.0 | 39.1 |
| 72         | 40.0-45.0 | М   | 143.0        | 193.0         | 108.0        | 99.8         | 39.2                            | 40.1 | 106.2 | 111.0 | 22.1 | 12.2 | 138.0 | 39.7 |
| 33         | 40.0-49.0 | М   | 134.0        | 189.0         | 103.0        | 95.8         | 39.6                            | 37.0 | 96.2  | 106.5 | 24.5 | 11.8 | 131.0 | 36.8 |
| 73         | 40.0-50.0 | М   | 144.0        | 183.0         | 104.0        | 97.0         | 35.5                            | 39.5 | 100.5 | 110.3 | 23.9 | 14.1 | 135.0 | 38.5 |
| 64         | 45.0-60.0 | М   | 139.0        | 187.0         | 111.0        | 102.7        | 35.1                            | 41.7 | 101.7 | 114.0 | 27.1 | 12.7 | 130.0 | 44.2 |
| 83         | 50.0-60.0 | М   | 142.0        | 187.0         | 104.0        | 98.3         | 35.7                            | 41.4 | 95.3  | 103.0 | 26.7 | 12.7 | 132.0 | 36.0 |
| 55         | 60.0+     | М   | 144.0        | 188.0         | 105.0        | 99.3         | 40.8                            | 41.4 | 94.5  | 112.1 | 28.5 | 13.4 | 138.0 | 38.5 |

BSI Measurements (original numbering see Appendix B, B-1)

94. - or -

er en la segue de Mareiro

| 13   | 14   | 15 | 16   | 17               | 18   | 19   | 20   | 21   | 22   | 23   | 24   | 25   | 26   | 27   | 28   |
|------|------|----|------|------------------|------|------|------|------|------|------|------|------|------|------|------|
| 34.9 | 20.4 |    |      |                  | 23.8 |      | 15.5 | 23.8 | 26.8 | 37.4 | 28.0 | 42.0 | 32.7 | 55.2 | 30.8 |
| 30.0 | 17.8 |    |      | 85.8             | 21.7 | 46.4 | 12.9 | 24.0 | 24.6 | 32.4 | 25.1 | 35.9 | 27.5 | 42.3 | 26.0 |
| 32.4 | 19.4 |    |      | 92.4             |      | 50.9 | 15.6 | 22.8 | 26.6 | 38.2 | 27.2 | 39.5 | 34.6 | 51.8 | 30.8 |
| 31.5 | 23.0 |    |      | 94.8             | 24.7 | 54.4 | 17.7 | 24.8 | 29.0 | 37.7 | 27.9 | 39.7 |      |      | 29.0 |
| 30.7 | 22.0 |    |      | 94.4             |      | 47.5 | 19.0 | 23.9 | 26.3 | 39.8 | 27.1 | 40.5 | 32.6 | 53,3 | 29.4 |
| 34.3 | 21.8 |    |      | 97.9             | 25.4 | 58.8 | 16.6 | 26.3 | 30.6 | 43.3 | 32.7 | 43.7 | 35.0 | 53.4 | 32.8 |
| 27.6 | 22.1 |    |      | 91.6             | 20.4 | 47.5 | 14.1 | 23.7 | 26.7 | 37.3 | 27.9 | 41.1 | 32.2 | 51.1 |      |
| 25.9 | 14.8 |    |      | 78.9             |      | 53.7 | 17.4 | 22.6 | 25.2 | 36.5 |      | 40.2 | 28.6 | 41.7 | 23.4 |
| 30.0 | 22.8 |    |      | 96.6             |      | 50.2 | 17.3 | 24.3 | 28.7 | 36.6 | 28.7 | 38.3 | 31.1 | 45.9 |      |
|      | 23.4 |    |      | 88.5             | 24.8 | 56.1 | 16.8 | 26.4 | 31.3 | 40.3 | 32.4 | 42.6 | 35.6 | 55.0 | 33.7 |
|      | 18.3 |    | 28.7 | 90.0             | 21.4 | 48.5 | 16.8 | 21.7 | 30.9 | 42.4 | 32.8 | 45.1 | 36.1 | 53.6 | 31.8 |
| 28.6 | 23.8 |    | 36.3 | 101.3            | 24.2 |      | 15.9 | 25.1 |      | 43.4 | 30.2 | 45.8 | 32.5 | 51.6 | 31.3 |
| 32.8 | 20.9 |    | 28.4 | 93.6             |      | 50.2 | 16.9 | 28.4 | 30.5 | 46.9 | 32.7 | 52.7 |      |      | 31.5 |
| 31.4 | 19.1 |    | 36.9 | 104.1            | 24.0 | 52.6 | 20.0 | 26.5 | 39.3 | 49.2 | 42.0 | 54.1 | 40.4 | 60.8 | 35.9 |
| 32.4 | 22.2 |    | 27.5 | <del>99</del> .0 |      | 57.3 | 16.0 | 23.1 | 28.5 | 40.7 | 30.9 | 40.9 | 32.9 | 54.4 | 30.2 |
| 31.6 | 20.7 |    | 29.8 | 98.0             | 25.7 | 59.1 | 16.9 | 26.3 | 29.5 | 42.5 | 32.4 | 46.4 |      |      |      |
| 35.1 | 19.5 |    | 26.7 | 105.4            | 24.9 | 52.8 | 15.1 | 25.3 | 33.2 | 42.0 | 31.5 | 44.5 | 34.8 | 54.8 | 31.3 |
| 38.7 | 22.7 |    | 34.8 | 100.8            | 23.9 | 53.2 | 20.8 | 27.9 | 32.6 | 43.7 | 36.7 | 46.6 | 35.8 | 59.3 | 33.9 |
| 32.4 | 19.6 |    |      | 102.7            |      | 50.9 | 20.2 | 28.7 | 32.6 | 45.4 | 32.3 | 46.1 | 33.3 | 53.2 | 32.1 |
| 33.8 | 18.3 |    | 38.7 | 97.9             | 22.9 | 63.4 | 20.2 | 28.6 | 38.2 | 49.4 | 38.7 | 54.4 | 39.4 | 62.9 | 36.1 |

|      |      |    |       | LEFT  | LEFT | LEFT | LEFT | LEFT | LEFT | LEFT | LEFT  | LEFT  | LEFT | LEFT  | LEFT |
|------|------|----|-------|-------|------|------|------|------|------|------|-------|-------|------|-------|------|
| 29   | 30   | 31 | 32    | 33    | 34   | 35   | 36   | 37   | 38   | 39   | 40    | 41    | 42   | 43    | 44   |
| 52.3 | 37.4 |    | 284.0 | 312.0 | 61.0 | 57.0 | 56.7 | 40.6 | 41.3 | 19.4 | 246.0 | 226.0 | 20.0 | 538.0 | 42.6 |
| 38.8 | 27.4 |    | 278.0 | 307.0 | 54.0 | 53.0 | 49.7 | 37.5 | 38.2 | 16.3 | 228.0 | 220.0 | 19.6 | 527.0 | 39.1 |
| 51.5 | 32.5 |    |       | 289.0 | 65.0 | 62.0 | 55.6 | 42.7 | 40.0 | 20.2 | 223.0 | 206.0 | 19.6 | 495.0 | 42.7 |
| 44.9 | 32.5 |    |       | 330.0 | 70.0 | 67.0 | 55.5 | 42.0 | 43.1 | 19.9 | 244.0 | 234.0 | 19.7 | 564.0 | 45.8 |
| 47.1 | 28.1 |    | 286.0 | 304.0 | 63.0 | 58.0 | 53.8 | 38.3 | 40.9 | 19.1 |       | 216.0 | 18.4 | 520.0 | 41.5 |
| 55.9 | 33.9 |    | 302.0 | 318.0 | 65.0 | 61.0 | 58.0 | 43.3 | 41.4 | 19.8 | 245.0 | 226.0 | 21.6 | 544.0 | 43.2 |
|      |      |    | 288.0 | 308.0 | 65.0 | 61.0 | 57,3 | 41.2 | 44.5 | 20.4 | 241.0 | 222.0 | 21.9 | 530.0 | 43.6 |
| 41.3 | 29.0 |    | 277.0 | 293.0 | 57.0 | 55.0 |      | 36.6 | 34.9 | 17.5 | 243.0 | 226.0 | 19.2 | 519.0 | 35.5 |
| 60.0 | 32.1 |    | 276.0 | 284.0 | 57.0 | 55.0 | 54.4 | 38.9 | 39.3 | 18.6 | 224.0 | 210.0 | 18.5 | 494.0 | 42.6 |
| 53.4 | 36.6 |    | 296.0 | 317.0 | 66.0 | 60.0 | 55.9 | 40.4 | 42.1 | 18.8 | 241.0 |       | 18.7 |       | 45.5 |
| 53.4 | 33.8 |    |       | 322.0 | 65.0 | 64.0 | 61.0 | 48.1 | 48.8 | 23.7 |       | 235.0 | 23.7 | 557.0 | 48.5 |
| 51.1 | 34.7 |    |       | 342.0 | 68.0 | 65.0 | 59.9 | 44.9 | 42.2 | 20.5 | 267.0 | 242.0 | 21.9 | 584.0 | 45.8 |
| 58.9 | 30.8 |    | 270.0 | 321.0 | 65.0 | 61.0 | 59.5 | 44.0 | 42.7 | 19.9 | 250.0 | 232.0 | 22.2 | 553.0 | 43.5 |
| 58.0 | 32.4 |    | 291.0 | 355.0 | 68.0 | 67.0 | 64.7 | 52.8 | 48.7 | 23.5 | 289.0 | 268.0 | 25.8 | 623.0 | 49.3 |
| 51.6 | 30.7 |    |       | 335.0 | 57.0 | 55.0 |      |      | 44.0 |      | 242.0 | 227.0 | 27.1 | 562.0 | 45.3 |
|      |      |    | 292.0 | 347.0 | 64.0 | 64.0 | 57.9 | 44.2 | 43.2 | 21.3 | 272.0 | 258.0 | 22.5 | 605.0 | 46.4 |
| 50.3 | 30.5 |    |       | 320.0 | 68.0 | 65.0 | 62.4 | 43.4 | 43.0 | 21.2 | 255.0 | 232.0 | 20.4 | 552.0 | 46.7 |
| 56.7 | 34.9 |    | 290.0 | 366.0 | 70.0 | 66.0 | 67.4 | 48.4 | 50.2 | 22.3 | 263.0 | 243.0 | 24,1 | 609.0 | 48.8 |
| 60.8 | 34.9 |    |       | 330.0 | 69.0 | 63.0 | 63.2 | 46.4 | 49.2 | 20,6 | 258.0 | 245.0 | 22.1 | 575.0 | 48.2 |
| 61.7 | 38.5 |    |       | 342.0 | 73.0 | 70.0 | 66.0 | 50.0 | 48.1 | 23.5 | 282.0 | 262.0 | 24.7 | 604.0 | 50.8 |

| LEFT | LEFT | LEFT | LEFT | LEFT | LEFT  | LEFT         | LEFT_ | LEFT  | LEFT | LEFT | LEFT | LEFT | LEFT | LEFT | LEFT   |
|------|------|------|------|------|-------|--------------|-------|-------|------|------|------|------|------|------|--------|
| 45   | 46   | 47   | 48   | 49   | 50    | 51           | 52    | 53    | 54   | 55   | 56   | 57   | 58   | 59   | 60     |
| 42.7 | 24.3 | 28.3 | 73.5 | 24.1 | 435.0 | 80,0         | 24.7  | 354.0 | 76.0 | 69.4 | 30.4 | 32.5 | 46.7 | 20.9 | 345.0  |
| 40.4 | 25.5 | 28.5 | 72.7 | 25.8 | 428.0 | 78.0         | 24.0  | 342.0 | 78.0 | 66,7 | 30.1 |      | 45.7 | 20.8 | 323.0  |
| 41.4 | 31.7 | 28.2 | 72.8 | 25.7 | 406.0 | 82.0         | 25.4  | 336.0 | 74.0 | 66.2 | 25.9 | 33.7 | 46.0 | 20.1 | _333.0 |
| 45.7 | 28.6 | 32.0 | 73.7 | 26.4 | 463.0 | 99.0         | 27.1  | 405.0 | 90.0 | 77.3 | 31.1 | 36.7 | 53.3 | 27.2 | 387.0  |
| 39.2 | 30.0 | 29.5 | 68,5 | 22.0 | 410.0 | 81.0         | 25.6  | 332.0 | 78.0 | 64.7 | 27.7 | 30.2 | 44.9 | 22.4 | 323.0  |
| 43.1 | 33.1 | 27.2 | 79.5 | 27.2 | 446.0 | 87.0         | 26.5  | 361.0 | 78.0 |      | 34.4 | 35.0 |      | 22.3 |        |
| 43.0 | 26.6 | 31.0 | 77.0 | 26.4 | 424.0 | 87.0         | 27.7  | 349.0 | 79.0 | 70.6 | 27.0 | 30.6 | 49.9 | 21.3 | 341.0  |
| 34.8 | 27.0 | 25.8 | 65.4 | 25.8 | 422.0 | 75.0         | 24.1  | 357.0 | 74.0 | 63.1 | 25.4 | 28.1 | 40.4 | 19.8 | 332.0  |
| 41.9 | 23.6 | 32.4 | 76.6 | 24.9 | 413.0 | 82.0         | 26.9  | 337.0 | 80.0 | 72.5 | 25.5 | 31.8 | 41.5 | 22.3 | 326.0  |
| 44.7 | 30.5 | 27.4 | 74.0 | 29.9 | 446.0 | 85.0         | 24.9  | 361.0 | 79.0 | 69.9 | 30.6 | 32.4 |      | 23.1 |        |
| 47.3 | 29.6 | 31.9 | 85.5 | 31.1 | 471.0 | 88.0         | 27.9  | 376.0 | 88.0 | 79.8 | 33.8 | 37.0 | 52.1 | 25.2 | 357.0  |
| 45.9 | 27.0 | 36.0 | 83.1 | 30.6 | 468.0 | 93.0         | 30.3  | 384.0 | 90.0 | 78.3 | 31.6 | 32.5 | 51.0 | 25.3 | 370.0  |
| 44.4 | 31.1 | 29.9 | 77.2 | 31.4 | 426.0 | 86.0         | 26.1  | 343.0 | 85.0 | 75.9 | 30.7 | 33.4 | 49.6 | 20.5 | 338.0  |
| 48.9 | 29.2 | 33.9 | 86.4 | 32.1 | 499.0 | 92.0         | 29.2  | 404.0 | 87.0 | 84.3 | 33.2 | 38.2 | 57.5 | 24.8 | 384.0  |
| 44.6 | 23.2 | 33.0 | 76.3 | 27.2 | 467.0 | <b>84</b> .0 | 26.8  | 359.0 | 86.0 | 71.0 | 30.9 | 34.6 | 48.8 | 21.8 |        |
| 47.0 | 32.7 | 29.1 | 80.4 | 30.1 | 504.0 | 91.0         | 26.7  | 400.0 | 98.0 | 77.1 | 33.7 | 35.3 |      | 27.2 | 372.0  |
| 46.2 | 28.0 | 32.8 | 78.6 | 30.2 | 449.0 | 99.0         | 28.4  | 360.0 | 83.0 | 75.1 | 29.7 | 31.9 | 55.7 | 22.5 | 352.0  |
| 49.0 | 31.6 | 32.4 | 86.1 | 29.7 | 483.0 | 98.0         | 31.5  | 395.0 | 91.0 | 82.0 | 31.1 | 36.5 | 57.4 | 24.4 | 371.0  |
| 48.7 | 30.2 | 31.9 | 80.9 | 27.0 | 471.0 | 90.0         | 28.0  | 388.0 | 95.0 | 80.4 | 31.4 | 33.8 | 51.3 | 25.6 | 379.0  |
| 50.5 | 31.9 | 32.7 | 87.8 | 35.7 | 480.0 |              | 30.0  | 394.0 | 88.0 | 77.2 | 34.2 | 35.5 | 57.7 | 25.5 | 379.0  |

| LEFT  | LEFT | LEFT | LEFT | LEFT         | LEFT | LEFT | LEFT | LEFT | LEFT | RIGHT | RIGHT | RIGHT | RIGHT | RIGHT | RIGHT |
|-------|------|------|------|--------------|------|------|------|------|------|-------|-------|-------|-------|-------|-------|
| 61    | 62   | 63   | 64   | 65           | 66   | 67   | _68  | 69   | 70   | 33    | 34    | 35    | 36    | 37    | 38    |
| 780.0 | 48.9 |      | 74.9 | 51.4         | 58.0 | 30.5 | 72.0 | 69.8 | 7.9  | 317.0 | 61.0  | 58.0  | 57.0  | 41.3  | 41.8  |
| 751.0 | 40.5 |      | 67.9 | 47.4         | 50.2 | 26.3 | 67.0 | 62.9 | 7.3  | 308.0 | 55.0  | 53.0  | 50.1  | 37.9  | 38.0  |
| 739.0 | 40.4 |      | 76.2 | 51.1         | 59.2 | 30.5 | 76.0 | 64.2 | 7.0  | 294.0 | 66.0  | 62.0  | 56.2  | 41.4  | 40.5  |
| 850.0 |      |      |      |              |      |      |      |      |      | 337.0 | 70.0  | 68.0  |       | 42.1  | 44.1  |
| 733.0 | 41.0 |      | 77.3 | 50.1         | 52.3 | 26.7 | 66.0 | 65.6 | 7.9  | 309.0 | 64.0  | 60.0  | 55.8  | 39.7  | 41.5  |
|       | 47.0 |      | 78.6 | 54.4         | 61.4 | 32.8 | 80.0 | 65.8 | 8.7  | 321.0 | 66.0  | 60.0  | 54.3  | 44.2  | 42.2  |
| 765.0 | 40.5 |      | 74.3 | 52.8         | 57.8 | 29.7 | 76.0 | 65.9 | 8.2  | 311.0 | 65.0  | 63.0  | 56.7  | 42.6  | 44.2  |
| 754.0 | 36.8 |      | 68.8 | 46.8         | 46.9 | 26.4 | 67.0 | 65.3 | 7.3  | 301.0 | 58.0  | 54.0  | 51.1  | 36.5  | 35.1  |
| 739.0 | 39.4 |      | 71.9 | 52.2         | 51.8 | 27.3 | 71.0 | 61.8 | 7.8  | 288.0 | 59.0  | 57.0  | 50.6  | 40.3  | 39.9  |
|       | 42.5 |      | 79.8 | 56.9         | 55.6 | 31.3 | 75.0 |      |      | 320.0 | 67.0  | 60.0  | 56.2  | 39.7  | 42.7  |
| 828.0 | 45.1 |      | 73.5 | <b>49</b> .1 | 58.3 | 34.1 | 80.0 | 68.6 | 8.2  | 325.0 | 66.0  | 64.0  | 61.3  | 47.3  |       |
| 838.0 | 43.8 |      | 79.0 | 57.8         | 57.0 | 31.4 | 78.0 | 69.8 | 10.3 | 341.0 | 71.0  | 68.0  | 59.7  | 44.6  | 43.0  |
| 764.0 | 40.5 |      | 75.4 | 53.4         | 57.6 | 30.2 | 75.0 | 67.3 | 7.9  | 324.0 | 66.0  | 63.0  | 57.5  | 43.8  | 43.7  |
| 883.0 | 51,7 |      | 82.6 | 58.8         | 63.7 | 34.7 | 89.0 | 72.9 | 8.5  | 360.0 | 71.0  | 67.0  | 64.2  | 53.0  | 50.0  |
|       | 41.3 |      | 76.1 | 51,5         | 58.6 | 30.9 | 76.0 | 65.1 | 7.9  | 339.0 | 62.0  | 60.0  | 56.9  | 43.9  | 45.8  |
| 876.0 | 44.0 |      | 81.9 | 58.3         | 59.9 | 31.6 | 82.0 | 70.6 | 8.5  | 350.0 | 67.0  | 64.0  | 57.4  | 45.7  | 44.1  |
| 801.0 | 43.8 |      | 78.9 | 53.6         | 61.7 | 31.6 | 78.0 | 67.0 | 8.8  | 329.0 | 71.0  | 68.0  | 63.4  | 45.6  | 44.7  |
| 854.0 | 55,3 |      | 82.6 | 59.0         | 65.0 | 33.1 | 82.0 | 71.1 | 9.0  | 360.0 | 72.0  | 69.0  | 66.0  | 50.3  | 49.6  |
| 850.0 | 47.7 |      | 84.9 | 62,6         | 61.9 | 31.4 | 85.0 | 71.2 | 8.6  | 333.0 | 69.0  | 65.0  | 64.5  | 45.3  | 48.9  |
| 859.0 | 43.9 |      | 87.2 | 60.0         | 59.4 | 30.6 | 83.0 | 71.5 | 9.0  | 345.0 | 74.0  | 68.0  | 68.7  | 48.8  | 48.8  |

| RIGHT | RIGHT | RIGHT | RIGHT | RIGHT | RIGHT | RIGHT | RIGHT | RIGHT | RIGHT | RIGHT | RIGHT | RIGHT        | RIGHT | RIGHT | RIGHT |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------------|-------|-------|-------|
| 39    | 40    | 41    | 42    | 43    | 44    | 45    | 46    | 47    | 48    | 49    | 50    | 51           | 52    | 53    | 54    |
| 19.3  | 246.0 | 226.0 | 20.2  | 543.0 | 43.9  | 43.3  | 22.1  | 29.0  | 75.0  | 23.9  | 434.0 | 78.0         | 25.1  | 359.0 | 79.0  |
| 16.5  | 230.0 | 223.0 | 19.5  | 531.0 |       |       | 24.2  | 25.9  | 72.8  | 24.1  | 433.0 | 75.0         | 20.6  | 344.0 | 77.0  |
| 21.2  | 225.0 | 209.0 | 20.0  | 503,0 | 42.8  | 42.2  | 28.6  | 28.5  | 73.8  | 24.9  | 407.0 | 83.0         | 24.8  | 332.0 | 75.0  |
| 20.2  |       | 237.0 | 19.8  | 574.0 | 43.8  | 43.3  | 27.9  | 32.2  | 77.4  | 26.1  | 454.0 | 99.0         | 26.0  | 404.0 | 89.0  |
| 18.7  |       | 218.0 | 19.0  | 527.0 | 41.7  | 40.3  | 27.3  | 30.4  | 69,8  | 22.1  | 408.0 | 81.0         | 25.1  | 330.0 | 80.0  |
| 19.7  | 251.0 | 230.0 | 22.6  | 551.0 | 44.2  | 44.1  | 28.6  | 30.4  | 80.5  | 26.0  | 445.0 | 85.0         | 27.4  | 368.0 | 80.0  |
| 20.4  | 242.0 | 220.0 | 21.4  | 531.0 | 44.4  | 43.9  | 27.5  | 32.4  | 77.4  | 27.6  | 422.0 | 90.0         | 26.2  | 350.0 | 79.0  |
| 16.9  | 241.0 | 225.0 | 17.5  | 526.0 | 35.8  | 35.8  | 25.4  | 26.7  | 68.0  | 25.2  | 420.0 | 77.0         | 23.2  | 353.0 | 76.0  |
| 18.2  | 233.0 | 215.0 | 19.3  | 503.0 | 41.9  | 41.8  | 24.3  | 31.9  | 76.7  | 25.0  | 414.0 | 83.0         | 26.9  |       | 80.0  |
| 19.6  | 241.0 | 226,0 | 19.7  | 546.0 | 46.2  | 45.3  | 27.8  | 29.5  | 74.7  | 28.4  | 441.0 | <b>87</b> .0 | 25.3  | 358.0 | 79.0  |
| 23.8  | 250.0 | 234.0 | 23.4  | 559.0 | 49.7  | 48.2  | 27.8  | 33.3  | 86.2  | 32.2  | 464.0 | 87.0         | 28.6  | 374.0 | 85.0  |
| 21.1  | 271.0 | 242.0 | 22.5  | 583.0 | 45.5  | 46.4  | 26.2  | 37.1  | 84.1  | 28.6  | 468.0 | 91.0         | 30.1  | 382.0 | 90.0  |
| 19.8  | 256.0 | 233.0 | 20.9  | 557,0 | 44.5  | 44.5  | 30.2  | 30.9  | 78.6  | 26.9  | 420.0 | 86.0         | 28.3  | 350.0 | 85.0  |
| 24.4  | 289.0 | 269.0 | 26.0  | 629.0 | 49.0  | 49.4  | 28.4  | 34.4  | 88.8  | 31.6  | 494.0 | 92.0         | 29.5  | 405.0 | 88.0  |
| 19.2  | 246.0 | 231.0 | 22.7  | 570.0 | 45.6  | 44.8  | 22.4  | 32.8  | 74.9  | 25.4  | 461.0 | 83.0         | 26.5  | 364.0 | 86.0  |
| 20.4  | 275.0 | 260.0 | 22.6  | 610.0 | 46.3  | 46.8  | 30.8  | 29.2  | 79.6  | 30.0  | 501.0 | 92.0         | 25.5  | 394.0 | 91.0  |
| 21.7  | 261.0 | 238.0 | 21.3  | 567.0 | 48.9  | 47.6  | 26.9  | 30.7  | 79.8  | 31.6  | 449.0 | 92.0         | 27.3  | 354.0 | 82.0  |
| 23.4  | 262.0 | 242.0 | 25.0  | 602.0 | 49.0  | 49.7  | 31.0  | 31.8  | 88.0  | 29.1  | 490.0 | 100.0        | 30.1  | 394.0 | 91.0  |
| 20.6  | 268.0 | 251.0 | 22.7  | 584.0 | 47.1  | 47.9  | 31.1  | 31.1  | 81.1  | 28.4  | 477.0 | 93.0         | 28.7  | 383.0 | 95.0  |
| 24.1  | 287.0 | 267.0 | 24.2  | 612.0 | 51.6  | 51.2  | 31.7  | 33.7  | 87.6  | 34.3  | 485.0 | 91.0         | 29.0  | 400.0 | 90.0  |

| RIGHT        | RIGHT | RIGHT | RIGHT | RIGHT | RIGHT | RIGHT | RIGHT | RIGHT | RIGHT | RIGHT | RIGHT | RIGHT | RIGHT        | RIGHT | RIGHT |
|--------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------------|-------|-------|
| 55           | 56    | 57    | 58    | 59    | 60    | 61    | 62    | 63    | 64    | 65    | 66    | 67    | 68           | 69    | 70    |
| 69.1         | 32.3  | 33.4  | 46.1  | 22.6  | 347.0 | 781.0 | 49.8  |       | 73.9  | 50.8  | 59.3  | 30.8  | 73.0         | 69.7  | 8.2   |
| 65.7         |       | 28.6  | 44.2  | 22.0  | 328.0 | 761.0 | 39,7  |       | 65.5  | 47.4  |       | 25.8  | 68.0         | 65.0  | 7.5   |
| 66.3         | 29.7  | 35.1  | 46.0  | 21.1  | 330.0 | 737.0 | 40.8  |       | 76.4  | 51.0  | 59.2  | 32.4  | 75.0         | 66.1  | 7.5   |
| 75.8         | 29.6  |       | 53.0  | 25.4  | 387.0 | 841.0 |       |       |       |       |       |       |              |       |       |
| 66.0         | 26.1  | 30.6  | 43.5  | 23.3  | 323.0 | 731.0 | 39.0  |       | 74,9  | 50,7  | 52.4  | 27.6  | 68.0         |       | 7.4   |
| 72.4         | 35,5  | 34.7  |       | 22.2  |       |       | 45.5  | -     | 77.9  | 53.3  | 61.7  | 31.0  | 81.0         | 67.8  | 9.0   |
| 71.2         | 26.0  | 32.4  | 50.3  | 21.3  | 344.0 | 766.0 | 42.2  |       | 77.2  | 52.9  | 57.0  | 28.7  | 76.0         | 65.6  | 8.4   |
| 62.6         | 22.4  | 28.6  | 39.1  | 21.6  | 338.0 | 758.0 | 37.8  |       | 71.2  | 49.6  | 47.4  | 26.9  | 66.0         | 65.9  | 8.1   |
| 72.5         | 26.7  | 31.1  | 41.7  | 20.9  |       |       | 38.5  |       | 73.9  | 51.8  | 51.8  | 27.8  | 69.0         | 61.6  | 7.3   |
| 69.5         | 29.9  | 31.6  | 48.9  | 23.5  |       |       | 42.2  |       | 80.1  | 58.5  | 56.4  | 30.9  | 79.0         | 68.0  | 8.7   |
| 77.9         | 32.4  | 37.6  | 53.4  | 24.5  |       |       | 45.4  |       | 73.7  | 52.4  | 60.7  | 34.7  | 78.0         | 68.1  | 8.6   |
| 78.6         | 30.2  | 32.2  | 51.8  | 26.0  | 366.0 | 834.0 | 42.6  |       | 78.9  | 55.8  |       |       |              | 69.2  | 10.7  |
| 73.6         | 27.9  | 32.3  | 50.3  | 22.1  | 346.0 | 766.0 |       |       | 76.3  | 53.0  | 58.5  | 30.0  | 74.0         | 68.0  | 8.9   |
| 84.1         | 36.4  | 39.4  | 57.9  | 25.3  |       |       | 51.6  |       | 83.7  | 58.6  | 64.2  | 35.0  | 91.0         | 73.7  | 8.9   |
| 70.7         | 32.8  | 34.4  | 48.5  | 21.6  |       |       | 40.9  |       | 74.9  | 50.5  | 58.4  | 31.0  | 80.0         | 67.2  | 7.2   |
|              | 28.8  | 36.3  | 49.6  | 26.3  |       |       | 46.4  |       | 84.1  | 60.3  | 59.8  | 32.0  | 78.0         | 70.0  | 8.5   |
| 75.2         | 33.5  | 31.9  | 52.7  | 22.2  | 350.0 | 799.0 | 44.5  |       | 81.9  | 53.6  | 62.6  | 31.7  | 77.0         | 65.1  | 9.8   |
| <b>82</b> .1 | 31.6  | 35.5  | 56.9  | 24.6  | 381.0 | 871.0 | 50.6  |       | 82.7  | 61.2  | 65.5  | 32.5  | <b>8</b> 1.0 | 69.9  | 8.7   |
| 77.0         | 32.9  | 33.9  | 54.6  | 26.3  |       |       | 47.4  |       | 84.2  | 61.4  | 59.9  | 32.2  | <b>83</b> .0 | 72.3  | 8.6   |
| 78.8         | 34.6  | 36.8  | 56.9  | 25.3  | 383,0 | 868.0 | 45.5  |       | 90.7  | 60,3  | 61.3  | 31.9  | 83.0         | 72.4  | 8.6   |

# D-4 Sacred Heart sub-adult BSI measurements (mm)

| Skeleton # | Age             | Sex | 1     | 2     | 3     | 4     | 5    | 6    | 7     | 8     | 9    | 10   | 11    | 12   |
|------------|-----------------|-----|-------|-------|-------|-------|------|------|-------|-------|------|------|-------|------|
| 56         | 3.0mons-6.0mons | ?   |       |       |       |       |      |      |       |       | 14.1 | 7.8  |       |      |
| 44         | 6.0mons-1.0     | ?   |       |       |       |       |      | 26.7 |       |       |      |      |       |      |
| 66A        | 2.5-3,5         | ?   |       |       | 76.7  | 73.5  |      | 28.8 | 76.8  |       |      |      |       |      |
| 25         | 3.0-4.0         | ?   |       |       |       |       |      | 29.2 |       |       |      | 11.4 |       |      |
| 36         | 4.0-6.0         | ?   | 135.0 | 168.0 | 85.0  | 80.4  | 30.1 | 33.4 | 83.7  | 89.1  | 23.9 | 10.8 | 116.0 | 34.7 |
| 67         | 5.0-7.0         | ?   |       | 166.0 | 85.0  | 81.9  | 32.2 | 32.8 | 85.2  |       | 17.2 | 10.0 |       |      |
| 12         | 8.0-10.0        | ?   | 139.0 | 172.0 | 92.0  | 84.0  | 32.2 | 33.8 | 91.0  | 95.7  | 26.5 | 11.3 | 136.0 | 34.6 |
| 141        | 14.0-17.0       | М   | 137.0 | 182.0 | 101.0 | 96.6  | 38.2 | 36.9 | 93.3  | 101.0 | 23.0 | 11.4 | 127.0 | 36.3 |
| 63         | 18.0-20.0       | М   | 139.0 | 171.0 | 110.0 | 103.0 | 35.2 | 40.3 | 102.0 |       | 25.8 | 10.5 | 135.0 | 38.6 |
| 90         | 18.0-20.0       | F   | 133.0 | 178.0 | 96.0  | 89.3  | 36,9 | 37.1 | 91.6  | 95.1  | 20.7 | 10.0 | 123.0 | 34.3 |

BSI Measurements (original numbering see Appendix B, B-1)

| 28 |      |      |      | 18.2 |      | 16.9 | 21.7 | 31.7 | 27.0 | 31.8 |
|----|------|------|------|------|------|------|------|------|------|------|
| 27 |      |      |      | 32.1 |      | 31.1 | 39.2 | 52.9 | 47.3 |      |
| 26 |      |      |      | 18.7 |      | 19.1 | 24.4 | 33.6 | 32.8 |      |
| 25 |      |      |      | 26.4 |      |      | 29.2 | 40.5 | 41.6 | 41.1 |
| 24 |      |      |      | 17.2 |      |      | 21.6 | 28.7 | 32.9 | 28.9 |
| 23 |      |      |      | 25.3 |      |      | 31.2 | 37.5 | 39.4 | 37.0 |
| 22 |      |      |      | 17.4 |      |      | 21.9 | 26.5 | 32.9 | 28.0 |
| 21 |      |      |      | 18.7 |      | 15.9 | 21.5 | 24.9 | 22.5 | 23.2 |
| 20 |      |      |      | 10.5 |      | 9.3  | 12.9 | 15.5 | 15.2 | 15.0 |
| 19 |      |      |      |      | 40.3 | 37.6 | 45.0 | 48.3 | 51.4 |      |
| 18 |      |      |      |      | 23.5 | 20.7 | 26.2 | 23.6 | 26.3 | 20.6 |
| 17 | 62.6 | 64.2 | 0.69 | 6'89 | 73.6 | 73.5 | 84.4 | 94.0 | 99.1 | 96.3 |
| 16 | 17.9 | 15.2 | 21.7 | 20.3 | 23.5 | 23.2 | 26.9 | 29.1 | 34.3 |      |
| 15 |      |      |      |      |      |      |      |      |      |      |
| 14 |      |      | 18.1 |      | 14.6 | 18.1 | 19.3 | 24.3 | 24.9 | 16.7 |
| 13 |      |      | 28.3 |      | 30.5 | 26.2 | 30.0 | 30.3 | 33.9 | 28.6 |

| 29   | 30   | 31 | 32 | 33    | 34   | 35   | 36   | 37   | 38   | 39   | 40    | 41    | 42   | 43    | 44   |
|------|------|----|----|-------|------|------|------|------|------|------|-------|-------|------|-------|------|
|      |      |    |    | 80.0  | 28.0 | 28.0 |      |      |      |      | 69.0  | 62.0  |      | 142.0 |      |
|      |      |    |    | 97.0  | 25.0 | 25.0 |      |      |      |      | 80.0  | 72.0  |      | 169.0 |      |
|      |      |    |    | 125.0 | 32.0 | 32.0 |      |      |      |      | 100.0 | 90.0  |      | 215.0 |      |
| 41.6 | 15.7 |    |    | 149.0 | 35.0 | 35.0 |      |      | 18.8 |      | 123.0 | 113.0 |      | 262.0 |      |
|      |      |    |    | 168.0 | 41.0 | 41.0 |      |      |      |      | 139.0 | 124.0 |      | 292.0 | 24.3 |
| 34.2 | 15.1 |    |    | 157.0 | 37.0 | 37.0 |      |      |      |      | 123.0 | 111.0 |      | 268.0 | 21.1 |
| 41.8 | 17.5 |    |    | 215.0 | 48.0 | 46.0 |      |      |      |      | 170.0 | 158.0 |      | 373.0 |      |
| 52.0 | 30.5 |    |    | 295.0 | 70.0 | 66.0 | 59.2 | 41.0 | 43.6 | 17.7 | 245.0 | 222.0 | 18.1 | 517.0 | 41.3 |
| 45.9 | 33.6 |    |    | 325.0 | 60.0 | 56.0 | 55.0 | 37.7 | 40.9 | 19.5 |       | 221.0 | 18.2 | 546.0 | 41.6 |
| 49.4 | 30,4 |    |    | 288.0 | 61.0 | 59.0 | 56.0 | 39.2 | 37.1 | 18.7 |       | 220.0 | 18.4 | 508.0 | 39.6 |

| LEFT | LEFT | LEFT | LEFT | LEFT | LEFT  | LEFT | LEFT | LEFT  | LEFT | LEFT | LEFT | LEFT | LEFT | LEFT | LEFT  |
|------|------|------|------|------|-------|------|------|-------|------|------|------|------|------|------|-------|
| 45   | 46   | 47   | 48   | 49   | 50    | 51   | 52   | 53    | 54   | 55   | 56   | 57   | 58   | 59   | 60    |
|      | 11.3 | 10.5 |      |      | 91.0  | 32.0 | 9.6  | 81.0  | 30.0 | 20.5 |      |      |      | 7.7  | 76.0  |
|      | 10.8 | 9.7  |      | 10.3 | 123.0 | 28.0 | 8.5  | 100.0 | 28.0 | 22.7 |      |      |      | 7.3  | 95.0  |
|      | 14.1 | 14.4 |      |      | 166.0 | 42.0 | 12.0 | 132.0 | 35.0 | 29.6 |      |      |      | 9.8  | 125.0 |
|      | 16.3 | 17.3 | 48.4 | 18.0 | 206.0 | 42.0 | 13.6 | 170.0 | 41.0 | 39.0 |      |      |      | 12.8 | 167.0 |
| 24.6 | 17.6 | 17.8 | 51.9 | 17.0 | 230.0 | 49.0 | 14.0 | 191.0 | 45.0 | 42.5 | 19,1 | 22.5 |      | 14.1 | 186.0 |
| 22.6 | 15.5 | 17.5 |      | 18.1 | 215.0 | 46.0 | 14.3 | 176.0 | 47.0 | 38.2 | 14.8 | 22.3 |      | 13.6 | 170.0 |
|      | 22.1 | 20.9 | 61.1 | 21.8 | 309.0 | 59.0 | 16.6 | 250.0 | 60.0 | 52.4 | 25.3 | 30.7 |      | 17.5 | 242.0 |
| 43.1 | 29.4 | 34.2 | 75.2 | 29.1 | 420.0 | 88.0 | 29.0 | 358.0 | 80.0 | 68.7 | 30.9 | 30.4 | 46.4 | 21.7 | 329.0 |
| 40.8 | 25.7 | 27.0 | 73.6 | 25.4 | 451.0 | 78.0 | 22.9 | 360.0 | 70.0 | 66.0 | 30.0 | 31.7 | 45.1 | 20.4 | 345.0 |
| 39.3 | 25.4 | 30.5 | 69.4 | 25.3 | 418.0 | 81.0 | 25.1 | 341.0 | 76.0 | 63.7 | 28.5 | 28.9 | 42.6 | 23.3 | 322.0 |

| LEF I | LEFI |    |      | 2211 |      |      |      |      |     |       | 10001 |      |      |      |      |
|-------|------|----|------|------|------|------|------|------|-----|-------|-------|------|------|------|------|
| 61    | 62   | 63 | 64   | 65   | 66   | 67   | 68   | 69   | 70  | 33    | 34    | 35   | 36   | 37   | 38   |
| 167.0 |      |    | 16.3 |      | 13.7 |      |      |      |     | 81.0  | 27.0  | 27.0 |      |      |      |
| 218.0 |      |    |      |      |      |      |      |      |     | 97.0  | 27.0  | 27.0 |      |      |      |
| 291.0 |      |    | 31.5 | 20.9 | 22.7 |      |      | 25.2 | 4.3 | 125.0 | 33.0  | 33.0 |      |      |      |
| 373.0 |      |    | 40.5 | 25.4 | 33.2 | 18.0 |      | 27.6 | 6.2 | 147.0 | 35.0  | 35.0 |      |      | 19.1 |
| 416.0 |      | 1  | 43.2 | 27.8 | 35.0 | 20.9 |      | 31.8 | 5.3 | 168.0 | 41.0  | 40.0 |      |      |      |
| 385.0 |      |    | 41.8 | 25.5 | 32.9 | 20.2 | 42.0 |      |     |       | 36.0  | 36.0 |      |      |      |
| 551.0 |      |    | 58.8 | 36.7 | 48.1 | 27.2 | 59.0 | 35.7 | 6.1 | 214.0 | 49.0  | 46.0 |      |      |      |
| 749.0 | 37.6 |    | 75.2 | 51.9 | 55.2 | 29.7 | 76.0 |      | 7.9 | 300.0 | 72.0  | 67.0 | 60.2 | 40.7 | 43.3 |
| 796.0 | 40.9 |    | 76.6 | 54.1 | 56.5 | 28.3 | 72.0 | 64.9 | 7.3 | 322.0 | 60.0  | 59.0 | 55.7 | 38.8 | 40.9 |
| 740.0 | 36.5 |    |      |      | 50.1 | 24.1 |      | 60.0 | 7.2 | 294.0 | 63.0  | 61.0 | 56.1 | 39.9 | 37.5 |

. .

| 39   | 40    | 41    | 42   | 43    | 44   | 45   | 46   | 47   | 48   | 49   | 50    | 51   | 52   | 53    | 54   |
|------|-------|-------|------|-------|------|------|------|------|------|------|-------|------|------|-------|------|
|      | 70.0  | 63.0  |      | 144.0 |      |      | 11.1 | 11.0 |      |      | 92.0  | 31.0 | 9.5  | 81.1  | 31.0 |
|      | 81.0  | 74.0  |      | 171.0 |      |      | 10.3 | 10.2 |      | 9.5  | 122.0 | 29.0 | 8.6  | 100.0 | 28.0 |
|      | 102.0 | 90.0  |      | 215.0 |      |      | 14.5 | 13.9 |      |      | 165.0 | 39.0 | 11.9 | 131.0 | 37.0 |
|      | 123.0 | 112.0 |      | 259.0 |      |      | 15.5 | 18.8 | 47.8 | 18.5 | 205.0 | 43.0 | 14.1 | 175.0 | 42.0 |
|      |       |       | _    |       |      | [    | 17.3 | 17.7 |      | 16.4 | 231.0 | 49.0 | 13.8 | 187.0 | 45.0 |
|      |       |       |      |       | 21.8 | 22.8 | 15.3 | 17.8 |      | 17.6 | 214.0 | 47.0 | 14.3 | 181.0 | 48.0 |
|      |       |       |      |       |      |      | 23.6 | 21.1 | 58.7 | 22.1 | 306.0 | 60.0 | 16.6 | 248.0 | 59.0 |
| 18.9 | 244.0 | 223.0 | 19.0 | 523.0 | 40.3 | 44.1 | 28.7 | 36.0 | 75.8 | 29.7 | 421.0 | 90.0 | 27.7 | 379.0 | 83.0 |
| 19.7 |       |       | 19.4 |       | 42.7 | 42.1 | 24.9 | 26.5 | 73.6 | 25.3 | 456.0 | 78.0 | 23.2 | 360.0 | 70.0 |
| 18.6 |       | 221.0 | 18.6 | 515.0 | 38.3 | 39.6 | 24.6 | 34.9 | 71.1 | 25.4 | 418.0 | 81.0 | 26.1 | 340.0 | 79.0 |

RIGHT RIGHT RIGHT RIGHT RIGHT RIGHT RIGHT RIGHT RIGHT RIGHT RIGHT RIGHT RIGHT RIGHT RIGHT

and the second 
ξ....

| 55   | 56   | 57   | 58   | 59   | 60    | 61    | 62   | 63 | 64   | 65   | 66   | 67   | 68   | 69   | 70  |
|------|------|------|------|------|-------|-------|------|----|------|------|------|------|------|------|-----|
| 20.6 |      |      |      | 7.9  | 76.0  | 168.0 |      |    | 17.3 |      | 13.7 |      |      |      |     |
| 21.6 |      |      |      | 7.3  | 94.0  | 216.0 |      |    |      |      |      |      |      |      |     |
| 29.3 |      |      |      | 10.1 | 126.0 | 291.0 |      |    | 30.7 | 19.3 | 22.2 |      |      | 26.5 | 4.4 |
| 39.6 |      |      |      | 12.5 | 171.0 | 376.0 |      |    | 39.8 | 25.8 | 33.0 | 18.5 |      | 27.6 | 6.0 |
| 42.8 | 19.3 | 22.9 |      | 13.6 | 184.0 | 415.0 |      |    | 43.1 | 27.4 | 35.7 | 20.4 |      |      |     |
| 38.2 | 16.8 | 24.2 |      | 14.0 | 170.0 | 384.0 |      |    | 42.1 | 26.4 | 34.3 | 21.9 | 41.0 |      |     |
| 50.9 | 23.3 | 31.8 |      | 17.6 | 240.0 | 546.0 |      |    | 58.5 | 36.6 | 48.1 | 26.9 | 56.0 |      | 7.1 |
| 68.9 | 30.5 | 33.3 | 48.1 | 24.1 | 327.0 | 748.0 | 39.6 |    | 76.5 | 51.8 | 55.7 | 30.0 | 75.0 | 69.9 | 9.1 |
| 65.3 | 28.2 | 31.3 | 43.9 | 19.8 | 344.0 | 800.0 | 39.8 |    | 76.5 | 53.5 | 56.0 | 28.6 | 72.0 | 65.9 | 7.6 |
| 65.2 | 28.2 | 26.7 | 42.5 | 23.7 | 328.0 | 746.0 | 38.0 |    | 70.0 | 49.3 | 51.7 | 27.0 | 68.0 | 61.2 | 7.8 |

RIGHT RIGHT RIGHT RIGHT RIGHT RIGHT RIGHT RIGHT RIGHT RIGHT RIGHT RIGHT RIGHT RIGHT RIGHT

|                                                                                                   | 2                                                                                       | C'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PM <sup>1</sup>                                                                                                  | PM <sup>2</sup>                                                                                      | M                                                                                | M <sup>2</sup>                                                                                     |
|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| 4.5 - 0<br>4.0 -<br>3.5 -<br>3.0 - 3.3<br>25 -<br>2.0 - 6.6<br>1.5 -<br>1.0 -<br>0.5 -<br>0 - 9.9 | 4.5 0<br>4.0 -<br>3.5 - 2.9<br>3.0 -<br>2.5 - 5.8<br>2.0 -<br>1.5 -<br>1.0 - 8.7        | 6.0 - 0<br>5.5 - 5.0 - 4.5 - 4.5 - 4.0 - 3.2<br>3.5 - 3.0 - 2.5 - 6.4<br>2.0 - 1.5 - 6.4<br>1.5 - 6.4<br>0.5 - 9.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.0 Q<br>5.5 5<br>5.0 4.5 2.7<br>4.0 5<br>3.5 5.4<br>2.5 6.1                                                     | 6.0 T 0<br>5.5 -<br>5.0 - 2.6<br>4.5 -<br>4.0 -<br>3.5 - 5.2<br>3.0 -<br>2.5 - 7.5                   | 3.5 0<br>3.0 -<br>2.5 - 2.6<br>2.0 -<br>1.5 - 5.2<br>0.5 -<br>0.5 -<br>7.8       | 7.5 0<br>7.0 -<br>6.5 -<br>6.0 - 2.4<br>5.5 -<br>5.0 -<br>4.5 - 4.8<br>4.0 -<br>3.5 -<br>3.0 - 7.2 |
| 0 - B.7<br>0 5 -<br>1.0 - 5.8<br>1.5 -<br>2.0 -<br>2.5 - 2.9<br>3.0 -<br>3.5 -<br>4.0 - 0         | 0 - 9.6<br>0.5 -<br>1.0 - 6.4<br>1.5 -<br>2.0 -<br>2.5 - 3.2<br>3.0 -<br>3.5 -<br>4.0 0 | 1.0 - 1.5 - 5.0 - 5.0 - 5.5 - 5.0 - 5.5 - 5.0 - 5.5 - 5.0 - 5.5 - 5.0 - 5.5 - 5.0 - 5.5 - 5.0 - 5.5 - 5.0 - 5.5 - 5.0 - 5.5 - 5.0 - 5.5 - 5.0 - 5.5 - 5.0 - 5.5 - 5.0 - 5.5 - 5.0 - 5.5 - 5.0 - 5.5 - 5.0 - 5.5 - 5.0 - 5.5 - 5.0 - 5.5 - 5.0 - 5.5 - 5.0 - 5.5 - 5.0 - 5.5 - 5.0 - 5.5 - 5.0 - 5.5 - 5.0 - 5.5 - 5.0 - 5.5 - 5.0 - 5.5 - 5.0 - 5.5 - 5.0 - 5.5 - 5.0 - 5.5 - 5.0 - 5.5 - 5.0 - 5.5 - 5.0 - 5.5 - 5.0 - 5.5 - 5.0 - 5.5 - 5.0 - 5.5 - 5.0 - 5.5 - 5.0 - 5.5 - 5.0 - 5.5 - 5.0 - 5.5 - 5.0 - 5.5 - 5.0 - 5.5 - 5.0 - 5.5 - 5.0 - 5.5 - 5.0 - 5.5 - 5.0 - 5.5 - 5.0 - 5.5 - 5.0 - 5.5 - 5.0 - 5.5 - 5.0 - 5.5 - 5.0 - 5.5 - 5.0 - 5.5 - 5.0 - 5.5 - 5.0 - 5.5 - 5.0 - 5.5 - 5.0 - 5.5 - 5.0 - 5.5 - 5.0 - 5.5 - 5.0 - 5.5 - 5.0 - 5.5 - 5.0 - 5.5 - 5.0 - 5.5 - 5.0 - 5.5 - 5.0 - 5.5 - 5.0 - 5.5 - 5.0 - 5.5 - 5.0 - 5.5 - 5.0 - 5.5 - 5.0 - 5.5 - 5.0 - 5.5 - 5.0 - 5.5 - 5.0 - 5.5 - 5.0 - 5.5 - 5.0 - 5.5 - 5.0 - 5.5 - 5.0 - 5.5 - 5.0 - 5.5 - 5.0 - 5.5 - 5.0 - 5.5 - 5.0 - 5.5 - 5.0 - 5.5 - 5.0 - 5.5 - 5.0 - 5.5 - 5.0 - 5.5 - 5.0 - 5.5 - 5.0 - 5.5 - 5.0 - 5.5 - 5.0 - 5.5 - 5.0 - 5.5 - 5.0 - 5.5 - 5.0 - 5.5 - 5.0 - 5.5 - 5.0 - 5.5 - 5.0 - 5.5 - 5.0 - 5.5 - 5.0 - 5.5 - 5.0 - 5.5 - 5.0 - 5.5 - 5.0 - 5.5 - 5.0 - 5.5 - 5.0 - 5.5 - 5.0 - 5.5 - 5.0 - 5.5 - 5.0 - 5.5 - 5.0 - 5.5 - 5.0 - 5.5 - 5.0 - 5.5 - 5.5 - 5.0 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 | 1.0 - 7.8<br>1.5 -<br>2.0 -<br>2.5 - 5.2<br>3.0 -<br>3.5 -<br>4.0 - 2.6<br>4.5 -<br>5.0 -<br>5.5 -<br>6.0 -<br>0 | 2.0 - 7.8<br>2.5 -<br>3.0 -<br>3.5 - 5.2<br>4.0 -<br>4.5 -<br>5.0 - 2.6<br>5.5 -<br>6.5 -<br>7.0 - 0 | 0 - 7.8<br>0.5 -<br>1.0 - 5.2<br>1.5 -<br>2.0 -<br>2.5 - 2.6<br>3.0 -<br>3.5 - 0 | 3.0 6.9<br>3.5 -<br>4.0 -<br>4.5 - 4.6<br>5.0 -<br>5 5 - 2.3<br>6.0 -<br>6.5 -<br>7.0 0            |
| Ľ                                                                                                 | 12                                                                                      | C'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PM'                                                                                                              | PM <sup>2</sup>                                                                                      | M                                                                                | M <sup>z</sup>                                                                                     |

# E-1 EHL age at formation chart

(Swardstedt 1966, modified by Goodman et al. 1980)

The top graph represents the maxilla and the bottom graph represents the mandible. Numbers on the right side of the line represent the distance from the cemento-enamel junction to the EHL, and the numbers on the left side of the line represent the corresponding ages of when the EHL would have occurred during growth (Goodman and Song 1990).

## E-2 Sadlermiut Harris line measurements

(#1 most proximal Harris line)

|            |        |        | LE    | FT    |       |       |        |        |       | RIGHT     |       |      |       | Total | Count |
|------------|--------|--------|-------|-------|-------|-------|--------|--------|-------|-----------|-------|------|-------|-------|-------|
| Skeleton # | #1     | #2     | #3    | #4    | #5    | #6    | #1     | #2     | #3    | #4        | #5    | #6   | #7    | LEFT  | RIGHT |
| 111        | 150.33 | 86.51  | 60.82 |       |       |       | 149.04 | 60.82  | 44.97 | 38.97     |       |      |       | 3     | 4     |
| 98         | 51.41  | 46.56  | 40.56 | 34.56 | 29.99 |       | 69.98  | 41.13  | 35.7  | 1         |       |      | 1     | 5     | 3     |
| 112        | 121.67 | 48.84  | 44,56 |       |       |       | 124.81 | 43.7   |       |           |       |      |       | 3     | 2     |
| 126        |        |        |       |       |       |       | 124.24 |        |       |           |       |      |       | 0     | 1     |
| 96         |        |        |       |       |       |       | 87.11  |        |       |           |       |      |       | 0     | 1     |
| 99         | 129.38 | 44.56  | 36.27 |       |       |       | 132.81 | 44,56  | 36.27 |           |       |      |       | 3     | 3     |
| 100        | 108.82 | 33.99  |       |       |       |       |        |        |       |           |       |      |       | 2     | 0*    |
| 230        |        |        |       |       |       |       | 37.13  |        |       |           |       |      | T     | 0*    | 1     |
| 219        | 91.97  | 35.13  | 32.27 |       |       |       | 95.97  | 45.41  |       |           |       |      | 1     | 3     | 2     |
| 104        | 113.39 |        |       |       |       |       | 114.82 |        |       |           |       |      |       | 1     | 1     |
| 216        | 118.82 |        |       |       |       |       | 106.25 | 50.55  | 42.56 |           |       |      | 1     | 1     | 3     |
| 221        | 156.8  |        |       |       |       |       | 152.52 | 43.13  | 36.56 |           |       |      |       | 1     | 3     |
| 246        | 118.53 |        |       |       |       |       | 131.67 |        |       | · · · · · | ····· |      |       | 1     | 1     |
| 217        | 165.94 | 145.09 |       |       |       |       | 213.36 | 123.96 |       |           |       |      |       | 2     | 2     |
| 181        | 113.1  | 46.27  | 39.42 |       |       |       | 107.96 |        |       |           |       |      | 1     | 3     | 1     |
| 183        | 106.54 | 43.99  |       |       |       |       | 77.69  | 59.41  | 50,84 |           |       |      |       | 2     | 3     |
| 101        | 109.68 | 95.4   | 32.56 |       |       |       | 113.68 |        |       |           |       |      |       | 3     | 1     |
| 192        |        |        |       |       |       |       |        |        |       |           |       |      |       | 0     | 0     |
| 175        | 105.68 | 77.4   | 39.42 |       |       |       | 115.1  | 83.11  | 78.83 |           |       |      |       | 3     | 3     |
| 149        | 110.53 | 107.68 | 98.25 | 86.83 | 82.26 | 75.69 | 110.25 | 79.4   | 76.83 | 74.26     |       |      |       | 6     | 4     |
| 105        | 92.25  | 77.12  |       |       |       |       | 103.39 | 88.26  | 78.54 | 67.69     |       |      |       | 2     | 4     |
| 103        | 122.24 | 104.82 |       |       |       |       | 111.11 | 77.69  |       |           |       |      |       | 2     | 2     |
| 156        | 133.1  |        |       |       |       |       | 133.38 | 104.25 |       |           |       |      |       | 1     | 2     |
| 157        |        |        |       |       |       |       | 123.67 | 51.98  | 41.99 | 34.56     |       |      | I     | 0     | 4     |
| 155        | 102.54 | 96.82  | 89.11 | 71.4  | 39.7  | 36.56 | 105.96 | 70.55  | 67.69 | 63.69     | 58.55 | 43.7 | 41.41 | 6     | 7     |
| 145        | 114.53 |        |       |       |       |       | 127.39 |        |       |           |       |      |       | 1     | 1     |
| 153        | 115.96 | 41.7   | 35.42 |       |       |       | 114.82 | 76,55  |       |           |       |      |       | 3     | 2     |
| 74         | 134.81 |        |       |       |       |       |        |        |       |           |       |      |       | 1     | 0     |
| 182        | 107.39 |        |       |       |       |       | 111.39 |        |       |           |       |      |       | 1     | 1     |
| 148        |        |        |       |       |       |       | 96.25  | 38.27  |       |           |       |      |       | 0     | 2     |
| 179        |        |        |       |       |       |       | 55.12  | 48.27  | 43.99 | 39.99     |       |      |       | 0     | 4     |
| 243        | 117.67 | 54.27  | 34.27 | 28.56 |       |       | 141.09 | 41.41  | 32.85 |           |       |      |       | 4     | 3     |

\* missing tibia

## E-3 Sacred Heart Harris line measurements

(#1 most proximal Harris line)

|            |        | LE    | FT    |       |        |       | RIGHT |       |       | Total | Count |
|------------|--------|-------|-------|-------|--------|-------|-------|-------|-------|-------|-------|
| Skeleton # | #1     | #2    | #3    | #4    | #1     | #2    | #3    | #4    | #5    | LEFT  | RIGHT |
| 5          | 74.67  | 61.2  | 53.33 |       | 73.33  | 60.27 | 53.07 |       |       | 3     | 3     |
| 9          | 71.38  |       |       |       | 68,78  |       |       |       |       | 1     | 1     |
| 55         | 76.79  |       |       |       | 122.91 | 45.06 |       |       |       | 1     | 2     |
| 64         | 94.35  | 70.89 | 55.97 | 39.45 | 94.35  | 81.82 | 71.43 | 57.57 | 40.51 | 4     | 5     |
| 83         | 104.93 |       |       |       |        |       |       |       |       | 1     | 0     |
| 97         | 65.03  | 44.51 |       |       | 75.43  | 63.17 | 58.1  |       |       | 2     | 3     |
| 122        | 58.79  |       |       |       | 59,39  |       |       |       |       | 1     | 2     |
| 139        | 60.77  | 55.78 | 49.38 |       | 58,93  | 45.33 | 41.6  |       |       | 3     | 3     |

# E-4 Harris lines age at formation charts

| Age | Humerus          | Radius       | Femur | Tibia |
|-----|------------------|--------------|-------|-------|
| 1   | 32.3             | 32.7         | 29.6  | 28.8  |
| 2   | 40.0             | 39.5         | 37.1  | 36.5  |
| 3   | 45.2             | 44.8         | 43.1  | 42.4  |
| 4   | 50.0             | 49.5         | 48.5  | 47.6  |
| 5   | 54.3             | 53.9         | 54.3  | 53.5  |
| 6   | 58.7             | 58.2         | 59.1  | 57.9  |
| 7   | 63.0             | 62.2         | 63.7  | 62.3  |
| 8   | 66.9             | 66.1         | 68.8  | 67.5  |
| 9   | 70.6             | 6 <b>9.9</b> | 73.0  | 71.6  |
| 10  | 74.1             | 73.5         | 76.9  | 75.7  |
| 11  | 77.5             | 77.1         | 80.6  | 79.6  |
| 12  | 80.8             | 80.9         | 84.4  | 83.7  |
| 13  | 85.3             | 85.0         | 88.8  | 88.5  |
| 14  | <del>9</del> 0.2 | 90.3         | 93.1  | 93.0  |
| 15  | 94.6             | 95.0         | 96.9  | 96.7  |
| 16  | 97.8             | 98.0         | 98.9  | 99.0  |
| 17  | 99.0             | 99.7         | 99.7  | 100.0 |
| 18  | 100.0            | 100.0        | 100.0 | 100.0 |

Chronology of limb bone growth (percent of mature bone length) MALES

(Byers 1991)

**Chronology of limb bone growth (percent of mature bone length)** FEMALES

| Age | Humerus | Radius | Femur       | Tibia |
|-----|---------|--------|-------------|-------|
| 1   | 34.5    | 35.3   | 31.7        | 31.5  |
| 2   | 42.8    | 42.7   | 40.2        | 40.1  |
| 3   | 48.8    | 48.8   | 46.4        | 46,6  |
| 4   | 54.0    | 53.9   | 52.3        | 52.4  |
| 5   | 59.2    | 59.1   | 60.0        | 58.6  |
| 6   | 63.5    | 63.5   | 65.0        | 63.9  |
| 7   | 68.5    | 67.9   | 70.0        | 69.0  |
| 8   | 72.5    | 72.4   | 75.2        | 74.3  |
| 9   | 76.4    | 76.4   | 79.6        | 79.4  |
| 10  | 79.8    | 80.4   | 83.9        | 83.9  |
| 11  | 85.3    | 85.6   | 88.7        | 88.8  |
| 12  | 90.0    | 91.0   | 93.1        | 93.0  |
| 13  | 93.8    | 95.1   | <b>96.9</b> | 96.5  |
| 14  | 97.2    | 97.6   | 99.1        | 98.3  |
| 15  | 99.2    | 99.5   | 99.8        | 99.1  |
| 16  | 100.0   | 100.0  | 100.0       | 100.0 |

(Byers 1991)

# E-5 Sadlermiut females asymmetry calulations and Z-scores

| Skeletou # | 33   | 34    | 37      | 38    | 39    | 40    | 41    | 44    | 45    | 48    | 50    | 51    | 53    | 57    | 59    | 60    | 64    | 66    |
|------------|------|-------|---------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| XIV-C.%    | 3.42 | 4.55  | 4.58    | 7.13  | 7.25  | 3.48  | 1.94  |       |       |       |       |       | 0.89  | 3.00  | 3.06  |       | 3.64  |       |
| XIV-C:112  | 3.04 | 4.41  | 3.55    | -1.90 | -0.52 | 0.39  | 0.43  | 1.07  | 1.91  | 2.06  | 0.22  | 0.00  | 0.54  | 1.86  | 4.69  | 0.82  | -0.27 | -0.71 |
| XIV-C:175  | 1.23 | 3.57  | -0.52   | 3.56  | 1.78  | 0.00  | 1,13  | -1.07 | 1.27  |       | 0.83  | 1.39  | 1.03  | -1.55 | 2.42  |       |       |       |
| XIV-C:105  | 3.50 | 0.00  | 8.06    | -0.50 | -1.71 | 0.00  | 2.43  |       | 3.24  |       | 0.76  | 1.20  | 0.32  | 1.54  | -1.12 | 0.32  | 0.13  | -1.72 |
| XIV-C:145  | 1.60 | 7.04  | 0.94    | -6.76 | -1.08 | 0.85  | 1.38  |       |       |       |       |       | 1.11  | -3.46 | 0.88  | 0.57  | 1.67  |       |
| XIV-C:149  | 2.11 | 6.78  | 0.26    | 1.08  | 2.21  | 0.89  | 1.00  | 1.20  | 0.24  | -8.39 | -0.99 | 0.00  | -0.60 | 6.12  | 6.38  | -0.93 | -0.86 |       |
| XIV-C:153  | 2.78 | -1.59 | -1.26   | -7.69 | 3.66  | -0.47 | 1.00  | -0.70 | 2.51  |       | -0.51 | -2.60 | 0.00  |       | -3.11 | -0.33 | -3.29 |       |
| XIV-C:103  | 1.77 | 0.00  | 0.49    | 0.74  | -2.78 |       |       | -3.37 | -0.23 | 6.88  | 1.22  | -2.50 | 0.00  | -3.85 | -2.72 | 0.93  |       | -2.08 |
| XIV-C:104  | 0.35 | 6.56  | 3.28    | -2.43 | -1.74 |       |       | -0.48 | -0.47 |       | 1.47  | 0.00  | 0.93  | 1.24  | 5.80  | 0.65  | 2.09  |       |
| XIV-C:98   | 2.13 | 7.58  | 4.40    | 3.33  | 3.51  | -0.46 | -0.50 | 0.27  | 0.67  | 2.02  | 0.48  | -2.41 | 1.52  | 6.39  | 2.63  | 0.32  | 3.07  | -0.54 |
| XIV-C:155  | 2.52 | 5.80  | 0.51    | -0.26 | -6.86 | 1.41  | 2.05  | 0.98  | -1.83 | 1.05  | 0.50  | 4.60  | 1.25  | -2.06 | 6.07  | -0.32 | -1.26 | 2.30  |
| XIV-C:219  | 2.35 | 4.76  | 6.01    | -0.74 | 3.65  | 0.90  | 1.00  | 0.23  | -1.62 | 1.71  | -0.73 | 4.55  | 1.85  | 2.93  | -1.08 | 0.64  | 1.54  |       |
| XIV-C:183  | 2.09 | 5.00  | -129.44 | 0.74  | 1.12  | 2.78  | 3.54  | -0.97 | -1.91 | 0.91  | -1.22 | 1.18  | 0.30  | 3.03  | 5.71  | -0,96 | 1.02  | 0.38  |
| XIV-C:148  | 2.72 | 6.67  | 2.96    | 2.49  | -1.26 | 2.00  | 2.23  | 0.97  | 0,00  | 1.89  | 0.80  | 1.25  | +0.35 | -0.70 | 1.62  | 0.36  |       | -1.57 |
| XIV-C:100  | 1.33 | 3.03  | 1.47    | -0.72 | 5.70  |       | -3.48 |       |       |       |       |       |       |       | 3.29  |       |       |       |
| XIV-C:192  | 1.05 | 3.39  | 5.11    | -0.26 | 0.00  | -1.77 | -1.47 | 0.47  | 1.36  | 1.63  | 0.00  | 0.00  | -0.61 | -1.59 | 4.69  | 0.95  |       | -1.50 |
| XIV-C:221  | 1.37 | 3,28  | 3.80    | 1.47  | 1.52  | 0.00  | 0.97  | 0.00  | 1.10  | -0.13 | -0.47 | 2.53  | 0.00  | 4.60  | -0.57 | -1.26 | -0.42 | 0.00  |

And the second of

a Mana ta

#### Sadlermiut females corresponding Z-scores

#### BSI Measurements (original numbering see Appendix B, B-1)

| Skeleton # | 33    | 34    | 37    | 38    | 39    | 40    | 41    | - 44  | 45    | 48    | 50    | 51    | 53    | 57    | 59    | 60    | 64    | 66    |
|------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| XIV-C:96   | 1.54  | 0.14  | 0.30  | 2.02  | 1.87  | 2.01  | 0.60  |       |       |       |       |       | 0.51  | 0.56  | 0.25  |       | 1.55  |       |
| XIV-C:112  | 1.11  | 0.09  | 0.27  | -0.52 | -0.40 | -0.24 | -0.28 | 0.94  | 0.92  | 0.29  | 0.06  | -0.29 | 0.04  | 0.21  | 0.77  | 0.93  | -0.44 | -0.08 |
| XIV-C:175  | -0.98 | -0.22 | 0.14  | 1.02  | 0.27  | -0.52 | 0.13  | -0.77 | 0.52  |       | 0.79  | 0.32  | 0.69  | -0.83 | 0.05  |       |       |       |
| XIV-C:105  | 1.63  | -1.56 | 0.41  | -0.13 | -0.75 | -0.52 | 0.89  |       | 1.76  |       | 0.70  | 0.24  | -0.26 | 0.11  | -1.09 | 0.26  | -0.23 | -0.82 |
| XIV-C:145  | -0.55 | 1.08  | 0.19  | -1.90 | -0.56 | 0.10  | 0.28  |       |       |       |       |       | 0.80  | -1.42 | -0.45 | 0.59  | 0.55  |       |
| XIV-C:149  | 0.03  | 0.98  | 0.17  | 0.32  | 0.40  | 0.13  | 0.05  | 1.04  | -0.13 | -2.48 | -1.38 | -0.29 | -1.48 | 1.52  | 1.31  | -1.41 | -0.74 |       |
| XIV-C:153  | 0.81  | -2.16 | 0.12  | -2.16 | 0.82  | -0.86 | 0.05  | -0.47 | 1.30  |       | -0.81 | -1.43 | -0.68 |       | -1.72 | -0.61 | -1.97 |       |
| XIV-C:103  | -0.36 | -1.56 | 0.17  | 0.22  | -1.06 |       |       | -2.60 | -0.43 | 1.57  | 1.25  | -1.39 | -0.68 | -1.53 | -1.60 | 1.07  |       | -1.08 |
| XIV-C:104  | -1.99 | 0,90  | 0.26  | -0.67 | -0.76 |       |       | -0.30 | -0.58 |       | 1.55  | -0.29 | 0.56  | 0.02  | 1.13  | 0.70  | 0.76  |       |
| XIV-C:98   | 0.06  | 1.28  | 0.29  | 0.95  | 0.78  | -0.85 | -0.83 | 0.30  | 0.14  | 0.28  | 0.37  | -1.35 | 1.35  | 1.60  | 0.11  | 0.26  | 1.26  | 0.05  |
| XIV-C:155  | 0.51  | 0.61  | 0.17  | -0.06 | -2.25 | 0.50  | 0.67  | 0,87  | -1.43 | 0.02  | 0.39  | 1,73  | 0.99  | -0.99 | 1.22  | -0.59 | -0.94 | 2.13  |
| XIV-C:219  | 0.31  | 0.22  | 0.34  | -0.20 | 0.82  | 0.13  | 0.05  | 0.27  | -1.30 | 0.20  | 1.07  | 1.71  | 1.79  | 0.54  | -1.07 | 0.69  | 0.48  |       |
| XIV-C:183  | 0.01  | 0.31  | -3.87 | 0.22  | 0.08  | 1.50  | 1.54  | -0.69 | -1.48 | -0.01 | -1.65 | 0.23  | -0.28 | 0.57  | 1.10  | -1.45 | 0.22  | 0.72  |
| XIV-C:148  | 0,74  | 0,94  | 0.25  | 0.71  | -0.62 | 0.93  | 0.77  | 0.86  | -0.28 | 0.25  | 0.75  | 0.26  | -1.15 | -0.57 | -0.21 | 0.31  |       | -0.71 |
| XIV-C:100  | -0.86 | -0.43 | 0.20  | -0.19 | 1.42  |       | -2.57 |       |       |       |       |       |       |       | 0.33  |       |       |       |
| XIV-C:192  | -1.19 | -0.29 | 0.32  | -0.06 | -0.25 | -1.80 | -1.39 | 0.46  | 0.58  | 0.18  | -0.20 | -0.29 | -1.50 | -0.84 | 0.77  | 1.10  |       | -0.66 |
| XIV-C:221  | -0.82 | -0.33 | 0.28  | 0.43  | 0.20  | -0.52 | 0.04  | 0.09  | 0.41  | -0.29 | 0.76  | 0.82  | -0.68 | 1.05  | -0.91 | -1.85 | -0.51 | 0.44  |

\* shaded squares denote significant asymmetry present

a contrar la calla buside union esta man

# E-6 Sadlermiut males asymmetry calculations and Z-scores

#### BSI Measurements (original numbering see Appendix B, B-1)

a series a series a series a series a series a series a series a series a series a series a series a series a s

the second se

|            | BUT INICIDI |       |       |       |       |               |       |       | · · · · · · · · · · · · · · · · · · · |        |       |       |           |       |       | _     |       |       |       |       |
|------------|-------------|-------|-------|-------|-------|---------------|-------|-------|---------------------------------------|--------|-------|-------|-----------|-------|-------|-------|-------|-------|-------|-------|
| Skeleton # | 34          | 37    | 39    | 40    | 42    | 44            | 45    | 48    | 50                                    | 52     | 53    | 55    | 56 and 57 | 58    | 59    | 60    | 62    | 64    | 65    | 68    |
| XIV-C:230  | 0.00        | 0.00  | -1.08 | 0.00  |       | -1.35         | -0.42 | -0.61 | 0.63                                  | 4.95   |       | -1.34 |           |       | -1.83 | -0.28 |       |       |       |       |
| XIV-C:74   | 6.94        | 3.00  | 0.95  | 0.82  | -7.96 |               |       |       |                                       |        | 0.00  | -9.96 | 0.11      | 5.97  | -3.47 |       |       | -4.73 | 1.33  | 10.71 |
| XIV-C:117  | 4.29        | 3.46  | 0.98  | 2.58  |       | -1.00         | -2.03 | 1.64  | 1.38                                  | -30.77 | -2.90 | -0.13 | -11.04    | 3.73  | 8.74  | -1.20 | 2.11  | -1.73 | -0.39 | 2.46  |
| XIV-C:126  | 5.33        | -0.89 | 0.00  | 1.28  |       | 0.00          | 0.21  | 1.64  | -0.23                                 | 1.75   | -0.58 | 3.15  | 12.10     | 0.38  | 1.27  |       | -2.55 | 3,14  | 3.13  | -1.35 |
| XIV-C:246  | 2.74        | 0.42  | -0.99 | -1.75 |       | 3.36          | 4.05  | 0.71  | -0.70                                 | 0.00   | 2.31  |       | 8.84      | -0.37 | 5.29  | 1.53  | -1.32 | 2.74  | 0.36  | 0.00  |
| XIV-C:111  | 5.80        | 5.59  | -3.17 | 2.37  |       | -0.42         | 2.07  | -0.60 | 6.07                                  | -23.84 | 1.09  | 0.27  | 8.66      | 2.54  | 3.25  | 0.28  | -0.23 | -0.96 | -0.51 |       |
| XIV-C:243  | 4.17        | 4.32  | -3.89 | 0.81  |       | -5.59         | 0.64  | 1.13  | -0.67                                 | 5.97   | 1.12  | 2.16  | -1.16     |       | 0.00  | -0.57 |       | 2.52  | 3.14  | 3.80  |
| XIV-C:216  | 1.35        | -0.61 | -2.56 | 0.42  |       | 0.21          |       | 0.12  | 0.68                                  | 0.34   | -0.29 | -0.39 |           | -2.52 | 2.64  | 3.85  |       | 2.26  | -0.18 | -3.95 |
| XIV-C:217  | 12.00       | 6.17  | -1.47 | 1.24  |       | 1.12          | 2.45  | 1.68  | 0.89                                  | 1.49   | -0.29 |       | 18.73     |       | 4.25  | -2.45 |       | 1.56  | 3.25  |       |
| XIV-C:179  | -1.37       | 0.63  | -0.49 |       |       | <li>1.26</li> | 1.35  |       | 0.23                                  | 1.37   | 0.60  | 2.23  | -13.80    | 0.86  | -2.21 | 0.30  |       | 0.00  | -1.45 | -3.95 |
| XIV-C:182  | 6.10        | 3.40  | 3.69  | 1.65  |       | -0.22         | 3.66  | 0.00  | 1.86                                  | -8.24  | 0.59  | 0.76  | 20.32     | -2.30 | -0.44 | 0.59  | -4.53 | 0.13  | 0.55  | 1.27  |
| XIV-C:157  | 3.08        | 0.68  | 1.07  | 0.84  | 2.43  | 7.80          | 2.24  | -1.75 | -1.60                                 | 4.09   | 0.29  | 1.54  | -8.24     | -4.18 | 0.96  | -0.90 | 0.00  |       |       |       |
| XIV-C:181  | 6.33        | 2.81  | -0.47 | -0.87 |       | -6.10         | -1.17 | 1.75  | -0.66                                 | -0.31  | -2.37 | 0.00  | 5.63      | -6.13 | -1.61 | -2.72 | 0.58  | 0.45  | -2.01 | -1.15 |
| XTV-C:101  |             |       |       |       |       | -1.86         | 8.13  |       |                                       |        | 0.00  | -6.63 | 10.94     | -2.13 | 6.07  |       |       | 2.75  | 6.35  | -2.45 |
| XIV-C:156  | 2.70        | 2.93  | 3.64  | 1.74  |       | -6.68         | 0.97  | -0.56 | 0.44                                  | -2.95  | 0.29  | 0.87  | -12.08    | 1.61  | 7.17  | -1.47 |       | -1.89 | 0.33  | 1.14  |
| XTV-C:99   | 3.75        | -6.56 | -2.91 | 2.06  |       | -1.03         | 2.05  | 1.06  | -1.35                                 | -1.33  | 1.64  | -3.48 | 7.13      | 0.93  | 10.42 | 0.57  | 1.58  | -1.38 | 5.88  |       |

and the second se

#### Sadlermiut males corresponding Z-scores

#### BSI Measurements (original numbering see Appendix B, B-1)

| Skeleton # | 34    | 37    | 39    | 40    | 42    | 44    | 45    | 48    | 50    | 52    | 53    | 55    | 56 and 57 | 58    | 59    | 60    | 62        | 64    | 65                                    | 68    |
|------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-----------|-------|-------|-------|-----------|-------|---------------------------------------|-------|
| XIV-C:230  | -1.32 | -0.54 | -0.28 | -0.78 |       | -0.13 | -0.85 | -0.96 | 0,07  | 0.77  |       | -0.15 |           |       | -1.05 | -0.05 |           |       | · · · · · · · · · · · · · · · · · · · |       |
| XIV-C:74   | 0.85  | 0.42  | 0.62  | -0.10 | -0.71 |       |       |       |       |       | -0.07 | -2.52 | -0.28     | 1.84  | -1.44 |       |           | -2.20 | -0.03                                 | 2.42  |
| XIV-C:117  | 0.02  | 0.56  | 0.63  | 1.35  |       | -0.04 | -1.49 | 1.03  | 0.47  | -2.53 | -2.21 | 0.18  | -1.28     | 1.16  | 1.49  | -0.59 | 1.21      | -0.90 | -0.70                                 | 0.45  |
| XIV-C:126  | 0.35  | -0.82 | 0.20  | 0.28  |       | 0.24  | -0.60 | 1.03  | -0.39 | 0.48  | -0.50 | 1.08  | 0.78      | 0.15  | -0.30 |       | -0.91     | 1.21  | 0.67                                  | -0.47 |
| XIV-C:246  | -0.46 | -0.40 | -0.24 | -2.22 |       | 1.17  | 0.92  | 0.21  | -0.63 | 0.31  | 1.63  |       | 0.49      | -0.07 | 0.66  | 1.00  | -0.35     | 1.04  | -0.41                                 | -0.14 |
| XIV-C:111  | 0.50  | 1.24  | -1.20 | 1.18  |       | 0.12  | 0.14  | -0.95 | 2.95  | -1.89 | 0.73  | 0.29  | 0.48      | 0.80  | 0.17  | 0.27  | 0.14      | -0.57 | -0.75                                 |       |
| XIV-C:243  | -0.01 | 0.83  | -1.52 | -0.11 |       | -1.30 | -0.43 | 0.58  | -0.62 | 0.87  | 0.75  | 0.81  | -0.40     |       | -0.61 | -0.22 |           | 0,94  | 0.67                                  | 0,77  |
| XIV-C:216  | -0.90 | -0.73 | -0.93 | -0.43 |       | 0.30  |       | -0.32 | 0.10  | 0.35  | -0.29 | 0.11  |           | -0.72 | 0.03  | 2.34  |           | 0.83  | -0.62                                 | -1.09 |
| XIV-C:217  | 2.44  | 1.42  | -0.45 | 0.25  |       | 0.55  | 0.29  | 1.06  | 0,21  | 0.45  | -0.29 |       | 1.37      |       | 0.41  | -1.31 |           | 0.53  | 0.71                                  |       |
| XIV-C:179  | -1.75 | -0.34 | -0.02 |       |       | -0.11 | -0.15 |       | -0.14 | 0.44  | 0.37  | 0.83  | -1.52     | 0.30  | -1.14 | 0.28  |           | -0.15 | -1.11                                 | -1.09 |
| XIV-C:182  | 0.59  | 0.54  | 1.83  | 0.58  |       | 0.18  | 0.77  | -0.42 | 0.72  | -0.45 | 0.36  | 0.42  | 1.52      | -0.66 | -0.71 | 0.45  | -1.82     | -0.09 | -0.34                                 | 0.16  |
| XIV-C:157  | -0.35 | -0.32 | 0.67  | -0.08 | 0.71  | 2.39  | 0.20  | ·1.97 | -1.11 | 0.69  | 0.14  | 0.64  | -1.03     | -1.23 | -0.38 | -0.41 | 0.25      |       |                                       |       |
| XIV-C:181  | 0.66  | 0.35  | -0.01 | -1.50 |       | -1.44 | -1.15 | 1.13  | -0.61 | 0.29  | -1.82 | 0.22  | 0.21      | -1.81 | -0.99 | -1.47 | 0.51      | 0,04  | -1.33                                 | -0.42 |
| XIV-C:101  |       |       |       |       |       | -0.27 | 2.54  |       |       |       | -0.07 | -1.61 | 0.68      | -0.61 | 0.85  |       | · · · · · | 1.04  | 1.92                                  | -0.73 |
| XIV-C:156  | -0.47 | 0.39  | 1.80  | 0.66  |       | -1.60 | -0.30 | -0.92 | -0.03 | 0.04  | 0.14  | 0.45  | -1.37     | 0.52  | 1.11  | -0.74 |           | -0.97 | -0.42                                 | 0.13  |
| XIV-C:99   | -0.15 | -2.61 | -1.09 | 0.92  |       | -0.04 | 0.13  | 0.52  | -0.98 | 0.19  | 1.14  | -0.74 | 0.34      | 0.32  | 1.90  | 0.44  | 0.97      | -0.75 | 1.74                                  |       |

\* shaded squares denote significant asymmetry present

# E-7 Secred Heart females asymmetry calculations and Z-scores

#### **BSI Measurements (original numbering see Appendix B, B-1)**

| 33   | 24                                                           |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                       |                                                       |                                                       |                                                        |                                                        |                                                        |                                                        |                                                        |                                                        |                                                        |                                                        |
|------|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|
|      | 34                                                           | 37                                                                                                                                                                                                                    | 38                                                                                                                                                                                                                                                                                                                              | 39                                                                                                                                                                                                                                                                                                                                                                                                                                        | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 44                                                    | 45                                                    | 48                                                    | 50                                                     | 51                                                     | 53                                                     | 57                                                     | 59                                                     | 60                                                     | 64                                                     | 66                                                     |
| 1.58 | 0.00                                                         | 1.69                                                                                                                                                                                                                  | 1.20                                                                                                                                                                                                                                                                                                                            | -0.52                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.96                                                  | 1.39                                                  | 2.00                                                  | -0.23                                                  | -2.54                                                  | 1.39                                                   | 2.69                                                   | 7.52                                                   | 0.58                                                   | -1.35                                                  | 2.19                                                   |
| 0.32 | 1.82                                                         | 1.06                                                                                                                                                                                                                  | -0.53                                                                                                                                                                                                                                                                                                                           | 1.21                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                       |                                                       | 0.14                                                  | 1.15                                                   | -4.00                                                  | 0.58                                                   |                                                        | 5.45                                                   | 1.52                                                   | -3.66                                                  |                                                        |
| 1.70 | 1.52                                                         | -3.14                                                                                                                                                                                                                 | 1.23                                                                                                                                                                                                                                                                                                                            | 4.72                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.23                                                  | 1.90                                                  | 1.36                                                  | 0.25                                                   | 1.20                                                   | -1.20                                                  | 3.99                                                   | 4.74                                                   | -0.91                                                  | 0,26                                                   | 0.00                                                   |
| 2.08 | 0.00                                                         | 0.24                                                                                                                                                                                                                  | 2.27                                                                                                                                                                                                                                                                                                                            | 1.49                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -4.57                                                 | -5.54                                                 | 4.78                                                  | -1.98                                                  | 0.00                                                   | -0.25                                                  |                                                        | -7.09                                                  | 0.00                                                   |                                                        |                                                        |
| 1.62 | 1.56                                                         | 3.53                                                                                                                                                                                                                  | 1.45                                                                                                                                                                                                                                                                                                                            | -2.14                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.48                                                  | 2.73                                                  | 1.86                                                  | -0.49                                                  | 0.00                                                   | -0.61                                                  | 1.31                                                   | 3.86                                                   | 0.00                                                   | -3.20                                                  | 0.19                                                   |
| 0.93 | 1.52                                                         | 2.04                                                                                                                                                                                                                  | 1.90                                                                                                                                                                                                                                                                                                                            | -5.10                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.26                                                  | 2.27                                                  | 1.24                                                  | -0.22                                                  | -2.35                                                  | 1.90                                                   | -0.86                                                  | -0.45                                                  |                                                        | -0.90                                                  | 0.49                                                   |
| 0.96 | 0.00                                                         | 3.29                                                                                                                                                                                                                  | -0.68                                                                                                                                                                                                                                                                                                                           | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -0.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.80                                                  | 2.05                                                  | 0.52                                                  | -0.47                                                  | 3.33                                                   | 0.29                                                   | 5.56                                                   | 0.00                                                   | 0.87                                                   | 3.76                                                   | -1.40                                                  |
| 2.66 | 1.72                                                         | -0.27                                                                                                                                                                                                                 | 0.57                                                                                                                                                                                                                                                                                                                            | -3.55                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.84                                                  | 2.79                                                  | 3.82                                                  | -0.48                                                  | 2.60                                                   | +1.13                                                  | 1.75                                                   | 8.33                                                   | 1.78                                                   | 3.37                                                   | 1.05                                                   |
| 1.39 | 3.39                                                         | 3.47                                                                                                                                                                                                                  | 1.50                                                                                                                                                                                                                                                                                                                            | -2.20                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -1.67                                                 | -0.24                                                 | 0.13                                                  | 0.24                                                   | 1.20                                                   |                                                        | -2.25                                                  | -6.70                                                  |                                                        | 2.71                                                   | 0.00                                                   |
| 0.94 | 1.49                                                         | -1.76                                                                                                                                                                                                                 | 1.41                                                                                                                                                                                                                                                                                                                            | 4.08                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.52                                                  | 1.32                                                  | 0.94                                                  | -1,13                                                  | 2.30                                                   | -0.84                                                  | -2.53                                                  | 1.70                                                   |                                                        | 0.37                                                   | 1.42                                                   |
|      | 0.32<br>1.70<br>2.08<br>1.62<br>0.93<br>0.96<br>2.66<br>1.39 | 0.32         1.82           1.70         1.52           2.08         0.00           1.62         1.56           0.93         1.52           0.96         0.00           2.66         1.72           1.39         3.39 | 0.32         1.82         1.06           1.70         1.52         -3.14           2.08         0.00         0.24           1.62         1.56         3.53           0.93         1.52         2.04           0.96         0.00         3.29           2.66         1.72         -0.27           1.39         3.39         3.47 | 0.32         1.82         1.06         -0.53           1.70         1.52         -3.14         1.23           2.08         0.00         0.24         2.27           1.62         1.56         3.53         1.45           0.93         1.52         2.04         1.90           0.96         0.00         3.29         -0.68           2.66         1.72         -0.27         0.57           1.39         3.39         3.47         1.50 | 0.32         1.82         1.06         -0.53         1.21           1.70         1.52         -3.14         1.23         4.72           2.08         0.00         0.24         2.27         1.49           1.62         1.56         3.53         1.45         -2.14           0.93         1.52         2.04         1.90         -5.10           0.96         0.00         3.29         -0.68         0.00           2.66         1.72         -0.27         0.57         -3.55           1.39         3.39         3.47         1.50         -2.20 | 0.32         1.82         1.06         -0.53         1.21         0.87           1.70         1.52         -3.14         1.23         4.72         0.89           2.08         0.00         0.24         2.27         1.49         1.62         1.56         3.53         1.45         -2.14           0.93         1.52         2.04         1.90         -5.10         2.39           0.96         0.00         3.29         -0.68         0.00         0.41           2.66         1.72         -0.27         0.57         -3.55         -0.83           1.39         3.39         3.47         1.50         -2.20         3.86 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ |

#### Sacred Heart females corresponding Z-scores

#### BSI Measurements (original numbering see Appendix B, B-1)

| Skeleton # | 33    | 34    | 37    | 38    | 39    | 40    | 41    | - 44  | 45    | 48    | 50    | 51    | 53    | 57    | 59    | 60    | 64    | 66    |
|------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 88         | 0.24  | -1.23 | 0.30  | 0.17  | -0.10 | -0.63 | -0.80 | 1.10  | 0.16  | 0.21  | 0.13  | -1.11 | 1.24  | 0.51  | 1.07  | 0.03  | -0.55 | 1.57  |
| 24         | -1.64 | 0.49  | 0.02  | -1.61 | 0.44  | -0.05 | 0.46  |       | _     | -1.00 | 1.78  | -1.71 | 0.51  |       | 0.69  | 1.03  | -1.40 |       |
| 9          | 0.42  | 0.21  | -1.83 | 0.20  | 1.55  | -0.04 | 0.54  | -0.09 | 0.36  | -0.21 | 0.70  | 0.42  | -1.10 | 0.96  | 0.56  | -1.55 | 0.04  | -0.45 |
| 120        | 0.99  | -1.23 | -0.34 | 1.28  | 0.53  |       | 0.39  | -2.17 | -2,50 | 2.02  | -1.96 | -0.07 | -0.24 |       | -1.64 | -0.58 |       |       |
| 124B       | 0.30  | 0.24  | 1.11  | 0.43  | -0.61 |       | 0.06  | 0.02  | 0.68  | 0.12  | -0.18 | -0.07 | -0.56 | 0.04  | 0.39  | -0.58 | -1.23 | -0.28 |
| 97         | -0.73 | 0.21  | 0.45  | 0.89  | -1.54 | 0.96  | 0.82  | 0.80  | 0.50  | -0.29 | 0.14  | -1.03 | 1.70  | -0.71 | -0.41 |       | -0.39 | 0.00  |
| 71         | -0.69 | -1.23 | 1.00  | -1.76 | 0.06  | -0.36 | -1.64 | 0.60  | 0.42  | -0.75 | -0.16 | 1.29  | 0.25  | 1.49  | -0.32 | 0.34  | 1.33  | -1.75 |
| 5          | 1.86  | 0.39  | -0.57 | -0.48 | -1.06 | -1.18 | -1.21 | 0,18  | 0.70  | 1,39  | -0.17 | 0.99  | -1.03 | 0.19  | 1.22  | 1.31  | 1.18  | 0.51  |
| 114        | -0.04 | 1.97  | 1.08  | 0.48  | -0.63 | 1.94  | 1.37  | -0.91 | -0.46 | -1.01 | 0.69  | 0.42  |       | -1.19 | -1.57 |       | 0.94  | -0.45 |
| 122        | -0.72 | 0.18  | -1.22 | 0.39  | 1.35  | -0.63 |       | 0.47  | 0.14  | -0.48 | -0.95 | 0.87  | -0.77 | -1.28 | -0.01 |       | 0.08  | 0.86  |

\* shaded squares denote significant asymmetry present

#### E-8 Sacred Heart males asymmetry calculations and Z-scores

#### BSI Measurements (original numbering see Appendix B, B-1)

| Skeleton # | 34   | 37    | 39    | 40    | 42     | 44    | 45    | 48    | 50    | 52    | 53    | 55    | 56 and 57 | 58    | 59    | 60    | 62    | 64    | 65    | 68    |
|------------|------|-------|-------|-------|--------|-------|-------|-------|-------|-------|-------|-------|-----------|-------|-------|-------|-------|-------|-------|-------|
| 139        | 1.52 | -1.69 | 0.42  |       | -1.28  | 1.00  | 1.87  | 0.81  | -1.51 | 2.45  | -0.53 | -2.44 | -2.66     | 2.43  | -2.86 |       | 0.66  | 0.27  | 6.30  | -2.56 |
| 115        | 4.22 | -0.67 | 2.84  | 1.48  | 2.67   | +0.66 | 1.08  | 1.19  | 0.00  | -0.66 | -0.52 | 0.38  | -5.61     | 1.54  | 2.69  | -1.09 | -2.82 | -0.13 | -3.58 |       |
| 145        | 1.52 | -0.46 | -0.51 | 2.34  | -6.22  | 2.25  | 0.22  | 1.78  | -1.43 | 7.77  | 2.00  | -3.13 | -13.78    | 1.39  | 7.24  | 2.31  |       | 1.18  | -0.75 | -1.35 |
| 30         | 4.20 | 0.38  | 3.69  | 0.00  | 0.77   | -0.61 | 1.01  | 2.70  | -1.01 | 1.02  | 0.25  | -0.24 | 11.57     | 0.69  | 1.98  |       | -0.19 | 1.31  | -0.34 | 2.20  |
| 72         | 8.06 |       |       | 1.63  | -19.38 | 0.66  | 0.45  | -1.87 | -1.30 | -1.13 | 1.37  | -0.43 | 5.25      | -0.62 | -0.93 |       | -0.98 | -1.60 | -1.98 | 5.00  |
| 33         | 4.48 | 3.28  | -4.41 | 1.09  | 0.44   | -0.22 | -0.43 | -1.01 | -0.60 | -4.71 | -1.52 |       | -13.78    |       | -3.42 |       | 5.17  | 2.62  | 3.32  | -5.13 |
| 73         | 4.23 | 4.82  | 2.30  | 2.30  | 4.23   | 4.50  | 2.94  | 1.50  | 0.00  | -4.03 | -1.69 | 0.13  | 11.35     | -5.69 | -1.35 | -0.57 | 1.57  | 3.66  | 0.00  | -1.30 |
| 64         | 2.78 | 3.78  | 4.70  | -0.38 | 3.60   | 0.41  | 1.41  | 2.16  | 1.43  | -4.65 | -0.25 | 0.12  | -1.19     | -0.88 | 0.81  | 2.62  | -9.29 | 0.12  | 3.59  | -1.23 |
| 83         | 0.00 | -2.43 | 0.00  | 3.73  | 2.64   | -2.33 | -1.67 | 0.25  | 1.26  | 2.44  | -1.31 | -4.42 | 4.84      | 6.04  | 2.66  |       | -0.63 | -0.83 | +1.95 | -2.41 |
| 55         | 1.35 | -2.46 | 2.49  | 1.74  | -2.07  | 1.55  | 1.37  | -0.23 | 1.03  | -3.45 | 1.50  | 2.03  | 4.64      | -1.41 | -0.79 | 1.04  | 3.52  | 3.86  | 0.50  | 0.00  |

#### Sacred Heart males corresponding Z-scores

#### BSI Measurements (original numbering see Appendix B, B-1)

| Skeleton # | 34    | 37    | 39    | 40    | 42    | 44    | 45    | 48    | 50    | 52    | 53    | 55    | 56 and 57 | 58    | 59    | 60    | 62    | 64    | 65    | 68    |
|------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-----------|-------|-------|-------|-------|-------|-------|-------|
| 139        | -0.74 | -0.79 | -0.31 |       | 0.03  | 0.18  | 0.82  | 0.06  | -1.14 | 0.73  | -0.35 | -0.77 | -0.30     | 0.64  | -1.09 |       | 0.24  | -0.42 | 1.91  | -0.62 |
| 115        | 0.43  | -0.42 | 0.57  | -0.05 | 0.59  | -0,70 | 0.20  | 0.32  | 0.19  | -0.04 | -0.34 | 0.63  | -0.62     | 0.36  | 0.66  | -1.17 | -0.60 | -0.64 | -1.35 |       |
| 145        | -0.74 | -0.35 | -0.65 | 0.64  | -0,68 | 0.86  | -0.47 | 0.73  | -1.07 | 2.06  | 1.57  | -1.11 | -1.51     | 0.31  | 2.09  | 0.87  |       | 0.07  | -0.42 | -0.20 |
| 30         | 0.42  | -0.05 | 0.88  | -1.25 | 0.32  | -0.68 | 0.15  | 1.37  | -0.70 | 0.38  | 0.24  | 0.32  | 1.26      | 0.09  | 0.43  |       | 0.03  | 0.14  | -0.28 | 1.01  |
| 72         | 2.09  |       |       | 0.07  | -2.55 | 0.00  | -0.29 | -1.80 | -0.96 | -0.16 | 1.09  | 0.23  | 0.57      | -0.32 | -0.48 |       | -0.16 | -1.43 | -0.82 | 1.97  |
| 33         | 0.54  | 1.00  | -2.07 | -0.37 | 0.27  | -0.47 | -0.98 | -1.20 | -0.34 | -1.05 | -1.10 |       | -1.51     |       | -1.27 |       | 1.33  | 0.85  | 0.93  | -1.50 |
| 73         | 0.43  | 1.55  | 0.37  | 0.61  | 0.81  | 2.06  | 1.66  | 0.53  | 0.19  | -0.88 | -1.23 | 0.50  | 1.23      | -1.91 | -0.61 | -0.86 | 0.46  | 1.42  | -0.17 | -0.19 |
| 64         | -0.20 | 1.18  | 1.24  | -1.55 | 0.72  | -0.13 | 0.46  | 0.99  | 1.45  | -1.04 | -0.14 | 0,50  | -0.14     | -0.40 | 0.07  | 1.06  | -2.17 | -0.50 | 1.02  | -0.16 |
| 83         | -1.40 | -1.06 | -0.47 | 1,76  | 0.58  | -1.60 | -1.96 | -0.33 | 1.30  | 0.73  | -0.94 | -1.75 | 0.52      | 1.77  | 0.65  |       | -0.07 | -1.02 | -0.81 | -0.57 |
| 55         | -0.82 | -1.07 | 0.44  | 0.15  | -0.09 | 0.48  | 0.43  | -0.66 | 1.09  | -0.74 | 1.19  | 1.44  | 0.50      | -0.56 | -0.44 | 0.11  | 0.93  | 1.52  | 0.00  | 0.26  |
|            |       |       |       |       |       |       |       |       |       |       |       |       |           |       |       |       |       |       |       |       |

\* shaded squares denote significant asymmetry present

# E-9 Sadlermiut female and male stature estimates

| Skeleton # | Adult/Sub-Adult | Sex | Femur Length (cm) | Stature Estimate (cm |  |  |
|------------|-----------------|-----|-------------------|----------------------|--|--|
| XIV-C:96   | adult           | F?  | 42.2              | 157.82               |  |  |
| XIV-C:112  | adult           | F   | 45.2              | 169.04               |  |  |
| XIV-C:175  | adult           | F   | 35.8              | 133.88               |  |  |
| XIV-C:105  | adult           | F   | 39.0              | 145.85               |  |  |
| XIV-C:145  | adult           | F   |                   |                      |  |  |
| XIV-C:149  | adult           | F   | 41.0              | 153.33               |  |  |
| XIV-C:153  | adult           | F   | 39.8              | 148.84               |  |  |
| XIV-C:103  | adult           | F   | 40.4              | 151.08               |  |  |
| XIV-C:104  | adult           | F   | 40.1              | 150.00               |  |  |
| XIV-C:98   | adult           | F   | 41.2              | 154.08               |  |  |
| XIV-C:155  | adult           | F   | 40.1              | 150.00               |  |  |
| XIV-C:219  | adult           | F   | 41.4              | 154.82               |  |  |
| XIV-C:183  | adult           | ?F  | 41.6              | 155.57               |  |  |
| XIV-C:148  | adult           | F   | 37.0              | 138.37               |  |  |
| XIV-C:100  | adult           | F   |                   |                      |  |  |
| XIV-C:192  | adult           | F   | 41.3              | 154.45               |  |  |
| XIV-C:221  | adult           | F   | 43.0              | 160.81               |  |  |
|            |                 |     | AVERAGE           | 151.86               |  |  |

|           |       |   | AVERAGE | 164.22 |  |
|-----------|-------|---|---------|--------|--|
| XIV-C:99  | adult | M | 45.0    | 168.29 |  |
| XIV-C:156 | adult | M | 45.2    | 169.04 |  |
| XIV-C:101 | adult | M | 40.9    | 152.95 |  |
| XIV-C:181 | adult | M | 45.5    | 170.16 |  |
| XIV-C:157 | adult | M | 43.9    | 164.17 |  |
| XIV-C:182 | adult | M | 42.1    | 157.44 |  |
| XIV-C:179 | adult | M | 43.6    | 163.05 |  |
| XIV-C:217 | adult | M | 44.3    | 165.67 |  |
| XIV-C:216 | adult | M | 44.1    | 164.92 |  |
| XIV-C:243 | adult | M | 45.4    | 169.78 |  |
| XIV-C:111 | adult | M | 41.8    | 156.32 |  |
| XIV-C:246 | adult | M | 43.2    | 161.56 |  |
| XIV-C:126 | adult | M | 43.5    | 162.68 |  |
| XIV-C:117 | adult | M | 42.9    | 160,43 |  |
| XIV-C:74  | adult | M |         |        |  |
| XIV-C:230 | adult | M | 47.3    | 176.89 |  |

# E-10 Sacred Heart female and male stature estimates

•

| Skeleton # | AdultSub-Adult | Sex | Femur Length (cm) | Stature Estimate (cm)<br>162.68 |  |
|------------|----------------|-----|-------------------|---------------------------------|--|
| 88         | Adult          | F   | 43.5              |                                 |  |
| 24         | Adult          | F   | 42.8              | 160.06                          |  |
| 9          | Adult          | F   | 40.6              | 151.83                          |  |
| 120        | Adult          | F   | 46.3              | 173.15                          |  |
| 124B       | Adult          | F   | 41.0              | 153.33                          |  |
| 97         | Adult          | F   | 44.6              | 166.79                          |  |
| 71         | Adult          | F   | 42.4              | 158.56                          |  |
| 5          | Adult          | F   | 42.2              | 157,82                          |  |
| 114        | Adult          | F   | 41.3              | 154.45                          |  |
| 122        | Adult          | F   | 44.6              | 166.79                          |  |
|            |                |     | AVERAGE           | 160.55                          |  |

|                        |         |              | AVERAGE | 176.44 |
|------------------------|---------|--------------|---------|--------|
| 55                     | Adult   | M            | 48.0    | 179.51 |
| 83<br>55               | Adult   | M            | 47.1    | 176.14 |
| 64                     | Adult   | M            | 48.3    | 180.63 |
| 73                     | Adult   | M            | 44.9    | 167.91 |
| 33<br>73               | Adult M |              | 50.4    | 188.48 |
| 72                     | Adult   | M            | 46.7    | 174.64 |
| 115<br>145<br>30<br>72 | Adult   | M            | 49.9    | 186.61 |
| 145                    | Adult   | M            | 42.6    | 159.31 |
| 115                    | Adult   | M            | 46.8    | 175.02 |
| 139                    | Adult   | Adult M 47.1 |         | 176.14 |

# **APPENDIX F: THE HOWELLS DATASET**

# Introduction

The Howells dataset (1973) was chosen as a published dataset to establish proof of principle that there are significant correlations among cranial BSIs. The purpose of using these data, and more specifically three populations within this dataset, was to provide the evidence needed to demonstrate the viability of this method and the relationship between the different variables measured. This dataset is commonly used as a reference population in craniometric studies, and is comprised of cranial measurement data from 17 different regional populations, three of which were used in this study: the Buriat Siberian population, the Inugsuk Greenland population and the Early Arikara South Dakota population. These populations were chosen to establish this correlation among cranial BSIs because they occupied regions with similar environments to the Sadlermiut and Sacred Heart population samples and would, therefore, presumably be subject to similar types of environmental stress.

# **The Buriat Population**

The Buriat population was located at the southern tip of Lake Baikal in Siberia and was characterized as a pastoralist population (Howells 1973). Howells presents data for 54 male and 55 female crania; unfortunately, no archaeological date is provided for this population (Howells 1973).

# **The Inugsuk Population**

The Inugsuk culture was predominantly located along the southwestern and eastern regions of Greenland and showed no evidence of Danish colonization until 1750 (Howells 1973). The 108 crania measured by Howells, 54 males and 54 females, were collected on various expeditions to Greenland between 1898 and 1935, contemporary with the contact time period of the Sadlermiut (Howells 1973).

# The Arikara Population

Located in the center of what is now South Dakota, the early Arikara people date from about 1600-1750 and occupied one single village settlement (Howells 1973). Excavated by Robert Stephenson and William M. Bass, this site contained 566 human burials that were located and collected during the field seasons of 1957, 1958, 1961 and 1962 (Howells 1973).

These three populations were used only to provide a broad comparative context for this research and their importance in the establishment of this stress analysis model will be described below.

# **Correlation Analysis and Results**

The Howells dataset was used for this correlation analysis because measurements taken within this dataset are consistent with the cranial BSIs selected for this study. This dataset was also used because of the inclusion of both cold climate and temperate climate populations. Although correlation analysis could be completed on random populations to demonstrate the correlation between BSIs, specific care was taken to ensure a correlation analysis of cold climate populations, similar to the Sadlermiut and a temperate climate population, similar to the Sacred Heart sample. Six cranial measurements were used from each population to assess the correlation relationship examined using SPSS software 16.0 (Statistical Package for Social Sciences). These six measurements were chosen from the Howells dataset as they were consistent with the cranial BSIs chosen for this study.

The primary purpose of collecting and analyzing data from the Howells dataset was to establish the broad comparative context of this research project. Through the establishment of strong correlations within these environmentally disparate populations, the results should demonstrate the true relationship between different indicators of body size within the human skeleton, specifically the cranium. Tables F-1, F-2 and F-3 below, show the correlation results of each of the three sample populations from the Howells dataset.

# Table F-1

| <b>Buriat</b> popula | tion crania | l correlation | s (males and | females con | nbined) |     |
|----------------------|-------------|---------------|--------------|-------------|---------|-----|
| BSI                  | GOL         | NPH           | OBH          | OBB         | EKB     | FOL |
| Measurements         |             |               |              |             |         |     |
| GOL                  | 1           |               |              |             |         |     |
| NPH                  | 0.612**     | 1             |              |             |         |     |
| OBH                  | 0.312**     | 0.507**       | 1            |             |         |     |
| OBB                  | 0.549**     | 0.506**       | 0.393**      | 1           |         |     |
| ЕКВ                  | 0.633**     | 0.474**       | 0.326**      | 0.733**     | 1       |     |
| FOL                  | 0.307**     | 0.302**       | 0.200*       | 0.116       | 0.107   | 1   |

Table F-2

**Inugsuk population cranial correlations** (males and females combined)

| BSI          | GOL     | NPH     | OBH     | OBB     | EKB   | FOL |
|--------------|---------|---------|---------|---------|-------|-----|
| Measurements |         |         |         |         |       |     |
| GOL          | 1       |         |         |         |       |     |
| NPH          | 0.601** | 1       |         |         |       |     |
| ОВН          | 0.282** | 0.265** | 1       |         |       |     |
| OBB          | 0.277** | 0.285** | 0.345** | 1       |       |     |
| ЕКВ          | 0.290** | 0.317** | 0.243*  | 0.765** | 1     |     |
| FOL          | 0.195** | 0.165   | 0.169   | 0.173   | 0.109 | 1   |

| BSI          | GOL     | NPH               | OBH     | OBB     | EKB       | FOL |
|--------------|---------|-------------------|---------|---------|-----------|-----|
| Measurements |         |                   |         |         |           |     |
| GOL          | 1       |                   |         |         |           |     |
|              |         | Physical Solution |         |         | 김학 유민이 있는 |     |
| NPH          | 0.510** | 1                 |         |         |           |     |
| ОВН          | 0.100   | 0.293*            | 1       |         |           |     |
| OBB          | 0.517** | 0.482**           | 0.340** | 1       |           |     |
| ЕКВ          | 0.655** | 0.433**           | 0.147   | 0.748** | 1         |     |
| FOL          | 0.450** | 0.334**           | 0.172   | 0.149   | 0.218     | 1   |

Table F-3 Arikara population cranial correlations (males and females combined)

GOL=maximum cranial length, NPH=upper facial height, OBH=maximum orbital height, OBB=maximum orbital breadth, EKB=biorbital breadth, FOL=foramen magnum length

**\*\*** correlation is significant at the 0.01 level

\* correlation is significant at the 0.05 level

As illustrated in these tables, the majority of these variables were significantly correlated at the 0.01 confidence interval level. These results substantiate that relationships exist between the cranial BSIs within these three sample groups. Therefore, any stress affecting one variable, should also affect the other BSIs in a similar way if these variables were growing at the same time. However, while the underlying correlations between certain cranial BSIs were strong, there was some variability in the correlation relationship. This variability may in fact be related to specific individuals who deviated from the underlying relationship, possibly the result of stress, or due to sex differences between males and females with regard to which BSIs are correlated with one another.

# Conclusions

Overall the use of the Howells dataset to provide a proof of concept worked well for this project to establish that: 1) relationships do exist between certain BSIs within the cranium and 2) if relationships exist within the cranium then it is likely that similar relationships are also present within the infra-cranial skeleton, that may be studied to examine stress patterns within a population sample.

#### APPENDIX G: CORRELATION ANALYSES

\_\_\_\_

\_\_\_\_

#### G-1 Sadlermint females cranial correlations

| <b>BSI Measurements</b> | 1      | 2                 | 3                                                                                                              | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5           | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9          | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11                         | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14                                                                                                               | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 17                                                       | 18                                               | 19                                                                                                               |
|-------------------------|--------|-------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| 1                       | 1      | n a se v storoope | and the provide the second |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | n in the second s | an a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Billion (Arristic accounts)<br>Billion (Arristic accounts)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                  | <ul> <li>Kontactor de la contractor /li></ul> | Service and the                                          | and a discon                                     |                                                                                                                  |
| 2                       | 0,155  | 1                 |                                                                                                                | Marilian ins                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | En constant |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | e ng nanan<br>China Ang na |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Let all the Material                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | E. Suela Tre                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                          | Sec. 1                                           |                                                                                                                  |
| 3                       | 0.379  | 0.85**            | 1                                                                                                              | 1988 - Sector - Secto |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A STREET                                                                                                         | n Bolande i Ser den jaar de<br>gebeuren de staar de st<br>en Bourne de staar de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | مربع المربع المربع المربع<br>المسيد المربعة وشعري المربع | s gradi i na |                                                                                                                  |
| 4                       | 0.489  | 0.442             | 0.712**                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | p more my   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | And A Control of Contr | And the second |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Hard States                                              | And the set of the                               | · konstanti i sonemana ka                                                                                        |
| 5                       | 0.623* | 0.313             | 0.470                                                                                                          | 0.598*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1           | Sec. 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | And the second s |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  | a prostantores<br>1 hill : alar Alfibutai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | References and server                                    |                                                  |                                                                                                                  |
| 6                       | 0.118  | 0.287             | 0.442                                                                                                          | 0.576*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.434       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ang si ini ini ini<br>Mana ini ini ini ini ini ini ini ini ini                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mantha an ann an a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NUTS A MARK MICH1                                        | Contractions and                                 |                                                                                                                  |
| 7                       | .617*  | 0.516             | 0.496                                                                                                          | 0.250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.402       | 0.036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | And the second s | Bar Harris |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                          |                                                  | rten and an                                                                  |
| 8                       | 0.470  | 0.280             | 0.497                                                                                                          | 0.445                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.620       | 0.374                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.582*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | And an an and a second se |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                          |                                                  |                                                                                                                  |
| 9                       | 0.170  | 0.135             | 0.165                                                                                                          | 0.368                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.464       | 0.551                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.068                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.549                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Contraction of the second  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1. gr                                                                                                            | a ministration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                          |                                                  | an a                                                                         |
| 10                      | 0.284  | -0.031            | -0.101                                                                                                         | 0.011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.391       | -0.353                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.012     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | and the optimizer of a     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  | n a statistica († 1930)<br>Of Statistica († 1944) Statistica († 1944)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                          |                                                  | - Alexandra (Maria)<br>Alexandra (Maria)                                                                         |
| 11                      | 0.623* | 0.598*            | 0.592*                                                                                                         | 0.527                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.339       | -0.039                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.335                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.235      | 0.029                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                          | <ul> <li>A. S. S. S. Stational Social Social<br/>Sciences and Sciences and Sciences and<br/>Sciences and Sciences and Sciences and Sciences and Sciences and Sciences and<br/>Sciences and Sciences /li></ul> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | an a                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                          |                                                  |                                                                                                                  |
| 12                      | -0.261 | 0.540             | 0.557*                                                                                                         | 0.481                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.168       | 0.396                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.002      | 0.018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.024                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                          |                                                  |                                                                                                                  |
| 13                      | 0.125  | 0.113             | 0.208                                                                                                          | 0.326                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.080      | -0.198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.073                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.064                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.370     | -0.215                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.417                      | 0.317                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                  | na sala ni sala                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                          |                                                  |                                                                                                                  |
| 14                      | 0.490  | 0.370             | 0.486                                                                                                          | 0.470                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.214       | -0.082                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.231                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.361     | -0.039                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.580*                     | 0.067                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.664**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                          |                                                  | 1                                                                                                                |
| 16                      | 0.360  | 0.261             | 0.171                                                                                                          | 0.067                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.035       | 0.216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.655                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.492                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.413      | -0.232                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.076                      | -0.311                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0,598                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.364                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sec. 1                                                   |                                                  | and the second |
| 17                      | 0.375  | 0.400             | 0.567*                                                                                                         | 0,381                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.306       | 0.234                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.238                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.705**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.116      | 0.046                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.556*                     | 0.303                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.341                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.630*                                                                                                           | -0.228                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                        |                                                  | ridensin<br>Suuri Suderined                                                                                      |
| 18                      | 0.118  | 0.646             | 0.732*                                                                                                         | 0.351                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.294      | 0.145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.309                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.140     | * -0.696                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.640                      | -0.012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.542                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.560                                                                                                            | 0.619                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0,173                                                    | 1                                                | 1                                                                                                                |
| 19                      | 0.100  | 0.676*            | 0.762**                                                                                                        | 0.540*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.313       | 0.475                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.303                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.507                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.158      | -0.281                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.380                      | 0.607*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.173                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.286                                                                                                            | 0.069                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.481                                                    | 0.534                                            | 1                                                                                                                |

(original BSI numbering see Appendix B, B1)

#### G-2 Sadlermiut males cranial correlations

| <b>BSI Measurements</b> | 1      | 2      | 3       | 4      | 5                | 6      | 7      | 8      | 9                | 10     | 11       | 12                                       | 13     | 14     | 16      | 17       | 18             | 19                                        |
|-------------------------|--------|--------|---------|--------|------------------|--------|--------|--------|------------------|--------|----------|------------------------------------------|--------|--------|---------|----------|----------------|-------------------------------------------|
| 1                       | 1      |        |         |        |                  |        |        |        | h m manus hitera |        |          |                                          |        |        |         |          |                |                                           |
| 2                       | -0.430 | 1      |         |        |                  |        |        |        |                  |        |          |                                          |        |        |         |          |                |                                           |
| 3                       | 0.029  | 0.673* | 1       |        |                  |        |        |        |                  |        |          |                                          |        |        |         |          |                |                                           |
| 4                       | 0.022  | 0.578* | 0.885** | 1      | 78. h 28<br>7. a |        |        |        |                  |        |          |                                          |        |        |         |          |                |                                           |
| 5                       | -0.273 | -0.112 | -0.323  | -0.208 | 1                |        |        |        |                  |        |          |                                          |        |        |         |          |                |                                           |
| 6                       | -0.251 | 0.526  | 0.462   | 0.607* | 0.143            | 1      |        |        |                  |        |          | an a |        |        |         |          |                |                                           |
| 7                       | 0.163  | 0.177  | 0.700** | 0.588* | -0.353           | -0.014 | 1      |        |                  |        |          |                                          |        |        |         |          |                |                                           |
| 8                       | 0.333  | 0.490  | 0.515   | 0.327  | -0.084           | 0.297  | 0.155  | 1      |                  |        |          |                                          |        |        |         |          |                |                                           |
| ,                       | -0.362 | -0.338 | -0.448  | -0.205 | 0.176            | 0.000  | -0.336 | -0.502 | 1                |        |          |                                          |        |        |         |          |                |                                           |
| 10                      | 0.452  | -0.087 | 0,200   | -0.031 | -0.359           | -0.450 | 0.133  | 0.224  | -0.188           | 1      |          |                                          |        |        |         |          |                |                                           |
| 11                      | -0.016 | -0.246 | -0.232  | -0.189 | 0.258            | -0.196 | -0.064 | 0.030  | 0.415            | -0.067 | 1        |                                          |        |        |         |          |                | 1                                         |
| 12                      | -0.295 | 0.250  | 0.012   | -0.156 | -0.243           | -0.330 | 0.154  | 0.096  | 0.156            | -0.085 | 0.449    | 1                                        |        |        |         |          |                | 2-11-11-10-10-10-10-10-10-10-10-10-10-10- |
| 13                      | -0.335 | -0.026 | -0.314  | -0.336 | 0.255            | -0.267 | -0.210 | -0.364 | -0.175           | -0.322 | -0.529   | -0.029                                   | 1      |        |         |          |                |                                           |
| 14                      | -0.036 | 0.061  | 0.149   | 0.299  | -0.543           | -0.165 | 0,530  | -0.278 | 0.031            | -0.154 | -0.040   | 0.284                                    | 0.005  | 1      | 0.140+3 |          |                |                                           |
| 16                      | -0.465 | 0.417  | 0.360   | 0.316  | 0.179            | 0.551  | 0.146  | -0.027 | -0.328           | -0.219 | -0.318   | -0.350                                   | 0.042  | 0.068  | 1       | State of | s hade a shire |                                           |
| 17                      | 0.291  | 0.146  | 0,300   | 0.258  | -0.139           | -0.149 | 0.025  | 0.288  | -0.012           | 0.424  | 0.308    | 0.220                                    | -0.273 | -0.296 | -0.601  | 1        | Salah Salah Ka |                                           |
| 18                      | 0.311  | 0.160  | 0.005   | 0.048  | -0.127           | 0.367  | -0.344 | 0.381  | -0.196           | -0.155 | * -0.676 | -0.252                                   | 0.372  | -0.246 | -0.377  | 0.057    | 1              |                                           |
| 19                      | -0.039 | 0.563* | 0.639   | 0.485  | * -0.610         | 0.111  | 0.445  | 0.348  | -0.180           | 0.574  | -0.300   | 0.127                                    | -0.356 | 0.382  | 0.202   | 0.036    | 0.023          | 1                                         |

(original BSI numbering see Appendix B, B1)

\* Correlation is significant at the 0.05 level

#### G-3 Sadlermint females vertebral correlations

| <b>BSI Measurements</b> | 20     | 21              | 22                                                                                                               | 23     | 24                        | 25                                                         | 26     | 27                                                       | 28                                                                                                                                                                                                                                 | 29     | 30     | 32                                       |
|-------------------------|--------|-----------------|------------------------------------------------------------------------------------------------------------------|--------|---------------------------|------------------------------------------------------------|--------|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|------------------------------------------|
| 20                      | 1      | Atual Kd Wanter | and the second |        | Contraction of the second | 100.000 - 100.000 - 100.000<br>100.000 - 100.000 - 100.000 |        |                                                          |                                                                                                                                                                                                                                    |        |        | The second second                        |
| 21                      | 0.474  | 1               | So of the Deal of the                                                                                            |        |                           | Strande Sele Caller                                        |        |                                                          |                                                                                                                                                                                                                                    |        |        |                                          |
| 22                      | 0,344  | 0.462           | 1                                                                                                                |        |                           | 5                                                          |        | Contractor Participantes<br>Excellences of Participantes |                                                                                                                                                                                                                                    |        |        |                                          |
| 23                      | -0.142 | 0.525           | 0.853**                                                                                                          | 1      | 5 million 30an ill        | The second second                                          |        | an a                 |                                                                                                                                                                                                                                    |        |        | Second Texas                             |
| 24                      | 0.434  | 0.534           | 0.273                                                                                                            | -0.001 | 1                         |                                                            |        | and an and a straight for                                |                                                                                                                                                                                                                                    |        |        |                                          |
| 25                      | 0.515  | 0.598           | 0.220                                                                                                            | 0.232  | 0.631**                   | 1                                                          |        | and the second                                           | ingen er en er<br>Referen er en er |        |        |                                          |
| 26                      | 0.673  | 0.112           | 0.543                                                                                                            | 0.276  | 0.865**                   | 0.819*                                                     | 1      | Storn Storn Storn                                        |                                                                                                                                                                                                                                    |        |        | S. Bell and                              |
| 27                      | 0.274  | 0.262           | 0.242                                                                                                            | 0.310  | 0.542                     | 0.942**                                                    | 0.752* | 1                                                        |                                                                                                                                                                                                                                    |        |        | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 |
| 28                      | 0.487  | -0.360          | 0.003                                                                                                            | -0.037 | 0.434                     | 0.579*                                                     | 0.821* | 0.479                                                    | 1                                                                                                                                                                                                                                  |        |        |                                          |
| 29                      | 0.373  | 0.496           | 0.297                                                                                                            | 0.385  | 0.510                     | 0.903**                                                    | 0.689  | 0.928**                                                  | 0.500                                                                                                                                                                                                                              | 1      |        |                                          |
| 30                      | -0.143 | 0.103           | 0.273                                                                                                            | 0.141  | 0.163                     | 0.452                                                      | 0.151  | 0.404                                                    | -0.029                                                                                                                                                                                                                             | 0.290  | 1      |                                          |
| 32                      | 0.246  | -0.603          | -0.441                                                                                                           | -0.587 | 0.208                     | 0.117                                                      | 0.291  | -0.173                                                   | 0.488                                                                                                                                                                                                                              | -0.139 | -0.029 | 1                                        |

- MMC 2- MR -

(original BSI numbering see Appendix B, B1)

#### G-4 Sadlermint males vertebral correlations

| <b>BSI Measurements</b> | 20      | 21                                                                                                              | 22      | 23      | 24      | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 26     | 27      | 28     | 29    | 30    | 32                                      |
|-------------------------|---------|-----------------------------------------------------------------------------------------------------------------|---------|---------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------|--------|-------|-------|-----------------------------------------|
| 20                      | 1       | The second se |         |         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |         |        |       |       | - The second                            |
| 21                      | 0.569   | 1                                                                                                               |         |         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |         |        |       |       |                                         |
| 22                      | 0.563   | 0.267                                                                                                           | 1       |         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |         |        |       |       |                                         |
| 23                      | 0.770** | 0.393                                                                                                           | 0.512   | 1       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |         |        |       |       | . ст. <sub>Ан</sub> трисс.<br>1999 - С. |
| 24                      | 0.471   | 0.335                                                                                                           | 0.933** | 0.535   | 1       | Service and the service of the servi |        |         |        |       |       |                                         |
| 25                      | 0.800** | 0.351                                                                                                           | 0.738** | 0.744** | 0.756** | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |         |        |       |       |                                         |
| 26                      | 0.651*  | 0.887**                                                                                                         | 0.586   | 0.606*  | 0.495   | 0.519                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1      |         |        |       |       |                                         |
| 27                      | 0.84**  | 0.505                                                                                                           | 0.577   | 0.599   | 0.504   | 0.855**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.586* | 1       |        |       |       |                                         |
| 28                      | 0.688*  | 0.756**                                                                                                         | 0.749** | 0.336   | 0.578*  | 0.555*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.679* | 0.642*  | 1      |       |       |                                         |
| 29                      | 0.218   | 0.452                                                                                                           | 0.387   | 0.056   | 0.112   | -0.106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.555  | 0.159   | 0.605* | 1     |       |                                         |
| 30                      | 0.672*  | 0.292                                                                                                           | 0.724** | 0.555   | 0.590*  | 0.767**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.541  | 0.803** | 0.605* | 0.009 | 1     | 4.012                                   |
| 32                      | 0.580   | 0.451                                                                                                           | 0.688*  | 0.446   | 0.797** | 0.740                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.446  | 0.748   | 0.659* | 0.049 | 0.532 | 1                                       |

(original BSI numbering see Appendix B, B1)

\* Correlation is significant at the 0.05 level

#### G-5 Sadlermiut females arm correlations

| <b>BSI Measurements</b> | 33      | 34                     | 35                                               | 36                               | 37                                     | 38                            | 39      | 40              | 41      | 42     | 43                                          |
|-------------------------|---------|------------------------|--------------------------------------------------|----------------------------------|----------------------------------------|-------------------------------|---------|-----------------|---------|--------|---------------------------------------------|
| 33                      | 1       | Section in the section | anna 1997 ann 1997.<br>Anna 1997 an 1997 an 1997 |                                  |                                        |                               |         |                 |         |        |                                             |
| 34                      | 0.604*  | 1                      | alifankimadi ( ) .                               |                                  |                                        |                               |         |                 |         |        |                                             |
| 35                      | 0.758** | 0.826**                | 1                                                | Structure and a structure of the |                                        |                               |         |                 |         |        |                                             |
| 36                      | 0.718** | 0.576*                 | 0.738**                                          | 1                                | k (j. 5.)<br>References to inclusive a |                               |         |                 |         |        |                                             |
| 37                      | 0.658** | 0.582*                 | 0.741**                                          | 0.818**                          | 1                                      | t.<br>Carentina de la interes |         |                 |         |        | n en sin sin sin sin sin sin sin sin sin si |
| 38                      | 0.756** | 0.676**                | 0.793**                                          | 0.823**                          | 0.708**                                | 1                             | i       |                 |         |        |                                             |
| 39                      | 0.702** | 0.640**                | 0.579*                                           | 0.530*                           | 0.689**                                | 0.506*                        | 1       | Bio and a trade |         |        |                                             |
| 40                      | 0.877** | 0.532*                 | 0.665**                                          | 0.727**                          | 0.570*                                 | 0.662**                       | 0.589*  |                 | han an  |        |                                             |
| 41                      | 0.909** | 0.623**                | .721**                                           | 0.764**                          | 0.638**                                | 0.736**                       | 0.639** | 0.985**         | 1       |        |                                             |
| 42                      | 0.508*  | 0.721**                | 0.568*                                           | 0.569*                           | 0.651**                                | 0.624**                       | 0.530*  | 0.376           | 0.491*  | 1      | tion developments                           |
| 43                      | 0.983** | 0.626**                | 0.759**                                          | 0.755**                          | 0.664**                                | 0.765**                       | 0.691** | 0.945**         | 0.970** | 0.512* | 1                                           |

1987 (AL 44)

(original BSI numbering see Appendix B, B1)

#### G-6 Sadlermiut males arm correlations

| <b>BSI Measurements</b> | 33      | 34                        | 35      | 36               | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 38     | 39     | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 41                                                                                                                                                                                                                                  | 42    | 43                                       |
|-------------------------|---------|---------------------------|---------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------------------------------|
| 33                      | 1       | Contraction of the second |         | The Agencies     | willing and a second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |        | Re in the second |                                                                                                                                                                                                                                     |       | an a |
| 34                      | -0.382  | 1                         |         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | na averazione della d<br>Recentrativa della del |       | and the second second                    |
| 35                      | -0.291  | 0.754**                   | 1       | وتقديد فيتدائلهم |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                     |       |                                          |
| 36                      | 0.009   | 0.648**                   | 0.649** | 1                | States and the second states of the second states o |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Editeration in the                                                                                                                                                                                                                  |       | 1                                        |
| 37                      | -0.082  | 0.648**                   | 0.518*  | 0.506*           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                     |       |                                          |
| 38                      | -0.041  | 0.428                     | 0.371   | 0.334            | 0.749**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1      |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                     |       |                                          |
| 39                      | -0.229  | 0.667**                   | 0.610*  | 0.660**          | 0.576*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.347  | 1      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                     |       |                                          |
| 40                      | 0.533*  | -0.144                    | -0.227  | -0.051           | -0.245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.319 | -0.377 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                     |       |                                          |
| 41                      | 0.476   | -0.155                    | -0.213  | -0.058           | -0.345                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.328 | -0.271 | 0.931**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | î                                                                                                                                                                                                                                   |       |                                          |
| 42                      | 0.087   | 0.522*                    | 0.159   | 0.391            | 0.633*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.204  | 0.516* | -0.063                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.093                                                                                                                                                                                                                              | 1     |                                          |
| 43                      | 0.889** | -0.326                    | -0.270  | 0.072            | -0.124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.038  | -0.206 | 0,733**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.761**                                                                                                                                                                                                                             | 0.016 |                                          |

(original BSI numbering see Appendix B, B1)

\* Correlation is significant at the 0.05 level

#### G-7 Sadlermiut females leg correlations

| BSI Measurements | 44      | 45           | 46                 | <b>47</b> ·                       | 48                                 | 49     | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 51                       | 52                  | 53                                      | 54                                       | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 56                    | 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 59                                                                                                                                                                                                                                  | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 62                                |
|------------------|---------|--------------|--------------------|-----------------------------------|------------------------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------------------|-----------------------------------------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| 44               | 1       | N CONTRACTOR |                    | Barrier Street                    | 第8代集合、1,3412473<br>1,155-1-1-1-1-1 |        | All And                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | But the same of          |                     | And |                                          | A CONTRACTOR DESIGNATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Constant access of    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                     | a state of the sta          | n ann an Airtean<br>A ann an Airtean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                   |
| 45               | 0.777** | 1            | in a second second | distantion and under the          |                                    |        | Low manufal a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Landagettering 18        | Salar Salar         |                                         |                                          | Dale Chinad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Be Bergenetics and    | Constanting of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                     | Sec. Sec. Same                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | s source and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                   |
| 46               | 0.305   | 0.657*       | 1                  | gur george 199<br>Bary abyert 111 | g and the second                   |        | an share the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | the manual second as     | Radio contra libror |                                         | kali waani 2                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 39 minutes in the second se |                                                                                                                                                                                                                                     | <ul> <li>A second sec<br/>second second sec</li></ul> | Comparing and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                   |
| 47               | 0.313   | 0.449        | 0.401              | 1                                 | Selargeren en e                    |        | an water and a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A second in the          |                     |                                         |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       | hermonian a statistica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                     | k low seehil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n in Bring (Bring ) and in State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                   |
| 48               | 0,563   | 0.700*       | 0.511              | 0.130                             | 1                                  |        | 2000 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - | 12.22 ( 12.9 Kg)         |                     | Statistics of the second                | an a |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                     | t Carl Sola Gaug                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |
| 49               | 0.318   | 0.363        | 0.424              | 0.335                             | 0.437                              | 1      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | the second second second |                     |                                         |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       | Marine Constraints                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |
| 50               | 0.782** | 0.880**      | 0.531              | 0.263                             | 0.629*                             | 0.373  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          | Alexandra and a     | 1.7.3.49.5.49.5.20                      |                                          | en en sins de la sectoria de la se<br>Sectoria de la sectoria de la s |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | o gester et by two.<br>I Pliklastik sklavsk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | a<br>9 a duidheada                |
| 51               | 0.754** | 0.739**      | 0.747**            | 0.403                             | 0.596*                             | 0.529  | 0.736**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                        |                     |                                         |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       | san                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |
| 52               | 0.610*  | 0.618*       | 0.640*             | 0.679**                           | 0.476                              | 0.618* | 0.525                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.843**                  | 1                   | ÷.                                      | Ing the                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | and the second second | n ang shi tari juli.<br>Garaga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Contraction of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | a fa Alati Mercal<br>Manager      |
| 53               | 0.750** | 0.721**      | 0.489              | 0.294                             | 0.374                              | 0.412  | 0.919**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.750**                  | 0.564*              | 1                                       | Maria Cara                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | in the second second  | ديد بي وينا هو.<br>ايند اينيون بيان                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ing ng n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | a sur a santar<br>Santar a santar |
| 54               | 0.479   | 0.427        | 0.567*             | 0.255                             | 0.148                              | 0.221  | 0.418                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.687**                  | 0.408               | 0.624**                                 | 1                                        | Contraction of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10.00                             |
| 55               | 0.532   | 0.514        | 0.275              | 0.118                             | 0.837**                            | 0.532  | 0.535                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.574                    | 0.410               | 0.497                                   | 0.463                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | S De An               | n (Carlos (Car |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                     | الله به ورجع ا<br>هو المؤاد المواركسيان -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n a la parte de la carga de<br>18 de júnio de la carga de<br>18 de la carga de la carga de la                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                   |
| 56               | -0.116  | 0.271        | 0.331              | -0.117                            | 0.021                              | -0.312 | 0,285                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.010                   | -0.159              | 0.106                                   | 0.021                                    | -0.139                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                     | in a tribui per estas<br>Reconte Securitoria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |
| 57               | 0.655*  | 0.594*       | 0.454              | 0,113                             | 0.571                              | -0.131 | 0.579*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.594                    | 0.449               | 0.490                                   | 0.246                                    | 0.406                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.389                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | arte da compañía de la compañía de l<br>Compañía de la compañía de la compañí |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | a shine a same a sa<br>Sa same a sam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   |
| 58               | 0.173   | 0.246        | 0.358              | 0.046                             | 0.382                              | 0.355  | 0.215                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.230                    | 0.038               | 0.319                                   | 0.417                                    | 0.372                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.052                | 0.213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |
| 59               | 0.545*  | 0.638*       | 0.552*             | 0.599*                            | 0.349                              | 0.400  | 0.380                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.618*                   | 0.791**             | 0.539*                                  | 0.698**                                  | 0.455                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.028                 | 0,386                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.289                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |
| 60               | 0.664*  | 0.681*       | 0.488              | 0.093                             | 0.190                              | 0.370  | 0.916**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.692**                  | 0.389               | 0.989**                                 | 0.717**                                  | 0.410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.150                 | 0.269                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.366                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.461                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Print |                                   |
| 61               | 0.670*  | 0.762**      | 0.478              | 0.018                             | 0.292                              | 0.288  | 0.980**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.652*                   | 0.279               | 0.962**                                 | 0.606*                                   | 0.325                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.271                 | 0.274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.163                                                                                                                                                                                                                               | 0.978**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Concernance                       |
| 62               | 0.335   | 0.018        | -0.380             | 0.587                             | -0.147                             | 0.036  | -0.018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.064                   | 0.129               | 0.419                                   | 0.549                                    | 0.556                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.454                | 0.064                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.231                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.515                                                                                                                                                                                                                               | 0.399                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                 |

. . .

(original BSI numbering see Appendix B, B1)

#### G-8 Sadlermiut males leg correlations

| <b>BSI Measurements</b> | 44      | 45      | 46                                            | 47                   | 48                      | 49                                                                                                             | 50      | 51      | 52                                | 53                | 54                 | 55         | 56       | 57       | 58     | 59                             | 60                                       | 61                                                                                                                                                                                                                                  | 62                                               |
|-------------------------|---------|---------|-----------------------------------------------|----------------------|-------------------------|----------------------------------------------------------------------------------------------------------------|---------|---------|-----------------------------------|-------------------|--------------------|------------|----------|----------|--------|--------------------------------|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| 44                      | 1       |         | 2010                                          |                      | Contraction of the last |                                                                                                                |         |         | F.M. Markins, and<br>Frank States |                   | Santanto Crass" (1 |            |          |          |        |                                |                                          |                                                                                                                                                                                                                                     | مر رو میں میں<br>مردو کر ا                       |
| 45                      | 0.692** | 1       | Angleting Speckers<br>Total States and States | Ration of the second |                         | in all the second s |         |         |                                   |                   |                    |            |          |          |        |                                |                                          |                                                                                                                                                                                                                                     |                                                  |
| 46                      | 0.088   | 0,523   | 1                                             |                      |                         |                                                                                                                |         |         |                                   |                   |                    |            |          |          |        |                                |                                          |                                                                                                                                                                                                                                     |                                                  |
| 47                      | 0.703** | 0.403   | 0.113                                         | 1                    |                         |                                                                                                                |         |         |                                   |                   |                    |            |          |          |        |                                |                                          |                                                                                                                                                                                                                                     |                                                  |
| 48                      | 0.733** | 0.776** | 0.526                                         | 0.757**              | 1                       |                                                                                                                |         |         |                                   |                   |                    |            |          |          |        |                                |                                          |                                                                                                                                                                                                                                     |                                                  |
| 49                      | 0.490   | 0.768** | 0.685**                                       | 0.607*               | 0.799**                 | 1                                                                                                              |         |         |                                   |                   |                    |            |          |          |        |                                |                                          |                                                                                                                                                                                                                                     |                                                  |
| 50                      | -0.005  | 0.439   | 0.627*                                        | 0.062                | 0.210                   | 0.350                                                                                                          | 1       |         |                                   |                   |                    |            |          |          |        |                                |                                          |                                                                                                                                                                                                                                     |                                                  |
| 51                      | 0.478   | 0.486   | 0.483                                         | 0.602*               | 0.601                   | 0.482                                                                                                          | 0.126   | 1       |                                   | · · · · · · · · · |                    |            |          |          |        |                                |                                          |                                                                                                                                                                                                                                     |                                                  |
| 52                      | 0.551*  | 0.485   | 0.279                                         | 0.686**              | 0.682**                 | 0.428                                                                                                          | -0.001  | 0.884** | 1                                 | . · ·             |                    |            |          |          |        |                                |                                          |                                                                                                                                                                                                                                     |                                                  |
| 53                      | 0.403   | 0.304   | 0.172                                         | 0.533*               | 0.304                   | 0.108                                                                                                          | 0.428   | 0.658*  | 0.536*                            | 1                 |                    |            |          |          |        |                                |                                          |                                                                                                                                                                                                                                     | עמייניין איז |
| 54                      | 0.347   | 0.466   | 0.691**                                       | 0.395                | 0.588*                  | 0.463                                                                                                          | 0.471   | 0.630*  | 0.575*                            | 0.352             | 1                  | lin de set |          |          |        |                                |                                          |                                                                                                                                                                                                                                     |                                                  |
| 55                      | 0.663** | 0.807** | 0.587*                                        | 0.583*               | 0.914**                 | 0.778**                                                                                                        | 0.327   | 0.484   | 0.587*                            | 0.166             | 0.678**            | 1          |          |          |        |                                |                                          |                                                                                                                                                                                                                                     |                                                  |
| 56                      | 0.177   | 0.615*  | 0.315                                         | -0.291               | 0.217                   | 0.436                                                                                                          | 0.400   | -0.136  | -0.159                            | -0.304            | 0.146              | 0.290      | 1        |          |        |                                | 2000 - 2000 - 2000<br>1200 - 2000 - 2000 |                                                                                                                                                                                                                                     | Condition in the                                 |
| 57                      | 0.176   | 0.320   | -0.085                                        | -0.019               | 0,276                   | 0,069                                                                                                          | -0.078  | 0.071   | 0.094                             | 0.028             | -0.251             | 0.172      | 0.153    | 1        |        |                                | Contraction (Bestal                      | i landacadarcar a                                                                                                                                                                                                                   |                                                  |
| 58                      | 0.320   | 0.752** | 0.743**                                       | 0.161                | 0.677*                  | 0.687*                                                                                                         | 0.667*  | 0.370   | 0.286                             | -0.072            | 0.471              | 0.580*     | 0.655*   | 0.353    | 1      | na tana hiji<br>Shawi Salawi a |                                          |                                                                                                                                                                                                                                     |                                                  |
| 59                      | 0.242   | 0.413   | 0.587*                                        | 0.429                | 0.554*                  | 0.692**                                                                                                        | 0.254   | 0.720** | 0.603*                            | 0.237             | 0.579*             | 0,491      | 0,185    | 0.014    | 0.597* | 1                              |                                          | n perioren de la composición de la comp<br>El composición de la c |                                                  |
| 60                      | -0.103  | -0.285  | 0.152                                         | 0.331                | -0.119                  | -0.048                                                                                                         | 0.503   | 0.300   | 0.236                             | 0.718**           | 0.418              | -0.067     | * -0.582 | * -0.627 | -0.470 | 0.131                          | 1                                        |                                                                                                                                                                                                                                     |                                                  |
| 61                      | -0,170  | -0,060  | 0.412                                         | 0.166                | -0.020                  | 0.094                                                                                                          | 0.896** | 0.067   | -0.013                            | 0.518             | 0.503              | 0.054      | -0.098   | *-0.576  | 0.176  | 0.170                          | 0.834**                                  | 1                                                                                                                                                                                                                                   | SKe House                                        |
| 62                      | 0.620*  | 0.696*  | 0.711*                                        | 0.677*               | 0.769**                 | 0.753**                                                                                                        | 0.628*  | 0.431   | 0.396                             | 0.304             | 0.669              | 0.890**    | 0.209    | 0.082    | 0.700* | 0.512                          | 0.199                                    | 0.489                                                                                                                                                                                                                               | 1                                                |

(original BSI numbering see Appendix B, B1)

\* Correlation is significant at the 0.05 level

#### G-9 Sadlermiut females tarsal and metacarpal correlations

| <b>BSI Measurements</b> | 64      | 65     | 66                              | 67                       | 68       | 70               |
|-------------------------|---------|--------|---------------------------------|--------------------------|----------|------------------|
| 64                      | 1       |        |                                 | Service Contraction      |          |                  |
| 65                      | 0.814** | 1      | Rei Strangerg<br>Richter Strang | Supervised in the second |          |                  |
| 66                      | 0.834** | 0.753* | 1                               |                          | Creation |                  |
| 67                      | 0.580   | 0.531  | 0.481                           | 1                        |          | Shi, 32, 202,204 |
| 68                      | 0.241   | 0.103  | 0.291                           | 0.051                    | 1        |                  |
| 70                      | 0.843*  | 0.677  | 0.455                           | -0.202                   | -0.011   | 1                |

(original BSI numbering see Appendix B, B1)

#### G-10 Sadlermiut males tarsal and metacarpal correlations

| BSI Measurements | 64      | 65      | 66     | 67     | 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 70                |
|------------------|---------|---------|--------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 64               | 1       |         | 2      |        | The state of the s | 2 X 3             |
| 65               | 0.900** | 1       |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| 66               | 0.762** | 0.654*  | 1      |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No. 20 March 19   |
| 67               | 0.550   | 0.686** | 0.540* | 1      | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ant sector sector |
| 68               | 0.821** | 0.931** | 0.611* | 0.703* | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | States            |
| 70               | 0.374   | 0.362   | -0.085 | 0.090  | 0.499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                 |

(original BSI numbering see Appendix B, B1)

\* Correlation is significant at the 0.05 level

\*\* Correlation is significant at the 0.01 level

THE LOCAL

#### G-11 Sacred Heart females cranial correlations

| <b>BSI</b> Measurements | 1        | 2      | 3                                               | 4                                                                                                              | 5                                                                                                              | 6                                                                                                  | 7      | 8       | 9                                                                                                                | 10            | 11     | 12      | 13     | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17                                     | 18                                                                                                              | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------------------|----------|--------|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------|---------|------------------------------------------------------------------------------------------------------------------|---------------|--------|---------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1                       | 1        |        | 5                                               |                                                                                                                | Sugarbanica - An                                                                                               | The second second                                                                                  |        |         | and a second s |               |        |         |        | 15. 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        | and a second second                                                                                             | and a second and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2                       | -0.134   | 1      | 2. di manana ang ang ang ang ang ang ang ang an | a a construction of the second se |                                                                                                                |                                                                                                    |        |         |                                                                                                                  |               |        |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                                                                                                 | n man marka a na marana ang<br>Galaga a na marana ang<br>Galaga a na marana ang                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 3                       | -0.357   | 0.627  | 1                                               | ger an te rayan na ang<br>Kinaka na katan - Difilik                                                            | s anno an annanana.<br>Britan Ingelanan                                                                        | Zilleri a de fuidade controle<br>de la control de la controle<br>de la control de la controlection |        |         |                                                                                                                  |               |        |         |        | Stern Gamma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                        |                                                                                                                 | And the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 4                       | -0.443   | 0.552  | 0.978**                                         | 1                                                                                                              | and a second |                                                                                                    |        |         |                                                                                                                  |               |        |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | and and the second                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 5                       | 0.220    | -0.318 | 0.271                                           | 0.275                                                                                                          | 1                                                                                                              | gen men an er                                                                                      |        |         |                                                                                                                  |               |        |         |        | The second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        | and the second second                                                                                           | ي 14.<br>بو المساجد أديب الريبة :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 6                       | -0.567   | -0.034 | 0.459                                           | 0.553                                                                                                          | 0.482                                                                                                          | 1                                                                                                  |        |         |                                                                                                                  |               |        |         |        | and deviation of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1. | A DAY AND AND A DAY A | an a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 7                       | * -0.759 | -0.007 | 0.484                                           | 0.597                                                                                                          | 0.266                                                                                                          | 0.582                                                                                              | 1      |         |                                                                                                                  |               |        |         |        | A sport Street Street                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 8                       | 0.179    | 0.205  | 0.598                                           | 0.567                                                                                                          | 0.374                                                                                                          | 0.317                                                                                              | 0.039  | 1       |                                                                                                                  |               |        |         |        | And States  |                                        |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 9                       | 0.289    | 0.410  | 0.491                                           | 0.424                                                                                                          | -0.302                                                                                                         | -0.059                                                                                             | -0.245 | 0.592   | 1                                                                                                                | ana ann a sao |        |         |        | And a set of the set o | State States                           | CELEBRIC STOL                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 10                      | -0.221   | 0.562  | 0.476                                           | 0.643                                                                                                          | -0.016                                                                                                         | 0.043                                                                                              | 0.222  | 0.067   | 0.232                                                                                                            | 1             |        |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | Receiption of the second s  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 11                      | -0.499   | 0.358  | 0.587                                           | 0.728*                                                                                                         | 0.089                                                                                                          | 0.231                                                                                              | 0.387  | 0.475   | 0.399                                                                                                            | 0.862**       | 1      | 1       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 12                      | -0.558   | 0.096  | 0.733*                                          | 0.713*                                                                                                         | 0.380                                                                                                          | 0.512                                                                                              | 0.339  | 0,789*  | 0.706*                                                                                                           | 0.163         | 0.467  | 1       | 100    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | A standard and                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 13                      | -0.153   | 0.315  | 0.649                                           | 0.640                                                                                                          | 0.131                                                                                                          | 0.359                                                                                              | -0.011 | 0.948** | 0.797*                                                                                                           | 0.142         | 0.490  | 0.830** | 1      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 14                      | -0.427   | 0.318  | 0.744*                                          | 0.822**                                                                                                        | 0.321                                                                                                          | 0.285                                                                                              | 0.404  | 0.289   | 0.355                                                                                                            | 0.679*        | 0.669* | 0.589   | 0.429  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 17                      | 0.270    | 0.556  | 0.789*                                          | 0.803*                                                                                                         | 0.394                                                                                                          | 0.217                                                                                              | 0.127  | 0.714*  | 0.587                                                                                                            | 0.731*        | 0.788* | 0.740*  | 0.754* | 0.803**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                      | And the second second                                                                                           | and the second se |
| 18                      | -0.377   | 0.768  | 0.830*                                          | 0.996**                                                                                                        | -0.189                                                                                                         | 0.369                                                                                              | 0.055  | 0.604   | 0.713                                                                                                            | 0.145         | 0.341  | 0.610   | 0.842  | 0,455                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.522                                  | 1                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 19                      | -0.337   | 0.750* | 0.294                                           | 0.220                                                                                                          | -0.478                                                                                                         | -0.224                                                                                             | -0.057 | 0.302   | 0.342                                                                                                            | 0.159         | 0.232  | -0.097  | 0.419  | 0.161                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.123                                  | 0.946*                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

T SHOW THE PROPERTY OF A STATE OF

CONTRACT OF A DAMAGE AND A DAMAGE

(original BSI numbering see Appendix B, B1)

#### G-12 Sacred Heart males cranial correlations

| <b>BSI Measurements</b> | 1      | 2      | 3       | 4                                                                                                                                                               | 5                      | 6            | 7        | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10     | 11                                    | 12       | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 19                                        |
|-------------------------|--------|--------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| 1                       | 1      | 222.83 |         | 1939 - J. 1935<br>A. J. J. J. J. 1937 - Star 1937 - St<br>A. J. |                        |              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |                                       |          | The second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Superior Cardination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | An and much side                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12 12 19 200                              |
| 2                       | 0.127  | 1      |         |                                                                                                                                                                 | E States               |              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Brought Soft H. R.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 115 13 1 1 1 F 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C.C.C.                                    |
| 3                       | 0.281  | 0.372  | 1       |                                                                                                                                                                 | Na Stenića, in Antonie |              |          | 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BRANCHER DE MARKEN STATE<br>Brits<br>Averen State Brits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | august and a start of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <ul> <li>Solitive at Calculate</li> </ul> |
| 4                       | 0.499  | 0.151  | 0.869** | 1                                                                                                                                                               |                        | Carlos and P | C. Stand |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | State States                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C Start                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Conversion of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |
| 5                       | 0.387  | 0.594  | 0.290   | 0.514                                                                                                                                                           | 1                      |              | Kar      | al attention of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | i kanalari da shiri da shiri<br>Marao<br>Marao                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Photo and a second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <ul> <li>Support Standard Strength</li> <li>BUV Local Strength</li> <li>Support Stre</li></ul> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |
| 6                       | 0.590  | -0.106 | 0.558   | 0.653                                                                                                                                                           | 0.228                  | 1            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Same Takin Sugar 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        | Section 1                             |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |
| 7                       | 0.375  | 0.568  | 0.732*  | 0.499                                                                                                                                                           | 0.363                  | 0.255        | 1        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | and the second sec |        | inder die sind<br>Neder die see state |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Cases - Dirigination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Constantiantes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |
| 8                       | 0.359  | 0.150  | 0.465   | 0.569                                                                                                                                                           | 0.173                  | 0.096        | 0.300    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        | A Starter                             |          | South and the second se |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Superior of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |
| 9                       | 0.163  | -0.249 | -0.034  | 0.194                                                                                                                                                           | 0.314                  | 0.639        | -0.206   | 0.138                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        | Lands                                 |          | Sale market Creek                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | And an a second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Provide and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | La State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |
| 10                      | 0.088  | -0.301 | 0.066   | 0.020                                                                                                                                                           | -0.502                 | 0.009        | -0.186   | -0.274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.452                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1      | esting and the                        | BECOM ST |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CASENER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |
| 11                      | 0.671* | 0.251  | -0.041  | -0.043                                                                                                                                                          | 0.696*                 | 0.382        | 0.392    | 0.221                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.331                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.223 | 1                                     |          | A CONTRACTOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AND ALL AND AL | A CONTRACTOR OF A CONTRACTOR O | Selfing Antonial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |
| 12                      | 0.064  | -0.106 | 0.753*  | 0.748*                                                                                                                                                          | -0.046                 | 0.523        | 0.458    | 0.612                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.428                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.269 | 0.135                                 | 1        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Laboration and the second seco |                                           |
| 13                      | 0.080  | -0,576 | 0,355   | 0.515                                                                                                                                                           | -0.305                 | 0.493        | 0.013    | 0.505                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.579                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.197 | -0.013                                | 0.833**  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |
| 14                      | -0.058 | 0.379  | 0.623   | 0.550                                                                                                                                                           | 0.059                  | -0.168       | 0.420    | 0.307                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.665                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.022  | -0.546                                | 0.145    | -0.107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A CONTRACTOR OF A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           |
| 16                      | 0.265  | 0.459  | 0.426   | 0.488                                                                                                                                                           | 0.458                  | 0.484        | 0.052    | 0.197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.409                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.038  | 0.096                                 | 0.088    | -0.103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | R. F.S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                           |
| 17                      | 0.623  | 0.223  | 0.409   | 0.606                                                                                                                                                           | 0.509                  | 0.391        | 0.539    | 0.117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.186                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.159 | 0.240                                 | 0.078    | 0.063                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.278                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |
| 18                      | -0.014 | -0.154 | 0.153   | 0.348                                                                                                                                                           | 0.549                  | -0.220       | 0.355    | -0.448                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.428                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.366 | -0.476                                | -0.317   | -0.189                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.435                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -0.144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.697                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           |
| 19                      | 0.275  | 0.382  | 0.076   | 0.343                                                                                                                                                           | 0.814**                | 0.012        | 0.019    | 0.523                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.336                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.466 | 0.493                                 | -0.003   | -0,101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.429                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.315                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                         |

(original BSI numbering see Appendix B, B1)

\*\* Correlation is significant at the 0.01 level (2-tailed).

## G-13 Sacred Heart females vertebral correlations

| <b>BSI</b> Measurements | 20    | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 23      | 24                                   | 25     | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 27                                  | 28      | 29    | 30                                                                                                              | 32                                                                                                               |
|-------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------------------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|---------|-------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| 20                      | 1     | and in some statistics in a second statistics of the second states of th |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |                                      |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |         |       |                                                                                                                 |                                                                                                                  |
| 21                      | 0.154 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | and and a second s |         |                                      |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a na managana a<br>Construction ang |         |       | a salat | Constantine Constantine                                                                                          |
| 22                      | 0.364 | 0.875**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |                                      |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |         |       |                                                                                                                 | 120 Thomas and a second                                                                                          |
| 23                      | 0.541 | 0,586                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.724*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1       | e al constantino<br>E al constantino |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |         |       |                                                                                                                 | ्हुवन्तुः अवस्थितवृष्ट्<br>स्ट्रीपेन प्रित्वरिकायन                                                               |
| 24                      | 0.352 | 0.854**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.934**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.815** | 1                                    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |         |       |                                                                                                                 | and the second |
| 25                      | 0.336 | 0.493                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.616                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.869** | 0.802**                              | 1      | and the second s |                                     |         |       |                                                                                                                 |                                                                                                                  |
| 26                      | 0.305 | 0.547                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.765*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.845** | 0.759*                               | 0.756* | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                     |         |       |                                                                                                                 |                                                                                                                  |
| 27                      | 0.224 | 0.466                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.573                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.729*  | 0.566                                | 0.753* | 0.895**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                   |         |       |                                                                                                                 |                                                                                                                  |
| 28                      | 0.123 | 0.704                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.807*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.730*  | 0.904**                              | 0.673  | 0.936**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.917**                             | 1       |       |                                                                                                                 | Sances Merry                                                                                                     |
| 29                      | 0.262 | 0.436                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.686*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.574   | 0.663                                | 0.483  | 0,698                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.561                               | 0.914** | 1     |                                                                                                                 | P. Lake M. Harris                                                                                                |
| 30                      | 0.009 | 0.484                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.676*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.475   | 0.653                                | 0.681* | 0.709*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.710*                              | 0.752*  | 0.653 | 1                                                                                                               | San Article                                                                                                      |
| 32                      | 0.111 | 0.822*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.748*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.853** | 0.830*                               | 0.812* | 0.863**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.746*                              | 0.886*  | 0.410 | 0.525                                                                                                           | 1                                                                                                                |

the second s

(original BSI numbering see Appendix B, B1)

#### G-14 Sacred Heart males vertebral correlations

| BSI Measurements | 20      | 21     | 22      | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 24      | 25      | 26                                      | 27               | 28    | 29                            | 30                                       | 32                  |
|------------------|---------|--------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|-----------------------------------------|------------------|-------|-------------------------------|------------------------------------------|---------------------|
| 20               | 1       |        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |         |                                         |                  |       |                               |                                          |                     |
| 21               | 0.645*  | 1      | 4 (     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |         |                                         |                  |       |                               |                                          |                     |
| 22               | 0.617   | 0.405  | 1       | Breath and a second sec |         |         |                                         |                  |       |                               |                                          | 82 V. S. S.         |
| 23               | 0.662*  | 0.667* | 0.815** | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |         |                                         |                  |       |                               |                                          | and the second with |
| 24               | 0.754*  | 0.392  | 0.886** | 0.777**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1       |         |                                         |                  |       |                               |                                          | Lucian and the      |
| 25               | 0.533   | 0.624  | 0.741*  | 0.957**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.755*  | 1       | Sale Sale Sale Sale Sale Sale Sale Sale |                  |       |                               |                                          |                     |
| 26               | 0.552   | 0.294  | 0.900** | 0.801*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.937** | 0.883** | 1                                       | Entry March 1997 |       |                               |                                          |                     |
| 27               | 0.678   | 0.533  | 0.812*  | 0.752*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.909** | 0.805*  | 0.876**                                 | 1                |       |                               |                                          |                     |
| 28               | 0.789*  | 0.501  | 0.925** | 0.822**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.954** | 0.784*  | 0.911**                                 | 0.913**          | 1     | nu when sho<br>An Association |                                          |                     |
| 29               | 0.822** | 0.789* | 0.507   | 0.828**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.592   | 0.734*  | 0.552                                   | 0.630            | 0.657 | 1                             | n an |                     |
| 30               | 0,631   | 0.378  | 0.501   | 0.441                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.364   | 0.346   | 0.317                                   | 0.416            | 0.598 | 0.533                         | 1                                        |                     |
| 32               | 0.508   | -0.772 | 0.351   | -0.301                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.451   | -0.456  | 1.00**                                  | 1.00**           | 0.909 | -0.784                        | 0.770                                    | 1                   |

(original BSI numbering see Appendix B, B1)

\*\* Correlation is significant at the 0.01 level (2-tailed).

## G-15 Sacred Heart females arm correlations

| BSI Measurements | 33      | 34      | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 36               | 37                 | 38                          | 39                  | 40                    | 41      | 42    | 43                     |
|------------------|---------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------|-----------------------------|---------------------|-----------------------|---------|-------|------------------------|
| 33               | 1       | a       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | and the second     |                             |                     |                       |         |       |                        |
| 34               | 0.605   | 1       | lation for the second s |                  |                    |                             |                     |                       |         |       |                        |
| 35               | 0.572   | 0.961** | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Land Contractory |                    |                             |                     |                       |         |       | ير.<br>مريد مي مريد مي |
| 36               | 0.248   | 0.690*  | 0.597                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                | Manager of some in |                             |                     |                       |         |       |                        |
| 37               | 0.418   | 0.783** | 0.797**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.807**          | 1                  | a<br>bekonne juli bila dasi |                     |                       |         |       |                        |
| 38               | 0.603   | 0.766** | 0.694*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.712*           | 0.696*             | 1                           | atta in Bridge Star |                       |         |       |                        |
| 39               | 0.239   | 0.828** | 0.793**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.881**          | 0.832**            | 0.747*                      | 1                   | Substance Constraints |         |       |                        |
| 40               | 0.710*  | 0.413   | 0.321                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.595            | 0.174              | 0.301                       | 0.243               | 1                     |         |       |                        |
| 41               | 0.823** | 0.293   | 0.310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.253            | 0.075              | 0,199                       | 0.003               | 0.895**               | 1       |       |                        |
| 42               | 0.358   | 0.292   | 0.336                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.526            | 0.570              | 0.452                       | 0.447               | 0.422                 | 0.380   | 1     | Legislation of Section |
| 43               | 0.975** | 0.490   | 0.493                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.241            | 0.306              | 0.457                       | 0.173               | 0.806*                | 0.929** | 0.459 | 1                      |

(original BSI numbering see Appendix B, B1)

#### G-16 Sacred Heart males arm correlations

| <b>BSI</b> Measurements | 33      | 34             | 35                          | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 37                                   | 38                  | 39                         | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 41                                                                                                              | 42    | 43                             |
|-------------------------|---------|----------------|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------|--------------------------------|
| 33                      | 1       | S Charles Mark |                             | Barris and Street                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Carlo Carlos                         | Provide and provide | AN PARMAN<br>Ana Sectional | Policias Copie -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                 |       |                                |
| 34                      | 0.274   | 1              | Salarity<br>Videosity da av | 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 -<br>1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 | Barris Carlos - 1<br>Research - 1995 | 87                  | Sector Sector              | Martin (* 7 Kr. V.).<br>Martin – Vordanie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                 |       |                                |
| 35                      | 0.369   | 0.913**        | 1                           | And and the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | E roge in the start                  |                     | The second second          | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | م بر در می کرد.<br>ایرو د می کردیشک                                                                             |       | 2 - 1 - 1 - 1                  |
| 36                      | 0.503   | 0.835**        | 0.671*                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                      |                     |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |       |                                |
| 37                      | 0.532   | 0.475          | 0.664                       | 0.692*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                    |                     | Maria Carlo                | And the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                 |       |                                |
| 38                      | 0.397   | 0.454          | 0.408                       | 0.766*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.777*                               | 1                   |                            | Nation 2 and the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Contraction of the second s |       | 1.6-0.500                      |
| 39                      | 0.328   | 0.316          | 0.707*                      | 0.538                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.826**                              | 0.671*              | 1                          | in the second se | hologija i stati<br>hologija zvodu od stati                                                                     |       |                                |
| 40                      | 0,581   | 0.614          | 0.828**                     | 0.331                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.801*                               | 0.422               | 0.846**                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                 |       |                                |
| 41                      | 0.608   | 0.530          | 0.704*                      | 0.308                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.673*                               | 0.381               | 0.499                      | 0.962**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                               |       | na se consta<br>Alamanta anala |
| 42                      | 0.430   | -0.345         | -0.228                      | 0.560                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.943**                              | 0.385               | 0.793*                     | 0.159                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.212                                                                                                           | 1     | A. J. Lander                   |
| 43                      | 0.907** | 0.442          | 0.590                       | 0.457                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.656                                | 0.434               | 0.446                      | 0.863**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.886**                                                                                                         | 0.364 | 1                              |

(original BSI numbering see Appendix B, B1)

\*\* Correlation is significant at the 0.01 level (2-tailed).

#### G-17 Sacred Heart females leg correlations

| BSI Measurements | 44      | 45      | 46                            | 47                                                                                                               | 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 49                  | 50                           | 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 52         | 53      | 54      | 55                                        | 56            | 57               | 58     | 59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 60                                                                                                                                | 61                                                   | 62              |
|------------------|---------|---------|-------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------|---------|-------------------------------------------|---------------|------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-----------------|
| 44               | 1       |         | entrativities e e 1910<br>Ann | And Addition of the second s | St. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Burdens e n. V. and | i ni niministra "n' Yonini H | with the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | eto marcha |         |         | a for a straight sind                     | Haran an Star |                  |        | The state of the second |                                                                                                                                   | Sugar guardeness of                                  |                 |
| 45               | 0.953** | 1       |                               |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |                              | and the second secon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |         |         |                                           |               | Antik mar Social |        | 3 Strati.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ien Reinowa                                                                                                                       | ann an              |                 |
| 46               | 0.289   | 0.165   | 1                             | yan serata si si<br>wa festi shikiti si                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |                              | <ul> <li>All and a state of the state of</li></ul> |            |         |         |                                           |               |                  |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                   | i and a sub-                                         |                 |
| 47               | 0.506   | 0.483   | -0,385                        | 1                                                                                                                | and the second sec |                     |                              | in the State of State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |         |         | en an |               |                  |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                   |                                                      | a han a shirt a |
| 48               | 0.670*  | 0.756*  | 0.094                         | 0.389                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     |                              | and a second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |         |         |                                           |               |                  |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a fini in a sub solar a substance                                                                                                 | a an al gu da an |                 |
| 49               | 0.350   | 0.443   | 0.325                         | -0.245                                                                                                           | 0.386                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                   |                              | Construction and the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |         |         |                                           |               |                  |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                   | 11. 183.<br>193                                      | Souther and     |
| 50               | 0.476   | 0.616   | 0.173                         | 0.021                                                                                                            | 0.328                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.565               | 1                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |         |         |                                           |               |                  |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                   |                                                      |                 |
| 51               | 0.791** | 0.791** | 0.300                         | 0,560                                                                                                            | 0.493                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.324               | 0.687*                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |         |         |                                           |               |                  |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                   |                                                      |                 |
| 52               | 0.621   | 0.548   | 0.082                         | 0.749*                                                                                                           | 0.637*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.038               | 0.160                        | 0.720*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1          | 144     |         |                                           |               |                  |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                   |                                                      |                 |
| 53               | 0.391   | 0.481   | 0.136                         | 0.150                                                                                                            | 0.120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.432               | 0.898**                      | 0.766**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.261      | 1       |         |                                           |               |                  |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                   |                                                      |                 |
| 54               | 0.593   | 0.638*  | -0.034                        | 0.689*                                                                                                           | 0.294                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.166               | 0.669*                       | 0.876**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.570      | 0.756*  | 1       |                                           |               |                  |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                   |                                                      | 5               |
| 55               | 0.766*  | 0.841** | -0.197                        | 0.768*                                                                                                           | 0.714*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.305               | 0.667*                       | 0.863**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.694*     | 0.672*  | 0.865** | 1                                         |               |                  |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                   |                                                      |                 |
| 56               | 0.429   | 0.564   | 0.382                         | -0.173                                                                                                           | 0.481                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,370               | 0.791**                      | 0.452                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.038      | 0.507   | 0.357   | 0.444                                     | 1             |                  |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                   |                                                      |                 |
| 57               | 0.750*  | 0.796*  | 0.378                         | 0.299                                                                                                            | 0.593                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.306               | 0.628                        | 0.797*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.412      | 0.593   | 0.614   | 0.767*                                    | 0.666         | 1                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                   |                                                      |                 |
| 58               | 0.764*  | 0.813*  | 0.252                         | 0.480                                                                                                            | 0.463                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.324               | 0.694                        | 0.856**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.522      | 0.646   | 0.693   | 0.665                                     | 0.674         | 0.724            | 1      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                   |                                                      |                 |
| 59               | 0.671*  | 0.664*  | 0,165                         | 0,560                                                                                                            | 0.258                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.203               | 0.708*                       | 0.887**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.517      | 0.768** | 0.956** | 0.809**                                   | 0.445         | 0.666            | 0.661  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | in provention.<br>The second se |                                                      |                 |
| 60               | 0.600   | 0.651   | 0.126                         | 0.389                                                                                                            | 0.223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.419               | 0.886**                      | 0.874**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.439      | 0.952** | 0.789*  | 0.764*                                    | 0.567         | 0.766*           | 0.784* | 0.799*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                 | C C C C                                              |                 |
| 61               | 0.509   | 0.617   | -0.016                        | 0.349                                                                                                            | 0.199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.424               | 0.966**                      | 0.814*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.333      | 0.974** | 0.804*  | 0.751*                                    | 0.686         | 0.696            | 0.764* | 0.789*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.975**                                                                                                                           | 1                                                    |                 |
| 62               | 0.513   | 0.606   | 0.154                         | -0.141                                                                                                           | 0.506                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.041               | 0.616                        | 0.399                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.048      | 0.402   | 0.099   | 0.356                                     | 0.789*        | 0.675            | 0.487  | 0.292                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.578                                                                                                                             | 0.634                                                | 1               |

(original BSI numbering see Appendix B, B1)

### G-18 Sacred Heart males leg correlations

| <b>BSI Measurements</b> | 44      | 45                               | 46        | 47                   | 48                                       | 49     | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 51                            | 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 54                    | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 56                 | 57                | 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 59      | 60      | 61                         | 62                            |
|-------------------------|---------|----------------------------------|-----------|----------------------|------------------------------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|----------------------------|-------------------------------|
| 44                      | 1       | Contraction of the second second | C. States |                      | S. S |        | Contraction and Contraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               | Rev and a straight of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    | S. C. C.          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |         |                            |                               |
| 45                      | 0.954** | 1                                |           | AND SPECIAL PROPERTY | 新祝学 <sup>会会</sup>                        |        | Service and the service of the servi | Realized in the second second |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |         |                            |                               |
| 46                      | 0.362   | 0.552                            | 1         | And the back that    |                                          |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |         |                            |                               |
| 47                      | 0.229   | 0.108                            | -0.574    | 1                    |                                          |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    | and the second    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |         |                            |                               |
| 48                      | 0.864** | 0.842**                          | 0.442     | 0.331                | 1                                        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | Sala Sala and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | partition and the set |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Statistical Sector |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |         | الم<br>مالية بنجار بالمربو | na restriction for the        |
| 49                      | 0.442   | 0.437                            | 0.464     | 0.064                | 0.611                                    | 1      | A Constant of the second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                               | Section 2010 and a section of the se |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Engine we we ge       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |         | P. Mark Print Print        | distance in the second second |
| 50                      | 0.613   | 0.618                            | 0.240     | 0.068                | 0.570                                    | 0.095  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A CARLES AND A CARLES         | the second Children of a second state of the s |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ta anti anti          | L. Maria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    | a can iterational |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |         |                            |                               |
| 51                      | 0.442   | 0.491                            | 0.289     | 0.273                | 0.409                                    | 0.215  | 0.191                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Contraction of the second seco |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    | a deservations    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |         |                            | 146 F.4                       |
| 52                      | 0.628   | 0.631                            | 0.136     | 0.640                | 0.754*                                   | 0.317  | 0.340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.720*                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | hthong the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |         |                            | 122 Stal                      |
| 53                      | 0.736*  | 0.800**                          | 0.428     | 0.167                | 0.746*                                   | 0.229  | 0.921**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.376                         | 0.561                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       | and the second sec |                    | Lange -           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |         |                            | South States                  |
| 54                      | 0.166   | 0,333                            | 0.467     | -0.328               | 0.157                                    | -0.265 | 0.616                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.018                         | 0.022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.639*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                     | Marth Martine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    | he water          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |         |                            |                               |
| 55                      | 0.598   | 0.669*                           | 0,501     | 0.170                | 0.745*                                   | 0.213  | 0.484                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.394                         | 0.545                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.694*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.307                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |                   | i de l'angle de la company br>La company de la company de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |         | and the design of the      |                               |
| 56                      | 0.587   | 0.562                            | 0,442     | -0.130               | 0.662*                                   | 0.568  | 0.669*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.250                        | 0.086                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.645*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.394                 | 0.367                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                  |                   | Contract of graphic stations of the second station of the second s |         |         |                            |                               |
| 57                      | 0.607   | 0.548                            | 0.283     | -0.085               | 0.653*                                   | 0.276  | 0.661*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.113                        | 0.210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.583                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.161                 | 0.595                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.674*             | 1                 | Contraction of the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |         | Sec. 199 March             |                               |
| 58                      | 0.784*  | 0.786*                           | 0.526     | 0.169                | 0.728*                                   | 0.572  | 0.580                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.799*                        | 0.710*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.668*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.025                | 0.555                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.349              | 0.456             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |         |                            |                               |
| 59                      | 0.601   | 0.650*                           | 0.445     | 0.037                | 0.611                                    | 0.160  | 0.815**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.254                         | 0.355                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.881**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.778**               | 0.516                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.710*             | 0.366             | 0.431                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1       |         |                            |                               |
| 60                      | 0.733*  | 0.812**                          | 0.110     | 0.365                | 0.660                                    | 0.056  | 0.844**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.225                         | 0.525                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.944**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.528                 | 0.630                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.509              | 0.464             | 0.527                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.788*  | 1       |                            |                               |
| 61                      | 0.692*  | 0.746*                           | 0.230     | 0.195                | 0.659                                    | 0,066  | 0.977**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.209                         | 0.425                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.994**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.606                 | 0.624                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.635              | 0.608             | 0.614                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.870** | 0.939** | 1                          |                               |
| 62                      | 0.611   | 0.658*                           | 0.315     | 0.201                | 0.629                                    | -0.038 | 0.541                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.566                         | 0.680*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.667*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.261                 | 0.826**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.095              | 0.587             | 0.656                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.367   | 0.568   | 0.578                      | 1                             |

(original BSI numbering see Appendix B, B1)

\*\* Correlation is significant at the 0.01 level (2-tailed).

# G-19 Sacred Heart females tarsal and metacarpal correlations

| <b>BSI Measurements</b> | 64      | 65     | 66      | 67                                                  | 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 69                             | 70                                                                                                                                                                                                                                    |
|-------------------------|---------|--------|---------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 64                      | 1       |        |         | Straighter and                                      | a transformer and the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                | 2                                                                                                                                                                                                                                     |
| 65                      | 0.828** | 1      |         |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | Est and and and                                                                                                                                                                                                                       |
| 66                      | 0.729*  | 0.683* | 1       | ra di Santari (1988).<br>Referit del Santari (1989) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                                                                                                                                                                                                       |
| 67                      | 0.762*  | 0.795* | 0.912** | 1                                                   | State of the second sec |                                | protection and the second s                                                                                                                       |
| 68                      | 0.627   | 0.762* | 0.886** | 0.928**                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ter yan a kwan<br>kwa a kwan a | الا التي منطقية من من الالتي<br>1973 - من المراجع - ال<br>1973 - من المراجع - ا |
| 69                      | 0.412   | 0.193  | 0.415   | 0.465                                               | 0.182                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                              | and the second second second                                                                                                                                                                                                          |
| 70                      | 0.567   | 0.747* | 0.506   | 0,535                                               | 0.506                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.348                          | 1                                                                                                                                                                                                                                     |

(original BSI numbering see Appendix B, B1)

#### G-20 Sacred Heart males tarsal and metacarpal correlations

| <b>BSI Measurements</b> | 64      | 65                          | 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 67                                                                      | 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 69                      | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------------------|---------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 64                      | 1       | gen a culture<br>References |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AND THE MARK                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | REAL PROPERTY           | HERE SALES TO A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 65                      | 0.920** | 1                           | and the second s | nter angen begen van detter<br>Anteren<br>Statut angelegen Zamer Statut | Card Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Start Contract Constant | Barrison Aller                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 66                      | 0,526   | 0.476                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Hall Wells, Martine State                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 67                      | -0.065  | -0.077                      | 0.519                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                       | Barris and a series of the ser | And allowed when        | and the second s |
| 68                      | 0.706*  | 0.667*                      | 0.664*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.590                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AND THE POST OF         | Call and the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 69                      | 0.761*  | 0.794**                     | 0.516                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.437                                                                   | 0.886**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 70                      | 0.362   | 0.461                       | -0.014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.025                                                                  | 0,106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.391                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

(original BSI numbering see Appendix B, B1)

\*\* Correlation is significant at the 0.01 level (2-tailed). \* Correlation is significant at the 0.05 level (2-tailed).

# G-21 Sadlermiut and Sacred Heart final female correlations

UNCOLUMN DOM:NO

|                  |        |        |       | 12 and |      |        |        | 26 and |        |        |        |        |        |        |             |              |        |      |      |        |       |        | r      |      |      |      |     |
|------------------|--------|--------|-------|--------|------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-------------|--------------|--------|------|------|--------|-------|--------|--------|------|------|------|-----|
| ISI Measurements | 3      | 4      | 11    | 13     | 14   | 17     | 25     | 27     | 29     | 33     | X      | 37     | 38     | _39    |             | 41           | 44     | 45   | 48   | 50     | 51    | 53     | 57     | 59   | 60   | 64   | 6   |
| 3                | 1      |        |       |        |      |        |        |        |        |        |        |        |        |        |             |              |        |      |      |        |       |        |        |      |      |      |     |
| 4                | 831    | 1      |       |        |      |        |        |        |        |        |        |        |        |        |             |              |        |      |      |        |       |        |        |      |      |      |     |
| 11               | .660   | .641** | 1     |        |      |        |        |        |        |        |        |        |        |        |             |              |        |      |      |        |       |        |        |      |      |      |     |
| 12 and 13        | .483   | .532   | _262  | 1      |      |        |        |        |        |        |        |        |        |        |             |              |        |      |      |        |       |        |        |      |      |      |     |
| 14               | .514   | .627** | .483  | .468   | 1    |        |        |        |        |        |        |        |        |        |             |              |        |      |      |        |       |        |        |      |      |      |     |
| 17               | .681** | .537** | .741  | .430   | 440  | 1      |        |        |        |        |        |        |        |        |             |              |        |      |      |        |       |        |        |      |      |      |     |
| 24 and 25        | .565   | 626    | 818   | .106   | 264  | .417   | 1      |        |        |        |        |        |        |        |             |              |        |      |      |        |       |        |        |      |      |      |     |
| 26 and 27        | 772**  | .778   | .850" | .301   | .381 | 626    | .859   | . 1    |        |        |        |        |        |        |             |              |        |      |      |        |       |        |        |      |      |      |     |
| 28 and 29        | .762   | .725   | .859" | .302   | .463 | .662** | .791** | .906   | 1      |        |        |        |        |        |             |              |        |      |      |        |       |        |        |      |      |      |     |
| 33               | .198   | .193   | - 184 | .294   | .246 | 156    | .167   | .397   | .129   | 1      |        |        |        |        |             |              |        |      |      |        |       |        |        |      |      |      |     |
| 34               | .322   | 347    | .154  | .320   | .359 | .152   | .382   | .740** | .417   | .590** | 1      |        |        |        |             |              |        |      |      |        |       |        |        |      |      |      |     |
| 37               | 408    | 420    | .216  | 452    | 257  | .132   | .413   | .657   | 501    | 522    | .697   | 1      |        |        |             |              |        |      |      |        |       |        |        |      |      |      |     |
| 38               | .390   | .339   | .144  | .337   | .253 | .144   | .299   | .634** | .531   | .664   | .720   | 696    | 1      |        |             |              |        |      |      |        |       |        |        |      |      |      |     |
| 39               | .273   | .441   | .192  | .349   | .335 | .096   | .196   | .595   | .396   | .636   | .735   | 750    | .613   | 1      |             |              |        |      |      |        |       |        |        |      |      |      |     |
| 48               | .160   | .026   | 107   | .144   | .155 | 098    | .251   | .290   | .065   | .892   | .502   | .449   | .553   | .582   | _ 1         |              |        |      |      |        |       |        |        |      |      |      |     |
| 41               | .093   | 018    | - 221 | .154   | .075 | - 168  | .050   | .188   | 083    | .925   | .485   | 406    | .540   | 569**  | <u>.973</u> | 1            |        |      |      |        |       |        |        |      |      |      |     |
| 44               | .564   | .496   | .400  | .376   | .473 | .399   | .453   | .709   | .617** | .489   | .657** | .613   | .812** | _525** | .388        | .322         | 1      |      |      |        |       |        |        |      |      |      |     |
| 45               | .564   | .526   | .573  | .440   | .526 | .525   | .646   | .700** | .691   | .318   | .532** | .541   | .627** | .369   | .202        | .115         | .847   | 1    |      |        |       |        |        |      |      |      |     |
| 48               | .218   | .357   | .332  | .392   | .349 | .169   | .414   | .363   | .544   | .233   | .288   | .447   | 489    | .264   | .075        | .047         | .589   | 730  | 1    |        |       |        |        |      |      |      |     |
| 54               | .184   | .138   | 075   | .263   | 233  | 170    | .309   | .394   | .126   | .925   | 529    | 527"   | .615** | 568    | .857        | <u>.8</u> 71 | .502   | 454  | .368 | 1      |       |        |        |      |      |      |     |
| 51               | .393   | 380    | .071  | .169   | .444 | .213   | .311   | 497    | .377   | .581** | .680   | .498   | .599   | 434    | .475        | 466          | 684**  | .687 | .557 | .642   | 1     |        |        |      |      |      |     |
| 53               | .075   | .024   | - 286 | .148   | .181 | 192    | .142   | .301   | 058    | .903   | .570   | .525** | .550** | .594   | .894        | .915         | .416   | .270 | .125 | .923   | .626  | 1      |        |      |      |      |     |
| 57               | .265   | .276   | 011   | .369   | .288 | 185    | .207   | .509   | .283   | .670   | .620   | .692   | .508   | .584   | .502        | .542         | .637** | .516 | .481 | .674** | .687  | .634   |        |      |      |      |     |
| 59               | .038   | .143   | 249   | .284   | .482 | 152    | 028    | .232   | 009    | .749   | .685   | .378   | 470    | 530    | .609        | .686**       | .375   | .246 | .164 | .665   | .635" | 750    | .652** | 1    |      |      |     |
| 64               | .123   | .044   | - 243 | .135   | .210 | +.064  | 031    | .437   | - 101  | 893    | .574   | .597   | .572   | 635**  | 848         | .866         | .380   | .251 | .011 | .915** | .662  | .978** | .561   | .705 | 1    |      |     |
| 64               | .250   | .315   | .293  | .375   | .362 | 048    | .404   | .609   | .421   | .714   | .711** | .546** | .607** | .736** | .659        | .598         | .605   | 316  | .238 | .578   | .421  | .621   | .707** | .649 | .489 | 1    |     |
| 66               | .460   | .556   | .422  | .658** | 390  | .373   | .493   | .614   | .700** | .542   | .730   | .799   | .708   | 706    | .454        | .381         | .744** | .704 | .703 | .546   | .695  | .474   | .748   | .386 | .418 | .725 | 1 - |

second second second second

\*\* Correlation is significant at the 0.01 level \* Correlation is significant at the 0.05 level

# G-22 Sadlermint and Sacred Heart final male correlations

| SI Measurements | 3      | 21     | 23    | 25     | 27     | 28    | 32     | 34     | 35     | 37     | 39     | \$     | 42    | 44    | 45     | 48       | 50     | 52     | 53    | 55       | 57    | 58    | 59     | 64    | 62       | 64       | 65   | 6 |
|-----------------|--------|--------|-------|--------|--------|-------|--------|--------|--------|--------|--------|--------|-------|-------|--------|----------|--------|--------|-------|----------|-------|-------|--------|-------|----------|----------|------|---|
| 3               | - 1    |        |       |        |        |       |        |        |        |        |        |        |       |       |        |          |        |        |       |          |       |       |        |       |          |          |      |   |
| 20 and 21       | 0.253  | 1      |       |        |        |       |        |        |        |        |        |        |       |       |        |          |        |        |       |          |       |       |        |       |          |          |      |   |
| 22 and 23       | 0.015  | .699   | 1     |        |        |       |        |        |        |        |        |        |       |       |        |          |        |        |       |          |       |       |        |       |          |          |      |   |
| 24 and 25       | 0.098  | 634    | .914  | 1      |        |       |        |        |        |        |        |        |       |       |        |          |        |        |       |          |       |       |        |       |          |          |      |   |
| 26 and 27       | 0.158  | 780    | .811  | .811   | [1]    |       |        |        |        |        |        |        |       |       |        |          |        |        |       |          |       |       |        |       |          |          |      |   |
| 28              | 0.392  | .733** | .549  | .582   | .705   | 1     |        |        |        |        |        |        |       |       |        |          |        |        |       |          |       |       |        |       |          |          |      |   |
| 32              | -0.089 | 0.399  | 0.35  | .615   | .600   | .635  | 1      |        |        |        |        |        |       |       |        |          |        |        |       |          |       |       |        |       |          |          |      |   |
| 34              | 0.047  | .515   | .544  | 507    | .505   | .437  | 0.226  | 1      |        |        |        |        |       |       |        |          |        |        |       |          |       |       |        |       |          |          |      |   |
| 35              | 0.008  | 469    | _670  | .634   | .548   | .562  | 0.414  | .793   | 1      |        |        |        |       |       |        |          |        |        |       |          |       |       |        |       |          |          |      |   |
| 37              | -0.172 | 0.42   | 629   | 731    | .605   | 479   | 0.448  | 421    | .549"  | 1      |        |        |       |       |        |          |        |        |       |          |       |       |        |       |          |          |      |   |
| 39              | -0.37  | 0.298  | 484   | .590   | .469   | 0.374 | .669   | 0.263  | .556   | 729    | 1      | _      |       |       |        |          |        |        |       |          |       |       |        |       |          |          |      |   |
| 40              | -0.258 | 0.01   | 0.233 | 0.341  | 0.144  | 0.194 | .572   | -0.086 | 0.205  | .441   | 556    | 1      |       |       |        |          |        |        |       |          |       |       |        |       |          |          |      |   |
| 42              | -0.31  | -0.011 | 0.207 | 0.36   | 0.215  | 0.049 | 550    | -0.145 | -0.089 | 810    | .780   | .510   | 1     |       |        |          |        |        |       |          |       |       |        |       |          |          |      |   |
| 44              | -0.234 | .478   | 447   | 446    | .512   | .519  | 0.351  | 468    | .555   | 570    | .665   | 0.209  | 0.324 | 1     |        |          |        |        |       |          |       |       |        |       |          |          |      |   |
| 45              | 0.047  | .709   | 490   | 557    | .681** | 868   | 0.51   | 592    | .643   | .648   | 516    | 0.086  | 0.131 | 728   | 1      |          |        |        |       |          |       |       |        |       |          |          |      |   |
| 48              | -0.097 | .499   | .560  | .628   | .663   | .537  | 0.478  | .683** | 707    | .710   | .628   | 0.052  | 0.251 | .731  | 787    | <u> </u> |        |        |       |          |       |       |        |       |          |          |      |   |
| 50              | -0.377 | -0.028 | 0.057 | 0.21   | 0.149  | 0.307 | 699    | -0.122 | 0.095  | .532   | .596   | .767** | .660  | 0.273 | 0.273  | 0.197    | 1      |        |       |          |       |       |        |       |          |          |      |   |
| 52              | 0.161  | 0.284  | 499   | .537   | 0.37   | 0.383 | .599   | .435   | .403   | 0.284  | 0.332  | 0.103  | 0.1   | .552  | .522   | .685     | 0.041  | 1      |       |          |       |       |        |       |          |          |      |   |
| 53              | -0.413 | -0.027 | 0.165 | 0.245  | 0.056  | 0.185 | .590   | -0.112 | 0.164  | .452   | .651   | .890   | .602  | .418  | 0.204  | 0.232    | .888   | 0.247  | 1     |          |       |       |        |       |          |          |      |   |
| 55              | -0.069 | .538   | 540   | .644   | 478    | .545" | .775** | _481   | .617   | .734   | .755   | 0.384  | 0.391 | .631  | 663    | .735     | 480    | .498   | 502   | <u> </u> |       |       |        |       |          |          |      |   |
| 56 and 57       | -0.173 | 0.256  | 0.39  | 485    | 0.424  | .685  | _0.513 | 0.106  | .411   | .687   | 480    | 0.372  | 0.317 | 0.382 | .592   | 0.352    | 483    | -0.057 | 0.31  | 436      |       |       |        |       |          |          |      |   |
| 58              | -0.027 | .612   | 737** | 694    | 727    | 709   | 697    | 585    | 635    | .736   | .465   | 0.249  | 0.245 | .476  | .747** | 692      | 0.412  | 0.402  | 0.214 | 552      | 602   | _1    |        |       |          |          |      |   |
| 59              | - 477  | 0.208  | 0.31  | 0.324  | 0.289  | 0.367 | .759   | 0.167  | 0.355  | .452   | .582   | .655   | 0.37  | 0.387 | 0.337  | 406      | 696    | 0.383  | .743  | .561     | 0.39  | .489  |        |       |          |          |      |   |
| 60              | -0.236 | -0.027 | 0.059 | 0.139  | -0.112 | 0.085 | .622   | -0.202 | 0.062  | 0.228  | .456   | .842   | .544  | 0.251 | -0.029 | 0.092    | 829    | 0.166  | .935  | .418     | 0.078 | 0.007 | .660** |       |          |          |      |   |
| 62              | 0.279  | .632   | 481   | 527    | .511   | .565  | .578   | .616   | .574   | .594** | .497   | 0.087  | 0.213 | .567  | .624   | .676     | 0.318  | .488   | 0.29  | _7n*     | 0.238 | .652  | 0.306  | 0.217 | <u> </u> |          |      |   |
| 64              | -0.119 | .499   | 610   | 619    | 516    | 578   | .776   | 0.306  | 0.332  | 486    | .435   | 0.382  | 0.334 | .553  | .612   | .575     | .474   | .686   | .514  | .555     | 0.259 | .645  | .636   | .447  | 0.42     | <u> </u> |      | - |
| 65              | 0.042  | .671   | .624  | .582** | .472   | 630   | 750    | 0.397  | 0.355  | 480    | 0.278  | 0.314  | 0.157 | 0.395 | .613"  | 528      | 0.381  | .595   | 0.371 | .530     | 0.286 | .694  | .608   | 0.285 | .507     | .904     | 1    |   |
| 68              | -0.332 | 0.367  | .503  | .567"  | 0.416  | .609  | 735    | 0.334  | 0.352  | .731   | .564** | 0.43   | 0.432 | 0.434 | .638** | 552      | .667** | .558   | 490   | .624     | .663  | .780  | .733** | 0.318 | .520     | 799      | .848 | 1 |

\*\* Correlation is significant at the 0.01 level \* Correlation is significant at the 0.05 level

214

# APPENDIX H: r-VALUES AND STATISTICAL SIGNIFICANCE

# H-1 Sadlermiut and Sacred Heart female BSI chronological re-numbering

1

-----

| Chronological number | BSIs with original numbering                         |
|----------------------|------------------------------------------------------|
| 1                    | 3. Upper facial breadth                              |
| 2                    | 4. Biorbital breadth                                 |
| 3                    | 66. Maximum length of talus                          |
| 4                    | 28/29. Sacrum superior surface area                  |
| 5                    | 37. Humerus distal joint breadth                     |
| 6                    | 39. Humerus capitual height                          |
| 7                    | 33. Maximum humerus length                           |
| 8                    | 34. Humerus midshaft circumference                   |
| 9                    | 59. Tibia midshaft width                             |
| 10                   | 51. Femur midshaft circumference                     |
| 11                   | 11. Maximum cranial height                           |
| 12                   | 14. Interorbital breadth                             |
| 13                   | 17. Maximum breath of the mandible                   |
| 14                   | 12/13. Foramen magnum area                           |
| 15                   | 44. Femur maximum superior/inferior diameter of head |
| 16                   | 45. Femur head breadth                               |
| 17                   | 50. Maximum femur length                             |
| 18                   | 60. Maximum fibula length                            |
| 19                   | 38. Humerus anteroposterior diameter of head         |
| 20                   | 53. Maximum tibia length                             |
| 21                   | 57. Tibia transverse diameter of talar facet         |
| 22                   | 41. Maximum radius length                            |
| 23                   | 64. Maximum length of calcaneus                      |
| 24                   | 40. Maximum ulna length                              |
| 25                   | 48. Biepicondylar diameter of distal femur           |
| 26                   | 24/25. L1 superior surface area                      |
| 27                   | 26/27. L5 superior surface area                      |

| Chronological number | BSIs with original numbering                         |
|----------------------|------------------------------------------------------|
| 1                    | 3. Upper facial breadth                              |
| 2                    | 20/21. C7 superior surface area                      |
| 3                    | 28. Sacrum anterior height of first segment          |
| 4                    | 34. Humerus midshaft circumference                   |
| 5                    | 52. Femur midshaft width                             |
| 6                    | 59. Tibia midshaft width                             |
| 7                    | 37. Humerus distal joint breadth                     |
| 8                    | 39. Humerus capitual height                          |
| 9                    | 62. Patella maximum breadth                          |
| 10                   | 42. Transverse diameter of radius head               |
| 11                   | 56/57. Talar facet area                              |
| 12                   | 60. Maximum fibula length                            |
| 13                   | 44. Femur maximum superior/inferior diameter of head |
| 14                   | 45. Femur head breadth                               |
| 15                   | 48. Biepicondylar diameter of distal femur           |
| 16                   | 50. Maximum femur length                             |
| 17                   | 53. Maximum tibia length                             |
| 18                   | 55. Proximal tibia breadth                           |
| 19                   | 58. Anteroposterior diameter of proximal tibia       |
| 20                   | 40. Maximum ulna length                              |
| 21                   | 64. Maximum length of calcaneus                      |
| 22                   | 65. Posterior length of calcaneus                    |
| 23                   | 68. Articulated height of calcaneus/talus            |
| 24                   | 22/23. T12 superior surface area                     |
| 25                   | 24/25. L1 superior surface area                      |
| 26                   | 26/27. L5 superior surface area                      |
| 27                   | 32. Bi-iliac breadth                                 |

.....

# H-2 Sadlermiut and Sacred Heart male BSI chronological re-numbering

H-3 Sadlermiut females r-values and significant association (chronological BSI numbering see Appendix H, H-1)

| (caronological bor numbering see Appendix II, II-1) |                |                |                |              |  |  |  |
|-----------------------------------------------------|----------------|----------------|----------------|--------------|--|--|--|
| Variables                                           | r-value        | r2-value       | Significance   | Reject Null? |  |  |  |
| V1:V2                                               | 0.712          | 0.506          | 0.003          | YES          |  |  |  |
| V1:V3                                               | 0.403          | 0.162          | 0.219          | NO           |  |  |  |
| V1:V4                                               | 0.700          | 0.491          | 0.011          | YES          |  |  |  |
| V1:V5                                               | 0.450          | 0.202          | 0.092          | NO           |  |  |  |
| V1:V6                                               | 0.407          | 0.166          | 0.132          | NO           |  |  |  |
| V1:V7                                               | 0.663          | 0.440          | 0.007          | YES          |  |  |  |
| V1:V8                                               | 0.236          | 0.056          | 0.396          | NO           |  |  |  |
| V1:V9                                               | 0.389          | 0.152          | 0.151          | NO           |  |  |  |
| V1:V10                                              | 0.402          | 0.162          | 0.154          | NO           |  |  |  |
| V1:V11                                              | 0.592          | 0.351          | 0.033          | YES          |  |  |  |
| V1:V12                                              | 0.486          | 0.237          | 0.066          | NO           |  |  |  |
| V1:V13                                              | 0.567          | 0.321          | 0.035          | YES          |  |  |  |
| V1:V14                                              | 0.417          | 0.174          | 0.156          | NO           |  |  |  |
| V1:V15                                              | 0.478          | 0.228          | 0.084          | NO           |  |  |  |
| V1:V16                                              | 0.511          | 0.261          | 0.062          | NO           |  |  |  |
| V1:V17                                              | 0.559          | 0.312          | 0.038          | YES          |  |  |  |
| V1:V18                                              | 0.510          | 0.260          | 0.062          | NO           |  |  |  |
| V1:V19                                              | 0.422          | 0.178          | 0.117          | NO           |  |  |  |
| V1:V20                                              | 0.542          | 0.294          | 0.037          | YES          |  |  |  |
| V1:V21                                              | 0.388          | 0.150          | 0.171          | NO           |  |  |  |
| V1:V22                                              | 0.688          | 0.474          | 0.005          | YES          |  |  |  |
| V1:V23                                              | 0.234          | 0.055          | 0,464          | NO           |  |  |  |
| V1:V24                                              | 0.694          | 0.482          | 0.006          | YES          |  |  |  |
| V1:V25                                              | 0.054          | 0.003          | 0.867          | NO           |  |  |  |
| V1:V26                                              | 0.432          | 0.187          | 0.184          | NO           |  |  |  |
| V1:V27                                              | 0.688          | 0.473          | 0.088          | NO           |  |  |  |
| V2:V3                                               | 0.414          | 0.172          | 0.205          | NO           |  |  |  |
| V2:V4                                               | 0.644          | 0.415          | 0.024          | YES          |  |  |  |
| V2:V5                                               | 0.327          | 0.107          | 0.233          | NO           |  |  |  |
| V2:V6                                               | 0.436          | 0.190          | 0.104          | NO           |  |  |  |
| V2:V7                                               | 0.506          | 0.256          | 0.054          | NO           |  |  |  |
| V2:V8                                               | 0.108          | 0.012          | 0.702          | NO           |  |  |  |
| V2:V9                                               | 0.430          | 0,185          | 0.110          | NO           |  |  |  |
| V2:V10                                              | 0.321          | 0.103          | 0.263          | NO           |  |  |  |
| V2:V11                                              | 0.527          | 0.278          | 0.064          | NO           |  |  |  |
| V2:V12                                              | 0.470          | 0.221          | 0.077          | NO           |  |  |  |
| V2:V13                                              | 0.381          | 0.145          | 0.178          | NO           |  |  |  |
| V2:V14                                              | 0.494          | 0.244          | 0.086          | NO           |  |  |  |
| V2:V15                                              | 0.176          | 0.031          | 0.547          | NO           |  |  |  |
| V2:V16                                              | 0.423          | 0.179          | 0.132          | NO           |  |  |  |
| V2:V17                                              | 0.424          | 0.179          | 0.131          | NO           |  |  |  |
| V2:V18                                              | 0.295          | 0.087          | 0.305          | NO           |  |  |  |
| V2:V19                                              | 0.066          | 0.004          | 0.816          | NO           |  |  |  |
| V2:V20                                              | 0.351          | 0.123          | 0.200          | NO           |  |  |  |
| V2:V21                                              | 0.302          | 0.092          | 0.293          | NO           |  |  |  |
| V2:V22                                              | 0.361          | 0.130          | 0.187          | NO           |  |  |  |
| V2:V23                                              | 0.053          | 0.003          | 0.871          | NO           |  |  |  |
| V2:V24                                              | 0.326          | 0.106          | 0.255          | NO           |  |  |  |
| V2:V25<br>V2:V26                                    | 0.223<br>0.684 | 0.050<br>0.468 | 0.486<br>0.020 | NO<br>YES    |  |  |  |
| V2:V27                                              | 0.853          | 0.408          | 0.020          | YES          |  |  |  |
| V3:V4                                               | 0.626          | 0.391          | 0.053          | NO           |  |  |  |
| V3:V5                                               | 0.497          | 0.247          | 0.100          | NO           |  |  |  |
| V3:V6                                               | 0.638          | 0.406          | 0.026          | YES          |  |  |  |
| V3:V7                                               | 0.848          | 0.719          | 0.000          | YES          |  |  |  |
| V3:V8                                               | 0.707          | 0.500          | 0.010          | YES          |  |  |  |
| V3:V9                                               | 0.698          | 0.488          | 0.012          | YES          |  |  |  |
| V3:V10                                              | 0.756          | 0.572          | 0.007          | YES          |  |  |  |
| V3:V11                                              | 0.465          | 0.217          | 0.175          | NO           |  |  |  |
| V3:V12                                              | 0.086          | 0.007          | 0.791          | NO           |  |  |  |
|                                                     |                |                |                |              |  |  |  |

| NO<br>YES<br>YES<br>YES<br>YES<br>YES<br>YES<br>YES<br>YES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Y ES<br>Y ES<br>Y ES<br>Y ES<br>Y ES<br>Y ES<br>Y ES<br>Y ES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | YES<br>YES<br>NO<br>NO<br>NO<br>NO<br>NO<br>NO<br>NO<br>NO<br>NO<br>NO<br>YES<br>YES<br>YES<br>YES<br>YES<br>YES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.362<br>0.219<br>0.000<br>0.001<br>0.001<br>0.002<br>0.003<br>0.003<br>0.003<br>0.003<br>0.003<br>0.043<br>0.043                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.097<br>0.007<br>0.007<br>0.020<br>0.021<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.002<br>0.014<br>0.150<br>0.150<br>0.285<br>0.255<br>0.255<br>0.260<br>0.011<br>0.003<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0.105<br>0.182<br>0.644<br>0.644<br>0.747<br>0.747<br>0.747<br>0.747<br>0.747<br>0.747<br>0.747<br>0.747<br>0.747<br>0.747<br>0.539<br>0.696<br>0.696<br>0.520<br>0.419<br>0.527<br>0.419                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.230<br>0.497<br>0.497<br>0.497<br>0.494<br>0.398<br>0.511<br>0.201<br>0.279<br>0.279<br>0.279<br>0.279<br>0.279<br>0.279<br>0.279<br>0.279<br>0.279<br>0.279<br>0.279<br>0.279<br>0.279<br>0.279<br>0.279<br>0.279<br>0.279<br>0.279<br>0.279<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277<br>0.277                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.474<br>0.433<br>0.133<br>0.133<br>0.087<br>0.087<br>0.087<br>0.012<br>0.024<br>0.012<br>0.184<br>0.244<br>0.244<br>0.244<br>0.230<br>0.496<br>0.233<br>0.233<br>0.233<br>0.233<br>0.233<br>0.233<br>0.233<br>0.233<br>0.233<br>0.233<br>0.230<br>0.493                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.323<br>0.426<br>0.802<br>0.802<br>0.864<br>0.864<br>0.733<br>0.733<br>0.733<br>0.733<br>0.733<br>0.733<br>0.721<br>0.721<br>0.721<br>0.726<br>0.721<br>0.726                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.479<br>0.636<br>0.705<br>0.636<br>0.636<br>0.636<br>0.715<br>0.581<br>0.577<br>0.588<br>0.588<br>0.588<br>0.588<br>0.588<br>0.570<br>0.542<br>0.570<br>0.542<br>0.570<br>0.570<br>0.570<br>0.570<br>0.570<br>0.570<br>0.570<br>0.570<br>0.570<br>0.570<br>0.570<br>0.570<br>0.570<br>0.570<br>0.570<br>0.570<br>0.570<br>0.570<br>0.570<br>0.570<br>0.570<br>0.570<br>0.570<br>0.570<br>0.570<br>0.570<br>0.570<br>0.570<br>0.570<br>0.570<br>0.570<br>0.570<br>0.575<br>0.5715<br>0.575<br>0.576<br>0.576<br>0.576<br>0.576<br>0.576<br>0.576<br>0.576<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.576<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5765<br>0.5765<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5755<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.57750<br>0.57750<br>0.57750<br>0.57750<br>0.57750<br>0.57750<br>0.57750<br>0.577500<br>0.57750000000000                                                                                                                                            | 0.689<br>0.582<br>0.582<br>0.365<br>0.365<br>0.343<br>0.154<br>0.111<br>0.070<br>0.433<br>0.434<br>0.708<br>0.434<br>0.708<br>0.708<br>0.708<br>0.708<br>0.708<br>0.708<br>0.708<br>0.708<br>0.708<br>0.570<br>0.570<br>0.570<br>0.570<br>0.570<br>0.572<br>0.570<br>0.572<br>0.570<br>0.572<br>0.570<br>0.572<br>0.570<br>0.572<br>0.570<br>0.572<br>0.570<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572<br>0.572                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| V3:V13<br>V3:V14<br>V3:V15<br>V3:V15<br>V3:V16<br>V3:V19<br>V3:V20<br>V3:V20<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3 | V4:V5<br>V4:V7<br>V4:V7<br>V4:V9<br>V4:V10<br>V4:V11<br>V4:V11<br>V4:V13<br>V4:V15<br>V4:V16<br>V4:V16<br>V4:V16<br>V4:V20<br>V4:V20<br>V4:V22<br>V4:V20<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4<br>V4:V22<br>V4:V22<br>V4:V22<br>V4<br>V4:V22<br>V4:V22 | V5:V6<br>V5:V7<br>V5:V7<br>V5:V10<br>V5:V11<br>V5:V11<br>V5:V13<br>V5:V13<br>V5:V13<br>V5:V19<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V5 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

218

k.7...

| N N N N N N N N N N N N N N N N N N N                                                                                                        | NO<br>YES<br>YES<br>NO<br>NO<br>NO                                            | YES<br>YES<br>YES<br>YES<br>YES<br>YES<br>YES<br>YES<br>YES<br>YES                                                                           | YES<br>YES<br>NO<br>NO<br>YES<br>YES<br>YES<br>YES<br>YES<br>YES                                                                                                                 | YES<br>NO<br>YES<br>NO                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| 0.260<br>0.073<br>0.073<br>0.166<br>0.166<br>0.064<br>0.007<br>0.009<br>0.010<br>0.010<br>0.016                                              | 0.366<br>0.081<br>0.015<br>0.015<br>0.015<br>0.002<br>0.213<br>0.213<br>0.213 | 0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.003<br>0.000<br>0.003                                                       | 0.000<br>0.179<br>0.179<br>0.865<br>0.197<br>0.027<br>0.027<br>0.005<br>0.005<br>0.003<br>0.012<br>0.012<br>0.012<br>0.024<br>0.023                                              | 0.002<br>0.121<br>0.080<br>0.016<br>0.133<br>0.209          |
| 0.097<br>0.063<br>0.002<br>0.153<br>0.153<br>0.153<br>0.420<br>0.437<br>0.437<br>0.429<br>0.437<br>0.429<br>0.141<br>0.409<br>0.141<br>0.409 |                                                                               | 0.686<br>0.681<br>0.681<br>0.853<br>0.827<br>0.827<br>0.827<br>0.827<br>0.827<br>0.827<br>0.364<br>0.364<br>0.304<br>0.516<br>0.541<br>0.541 | 0.630<br>0.158<br>0.158<br>0.158<br>0.134<br>0.134<br>0.355<br>0.457<br>0.457<br>0.457<br>0.457<br>0.457<br>0.218<br>0.218<br>0.238<br>0.238<br>0.177<br>0.413<br>0.546<br>0.177 | 0.534<br>0.204<br>0.190<br>0.395<br>0.193<br>0.118          |
| 0.311<br>0.313<br>0.044<br>0.391<br>0.490<br>0.490<br>0.648<br>0.644<br>0.648<br>0.668<br>0.639<br>0.639<br>0.639<br>0.639<br>0.639          | 0.274<br>0.523<br>0.570<br>0.580<br>0.580<br>0.732<br>0.732<br>0.407<br>0.407 | 0.228<br>0.828<br>0.825<br>0.909<br>0.909<br>0.730<br>0.730<br>0.730<br>0.730<br>0.730<br>0.730<br>0.730<br>0.730<br>0.719                   | 0.739<br>0.565<br>0.397<br>0.366<br>0.570<br>0.570<br>0.677<br>0.676<br>0.676<br>0.531<br>0.623<br>0.649<br>0.623<br>0.649<br>0.623<br>0.649<br>0.623<br>0.649<br>0.623<br>0.649 | 0.731<br>0.452<br>0.436<br>0.436<br>0.439<br>0.439<br>0.344 |
| V6:V10<br>V6:V11<br>V6:V13<br>V6:V13<br>V6:V13<br>V6:V13<br>V6:V17<br>V6:V21<br>V6:V21<br>V6:V23<br>V6:V23<br>V6:V23                         |                                                                               | V7: V15<br>V7: V15<br>V7: V16<br>V7: V18<br>V7: V19<br>V7: V20<br>V7: V22<br>V7: V23<br>V7: V24<br>V7: V25<br>V7: V25<br>V7: V25             |                                                                                                                                                                                  | V9:V10<br>V9:V11<br>V9:V12<br>V9:V13<br>V9:V14<br>V9:V15    |

| YES<br>NO<br>NO<br>NO<br>NO<br>NO<br>NO<br>NO<br>NO<br>NO                                                  | N N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | YES<br>YES<br>NO<br>NO<br>NO<br>NO<br>NO<br>NO<br>NO<br>NO<br>NO<br>YES<br>YES                                                                                                                                | Xes v v v v v v v v v v v v v v v v v v v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.024<br>0.126<br>0.084<br>0.100<br>0.032<br>0.072<br>0.052<br>0.072<br>0.072<br>0.072<br>0.100            | 0.704<br>0.524<br>0.547<br>0.940<br>0.002<br>0.002<br>0.002<br>0.002<br>0.003<br>0.003<br>0.003<br>0.003<br>0.003<br>0.003<br>0.003<br>0.003<br>0.003<br>0.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.038<br>0.049<br>0.461<br>0.464<br>0.171<br>0.425<br>0.425<br>0.425<br>0.425<br>0.289<br>0.191<br>0.291<br>0.291<br>0.291<br>0.221<br>0.025                                                                  | 0.016<br>0.154<br>0.549<br>0.504<br>0.629<br>0.689<br>0.689<br>0.689<br>0.475<br>0.373<br>0.373<br>0.373<br>0.918<br>0.573<br>0.573<br>0.573                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.335<br>0.170<br>0.170<br>0.212<br>0.279<br>0.276<br>0.276<br>0.276<br>0.276<br>0.276<br>0.213            | 0.014<br>0.032<br>0.034<br>0.034<br>0.340<br>0.491<br>0.479<br>0.479<br>0.479<br>0.479<br>0.479<br>0.455<br>0.479<br>0.455<br>0.433<br>0.455<br>0.433<br>0.455<br>0.433                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.337<br>0.309<br>0.057<br>0.050<br>0.465<br>0.163<br>0.163<br>0.150<br>0.112<br>0.123<br>0.123<br>0.123<br>0.123<br>0.123<br>0.123<br>0.123<br>0.123                                                         | 0.397<br>0.176<br>0.028<br>0.035<br>0.013<br>0.013<br>0.013<br>0.013<br>0.003<br>0.003<br>0.003<br>0.003<br>0.003<br>0.002<br>0.002<br>0.002<br>0.002<br>0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.579<br>0.413<br>0.461<br>0.412<br>0.456<br>0.528<br>0.528<br>0.528<br>0.528<br>0.476<br>0.476            | 0.117<br>0.179<br>0.184<br>0.024<br>0.024<br>0.583<br>0.674<br>0.674<br>0.674<br>0.658<br>0.658<br>0.658<br>0.658                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.580<br>0.556<br>0.258<br>0.2238<br>0.682<br>0.682<br>0.682<br>0.244<br>0.244<br>0.128<br>0.337<br>0.337<br>0.337<br>0.337<br>0.337<br>0.337<br>0.337<br>0.337<br>0.144                                      | 0.630<br>0.1168<br>0.168<br>0.187<br>0.136<br>0.136<br>0.116<br>0.116<br>0.142<br>0.059<br>0.192<br>0.097<br>0.192<br>0.097<br>0.283<br>0.040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| V9: V16<br>V9: V17<br>V9: V19<br>V9: V19<br>V9: V20<br>V9: V23<br>V9: V23<br>V9: V25<br>V9: V25<br>V9: V25 | V10: V11<br>V10: V12<br>V10: V13<br>V10: V14<br>V10: V15<br>V10: V15<br>V10: V16<br>V10: V18<br>V10: V20<br>V10: V22<br>V10: V22<br>V10: V22<br>V10: V23<br>V10: V23<br>V10: V25<br>V10: V15<br>V10: V15<br>V15<br>V10: V15<br>V10: V25<br>V10: V25 | V11:V12<br>V11:V13<br>V11:V14<br>V11:V15<br>V11:V15<br>V11:V16<br>V11:V16<br>V11:V19<br>V11:V20<br>V11:V20<br>V11:V22<br>V11:V23<br>V11:V23<br>V11:V23<br>V11:V23<br>V11:V25<br>V11:V26<br>V11:V26<br>V11:V26 | V12:V13<br>V12:V13<br>V12:V15<br>V12:V16<br>V12:V17<br>V12:V19<br>V12:V21<br>V12:V22<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V25<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V27<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V16<br>V12:V16<br>V12:V16<br>V12:V16<br>V12:V16<br>V12:V16<br>V12:V16<br>V12:V16<br>V12:V16<br>V12:V16<br>V12:V16<br>V12:V16<br>V12:V16<br>V12:V16<br>V12:V16<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V1 |
|                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

|                               |                                                                                                                                  |                                                                                                                                             | · · · · · · · · · · · · · · · · · · ·                                                                                                       |                                                                                                                                                                              |                                                                                                                                                                              |
|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| V18:V19<br>V18:V20<br>V18:V21 | V17:V18<br>V17:V19<br>V17:V20<br>V17:V21<br>V17:V21<br>V17:V22<br>V17:V23<br>V17:V23<br>V17:V24<br>V17:V25<br>V17:V26<br>V17:V27 | V16:V17<br>V16:V18<br>V16:V20<br>V16:V22<br>V16:V22<br>V16:V22<br>V16:V22<br>V16:V22<br>V16:V23<br>V16:V24<br>V16:V25<br>V16:V25<br>V16:V25 | V15:V16<br>V15:V17<br>V15:V17<br>V15:V29<br>V15:V29<br>V15:V21<br>V15:V22<br>V15:V22<br>V15:V23<br>V15:V24<br>V15:V25<br>V15:V26<br>V15:V27 | V14:V15<br>V14:V16<br>V14:V17<br>V14:V18<br>V14:V18<br>V14:V18<br>V14:V20<br>V14:V21<br>V14:V22<br>V14:V22<br>V14:V23<br>V14:V23<br>V14:V25<br>V14:V25<br>V14:V25<br>V14:V25 | V13.V16<br>V13.V17<br>V13.V17<br>V13.V18<br>V13.V20<br>V13.V20<br>V13.V21<br>V13.V22<br>V13.V22<br>V13.V22<br>V13.V23<br>V13.V24<br>V13.V25<br>V13.V25<br>V13.V26<br>V13.V26 |
| 0.684<br>0.989<br>0.269       | 0.916<br>0.676<br>0.920<br>0.599<br>0.855<br>0.623<br>0.623<br>0.642<br>0.642<br>0.642                                           | 0.881<br>0.681<br>0.705<br>0.726<br>0.726<br>0.762<br>0.762<br>0.762<br>0.762<br>0.762<br>0.742<br>0.721                                    | 0.746<br>0.736<br>0.664<br>0.836<br>0.719<br>0.581<br>0.849<br>0.762<br>0.762<br>0.762<br>0.792<br>0.762<br>0.792                           | 0.039<br>0.330<br>0.208<br>0.108<br>0.168<br>0.168<br>0.168<br>0.169<br>0.203<br>0.203<br>0.225<br>0.274<br>0.274                                                            | 0.272<br>0.180<br>0.350<br>0.355<br>0.300<br>0.456<br>0.169<br>0.507<br>0.578<br>0.578                                                                                       |
| 0.467<br>0.978<br>0.073       | 0.840<br>0.457<br>0.846<br>0.359<br>0.731<br>0.358<br>0.388<br>0.680<br>0.412<br>0.412<br>0.412                                  | 0.776<br>0.463<br>0.497<br>0.527<br>0.360<br>0.360<br>0.380<br>0.506<br>0.481<br>0.479<br>0.551<br>0.479                                    | 0.557<br>0.542<br>0.440<br>0.699<br>0.517<br>0.337<br>0.722<br>0.581<br>0.581<br>0.628<br>0.237<br>0.237                                    | 0.002<br>0.109<br>0.043<br>0.012<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.028<br>0.011<br>0.001<br>0.011<br>0.011                                                   | 0.074<br>0.033<br>0.122<br>0.017<br>0.126<br>0.090<br>0.208<br>0.228<br>0.258<br>0.258<br>0.334                                                                              |
| 0.005<br>0.000<br>0.352       | 0.000<br>0.006<br>0.000<br>0.024<br>0.024<br>0.031<br>0.031<br>0.031<br>0.033<br>0.018<br>0.033                                  | 0.000<br>0.010<br>0.003<br>0.002<br>0.023<br>0.023<br>0.009<br>0.009<br>0.009<br>0.004<br>0.004                                             | 0.001<br>0.002<br>0.003<br>0.003<br>0.003<br>0.003<br>0.029<br>0.000<br>0.004<br>0.004<br>0.004<br>0.092<br>0.123                           | 0.904<br>0.295<br>0.516<br>0.518<br>0.584<br>0.588<br>0.588<br>0.588<br>0.588<br>0.586<br>0.586<br>0.506<br>0.541<br>0.526                                                   | 0.369<br>0.555<br>0.220<br>0.658<br>0.213<br>0.319<br>0.101<br>0.620<br>0.077<br>0.063<br>0.065<br>0.281                                                                     |
| YES<br>NO                     | YES<br>YES<br>YES<br>YES                                                                                                         | YES<br>YES<br>YES<br>YES<br>YES                                                                                                             | YES<br>YES<br>YES<br>YES<br>YES<br>NO                                                                                                       | 88888888888888888                                                                                                                                                            | 8888888888888888                                                                                                                                                             |

| YES<br>NO<br>NO                          | NO                 | YES                | YES     | YES                | Q       | o o                | ON      | YES     | YES     | NON      | YES     | 0<br>N  | YES     | YES     | Q       | YES     | e o                | YES     | YES     | N       | YES     | YES     | YES     | YES     | YES     | YES     | Q       | <b>9</b> | 0N<br>N | ON      | N       | YES      |
|------------------------------------------|--------------------|--------------------|---------|--------------------|---------|--------------------|---------|---------|---------|----------|---------|---------|---------|---------|---------|---------|--------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|----------|---------|---------|---------|----------|
| 0.000<br>0.060<br>0.000<br>0.576         | 0.172<br>0.122     | 0.002<br>0.090     | 100.0   | 0.015<br>0.005     | 0.093   | 0.126<br>0.058     | 0.053   | 0000    | 0.008   | 0.185    | 0.031   | 0.081   | 0.039   | 0.013   | 0.056   | 0.023   | 0.060              | 0.003   | 0000    | 0.283   | 0.029   | 650.0   | 0.004   | 0.046   | 0.011   | 0.011   | 0.447   | 0.075    | 0.065   | 0.213   | 0.534   | 0.000    |
| 0.815<br>0.311<br>0.794<br>0.036         | 0.197<br>0.408     | 0.475<br>0.191     | 0.541   | 0.404<br>0.438     | 0.236   | 0.218<br>0.423     | 0.243   | 0.870   | 0.461   | 0.154    | 0.385   | 0.372   | 0.270   | 0.441   | 0.253   | 0.388   | 0.418              | 0.530   | 0.970   | 0.104   | 0.392   | 0.477   | 0.540   | 0.411   | 0.579   | 0.628   | 0.053   | 0.310    | 0.407   | 0.186   | 0.068   | 0.896    |
| 0.903<br>0.557<br>0.891<br>0.190         | 0.444              | 0.689<br>0.437     | 0.736   | 0.636<br>0.662     | 0.486   | 0.467<br>0.650     | 0.493   | 0.933   | 0.679   | 0.392    | 0.621   | 0.610   | 0.519   | 0.664   | 0.503   | 0.623   | 0.646              | 0.728   | 0.985   | 0.322   | 0.626   | 160.0   | 0.735   | 0.641   | 0.761   | 0.792   | 0.231   | 0.557    | 0.638   | 0.432   | 0.260   | 0.947    |
| V18:V22<br>V18:V23<br>V18:V24<br>V18:V25 | V18:V26<br>V18:V27 | V19:V20<br>V19:V21 | V19:V22 | V19:V23<br>V19:V24 | V19:V25 | V19:V26<br>V19:V27 | V20:V21 | V20:V22 | V20:V23 | V20: V24 | V20:V26 | V20:V27 | V21:V22 | V21:V23 | V21:V24 | V21:V25 | V21:V20<br>V21:V27 | V22:V23 | V22:V24 | V22:V25 | V22:V26 | V22:V21 | V23:V24 | V23:V25 | V23:V26 | V23:V27 | V24:V25 | V24:V26  | V24:V27 | V25:V26 | V25:V27 | V26: V27 |

H-4 Sadlermiut males r-values and significant association (chronological BSI numbering see Appendix H, H-2)

| Variables | r-value | r2-value | Significance | Reject Null? |
|-----------|---------|----------|--------------|--------------|
| V1:V2     | 0.145   | 0.021    | 0.637        | NO           |
| V1:V3     | 0.387   | 0.150    | 0.191        | NO           |
| V1:V4     | 0.264   | 0.069    | 0.384        | NO           |
| V1:V5     | 0.003   | 0.000    | 0.991        | NO           |
| V1:V6     | 0.209   | 0.044    | 0.493        | NO           |
| V1:V7     | 0.350   | 0.122    | 0.242        | NO           |
| V1:V8     | 0.150   | 0.022    | 0.625        | NO           |
| V1:V9     | 0.068   | 0.005    | 0.862        | NO           |
| V1:V10    | 0.508   | 0.258    | 0.092        | NO           |
| V1:V11    | 0.126   | 0.016    | 0.712        | NO           |
| V1:V12    | 0.286   | 0.082    | 0.344        | NO           |
| V1:V13    | 0.211   | 0.045    | 0.489        | NO           |
| V1:V14    | 0.235   | 0.055    | 0.461        | NO           |
| V1:V15    | 0.373   | 0.139    | 0.232        | NO           |
| V1:V16    | 0.125   | 0.016    | 0.684        | NO           |
| V1:V17    | 0.351   | 0.123    | 0.263        | NO           |
| V1:V18    | 0.017   | 0.000    | 0.959        | NO           |
| V1:V19    | 0.240   | 0.058    | 0.477        | NO           |
| V1:V20    | 0.279   | 0.078    | 0.381        | NO           |
| V1:V21    | 0.151   | 0.023    | 0.658        | NO           |
| V1:V22    | 0.067   | 0.005    | 0.844        | NO           |
| V1:V23    | 0.442   | 0.195    | 0.234        | NO           |
| V1:V24    | 0.120   | 0.014    | 0.726        | NO           |
| V1:V25    | 0.005   | 0.000    | 0.989        | NO           |
| V1:V26    | 0.061   | 0.004    | 0.858        | NO           |
| V1:V27    | 0.092   | 0.008    | 0.788        | NO           |
| V2:V3     | 0.744   | 0.553    | 0.004        | YES          |
| V2:V4     | 0.384   | 0.148    | 0.195        | NO           |
| V2:V5     | 0.207   | 0.043    | 0.497        | NO           |
| V2:V6     | 0.371   | 0.138    | 0.212        | NO           |
| V2:V7     | 0.432   | 0.186    | 0.141        | NO           |
| V2:V8     | 0.701   | 0.491    | 0.008        | YES          |
| V2:V9     | 0.747   | 0.558    | 0.021        | YES          |
| V2:V10    | 0.132   | 0.017    | 0.683        | NO           |
| V2:V11    | 0.315   | 0.099    | 0.346        | NO           |
| V2:V12    | 0.335   | 0.112    | 0.263        | NO           |
| V2:V13    | 0.484   | 0.234    | 0.094        | NO           |
| V2:V14    | 0.665   | 0.442    | 0.018        | YES          |
| V2:V15    | 0.503   | 0.253    | 0.096        | NO           |
| V2:V16    | 0.117   | 0.014    | 0.704        | NO           |
| V2:V17    | 0.327   | 0.107    | 0.300        | NO           |
| V2:V18    | 0.619   | 0.384    | 0.032        | YES          |
| V2:V19    | 0.668   | 0.447    | 0.025        | YES          |
| V2:V20    | 0.534   | 0.285    | 0.074        | NO           |
| V2:V21    | 0.382   | 0.146    | 0.246        | NO           |
| V2:V22    | 0.579   | 0.335    | 0.062        | NO           |
| V2:V23    | 0.315   | 0.099    | 0.408        | NO           |
| V2:V24    | 0.744   | 0.553    | 0.009        | YES          |
| V2:V25    | 0.660   | 0.436    | 0.019        | YES          |
| V2:V26    | 0.951   | 0.904    | 0.000        | YES          |
| V2:V27    | 0.481   | 0.231    | 0.134        | NO           |
| V3:V4     | 0.399   | 0.159    | 0.141        | NO           |
| V3:V5     | 0.345   | 0.119    | 0.227        | NO           |
| V3:V6     | 0.443   | 0.196    | 0.098        | NO           |
| V3:V7     | 0.443   | 0.197    | 0.098        | NO           |
| V3:V8     | 0.424   | 0.180    | 0.115        | NO           |
| V3:V9     | 0.736   | 0.542    | 0.015        | YES          |
| V3:V10    | 0.151   | 0.023    | 0.606        | NO           |
| V3:V11    | 0.733   | 0.537    | 0.004        | YES          |
| V3.V12    | 0.003   | 0.000    | 0.993        | NO           |

| V6:V7<br>V6:V8<br>V6:V9 | V5:V6<br>V5:V7<br>V5:V10<br>V5:V11<br>V5:V12<br>V5:V13<br>V5:V14<br>V5:V14<br>V5:V14<br>V5:V14<br>V5:V14<br>V5:V14<br>V5:V17<br>V5:V17<br>V5:V17<br>V5:V21<br>V5:V21<br>V5:V22<br>V5:V22<br>V5:V22<br>V5:V23<br>V5:V24<br>V5:V24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | V4:V5<br>V4:V6<br>V4:V7<br>V4:V1<br>V4:V10<br>V4:V10<br>V4:V11<br>V4:V11<br>V4:V11<br>V4:V11<br>V4:V11<br>V4:V11<br>V4:V11<br>V4:V11<br>V4:V11<br>V4:V11<br>V4:V11<br>V4:V11<br>V4:V11<br>V4:V11<br>V4:V11<br>V4:V11<br>V4:V11<br>V4:V11<br>V4:V11<br>V4:V12<br>V4:V12<br>V4:V21<br>V4:V21<br>V4:V22<br>V4:V22<br>V4:V22 | V3:V13<br>V3:V14<br>V3:V14<br>V3:V15<br>V3:V17<br>V3:V17<br>V3:V18<br>V3:V20<br>V3:V21<br>V3:V21<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V25<br>V3:V25<br>V3:V26 |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.379<br>0.364<br>0.512 | 0.603<br>0.245<br>0.484<br>0.233<br>0.109<br>0.236<br>0.236<br>0.236<br>0.485<br>0.682<br>0.682<br>0.682<br>0.682<br>0.682<br>0.286<br>0.286<br>0.286<br>0.286<br>0.286<br>0.286<br>0.286<br>0.286<br>0.286<br>0.286<br>0.286<br>0.285<br>0.286<br>0.285<br>0.285<br>0.285<br>0.236<br>0.485<br>0.233<br>0.236<br>0.233<br>0.236<br>0.235<br>0.236<br>0.235<br>0.236<br>0.235<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.251<br>0.2687<br>0.286<br>0.286<br>0.286<br>0.286<br>0.286<br>0.286<br>0.286<br>0.286<br>0.286<br>0.286<br>0.286<br>0.286<br>0.286<br>0.286<br>0.286<br>0.286<br>0.286<br>0.286<br>0.286<br>0.286<br>0.286<br>0.286<br>0.286<br>0.286<br>0.286<br>0.286<br>0.286<br>0.286<br>0.286<br>0.286<br>0.286<br>0.286<br>0.286<br>0.286<br>0.286<br>0.286<br>0.286<br>0.286<br>0.286<br>0.286<br>0.286<br>0.286<br>0.286<br>0.285<br>0.287<br>0.287<br>0.287<br>0.287<br>0.287<br>0.287<br>0.287<br>0.287<br>0.287<br>0.287<br>0.287<br>0.287<br>0.287<br>0.287<br>0.287<br>0.287<br>0.287<br>0.287<br>0.287<br>0.287<br>0.287<br>0.287<br>0.287<br>0.287<br>0.287<br>0.287<br>0.287<br>0.287<br>0.287<br>0.287<br>0.287<br>0.287<br>0.287<br>0.287<br>0.287<br>0.287<br>0.287<br>0.287<br>0.287<br>0.287<br>0.287<br>0.287<br>0.287<br>0.287<br>0.287<br>0.287<br>0.287<br>0.287<br>0.287<br>0.287<br>0.287<br>0.287<br>0.287<br>0.287<br>0.287<br>0.287<br>0.287<br>0.275<br>0.287<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275<br>0.275 | 0.343<br>0.501<br>0.648<br>0.667<br>0.873<br>0.522<br>0.209<br>0.525<br>0.671<br>0.206<br>0.513<br>0.671<br>0.206<br>0.671<br>0.206<br>0.671<br>0.206<br>0.712<br>0.605<br>0.144<br>0.345<br>0.429<br>0.429<br>0.4497<br>0.480                                                                                           | 0.489<br>0.873<br>0.447<br>0.459<br>0.127<br>0.611<br>0.695<br>0.100<br>0.587<br>0.587<br>0.587<br>0.587<br>0.658<br>0.658<br>0.658<br>0.658                                               |
| 0.143<br>0.133<br>0.263 | 0.364<br>0.060<br>0.234<br>0.157<br>0.054<br>0.055<br>0.235<br>0.465<br>0.235<br>0.465<br>0.288<br>0.364<br>0.288<br>0.364<br>0.288<br>0.364<br>0.288<br>0.364<br>0.235<br>0.479<br>0.237<br>0.237<br>0.237                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.117<br>0.251<br>0.420<br>0.445<br>0.762<br>0.273<br>0.079<br>0.275<br>0.044<br>0.275<br>0.042<br>0.042<br>0.042<br>0.042<br>0.042<br>0.042<br>0.042<br>0.042<br>0.042<br>0.253<br>0.263<br>0.263<br>0.263<br>0.263<br>0.263<br>0.263<br>0.261<br>0.275<br>0.275                                                        | 0.239<br>0.762<br>0.200<br>0.210<br>0.016<br>0.374<br>0.482<br>0.482<br>0.482<br>0.482<br>0.485<br>0.465<br>0.465<br>0.218<br>0.290<br>0.457                                               |
| 0,148<br>0,165<br>0,107 | 0.017<br>0.378<br>0.228<br>0.424<br>0.722<br>0.416<br>0.033<br>0.077<br>0.341<br>0.007<br>0.344<br>0.736<br>0.048<br>0.048<br>0.048<br>0.048<br>0.048<br>0.048<br>0.048<br>0.048<br>0.05<br>0.005<br>0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.211<br>0.048<br>0.000<br>0.000<br>0.046<br>0.045<br>0.045<br>0.045<br>0.045<br>0.045<br>0.045<br>0.045<br>0.045<br>0.045<br>0.045<br>0.045<br>0.045<br>0.045<br>0.045<br>0.022<br>0.022<br>0.003<br>0.022<br>0.005<br>0.005                                                                                            | 0.076<br>0.000<br>0.125<br>0.099<br>0.665<br>0.020<br>0.020<br>0.020<br>0.020<br>0.020<br>0.021<br>0.035<br>0.035<br>0.035<br>0.047<br>0.047                                               |
| NO NO NO                | YES<br>YES NO VES<br>YES NO VES<br>YES NO VES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                    | YES NO                                                                                                                                                 |

| N N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | YES<br>YES<br>YES<br>YES<br>YES<br>YES<br>YES<br>YES<br>YES<br>YES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | YES<br>YES<br>YES<br>NO<br>NO<br>YES<br>YES<br>YES<br>NO<br>NO<br>YES<br>YES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NO<br>VES<br>VES<br>VES                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| 0.844<br>0.623<br>0.642<br>0.384<br>0.384<br>0.384<br>0.040<br>0.053<br>0.008<br>0.004<br>0.008<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.020<br>0.030<br>0.011<br>0.016<br>0.016<br>0.016<br>0.016<br>0.008<br>0.008<br>0.008<br>0.008<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.000<br>0.572<br>0.572<br>0.003<br>0.003<br>0.003<br>0.003<br>0.152<br>0.166<br>0.166<br>0.166<br>0.095<br>0.166<br>0.049<br>0.012<br>0.012<br>0.012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.101<br>0.517<br>0.582<br>0.042<br>0.005<br>0.006       |
| 0.003<br>0.021<br>0.017<br>0.029<br>0.171<br>0.307<br>0.307<br>0.307<br>0.307<br>0.356<br>0.356<br>0.356<br>0.356<br>0.356<br>0.356<br>0.356<br>0.356<br>0.350<br>0.530<br>0.530<br>0.530<br>0.530<br>0.530<br>0.530<br>0.530<br>0.530<br>0.530<br>0.530<br>0.530<br>0.530<br>0.530<br>0.530<br>0.530<br>0.530<br>0.530<br>0.530<br>0.530<br>0.530<br>0.530<br>0.530<br>0.541<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.5560<br>0.556<br>0.556<br>0.5560<br>0.5560<br>0.5560<br>0.5560<br>0.5560<br>0.5560<br>0.5560<br>0.55 | 0.332<br>0.425<br>0.400<br>0.397<br>0.372<br>0.372<br>0.372<br>0.372<br>0.372<br>0.373<br>0.134<br>0.256<br>0.374<br>0.257<br>0.374<br>0.484<br>0.374<br>0.484<br>0.138                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.893<br>0.266<br>0.027<br>0.021<br>0.422<br>0.537<br>0.646<br>0.019<br>0.070<br>0.070<br>0.163<br>0.115<br>0.163<br>0.163<br>0.163<br>0.163<br>0.150<br>0.250<br>0.426<br>0.250<br>0.250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.300<br>0.054<br>0.040<br>0.384<br>0.485<br>0.592       |
| 0.056<br>0.131<br>0.131<br>0.242<br>0.242<br>0.237<br>0.237<br>0.237<br>0.237<br>0.237<br>0.239<br>0.716<br>0.716<br>0.716<br>0.794<br>0.716<br>0.739<br>0.601                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.576<br>0.652<br>0.653<br>0.633<br>0.630<br>0.630<br>0.419<br>0.419<br>0.419<br>0.545<br>0.554<br>0.554<br>0.554<br>0.558<br>0.558<br>0.589<br>0.589<br>0.589<br>0.589<br>0.589<br>0.575<br>0.589<br>0.575<br>0.589<br>0.575<br>0.589<br>0.575<br>0.589<br>0.575<br>0.589<br>0.575<br>0.589<br>0.575<br>0.589<br>0.575<br>0.576<br>0.576<br>0.576<br>0.575<br>0.576<br>0.576<br>0.576<br>0.576<br>0.576<br>0.576<br>0.576<br>0.576<br>0.576<br>0.576<br>0.577<br>0.576<br>0.577<br>0.577<br>0.577<br>0.577<br>0.570<br>0.5710<br>0.577<br>0.577<br>0.577<br>0.5710<br>0.577<br>0.577<br>0.5710<br>0.577<br>0.577<br>0.577<br>0.5710<br>0.577<br>0.577<br>0.577<br>0.577<br>0.577<br>0.577<br>0.577<br>0.577<br>0.577<br>0.577<br>0.577<br>0.577<br>0.577<br>0.577<br>0.577<br>0.577<br>0.577<br>0.577<br>0.577<br>0.577<br>0.577<br>0.577<br>0.577<br>0.577<br>0.577<br>0.577<br>0.577<br>0.577<br>0.577<br>0.577<br>0.577<br>0.577<br>0.577<br>0.577<br>0.577<br>0.577<br>0.577<br>0.577<br>0.577<br>0.577<br>0.577<br>0.577<br>0.577<br>0.577<br>0.577<br>0.577<br>0.577<br>0.577<br>0.577<br>0.577<br>0.577<br>0.577<br>0.577<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.5775<br>0.57750<br>0.57750<br>0.57750<br>0.57750<br>0.57750<br>0.57750<br>0.57750<br>0.57750<br>0.57750<br>0.57750<br>0.57750000000000 | 0.945<br>0.516<br>0.247<br>0.247<br>0.247<br>0.650<br>0.650<br>0.804<br>0.845<br>0.846<br>0.8464<br>0.500<br>0.500<br>0.500<br>0.555<br>0.653<br>0.503                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.548<br>0.233<br>0.199<br>0.620<br>0.696<br>0.769       |
| V6:V10<br>V6:V11<br>V6:V13<br>V6:V13<br>V6:V14<br>V6:V15<br>V6:V16<br>V6:V17<br>V6:V19<br>V6:V21<br>V6:V23<br>V6:V23<br>V6:V23<br>V6:V23<br>V6:V23<br>V6:V25<br>V6:V25<br>V6:V25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | V8: V9<br>V8: V10<br>V8: V12<br>V8: V13<br>V8: V14<br>V8: V14<br>V8: V15<br>V8: V16<br>V8: V16<br>V8: V19<br>V8: V19<br>V8: V21<br>V8: V22<br>V8: V23<br>V8: V23<br>V23<br>V8: V23<br>V8: | V9:V10<br>V9:V11<br>V9:V12<br>V9:V13<br>V9:V14<br>V9:V15 |

| V13;V14<br>V13;V15 | V12:V13<br>V12:V14<br>V12:V15<br>V12:V16<br>V12:V17<br>V12:V18<br>V12:V18<br>V12:V29<br>V12:V29<br>V12:V21<br>V12:V21<br>V12:V22<br>V12:V23<br>V12:V24<br>V12:V25<br>V12:V25<br>V12:V26 | V11:V12<br>V11:V13<br>V11:V14<br>V11:V14<br>V11:V15<br>V11:V16<br>V11:V17<br>V11:V17<br>V11:V18<br>V11:V18<br>V11:V20<br>V11:V21<br>V11:V22<br>V11:V22<br>V11:V22<br>V11:V22<br>V11:V22<br>V11:V22<br>V11:V22 | V10:V11<br>V10:V12<br>V10:V13<br>V10:V14<br>V10:V14<br>V10:V15<br>V10:V15<br>V10:V17<br>V10:V17<br>V10:V20<br>V10:V21<br>V10:V22<br>V10:V23<br>V10:V23<br>V10:V25<br>V10:V25 | V9:V16<br>V9:V17<br>V9:V18<br>V9:V19<br>V9:V20<br>V9:V21<br>V9:V22<br>V9:V22<br>V9:V22<br>V9:V22<br>V9:V22<br>V9:V22<br>V9:V22<br>V9:V22 |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| 0.692<br>0.733     | 0.103<br>0.285<br>0.119<br>0.718<br>0.718<br>0.718<br>0.718<br>0.718<br>0.718<br>0.470<br>0.470<br>0.322<br>0.470<br>0.322<br>0.353<br>0.341                                            | 0.733<br>0.249<br>0.672<br>0.252<br>0.255<br>0.316<br>0.326<br>0.400<br>0.187<br>0.400<br>0.401<br>0.4389                                                                                                     | 0.215<br>0.083<br>0.310<br>0.419<br>0.424<br>0.345<br>0.345<br>0.323<br>0.263<br>0.283<br>0.287<br>0.131<br>0.220<br>0.209<br>0.209                                          | 0.628<br>0.304<br>0.207<br>0.207<br>0.516<br>0.528<br>0.774<br>0.774<br>0.7710<br>0.7710                                                 |
| 0.479<br>0.537     | 0.011<br>0.081<br>0.253<br>0.2516<br>0.004<br>0.2516<br>0.221<br>0.269<br>0.018<br>0.011<br>0.104<br>0.221<br>0.124<br>0.116                                                            | 0.537<br>0.062<br>0.452<br>0.057<br>0.057<br>0.100<br>0.100<br>0.106<br>0.160<br>0.160<br>0.190<br>0.190<br>0.190<br>0.151                                                                                    | 0.046<br>0.007<br>0.096<br>0.176<br>0.361<br>0.179<br>0.295<br>0.119<br>0.295<br>0.114<br>0.004<br>0.004<br>0.004<br>0.005                                                   | 0.395<br>0.792<br>0.792<br>0.490<br>0.490<br>0.490<br>0.490<br>0.490<br>0.266<br>0.395<br>0.599<br>0.505<br>0.579<br>0.512<br>0.512      |
| 0.006<br>0.003     | 0.726<br>0.345<br>0.699<br>0.067<br>0.820<br>0.820<br>0.820<br>0.105<br>0.258<br>0.735<br>0.364<br>0.123<br>0.237<br>0.237                                                              | 0.004<br>0.411<br>0.012<br>0.454<br>0.271<br>0.277<br>0.013<br>0.277<br>0.013<br>0.277<br>0.176<br>0.277<br>0.176<br>0.277<br>0.176<br>0.277<br>0.176<br>0.282<br>0.251<br>0.180<br>0.151<br>0.267            | 0.480<br>0.777<br>0.281<br>0.154<br>0.227<br>0.131<br>0.227<br>0.281<br>0.281<br>0.281<br>0.281<br>0.281<br>0.269<br>0.468                                                   | 0.038<br>0.363<br>0.000<br>0.017<br>0.542<br>0.542<br>0.052<br>0.052<br>0.024<br>0.032<br>0.035                                          |
| YES<br>YES         | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8                                                                                                                                                   | NO N                                                                                                                                                                      | N N N N N N N N N N N N N N N N N N N                                                                                                                                        | YES YO NO YES                                                                                                                            |

| N N N N N N N N N N N N N N N N N N N                                                                                                       | YES<br>NO<br>YES<br>YES<br>YES<br>YES<br>YES<br>YES<br>YES                                                                                                                                         | NO<br>VES<br>VES<br>VES<br>VES<br>VES<br>VES<br>VES<br>VES<br>VES<br>VES                                                                               | N N N N N N N N N N N N N N N N N N N                                                                                 | N N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.987<br>0.153<br>0.010<br>0.286<br>0.286<br>0.286<br>0.286<br>0.286<br>0.272<br>0.233<br>0.272<br>0.229                                    | 0.002<br>0.116<br>0.313<br>0.313<br>0.001<br>0.025<br>0.028<br>0.028<br>0.025<br>0.014<br>0.014                                                                                                    | 0.472<br>0.312<br>0.312<br>0.006<br>0.016<br>0.011<br>0.011<br>0.035<br>0.035<br>0.035                                                                 | 0.127<br>0.253<br>0.213<br>0.213<br>0.213<br>0.228<br>0.103<br>0.613<br>0.683<br>0.683<br>0.683<br>0.444<br>0.131     | 0.571<br>0.806<br>0.124<br>0.124<br>0.733<br>0.500<br>0.793<br>0.599<br>0.947<br>0.619<br>0.961<br>0.030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0.000<br>0.162<br>0.140<br>0.103<br>0.103<br>0.127<br>0.127<br>0.128<br>0.119<br>0.128                                                      | 0.603<br>0.193<br>0.092<br>0.652<br>0.555<br>0.555<br>0.555<br>0.375<br>0.375<br>0.335<br>0.335<br>0.469<br>0.469<br>0.388                                                                         | 0.044<br>0.930<br>0.835<br>0.458<br>0.458<br>0.457<br>0.675<br>0.675<br>0.675<br>0.624<br>0.407<br>0.405                                               | 0.183<br>0.107<br>0.407<br>0.145<br>0.118<br>0.223<br>0.223<br>0.223<br>0.233<br>0.233<br>0.233<br>0.233<br>0.213     | 0.027<br>0.005<br>0.186<br>0.172<br>0.013<br>0.013<br>0.013<br>0.016<br>0.016<br>0.016<br>0.016<br>0.000<br>0.008<br>0.088<br>0.088                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0.005<br>0.403<br>0.563<br>0.320<br>0.325<br>0.325<br>0.325<br>0.345<br>0.345<br>0.345<br>0.345<br>0.345                                    | 0.776<br>0.339<br>0.304<br>0.304<br>0.352<br>0.150<br>0.150<br>0.630<br>0.630<br>0.404<br>0.583<br>0.685                                                                                           | 0.210<br>0.304<br>0.914<br>0.677<br>0.677<br>0.677<br>0.677<br>0.746<br>0.746<br>0.746<br>0.746<br>0.746<br>0.730<br>0.637                             | 0.428<br>0.327<br>0.667<br>0.344<br>0.473<br>0.532<br>0.770<br>0.132<br>0.061<br>0.239                                | 0.166<br>0.072<br>0.431<br>0.415<br>0.197<br>0.197<br>0.116<br>0.085<br>0.020<br>0.125<br>0.017<br>0.258<br>0.017<br>0.296                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| V13:V16<br>V13:V16<br>V13:V19<br>V13:V19<br>V13:V20<br>V13:V22<br>V13:V23<br>V13:V23<br>V13:V24<br>V13:V25<br>V13:V25<br>V13:V25<br>V13:V25 | V14:V15<br>V14:V15<br>V14:V16<br>V14:V18<br>V14:V19<br>V14:V20<br>V14:V22<br>V14:V22<br>V14:V23<br>V14:V23<br>V14:V23<br>V14:V23<br>V14:V25<br>V14:V25<br>V14:V25<br>V14:V25<br>V14:V25<br>V14:V25 | V15:V16<br>V15:V17<br>V15:V17<br>V15:V19<br>V15:V19<br>V15:V20<br>V15:V22<br>V15:V23<br>V15:V24<br>V15:V25<br>V15:V25<br>V15:V25<br>V15:V25<br>V15:V25 | V16/V17<br>V16/V18<br>V16/V19<br>V16/V19<br>V16/V20<br>V16/V22<br>V16/V23<br>V16/V23<br>V16/V25<br>V16/V25<br>V16/V25 | V17:V18<br>V17:V19<br>V17:V20<br>V17:V22<br>V17:V23<br>V17:V24<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V27<br>V17:V27<br>V17:V27<br>V17:V27<br>V17:V27<br>V17:V27<br>V17:V27<br>V17:V27<br>V17:V27<br>V17:V27<br>V17:V27<br>V17:V27<br>V17:V27<br>V17:V27<br>V17:V27<br>V17:V27<br>V17:V27<br>V17:V27<br>V17:V27<br>V17:V27<br>V17:V27<br>V17:V27<br>V18:V19<br>V18:V27<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V17:V27<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V19<br>V18:V1 |
|                                                                                                                                             |                                                                                                                                                                                                    |                                                                                                                                                        |                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

| V18.V22         0.549         0.302         0.065           V18.V23         0.589         0.346         0.001           V18.V23         0.538         0.346         0.001           V18.V23         0.533         0.250         0.006           V18.V25         0.555         0.565         0.001           V18.V27         0.762         0.811         0.006           V19.V23         0.811         0.665         0.011           V19.V23         0.961         0.811         0.001           V19.V23         0.901         0.811         0.001           V19.V23         0.901         0.811         0.001           V19.V23         0.901         0.811         0.001           V19.V23         0.752         0.556         0.001           V19.V24         0.754         0.754         0.740           V20.V24         0.744         0.255         0.001           V20.V25         0.3021         0.001         0.270           V20.V25         0.742         0.740         0.225           V20.V25         0.741         0.256         0.002           V20.V25         0.741         0.225         0.101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NO<br>NO<br>YES<br>YES                                                    | NO<br>NO<br>NO<br>NO<br>NO<br>NO<br>NO<br>NO<br>NO<br>NO<br>NO<br>NO<br>NO<br>N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NO<br>NO<br>NO<br>NO<br>NO<br>NO<br>NO<br>NO<br>NO<br>NO<br>NO<br>NO<br>NO<br>N                                       | YES<br>YES<br>YES<br>YES<br>YES<br>YES<br>YES<br>YES<br>YES                                              | YES<br>YES<br>NO                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------|
| 0.549<br>0.589<br>0.589<br>0.589<br>0.725<br>0.725<br>0.762<br>0.762<br>0.762<br>0.762<br>0.764<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.774<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.7788<br>0.778<br>0.778<br>0.778<br>0.778<br>0.778<br>0.7788<br>0.7780<br>0.7788<br>0.7788<br>0.7788<br>0.7788<br>0.7788<br>0.7788<br>0.7788<br>0.7788<br>0.7788<br>0.7788<br>0.7788<br>0.7788<br>0.7788<br>0.7788<br>0.7788<br>0.7788<br>0.7788<br>0.7788<br>0.7788<br>0.7788<br>0.7788<br>0.7788<br>0.7788<br>0.77 | 0.052<br>0.057<br>0.071<br>0.005<br>0.010<br>0.010                        | 0.404<br>0.015<br>0.001<br>0.000<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.004<br>0.0119<br>0.119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.328<br>0.927<br>0.000<br>0.002<br>0.014<br>0.003<br>0.027<br>0.014<br>0.014<br>0.003                                | 0.003<br>0.021<br>0.013<br>0.064<br>0.025<br>0.080<br>0.041<br>0.041<br>0.041<br>0.005<br>0.005          | 0.006                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.302<br>0.346<br>0.290<br>0.526<br>0.466<br>0.581                        | 0.064<br>0.429<br>0.625<br>0.627<br>0.627<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.556<br>0.025<br>0.028<br>0.028<br>0.028                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.096<br>0.001<br>0.811<br>0.675<br>0.675<br>0.612<br>0.437<br>0.551<br>0.551<br>0.551                                | 0.599<br>0.465<br>0.558<br>0.366<br>0.445<br>0.364<br>0.445<br>0.334<br>0.445<br>0.328<br>0.608<br>0.608 | 0.541<br>0.491<br>0.354<br>0.354 |
| V18:V22<br>V18:V23<br>V18:V25<br>V18:V26<br>V18:V26<br>V18:V26<br>V19:V22<br>V19:V22<br>V19:V22<br>V19:V22<br>V19:V22<br>V19:V22<br>V19:V22<br>V19:V22<br>V20:V23<br>V20:V23<br>V20:V23<br>V20:V23<br>V21:V22<br>V21:V22<br>V21:V22<br>V21:V22<br>V21:V22<br>V21:V22<br>V21:V22<br>V22:V26<br>V21:V27<br>V22:V26<br>V21:V27<br>V22:V26<br>V21:V27<br>V22:V26<br>V21:V27<br>V22:V26<br>V22:V26<br>V22:V26<br>V22:V27<br>V22:V26<br>V22:V27<br>V22:V26<br>V22:V27<br>V22:V26<br>V22:V26<br>V22:V26<br>V22:V27<br>V22:V26<br>V22:V27<br>V22:V27<br>V22:V27<br>V22:V26<br>V22:V27<br>V22:V26<br>V22:V27<br>V22:V26<br>V22:V27<br>V22:V26<br>V22:V27<br>V22:V27<br>V22:V27<br>V22:V27<br>V22:V27<br>V22:V27<br>V22:V27<br>V22:V26<br>V22:V27<br>V22:V27<br>V22:V26<br>V22:V27<br>V22:V27<br>V22:V27<br>V22:V27<br>V22:V27<br>V22:V27<br>V22:V27<br>V22:V27<br>V22:V27<br>V22:V27<br>V22:V27<br>V22:V27<br>V22:V27<br>V22:V27<br>V22:V27<br>V22:V27<br>V22:V27<br>V22:V27<br>V22:V27<br>V22:V27<br>V22:V27<br>V22:V27<br>V22:V27<br>V22:V27<br>V22:V27<br>V22:V27<br>V22:V27<br>V22:V27<br>V22:V27<br>V22:V27<br>V22:V27<br>V22:V27<br>V22:V27<br>V22:V27<br>V22:V27<br>V22:V27<br>V22:V27<br>V22:V27<br>V22:V27<br>V22:V27<br>V22:V27<br>V22:V27<br>V22:V27<br>V22:V27<br>V22:V27<br>V22:V27<br>V22:V27<br>V22:V27<br>V22:V27<br>V22:V27<br>V22:V27<br>V22:V27<br>V22:V27<br>V22:V27<br>V22:V27<br>V22:V27<br>V22:V27<br>V22:V27<br>V22:V27<br>V22:V27<br>V22:V27<br>V22:V27<br>V22:V27<br>V22:V27<br>V22:V27<br>V22:V27<br>V22:V27<br>V22:V27<br>V22:V27<br>V22:V27<br>V22:V27<br>V22:V27<br>V22:V27<br>V22:V27<br>V22:V27<br>V22:V27<br>V22:V27<br>V22:V27<br>V22:V27<br>V22:V27<br>V22:V27<br>V22:V27<br>V22:V27<br>V22:V27<br>V22:V27<br>V22:V27<br>V22:V27<br>V22:V27<br>V22:V27<br>V22:V27<br>V22:V27<br>V22:V27<br>V22:V27<br>V22:V27<br>V22:V27<br>V22:V27<br>V22:V27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.549<br>0.589<br>0.538<br>0.725<br>0.683<br>0.762                        | 0.253<br>0.655<br>0.810<br>0.901<br>0.792<br>0.792<br>0.792<br>0.792<br>0.792<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.757<br>0.757<br>0.757<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.775<br>0.7750<br>0.7750<br>0.7750<br>0.7750<br>0.7750000000000 | 0.309<br>0.031<br>0.900<br>0.821<br>0.710<br>0.782<br>0.661<br>0.742<br>0.742<br>0.750                                | 0.774<br>0.682<br>0.747<br>0.605<br>0.667<br>0.578<br>0.686<br>0.686<br>0.910<br>0.780<br>0.780          | 0.736<br>0.701<br>0.595          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V18:V22<br>V18:V23<br>V18:V24<br>V18:V24<br>V18:V25<br>V18:V25<br>V18:V25 | V19:V20<br>V19:V21<br>V19:V22<br>V19:V23<br>V19:V25<br>V19:V26<br>V19:V26<br>V19:V27<br>V20:V22<br>V20:V23<br>V20:V23<br>V20:V23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | V20:V26<br>V20:V27<br>V21:V22<br>V21:V24<br>V21:V24<br>V21:V26<br>V21:V26<br>V21:V25<br>V21:V23<br>V21:V23<br>V22:V23 | V22: V25<br>V22: V26<br>V22: V27<br>V23: V24<br>V23: V25<br>V23: V25<br>V24: V25<br>V24: V25<br>V24: V25 | V25; V26<br>V25: V27<br>V26: V27 |

# H-5 Sacred Heart females r-values and significant association

(chronological BSI numbering see Appendix H, H-1)

| Variables        | r-value        | r2-value       | Significance   | Reject Null? |
|------------------|----------------|----------------|----------------|--------------|
| V1:V2            | 0.978          | 0.956          | 0.000          | YES          |
| V1:V3            | 0.659          | 0.434          | 0.053          | NO           |
| V1:V4            | 0.721          | 0.519          | 0.044          | YES          |
| V1:V5            | 0.655          | 0.429          | 0.040          | YES          |
| V1:V6            | 0.674          | 0.454          | 0.033          | YES          |
| V1:V7            | 0.426          | 0.181          | 0.220          | NO           |
| V1:V8            | 0.752          | 0.566          | 0.012          | YES          |
| V1:V9            | 0.533          | 0.284          | 0.112          | NO           |
| V1:V10           | 0.570          | 0.325          | 0.085          | NO           |
| V1:V11           | 0.587          | 0.344          | 0.097          | NO           |
| V1:V12           | 0.744          | 0.553          | 0.014          | YES          |
| V1:V13           | 0.789          | 0.622          | 0.012          | YES          |
| V1:V14           | 0.698          | 0.487          | 0.037<br>0.016 | YES          |
| V1:V15           | 0.730<br>0.573 | 0.534          |                | YES<br>NO    |
| V1:V16<br>V1:V17 | 0.373          | 0.329<br>0.050 | 0.083<br>0.534 | NO           |
| V1:V17           | 0.224          | 0.050          | 0.334          | NO           |
| V1:V10           | 0.652          | 0.425          | 0.041          | YES          |
| V1:V19           | 0.156          | 0.024          | 0.667          | NO           |
| V1:V21           | 0.631          | 0.398          | 0.069          | NO           |
| V1:V21           | 0.031          | 0.002          | 0.910          | NO           |
| V1:V23           | 0.904          | 0.816          | 0.001          | YES          |
| V1:V24           | 0.170          | 0.029          | 0.661          | NO           |
| V1:V25           | 0.349          | 0.122          | 0.322          | NO           |
| V1:V26           | 0.552          | 0.304          | 0.124          | NO           |
| V1:V27           | 0.854          | 0.730          | 0.003          | YES          |
| 100.100          | 0.640          | 0.410          | 0.000          | NO           |
| V2:V3            | 0.648          | 0.419          | 0.082          | NO           |
| V2:V4            | 0.750<br>0.602 | 0.562<br>0.362 | 0.032          | YES<br>NO    |
| V2:V5<br>V2:V6   | 0.802          | 0.382          | 0.086<br>0.017 | YES          |
| V2:V0<br>V2:V7   | 0.332          | 0.110          | 0.383          | NO           |
| V2:V8            | 0.712          | 0.507          | 0.031          | YES          |
| V2:V9            | 0.453          | 0.206          | 0.220          | NO           |
| V2:V10           | 0.498          | 0.248          | 0.172          | NO           |
| V2:V11           | 0.728          | 0.530          | 0.041          | YES          |
| V2:V12           | 0.822          | 0.676          | 0.007          | YES          |
| V2:V13           | 0.803          | 0.645          | 0.016          | YES          |
| V2:V14           | 0.677          | 0.459          | 0.065          | NO           |
| V2:V15           | 0.744          | 0.554          | 0.021          | YES          |
| V2:V16           | 0.557          | 0,310          | 0.119          | NO           |
| V2:V17           | 0.113          | 0.013          | 0.772          | NO           |
| V2:V18           | 0.182          | 0.033          | 0.697          | NO           |
| V2:V19           | 0.814          | 0.663          | 0.008          | YES          |
| V2:V20           | 0.022          | 0,000          | 0.955          | NO           |
| V2:V21           | 0.476          | 0.226          | 0.234          | NO<br>NO     |
| V2:V22           | 0.128          | 0.016          | 0.763          |              |
| V2:V23<br>V2:V24 | 0.900<br>0.162 | 0.811<br>0.026 | 0.002<br>0.701 | YES<br>NO    |
| V2:V24           | 0.405          | 0.164          | 0.279          | NO           |
| V2:V25           | 0.605          | 0.366          | 0.112          | NO           |
| V2:V27           | 0.854          | 0.729          | 0.007          | YES          |
| V3:V4            | 0.899          | 0.809          | 0.006          | YES          |
| V3:V5            | 0.978          | 0.956          | 0.000          | YES          |
| V3:V6            | 0.819          | 0.671          | 0.007          | YES          |
| V3:V7            | 0.445          | 0.198          | 0.230          | NO           |
| V3:V8            | 0.777          | 0.603          | 0.014          | YES          |
| V3:V9            | 0.228          | 0.052          | 0.556          | NO           |
| V3:V10           | 0.786          | 0.617          | 0.012          | YES          |
| V3:V11           | 0.642          | 0.413          | 0.086          | NO           |
| V3:V12           | 0.544          | 0.296          | 0.130          | NO           |
|                  |                |                |                |              |

-----

| YES<br>YES<br>YES<br>YES<br>NO<br>NO<br>YES<br>YES<br>YES<br>YES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | YES<br>YES<br>NO<br>NO<br>YES<br>YES<br>NO<br>NO<br>NO<br>NO<br>NO<br>YES<br>YES<br>YES<br>YES                                                                                                                                                                                                                                                                                                                                                                                                                                                             | YES<br>NO<br>NO<br>NO<br>NO<br>NO<br>NO<br>NO<br>NO<br>NO<br>NO<br>NO<br>NO<br>NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NO<br>VES<br>NO         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| 0.670<br>0.035<br>0.017<br>0.019<br>0.019<br>0.026<br>0.026<br>0.026<br>0.029<br>0.029<br>0.007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.024<br>0.024<br>0.450<br>0.092<br>0.097<br>0.097<br>0.015<br>0.037<br>0.037<br>0.037<br>0.037<br>0.037<br>0.037<br>0.037<br>0.037<br>0.047<br>0.002<br>0.002<br>0.002<br>0.002                                                                                                                                                                                                                                                                                                                                                                           | 0.003<br>0.229<br>0.229<br>0.335<br>0.214<br>0.214<br>0.051<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.013<br>0.013<br>0.005<br>0.013<br>0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.507<br>0.003<br>0.389 |
| 0.454<br>0.550<br>0.550<br>0.580<br>0.580<br>0.108<br>0.108<br>0.407<br>0.562<br>0.049<br>0.049<br>0.643<br>0.531<br>0.668                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.599<br>0.517<br>0.098<br>0.401<br>0.025<br>0.104<br>0.810<br>0.543<br>0.418<br>0.543<br>0.418<br>0.543<br>0.418<br>0.056<br>0.030<br>0.444<br>0.000<br>0.200<br>0.044<br>0.020<br>0.044<br>0.208<br>0.020<br>0.020                                                                                                                                                                                                                                                                                                                                       | 0.692<br>0.175<br>0.175<br>0.116<br>0.244<br>0.244<br>0.241<br>0.441<br>0.441<br>0.441<br>0.441<br>0.559<br>0.559<br>0.147<br>0.559<br>0.147<br>0.504<br>0.504<br>0.504<br>0.504<br>0.504<br>0.504<br>0.504<br>0.504<br>0.504<br>0.504<br>0.504<br>0.504<br>0.504<br>0.506<br>0.532<br>0.506<br>0.532<br>0.506<br>0.532<br>0.506<br>0.532<br>0.506<br>0.532<br>0.506<br>0.532<br>0.506<br>0.532<br>0.507<br>0.506<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.5320<br>0.5320<br>0.5320<br>0.5320<br>0.5320<br>0.5320<br>0.5320<br>0.5320<br>0.5320<br>0.5320<br>0.5320<br>0.5320<br>0.5320<br>0.5320<br>0.5320<br>0.5320<br>0.53200<br>0.5320<br>0.5320<br>0.53200<br>0.53200<br>0.53200<br>0.53200<br>0.53200<br>0.53200<br>0.53200000000000000000000000000000000000 | 0.057<br>0.685<br>0.094 |
| 0.674<br>0.741<br>0.762<br>0.755<br>0.329<br>0.538<br>0.750<br>0.750<br>0.750<br>0.750<br>0.729<br>0.729<br>0.718<br>0.729<br>0.718<br>0.718                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.774<br>0.719<br>0.313<br>0.633<br>0.158<br>0.158<br>0.737<br>0.737<br>0.737<br>0.737<br>0.737<br>0.737<br>0.737<br>0.737<br>0.737<br>0.737<br>0.737<br>0.737<br>0.737<br>0.737<br>0.737<br>0.737<br>0.737<br>0.712<br>0.712<br>0.712<br>0.712                                                                                                                                                                                                                                                                                                            | 0.832<br>0.418<br>0.418<br>0.459<br>0.664<br>0.664<br>0.664<br>0.755<br>0.755<br>0.734<br>0.734<br>0.734<br>0.735<br>0.735<br>0.735<br>0.735<br>0.735<br>0.736<br>0.779<br>0.779                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.239<br>0.828<br>0.306 |
| V3:V13<br>V3:V14<br>V3:V15<br>V3:V16<br>V3:V16<br>V3:V16<br>V3:V19<br>V3:V20<br>V3:V21<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V22<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V27<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3:V26<br>V3<br>V3:V26<br>V3<br>V3:V26<br>V3 | V4: V5<br>V4: V7<br>V4: V7<br>V4: V9<br>V4: V10<br>V4: V12<br>V4: V13<br>V4: V13<br>V4: V13<br>V4: V13<br>V4: V13<br>V4: V13<br>V4: V13<br>V4: V10<br>V4: V20<br>V4: V20<br>V4: V20<br>V4: V23<br>V4: V20<br>V4: V23<br>V4: V23<br>V4: V23<br>V4: V23<br>V4: V23<br>V4: V26<br>V4: V26<br>V26<br>V27<br>V26<br>V26<br>V26<br>V26<br>V26<br>V26<br>V26<br>V26<br>V26<br>V26 | V5:V6<br>V5:V7<br>V5:V9<br>V5:V10<br>V5:V10<br>V5:V13<br>V5:V14<br>V5:V14<br>V5:V15<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23<br>V5:V23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | V6:V7<br>V6:V8<br>V6:V9 |

| A N N N N N N N N N N N N N N N N N N N                                                                                                                                                            | N N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | N N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.063<br>0.106<br>0.070<br>0.056<br>0.025<br>0.250<br>0.100<br>0.239<br>0.013<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.013<br>0.013<br>0.013<br>0.012 | 0.064<br>0.030<br>0.027<br>0.944<br>0.944<br>0.229<br>0.256<br>0.110<br>0.006<br>0.006<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.023<br>0.023<br>0.028<br>0.179<br>0.179                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.050<br>0.004<br>0.002<br>0.052<br>0.178<br>0.178<br>0.178<br>0.146<br>0.145<br>0.036<br>0.036<br>0.036<br>0.031<br>0.146<br>0.001<br>0.146<br>0.001<br>0.146<br>0.001<br>0.146<br>0.001<br>0.146<br>0.001<br>0.146<br>0.001<br>0.146<br>0.001<br>0.146<br>0.001<br>0.146<br>0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0.367<br>0.330<br>0.333<br>0.429<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.209<br>0.050<br>0.050<br>0.050<br>0.059<br>0.059<br>0.059<br>0.059<br>0.059                   | 0.366<br>0.465<br>0.445<br>0.001<br>0.175<br>0.175<br>0.175<br>0.175<br>0.175<br>0.363<br>0.363<br>0.363<br>0.363<br>0.340<br>0.578<br>0.363<br>0.340<br>0.578<br>0.280<br>0.242<br>0.242                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.399<br>0.668<br>0.069<br>0.243<br>0.243<br>0.148<br>0.148<br>0.148<br>0.148<br>0.143<br>0.587<br>0.587<br>0.587<br>0.587<br>0.587<br>0.587<br>0.587<br>0.587<br>0.587<br>0.587<br>0.240<br>0.0787<br>0.240<br>0.043<br>0.450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.506<br>0.574<br>0.554<br>0.555<br>0.697<br>0.555<br>0.125<br>0.471<br>0.471<br>0.747<br>0.243<br>0.617<br>0.243<br>0.747<br>0.243<br>0.747<br>0.747<br>0.747<br>0.743<br>0.747<br>0.743          | 0.605<br>0.682<br>0.691<br>0.028<br>0.418<br>0.418<br>0.418<br>0.418<br>0.418<br>0.536<br>0.418<br>0.536<br>0.629<br>0.533<br>0.533<br>0.533<br>0.533<br>0.533<br>0.533<br>0.533<br>0.533<br>0.533<br>0.533<br>0.533<br>0.533<br>0.533<br>0.533<br>0.532<br>0.532<br>0.533<br>0.536<br>0.532<br>0.532<br>0.532<br>0.536<br>0.532<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.536<br>0.566<br>0.566<br>0.566<br>0.566<br>0.566<br>0.566<br>0.566<br>0.566<br>0.566<br>0.566<br>0.566<br>0.566<br>0.566<br>0.566<br>0.566<br>0.566<br>0.566<br>0.566<br>0.566<br>0.566<br>0.566<br>0.566<br>0.566<br>0.566<br>0.566<br>0.566<br>0.566<br>0.566<br>0.566<br>0.566<br>0.566<br>0.566<br>0.566<br>0.566<br>0.566<br>0.566<br>0.566<br>0.566<br>0.566<br>0.566<br>0.566<br>0.566<br>0.566<br>0.566<br>0.566<br>0.566<br>0.566<br>0.566<br>0.566<br>0.566<br>0.566<br>0.566<br>0.566<br>0.566<br>0.566<br>0.566<br>0.566<br>0.566<br>0.566<br>0.566<br>0.566<br>0.566<br>0.566<br>0.566<br>0.566<br>0.566<br>0.566<br>0.566<br>0.566<br>0.566<br>0.566<br>0.566<br>0.566<br>0.566<br>0.5666<br>0.566<br>0.566<br>0.5666<br>0.566<br>0.5666<br>0.5666<br>0.5666<br>0.5666<br>0.5666<br>0.566 | 0.631<br>0.817<br>0.263<br>0.628<br>0.493<br>0.739<br>0.739<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.719<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.0120<br>0.01200<br>0.01200<br>0.010000000000                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| V6:V10<br>V6:V11<br>V6:V12<br>V6:V13<br>V6:V13<br>V6:V14<br>V6:V15<br>V6:V19<br>V6:V21<br>V6:V22<br>V6:V23<br>V6:V23<br>V6:V23<br>V6:V23<br>V6:V23                                                 | V7:V8<br>V7:V9<br>V7:V10<br>V7:V11<br>V7:V12<br>V7:V13<br>V7:V15<br>V7:V16<br>V7:V18<br>V7:V21<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V22<br>V7:V                                                                                                                                              | V8: V9<br>V8: V10<br>V8: V11<br>V8: V13<br>V8: V14<br>V8: V14<br>V8: V15<br>V8: V15<br>V8: V21<br>V8: V23<br>V8: V23 |
|                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

| YES<br>YES<br>YES<br>YES<br>NO<br>NO<br>NO<br>NO<br>NO<br>NO                                               | NO<br>YES<br>YES<br>YES<br>YES<br>YES<br>YES<br>YES<br>YES<br>YES<br>YES                                                                                                                                                                                                                                                                                                                                                                                                                                                           | YES<br>YES<br>NO<br>NO<br>NO<br>NO<br>NO<br>YES<br>YES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | YES<br>NO<br>YES<br>YES<br>NO<br>NO<br>NO<br>NO<br>NO<br>YES<br>YES<br>YES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.036<br>0.022<br>0.017<br>0.009<br>0.009<br>0.179<br>0.179<br>0.472<br>0.442<br>0.644<br>0.152            | 0.746<br>0.028<br>0.097<br>0.474<br>0.006<br>0.005<br>0.014<br>0.014<br>0.014<br>0.014<br>0.014<br>0.014<br>0.013<br>0.476<br>0.030                                                                                                                                                                                                                                                                                                                                                                                                | 0.049<br>0.020<br>0.170<br>0.173<br>0.335<br>0.803<br>0.266<br>0.266<br>0.266<br>0.266<br>0.200<br>0.84<br>0.021<br>0.021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.009<br>0.187<br>0.000<br>0.003<br>0.344<br>0.344<br>0.035<br>0.035<br>0.035<br>0.035<br>0.045<br>0.024<br>0.035<br>0.035<br>0.035<br>0.024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.441<br>0.501<br>0.538<br>0.538<br>0.593<br>0.443<br>0.241<br>0.397<br>0.397<br>0.032<br>0.032<br>0.032   | 0.016<br>0.471<br>0.343<br>0.075<br>0.625<br>0.625<br>0.625<br>0.625<br>0.551<br>0.551<br>0.587<br>0.538<br>0.280<br>0.283<br>0.243<br>0.243<br>0.243<br>0.273<br>0.213                                                                                                                                                                                                                                                                                                                                                            | 0.448<br>0.621<br>0.251<br>0.247<br>0.133<br>0.133<br>0.034<br>0.034<br>0.034<br>0.028<br>0.028<br>0.021<br>0.011<br>0.011<br>0.582                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.646<br>0.234<br>0.838<br>0.683<br>0.112<br>0.112<br>0.683<br>0.683<br>0.683<br>0.283<br>0.282<br>0.200<br>0.222<br>0.529<br>0.415<br>0.425<br>0.493<br>0.415<br>0.493<br>0.523                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.664<br>0.708<br>0.541<br>0.541<br>0.768<br>0.491<br>0.630<br>0.630<br>0.630<br>0.258<br>0.180<br>0.180   | 0.126<br>0.686<br>0.588<br>0.588<br>0.791<br>0.742<br>0.742<br>0.742<br>0.742<br>0.742<br>0.742<br>0.743<br>0.742<br>0.743<br>0.743<br>0.743<br>0.716<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.774<br>0.773                                                                                                                                                                                                                                                                                                               | 0.669<br>0.788<br>0.501<br>0.497<br>0.364<br>0.364<br>0.364<br>0.184<br>0.184<br>0.184<br>0.160<br>0.1606<br>0.107<br>0.107<br>0.107<br>0.163<br>0.785                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.803<br>0.484<br>0.916<br>0.826<br>0.835<br>0.335<br>0.335<br>0.335<br>0.335<br>0.230<br>0.230<br>0.241<br>0.220<br>0.241<br>0.220<br>0.045<br>0.644<br>0.597<br>0.702<br>0.775<br>0.775<br>0.775                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| V9:V16<br>V9:V17<br>V9:V19<br>V9:V19<br>V9:V20<br>V9:V22<br>V9:V23<br>V9:V23<br>V9:V25<br>V9:V25<br>V9:V25 | V10: V11<br>V10: V12<br>V10: V13<br>V10: V14<br>V10: V15<br>V10: V15<br>V10: V15<br>V10: V19<br>V10: V20<br>V10: V21<br>V10: V23<br>V10: V23<br>V10: V23<br>V10: V25<br>V10: V26<br>V10: V17<br>V10: V16<br>V10: V17<br>V10: V16<br>V17<br>V10: V17<br>V10: V16<br>V16<br>V17<br>V10: V17<br>V10: V16<br>V16<br>V17<br>V10: V16<br>V16<br>V16<br>V16<br>V16<br>V16<br>V16<br>V16<br>V16<br>V16 | VII: V12<br>V11: V13<br>V11: V13<br>V11: V15<br>V11: V15<br>V11: V16<br>V11: V19<br>V11: V20<br>V11: V22<br>V11: V23<br>V11: V23<br>V11: V23<br>V11: V23<br>V11: V25<br>V11: V26<br>V11: V26<br>V12: V26<br>V12 | V12:V13<br>V12:V13<br>V12:V15<br>V12:V16<br>V12:V16<br>V12:V19<br>V12:V21<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V23<br>V13:V1 |
|                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                               | N N N N N N N N N N N N N N N N N N N                                                                                                                                        | YES<br>YES<br>YES<br>YES<br>YES<br>YES                                                                                                      | NO<br>VES<br>NO<br>NO<br>NO<br>VES<br>VES<br>VO<br>VO                                                                                       | YES<br>NO<br>YES<br>NO<br>NO<br>NO<br>NO<br>YES<br>YES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.059<br>0.770<br>0.585<br>0.585<br>0.059<br>0.059<br>0.0796<br>0.120<br>0.120<br>0.115                                             | 0.082<br>0.075<br>0.471<br>0.623<br>0.193<br>0.895<br>0.988<br>0.988<br>0.988<br>0.988<br>0.988<br>0.199<br>0.199                                                            | 0.000<br>0.164<br>0.116<br>0.0116<br>0.020<br>0.264<br>0.020<br>0.742<br>0.010<br>0.742<br>0.034<br>0.076                                   | 0.058<br>0.080<br>0.080<br>0.159<br>0.159<br>0.159<br>0.010<br>0.582<br>0.068<br>0.011<br>0.011                                             | 0,003<br>0,242<br>0,000<br>0,070<br>0,002<br>0,030<br>0,355<br>0,355<br>0,355<br>0,355<br>0,386<br>0,386<br>0,386<br>0,191<br>0,191<br>0,045                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.421<br>0.013<br>0.064<br>0.420<br>0.433<br>0.433<br>0.433<br>0.353<br>0.012<br>0.143<br>0.143                                     | 0.371<br>0.077<br>0.077<br>0.041<br>0.229<br>0.456<br>0.456<br>0.456<br>0.456<br>0.456<br>0.461<br>0.603<br>0.258<br>0.258                                                   | 0.907<br>0.227<br>0.306<br>0.789<br>0.153<br>0.562<br>0.562<br>0.640<br>0.449<br>0.449<br>0.382<br>0.382                                    | 0.379<br>0.424<br>0.713<br>0.633<br>0.633<br>0.645<br>0.045<br>0.024<br>0.272<br>0.572<br>0.488                                             | 0.785<br>0.166<br>0.806<br>0.394<br>0.772<br>0.107<br>0.107<br>0.205<br>0.109<br>0.109<br>0.205<br>0.109<br>0.205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0.649<br>0.114<br>0.253<br>0.648<br>0.658<br>0.658<br>0.658<br>0.658<br>0.648<br>0.658<br>0.658<br>0.594<br>0.110<br>0.599<br>0.379 | 0.609<br>0.620<br>0.277<br>0.277<br>0.202<br>0.202<br>0.675<br>0.005<br>0.675<br>0.675<br>0.087<br>0.482<br>0.508                                                            | 0.953<br>0.476<br>0.600<br>0.888<br>0.391<br>0.750<br>0.750<br>0.750<br>0.129<br>0.670<br>0.618<br>0.834                                    | 0.616<br>0.651<br>0.851<br>0.845<br>0.481<br>0.796<br>0.213<br>0.634<br>0.156<br>0.523<br>0.699                                             | 0.886<br>0.408<br>0.898<br>0.879<br>0.528<br>0.319<br>0.717<br>0.717<br>0.319<br>0.328<br>0.330<br>0.3515<br>0.352<br>0.352<br>0.352<br>0.356                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| V13:V16<br>V13:V17<br>V13:V18<br>V13:V19<br>V13:V20<br>V13:V22<br>V13:V22<br>V13:V24<br>V13:V24<br>V13:V25<br>V13:V25<br>V13:V25    | V14:V15<br>V14:V15<br>V14:V17<br>V14:V19<br>V14:V19<br>V14:V20<br>V14:V22<br>V14:V22<br>V14:V22<br>V14:V22<br>V14:V22<br>V14:V22<br>V14:V22<br>V14:V22<br>V14:V25<br>V14:V25 | V15:V16<br>V15:V17<br>V15:V18<br>V15:V18<br>V15:V20<br>V15:V20<br>V15:V22<br>V15:V22<br>V15:V22<br>V15:V25<br>V15:V25<br>V15:V25<br>V15:V25 | V16:V17<br>V16:V18<br>V16:V18<br>V16:V20<br>V16:V20<br>V16:V22<br>V16:V22<br>V16:V22<br>V16:V23<br>V16:V23<br>V16:V23<br>V16:V25<br>V16:V25 | V17:V18<br>V17:V20<br>V17:V20<br>V17:V22<br>V17:V23<br>V17:V23<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V25<br>V17:V5<br>V17:V5<br>V17:V5<br>V17:V5<br>V17:V5<br>V17:V5<br>V17:V5<br>V17:V5<br>V17:V5<br>V17:V5<br>V17:V5<br>V17:V5<br>V17:V5<br>V17:V5<br>V17:V5<br>V17:V5<br>V17:V5<br>V17:V5<br>V17:V5<br>V17:V5<br>V17:V5<br>V17:V5<br>V17:V5<br>V17:V5<br>V17:V5<br>V17:V5<br>V17:V5<br>V17:V5<br>V17:V5<br>V17:V5<br>V17:V5<br>V17:V5<br>V17:V5<br>V17:V5<br>V17:V5<br>V17:V5<br>V17:V5<br>V17:V5<br>V17:V5<br>V17:V5<br>V17:V5<br>V17:V5<br>V17:V5<br>V17:V5<br>V17:V5<br>V17:V5<br>V17:V5<br>V17:V5<br>V17:V5<br>V17:V5<br>V17:V5<br>V17:V5<br>V17:V5<br>V17:V5<br>V17:V5<br>V17:V5<br>V17:V5<br>V17:V5<br>V17:V5<br>V17:V5<br>V17:V5<br>V17:V5<br>V17:V5<br>V17:V5<br>V17:V5<br>V17:V5<br>V17:V5<br>V17:V5<br>V17:V5<br>V17:V5<br>V17:V5<br>V17:V5<br>V17:V5<br>V17:V5<br>V17:V5<br>V17:V5<br>V17:V5<br>V17:V5<br>V17:V5<br>V17:V5<br>V17:V5<br>V17:V5 |

and the second sec

| O O O O O O<br>N N N N N                                                  | NO<br>VES<br>NO<br>VES<br>VO<br>VES<br>VO                                        | NO N                                         | N N N N N N N N N N N N N N N N N N N                                                                                 | NO<br>YES<br>NO<br>NO<br>NO                                                                     | NO<br>YES                     |
|---------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------|
| 0.052<br>0.537<br>0.166<br>0.596<br>0.421<br>0.273                        | 0.370<br>0.142<br>0.609<br>0.039<br>0.431<br>0.431<br>0.217                      | 0.092<br>0.006<br>0.601<br>0.741<br>0.474<br>0.566                               | 0.564<br>0.065<br>0.933<br>0.092<br>0.092<br>0.093<br>0.799<br>0.799<br>0.033<br>0.981<br>0.853                       | 0.457<br>0.314<br>0.010<br>0.000<br>0.950<br>0.108<br>0.441                                     | 0.156<br>0.257<br>0.016       |
| 0.495<br>0.081<br>0.345<br>0.345<br>0.133<br>0.133                        | 0.101<br>0.281<br>0.039<br>0.478<br>0.478<br>0.402<br>0.402<br>0.208             | 0.352<br>0.684<br>0.041<br>0.422<br>0.014<br>0.076<br>0.049                      | 0.059<br>0.458<br>0.458<br>0.001<br>0.352<br>0.047<br>0.551<br>0.047<br>0.551<br>0.000<br>0.103<br>0.000              | 0.095<br>0.144<br>0.693<br>0.945<br>0.945<br>0.372<br>0.102                                     | 0.265<br>0.179<br>0.649       |
| 0.703<br>0.284<br>0.587<br>0.283<br>0.284<br>0.283<br>0.483               | 0.318<br>0.530<br>0.199<br>0.691<br>0.634<br>0.634<br>0.456<br>0.456             | 0.593<br>0.827<br>0.203<br>0.649<br>0.120<br>0.275<br>0.222                      | 0.242<br>0.677<br>0.677<br>0.036<br>0.593<br>0.216<br>0.743<br>0.743<br>0.108<br>0.895<br>0.099<br>0.321<br>0.079     | 0.308<br>0.379<br>0.972<br>0.972<br>0.025<br>0.610<br>0.319                                     | 0.515<br>0.423<br>0.805       |
| V18:V22<br>V18:V23<br>V18:V24<br>V18:V24<br>V18:V25<br>V18:V25<br>V18:V25 | V19: V20<br>V19: V21<br>V19: V22<br>V19: V23<br>V19: V24<br>V19: V25<br>V19: V26 | V20: V21<br>V20: V22<br>V20: V23<br>V20: V24<br>V20: V25<br>V20: V25<br>V20: V25 | V21:V22<br>V21:V23<br>V21:V24<br>V21:V26<br>V21:V25<br>V21:V27<br>V21:V27<br>V22:V23<br>V22:V26<br>V22:V25<br>V22:V26 | V23:V24<br>V23:V25<br>V23:V26<br>V23:V26<br>V23:V27<br>V23:V25<br>V24:V25<br>V24:V26<br>V24:V26 | V25:V26<br>V25:V27<br>V26:V27 |

H-6 Sacred Heart males r-values and significant association

(chronological BSI numbering see Appendix H, H-2)

| Variables<br>V1:V2 | <b>r-value</b><br>0.334 | <b>r2-value</b><br>0.111 | Significance<br>0.380 | <b>Reject Null?</b><br>NO |
|--------------------|-------------------------|--------------------------|-----------------------|---------------------------|
| V1:V2<br>V1:V3     | 0.334                   | 0.050                    | 0.594                 | NO                        |
| V1:V4              | 0.026                   | 0.001                    | 0.946                 | NO                        |
| V1:V5              | 0.604                   | 0.364                    | 0.085                 | NO                        |
|                    |                         |                          |                       |                           |
| V1:V6              | 0.371                   | 0.138                    | 0.325                 | NO                        |
| V1:V7              | 0.408                   | 0.166                    | 0.316                 | NO                        |
| V1:V8              | 0.053                   | 0.003                    | 0.900                 | NO                        |
| V1:V9              | 0.569                   | 0.324                    | 0.110                 | NO                        |
| V1:V10             | 0.480                   | 0.230                    | 0.191                 | NO                        |
| V1:V11             | 0.065                   | 0.004                    | 0.867                 | NO                        |
| V1:V12             | 0.391                   | 0.153                    | 0.338                 | NO                        |
| V1:V13             | 0.017                   | 0.000                    | 0.966                 | NO                        |
| V1:V14             | 0.059                   | 0.003                    | 0.881                 | NO                        |
| V1:V15             | 0.158                   | 0.025                    | 0.684                 | NO                        |
| V1:V16             | 0.134                   | 0.180                    | 0.731                 | NO                        |
| V1:V17             | 0.157                   | 0.025                    | 0.687                 | NO                        |
| V1:V18             | 0.186                   | 0.035                    | 0.632                 | NO                        |
| V1:V19             | 0.231                   | 0.053                    | 0.582                 | NO                        |
| V1:V20             | 0.042                   | 0.002                    | 0.922                 | NO                        |
| V1:V21             | 0.164                   | 0.027                    | 0.673                 | NO                        |
| V1:V22             | 0.228                   | 0.052                    | 0.556                 | NO                        |
| V1:V23             | 0.063                   | 0.004                    | 0.872                 | NO                        |
| V1:V24             | 0.183                   | 0.033                    | 0.665                 | NO                        |
| V1:V25             | 0.242                   | 0.059                    | 0.531                 | NO                        |
| V1:V26             | 0.191                   | 0.036                    | 0.651                 | NO                        |
| V1:V27             | 0.990                   | 0.980                    | 0.091                 | NO                        |
| V2:V3              | 0.727                   | 0.529                    | 0.026                 | YES                       |
| V2:V4              | 0.672                   | 0.452                    | 0.033                 | YES                       |
| V2:V5              | 0.432                   | 0.187                    | 0.212                 | NO                        |
| V2:V6              | 0.267                   | 0.071                    | 0.456                 | NO                        |
| V2:V7              | 0.517                   | 0.267                    | 0,154                 | NO                        |
| V2:V8              | 0.139                   | 0.019                    | 0.721                 | NO                        |
| V2:V9              | 0.594                   | 0.353                    | 0.070                 | NO                        |
| V2:V10             | 0.119                   | 0.014                    | 0.744                 | NO                        |
| V2:V11             | 0.278                   | 0.077                    | 0.437                 | NO                        |
| V2:V12             | 0.549                   | 0.302                    | 0.125                 | NO                        |
| V2:V13             | 0.551                   | 0.304                    | 0.099                 | NO                        |
| V2:V14             | 0.746                   | 0.556                    | 0.013                 | YES                       |
| V2:V15             | 0.485                   | 0.235                    | 0.155                 | NO                        |
| V2:V16             | 0.282                   | 0.080                    | 0.430                 | NO                        |
| V2:V17             | 0.519                   | 0.270                    | 0.124                 | NO                        |
| V2:V18             | 0.567                   | 0.321                    | 0.088                 | NO                        |
| V2:V19             | 0.524                   | 0.274                    | 0.148                 | NO                        |
| V2:V20             | 0.481                   | 0.231                    | 0.190                 | NO                        |
| V2:V21             | 0.810                   | 0.657                    | 0.004                 | YES                       |
| V2:V22             | 0.812                   | 0.660                    | 0.004                 | YES                       |
| V2:V23             | 0.641                   | 0.411                    | 0.046                 | YES                       |
| V2:V24             | 0.651                   | 0.424                    | 0.057                 | NO                        |
| V2:V25             | 0.666                   | 0.443                    | 0.036                 | YES                       |
| V2:V26             | 0.572                   | 0.327                    | 0.139                 | NO                        |
| V2:V27             | 0.249                   | 0.062                    | 0.751                 | NO                        |
| V3:V4              | 0.690                   | 0.476                    | 0.040                 | YES                       |
| V3:V5              | 0.564                   | 0.319                    | 0.113                 | NO                        |
| V3:V6              | 0.506                   | 0.256                    | 0.165                 | NO                        |
| V3:V7              | 0.891                   | 0.794                    | 0.003                 | YES                       |
| V3:V8              | 0.706                   | 0.498                    | 0.051                 | NO                        |
| V3:V9              | 0.564                   | 0.318                    | 0.114                 | NO                        |
| V3:V10             | 0.333                   | 0.111                    | 0.381                 | NO                        |
| V3:V11             | 0.704                   | 0.495                    | 0.034                 | YES                       |
| V3:V12             | 0.685                   | 0.469                    | 0.061                 | NO                        |
|                    |                         |                          |                       |                           |

-

And a second 
| V5:V23<br>V5:V24<br>V5:V25<br>V5:V25<br>V5:V27<br>V5:V27<br>V6:V7<br>V6:V8<br>V6:V9 | V5:V6<br>V5:V7<br>V5:V8<br>V5:V10<br>V5:V11<br>V5:V11<br>V5:V13<br>V5:V13<br>V5:V14<br>V5:V14<br>V5:V14<br>V5:V14<br>V5:V14<br>V5:V15<br>V5:V15<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V19<br>V5:V29<br>V5:V19<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V29<br>V5:V2 | V4:V5<br>V4:V6<br>V4:V7<br>V4:V7<br>V4:V1<br>V4:V10<br>V4:V10<br>V4:V11<br>V4:V11<br>V4:V11<br>V4:V11<br>V4:V11<br>V4:V11<br>V4:V11<br>V4:V11<br>V4:V11<br>V4:V11<br>V4:V11<br>V4:V11<br>V4:V11<br>V4:V11<br>V4:V11<br>V4:V11<br>V4:V11<br>V4:V11<br>V4:V11<br>V4:V11<br>V4:V11<br>V4:V11<br>V4:V11<br>V4:V11<br>V4:V11<br>V4:V11<br>V4:V11<br>V4:V11<br>V4:V11<br>V4:V11<br>V4:V11<br>V4:V11<br>V4:V11<br>V4:V11<br>V4:V11<br>V4:V11<br>V4:V11<br>V4:V11<br>V4:V11<br>V4:V11<br>V4:V11<br>V4:V11<br>V4:V11<br>V4:V11<br>V4:V11<br>V4:V11<br>V4:V11<br>V4:V11<br>V4:V11<br>V4:V11<br>V4:V11<br>V4:V11<br>V4:V11<br>V4:V11<br>V4:V11<br>V4:V11<br>V4:V11<br>V4:V11<br>V4:V11<br>V4:V11<br>V4:V11<br>V4:V11<br>V4:V11<br>V4:V11<br>V4:V12<br>V4:V12<br>V4:V12<br>V4:V12<br>V4:V12<br>V4:V12<br>V4:V12<br>V4:V12<br>V4:V12<br>V4:V12<br>V4:V12<br>V4:V12<br>V4:V12<br>V4:V12<br>V4:V12<br>V4:V13<br>V4:V12<br>V4:V12<br>V4:V12<br>V4:V12<br>V4:V13<br>V4:V12<br>V4:V12<br>V4:V12<br>V4:V12<br>V4:V13<br>V4:V12<br>V4:V12<br>V4:V12<br>V4:V12<br>V4:V13<br>V4:V12<br>V4:V12<br>V4:V12<br>V4:V12<br>V4:V12<br>V4:V12<br>V4:V12<br>V4:V12<br>V4:V12<br>V4:V12<br>V4:V12<br>V4:V12<br>V4:V12<br>V4:V12<br>V4:V12<br>V4:V12<br>V4:V12<br>V4:V12<br>V4:V12<br>V4:V12<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22<br>V4:V22 | V3: V13<br>V3: V14<br>V3: V14<br>V3: V15<br>V3: V17<br>V3: V17<br>V3: V18<br>V3: V20<br>V3: V21<br>V3: V22<br>V3: V22 |
|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.388<br>0.526<br>0.345<br>0.345<br>0.386<br>0.549<br>0.296<br>0.375<br>0.367       | 0.355<br>0.483<br>0.385<br>0.680<br>0.663<br>0.164<br>0.525<br>0.628<br>0.631<br>0.561<br>0.561<br>0.561<br>0.561<br>0.561<br>0.561<br>0.561<br>0.545<br>0.545<br>0.710<br>0.545<br>0.710<br>0.5463                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.703<br>0.401<br>0.475<br>0.316<br>0.472<br>0.345<br>0.142<br>0.524<br>0.762<br>0.762<br>0.762<br>0.762<br>0.762<br>0.762<br>0.762<br>0.762<br>0.762<br>0.768<br>0.143<br>0.489<br>0.648<br>0.727<br>0.644<br>0.512<br>0.512<br>0.563<br>0.563                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.801<br>0.853<br>0.810<br>0.659<br>0.758<br>0.635<br>0.836<br>0.758<br>0.758<br>0.729<br>0.576<br>0.576<br>0.576<br>0.931<br>0.931                                                                                      |
| 0.151<br>0.277<br>0.119<br>0.149<br>0.301<br>0.301<br>0.088<br>0.141<br>0.145       | 0.126<br>0.234<br>0.148<br>0.463<br>0.004<br>0.027<br>0.275<br>0.275<br>0.275<br>0.398<br>0.398<br>0.398<br>0.398<br>0.315<br>0.315<br>0.297<br>0.505<br>0.233<br>0.233                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.494<br>0.161<br>0.225<br>0.100<br>0.223<br>0.274<br>0.425<br>0.425<br>0.425<br>0.425<br>0.425<br>0.425<br>0.425<br>0.425<br>0.425<br>0.425<br>0.425<br>0.425<br>0.425<br>0.414<br>0.239<br>0.414<br>0.262<br>0.414<br>0.262<br>0.414<br>0.262                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.641<br>0.727<br>0.657<br>0.434<br>0.403<br>0.699<br>0.817<br>0.531<br>0.612<br>0.812<br>0.866<br>0.880<br>0.880                                                                                                        |
| 0.268<br>0.146<br>0.330<br>0.345<br>0.451<br>0.451<br>0.459<br>0.320<br>0.296       | 0.315<br>0.187<br>0.306<br>0.030<br>0.652<br>0.652<br>0.147<br>0.052<br>0.051<br>0.012<br>0.051<br>0.012<br>0.051<br>0.012<br>0.033<br>0.092<br>0.188<br>0.188<br>0.142                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.023<br>0.251<br>0.197<br>0.408<br>0.408<br>0.408<br>0.408<br>0.408<br>0.418<br>0.041<br>0.025<br>0.041<br>0.025<br>0.041<br>0.025<br>0.041<br>0.025<br>0.041<br>0.025<br>0.053<br>0.053<br>0.025<br>0.025<br>0.025<br>0.025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.010<br>0.003<br>0.008<br>0.054<br>0.054<br>0.066<br>0.066<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.005<br>0.001<br>0.000<br>0.000                                         |
| NNO NNO NNO                                                                         | NO N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NO N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | YES<br>YES<br>YES<br>YES<br>YES<br>YES                                                                                                                                                                                   |

| N N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | YES<br>NO<br>YES<br>YES<br>NO<br>YES<br>YES<br>YES<br>YES<br>YES<br>YES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Y ES<br>Y ES<br>Y ES<br>Y ES<br>Y ES<br>Y ES<br>Y ES<br>Y ES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.884<br>0.086<br>0.012<br>0.066<br>0.042<br>0.064<br>0.064<br>0.041<br>0.127<br>0.041<br>0.041<br>0.041<br>0.041<br>0.053<br>0.0566<br>0.554<br>0.056<br>0.554                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.006<br>0.075<br>0.075<br>0.013<br>0.015<br>0.015<br>0.015<br>0.012<br>0.017<br>0.012<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.017<br>0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.261<br>0.244<br>0.244<br>0.205<br>0.237<br>0.037<br>0.122<br>0.122<br>0.122<br>0.122<br>0.117<br>0.203<br>0.203<br>0.215<br>0.215<br>0.202<br>0.203<br>0.215<br>0.215<br>0.202<br>0.215<br>0.215<br>0.203<br>0.215<br>0.203<br>0.215<br>0.203<br>0.215                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0.003<br>0.323<br>0.621<br>0.361<br>0.374<br>0.374<br>0.374<br>0.374<br>0.424<br>0.299<br>0.424<br>0.052<br>0.025<br>0.025<br>0.009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.682<br>0.384<br>0.384<br>0.609<br>0.646<br>0.646<br>0.594<br>0.743<br>0.541<br>0.743<br>0.541<br>0.611<br>0.611<br>0.611<br>0.611<br>0.611<br>0.611<br>0.613<br>0.613<br>0.613<br>0.613<br>0.613<br>0.613<br>0.613<br>0.613<br>0.613<br>0.613<br>0.613<br>0.613<br>0.613<br>0.613<br>0.613<br>0.613<br>0.613<br>0.613<br>0.613<br>0.613<br>0.613<br>0.613<br>0.613<br>0.613<br>0.613<br>0.613<br>0.613<br>0.613<br>0.613<br>0.613<br>0.646<br>0.554<br>0.554<br>0.554<br>0.554<br>0.554<br>0.554<br>0.554<br>0.554<br>0.554<br>0.554<br>0.554<br>0.554<br>0.554<br>0.554<br>0.554<br>0.554<br>0.554<br>0.554<br>0.554<br>0.554<br>0.554<br>0.554<br>0.554<br>0.554<br>0.554<br>0.554<br>0.554<br>0.554<br>0.554<br>0.554<br>0.554<br>0.554<br>0.554<br>0.554<br>0.554<br>0.554<br>0.554<br>0.554<br>0.554<br>0.554<br>0.554<br>0.554<br>0.554<br>0.554<br>0.554<br>0.554<br>0.5554<br>0.554<br>0.5554<br>0.5554<br>0.5554<br>0.5554<br>0.5554<br>0.5554<br>0.5554<br>0.5555<br>0.5554<br>0.5555<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.5556<br>0.55560<br>0.55560<br>0.55560<br>0.55560<br>0.55560<br>0.55560000000000 | 0.176<br>0.629<br>0.696<br>0.188<br>0.696<br>0.485<br>0.728<br>0.728<br>0.728<br>0.728<br>0.728<br>0.716<br>0.716<br>0.716<br>0.716<br>0.716<br>0.738<br>0.616<br>0.616<br>0.616<br>0.616<br>0.616<br>0.616<br>0.6136<br>0.6136<br>0.6136<br>0.6136<br>0.6136<br>0.6136<br>0.6136<br>0.6136<br>0.6136<br>0.6136<br>0.6136<br>0.6136<br>0.6136<br>0.6136<br>0.6136<br>0.6136<br>0.6136<br>0.6136<br>0.6136<br>0.6136<br>0.6136<br>0.6136<br>0.6136<br>0.6136<br>0.6136<br>0.6136<br>0.6136<br>0.6136<br>0.6136<br>0.6136<br>0.6136<br>0.6136<br>0.6136<br>0.6136<br>0.6136<br>0.6136<br>0.616<br>0.616<br>0.728<br>0.616<br>0.728<br>0.616<br>0.728<br>0.616<br>0.728<br>0.728<br>0.733<br>0.616<br>0.733<br>0.616<br>0.733<br>0.616<br>0.733<br>0.616<br>0.733<br>0.616<br>0.733<br>0.616<br>0.733<br>0.616<br>0.733<br>0.616<br>0.733<br>0.616<br>0.733<br>0.616<br>0.733<br>0.733<br>0.616<br>0.733<br>0.616<br>0.733<br>0.616<br>0.733<br>0.616<br>0.733<br>0.616<br>0.733<br>0.616<br>0.733<br>0.616<br>0.733<br>0.616<br>0.733<br>0.616<br>0.733<br>0.616<br>0.733<br>0.616<br>0.733<br>0.617<br>0.733<br>0.617<br>0.733<br>0.617<br>0.733<br>0.617<br>0.733<br>0.617<br>0.733<br>0.617<br>0.733<br>0.617<br>0.733<br>0.617<br>0.733<br>0.617<br>0.733<br>0.617<br>0.733<br>0.617<br>0.733<br>0.617<br>0.733<br>0.617<br>0.733<br>0.617<br>0.733<br>0.617<br>0.733<br>0.617<br>0.733<br>0.617<br>0.733<br>0.617<br>0.733<br>0.617<br>0.733<br>0.617<br>0.733<br>0.617<br>0.733<br>0.617<br>0.733<br>0.617<br>0.733<br>0.617<br>0.733<br>0.617<br>0.733<br>0.617<br>0.733<br>0.617<br>0.733<br>0.617<br>0.733<br>0.617<br>0.733<br>0.617<br>0.733<br>0.617<br>0.733<br>0.617<br>0.733<br>0.617<br>0.733<br>0.617<br>0.733<br>0.617<br>0.733<br>0.617<br>0.733<br>0.617<br>0.733<br>0.617<br>0.733<br>0.617<br>0.733<br>0.617<br>0.733<br>0.617<br>0.733<br>0.617<br>0.733<br>0.617<br>0.733<br>0.617<br>0.733<br>0.617<br>0.733<br>0.617<br>0.733<br>0.617<br>0.733<br>0.6170<br>0.733<br>0.6170<br>0.733<br>0.6170<br>0.733<br>0.6170<br>0.733<br>0.6170<br>0.733<br>0.6170<br>0.733<br>0.6170<br>0.733<br>0.6170<br>0.733<br>0.733<br>0.733<br>0.7330<br>0.7330<br>0.7330<br>0.7330<br>0.7330<br>0.7330<br>0.7330<br>0.7330<br>0.7330<br>0.7330<br>0.7330<br>0.7330<br>0.7330<br>0.73300<br>0.7330<br>0.7330<br>0.7330<br>0.73300<br>0.73300<br>0.73300<br>0.7330000000000 |
| 0.053<br>0.569<br>0.788<br>0.601<br>0.601<br>0.611<br>0.815<br>0.815<br>0.815<br>0.886<br>0.511<br>0.551<br>0.551<br>0.551<br>0.551<br>0.551<br>0.551<br>0.551<br>0.551<br>0.551<br>0.551<br>0.551<br>0.551<br>0.551<br>0.551<br>0.551<br>0.551<br>0.551<br>0.551<br>0.551<br>0.551<br>0.551<br>0.551<br>0.550<br>0.560<br>0.560<br>0.560<br>0.560<br>0.560<br>0.560<br>0.560<br>0.560<br>0.560<br>0.560<br>0.560<br>0.560<br>0.560<br>0.560<br>0.560<br>0.560<br>0.560<br>0.560<br>0.560<br>0.560<br>0.560<br>0.560<br>0.560<br>0.560<br>0.560<br>0.560<br>0.560<br>0.560<br>0.560<br>0.560<br>0.560<br>0.560<br>0.560<br>0.560<br>0.560<br>0.560<br>0.560<br>0.560<br>0.560<br>0.560<br>0.560<br>0.560<br>0.560<br>0.560<br>0.560<br>0.560<br>0.560<br>0.560<br>0.560<br>0.560<br>0.560<br>0.560<br>0.560<br>0.560<br>0.560<br>0.560<br>0.560<br>0.560<br>0.560<br>0.560<br>0.560<br>0.560<br>0.560<br>0.560<br>0.560<br>0.560<br>0.560<br>0.560<br>0.560<br>0.560<br>0.560<br>0.560<br>0.560<br>0.560<br>0.560<br>0.560<br>0.560<br>0.560<br>0.560<br>0.560<br>0.560<br>0.560<br>0.560<br>0.560<br>0.560<br>0.560<br>0.560<br>0.560<br>0.560<br>0.560<br>0.560<br>0.560<br>0.560<br>0.560<br>0.551<br>0.550<br>0.551<br>0.550<br>0.551<br>0.550<br>0.551<br>0.550<br>0.551<br>0.550<br>0.551<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.5500<br>0.5500<br>0.5500<br>0.5500<br>0.5500000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.826<br>0.620<br>0.780<br>0.780<br>0.639<br>0.639<br>0.639<br>0.771<br>0.639<br>0.785<br>0.785<br>0.785<br>0.785<br>0.782<br>0.782<br>0.782<br>0.782<br>0.782<br>0.782<br>0.782<br>0.782<br>0.782<br>0.783<br>0.783                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.420<br>0.793<br>0.834<br>0.834<br>0.834<br>0.835<br>0.853<br>0.553<br>0.553<br>0.499<br>0.680<br>0.181<br>0.181<br>0.181<br>0.553<br>0.785<br>0.785<br>0.785<br>0.785<br>0.560<br>0.560<br>0.568<br>0.568<br>0.568<br>0.568<br>0.568<br>0.568                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| V6.V10<br>V6.V11<br>V6.V13<br>V6.V13<br>V6.V14<br>V6.V15<br>V6.V15<br>V6.V19<br>V6.V19<br>V6.V21<br>V6.V21<br>V6.V23<br>V6.V23<br>V6.V24<br>V6.V24<br>V6.V24<br>V6.V24<br>V6.V24<br>V6.V24<br>V6.V24<br>V6.V25<br>V6.V24<br>V6.V25<br>V6.V24<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6.V25<br>V6<br>V6<br>V6<br>V6<br>V6<br>V6<br>V6<br>V6<br>V6<br>V6<br>V6<br>V6<br>V6 | V7:V8<br>V7:V10<br>V7:V11<br>V7:V12<br>V7:V13<br>V7:V15<br>V7:V15<br>V7:V16<br>V7:V16<br>V7:V20<br>V7:V23<br>V7:V23<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V25<br>V7:V7<br>V7:V25<br>V7:V7<br>V7:V7<br>V7:V7<br>V7:V7<br>V7:V7<br>V7:V7<br>V7:V7<br>V7:V7<br>V7:V7<br>V7:V7<br>V7:V7<br>V7:V7<br>V7:V7<br>V7<br>V7:V7<br>V7<br>V7<br>V7<br>V7<br>V7<br>V7<br>V7<br>V7<br>V7<br>V7<br>V7<br>V7<br>V                                  | V8: V9<br>V8: V10<br>V8: V12<br>V8: V13<br>V8: V14<br>V8: V15<br>V8: V15<br>V8: V15<br>V8: V15<br>V8: V23<br>V8: V23<br>V9: V10<br>V9: V11<br>V9: V11<br>V9: V13<br>V9: V13<br>V13<br>V13<br>V13<br>V13<br>V13<br>V13<br>V13<br>V13<br>V13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

| Y ES<br>V A ES<br>V A ES<br>V A A A A A A A A A A A A A A A A A A A                                               | $\begin{smallmatrix} \circ & \circ $                                                           | NO<br>YES<br>YES<br>YES<br>YES<br>NO<br>YES<br>NO<br>YES<br>NO<br>YES                                                                                                                   | YES<br>YES<br>YES<br>YES<br>YES<br>YES<br>YES<br>YES<br>YES<br>YES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.107<br>0.035<br>0.035<br>0.035<br>0.259<br>0.186<br>0.186<br>0.186<br>0.186<br>0.332<br>0.332<br>0.333          | 0.087<br>0.118<br>0.412<br>0.622<br>0.522<br>0.562<br>0.583<br>0.583<br>0.583<br>0.583<br>0.583<br>0.513<br>0.513<br>0.513<br>0.513<br>0.513<br>0.513<br>0.513 | 0.150<br>0.040<br>0.064<br>0.019<br>0.018<br>0.037<br>0.037<br>0.037<br>0.037<br>0.044<br>0.044<br>0.048<br>0.048<br>0.048                                                              | 0.025<br>0.008<br>0.053<br>0.000<br>0.000<br>0.009<br>0.004<br>0.014<br>0.002<br>0.153<br>0.153<br>0.255<br>0.255<br>0.000<br>0.000<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.292<br>0.444<br>0.682<br>0.430<br>0.199<br>0.199<br>0.236<br>0.236<br>0.134<br>0.134<br>0.173                   | 0.322<br>0.311<br>0.036<br>0.032<br>0.044<br>0.044<br>0.005<br>0.005<br>0.002<br>0.005<br>0.002<br>0.010<br>0.010<br>0.010<br>0.010<br>0.039<br>0.010          | 0.272<br>0.429<br>0.365<br>0.516<br>0.516<br>0.522<br>0.522<br>0.637<br>0.011<br>0.011<br>0.011<br>0.193<br>0.366<br>0.738                                                              | 0.537<br>0.659<br>0.435<br>0.713<br>0.891<br>0.891<br>0.598<br>0.598<br>0.598<br>0.598<br>0.598<br>0.598<br>0.598<br>0.598<br>0.598<br>0.543<br>0.508<br>0.543<br>0.508<br>0.543<br>0.508<br>0.543<br>0.508                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.541<br>0.667<br>0.667<br>0.656<br>0.455<br>0.455<br>0.455<br>0.455<br>0.486<br>0.486<br>0.703<br>0.366<br>0.416 | 0.568<br>0.558<br>0.239<br>0.239<br>0.239<br>0.239<br>0.239<br>0.040<br>0.040<br>0.159<br>0.199<br>0.199<br>0.199<br>0.199<br>0.235<br>0.235                   | 0.521<br>0.655<br>0.655<br>0.655<br>0.718<br>0.718<br>0.718<br>0.537<br>0.537<br>0.546<br>0.646<br>0.646<br>0.646<br>0.646<br>0.646<br>0.605<br>0.605<br>0.710                          | 0.733<br>0.812<br>0.660<br>0.844<br>0.944<br>0.630<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773<br>0.773                                                                                                                                                                                                                                                                                                                                        |
| V9:V16<br>V9:V18<br>V9:V19<br>V9:V20<br>V9:V20<br>V9:V21<br>V9:V24<br>V9:V25<br>V9:V25<br>V9:V25<br>V9:V26        |                                                                                                                                                                | V11:V12<br>V11:V13<br>V11:V14<br>V11:V15<br>V11:V15<br>V11:V15<br>V11:V19<br>V11:V20<br>V11:V22<br>V11:V23<br>V11:V23<br>V11:V23<br>V11:V23<br>V11:V23<br>V11:V23<br>V11:V23<br>V11:V23 | V12:V13<br>V12:V15<br>V12:V15<br>V12:V16<br>V12:V17<br>V12:V18<br>V12:V20<br>V12:V23<br>V12:V23<br>V12:V23<br>V12:V25<br>V12:V25<br>V12:V25<br>V12:V25<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V26<br>V12:V16<br>V12:V16<br>V12:V16<br>V12:V16<br>V12:V16<br>V12:V16<br>V12:V16<br>V12:V16<br>V12:V16<br>V12:V17<br>V12:V16<br>V12:V17<br>V12:V16<br>V12:V17<br>V12:V17<br>V12:V17<br>V12:V17<br>V12:V17<br>V12:V17<br>V12:V17<br>V12:V17<br>V12:V17<br>V12:V17<br>V12:V17<br>V12:V17<br>V12:V17<br>V12:V17<br>V12:V17<br>V12:V17<br>V12:V17<br>V12:V17<br>V12:V17<br>V12:V17<br>V12:V17<br>V12:V17<br>V12:V17<br>V12:V17<br>V12:V17<br>V12:V17<br>V12:V17<br>V12:V17<br>V12:V17<br>V12:V17<br>V12:V17<br>V12:V17<br>V12:V17<br>V12:V17<br>V12:V17<br>V12:V17<br>V12:V17<br>V12:V17<br>V12:V17<br>V12:V17<br>V12:V17<br>V12:V17<br>V12:V17<br>V12:V17<br>V12:V17<br>V12:V17<br>V12:V17<br>V12:V17<br>V12:V17<br>V12:V17<br>V12:V17<br>V12:V17<br>V12:V17<br>V12:V17<br>V12:V17<br>V12:V17<br>V12:V17<br>V12:V17<br>V12:V17<br>V12:V17<br>V12:V17<br>V12:V17<br>V12:V17<br>V12:V17<br>V12:V17<br>V12:V17<br>V12:V17<br>V12:V17<br>V12:V17<br>V12:V17<br>V12:V17 |

| NO<br>YES<br>YES<br>YES<br>NO<br>YES<br>NO<br>YES<br>NO<br>YES                                                                                         | YES<br>NO<br>YES<br>YES<br>YES<br>YES<br>YES<br>YES<br>YES<br>YES                                                                                                 | NO<br>YES<br>YES<br>YES<br>NO<br>NO<br>YES<br>YES<br>YES                                                                                    | YES<br>NO NO YES<br>NO NO YES<br>NO NO YES                                                                                 | YES<br>YES<br>YES<br>YES<br>YES<br>NO<br>NO<br>NO<br>YES                                                   | NO<br>YES<br>NO               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------|
| 0.059<br>0.015<br>0.015<br>0.028<br>0.028<br>0.038<br>0.038<br>0.053<br>0.053<br>0.053<br>0.053                                                        | 0.002<br>0.057<br>0.005<br>0.003<br>0.012<br>0.012<br>0.003<br>0.003<br>0.003<br>0.035<br>0.035<br>0.035<br>0.035                                                 | 0.086<br>0.013<br>0.013<br>0.026<br>0.026<br>0.026<br>0.026<br>0.042<br>0.048<br>0.048                                                      | 0.000<br>0.157<br>0.111<br>0.111<br>0.113<br>0.113<br>0.113<br>0.175<br>0.175<br>0.175<br>0.175<br>0.175<br>0.175<br>0.013 | 0.026<br>0.049<br>0.007<br>0.019<br>0.026<br>0.186<br>0.170<br>0.089<br>0.008                              | 0.121<br>0.040<br>0.257       |
| 0.376<br>0.542<br>0.558<br>0.615<br>0.615<br>0.433<br>0.198<br>0.433<br>0.433<br>0.434<br>0.434<br>0.73<br>0.703                                       | 0.709<br>0.382<br>0.640<br>0.648<br>0.648<br>0.648<br>0.656<br>0.637<br>0.637<br>0.627<br>0.577<br>0.577                                                          | 0.325<br>0.556<br>0.556<br>0.556<br>0.530<br>0.720<br>0.720<br>0.442<br>0.442<br>0.442<br>0.442<br>0.452<br>0.558                           | 0.849<br>0.234<br>0.337<br>0.485<br>0.287<br>0.558<br>0.558<br>0.072<br>0.110<br>0.500<br>0.500                            | 0.482<br>0.446<br>0.671<br>0.571<br>0.515<br>0.480<br>0.480<br>0.725<br>0.235<br>0.235<br>0.231<br>0.407   | 0.308<br>0.474<br>0.157       |
| 0.613<br>0.736<br>0.736<br>0.784<br>0.784<br>0.784<br>0.784<br>0.788<br>0.445<br>0.445<br>0.445<br>0.659<br>0.588<br>0.839                             | 0.842<br>0.618<br>0.669<br>0.746<br>0.746<br>0.740<br>0.740<br>0.740<br>0.740<br>0.740<br>0.775<br>0.703                                                          | 0.570<br>0.746<br>0.745<br>0.745<br>0.728<br>0.848<br>0.848<br>0.865<br>0.665<br>0.663<br>0.663<br>0.649<br>0.711                           | 0.921<br>0.484<br>0.580<br>0.580<br>0.586<br>0.466<br>0.747<br>0.747<br>0.268<br>0.331<br>0.707                            | 0.694<br>0.668<br>0.819<br>0.718<br>0.693<br>0.693<br>0.851<br>0.485<br>0.470<br>0.638<br>0.638            | 0.555<br>0.689<br>0.396       |
| V13:V16<br>V13:V17<br>V13:V18<br>V13:V19<br>V13:V20<br>V13:V22<br>V13:V22<br>V13:V22<br>V13:V23<br>V13:V23<br>V13:V24<br>V13:V25<br>V13:V25<br>V13:V25 | V14:V15<br>V14:V16<br>V14:V17<br>V14:V19<br>V14:V20<br>V14:V21<br>V14:V22<br>V14:V22<br>V14:V22<br>V14:V22<br>V14:V22<br>V14:V25<br>V14:V25<br>V14:V25<br>V14:V25 | V15:V16<br>V15:V17<br>V15:V17<br>V15:V19<br>V15:V19<br>V15:V20<br>V15:V22<br>V15:V23<br>V15:V24<br>V15:V24<br>V15:V25<br>V15:V25<br>V15:V25 | V16:V17<br>V16:V18<br>V16:V19<br>V16:V20<br>V16:V22<br>V16:V23<br>V16:V23<br>V16:V23<br>V16:V25<br>V16:V25                 | V17:V18<br>V17:V19<br>V17:V21<br>V17:V21<br>V17:V22<br>V17:V23<br>V17:V23<br>V17:V25<br>V17:V25<br>V17:V25 | V18:V19<br>V18:V20<br>V18:V21 |

| N N N N N N N N N N N N N N N N N N N                                     | YES<br>NO<br>NO<br>YES<br>YES<br>YES                                                         | YES<br>NO<br>YES<br>YES<br>YES<br>NO                                             | YES<br>YES<br>NO<br>NO<br>YES<br>YES<br>YES<br>YES                                                                               | YES<br>YES<br>NO<br>NO<br>YES<br>YES<br>NO<br>YES                                                        |
|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| 0.145<br>0.006<br>0.113<br>0.078<br>0.282<br>0.384                        | 0.033<br>0.062<br>0.238<br>0.059<br>0.048<br>0.038<br>0.008                                  | 0.035<br>0.065<br>0.013<br>0.013<br>0.012<br>0.031                               | 0.000<br>0.023<br>0.068<br>0.115<br>0.115<br>0.158<br>0.014<br>0.035<br>0.133<br>0.228<br>0.469<br>0.469                         | 0.040<br>0.037<br>0.072<br>0.186<br>0.186<br>0.000<br>0.000<br>0.837<br>0.837<br>0.860                   |
| 0.246<br>0.628<br>0.319<br>0.338<br>0.189<br>0.380                        | 0.560<br>0.413<br>0.192<br>0.419<br>0.419<br>0.419<br>0.484<br>0.484<br>0.716                | 0.494<br>0.407<br>0.620<br>0.666<br>0.618<br>0.641<br>0.590                      | 0.846<br>0.498<br>0.398<br>0.302<br>0.973<br>0.444<br>0.973<br>0.176<br>0.176<br>0.091                                           | 0.474<br>0.437<br>0.443<br>0.663<br>0.886<br>0.886<br>0.886<br>0.886<br>0.809<br>0.027<br>0.906<br>0.019 |
| 0.496<br>0.792<br>0.564<br>0.582<br>0.435<br>0.616                        | 0.749<br>0.642<br>0.647<br>0.647<br>0.710<br>0.695<br>0.846<br>0.846                         | 0.703<br>0.638<br>0.787<br>0.787<br>0.787<br>0.786<br>0.800<br>0.768             | 0.925<br>0.706<br>0.631<br>0.550<br>0.550<br>0.986<br>0.567<br>0.540<br>0.419<br>0.301                                           | 0.688<br>0.661<br>0.665<br>0.814<br>0.941<br>0.889<br>0.163<br>0.952<br>0.952                            |
| V18:V22<br>V18:V23<br>V18:V24<br>V18:V26<br>V18:V25<br>V18:V26<br>V18:V26 | V19: V20<br>V19: V21<br>V19: V22<br>V19: V23<br>V19: V24<br>V19: V26<br>V19: V26<br>V19: V26 | V20: V21<br>V20: V22<br>V20: V23<br>V20: V23<br>V20: V24<br>V20: V25<br>V20: V25 | V21: V22<br>V21: V23<br>V21: V24<br>V21: V25<br>V21: V25<br>V21: V25<br>V21: V25<br>V21: V22<br>V22: V24<br>V22: V25<br>V22: V25 | V23: V24<br>V23: V25<br>V23: V26<br>V23: V26<br>V24: V25<br>V24: V26<br>V24: V26<br>V25: V26<br>V25: V27 |

### **APPENDIX I: REGRESSION ANALYSIS**

All regression graphs can be found on an accompanying CD found at the back of this thesis. A legend is provided at the beginning of these figures to explain the renumbering of each individual. All BSI measurements correspond to their chronological re-numbering shown in Appendix H, H-1 (females) and H-2 (males). Further BSI measurement descriptions can be found in Appendix B.

## **APPENDIX J: GROWTH SEQUENCING DATA**

## J-1 Sadlermiut and Sacred Heart females BSI age at maturation

Makado - Pinco

| Body Size Indicators (original numbering)            | Age at Maturation (yrs) |
|------------------------------------------------------|-------------------------|
| 3. Upper facial breadth                              | 3.0                     |
| 4. Biorbital breadth                                 | 3.0                     |
| 66. Maximum length of talus                          | 9.0                     |
| 28/29. Sacrum superior surface area                  | 10.0                    |
| 37. Humerus distal joint breadth                     | 11.0                    |
| 39. Humerus capitual height                          | 11.0                    |
| 33. Maximum humerus length                           | 11.5                    |
| 34. Humerus midshaft circumference                   | 12.0                    |
| 59. Tibia midshaft width                             | 12.0                    |
| 51. Femur midshaft circumference                     | 12.0                    |
| 11. Maximum cranial height                           | 13.0                    |
| 14. Interorbital breadth                             | 13.0                    |
| 17. Maximum breath of the mandible                   | 13.0                    |
| 12/13. Foramen magnum area                           | 13.5                    |
| 44. Femur maximum superior/inferior diameter of head | 14.0                    |
| 45. Femur head breadth                               | 14.0                    |
| 50. Maximum femur length                             | 14.0                    |
| 60. Maximum fibula length                            | 14.0                    |
| 38. Humerus anteroposterior diameter of head         | 15.0                    |
| 53. Maximum tibia length                             | 15.0                    |
| 57. Tibia transverse diameter of talar facet         | 15.0                    |
| 41. Maximum radius length                            | 15.0                    |
| 64. Maximum length of calcaneus                      | 15.5                    |
| 40. Maximum ulna length                              | 16.0                    |
| 48. Biepicondylar diameter of distal femur           | 16.0                    |
| 24/25. L1 superior surface area                      | 20.0                    |
| 26/27. L5 superior surface area                      | 20.0                    |

\* maturation data from Scheuer and Black (2000)

| Body Size Indicators (original numbering)            | Age at Maturation (yrs) |
|------------------------------------------------------|-------------------------|
| 3. Upper facial breadth                              | 3.0                     |
| 20/21. C7 superior surface area                      | 4.5                     |
| 28. Sacrum anterior height of first segment          | 10.0                    |
| 34. Humerus midshaft circumference                   | 12.0                    |
| 52. Femur midshaft width                             | 12.0                    |
| 59. Tibia midshaft width                             | 12.0                    |
| 37. Humerus distal joint breadth                     | 13.5                    |
| 39. Humerus capitual height                          | 13.5                    |
| 62. Patella maximum breadth                          | 16.0                    |
| 42. Transverse diameter of radius head               | 16.5                    |
| 56/57. Talar facet area                              | 16.5                    |
| 60. Maximum fibula length                            | 17.0                    |
| 44. Femur maximum superior/inferior diameter of head | 17.5                    |
| 45. Femur head breadth                               | 17.5                    |
| 48. Biepicondylar diameter of distal femur           | 17.5                    |
| 50. Maximum femur length                             | 17.5                    |
| 53. Maximum tibia length                             | 18.4                    |
| 55. Proximal tibia breadth                           | 18.4                    |
| 58. Anteroposterior diameter of proximal tibia       | 18.4                    |
| 40. Maximum ulna length                              | 18.5                    |
| 64. Maximum length of calcaneus                      | 19.0                    |
| 65. Posterior length of calcaneus                    | 19.0                    |
| 68. Articulated height of calcaneus/talus            | 19.0                    |
| 22/23. T12 superior surface area                     | 20.0                    |
| 24/25. L1 superior surface area                      | 20.0                    |
| 26/27. L5 superior surface area                      | 20.0                    |
| 32. Bi-iliac breadth                                 | 21.5                    |

## J-2 Sadlermiut and Sacred Heart males BSI age at maturation

\* maturation data from Scheuer and Black (2000)

## J-3 Scheuer and Black (2000) skeletal maturation sequencing

| Bone           | BSI Measurements                                                      | Comments on Morphology                                          | Male Average Age (yrs) | Female Average Age (yrs) |
|----------------|-----------------------------------------------------------------------|-----------------------------------------------------------------|------------------------|--------------------------|
| cranium        | upper facial breadth                                                  | adult morphology of frontal and zygomatic bones                 | 3.0                    | 3.0                      |
| cranium        | biorbital breadth                                                     | adult morphology of frontal and zygomatic bones                 | 3.0                    | 3.0                      |
| cranium        | postorbital breadth                                                   | adult morphology of the frontal bone                            | 3.0                    | 3.0                      |
| cranium        | biporionic breadth                                                    | growth of tympanic plate, formation of temporal mastoid process | 3.0                    | 3.0                      |
| C7             | anteroposterior diameter of the superior aspect on the vertebral body | neural arches fuse to the centrum                               | 4,5                    | 4.5                      |
| C7             | transverse diameters of the superior aspect on the vertebral body     | neural arches fuse to the centrum                               | 4.5                    | 4,5                      |
| cranium        | maximum cranial breadth                                               | loss of parietal eminences                                      | 5.0                    | 5.0                      |
| sacrum         | anteroposterior diameter of superior surface                          | fusion complete                                                 | 10.0                   | 10.0                     |
| sacrum         | transverse diameter of superior surface                               | fusion complete                                                 | 10.0                   | 10.0                     |
| sacrum         | anterior height of first segment                                      | fusion complete                                                 | 10.0                   | 10.0                     |
| talus          | mediolateral diameter of the tibial facet                             | fusion of talar epiphysis complete                              | 12.0                   | 9.0                      |
| talus          | maximum length of the talus                                           | fusion of talar epiphysis complete                              | 12.0                   | 9.0                      |
| femur          | midshaft circumference                                                | adult length of femur shaft                                     | 12.0                   | 12.0                     |
| femur          | midshaft width                                                        | adult length of femur shaft                                     | 12.0                   | 12.0                     |
| humerus        | midshaft circumference                                                | adult length of humerus shaft                                   | 12.0                   | 12.0                     |
| humerus        | minimum shaft circumference                                           | adult length of humerus shaft                                   | 12.0                   | 12.0                     |
| mandible       | lateral incisors and canines mesiodistal widths                       | total eruption of mandibular canines and lateral incisors       | 12.0                   | 12.0                     |
| maxilla        | intercanine breadth                                                   | total eruption of maxillary canines                             | 12.0                   | 12.0                     |
| tibia          | midshaft circumference                                                | adult length of tibia shaft                                     | 12.0                   | 12.0                     |
| tibia          | midshaft width                                                        | adult length of tibia shaft                                     | 12.0                   | 12.0                     |
| cranium        | maximum cranial length                                                | adult size and morphology of nasal bones                        | 13.0                   | 13.0                     |
| cranium        | maximum orbital height                                                | adult morphology of frontal, maxilla and nasal bones            | 13.0                   | 13.0                     |
| cranium        | maximum orbital breadth                                               | adult morphology of frontal, maxilla and nasal bones            | 13.0                   | 13.0                     |
| cranium        | orbital area                                                          | adult morphology of frontal, maxilla and nasal bones            | 13.0                   | 13.0                     |
| cranium        | interorbital breadth                                                  | adult morphology of frontal, maxilla and nasal bones            | 13.0                   | 13.0                     |
| mandible       | chin depth (males)                                                    | all permanent teeth emerged except third molars                 | 13.0                   | 13.0                     |
| mandible       | maximum width                                                         | all permanent teeth emerged except third molars                 | 13.0                   | 13.0                     |
| maxilla        | palate length                                                         | all permanent teeth emerged except third molars                 | 13.0                   | 13.0                     |
| humerus        | distal epiphyseal breadth                                             | fusion of epiphysis to humerus shaft                            | 13.5                   | 11.0                     |
| humerus        | distal joint breadth                                                  | fusion of epiphysis to humerus shaft                            | 13.5                   | 11.0                     |
| humerus        | capitual height                                                       | fusion of distal epiphysis to humerus shaft                     | 13.5                   | 11.0                     |
| humerus        | maximum humerus length                                                | fusion of proxmial and distal epiphyses                         | 13.5                   | 11.5                     |
| cranium        | occipital condyle length                                              | fusion of spheno-occipital synchondrosis                        | 15.5                   | 13.5                     |
| cranium        | occpitial condyle breadth                                             | fusion of spheno-occipital synchondrosis                        | 15.5                   | 13.5                     |
| cranium        | occipital condyle area                                                | fusion of spheno-occipital synchondrosis                        | 15.5                   | 13.5                     |
| cranium        | basion-bregma height                                                  | appearance of the foramen magnum                                | 15.5                   | 13.5                     |
| foramen magnum | maximum length (anterior to posterior)                                | appearance at the base of the occipital bone                    | 15.5                   | 13.5                     |
| foramen magnum | maximum breadth                                                       | appearance at the base of the occipital bone                    | 15.5                   | 13.5                     |
| foramen magnum | total area                                                            | appearance at the base of the occipital bone                    | 15.5                   | 13.5                     |
| patella        | maximum width                                                         | adult size and morphology                                       | 16.0                   | 14.0                     |
| metacarpal     | second metacarpal length                                              | heads of metacarpals fuse and reach adult size and morphology   | 16.3                   | 14.3                     |
| metacarpal     | second metacarpal width                                               | heads of metacarpals fuse and reach adult size and morphology   | 16.3                   | 14.3                     |
| radius         | mediolateral diameter of the radial head                              | fusion of epiphysis to radius shaft                             | 16.5                   | 12.3                     |
| tibia          | anteroposterior diameters of the talar facet on the distal tibia      | fusion to tibia shaft                                           | 16.5                   | 15.0                     |
| tibia          | transverse diameter of the talar facet on the distal tibia            | fusion to tibia shaft                                           | 16.5                   | 15.0                     |

ARE A MARKED AND

| femur           | anteroposterior diameter of femoral shaft inferior to the lesser trochant  |                                                                | 16.5 | 16.5 |
|-----------------|----------------------------------------------------------------------------|----------------------------------------------------------------|------|------|
| femur           | transverse diameter of the femoral shaft inferior to the lesser trochanter |                                                                | 16.5 | 16.5 |
| fibula          | maximum fibula length                                                      | fusion of proxmial and distal epiphyses                        |      | 14   |
| femur           | maximum superoinferior diameter of the femoral head                        | fusion of head to the femur shaft                              | 17.5 | 14.0 |
| femut           | femoral head breadth                                                       | fusion of head to the femur shaft                              | 17.5 | 14   |
| femur           | maximum femur length                                                       | fusion of head and distal epiphyses                            | 17.5 | 14   |
| femur/fibula    | total leg length                                                           | fusion of proximal and distal epiphyses in fibula and femur    | 17.5 | 14   |
| radius          | maximum radius length                                                      | fusion of proximal and distal epiphyses                        | 17.5 | 14.0 |
| femur           | biepicondylar diameter of the distal femur                                 | fusion of distal epiphysis to femur shaft                      | 17.5 | 16.0 |
| femur           | shaft anteroposterior diameter of the distal femur                         | fusion of distal epiphysis to femur shaft                      | 17.5 | 16.0 |
| tibia           | anteroposterior diameter of proximal tibia                                 | fusion of epiphysis to tibia shaft                             | 18.4 | 15.0 |
| tibia           | maximum tibia length                                                       | fusion of proximal and distal epiphyses                        | 18.4 | 15.0 |
| tibia           | proximal breadth                                                           | fusion of epiphysis to tibia shaft                             | 18.4 | 15.0 |
| humerus         | maximum anterior posterior diameter of humerus head                        | fusion of head to proximal humerus epiphysis                   | 18,5 | 15.0 |
| humerus/radius  | total arm length                                                           | fusion of proxmimal and distal epiphyses of radius and humerus | 18.5 | 15.5 |
| ulna            | maximum ulna length                                                        | fusion of proximal and distal epiphyses                        | 18.5 | 16.0 |
| ankle           | maximum breadth                                                            | adult morhpology of tibia, fibular, calcaneus and talus        | 19.0 | 15.5 |
| calcaneus       | maximum length of the calcaneus as taken parallel to the long axis         | complete fusion of the calcaneal epiphysis                     | 19.0 | 15.5 |
| calcaneus       | posterior length of the calcaneus                                          | complete fusion of the calcaneal epiphysis                     | 19.0 | 15.5 |
| talus/calcaneus | articulated height                                                         | adult morphology and size of the talus and calcaneus           | 19.0 | 15.5 |
| L1              | anteroposterior diameter of superior surface                               | complete fusion of epiphyses                                   | 20.0 | 20.0 |
| LI              | transverse diameter of superior surface                                    | complete fusion of epiphyses                                   | 20.0 | 20.0 |
| LS              | anteroposterior diameter of superior surface                               | complete fusion of epiphyses                                   | 20.0 | 20.0 |
| L5              | transverse diameter of superior surface                                    | complete fusion of epiphyses                                   | 20.0 | 20.0 |
| T12             | anteroposterior diameter of superior surface                               | complete fusion of epiphyses                                   | 20.0 | 20.0 |
| T12             | transverse diameter of superior surface                                    | complete fusion of epiphyses                                   | 20.0 | 20.0 |
| pelvis          | bi-iliac breadth                                                           | iliac crest fusion complete                                    | 21.5 | 21.5 |
| vertebrae       | maximum height of C2-L5                                                    | vertebral column complete                                      | 25.0 | 25.0 |

-----

#### J-4 Sadlermiut females sub-adult calibration data

| Skeleton # | Adult/Sub-Adult | Average Age | 3     | %     | 4     | *     | 66   | %     | 28 and 29 | %     | 37   | %     | 39   | %     | 33    | *     | . 34 | %     | 59   |
|------------|-----------------|-------------|-------|-------|-------|-------|------|-------|-----------|-------|------|-------|------|-------|-------|-------|------|-------|------|
| XTV-C:96   | adult           | 32.5        |       |       |       |       |      |       |           |       | 39.6 |       | 17.9 |       | 282.0 |       | 63.0 |       | 22.2 |
| XIV-C:112  | adult           | 30.0        | 108.0 |       | 98.3  |       | 57.0 |       | 1641.8    |       | 40.8 |       | 19.4 |       | 319.0 |       | 65.0 |       | 20.3 |
| XIV-C:175  | adult           | 35.0        | 102.0 |       | 94.4  |       | 46.7 |       | 1039.8    |       | 38.6 |       | 16.6 |       | 241.0 |       | 54.0 |       | 16.1 |
| XIV-C:105  | adult           | 37,5        | 101.0 |       | 90.6  |       | 53.1 |       |           |       | 38.8 |       | 17.8 |       | 276.0 |       | 62.0 |       | 18.0 |
| XIV-C:145  | adult           | 40.0        |       |       |       |       | 57.0 |       | 1608.0    |       | 42.3 |       | 18.8 |       | 307.0 |       | 66.0 |       | 22.6 |
| XIV-C:149  | adult           | 45.0        | 101.0 |       | 94.8  |       | 54.4 |       | 945.8     |       | 38.2 |       | 17.7 |       | 279.0 |       | 55.0 |       | 17.6 |
| XIV-C:153  | adult           | 50.0        | 104.0 |       | 97.4  |       |      |       |           |       | 40.2 |       | 18.4 |       | 280.0 |       | 64.0 |       | 19.9 |
| XIV-C:103  | adult           | 50.0        | 107.0 |       | 97.3  |       | 54.1 |       | 1419.8    |       | 40.8 |       | 18.5 |       | 278.0 |       | 62.0 |       | 18.9 |
| XIV-C:104  | adult           | 50,0        | 108.0 |       | 102.2 |       |      |       | 1452.4    |       | 38.3 |       | 17.5 |       | 287.0 |       | 57.0 |       | 19.5 |
| XIV-C:98   | adult           | 52,5        | 103.0 |       | 93.3  |       | 55.5 |       | 1164.9    |       | 39.1 |       | 16.5 |       | 276.0 |       | 61.0 |       | 18.5 |
| XIV-C:155  | adult           | 50.0        | 101.0 |       | 96.5  |       | 55.3 |       | 1397.5    |       | 39.1 |       | 18.7 |       | 271.0 |       | 65,0 |       | 20.1 |
| XIV-C:219  | adult           | 57.5        | 108.0 |       | 97.6  |       |      |       | 1739.2    |       | 39.1 |       | 18.5 |       | 291.0 |       | 60.0 |       | 18.8 |
| XIV-C:183  | adult           | 55.0        | 101.0 |       | 96.0  |       | 53.1 |       | 1299.3    |       | 41.3 |       | 17.7 |       | 281.0 |       | 57.0 |       | 16.5 |
| XIV-C:148  | adult           | 55.0        | 97.0  |       | 93.1  |       | 51.9 |       |           |       | 36.1 |       | 16.1 |       | 250.0 |       | 56.0 |       | 18.2 |
| XIV-C:100  | adult           | 60.0        | 104.9 |       | 96.3  |       | _    |       | 1374.5    |       | 40.1 |       | 18.2 |       | 296.0 |       | 64.0 |       | 20.6 |
| XTV-C:192  | adult           | 60.0        | 109.0 |       | 96.8  |       | 54.1 |       | 1345.6    |       | 39.0 |       | 16.8 |       | 283.0 |       | 57.0 |       | 18.3 |
| XIV-C:221  | adult           | 60.0        | 105.0 |       | 97.2  |       | 55.9 |       | 1380.1    |       | 40.5 |       | 19.5 |       | 287.0 |       | 59.0 |       | 17.5 |
| XIV-C:122  | sub-adult       | 0,1         | 55.0  | 53.0  | 52.5  | 55.0  |      |       |           |       |      |       |      |       | 63.0  | 22.0  | 17.0 | 28.0  | 5.5  |
| XIV-C:107  | sub-adult       | 0.5         | _     |       |       |       |      |       |           |       |      |       |      |       |       |       |      |       | 6.4  |
| XTV-C:120  | sub-adult       | 1.0         | 62.9  | 60.0  | 58.2  | 61.0  |      |       | T I       |       |      |       |      |       | 89.0  | 32.0  | 25.0 | 41.0  | 7.5  |
| XIV-C:77   | sub-adult       | 1.5         | 67.8  | 65.0  | 61.4  | 64.0  |      |       |           |       |      |       |      |       | 94.0  | 33.0  | 33.0 | 55.0  | 8.8  |
| XIV-C:79   | sub-adult       | 1.5         | 71.5  | 69.0  | 66.0  | 69.0  |      |       |           |       |      |       |      |       | 87.0  | 31.0  | 32.0 | 53.0  | 8.9  |
| XTV-C:78   | sub-adult       | 6.0         |       |       |       |       |      |       |           |       |      |       |      |       |       |       |      | _     |      |
| XIV-C:118  | sub-adult       | 6.5         |       |       |       |       |      |       |           |       |      |       |      |       | 146.0 | 52.0  | 39.0 | 65.0  | 11.2 |
| XIV-C:76   | sub-adult       | 8.0         | 98.0  | 94.0  | 88.0  | 92.0  |      |       | 630.7     | 46.0  |      |       |      |       |       |       |      |       |      |
| XIV-C:124  | sub-adult       | 10.0        | 96.2  | 93.0  | 88.5  | 92.0  | 38.4 | 71.0  |           |       |      |       |      |       | 168.0 | 60.0  | 41.0 | 68.0  | 14.3 |
| XIV-C:220  | sub-adult       | 10.5        | 91.0  | 88.0  | 85.4  | 89.0  | 44.3 | 82.0  |           |       |      |       |      |       | 203.0 | 72.0  | 40.0 | 66.0  | 12.5 |
| XIV-C:75   | sub-adult       | 11.5        |       |       |       |       |      |       | 709.7     | 52.0  |      |       |      |       |       |       |      |       |      |
| XIV-C:73   | sub-adult       | 17.5        |       |       |       |       |      |       | 1164.8    | 85.0  | 37.1 | 94.0  | 17.9 | 100.0 | 262.0 | 93.0  | 60.0 | 99,0  |      |
|            |                 | AVERAGE     | 104.0 | 100.0 | 96.1  | 100.0 | 54.0 | 100.0 | 1369.9    | 100.0 | 39.5 | 100.0 | 17.9 | 100.0 | 281.4 | 100.0 | 60.4 | 100.0 | 19.0 |

- Marcine - 16 -

BSI Measurements (original numbering see Appendix B, B-1)

a construction and a second

\* shaded squares denote the closest percentage to the adult average of 100%

|       |              |       |          |               |              | ~        |              |          |                 |       |              |       |       |              |       |       |                |       |              |              |
|-------|--------------|-------|----------|---------------|--------------|----------|--------------|----------|-----------------|-------|--------------|-------|-------|--------------|-------|-------|----------------|-------|--------------|--------------|
|       |              |       |          |               |              |          |              |          |                 |       |              |       |       |              |       |       |                |       |              |              |
|       |              |       |          |               |              |          |              |          |                 |       |              |       |       |              |       |       |                |       |              |              |
|       |              |       |          |               |              |          |              |          |                 |       |              |       |       |              |       |       |                |       |              |              |
|       |              |       |          |               |              |          |              |          |                 |       |              |       |       |              |       |       |                |       |              |              |
|       |              |       |          |               |              |          |              |          |                 |       |              |       |       |              |       |       |                |       |              |              |
| %     | 51           | %     | 11       | %             | 14           | %        | 17           | %        | 12 and 13       | *     | 44           | %     | 45    | %            | 50    | %     | 60             | %     | 38           | %            |
|       | 93.0         |       |          |               | 22.7         |          |              |          |                 |       | 41.4         |       | 43.9  |              | 422.0 |       |                |       | 37.8         |              |
|       | 94.0         |       | 138.0    | ļ             | 20.8         |          | 107.0        |          | 797.3           |       | 46.4         |       | 46.3  |              | 452.0 |       | 363.0          |       | 42.8         |              |
|       | 71.0         |       |          | L             | 20.4         |          |              |          | 816.6           |       | 37.8         |       | 38.8  | L            | 358.0 |       |                |       | 35.2         |              |
|       | 82.0         |       | 127.0    |               | 16.8         |          | 97.0         | L        | 771.0           |       | 43.6         |       | 41.8  | L            | 390.0 |       | 307.0          | L     | 40.6         |              |
|       |              | L     |          |               | 20.6         | ļ        | L            |          | 1               |       |              | L     |       | L            |       |       | 346.0          | L     | 44.2         |              |
|       | 81.0         |       | 124.0    |               | 20.8         |          | 101.4        |          | 891.1           |       | 41.2         |       | 41.5  |              | 410.0 |       | 327.0          |       | 36.8         |              |
|       | 79.0         |       | 133.0    |               | 20.2         | L        | 97.7         |          |                 |       | 43.1         |       | 42.7  |              | 398.0 |       | 305.0          |       | 39.2         |              |
|       | 82.0         |       | 136.0    |               | 19.8         |          | 114.9        |          | 884.6           |       | 42.9         |       | 42.8  |              | 404.0 |       | 320.0          |       | 40.2         | L            |
|       | 85.0         |       | 132.0    |               | 20.7         | ļ        | 103.2        |          | 967.8           |       | 42.2         |       | 42.9  |              | 401.0 |       | 307.0          | -     | 37.9         | L            |
|       | 85.0         |       | 128.0    |               | 18.3         |          | 92.4         |          | 929.0           |       | 44.0         |       | 44.2  |              | 412.0 |       | 315.0          |       | 43.6         | L            |
|       | 83.0         |       | 138.0    |               | 21.2         |          | 103.2        |          | 919.8           |       | 40.5         |       | 44.5  |              | 401.0 |       | 311,0          |       | 38.2         | L            |
|       | 84.0         |       | 136.0    |               | 22.1         |          | 110.9        |          | 852.5           |       | 42.8         |       | 44.0  |              | 414.0 |       | 312.0          |       | 41.0         | └──          |
|       | 84.0<br>79.0 |       | 129.0    | <b>├</b> ───┤ | 17.0<br>20.5 | <u> </u> | 86.2<br>97.4 |          | 760.19<br>778,4 |       | 41.6         |       | 42.6  |              | 416.0 |       | 316.0<br>276.0 |       | 40.1<br>35.2 | —            |
|       | 79.0         |       | 131.0    |               |              |          |              | <u> </u> | 951.3           |       | 41.0         |       | 41.2  | <del>_</del> | 370.0 |       |                |       |              | <del> </del> |
|       | 82.0         |       | 139.0    | l             | 21.4<br>23.6 |          | 117.1        |          | 931.3           |       | - 42.4       |       | 1 124 |              | 413.0 |       | 330.0<br>314.0 |       | 41.8         | <b>└</b> ──  |
|       | 77.0         |       | 139.0    |               | 19.7         | <u> </u> | 99.9         | ┣───     | 944.6           |       | 42.4<br>43.4 |       | 43.4  |              | 413.0 |       | 321.0          |       | 40.3         | <u> </u>     |
| 29.0  | 21.0         | 25.0  | 139.0    |               | 19.7         | 53.0     | 48.3         | 47.0     | 744.0           |       | 43.4         |       | 44.9  |              | 72.0  | 18.0  | 58.0           | 18.0  | 40.3         |              |
| 34.0  | 21.0         | 43.0  | ŧ        |               | 10.9         | 33.0     | 58.8         | 57.0     |                 |       |              |       |       |              | 12.0  | 10.0  | 36.0           | 18.0  |              | <u> </u>     |
| 39.0  | 29.0         | 35.0  | <u> </u> |               | 14.0         | 69.0     | 55.9         | 55,0     | 1 1             |       | <u> </u>     |       | 1     |              | 110.0 | 27.0  | 88.0           | 28.0  |              | <u> </u>     |
| 46.0  | 36.0         | 44.0  |          |               | 15.1         | 74.0     | 65.8         | 64.0     | 660.3           | 76.0  |              |       | 1     | <u> </u>     | 122.0 | 30.0  | 94.0           | 30.0  |              | r            |
| 47.0  |              |       | <u> </u> |               | 16.9         | 83.0     | 61.4         | 60.0     |                 |       |              |       |       |              |       |       |                |       |              | <u> </u>     |
|       |              |       |          |               |              | 1        | 80.9         | 79.0     | 1 1             |       |              |       | 1     |              |       |       |                |       |              |              |
| 59.0  | 46.0         | 56.0  |          |               | 18.4         | 90.0     | 75.2         | 74.0     |                 |       |              |       | 1     |              | 195.0 | 48.0  | 150.0          | 47.0  |              |              |
|       |              |       | 133.0    | 100.0         | 17.6         | 86.0     | 87.3         | 85.0     | 772.2           | 89.0  | ľ            |       | 1     |              |       |       |                |       | 25.5         | 64.0         |
| 75.0  | 54.0         | 65.0  |          |               | 19.0         | 93,0     | 86.5         | 85.0     |                 |       | 29.3         | 69.0  | 29.0  | 67.0         | 236.0 | 58.0  |                |       |              |              |
| 66.0  | 53.0         | 64.0  | 126.0    | 95.0          | 18.9         | 93.0     | 88.0         | 86.0     | 860.9           | 99.0  | 34.5         | 82.0  | 35.5  | 83.0         | 276.0 | 68.0  | 213.0          | 67.0  |              |              |
|       |              |       |          |               |              |          |              |          |                 |       |              |       |       |              |       |       |                |       |              |              |
|       |              |       | L        |               |              |          |              | L        |                 |       |              |       |       |              |       |       | 308.0          | 97.0  | 31.1         | 79,0         |
| 100.0 | 82.7         | 100.0 | 133,1    | 100.0         | 20.4         | 100.0    | 102.3        | 100.0    | 866.5           | 100.0 | 42.3         | 100.0 | 43.0  | 100.0        | 406.1 | 100.0 | 318.0          | 100.0 | 39.6         | 100.0        |

|                |       |            |          |       | •     | ~                   |          |                    |           |              |              |                        |       |           |       |
|----------------|-------|------------|----------|-------|-------|---------------------|----------|--------------------|-----------|--------------|--------------|------------------------|-------|-----------|-------|
|                |       |            |          |       |       |                     |          |                    |           |              |              |                        |       |           |       |
|                |       |            |          |       |       |                     |          |                    |           |              |              |                        |       |           |       |
|                |       |            |          |       |       |                     |          |                    |           |              |              |                        |       |           |       |
|                |       |            |          |       |       |                     |          |                    |           |              |              |                        |       |           |       |
|                |       |            |          |       |       |                     |          |                    |           |              |              |                        |       |           |       |
|                |       |            |          |       |       | r                   |          |                    | <u></u>   |              | <del> </del> |                        |       | 1         |       |
| 53             | %     | 57<br>32.3 | %        |       | %     | <u>64</u><br>68,9   | <u>%</u> | <b>40</b><br>222.0 | %         | 48           | %            | 24 and 25              | %     | 26 and 27 | %     |
| 333.0<br>371.0 |       | 32.3       |          | 202.0 |       | <u>68,9</u><br>74.8 |          | 253.0              | ·         | 77.8         | <u> </u>     | ++                     |       | 1166.9    |       |
| 289.0          |       | 26.2       |          | 175.0 |       | 63.2                |          | 198.0              |           | 75.9<br>68.0 | <u> </u>     | 1138.7                 |       | 1956.4    |       |
| 316.0          |       | 32.0       |          | 200.0 |       | 74.0                |          | 220.0              |           | 06,0         | <u> </u>     | 837.9                  |       | 1163.4    |       |
| 355.0          |       | 32.9       |          | 214.0 |       | 74.0                |          | 232.0              |           | ——           | <u> </u>     | 1110.0                 |       | 1830.8    |       |
| 337.0          |       | 27.6       | <u> </u> | 198.0 |       | 70.0                |          | 232.0              |           | 73.6         | t——          | <u>1119.2</u><br>877.9 |       | 1003.9    |       |
| 314.0          |       | 27.0       |          | 198.0 |       | 69.1                |          | 215.0              |           |              | t—           | +. 0//.9               |       | 1003.5    |       |
| 335.0          |       | 29.7       |          | 210.0 |       |                     |          | 231.0              |           | 69.0         | <u> </u>     | 951.8                  |       | 41        | _     |
| 318.0          |       | 31.8       |          | 198.0 |       | 70.3                |          | 216.0              |           | 76.0         | <u> </u>     | 751.0                  |       |           |       |
| 323.0          |       | 29.3       |          | 202.0 |       | 69.5                |          | 220.0              |           | 77.5         | +            | 912.3                  |       | 1201.4    |       |
| 315.0          |       | 29.7       |          | 191.0 |       | 72.5                |          | 210.0              |           | 75,3         | t            | 1086.0                 |       | 1578.4    |       |
| 318.0          |       | 29.8       | 1        | 198.0 |       | 70.3                | [        | 221.0              | · · · · · | 74.9         |              | 965.7                  |       | 1490.8    | -     |
| 327.0          |       | 32.0       |          | 191.0 |       | 68.2                |          | 210.0              |           | 76.1         |              | 1040.2                 |       | 1420.0    |       |
| 289.0          |       | 28.9       |          | 175.0 |       |                     |          | 196.0              | Ť.        | 72.8         |              | +                      |       |           |       |
| 338.0          |       | 28.5       |          | 208.0 |       | 68.8                |          | 1                  |           |              |              | 1072.2                 |       |           |       |
| 328.0          |       | 31.9       |          | 207.0 |       |                     |          | 230.0              |           | 72.5         |              | 1120.1                 |       |           |       |
| 331.0          |       | 31.1       |          | 204.0 |       | 71.5                |          | 221.0              |           | 76.2         |              | 1034.2                 |       | 1526.5    |       |
| 62.0           | 19.0  |            |          | 50.0  | 25.0  |                     |          | 58.0               | 26.0      |              |              |                        |       |           |       |
| 77.0           | 24.0  |            |          | 61.0  | 30.0  |                     |          | 69.0               | 31.0      |              |              | T                      |       |           |       |
| 88.0           | 27.0  |            |          |       |       |                     |          | 76.0               | 35.0      |              |              |                        |       |           |       |
| 97.0           | 30.0  |            |          | 69.0  | 34.0  |                     |          | 81.0               | 37.0      |              |              |                        |       |           |       |
| 90.0           | 28.0  |            |          | 67.0  | 33.0  |                     |          |                    |           |              |              |                        |       |           |       |
|                |       |            |          | 106.0 | 53.0  |                     |          |                    |           |              |              |                        |       |           |       |
| 146.0          | 45.0  |            |          | 103.0 | 51.0  | 36.2                | 51.0     |                    |           |              | L            |                        |       |           |       |
|                |       |            |          | 131.0 | 65.0  |                     |          |                    |           |              |              | 536.9                  | 53.0  | 689.7     | 48.0  |
| 180.0          | 55.0  |            |          | 122.0 | 61.0  |                     |          | 137.0              | 62.0      | 56.2         | 76.0         | 471.0                  | 46,0  | 731.6     | 51.0  |
| 217.0          | 67.0  | 25.Z       | 83.0     | 143.0 | 71.0  | 54.9                | 78.0     | 157.0              | 71.0      |              | ļ            | 538.1                  | 53.0  |           |       |
|                |       |            |          | 144.0 | 72.0  |                     |          |                    |           |              | I            | 565.2                  | 56,0  | 788.8     | 55,0  |
| 325,7          | 100.0 | 20.2       |          | 185.0 | 92,0  | 68.9                | 98.0     | 208.0              | 95.0      | L            |              | 942.5                  | 93,0  | 1127.5    | 79.0  |
| 343.7          | 100.0 | 30.3       | 100.0    | 200.2 | 100.0 | 70.6                | 100.0    | 219.9              | 100.0     | 74.3         | 100.0        | 1013.0                 | 100.0 | 1435.4    | 100.0 |

#### J-5 Sadlermiut males sub-adult calibration data

|            |                 |             | BOI MERII | ements (ori | ginal number | ing see Appe | andix D, D-1) |       |      |       |      |       |      |       |      |       |      |       |      |
|------------|-----------------|-------------|-----------|-------------|--------------|--------------|---------------|-------|------|-------|------|-------|------|-------|------|-------|------|-------|------|
| Skeleton # | Adult/Sub-Adult | Average Age | 3         | %           | 20 and 21    | %            | 28            | %     | 34   | %     | 52   | %     | 59   | _%    | 37   | %     | 39   | %     | 62   |
| XIV-C:230  | adult           | 27.5        | 113,0     |             | 291.2        |              | 34.1          |       | 68.0 |       | 28.8 |       | 22.2 |       | 45.1 |       | 18.7 |       |      |
| XIV-C:74   | adult           | 30.0        |           |             |              |              | 26.2          |       | 67.0 |       |      |       | 20.9 |       | 42.0 |       | 20.8 |       |      |
| XIV-C:117  | adult           | 30,0        | 112.0     |             | 401.6        |              | 36.7          |       | 67.0 |       | 28.9 |       | 18.8 | _     | 44.6 |       | 20.2 |       | 46.3 |
| XIV-C:126  | adult           | 30.0        | 110.0     |             | 433.0        |              | 34.7          |       | 71.0 |       | 28.0 |       | 23.4 |       | 45.4 |       | 20.9 |       | 48.2 |
| XIV-C:246  | adult           | 35.0        | 106.0     |             | 409.5        |              | 31.6          |       | 71.0 |       | 26.8 |       | 21.5 |       | 46.9 |       | 20.5 |       | 46.2 |
| XIV-C:111  | adult           | 45.0        | 110.0     |             | 362.0        |              | 32.7          |       | 65.0 |       | 34.8 |       | 23.8 |       | 42.2 |       | 19.5 |       | 43.4 |
| XIV-C:243  | adult           | 40.0        | 106.0     |             | 327.0        |              | 34.4          |       | 69.0 |       | 25.2 |       | 22.3 |       | 42.1 |       | 18.7 |       |      |
| XIV-C:216  | adult           | 43.5        | 103.0     |             | 317.3        |              | 28.4          |       | 73,0 |       | 29.2 |       | 22.1 |       | 49.3 |       | 20.0 |       | 45.8 |
| XIV-C:217  | adult           | 43.5        | 111.0     |             | 417.6        |              | 33.9          |       | 66.0 |       | 26.5 |       | 20.3 |       | 45.6 |       | 20.7 |       |      |
| XIV-C:179  | adult           | 45.0        | 111.0     |             | 501.1        |              | 38.5          |       | 74.0 |       | 28.8 |       | 23.1 |       | 47,1 |       | 20.5 |       |      |
| XIV-C:182  | adult           | 47.5        | 112,0     |             | 362.0        |              | 32.7          |       | 77.0 |       | 30.2 |       | 22.9 |       | 45,5 |       | 20.9 |       | 48.5 |
| XIV-C:157  | adult           | 50,0        | 111.0     |             | 322.0        |              | 30.8          |       | 63.0 |       | 25.8 |       | 20.6 |       | 43.8 |       | 18.5 |       | 42.0 |
| XIV-C:181  | adult           | 50.0        | 109.0     |             | 563.3        |              | 39.0          |       | 74.0 |       | 31.9 |       | 25.2 |       | 48.4 |       | 21.5 |       | 51.2 |
| XIV-C:101  | adult           | 52.5        |           |             |              |              | 24.9          |       | 65.0 |       | 25.6 |       | 20.1 |       | 41,4 |       | 18.0 |       | 42.3 |
| XIV-C:156  | adult           | 50.0        | 104.0     |             | 358.5        |              | 34.3          |       | 72.0 |       | 31.4 |       | 23.3 |       | 46,4 |       | 21.2 |       | 47.6 |
| XIV-C:99   | adult           | 55.0        |           |             |              |              |               |       | 77,0 |       | 30.4 |       | 21.5 |       | 45.5 |       | 21.2 |       | 49.9 |
| XIV-C:122  | sub-adult       | 0.1         | 55.0      | 50,0        |              |              |               |       | 17.0 | 24.0  | 6.0  | 21.0  | 5.5  | 25.0  |      |       |      |       |      |
| XIV-C:107  | sub-adult       | 0.5         | _         |             |              |              |               |       |      |       |      |       | 6,4  | 29.0  |      |       |      |       |      |
| XIV-C:120  | sub-adult       | 1.0         | 62.9      | 58,0        |              |              |               |       | 25.0 | 36.0  | 7.6  | 26.0  | 7.5  | 34.0  |      |       |      |       |      |
| XIV-C:77   | sub-adult       | 1.5         | 67.8      | 62.0        |              |              |               |       | 33.0 | 47.0  | 11.1 | 39.0  | 8.8  | 40.0  |      |       |      |       |      |
| XIV-C:79   | sub-adult       | 1.5         | 71.5      | 66.0        |              |              |               |       | 32.0 | 46.0  |      |       | 8.9  | 40.0  |      |       |      |       |      |
| XIV-C:78   | sub-adult       | 6,0         |           |             |              |              |               |       |      | L     |      |       |      |       |      |       |      |       |      |
| XIV-C:118  | sub-adult       | 6,5         |           |             | 1            |              |               |       | 39.0 | 56,0  | 14.4 | 5.0   | 11.2 | 51.0  |      |       |      |       |      |
| XIV-C:76   | sub-adult       | 8.0         | 98.0      | 90.0        | 218.2        | 56.0         | 20.6          | 63.0  |      |       |      |       |      | _     |      |       |      |       |      |
| XIV-C:124  | sub-adult       | 10.0        | 96.2      | 88.0        |              |              | 21.7          | 66.0  | 41.0 | 59.0  | 17.4 | 60.0  | 14.3 | 65.0  |      |       |      |       |      |
| XIV-C:220  | sub-adult       | 10.5        | 91.0      | 83.0        | 241.6        | 62.0         |               |       | 40.0 | 57.0  | 17.2 | 60.0  | 12.5 | 57.0  |      |       |      |       | 30.4 |
| XIV-C:75   | sub-adult       | 11.5        | I         |             | 251.3        | 64.0         | Z3.3          | 71.0  |      |       | L    |       |      |       |      |       |      |       |      |
| XIV-C:158  | sub-adult       | 14.5        | 102.0     | 93.0        | 290,4        | 75.0         | 28.4          | \$6.0 | 52.0 | 74.0  | 25.7 | 89.0  | 17.5 | 80,0  | 37.2 | 82.0  | 17.5 | 87.0  | 35.4 |
| XIV-C:73   | sub-adult       | 17.5        |           |             | L            | L            | 28.7          | 87.0  | 60.0 | 86.0  | L    | L     |      |       | 37.1 | 82.0  | 17.9 | 89.0  | 40.6 |
| XIV-C:146  | sub-adult       | 18,5        | 102.0     | 93.0        | 323.7        | 83.0         | 27.9          | 85.0  | 62.0 | 89.0  | 25.3 | 88.0  | 21.6 | 98.0  | 40.5 | 90.0  | 18.3 | 91.0  | 43.8 |
| XIV-C:193  | sub-adult       | 19,5        | 109.0     | 100.0       |              |              | 30.9          | 94.0  |      | L     | 26.4 | 92.0  | 19.7 | 90.0  | 42.2 | 94.0  | 18.2 | 91.0  | 45.6 |
| -          |                 | AVERAGE     | 109.1     | 100.0       | 389.7        | 100.0        | 32.9          | 100.0 | 69.9 | 100.0 | 28.8 | 100.0 | 22.0 | 100.0 | 45.1 | 100.0 | 20.1 | 100.0 | 46.5 |

......

BSI Measurements (original numbering see Appendix B, B-1)

\* shaded squares denote the closest percentage to the adult average of 100%

|   | *         |       |       |       |       |       |       |       |       |       |        |       |       |       | _     | ·     |       | 22.0 | 23.0 | 27.0  | 30.0  | 27.0  |        | 41.0   | 610   | 76.0  |   | 84.0  |       | 98.0  | 96.0  | 100.0 |
|---|-----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|-------|-------|-------|-------|-------|-------|------|------|-------|-------|-------|--------|--------|-------|-------|---|-------|-------|-------|-------|-------|
|   | 8         |       | 44.1  | 51.6  | 52.7  | 53.6  | 49.9  | 52.7  | 56.9  |       | 57.5   | 53.4  | 52.3  | 62.3  | 47.9  | 55.1  | 53.3  | 11.8 | 12.0 | 14.5  | 15.9  | 14.4  | 444    | 0.22   | 78.4  | 40.3  |   | 44.8  |       | 52.0  | 51.1  | 53.1  |
|   | *         |       |       |       |       |       |       |       |       |       |        |       |       |       |       |       |       | 19.0 | 21.0 | 29.0  | 34.0  | 28.0  | 4      | 46.0   |       | 74.0  |   | 86.0  |       | 0,66  | 92.0  | 100.0 |
|   | 8         | 75.6  | 76.2  | 6.77  | 76.8  | 73.7  | 73.6  | 72.5  | 76.5  |       | 78.9   | 78.3  | 70.5  | 81.8  | 70.8  | 80.2  | 77.4  | 14.1 | 16.3 | 22.1  | 26.0  | 21.3  |        | 90.0   | 404   | 56.6  |   | 65.4  |       | 75.3  | 69.8  | 76.0  |
|   | %         |       |       |       |       |       |       |       |       |       |        | i     |       |       |       |       |       | 18.0 | 22.0 | 25.0  | 28.0  | 26.0  | ,<br>, | 42.0   | 6.2   | 63.0  |   | 93.0  |       | 97.0  | 100.0 | 100.0 |
|   | 83        |       | 353.0 | 348.0 | 349.0 | 338.0 | 362.0 | 353.0 | 351.0 | 340.0 | 332.0  | 335.0 | 340.0 | 346.0 | 324.0 | 349.0 | 359.0 | 62.0 | 77.0 | 88.0  | 97.0  | 90.06 |        | 140.0  | 180.0 | 217.0 |   | 320.0 |       | 335.0 | 346.0 | 345.3 |
|   | %         |       |       |       |       |       |       |       |       |       |        |       |       |       |       |       |       | 16.0 |      | 25.0  | 28.0  |       |        | 94.0   | 240   | 63.0  |   | 88.0  |       | 0'66  | 0.66  | 100.0 |
|   | 8         | 473.0 |       | 429.0 | 435.0 | 432.0 | 418.0 | 454.0 | 441.0 | 443.0 | 436.0  | 421.0 | 439.0 | 455.0 | 409.0 | 452.0 | 450.0 | 72.0 |      | 110.0 | 122.0 |       |        | 0.061  | 736.0 | 276.0 |   | 385.0 |       | 433.0 | 434.0 | 439.1 |
|   | *         |       |       |       |       |       |       |       |       |       |        |       |       |       |       |       |       |      |      |       |       |       |        |        | 67.0  |       |   | 86.0  |       | 96.0  | 93.0  | 100.0 |
|   | \$        | 82.0  |       | 84.0  | 83.9  | 83.4  | 83.2  | 79.0  | 86.5  | 82.1  |        | 84.6  | 75.6  | 89.6  | 79.2  | 89.6  | 84.3  |      |      |       |       |       |        |        | 54.2  |       |   | 71.8  |       | 7.67  | 77.2  | 83.4  |
|   | *         |       |       |       |       |       |       |       |       |       |        |       |       |       |       |       |       |      |      |       |       |       |        |        | 61.9  | 74.0  |   | 89.0  |       | 0'68  | 95,0  | 100.0 |
|   | Ş         | 48.2  |       | 50.3  | 47.3  | 49.8  | 47.3  | 46.5  |       | 47.7  | 51.0   | 47.4  | 44.7  | 51.7  | 40.7  | 50.8  | 47.8  |      |      |       |       |       |        |        | 29.0  | 35.5  |   | 42.7  |       | 42.4  | 45.3  | 47.9  |
|   | *         |       |       | 1     |       |       |       |       |       |       |        |       |       |       |       | -     |       |      |      |       |       |       |        |        | 63.0  | 74.0  |   | 91.0  |       | 95.0  | 91.0  | 100.0 |
|   | ¥         | 44.9  |       | 50.7  | 47.7  | 48.9  | 47.9  | 44.9  | 47.2  | 44.0  | 48.1   | 45.5  | 40.2  | 48.7  | 43.8  | 47.9  | 49.2  |      |      |       |       |       |        |        | 293   | 34.5  |   | 42.2  |       | 44.1  | 42.6  | 46.6  |
| , | *         |       |       |       |       |       |       |       |       |       |        |       |       |       |       |       |       | 17.0 |      | 26.0  | 28.0  |       |        | Î      |       | 62.0  |   | 90.06 | 90.0  | 0.66  | 98.0  | 100.0 |
|   | 98        | 364.0 | 353.0 | 338.0 | 346.0 | 321.0 | 351.0 | 353.0 | 325.0 | 335.0 | 329.0  | 336.0 | 336.0 | 340.0 |       | 346.0 | 351.0 | 58.0 |      | 88.0  | 94.0  |       | 0.021  | n-nc-1 |       | 213.0 |   | 308.0 | 308.0 | 337.0 | 334.0 | 341.6 |
|   | *         |       |       |       |       |       |       |       |       | l     |        |       |       |       |       |       |       |      |      |       |       |       |        |        |       | 55.0  |   | 78.0  |       | 96.0  | 91.0  | 100.0 |
|   | 56 and 57 |       | 608.5 | 947.2 | 755.6 | 961.2 | 677.6 | 858.9 |       | 767.3 | 1002.1 | 860.3 | 839.0 | 881.7 | 636.4 | 874.2 | 647.0 |      |      |       |       |       |        |        |       | 443.1 | Ц | 634.0 |       | 0.ETT | T39.3 | 808.4 |
|   | *         |       |       |       |       |       |       |       |       |       |        |       |       |       |       |       |       |      |      |       |       |       |        |        |       |       |   |       | 83.0  | 96.0  | 90.0  | 100.0 |
|   | 42        | 21.0  | 21.7  | 20.4  | 20.9  | 20.2  | 19.4  | 19.5  | 23.8  | 21.0  | 20.8   | 20.3  | 20.1  |       | 19.6  | 22.0  | 23.1  |      |      |       |       |       |        |        |       |       |   |       | 17.3  | 20.0  | 18.9  | 20.9  |
|   | *         |       |       |       |       |       |       |       |       |       |        |       |       |       |       |       |       |      |      |       |       |       |        |        |       | 65.0  |   | 76.0  | 87.0  | 94.0  | 980   | 100.0 |

|                |              |                     |                     |      | •                   |            |               |              |            |                     |       |                     |                     |                |       |
|----------------|--------------|---------------------|---------------------|------|---------------------|------------|---------------|--------------|------------|---------------------|-------|---------------------|---------------------|----------------|-------|
|                |              |                     |                     |      |                     |            |               |              |            |                     |       |                     |                     |                |       |
|                |              |                     |                     |      |                     |            |               |              |            |                     |       |                     |                     |                |       |
|                |              |                     |                     |      |                     |            |               |              |            |                     |       |                     |                     |                |       |
|                |              |                     |                     |      |                     |            |               |              |            |                     |       |                     |                     |                |       |
|                |              |                     |                     |      |                     |            |               |              |            |                     |       |                     |                     |                |       |
|                |              |                     | %                   |      | %                   | <i>(</i> 9 | %             | 22 and 23    |            | 1 24 4 46 1         |       |                     |                     | 32             | *     |
| 40             | %            | 64                  | ···*                | 65   |                     | 68         |               | 771.3        |            | 24 and 25<br>1044.4 | *     | 26 and 27<br>1472.8 | *                   | 276.0          | 70    |
| 254.0<br>241.0 |              | 70.8                |                     | 44.4 |                     | 59.2       | <u>  ~ </u>   | 1017.6       |            | 1117.0              |       | 1618.0              |                     | 270.0          |       |
| 227.0          |              | 76.6                | L                   | 51.3 |                     | 67.4       |               | 1202.6       |            | 1273.1              |       | 1618.0              |                     | 264.0          |       |
| 231.0          |              | 77.0                |                     | 55.7 |                     | 75.0       |               | 1118.3       | ~ <u> </u> | 1113.3              |       | 1631./              |                     | 257.0          |       |
| 231.0          |              | 74.5                |                     | 55.1 |                     | 79.0       |               | 1108.3       |            | 1191.1              |       | 1624.6              | <u> </u>            | 260.0          |       |
| 233.0          |              | 83.9                |                     | 59.4 |                     |            | <u> </u>      | †- <u></u> † |            | <u>├</u>            |       | 1630.4              |                     | 200.0          |       |
| 244.0          |              | 73.5                |                     | 52.5 |                     | 76.0       | <u> </u>      |              |            | 1103.4              |       | 1524.3              |                     |                |       |
| 239.0          |              | 77.7                |                     | 54.6 |                     | 79.0       | <u> </u>      | 1187.8       |            | 1251.8              |       | 1.524.5             |                     | 258.0          |       |
| 238.0          |              | 75,5                |                     | 56.5 |                     |            |               | 1132.0       |            | 1264.6              |       | 1                   |                     | 270.0          | -     |
|                |              | 77.0                |                     | 55.9 |                     | 79.0       |               | 1218.2       |            | 1299.6              | ·     | 1929.1              |                     | 284.0          |       |
| 239.0          |              | 75.3                |                     | 54.6 |                     | 78.0       |               | 1274.0       |            | 1464.7              |       | 1518.9              |                     | 278.0          |       |
| 237.0          |              |                     |                     |      |                     |            | · ·           | 1136.3       |            | 1196.3              |       | 1585.7              |                     | 259.0          |       |
| 232.0          |              | 89.2                |                     | 66.1 |                     | 88.0       |               | 1639.1       |            | 1728.5              |       | 2160.0              |                     | 294.0          |       |
| 230.0          |              | 70.6                |                     | 48.7 |                     | 62.6       | <u> </u>      | 1030.5       |            | 1046.5              |       | 1394.5              |                     | 260.0          |       |
| 226.0          |              | 86.1                |                     | 59.7 |                     | 87.0       |               | 1093.2       |            | 1320.0              |       | 1651.4              |                     | 286.0          |       |
| 238.0          |              | 80.8                |                     | 57.6 |                     |            |               |              |            |                     |       |                     |                     |                |       |
| 58.0           | 24.0         |                     |                     |      |                     |            |               |              |            |                     |       |                     |                     |                |       |
| 69.0           | 29.0         |                     |                     |      |                     |            |               |              |            |                     |       |                     |                     |                |       |
| 76.0           | 32.0         |                     |                     |      |                     |            |               |              |            |                     |       |                     |                     |                |       |
| 81.0           | 34.0         |                     |                     |      |                     |            |               |              |            | I I                 |       |                     |                     |                |       |
|                |              |                     |                     |      |                     |            | L             | ↓            |            |                     |       |                     |                     |                | _     |
|                |              |                     |                     |      |                     |            |               | ↓            |            |                     |       |                     |                     |                | _     |
|                |              | 36.2                | 47.0                | 20.6 | 37.0                |            | ļ             | <u> </u>     |            | ++                  |       |                     |                     |                |       |
|                |              |                     | L                   |      |                     |            | <u> </u>      | 462.8        | 40.0       | 536.9               | 43.0  | 689.7               | 42.0                | 182.0          | 67.0  |
| 137.0          | 58.0         |                     | L                   |      |                     |            |               | 419.1        | 36.0       | 471.0               | 38.0  | 731.6               | 44,0                |                |       |
| 157.0          | 66.0         | 54.9                | 71.0                | 35.2 | 64.0                | 44.8       | 59.0          | 541.7        | 47.0       | 538.1               | 43.0  | 700 0               |                     |                |       |
| 212.0          |              |                     | 86.0                | 43.2 | 78.0                | 60.0       | 91.0          | 794,7        | 69.0       | 565.2<br>883.6      | 45.0  | 788.8               | 48.0                | 203.0          | 75.0  |
| 212.0          | 89.0<br>88.0 | <u>66.6</u><br>68.9 | 89.0                | 43.2 | <u>78.0</u><br>92.0 | 69.0       | <u>- 71.0</u> | 806.9        | 70.0       | 942.5               | 76.0  | 1346.6<br>1127.5    | 81.0<br>68.0        | 244.0<br>253.0 | 90.0  |
| 208.0          | 92.0         | 73.7                | <u>89.0</u><br>95.0 | 51.6 | 93.0                | 75.0       | 99.0          | 806.9        | 76.0       | 940.1               | 76.0  | 1127.5              | <u>68.0</u><br>94.0 | 233.0          |       |
| 238.0          | 100.0        | 77.3                | <u>95.0</u><br>99.0 | 55.2 | 93.0<br>100.0       |            |               | 1039.1       | 90.0       | 1097.7              | 88.0  | 1406.5              | 94.0<br>85.0        | 250.0          | 92.0  |
| 238.0          | 100.0        | 77.8                | 100.0               | 55.2 | 100.0               | 75.5       | 100.0         | 1148.4       | 100.0      | 1243.9              | 100.0 | 1651,9              | 100.0               | 230.0          | 100.0 |

#### J-6 Sacred Heart females sub-adult calibration data

| <b>BSI Measurements</b> (origin | al numbering see Appe | ndix B, B-1) |
|---------------------------------|-----------------------|--------------|

| Skeletog # | Adult/Sub-Adult | Average Age | 3     | %     | 4    | %     | 66           | %     | 28 and 29 | %     | 37   | %     | 39   | %     | 33     | %     | 34   | %     | 59   |
|------------|-----------------|-------------|-------|-------|------|-------|--------------|-------|-----------|-------|------|-------|------|-------|--------|-------|------|-------|------|
| 88         | Adult           | 22.0        | 101.0 | 100.0 | 94.7 | 100.0 | 58.0         | 106.0 | 1264,5    | 112.0 | 40.6 | 101.0 | 19.4 | 102.0 | 312.0  | 102.0 | 61.0 | 98.0  | 20.9 |
| 24         | Adult           | 25.5        | 97.0  | 96.0  | 89.7 | 95.0  | 50.2         | 92.0  | 791.9     | 70.0  | 37.5 | 93.0  | 16.3 | 86.0  | 307.0  | 100.0 | 54.0 | 87.0  | 20.8 |
| 9          | Adult           | 37.0        | 103.0 | 102.0 | 95.6 | 101.0 | 59.2         | 108.0 | 1245.2    | 110.0 | 42.7 | 106.0 | 20.2 | 106.0 | 289.0  | 94.0  | 65.0 | 104.0 | 20.1 |
| 120        | Adult           | 37.0        | 104.0 | 103.0 | 95.9 | 101.0 |              |       | 1022.1    | 91.0  | 42.0 | 104.0 | 19.9 | 105.0 | _330.0 | 108.0 | 70.0 | 112.0 | 27.2 |
| 124B       | Adult           | 42.5        | 106.0 | 105.0 | 99.8 | 105.0 | 52.3         | 95.0  | 1087.0    | 96.0  | 38.3 | 95,0  | 19.1 | 101.0 | 304.0  | 99.0  | 63.0 | 101.0 | 22.4 |
| 97         | Adult           | 45.0        | 105.0 | 104.0 | 97.8 | 103.0 | 61.4         | 112.0 | 1439.3    | 128.0 | 43.3 | 105.0 | 19.8 | 104.0 | 318.0  | 104.0 | 65.0 | 104.0 | 22.3 |
| 71         | Adult           | 52.5        | 100.0 | 99.0  |      |       | 57.8_        | 105.0 |           |       | 41.2 | 102.0 | 20.4 | 107.0 | 308.0  | 101.0 | 65.0 | 104.0 | 21.3 |
| 5          | Adult           | 54.5        | 95.0  | 94.0  | 88.3 | 93.0  | 46.9         | 86.0  | 758.6     | 67.0  | 36.6 | 91.0  | 17.5 | 92.0  | 293.0  | 96.0  | 57.0 | 91.0  | 19.8 |
| 114        | Adult           | 50.0        | 100.0 | 99.0  | 94.4 | 100.0 | 51.8         | 95.0  |           |       | 38.9 | 97.0  | 18.6 | 98.0  | 284.0  | 93.0  | 57.0 | 91.0  | 22.3 |
| 122        | Adult           | 50.0        | 103.0 | 102.0 | 96.7 | 102.0 | 55.6         | 101.0 | 1412.7    | 125.0 | 40.4 | 100.0 | 18.8 | 99.0  | 317.0  | 104.0 | 66.0 | 106.0 | 23.1 |
| 56         | Sub-adult       | 0.5         |       |       |      |       | 13.7         | 25.0  |           |       |      |       |      |       | 80.0   | 26.0  | 28.0 | 45.0  | 7.7  |
| 44         | Sub-adult       | 0.8         |       |       |      |       |              |       |           |       |      |       |      |       | 97.0   | 32.0  | 25.0 | 40.0  | 7.3  |
| 66A        | Sub-adult       | 3.0         | 76.7  | 76.0  | 73.5 | 78.0  | 22.7         | 41.0  |           |       |      |       |      |       | 125.0  | 41.0  | 32.0 | 51.0  | 9.8  |
| 25         | Sub-adult       | 3.5         |       |       |      |       | 33.2         | 61.0  | 594.3     | 53.0  |      |       |      |       | 149.0  | 49.0  | 35.0 | 56.0  | 12.8 |
| 36         | Sub-adult       | 5.0         | 85.0  | 84.0  | 80.4 | 85.0  | 35.0         | 64.0  |           |       |      |       |      |       | 168.0  | 55.0  | 41.0 | 66.0  | 14.1 |
| 67         | Sub-adult       | 6.0         | 85.0  | 84.0  | 81.9 | 86.0  | 32.9         | 60.0  | 453.7     | 40.0  |      |       |      |       | 157.0  | 51.0  | 37.0 | 59.0  | 13.6 |
| 12         | Sub-adult       | 9.0         | 92.0  | 91.0  | 84.0 | 89.0  | <b>48</b> .1 | 88.0  | 712.0     | 63.0  |      |       |      |       | 215.0  | 70.0  | 48.0 | 77.0  | 17.5 |
| 90         | Sub-adult       | 19.0        | 96.0  | 95.0  | 89.3 | 94.0  | 50.1         | 91,0  | 1233.2    | 109.0 | 39.2 | 98.0  | 18.7 | 98.0  | 288.0  | 94.0  | 61.0 | 98.0  | 23.3 |
|            |                 | AVERAGE     | 101.4 | 100.0 | 94.8 | 100.0 | 54.8         | 100.0 | 1127.7    | 100.0 | 40.2 | 100.0 | 19.0 | 100.0 | 306.2  | 100.9 | 62.3 | 100.0 | 22.0 |

\* shaded squares denote the closest percentage to the adult average of 100%

and the second strength of the second

| *     | 51   | %     | 11    | %     | 14   | %     | 17   | %     | 12 and 13 | %     | 44   | %     | 45   | %     | 50    | %     | 60    | %     | 38   | %     |
|-------|------|-------|-------|-------|------|-------|------|-------|-----------|-------|------|-------|------|-------|-------|-------|-------|-------|------|-------|
|       | 80.0 |       | 130.0 |       | 20.4 |       |      |       | 1052.1    |       | 42.6 |       | 42.7 |       | 435.0 |       | 345,0 |       | 41.3 |       |
|       | 78.0 |       | 120.0 |       | 17.8 |       | 85.8 |       | 869.0     |       | 39.1 |       | 40.4 |       | 428.0 |       | 323.0 |       | 38.2 |       |
|       | 82.0 |       | 126.0 |       | 19.4 |       | 92.4 |       | 953.8     |       | 42.7 |       | 41.4 |       | 406.0 |       | 333.0 |       | 40.0 |       |
|       | 99.0 |       | 123.0 |       | 23.0 |       | 94.8 |       | 907.5     |       | 45.8 |       | 45.7 |       | 463.0 |       | 387.0 |       | 43.1 |       |
|       | 81.0 |       | 130.0 |       | 22.0 |       | 94.4 |       | 913.4     |       | 41.5 |       | 39.2 |       | 410.0 |       | 323.0 |       | 40.9 |       |
|       | 87.0 |       | 134.0 |       | 21.8 |       | 97.9 |       | 1020.5    |       | 43.2 |       | 43.1 |       | 446.0 |       |       |       | 41.4 | í l   |
|       | 87.0 |       | 129.0 |       | 22.1 |       | 91.6 |       | 786.5     |       | 43.6 |       | 43.0 |       | 424.0 |       | 341.0 |       | 44.5 |       |
|       | 75.0 |       | 121.0 |       | 14.8 |       | 78.9 |       | 650.6     |       | 35.5 |       | 34.8 |       | 422.0 |       | 332.0 |       | 34.9 | (     |
|       | 82.0 |       | 132.0 |       | 22.8 |       | 96,6 |       | 833.7     |       | 42.6 |       | 41.9 |       | 413.0 |       | 326.0 |       | 39.3 | í l   |
|       | 85.0 |       |       |       | 23.4 |       | 88.5 |       |           |       | 45.5 |       | 44.7 |       | 446.0 |       |       |       | 42.1 |       |
| 35.0  | 32.0 | 38.0  |       |       |      |       | 62.6 | 69.0  |           |       |      |       |      |       | 91.0  | 21.0  | 76.0  | 22.0  |      | 1     |
| 33.0  | 28.0 | 33.0  |       |       |      |       | 64.2 | 70.0  |           |       |      |       |      |       | 123.0 | 29.0  | 95.0  | 28.0  |      | 1     |
| 45.0  | 42.0 | 50.0  |       |       | 18,1 | 87.0  | 69.0 | 76.0  |           |       |      |       |      |       | 166.0 | 39.0  | 125.0 | 37.0  |      |       |
| 58.0  | 42.0 | 50.0  |       |       |      |       | 68.9 | 76.0  |           |       |      |       |      |       | 206.0 | 48.0  | 167.0 | 49.0  | 18.8 | 46.0  |
| 64.0  | 49_0 | 59.0  | 116.0 | 91.0  | 14.6 | 70.0  | 73.6 | 81.0  | 830.8     | 94.0  | 24.3 | 58.0  | 24.6 | 59.0  | 230.0 | 54.0  | 186.0 | 55.0  |      | i     |
| 62.0  | 46,0 | 55.0  |       |       | 18.1 | 87.0  | 73.5 | 81.0  |           |       | 21.1 | 50.0  | 22.6 | 54.0  | 215.0 | 50.0  | 170.0 | 50.0  |      |       |
| 80.0  | 59.0 | 71.0  | 136.0 | 107.0 | 19.3 | 93.0  | 84.4 | 93.0  | 814.8     | 92.0  |      |       |      |       | 309.0 | 72.0  | 242.0 | 71.0  |      |       |
| 106.0 | 81.0 | 97.0  | 123.0 | 97.0  | 16.7 | 80.0  | 96.3 | 106.0 | 770.1     | 87.0  | 39.6 | 94,0  | 39.3 | 94.0  | 418.0 | 97.0  | 322.0 | 95.0  | 37.1 | 91.0  |
| 100.0 | 83.6 | 100.0 | 127.2 | 100.0 | 20.8 | 100.0 | 91.2 | 100.0 | 887.4     | 100.0 | 42.2 | 0.001 | 41.7 | 100.0 | 429.3 | 100.0 | 338.8 | 100.0 | 40.6 | 100.0 |

| 53    | %     | 57   | %     | 41    | %     | 64   | %     | 40    | %     | 48   | *     | 24 and 25 | %     | 26 and 27 | %     |
|-------|-------|------|-------|-------|-------|------|-------|-------|-------|------|-------|-----------|-------|-----------|-------|
| 354.0 |       | 32.5 |       | 226.0 |       | 74.9 |       | 246.0 |       | 73.5 |       | 923.2     |       | 1416.9    |       |
| 342.0 |       |      |       | 220.0 |       | 67.9 |       | 228.0 |       | 72.7 |       | 707.4     |       | 913.2     |       |
| 336.0 |       | 33.7 |       | 206.0 |       | 76.2 |       | 223.0 |       | 72.8 |       | 843.4     |       | 1407.0    |       |
| 405.0 |       | 36.7 |       | 234.0 |       |      |       | 244.0 |       | 73.7 |       | 869.5     |       |           |       |
| 332.0 |       | 30.2 |       | 216.0 |       | 77.3 |       |       |       | 68.5 |       | 861.6     |       | 1364.0    |       |
| 361.0 |       | 35.0 |       | 226.0 |       | 78.6 |       | 245.0 |       | 79.5 |       | 1121.8    |       | 1467.2    |       |
| 349.0 |       | 30.6 |       | 222.0 |       | 74.3 |       | 241.0 |       | 77.0 |       | 900.2     |       | 1291.6    |       |
| 357.0 |       | 28.1 |       | 226.0 |       | 68.8 |       | 243.0 |       | 65.4 |       | 1         |       | 936.2     |       |
| 337.0 |       | 31.8 |       | 210.0 |       | 71.9 |       | 224.0 |       | 76.6 |       | 862,9     |       | 1120.6    |       |
| 361.0 |       | 32.4 |       |       |       | 79.8 |       | 241.0 |       | 74.0 |       | 1083.5    |       | 1537.0    |       |
| 81.0  | 23.0  |      |       | 62.0  | 28.0  | 16.3 | 22.0  | 69.0  | 29.0  |      |       | I         |       |           |       |
| 100.0 | 28.0  |      |       | 72.0  | 33.0  |      |       | 80,0  | 34.0  |      |       |           |       |           |       |
| 132.0 | 37.0  |      |       | 90.0  | 41.0  | 31.5 | 42,0  | 100.0 | 42.0  |      |       |           |       |           |       |
| 170.0 | 48,0  |      |       | 113.0 | 51.0  | 40.5 | 54.0  | 123.0 | 52.0  | 48.4 | 66.0  | 356.5     | 39.0  | 471.2     | 37.0  |
| 191.0 | 54.0  | 22.5 | 70.0  | 124.0 | 56.0  | 43.2 | 58.0  | 139.0 | 59.0  | 51.9 | 71.0  |           | _     |           |       |
| 176.0 | 50.0  | 22.3 | 69.0  | 111.0 | 50.0  | 41.8 | 56.0  | 123.0 | 52.0  |      |       |           |       | 466.3     | 37.0  |
| 250.0 | 71.0  | 30.7 | 95.0  | 158.0 | 72.0  | 58.8 | 79.0  | 170.0 | 72.0  | 61.1 | 83.0  | 495.1     | 55.0  | 750.8     | 59.0  |
| 341.0 | 96.0  | 28.9 | 89.0  | 220.0 | 100.0 |      |       |       |       | 69.4 | 95.0  | 932.4     | 103.0 |           |       |
| 353.4 | 100.0 | 32.3 | 100.0 | 220.7 | 100.0 | 74.4 | 100.0 | 237.2 | 100.0 | 73.4 | 100.0 | 908.2     | 100.0 | 1272.6    | 100.0 |

#### J-7 Sacred Heart males sub-adult calibration data

BSI Measurements (original numbering see Appendix B, B-I)

| Skeleton # | Adult/Sub-Adult | Average Age | 3     | %     | 20 and 21 | %     | 28   | %     | 34   | %     | 52   | %     | 59   | %     | 37   | %     | 39   | %     | 62   |
|------------|-----------------|-------------|-------|-------|-----------|-------|------|-------|------|-------|------|-------|------|-------|------|-------|------|-------|------|
| 139        | Adult           | 32.5        | 102.0 | 96.0  | 286.2     | 77.0  | 31,8 | 97.0  | 65.0 | 97.0  | 27.9 | 98.0  | 25.2 | 104.0 | 48.1 | 103.0 | 23.7 | 109.0 | 45.1 |
| 115        | Adult           | 37.0        | 107.0 | 101.0 | 313.3     | 85.0  | 31.3 | 96.0  | 68.0 | 102.0 | 30.3 | 106.0 | 25.3 | 104.0 | 44.9 | 96.0  | 20.5 | 94.0  | 43.8 |
| 145        | Adult           | 40.0        |       |       | 376.8     | 102.0 | 31.5 | 96.0  | 65.0 | 97.0  | 26.1 | 92.0  | 20.5 | 84.0  | 44.0 | 94.0  | 19.9 | 91.0  | 40.5 |
| 30         | Adult           | 42.5        | 108.0 | 102.0 | 416.1     | 113.0 | 35.9 | 110.0 | 68.0 | 102.0 | 29.2 | 102.0 | 24.8 | 102.0 | 52.8 | 113.0 | 23.5 | 108.0 | 51.7 |
| 72         | Adult           | 42.5        | 108.0 | 102.0 | 290.1     | 79.0  | 30.2 | 92.0  | 57.0 | 85.0  | 26.8 | 94.0  | 21.8 | 90.0  |      |       |      |       | 41.3 |
| 33         | Adult           | 44.5        | 103.0 | 97.0  | 348.9     | 94.0  |      |       | 64.0 | 96.0  | 26.7 | 94.0  | 27.2 | 112.0 | 44.2 | 94.0  | 21.3 | 98.0  | 44.0 |
| 73         | Adult           | 45.0        | 104.0 | 98.0  | 299.9     | 81.0  | 31.3 | 96.0  | 68.0 | 102.0 | 28.4 | 100.0 | 22.5 | 93.0  | 43.4 | 93.0  | 21.2 | 97.0  | 43.8 |
| 64         | Adult           | 52.5        | 111.0 | 105.0 | 455.5     | 123.0 | 33.9 | 104.0 | 70.0 | 105.0 | 31.5 | 111.0 | 24.4 | 100.0 | 48.4 | 103.0 | 22.3 | 102.0 | 55.3 |
| 83         | Adult           | 55.0        | 104.0 | 98.0  | 455.1     | 123.0 | 32.1 | 98.0  | 69.0 | 103.0 | 28.0 | 98.0  | 25.6 | 105.0 | 46.4 | 99.0  | 20.6 | 94.0  | 47.7 |
| 55         | Adult           | 60.0        | 105.0 | 99.0  | 453.5     | 123.0 | 36.1 | 110.0 | 73.0 | 109.0 | 30.0 | 105.0 | 25.5 | 105.0 | 50.0 | 107.0 | 23.5 | 108.0 | 43.9 |
| 56         | Sub-adult       | 0.5         |       |       |           |       |      |       | 28.0 | 42.0  | 9.6  | 34.0  | 7.7  | 32.0  |      |       |      |       |      |
| 44         | Sub-adult       | 0.8         |       |       |           |       |      |       | 25.0 | 37.0  | 8.5  | 30.0  | 7.3  | 30.0  |      |       |      |       |      |
| 66A        | Sub-adult       | 3.0         | 76,7  | 72.0  |           |       |      |       | 32.0 | 48.0  | 12.0 | 42.0  | 9.8  | 40.0  |      |       |      |       |      |
| 25         | Sub-adult       | 3.5         |       |       | 154.1     | 42.0  | 18.2 | 56.0  | 35.0 | 52.0  | 13.6 | 48.0  | 12.8 | 53.0  |      |       |      |       |      |
| 36         | Sub-adult       | 5.0         | 85.0  | \$0,0 |           |       |      |       | 41.0 | 61.0  | 14.0 | 49.0  | 14.1 | 58.0  |      |       |      |       |      |
| 67         | Sub-adult       | 6.0         | 85.0  | \$0.0 | 116.1     | 31.0  | 16.9 | 52.0  | 37.0 | 55.0  | 14.3 | 50.0  | 13.6 | 56.0  |      |       |      |       |      |
| 12         | Sub-adult       | 9.0         | 92.0  | 87.0  | 217.7     | 59.0  | 21.7 | 66.0  | 48.0 | 72.0  | 16.6 | 58.0  | 17.5 | 72.0  |      | 1     |      |       |      |
| 141        | Sub-adult       | 15,5        | 101.0 | 95.0  | 303.0     | 82.0  | 31.7 | 97.0  | 70.0 | 105.0 | 29.0 | 102,0 | 21.7 | 89.0  | 41.0 | 87.0  | 17.7 | 81.0  | 37.6 |
| 63         | Sub-adult       | 19.0        | 110.0 | 104.0 | 268.5     | 73.0  | 27.0 | 83,0  | 60.0 | 90.0  | 22.9 | 80.0  | 20.4 | 84.0  | 37.7 | \$0.0 | 19.5 | 89.0  | 40.9 |
|            |                 | AVERAGE     | 105.8 | 100.0 | 369.5     | 100.0 | 32.7 | 100.0 | 66.7 | 100.0 | 28.5 | 100.0 | 24.3 | 100.0 | 46.9 | 100.0 | 21.8 | 100.0 | 45.7 |

\* shaded squares denote the closest percentage to the adult average of 100%

| %     | 42   | %     | 56 and 57 | %     | 60    | %     | 44   | %     | 45   | %     | 48   | %     | 50    | %     | 53    | %     | 55   | %     | 58   | %     |
|-------|------|-------|-----------|-------|-------|-------|------|-------|------|-------|------|-------|-------|-------|-------|-------|------|-------|------|-------|
| 99.0  | 23.7 | 101.0 | 981.7     | 112.0 | 357.0 | 97.0  | 48.5 | 103.0 | 47.3 | 100,0 | 85.5 | 104.0 | 471.0 | 100.0 | 376.0 | 99.0  | 79.8 | 102.0 | 52.1 | 97.0  |
| 96.0  | 21.9 | 93,0  | 806.2     | 92.0  | 370.0 | 101.0 | 45.8 | 97.0  | 45.9 | 97.0  | 83.1 | 101.0 | 468.0 | 99.0  | 384.0 | 101.0 | 78.3 | 100.0 | 51.0 | 95.0  |
| 89.0  | 22.2 | 94.0  | 804.9     | 92.0  | 338.0 | 92.0  | 43.5 | 92.0  | 44.4 | 94.0  | 77.2 | 94.0  | 426.0 | 90.0  | 343.0 | 90.0  | 75.9 | 97.0  | 49.6 | 93.0  |
| 113.0 | 25.8 | 110.0 | 995.5     | 113.0 | 384.0 | 105.0 | 49.3 | 104.0 | 48.9 | 103.0 | 86.4 | 105.0 | 499.0 | 106.0 | 404.0 | 106.0 | 84.3 | 108.0 | 57.5 | 107.0 |
| 90.0  | 27.1 | 115.0 | 839.2     | 96.0  |       |       | 45.3 | 96.0  | 44.6 | 94.0  | 76.3 | 93.0  | 467.0 | 99.0  | 359.0 | 94.0  | 71.0 | 91.0  | 48.8 | 91.0  |
| 96.0  | 22.5 | 96,0  | 933.8     | 106.0 | 372.0 | 101.0 | 46.4 | 98.0  | 47.0 | 99.0  | 80.4 | 98.0  | 504.0 | 107.0 | 400.0 | 105.0 | 77.1 | 99.0  |      |       |
| 96.0  | 20.4 | 87.0  | 743.7     | 85.0  | 352.0 | 96.0  | 46.7 | 99.0  | 46.2 | 98.0  | 78.6 | 96.0  | 449.0 | 95.0  | 360.0 | 95,0  | 75.1 | 96.0  | 55.7 | 104.0 |
| 121.0 | 24.1 | 102.0 | 891.1     | 101.0 | 371.0 | 101.0 | 48.8 | 103.0 | 49.0 | 104.0 | 86.1 | 105.0 | 483.0 | 102.0 | 395.0 | 104.0 | 82.0 | 105.0 | 57.4 | 107.0 |
| 104.0 | 22.1 | 94.0  | 833.1     | 95.0  | 379.0 | 103.0 | 48.2 | 102.0 | 48.7 | 103.0 | 80.9 | 98.0  | 471.0 | 100.0 | 388.0 | 102.0 | 80.4 | 103.0 | 51.3 | 96.0  |
| 96.0  | 24.7 | 105.0 | 953.1     | 109.0 | 379.0 | 103.0 | 50.8 | 107.0 | 50.5 | 107.0 | 87.8 | 107.0 | 480.0 | 102.0 | 394.0 | 104.0 | 77.2 | 99.0  | 57,7 | 108.0 |
|       |      |       |           |       | 76.0  | 21.0  |      |       |      |       |      |       | 91.0  | 19.0  | 81.0  | 21.0  | 20.5 | 26.0  |      |       |
|       |      |       |           |       | 95.0  | 26.0  |      |       |      |       |      |       | 123.0 | 26.0  | 100.0 | 26.0  | 22.7 | 29.0  |      |       |
|       |      |       |           |       | 125,0 | 34.0  |      |       |      |       |      |       | 166.0 | 35.0  | 132.0 | 35.0  | 29.6 | 38.0  |      |       |
|       |      |       |           |       | 167.0 | 46.0  |      |       |      |       | 48.4 | 59.0  | 206.0 | 44.0  | 170.0 | 45.0  | 39.0 | 50.0  |      |       |
|       |      |       | 337.4     | 38.0  | 186.0 | 51.0  | 24.3 | 51.0  | 24.6 | 52.0  | 51.9 | 63.0  | 230.0 | 49.0  | 191.0 | 50.0  | 42.5 | 54.0  |      |       |
|       |      |       | 259.1     | 30.0  | 170.0 | 46.0  | 21.1 | 45.0  | 22.6 | 48.0  |      |       | 215.0 | 46.0  | 176.0 | 46.0  | 38.2 | 49.0  |      |       |
|       |      |       | 609.7     | 69.0  | 242.0 | 66.0  |      |       |      |       | 61.1 | 74.0  | 309.0 | 65.0  | 250.0 | 66.0  | 52.4 | 67.0  |      |       |
| 82.0  | 18.1 | 77.0  | 737.4     | 84.0  | 329.0 | 90.0  | 41.3 | 87.0  | 43.1 | 91.0  | 75.2 | 91.0  | 420.0 | 89.0  | 358.0 | 94.0  | 68,7 | 88,0  | 46.4 | 87.0  |
| 89.0  | 18.2 | 77.0  | 746.5     | 85.0  | 345.0 | 94.0  | 41.6 | 88.0  | 40.8 | 86.0  | 73.6 | 90.0  | 451.0 | 96.0  | 360.0 | 95,0  | 66.0 | 85.0  | 45.1 | 84.0  |
| 100,0 | 23.5 | 100.0 | 878.2     | 100.0 | 366.9 | 100.0 | 47.3 | 100.0 | 47.3 | 100.0 | 82.2 | 100.0 | 471.8 | 100.0 | 380.3 | 100.0 | 78.1 | 100.0 | 53.5 | 100.0 |

| 40    | %     | 64   | %     | 65   | %     | 68   | %     | 22 and 23 | %     | 24 and 25 | %     | 26 and 27 | %     | 32        | %       |
|-------|-------|------|-------|------|-------|------|-------|-----------|-------|-----------|-------|-----------|-------|-----------|---------|
|       |       | 73.5 | 92.0  | 49.1 | 87.0  | 80.0 | 99.0  | 1028.5    | 89.0  | 1161.3    | 91.0  | 1519.0    | 96,0  | I         |         |
| 267.0 | 101.0 | 79.0 | 99.0  | 57.8 | 102.0 | 78.0 | 97.0  |           |       | 1085.8    | 85.0  | 1316.4    | 83.0  |           |         |
| 250.0 | 95.0  | 75.4 | 94.0  | 53.4 | 95.0  | 75.0 | 93.0  | 1122.9    | 97.0  | 1352.8    | 106.0 |           |       | 270.0     |         |
| 289.0 | 109.0 | 82.6 | 103.0 | 58.8 | 104.0 | 89.0 | 110.0 | 1517.9    | 131.0 | 1783.7    | 139.0 | 1928.2    | 121.0 | 291.0     | r       |
| 242.0 | 92.0  | 76.1 | 95.0  | 51.5 | 91.0  | 76.0 | 94.0  | 910.6     | 79.0  | 992.1     | 77.0  | 1405.0    | 89.0  | · · · · · |         |
| 272.0 | 103.0 | 81,9 | 102.0 | 58.3 | 103.0 | 82.0 | 101.0 | 984.2     | 85.0  | 1180.2    | 92.0  |           |       | 292.0     |         |
| 255.0 | 97.0  | 78.9 | 98.0  | 53.6 | 95.0  | 78.0 | 97.0  | 1094.6    | 95.0  | 1100.4    | 86.0  | 1497.0    | 95.0  |           |         |
| 263.0 | 100.0 | 82.6 | 103.0 | 59.0 | 105.0 | 82.0 | 101.0 | 1118.3    | 97.0  | 1342.5    | 105.0 | 1666.5    | 105.0 | 290.0     |         |
| 258.0 | 98.0  | 84.9 | 106.0 | 62.6 | 111.0 | 85.0 | 105.0 | 1161.8    | 100.0 | 1168.9    | 91.0  | 1390.7    | 88.0  |           |         |
| 282.0 | 107.0 | 87.2 | 109.0 | 60.0 | 106.0 | 83.0 | 103,0 | 1481.4    | 128.0 | 1652.7    | 78.0  | 1945.5    | 123.0 |           |         |
| 69.0  | 26.0  | 16.3 | 20.0  |      |       |      |       |           |       |           |       |           |       |           |         |
| 80.0  | 30.0  |      |       |      |       |      |       |           |       |           |       |           |       | h         |         |
| 100.0 | 38.0  | 31.5 | 39.0  | 20.9 | 37.0  |      |       |           |       |           |       |           |       |           |         |
| 123.0 | 47.0  | 40.5 | 50.0  | 25.4 | 45.0  |      |       | 345.6     | 30.0  | 356.5     | 28.0  | 471.2     | 30.0  | 1         |         |
| 139.0 | 53.0  | 43.2 | 54.0  | 27.8 | 49.0  |      |       |           |       |           |       |           |       |           |         |
| 123.0 | 47.0  | 41.8 | 52.0  | 25.5 | 45.0  | 42.0 | 52.0  |           |       |           |       | 466.3     | 29.0  |           |         |
| 170.0 | 64.0  | 58.8 | 73.0  | 36.7 | 65.0  | 59.0 | 73.0  | 536.4     | 46.0  | 495.L     | 39.0  | 750.8     | 47.0  |           |         |
| 245.0 | 93,0  | 75.2 | 94.0  | 51.9 | 92.0  | 76.0 | 94,0  | 780.1     | 67.0  | 912.4     | 71.0  | 1395,3    | 88.0  |           |         |
|       |       | 76,6 | 96.0  | 54.1 | 96.0  | 72.0 | 89.0  | 1017.6    | 88.0  | 1074.4    | 84,0  | 1217.9    | 77.0  |           |         |
| 264.2 | 100.0 | 80.2 | 100.0 | 56.4 | 100.0 | 80.8 | 100.0 | 1157.8    | 100.0 | 1282.0    | 100.0 | 1583.5    | 100.0 | no data   | no data |

, I

# APPENDIX K: GROWTH FLUCTUATION PATTERNING DATA

#### K-1 Sadlermiut females regression summary

#### BSI Pairs (Chronological numbering see Appendix H, H-1)

| Skeleton # | V1:V2 | V1:V4 | V1:V7 | V1:V11 | V1:V13 | V1:V17 | V1:V20 | V1:V22 | V1:V24 | V2:V4 | V2:V26 | V2:V27 | V3:V6 | V3:V7 | V3:V8 | V3:V9 | V3:V10 | V3:V15 | V3:V16 | V3:V17 |
|------------|-------|-------|-------|--------|--------|--------|--------|--------|--------|-------|--------|--------|-------|-------|-------|-------|--------|--------|--------|--------|
| XIV-C:96   |       |       |       |        |        |        |        |        |        |       |        |        |       |       |       |       |        |        |        |        |
| XIV-C:112  |       |       | +     |        |        | +      | +      | +      |        | +     |        |        |       | +     |       |       | +      | +      | +      | +      |
| XIV-C:175  |       | -     | -     |        |        | -      |        | -      | -      |       |        |        |       |       |       |       |        |        |        |        |
| XIV-C:105  | -     |       |       |        |        |        |        | +      | +      |       |        |        |       |       | +     |       |        | +      |        |        |
| XIV-C:145  |       |       |       |        |        |        |        |        |        |       |        |        |       |       |       | +     |        |        |        |        |
| XIV-C:149  |       | -     |       | -      |        |        | +      |        | +      | -     |        | -      |       |       | •     | •     |        | •      | -      |        |
| XIV-C:153  | +     |       |       |        |        |        |        |        |        |       |        |        |       |       |       |       |        |        |        |        |
| XIV-C:103  |       |       | •     |        | +      |        |        |        |        |       | •      |        |       |       |       |       |        |        |        |        |
| XIV-C:104  | +     |       |       | -      |        |        |        |        | -      |       |        |        |       |       |       |       |        |        |        |        |
| XIV-C:98   | -     |       |       | -      | -      |        |        |        |        |       |        |        | -     | -     |       |       |        |        |        |        |
| XIV-C:155  | +     | +     |       | +      |        |        |        |        |        |       | +      |        |       | -     | +     |       |        | -      |        | -      |
| XIV-C:219  |       | +     |       |        |        |        |        |        |        | +     | -      |        |       |       |       |       |        |        |        | _      |
| XIV-C:183  |       |       | +     |        |        | +      |        |        |        |       |        |        |       |       |       | -     |        |        |        | +      |
| XIV-C:148  |       |       |       |        |        |        |        |        |        |       |        |        | -     | -     |       |       |        |        |        | •      |
| XIV-C:100  |       |       | +     |        | +      |        | +      |        |        |       | +      |        |       |       |       |       |        |        |        |        |
| XIV-C:192  |       | -     |       |        |        |        |        |        |        |       | +      |        |       |       | -     |       |        |        |        |        |
| XIV-C:221  |       |       |       | +      |        | +      |        |        |        |       |        |        | +     |       | -     | •     | -      |        |        |        |

plus (+) = above the regression line

minus (-) = below the regression line

|                                           | <br> | _ | _ | _ |   |   |   | _ |   |   |   |   |   |   | _ |   |
|-------------------------------------------|------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| V5:V6                                     | +    | • |   |   |   |   |   |   | • | + | + |   |   |   | • | + |
| V4:V27                                    |      |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
| V4:V26                                    |      |   |   |   |   |   | , |   |   | + |   |   |   |   | + |   |
| V4:V23 V4:V26 V4:V27                      |      | · |   | + |   |   |   |   |   |   |   |   |   |   |   |   |
| V4:V22                                    | +    |   |   |   |   |   |   |   |   | , |   | , |   |   |   |   |
|                                           |      | • |   |   |   |   |   | + |   |   |   | + |   | . | + |   |
| V4:V19                                    |      |   |   | + |   |   |   |   | + |   |   |   |   | + | - |   |
| V4: V16                                   |      | , |   |   |   | ſ | ſ |   | + |   |   |   |   |   |   | + |
| V4:V11 V4:V16 V4:V19 V4:V21               |      |   |   |   |   |   |   |   |   | + |   |   |   |   | + | + |
| V4:V9                                     |      | ſ | ſ | + | Γ |   |   |   |   | + |   | • |   | + |   |   |
| V4:V8                                     |      |   |   |   |   |   |   |   | + | + | • | • |   | + | • | - |
| V4:V7                                     | +    |   |   |   | + |   |   |   |   |   |   |   |   | + |   |   |
| V4:V6                                     |      |   |   |   |   |   |   | • | • | + |   |   |   |   | • | + |
| V3:V26                                    |      |   |   |   | • |   |   |   |   |   |   |   |   |   | + |   |
| V3:V25 V3:V26                             |      |   |   |   |   |   |   |   | + |   |   | + |   |   |   |   |
| V3:V24                                    | +    |   |   |   |   |   | + |   |   |   |   |   |   |   | + |   |
| V3:V23                                    |      |   | + |   |   |   |   |   | • |   |   |   |   |   |   | 1 |
| V3:V22                                    | +    |   |   |   |   |   | + |   |   | • |   |   |   |   |   |   |
| V3:V21                                    |      |   | + |   |   |   |   |   | • |   |   | + |   |   | + |   |
| V3:V18 V3:V19 V3:V20 V3:V21 V3:V22 V3:V23 | +    |   |   |   |   |   |   |   | - | • |   |   | • |   |   |   |
| V3:V19                                    |      |   | + |   | • |   |   |   | + | • |   |   |   |   |   |   |
| V3:V18                                    | +    |   |   |   | + |   |   |   | • | · |   | + |   |   |   | • |

Antonio

A CONTRACTOR

| \$                                |   |   |   | Ţ |   |   |   |   | ľ | <u> </u> | <u> </u> |   |   |   | Γ | Γ | Γ |
|-----------------------------------|---|---|---|---|---|---|---|---|---|----------|----------|---|---|---|---|---|---|
| eV:72                             | + |   |   | L | + | ' | + |   |   |          | +        |   |   | _ |   | ' | ' |
| V7:V8                             | + |   |   | + |   | • | + | + | • |          | +        |   | • |   |   | 1 | • |
| V6:V27                            | • |   |   |   | + | • |   |   |   |          |          |   |   |   |   |   |   |
| V6:V24                            |   | + |   |   |   |   | • |   |   | +        | ,        |   |   |   |   | + |   |
| V6:V22 V6:V23 V6:V24 V6:V27       |   |   | • | + | + |   |   |   |   |          |          |   |   |   |   |   |   |
| V6: V22                           |   | + | • |   |   |   |   |   |   | +        |          | , |   |   |   | + |   |
| V6:V20                            |   | + |   | ľ | Ļ | + |   |   |   | +        |          | , |   |   |   | + |   |
| V6:V19                            | • |   |   |   | + |   |   |   |   | +        |          |   |   |   | + |   |   |
| V6:V16 V6:V17 V6:V18 V6:V19       |   | + |   |   | + | + |   |   |   |          |          |   |   |   |   |   |   |
| V6:V17                            | + | + |   |   |   |   |   |   |   | +        |          |   | + |   |   | + |   |
| V6:V16                            |   |   |   |   |   |   | • |   |   | +        |          |   |   |   |   | + |   |
| V6:V8                             | + |   | • | + | + |   | + |   | • | +        | +        |   | • |   | + |   |   |
| V6:V7                             |   | + | • |   | + |   |   | • | + | +        | •        |   |   |   | + | + |   |
| V5:V27                            | • | + |   |   |   |   |   | i |   |          | +        |   |   |   |   |   |   |
| V5:V24                            |   | + | • |   |   | + |   |   |   |          | -        |   | • |   |   | + |   |
| V5:V22 V5:V24                     |   | + | • |   |   |   |   |   |   |          | •        |   |   |   |   | + |   |
|                                   |   | + | • |   |   | + | • |   |   |          |          |   | - |   |   |   |   |
| V5:V19                            | • | + | • | + |   | - |   |   |   | +        |          | + | • |   | + |   |   |
| V5:V18                            |   | + |   |   |   | + | • |   |   |          |          |   | - |   |   |   |   |
| V5:V8 V5:V17 V5:V18 V5:V19 V5:V20 | + | + | • |   |   | + | - | • |   |          |          |   |   |   |   |   |   |
| V5:V8                             | + | + | - | + |   | • | + |   |   |          | +        |   | • |   | + | - |   |
| V5:V7                             |   | + | • |   |   |   |   | • | + |          |          | + | • |   | + |   |   |

|                                           | <b>.</b> | <b>-</b> |   | - | <b>-</b> | <b></b> | _ |   | r |   | <b></b> _ |   | _ | - | _ | _ | r |
|-------------------------------------------|----------|----------|---|---|----------|---------|---|---|---|---|-----------|---|---|---|---|---|---|
| V8: V24                                   |          | +        |   |   |          | +       | • | + |   |   | •         |   |   |   |   | + |   |
| V8:V23                                    |          |          |   | + | +        |         |   |   |   |   |           |   |   |   |   |   | + |
| V8:V22                                    |          | +        |   |   |          |         | • |   |   |   | .         |   |   | • |   | + | + |
| V8:V19 V8:V20 V8:V22 V8:V23               |          | +        |   |   |          | +       | • |   |   |   | ,         |   |   | , |   |   |   |
| V8:V19                                    | -        |          |   |   |          |         |   |   |   | + |           | + | + |   |   |   | + |
| V8:V16                                    |          | +        | • | • |          |         |   |   |   |   |           | + |   |   |   | + | + |
| V8:V15                                    | •        | +        | • |   |          |         |   |   |   | + |           |   |   |   |   |   | + |
| V8:V9 V8:V10 V8:V15                       | +        | +        |   |   |          |         |   |   | + |   |           |   | + |   |   |   |   |
| V8:V9                                     | +        |          |   |   | +        |         |   | , | + |   |           |   |   |   |   |   | • |
| V7:V26 V7:V27                             |          |          |   |   |          |         |   |   |   |   | +         |   |   |   |   |   |   |
| V7:V26                                    |          |          |   |   |          | •       |   |   |   | • | +         | • |   |   |   | + |   |
| V7:V24                                    |          |          |   |   |          |         | - | + |   |   |           |   | • |   |   | + |   |
| V7:V23                                    |          |          |   | + | +        |         |   |   |   |   | +         |   | • |   | • |   |   |
| V7:V22                                    | 1        |          |   |   |          |         |   | + | · | + |           | • | • |   |   | + | , |
| V7:V21                                    | +        |          |   | + |          | •       |   |   | + |   |           | • | + |   |   | + |   |
| V7:V20                                    | +        |          |   |   |          | +       |   | + |   |   |           |   |   |   |   |   |   |
| <b>61V:7V</b>                             | •        |          |   | + | +1       | •       |   |   | • | + |           |   |   |   |   | 1 |   |
| V7:V10 V7:V15 V7:V16 V7:V17 V7:V18 V7:V19 |          |          |   |   |          | +       | • | + | • |   | +         | • |   |   |   |   |   |
| V7:V17                                    | +        |          |   | • |          |         | • |   |   | + |           |   | + |   |   |   | + |
| V7:V16                                    |          |          |   | • |          | •       |   |   | • | + | +         |   |   |   |   |   | + |
| V7:V15                                    | -        |          |   | + |          | -       |   |   |   | + | •         |   |   | + |   |   |   |
| V7:V10                                    | +        |          |   |   |          |         | • |   |   | + |           |   |   |   |   |   | • |

| V8:V26 | V8:V27 | V9:V10 | V9:V13 | V9:V16 | V9:V20 | V9:V22 | V9:V26 | V10:V15 | V10:V16 | V10:V17 | V10:V18 | V10:V20 | V10:V21 | V10:V22 | V10:V24 | V10:V25 | V11:V12 | V11:V13 | V11:V16 | V11:V26 | V11:V27 |
|--------|--------|--------|--------|--------|--------|--------|--------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
|        | -      |        |        |        |        |        |        | -       |         |         |         |         |         |         | -       |         |         |         |         |         |         |
|        | +      | +      |        | +      | +      | +      | +      |         |         |         |         | +       |         | +       | +       |         |         |         | +       | +       | +       |
|        |        |        |        |        | -      | •      |        | _       |         |         |         |         |         |         |         |         |         |         |         |         |         |
|        |        |        |        |        |        |        |        | +       | -       | -       |         |         | +       |         |         |         | -       |         |         |         |         |
|        |        |        |        |        |        |        |        |         |         |         |         |         |         |         |         |         |         |         |         |         |         |
|        |        |        |        |        | +      |        |        |         | -       |         | +       | +       | -       |         |         |         | +       |         |         |         |         |
|        |        |        | -      |        | •      |        |        | +       |         |         |         |         |         |         |         |         |         |         |         |         |         |
| •      |        |        | +      |        | +      | +      | -      |         |         |         |         | +       |         | +       | +       | •       |         | +       | -       | -       |         |
| _      |        |        |        |        | -      |        |        |         |         | -       | -       | -       | +       |         |         |         |         |         | _       |         |         |
| -      | •      | +      | •      | +      |        |        | -      | +       |         |         |         |         | -       |         |         | +       |         |         | +       |         |         |
|        |        | -      |        |        | -      | -      |        | -       | +       |         |         |         |         | -       |         |         |         |         |         |         |         |
|        |        |        | +      |        |        |        |        |         |         |         |         |         |         |         |         |         | +       | +       |         | •       |         |
| +      |        | +      |        |        |        |        | +      |         |         |         |         |         | +       |         | -       |         |         | -       |         | +       |         |
|        |        |        |        | -      | -      | •      |        |         | -       | -       |         | -       |         | -       |         |         |         |         | -       |         |         |
|        |        |        |        |        |        |        |        |         |         |         |         |         |         |         |         |         |         |         |         |         |         |
| +      |        |        |        |        |        | +      | +      |         |         |         |         |         | +       | +       | +       |         | +       |         |         |         |         |
|        |        |        |        | +      | +      | +      |        | +       | +       | +       | +       | +       | +       | +       | +       | +       | -       |         |         |         |         |

| V18                                                                                                                                     |   | Γ | <u> </u> | Γ |   |   |   | [ |   |   |   |   |   |   | ļ | ſ |
|-----------------------------------------------------------------------------------------------------------------------------------------|---|---|----------|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 7 V17:                                                                                                                                  | _ |   | <br>+    |   | + |   | + |   |   | _ | • |   | _ |   |   | ļ |
| V16:V2                                                                                                                                  | • |   |          |   |   |   |   |   | • |   |   |   |   |   |   |   |
| VI5:V21 VI5:V22 VI5:V23 VI5:V24 VI6:V17 VI6:V18 VI6:V19 V16:V29 V16:V20 VI6:V21 VI6:V22 VI6:V23 VI6:V24 VI6:V25 VI6:V25 VI6:V27 VI7:V18 |   |   |          |   |   |   |   |   | · |   |   | + |   |   | + |   |
| V16:V25                                                                                                                                 | + |   |          |   |   |   | • | + | + |   |   | + |   |   | , |   |
| V16: V24                                                                                                                                |   | + |          |   | + |   | + |   |   | , |   |   | • |   | + |   |
| V16:V23                                                                                                                                 | • |   | +        |   |   |   |   |   |   |   |   |   |   |   |   |   |
| V16: V22                                                                                                                                |   | + | +        |   | ÷ |   | + |   |   |   |   |   |   |   | + |   |
| V16: V21                                                                                                                                | + |   | +        |   |   |   |   | + |   |   |   | + |   |   | + |   |
| V16: V20                                                                                                                                |   | + |          |   | + |   | + |   |   |   | , |   | • |   |   |   |
| V16:V19                                                                                                                                 |   |   | +        |   | ľ |   | + |   | + |   |   | + |   |   |   |   |
| V16:V18                                                                                                                                 |   |   |          |   | ÷ |   |   |   |   | - |   |   | , |   |   |   |
| V16:V17                                                                                                                                 |   |   |          |   | + |   |   |   |   | - |   | + | • |   |   |   |
| V15:V24                                                                                                                                 | + |   |          |   | + | • | + |   | • |   |   |   | , |   | + |   |
| V15:V23                                                                                                                                 |   |   | +        |   |   | • |   |   | • | + |   |   |   |   |   |   |
| V15:V22                                                                                                                                 | + |   | •        |   | + |   | + |   | • |   |   |   |   |   | + |   |
| V15:V21                                                                                                                                 | + |   |          |   |   |   |   | + |   |   |   | + |   |   | + |   |
| V15:V20                                                                                                                                 | + |   | •        |   | + | • |   |   |   |   |   |   |   |   |   |   |
| V15:V19                                                                                                                                 |   |   |          |   | • |   |   | • | + |   | + | + |   |   |   |   |
| V15:V18                                                                                                                                 |   |   |          |   | + |   |   |   |   |   |   |   | , |   |   |   |
| V15: V17                                                                                                                                | + |   |          |   | + |   |   |   |   |   |   | + |   |   |   | + |
| V15:V16                                                                                                                                 | + |   |          |   |   | • |   |   |   | + |   |   |   |   |   | + |
| V12:V13 V15:V16 V15:V17 V15:V18 V15:V19 V15:V20                                                                                         |   |   |          |   |   | ' | + |   |   |   |   |   |   | + |   |   |

| <b></b>                                                                                                                                             |   |   |   |   | _ |   | _ | _ | _                | _ |   | _ |   |   |   | _ |   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|---|---|---|---|---|------------------|---|---|---|---|---|---|---|---|
| V21: V22                                                                                                                                            |   | ÷ |   |   |   | ļ |   | + |                  |   |   |   |   | , | + |   |   |
| V20: V26                                                                                                                                            |   |   |   |   |   |   |   |   |                  |   | + |   |   |   |   | + |   |
| V20:V24                                                                                                                                             |   |   |   | + |   |   |   | + |                  |   |   | + |   |   |   | + |   |
| 20:V23                                                                                                                                              | • |   |   | + | + |   | ŀ |   | ŀ                |   | + |   |   |   |   |   |   |
| V17: V25 V17: V26 V18: V19 V18: V20 V18: V22 V18: V24 V18: V24 V18: V24 V19: V20 V19: V22 V19: V24 V19: V24 V26: V25 V26: V24 V26: V25 V21 V20: V27 |   |   |   | + |   |   | + | + |                  | + |   |   |   |   |   | + |   |
| 9:V24 V                                                                                                                                             | + | + |   |   | - | + |   | + | ╞                |   |   |   | , |   |   | + |   |
| V23 V1                                                                                                                                              |   |   | ╞ | + |   |   | ┢ |   | $\left  \right $ | , | + |   | , |   |   |   |   |
| V22 V19                                                                                                                                             | + | + |   |   |   | + |   | + |                  |   |   | - | - |   |   | + |   |
| V20 V19                                                                                                                                             | + | + | _ | - |   |   | - | _ |                  | - |   |   |   |   |   | - |   |
| V27 V19:                                                                                                                                            | + | + |   | - |   | + |   |   |                  | _ |   | _ |   |   | _ |   | + |
| 24 V18:1                                                                                                                                            | _ |   | _ |   |   | • |   |   | _                |   |   |   | _ |   |   |   |   |
| 22 V18:V                                                                                                                                            |   |   | _ | + |   |   |   | + | _                |   | • |   | • |   |   | + |   |
| 0 V18:V2                                                                                                                                            |   |   |   | + |   | • |   | + |                  |   |   |   | • |   |   | + |   |
| V18:V2                                                                                                                                              |   |   |   |   |   |   |   | + |                  |   | - | • |   |   |   | + |   |
| V18:V19                                                                                                                                             |   |   |   | + |   | • |   |   |                  | + |   | + |   |   |   | • |   |
| V17:V26                                                                                                                                             |   |   |   |   |   |   |   |   |                  | • | + |   |   |   |   | + |   |
| V17:V25                                                                                                                                             | + |   |   |   |   |   |   |   | +                | + |   |   |   |   |   | · |   |
| V17:V24                                                                                                                                             |   | + |   | + |   |   |   | + |                  |   | - |   |   |   |   | + | • |
| V17:V19 V17:V20 V17:V21 V17:V22 V17:V23 V17:V24                                                                                                     | • |   |   | + |   |   |   |   |                  |   | + |   | • |   |   |   |   |
| 17:V22                                                                                                                                              |   | + |   | + |   |   |   | + |                  |   | • |   | • |   |   |   | - |
| 17:V21 V                                                                                                                                            | + |   |   | + |   | • |   |   | +                |   |   |   | + |   |   | + |   |
| 7:V20 V                                                                                                                                             |   |   |   |   |   | + | - | + |                  |   |   |   |   |   |   |   |   |
| 1V 91V                                                                                                                                              |   |   |   | + |   |   |   | + | L                | + |   | + |   |   |   | • |   |
| VI.                                                                                                                                                 |   |   |   |   |   |   |   |   |                  |   |   |   |   |   |   | Ш |   |

| V26:V27                                                                                         |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|-------------------------------------------------------------------------------------------------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| V21:V23 V21:V25 V21:V26 V22:V24 V22:V26 V22:V27 V23:V24 V23:V25 V23:V27 V23:V27 V23:V27 V23:V27 |   |   |   |   | • |   |   |   |   |   |   |   |   |   |   |
| V23:V26                                                                                         |   |   |   |   | • |   |   |   | • |   |   | + | + |   |   |
| V23:V25                                                                                         | + |   |   |   |   |   |   |   | + |   |   |   |   |   |   |
| V23:V24                                                                                         | + | + | • |   |   |   |   |   |   |   |   |   |   |   |   |
| V22:V27                                                                                         | • |   |   |   |   |   |   |   | • | + |   |   |   |   |   |
| V22: V26                                                                                        |   |   |   |   | 1 |   | • |   | • | + |   | + |   | + |   |
| V22: V24                                                                                        |   |   |   |   | + | • |   | 1 | • |   | + |   |   | + | • |
| V22:V23                                                                                         | • |   | + | + |   |   |   |   |   | + |   |   | • |   |   |
| V21:V26                                                                                         |   |   |   |   |   |   |   |   |   | + |   |   | + |   |   |
| V21:V25                                                                                         |   |   |   |   |   |   |   |   | + |   |   |   |   |   |   |
| V21:V23                                                                                         |   | + |   | + |   |   |   |   |   | + |   |   |   |   |   |

#### K-2 Sadlermiut males regression summary

#### BSI Pairs (Chronological numbering see Appendix H, H-2)

| Skeleton # | V2:V3 | V2:V8 | V2:V9 | V2:V14 | V2:V18 | V2:V19 | V2:V24 | V2:V25 | V2:V26 | V3:V9 | V3:V11 | V3:V14 | V3:V18 | V3:V19 | V3:V21 | V3:V22 | V3:V23 | V3:V25 | V3:V26 | V3:V27 |
|------------|-------|-------|-------|--------|--------|--------|--------|--------|--------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| XIV-C:230  | +_    |       |       |        |        |        | -      |        |        |       |        |        |        |        |        |        |        | -      | -      |        |
| XIV-C:74   |       |       |       |        |        |        |        |        |        |       |        |        | +      | -      |        |        |        |        | +      |        |
| XIV-C:117  | +     |       |       | +      |        | -      |        |        | •      |       |        |        |        | -      |        | -      | -      |        | -      | -      |
| XIV-C:126  |       |       |       | •      |        | -      | -      | -      |        |       |        | -      |        |        |        |        |        | -      |        | -      |
| XIV-C:246  | -     |       |       |        | -      |        |        | -      | -      |       | +      | +      |        |        |        |        |        |        |        | 1      |
| XIV-C:111  |       |       | -     |        | -      | •      |        |        |        | •     | -      |        |        | -      | +      | +      |        |        |        |        |
| XIV-C:243  | +     | -     |       |        |        |        |        |        |        |       |        | -      |        |        | -      | -      |        | -      | -      |        |
| XIV-C:216  | -     |       |       |        |        | +      | +      |        |        |       |        |        | +      | +      |        |        | +      |        |        |        |
| XIV-C:217  |       |       |       | -      |        |        |        |        |        |       | -      |        |        |        |        |        |        |        |        | 1      |
| XIV-C:179  |       |       |       |        |        |        |        |        |        |       |        |        |        |        |        |        |        |        |        |        |
| XIV-C:182  |       | +     | +     |        | +      |        | +      | +      | -      | +     |        |        | +      |        |        |        |        | +      | -      | +      |
| XIV-C:157  |       | -     | -     | -      | -      |        |        |        | +      | -     | +      |        |        |        |        |        |        |        |        |        |
| XIV-C:181  |       |       |       |        |        |        |        |        |        |       |        |        |        | +      | +      | +      |        | +      | +      |        |
| XIV-C:101  |       |       |       |        |        |        |        |        |        |       |        |        |        |        |        |        |        |        |        |        |
| XIV-C:156  |       | +     | +     | +      | +      |        |        |        |        |       |        | +      | +      |        | +      | +      | +      |        |        | +      |
| XIV-C:99   | j     |       |       |        |        |        |        |        |        |       |        |        |        |        |        |        |        |        |        |        |

plus (+) = above the regression line

minus (-) = below the regression line

| V5:V27                                                               |   |   | • | • |   |   |   |   | + | + |   |         |   |   |   |   |
|----------------------------------------------------------------------|---|---|---|---|---|---|---|---|---|---|---|---------|---|---|---|---|
| V5:V6 V5:V13 V5:V15 V5:V17 V5:V18 V5:V21 V5:V22 V5:V23 V5:V25 V5:V27 | - |   |   | • |   |   |   |   | + |   |   |         | + |   |   |   |
| V5:V23                                                               | _ |   | • |   | + |   |   |   |   |   |   |         |   |   |   |   |
| V5:V22                                                               |   |   |   |   |   |   |   |   | + |   | • |         | + | • |   |   |
| V5: V21                                                              | - |   |   |   |   |   |   |   |   |   | • |         | + |   | + |   |
| V5: V16                                                              |   |   | + |   |   | , |   |   |   | + |   | •       | + |   |   |   |
| V5:V17                                                               |   |   |   | + |   |   | + |   |   | • |   |         |   |   |   | + |
| V5:V15                                                               |   |   |   |   |   |   |   | + |   |   |   | .<br> - | + |   | + |   |
| V5:V13                                                               | ' |   | + | + | + |   |   |   |   | + |   |         |   |   |   | + |
| V5:V6                                                                |   |   |   | + |   |   | + |   |   | + |   |         | + |   |   | • |
| V4:V14 V4:V15 V4:V18 V4:V19 V4:V23 V4:V25                            | • |   |   | - |   |   |   |   |   |   |   |         | + |   |   |   |
| V4: V23                                                              |   | • |   |   |   |   | L |   |   |   | • |         | + |   | + |   |
| V4:V19                                                               |   | • |   |   | L |   |   |   |   |   |   |         | + |   |   |   |
| V4:V18                                                               |   | + | + |   | • |   | , |   |   |   |   |         | + |   | + |   |
| V4:V15                                                               |   | L | + |   |   |   | ŀ |   |   |   |   |         | + |   | + |   |
| ┝╾┥                                                                  |   |   | + |   |   |   |   |   |   |   |   |         | + |   | + |   |
| V4:V13                                                               |   |   | + |   | + | + |   |   |   |   | . | •       |   |   |   |   |
| V4:V10                                                               |   | + |   |   | • |   |   | + |   |   |   |         |   |   |   |   |
| V4:V8 V4:V9 V4:V10 V4:V13                                            |   |   | + | + |   |   |   | • |   |   |   |         | + |   |   |   |
| V4:V8                                                                | • | + |   | + |   |   |   | 1 | + |   |   |         | + | · | + |   |
| V4:V7                                                                |   | • |   |   | + |   | , | + | + |   |   |         | + | . |   | • |
| V4:V6                                                                |   |   |   | + |   | + |   |   |   |   |   |         | + |   |   |   |

| 67                                                                           |   |   | Γ | Γ | 1 | Γ | Γ | Γ | Γ      | Γ       | Γ | <b></b> | <u> </u> |   | Γ     | Γ |
|------------------------------------------------------------------------------|---|---|---|---|---|---|---|---|--------|---------|---|---------|----------|---|-------|---|
| V8:V9                                                                        |   |   |   | - | . | ' |   |   |        |         |   |         | +        |   | '<br> |   |
| V7:V26                                                                       | • |   |   |   |   |   |   |   |        |         | • |         | +        |   |       |   |
| V7:V25                                                                       |   |   |   |   |   |   |   |   |        |         | + |         | +        |   |       |   |
| V7:V23                                                                       |   |   |   |   |   |   | + |   |        |         |   |         |          |   | +     |   |
| V7:V22                                                                       |   |   |   |   |   | + |   | • |        |         |   |         | +        |   |       |   |
| V7:V19                                                                       |   |   |   |   |   |   | + |   |        |         |   |         | +        |   |       |   |
| 7:V18                                                                        |   | + | + |   |   |   |   |   |        |         | + |         | +        |   | +     |   |
| 7:V15                                                                        |   |   |   |   |   | + |   |   |        | t       |   |         |          |   | +     |   |
| V7:V10 V7:V11 V7:V12 V7:V14 V7:V15 V7:V18 V7:V19 V7:V22 V7:V23 V7:V25 V7:V26 |   | ╞ | + | - | ┢ | + |   |   | $\mid$ | ╞       |   | .       |          | . |       | ╞ |
| 7:V12 V                                                                      | + |   | - |   | . | ╞ |   |   | ╞      |         |   | .       |          |   | +     | + |
| ייען ע:                                                                      |   |   | + | . |   |   | + |   | .      | <br>  + |   |         |          |   |       | - |
| V10 V7                                                                       | _ | + |   |   |   |   |   |   |        |         |   |         |          |   |       | + |
|                                                                              |   |   |   |   |   |   |   |   |        |         |   | _       |          |   |       |   |
| V7:V9                                                                        |   |   |   | + |   |   |   | • |        |         | + | •       |          |   |       | + |
| V7:V8                                                                        | • | + |   | + |   |   |   | • |        |         | + | -       |          | • | +     | + |
| V6:V26 V6:V27                                                                |   |   |   | • | • |   |   |   |        |         |   |         |          |   | ÷     |   |
| V6:V26                                                                       | • |   |   |   |   |   | • |   |        | +       | • |         | +        |   |       |   |
| V6:V25                                                                       | • |   | + |   |   |   | 4 |   |        |         | ÷ |         | +        |   |       |   |
| V6:V23                                                                       |   | • |   | • | + |   |   |   |        |         |   |         |          |   | +     |   |
| V6:V22                                                                       |   | • |   |   |   |   | • |   | +      |         |   |         |          |   |       | + |
| V6: V21                                                                      |   | • | + |   |   |   |   |   |        | -       | • |         |          |   | +     | + |
| V6: V19                                                                      |   | • |   |   |   |   |   | + |        | +       |   |         |          |   |       |   |
| V6:V15 V6:V19 V6:V21 V6:V22                                                  |   |   | + |   |   |   | • | + |        |         |   | -       |          |   | +     |   |

|   |                         | _ | —     | <del>.</del> — | _ | - | <b>-</b>         | - | _ |   | _                | _  |                  |   |   |                  |   |
|---|-------------------------|---|-------|----------------|---|---|------------------|---|---|---|------------------|----|------------------|---|---|------------------|---|
|   | V11:V12                 |   |       |                |   | . |                  | + |   |   |                  |    | !                |   |   | +                |   |
|   | V10:V18                 |   |       | +              |   |   |                  |   |   |   | +                | +  | •                |   |   | +                |   |
|   | V10:V15 V10:V18 V11:V12 |   |       |                |   |   |                  |   |   |   |                  | +  |                  |   |   | +                |   |
|   | V9: V27                 |   |       |                |   |   |                  |   |   |   |                  |    |                  |   |   | +                |   |
|   | V9:V26                  |   |       |                |   |   | -                |   |   |   |                  |    |                  | + |   |                  |   |
|   | V9:V25 V                |   |       |                | 1 |   |                  |   |   |   |                  |    |                  |   |   |                  |   |
|   | V9:V24 V                |   |       |                |   |   | $\left[ \right]$ | - |   |   | $\left  \right $ | }_ |                  | + | F | .                |   |
|   | V9:V23 V                |   |       |                |   |   |                  |   |   |   |                  |    | $\left  \right $ |   |   | +                |   |
|   | V9:V19 V9               |   |       |                |   |   |                  |   | + |   |                  | -  |                  | + |   | $\left  \right $ |   |
|   | V9:V18 V9:              |   | ╞     |                | ╞ |   |                  |   |   |   |                  | ┞  |                  |   |   |                  |   |
|   |                         |   |       | +              |   |   | -                |   |   |   |                  |    |                  |   |   | +                |   |
|   | 15 V9:V16               |   |       |                |   |   |                  |   |   |   |                  | -  | +                |   |   | +                |   |
|   | 4 V9:V15                |   |       |                | _ |   |                  |   | + |   |                  |    | •                |   |   | +                | • |
|   | V9:V14                  |   |       | +              |   | + |                  |   |   |   |                  |    |                  |   | • | +                |   |
|   | V9:V13                  |   |       | +              |   | + | +                |   |   |   |                  | -  | '                |   |   |                  |   |
| , | V8:V26                  |   |       |                |   |   |                  |   |   |   | +                | •  |                  | + |   |                  |   |
|   | V8:V25                  |   | •     |                | - |   |                  |   |   |   |                  | +  |                  | + |   |                  |   |
|   | V8:V24                  | • | •     |                |   |   |                  |   |   |   |                  |    |                  | + |   | •                |   |
|   | V8:V18                  | + | •     | +              |   |   |                  |   |   |   | +                |    |                  | + |   |                  |   |
|   | V8:V15                  |   |       |                |   |   |                  |   | + | • |                  |    |                  |   |   | +                |   |
|   | _                       | + | <br>  | +              |   |   |                  |   |   |   | +                | •  |                  |   | - |                  |   |
|   | V8:V13 V8:V14           |   | '<br> | +              |   | + | +                |   |   | - |                  | •  | •                |   |   |                  |   |
|   | V8:V10 V                |   |       |                |   |   | •                |   | + |   |                  | -  |                  |   |   |                  | + |

| 15:V25                                                                                                                                         | • |   |   |   |   |   |   |   | + |   | + |   |   |   |
|------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| V15:V23 V                                                                                                                                      |   |   |   |   | + |   |   |   |   |   |   |   |   |   |
| V15:V22 V                                                                                                                                      |   | , |   | + |   |   | + |   |   |   | + |   |   |   |
| V15:V21                                                                                                                                        |   |   | • | + |   |   |   |   | • |   |   |   |   |   |
| <u>V13:V18 V14:V18 V14:V18 V14:V19 V14:V21 V14:V21 V14:V23 V14:V25 V14:V25 V14:V27 V15:V18 V15:V18 V15:V21 V15:V21 V15:V23 V15:V23 V15:V25</u> |   | • |   | • |   |   |   |   |   |   | + |   |   |   |
| 7 V15:V18                                                                                                                                      |   | + | • |   |   |   |   |   | + |   |   |   |   |   |
| 6 V14:V2'                                                                                                                                      |   |   | • |   |   |   |   |   | + |   | + |   |   |   |
| S V14: V2                                                                                                                                      | • |   | _ |   |   |   |   |   |   |   | + |   |   |   |
| 23 V14:V2                                                                                                                                      | • |   |   |   |   |   |   |   | + |   | + |   |   |   |
| 22 V14:V                                                                                                                                       |   | • |   |   |   |   |   |   |   |   |   |   |   |   |
| V21 V14:V                                                                                                                                      |   |   |   | + | _ |   |   |   |   |   | + |   |   |   |
| V19 V14:V                                                                                                                                      |   | • |   | + |   |   |   | • |   |   | + |   | + |   |
| V18 V14:                                                                                                                                       | _ | • |   | • |   |   |   |   | + |   | + |   |   | + |
| I: V15 V14                                                                                                                                     | _ |   |   |   | - |   |   |   | + | - |   |   | + |   |
| 3:V18 V14                                                                                                                                      |   |   | - | • | - |   |   | _ | + |   | + |   | + |   |
|                                                                                                                                                |   | • | - |   | • | + |   |   | + |   | + |   | + |   |
| V11:V14 V11:V19 V11:V23 V12:V17 V13:V14 V13:V15                                                                                                |   |   |   | • |   |   |   | + |   |   | + | • | + |   |
| V12:V17                                                                                                                                        |   |   |   | + |   | + |   | • | • | • |   |   |   |   |
| V11:V23                                                                                                                                        |   | • |   |   |   |   |   |   |   |   | + |   | + |   |
| V11:V19                                                                                                                                        |   | ' |   |   |   |   |   |   |   |   | + |   |   | + |
| V11:V14                                                                                                                                        |   |   |   |   | • |   |   |   |   | • | + | • | + | + |

A section with the later

|   |                                                                                                                                        |   | r | <u> </u> | <b>—</b> | - | - | _ | _ | _ |   | _ | _ | _ | _ | _ | _ |
|---|----------------------------------------------------------------------------------------------------------------------------------------|---|---|----------|----------|---|---|---|---|---|---|---|---|---|---|---|---|
|   | V21: V27                                                                                                                               |   |   |          | •        |   |   |   | • |   | ÷ | + |   |   |   |   |   |
|   | V21:V26                                                                                                                                |   |   |          |          |   |   |   |   |   |   | + |   |   |   | • |   |
|   | V21:V25                                                                                                                                |   |   |          |          |   |   |   |   |   |   | + |   |   |   |   |   |
|   | 21:V24                                                                                                                                 |   |   |          |          |   |   |   |   |   |   | + |   |   |   |   |   |
|   | 21:V23 V                                                                                                                               |   | - | •        |          | + |   | + |   |   |   | + |   |   |   |   |   |
|   | 21:V22 V                                                                                                                               | _ | - | •        |          | + |   |   |   | + |   |   |   |   |   |   |   |
|   | 19:V27 V                                                                                                                               |   |   |          |          |   |   |   |   |   | - | + | ╞ | ╞ |   | + |   |
|   | 9: V26 V                                                                                                                               |   | + |          | -        |   | - | . |   |   |   | . |   |   | ╞ | ╞ | ┝ |
|   | 9:V25 VI                                                                                                                               |   |   |          | .        |   | ╞ | - | . | - |   | + |   | + |   |   |   |
|   | <u>V18.V25 V18.V26 V18.V27 V19.V21 V19.V23 V19.V24 V19.V24 V19.V25 V19.V26 V19.V27 V21.V22 V21.V23 V21.V24 V21.V25 V21.V27 V21.V27</u> |   |   |          | -        | . |   | ╞ |   |   |   | + |   | + |   |   |   |
|   | V 527:6                                                                                                                                |   |   |          |          | + |   |   |   |   |   |   |   | - |   | + |   |
|   | 9:V22 VI                                                                                                                               |   |   |          |          |   | + |   | • |   | • |   |   |   |   | + | + |
|   | 9:V21 V1                                                                                                                               | _ |   |          |          | - | + | • |   | - | - |   |   |   |   | + |   |
|   | 27 VI                                                                                                                                  |   |   |          |          |   |   | - |   |   |   | - |   |   |   |   | _ |
|   | V18:V                                                                                                                                  | + |   | •        | •        |   |   |   | • |   |   |   |   |   |   |   |   |
| - | V18:V26                                                                                                                                |   |   |          |          |   |   |   |   |   | + | • |   | + |   | • |   |
|   |                                                                                                                                        | ' | • |          | •        |   |   |   |   |   |   | + | + | + |   |   |   |
| • | V18:V21                                                                                                                                |   |   |          |          |   | + |   |   |   | • | • |   |   |   |   |   |
|   | V18:V19                                                                                                                                |   | • | 1        |          |   |   |   | + |   |   |   |   | + |   |   |   |
|   | V16:V23                                                                                                                                |   |   | •        |          |   |   |   |   |   |   | + |   |   |   |   |   |
|   | V16:V19                                                                                                                                |   |   |          |          |   |   | • | + |   | + |   | - | + |   |   | • |
|   | V15:V26 V15:V27 V16:V19 V16:V23 V18:V19 V18:V21                                                                                        | + |   |          |          | • |   |   | - |   |   |   |   | + |   |   |   |
|   | 5:V26                                                                                                                                  | - |   |          |          |   |   |   |   |   |   |   |   | + |   |   |   |

.

| _                                                                                                  | _ |  | _ | <br> | <br>_ | <br> |   | <br>_ | _ |   |  |
|----------------------------------------------------------------------------------------------------|---|--|---|------|-------|------|---|-------|---|---|--|
| V25:V27                                                                                            | + |  |   |      | •     | +    |   |       |   | + |  |
| V25:V26                                                                                            |   |  | + |      |       | +    | - |       |   |   |  |
| V24:V26                                                                                            |   |  |   |      |       | +    | - |       |   |   |  |
| V24:V25                                                                                            |   |  | • |      |       |      | + |       | · | + |  |
| V23:V27                                                                                            |   |  | • |      |       | +    |   |       |   |   |  |
| V23:V25                                                                                            |   |  | • |      |       |      | + | +     |   |   |  |
| V22:V27                                                                                            |   |  | - |      | •     | +    | + |       |   |   |  |
| V22:V26                                                                                            |   |  |   |      |       | +    | • |       |   |   |  |
| V22: V23 V22: V24 V22: V25 V22: V26 V22: V27 V23: V25 V23: V27 V24: V25 V24: V26 V25: V26 V25: V27 |   |  | • |      |       |      | + |       |   |   |  |
| V22:V24                                                                                            |   |  |   |      |       |      | + | +     |   | , |  |
| V22:V23                                                                                            |   |  |   |      | +     |      |   |       | • |   |  |

and the second second

## K-3 Sacred Heart females regression summary

## BSI Pairs (Chronological numbering see Appendix H, H-1)

| Skeleton #   | V1:V2 | V1:V4 | V1:V5 | V1:V6 | V1:V8 | V1:V12 | V1:V13 | V1:V14 | V1:V15 | V1:V19 | V1:V23 | V1:V27 | V2:V4 | V2:V6 | V2:V8 | V2:V11 | V2:V12 | V2:V13 | V2:V15 | V2:V19 |
|--------------|-------|-------|-------|-------|-------|--------|--------|--------|--------|--------|--------|--------|-------|-------|-------|--------|--------|--------|--------|--------|
| 88           |       |       |       |       |       |        |        | +      |        |        |        | +      |       |       |       |        |        |        |        |        |
| 24           |       |       |       | -     |       |        |        |        |        |        |        |        |       |       |       |        |        |        |        |        |
| 9            |       |       | +     |       |       | -      |        |        |        |        |        |        |       | +     |       |        | -      |        |        |        |
| 120          | -     | -     |       |       | +     |        |        |        |        |        |        |        |       |       | +     | -      | +      |        | +      | +      |
| 124 <b>B</b> |       |       | •     |       |       |        |        |        | -      |        |        |        | -     |       |       |        |        |        | -      |        |
| 97           |       |       |       |       |       |        |        |        |        |        |        |        |       |       |       |        |        |        |        |        |
| 71           |       |       | +     | +     | +     | +      |        |        | +      | +      |        |        |       |       |       |        |        |        |        |        |
| 5            |       |       |       |       |       |        |        |        |        |        |        |        |       |       |       |        |        |        |        |        |
| 114          | +     |       |       |       | -     | +      | +      |        |        |        |        |        | _     |       | -     | +      | +      | +      |        |        |
| 122          |       | +     |       |       |       | +      | -      |        | +      |        | +      | +      | +     |       |       |        |        | -      | +      |        |
| -1           |       | · ·   |       |       |       |        |        |        |        |        |        |        |       |       |       |        |        |        |        |        |

plus (+) = above the regression line

minus (-) = below the regression line

| V4:V23                                                                                                                      |   |   |   |   | + |   |   |   |
|-----------------------------------------------------------------------------------------------------------------------------|---|---|---|---|---|---|---|---|
| V4:V15                                                                                                                      |   |   |   | + |   | _ |   |   |
| V4:V14                                                                                                                      |   |   |   |   |   |   |   |   |
| V3:V10 V3:V14 V3:V15 V3:V16 V3:V19 V3:V21 V3:V23 V3:V25 V3:V25 V3:V27 V4:V5 V4:V6 V4:V11 V4:V12 V4:V14 V4:V15 V4:V13 V4:V13 |   |   |   | + |   |   |   |   |
| V4:V11                                                                                                                      |   |   | • |   | + |   |   |   |
| V4:V6                                                                                                                       |   |   |   | + |   |   |   |   |
| V4:VS                                                                                                                       |   |   |   | ÷ | • |   |   |   |
| V3:V27                                                                                                                      |   | • |   |   | + |   |   | + |
| V3:V25                                                                                                                      |   |   |   |   |   |   | + |   |
| V3:V23                                                                                                                      |   |   |   |   | + |   |   | + |
| V3:V21                                                                                                                      |   |   |   |   |   |   | + |   |
| V3:V19                                                                                                                      |   |   |   |   |   | + |   |   |
| V3:V16                                                                                                                      |   |   |   |   |   |   | + | + |
| V3:V15                                                                                                                      |   |   |   |   |   |   | + | + |
| V3:V14                                                                                                                      |   |   |   |   |   |   |   |   |
|                                                                                                                             |   |   |   |   |   | + |   | + |
| V3:V8                                                                                                                       | 1 |   |   |   | + |   |   | + |
| V3:V6                                                                                                                       |   |   |   |   |   |   |   |   |
| V3:V5                                                                                                                       | • |   | + |   |   |   |   |   |
| V2:V27 V3:V4                                                                                                                |   |   |   |   |   |   |   | + |
| V2:V27                                                                                                                      | + |   |   |   |   |   | , | + |
| V2:V23                                                                                                                      |   |   |   |   |   |   |   | + |

and the second 
|                                                                                                               |   |   |   |   | г— | - |   |       |   |   |
|---------------------------------------------------------------------------------------------------------------|---|---|---|---|----|---|---|-------|---|---|
| V7:V18                                                                                                        |   | ' |   |   | •  |   |   |       |   |   |
| V7:V17                                                                                                        |   |   |   |   | •  |   |   |       |   |   |
| V7:V10                                                                                                        | • | • |   | + |    |   |   |       |   |   |
| 6V:TV                                                                                                         |   | • |   | + |    |   |   |       | + |   |
| V6:V27                                                                                                        |   |   |   |   |    |   |   |       |   | + |
| V6:V23                                                                                                        |   |   |   |   |    |   |   |       |   | + |
| V6:V19                                                                                                        |   |   |   |   |    |   |   |       |   | + |
| V5:VIS V5:VIG V5:VI9 V5:V21 V5:V21 V5:V23 V5:V27 V6:V8 V6:V15 V6:V19 V6:V19 V6:V27 V7:V9 V7:V10 V7:V10 V7:V18 |   |   |   |   |    |   |   |       |   | + |
| V6:V8                                                                                                         |   |   |   | + |    |   |   |       |   | + |
| V5:V27                                                                                                        |   |   |   | 5 | +  |   |   |       |   | + |
| V5:V25                                                                                                        |   |   |   |   |    |   |   |       | + |   |
| V5:V23                                                                                                        |   |   |   |   | +  |   |   |       |   | + |
| V5:V21                                                                                                        |   |   |   | + |    |   | , |       |   |   |
| V5:V19                                                                                                        |   |   | • |   |    |   | + |       |   |   |
| V5:V16                                                                                                        |   |   |   |   |    |   |   | '     |   | + |
|                                                                                                               |   |   |   |   |    |   |   | [<br> |   | + |
| V5:V10                                                                                                        |   |   | • | + |    |   |   |       |   |   |
| V5:V8                                                                                                         |   |   |   | + | +  |   |   |       | . | + |
| V5:V6                                                                                                         |   |   |   |   | +  |   | + |       |   |   |
| V4:V27                                                                                                        |   |   |   |   | +  |   |   |       |   |   |
| V4:V25 V4:V26 V4:V27 V5:V6 V5:V8 V5:V10                                                                       |   |   |   |   |    |   |   |       |   |   |
| V4:V25                                                                                                        |   |   |   |   |    |   |   |       |   |   |

A Contraction of the

1.1.1

| _                                                                                                                          |   |      | <u> </u> |   |   |   |   |   | _ |   |
|----------------------------------------------------------------------------------------------------------------------------|---|------|----------|---|---|---|---|---|---|---|
| V10:V17                                                                                                                    | + |      |          |   | , |   |   |   | · | + |
| V10:V16                                                                                                                    | + |      |          |   |   |   |   | • |   | + |
| V10:V15                                                                                                                    |   |      |          |   |   |   |   | • |   | + |
| V10:V12                                                                                                                    |   |      |          |   | + |   |   | • | + | + |
| V9: V20                                                                                                                    |   |      |          |   | - |   |   | + | • |   |
| V9:V18                                                                                                                     | - |      |          |   | - |   |   |   | • |   |
| V9:V17                                                                                                                     | + |      |          |   | • | + |   |   |   |   |
| V9: V16                                                                                                                    |   |      |          |   | - |   | + | , |   | - |
| 79:V15                                                                                                                     |   |      |          |   | - |   | + | . | ╞ | + |
| /9:V12                                                                                                                     |   |      |          |   |   |   | + |   | + |   |
| V9:V10                                                                                                                     |   |      | +        |   |   |   | + |   |   |   |
| V8: V27                                                                                                                    | + |      |          |   |   |   | • | • |   |   |
| /8:V23                                                                                                                     |   |      | -        |   |   |   | • |   |   |   |
| /8:V21                                                                                                                     |   |      | 1        |   | • | + | • |   |   |   |
| /8:V19                                                                                                                     | - | _    | •        |   |   |   | + | • |   |   |
| V8:V18 V8:V19 V8:V21 V8:V23 V8:V27 V9:V10 V9:V12 V9:V15 V9:V15 V9:V15 V9:V17 V9:V18 V9:V20 V10:V12 V10:V15 V10:V16 V10:V17 |   |      |          |   | - |   |   |   |   |   |
| <br>- I                                                                                                                    |   |      |          |   | • |   |   | - |   |   |
| V8:V15                                                                                                                     |   |      |          |   |   |   |   |   | + |   |
| V8: V10                                                                                                                    |   |      |          | + | • |   |   |   |   |   |
| V7:V24                                                                                                                     |   | •••  |          |   |   |   |   | + |   |   |
| 7:V22 \                                                                                                                    |   |      |          |   |   |   |   | + |   |   |
| V7:V20 V7:V22 V7:V24 V8:V10 V8:V15 V8:V16                                                                                  |   | <br> |          | + | • |   |   | + |   |   |

|        |         |         | <u> </u> |         | r        | · · · · · | ·       |         |         | <u> </u> | <u> </u> |          | -       | - ···   |         |         |         | <u> </u> | ,       | r       | <b></b>    |
|--------|---------|---------|----------|---------|----------|-----------|---------|---------|---------|----------|----------|----------|---------|---------|---------|---------|---------|----------|---------|---------|------------|
|        |         |         | +        |         | ļ        |           |         |         |         |          |          | Ļ        |         |         | ———     |         |         | <u> </u> | ļ       | L       | ļ          |
|        |         |         |          | -       | <u> </u> |           |         |         |         | <u> </u> |          | -        | -       | -       |         |         | -       | <u> </u> | · -     | 1       |            |
|        |         |         |          |         |          |           |         |         |         |          |          |          |         |         | •       | -       |         |          | +       | -       |            |
|        | +       | +       |          | -       |          |           |         | +       |         |          | _        |          |         |         |         |         |         |          | -       | +       | Γ          |
|        |         |         |          |         |          | +         |         |         |         |          | +        |          | +       |         |         |         |         |          |         |         | <b></b>    |
| •      |         | -       |          |         |          | - 1       |         |         | -       | -        |          |          |         |         |         |         |         | +        | - 1     |         | <u>⊢</u> • |
|        |         |         |          |         |          |           |         |         | +       |          |          | 1        | î 🦳     |         | +       | +       |         |          |         | 1       | r          |
|        |         |         |          | +       | +        |           | +       |         |         | +        |          | +        |         | +       |         |         |         |          | -       |         | <b></b>    |
| +      | -       |         |          |         |          | 1         |         |         |         |          |          |          |         |         |         |         |         |          |         |         | - · · ·    |
|        |         |         |          |         | +        |           |         |         |         |          |          | <u> </u> | 1       |         | h       |         | +       | <u> </u> |         | +       | +          |
| IA:SIA | LZASPIA | SZASELA | SIA:ELA  | 111.514 | LZA:TIA  | SZAZZIA   | 57A-71A | 61A:ZIA | 914:214 | SIA:ZIA  | ELA:ZLA  | 17A:11A  | 974:114 | CTA:IIA | CIA:IIA | ZIA:IIA | /74:014 | 57A 81A  | 0ZA:01A | 614:014 | 814:0      |

|   |                                                                                                                                                    |   | _ | _ | _ |   |   |   |   | _ |   |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|---|---|---|---|---|---|---|
|   | V23:V26                                                                                                                                            |   |   | • |   |   | + |   |   |   |   |
|   | 16. V21 V16. V25 V15. V27 V17. V28 V17. V28 V17. V27 V17. V28 V18. V28 V18. V21 V19. V28 V19. V28 V19. V27 V28 |   |   |   |   |   |   |   |   |   |   |
|   | V21: V27                                                                                                                                           |   |   |   |   |   |   |   |   | • | + |
| i | V20:V22                                                                                                                                            | + |   |   |   |   |   |   |   |   |   |
|   | V19: V27                                                                                                                                           |   | • | + |   |   |   |   |   |   |   |
|   | V19: V25                                                                                                                                           |   |   |   |   | , | + |   |   | ÷ |   |
|   | V19: V23                                                                                                                                           |   |   |   |   |   | + |   |   |   | + |
|   | V18. V21                                                                                                                                           |   |   | + |   |   |   |   | • |   |   |
|   | V18:V20                                                                                                                                            |   |   | , |   |   |   |   | + |   |   |
| · | V17:V24                                                                                                                                            | + |   |   |   |   | ſ | + | + |   |   |
|   | V17:V22                                                                                                                                            |   |   |   |   |   |   |   | + |   |   |
|   | V17:V20                                                                                                                                            |   | • |   | + |   | + |   |   | ] |   |
|   | V17:V18                                                                                                                                            |   | • | Ī |   |   |   |   |   |   |   |
|   | V16:V27                                                                                                                                            |   | • |   |   | + |   |   |   | - |   |
| , | V16: V25                                                                                                                                           |   |   |   |   |   | + |   |   | + |   |
|   |                                                                                                                                                    |   |   | + |   |   | + | • |   |   |   |
| • | V16.V19                                                                                                                                            |   |   |   |   | + |   | + |   | - |   |
|   | V15:V27                                                                                                                                            |   | • |   |   |   |   |   |   |   |   |
|   | V15:V25                                                                                                                                            |   |   |   |   | • | + |   |   | + |   |
|   | VIS:VI9 VI5:V21 VI5:V23 VI5:V25 VI5:V27 VI6:V19 V                                                                                                  |   | • |   |   | + | + |   |   | • |   |
|   | V15:V21                                                                                                                                            |   |   |   |   |   | + | • |   |   |   |
|   | V15:V19                                                                                                                                            |   |   |   |   |   |   | + |   | • |   |

| V26:V27 |   | + |   |  |  |  |
|---------|---|---|---|--|--|--|
| V23:V27 | + |   | • |  |  |  |

## K-4 Sacred Heart males regression summary

## BSI Pairs (Chronological numbering see Appendix H, H-2)

a sense for the second s

| Skeleton # | V2:V3 | V2:V4 | V2:V14 | V2:V21 | V2:V22 | V2:V23 | V2:V25 | V3:V4 | V3:V7 | V3:V11 | V3:V13 | V3:V14 | V3:V15 | V3:V17 | V3:V19 | V3:V20 | V3:V21 | V3:V23 | V3:V24 | V3:V25 |
|------------|-------|-------|--------|--------|--------|--------|--------|-------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 139        |       |       | +      |        | •      |        |        |       | +     | +      | +      |        | +      |        |        |        | -      |        |        |        |
| 115        |       | +     |        |        | +      |        |        |       |       |        |        |        | +      | +      |        | +      |        |        |        |        |
| 145        | -     |       | -      | •      | •      | •      |        | -     |       |        | -      | -      | -      | -      | -      |        |        | -      |        | +      |
| 30         | +     |       |        |        |        | +      | +      | +     |       |        |        |        |        |        |        |        |        |        |        |        |
| 72         |       | -     |        |        |        |        |        |       |       |        |        |        |        |        |        |        |        |        |        |        |
| 33         |       |       |        | +      | +      |        |        |       |       |        |        |        |        |        |        |        |        |        |        |        |
| 73         |       | +     |        |        |        |        |        |       |       | -      |        |        |        |        | +      |        |        |        |        |        |
| 64         |       |       |        |        |        |        |        |       |       |        |        |        |        |        | +      |        |        |        | -      |        |
| 83         | -     |       |        |        |        |        | -      | -     |       |        | +      | +      |        | +      |        |        | +      | +      |        |        |
| 55         |       |       |        |        |        |        |        |       |       |        |        |        |        |        |        |        |        |        |        |        |

1.50 Control 764

plus (+) = above the regression line

minus (-) = below the regression line

| V7:V13                                                                                                               |   |   |   |   |   |   |   |   |   |   |
|----------------------------------------------------------------------------------------------------------------------|---|---|---|---|---|---|---|---|---|---|
| V4:V21 V4:V22 V4:V24 V5:V9 V5:V15 V5:V15 V5:V19 V6:V12 V6:V14 V6:V16 V6:V17 V6:V20 V6:V23 V7:V8 V7:V16 V7:V11 V7:V13 | + |   |   |   |   | + |   |   |   |   |
| V7:V10                                                                                                               |   |   |   |   |   | + | • |   | • |   |
| V7:V8                                                                                                                | + |   |   |   |   |   |   |   | • |   |
| V6:V23                                                                                                               |   | • |   | + |   |   |   |   |   |   |
| V6:V20                                                                                                               |   |   |   | + |   |   |   |   |   |   |
| V6:V17                                                                                                               | 1 |   |   | + |   |   |   | + |   |   |
| V6:V16                                                                                                               |   | - |   | + | + |   |   |   |   |   |
| V6: V14                                                                                                              |   | • |   | + |   |   |   | + |   | + |
| V6:V12                                                                                                               | • |   |   | + |   |   | ſ |   |   |   |
| V5: V19                                                                                                              |   | 1 |   | + |   |   | + |   |   |   |
| V5:V15                                                                                                               | + |   |   | + |   |   | • |   |   |   |
| V5:V9                                                                                                                |   |   |   | + |   |   |   |   | + | , |
| V4:V24                                                                                                               |   |   |   | + |   |   |   |   |   |   |
| V4: V22                                                                                                              | • |   |   |   |   | + | • |   | + |   |
| V4:V21                                                                                                               | • |   | • |   |   | + |   |   | + |   |
| V4:V19                                                                                                               |   |   | • | + |   |   |   |   | 1 |   |
| V4:V15                                                                                                               | + |   | • | + |   | i |   |   |   |   |
| V4:V14                                                                                                               |   | • | • | + |   |   |   |   |   |   |
| V4:V5 V4:V13 V4:V14 V4:V15 V4:V19                                                                                    | + | • |   | + |   |   |   |   |   |   |
| V4:V5                                                                                                                |   | + |   |   |   |   |   | + | • |   |
| V3:V26                                                                                                               |   |   |   |   |   |   |   |   | • |   |

|                                                                                                  |   |   |   |   |   |   |   | _ |   |   |
|--------------------------------------------------------------------------------------------------|---|---|---|---|---|---|---|---|---|---|
| V11:V16                                                                                          | • |   |   |   |   | + |   |   |   |   |
| V11:V15                                                                                          |   | + |   |   | • |   |   | + |   |   |
| V11:V13                                                                                          |   |   | • |   |   | • |   |   | + | + |
| V9:V23                                                                                           |   |   |   | + |   |   |   |   | + | + |
| V7:V26 V7:V26 V8:V10 V8:V11 V8:V13 V8:V14 V8:V15 V8:V20 V8:V26 V9:V14 V9:V16 V9:V3 V7:V23 V1:V12 | + |   |   |   | - |   |   |   |   |   |
| V9:V17                                                                                           |   |   | • |   |   | + |   |   |   | + |
| V9:V14                                                                                           |   |   |   |   |   |   |   |   |   | + |
| V8: V26                                                                                          |   |   |   |   |   |   |   |   |   |   |
| V8:V20                                                                                           |   | + |   |   |   | + | • |   |   |   |
| V8:V15                                                                                           |   | + |   |   |   |   |   | + |   |   |
| V8:V14                                                                                           |   |   |   |   |   |   |   |   | + |   |
| V8:V13                                                                                           |   |   |   |   |   |   |   |   | + |   |
| V8:V11                                                                                           |   |   |   |   |   | + | • |   |   |   |
| V8:V10                                                                                           |   |   |   |   |   |   | • |   |   |   |
| V7:V26                                                                                           |   |   |   |   |   |   |   |   |   |   |
| -                                                                                                | • |   | + |   |   |   |   |   |   |   |
| V7:V15 V7:V18 V7:V20 V7:V23 V7:V24                                                               | • |   |   | - |   |   |   | • |   |   |
| V7:V23                                                                                           | • |   |   |   |   | + |   |   | + |   |
| V7:V20                                                                                           |   |   |   |   |   | + |   | • |   |   |
| V7:V18                                                                                           |   |   |   |   |   |   |   | + | + | • |
| V7:V15                                                                                           |   | + | - |   |   |   |   |   |   |   |
| V7:V14                                                                                           |   |   | 1 |   |   |   |   |   | + | + |

|                                                                                                                                |   | _ | <br>_ |   |   |   | _ |   |   |
|--------------------------------------------------------------------------------------------------------------------------------|---|---|-------|---|---|---|---|---|---|
| V14:V15                                                                                                                        | + | + |       |   |   |   |   | • |   |
| V13:V26                                                                                                                        |   |   | +     |   |   |   |   | • |   |
| V13: V23                                                                                                                       | - |   | +     |   | + |   | - | + |   |
| V13:V21                                                                                                                        | • |   |       |   | + |   |   | + |   |
| V13:V20                                                                                                                        |   |   | +     | - | + |   |   | • |   |
| V13:V19                                                                                                                        | • |   |       |   |   | + |   | • |   |
| V13:V17                                                                                                                        |   | + |       |   | + |   |   |   |   |
| 12:V16 V12:V17 V12:V20 V12:V21 V12:V22 V12:V22 V12:V27 V12:V27 V13:V14 V13:V15 V13:V17 V13:V19 V13:V20 V13:V21 V13:V21 V13:V15 |   | + |       | • |   |   |   | , |   |
| V13:V14                                                                                                                        | • |   |       |   | + |   |   | + |   |
| V12:V27                                                                                                                        |   |   |       |   |   |   |   |   |   |
| V12:V23                                                                                                                        |   |   | +     |   |   |   |   |   |   |
| V12:V22                                                                                                                        |   |   | 1     |   |   |   |   | + |   |
| V12:V21                                                                                                                        | • | - |       |   |   |   |   |   | + |
| V12:V20                                                                                                                        |   |   |       |   |   |   |   | - |   |
| V12:V17                                                                                                                        |   |   |       |   | + |   | + | • |   |
| V12:V16                                                                                                                        |   |   |       |   | + |   |   | - |   |
| V12:V14                                                                                                                        |   | • |       |   |   |   | + |   | + |
| 711:V26 V12:V13 V12:V14                                                                                                        | + |   |       |   |   |   |   |   | + |
| V11:V26                                                                                                                        | • |   |       |   |   |   |   |   | + |
| V11:V23                                                                                                                        |   |   |       |   |   |   |   | + |   |
| V11:V20 V                                                                                                                      |   | + |       |   |   |   |   |   |   |
| V11:V17                                                                                                                        |   |   |       | • |   |   | + | + |   |

| V16:V27                                                                                                         |   |   |   |   |   |   |   |   |   |
|-----------------------------------------------------------------------------------------------------------------|---|---|---|---|---|---|---|---|---|
| V16:V23                                                                                                         |   |   |   | + |   |   |   | + |   |
| V16:V20                                                                                                         |   |   |   |   |   |   |   |   | + |
| V16:V17                                                                                                         |   | + |   |   | • |   |   | + |   |
| V15:V26                                                                                                         |   | • |   |   |   |   |   |   |   |
| V15:V25                                                                                                         | • |   | + | + |   |   |   |   |   |
| V15: V24                                                                                                        |   |   |   | + |   |   |   |   | ļ |
| V15: V23                                                                                                        |   |   |   | + |   |   |   | + |   |
| VI4:V24 VI4:V24 VI4:V25 VI4:V25 VI5:V17 VI5:V18 VI5:V19 VI5:V20 VI5:V21 VI5:V24 VI5:V26 VI5:V26 VI6:V20 VI6:V20 |   |   |   | + | ſ | + |   |   | ļ |
| V15:V19                                                                                                         |   |   |   |   |   |   | + | ſ |   |
| V15:V18                                                                                                         |   |   |   | + |   |   |   | + |   |
| V15:V17                                                                                                         | • |   |   |   |   | + |   | + |   |
| V14: V26                                                                                                        |   |   |   | + |   |   |   | • |   |
| V14: V25                                                                                                        |   |   | + | + |   |   |   | • |   |
| V14: V24                                                                                                        |   |   |   | + |   | • |   |   |   |
| V14:V23                                                                                                         |   |   |   | + |   |   |   |   |   |
| V14:V22                                                                                                         | , | + |   |   |   |   |   | + |   |
| V14:V21                                                                                                         | • |   |   |   |   | + |   |   |   |
| V14:V20                                                                                                         |   |   |   | + |   | + |   | • |   |
| V14:V18 V14:V19 V14:V20 V14:V21                                                                                 |   |   |   |   |   |   | + | • |   |
| V14:V18                                                                                                         |   |   |   | + |   |   |   |   | , |
| V14:V17                                                                                                         |   | + |   |   |   | + | - |   |   |

| V21:V27                                                                                                                                        |   |   |   |   |   |   |   |   |   |   |
|------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|---|---|---|---|---|---|---|
| V21:V23                                                                                                                                        |   |   |   | + |   |   |   |   |   |   |
| V21:V22                                                                                                                                        |   | + |   |   |   |   |   |   |   |   |
| V20:V26                                                                                                                                        |   | • |   |   |   |   |   |   |   |   |
| V20:V25                                                                                                                                        |   | • | + |   |   | • |   |   |   |   |
| 17:V27 V18:V20 V18:V23 V19:V20 V19:V24 V19:V24 V19:V25 V19:V26 V19:V27 V20:V21 V20:V23 V20:V24 V20:V25 V20:V25 V20:V25 V21:V22 V21:V23 V21:V27 |   |   |   |   |   | , |   |   |   |   |
| V20:V23                                                                                                                                        |   | • |   |   |   |   |   |   | + |   |
| V20:V21                                                                                                                                        |   |   |   |   |   |   |   |   | + |   |
| V19:V27                                                                                                                                        |   |   |   |   |   |   |   |   |   |   |
| V19:V26                                                                                                                                        |   |   |   |   |   |   |   |   |   |   |
| V19:V25                                                                                                                                        |   |   | + | + |   |   | , |   |   |   |
| V19: V24                                                                                                                                       |   |   |   |   |   |   |   | • |   |   |
| V19:V20                                                                                                                                        |   |   |   |   |   |   |   |   |   |   |
| V18:V23                                                                                                                                        |   | • | ۱ |   |   |   |   |   |   | + |
| V18:V20                                                                                                                                        |   |   |   |   |   | + |   |   | • | + |
| V17:V27                                                                                                                                        |   |   |   |   |   |   |   |   |   |   |
| V17:V19 V17:V20 V17:V21 V17:V22 V17:V23 V                                                                                                      |   | • |   | + |   |   |   |   | + |   |
| V17: V22                                                                                                                                       | ٠ |   |   |   |   |   |   |   | + |   |
| V17:V21                                                                                                                                        |   |   |   |   |   |   |   |   | + | + |
| V17:V20                                                                                                                                        |   |   |   | + |   |   |   | • | • | + |
| V17:V19                                                                                                                                        |   |   |   |   |   |   | + |   | • |   |
| V17:V18                                                                                                                                        | + |   |   |   | • |   |   |   |   |   |

| V25:V26                                                 | • |   |   |   |   |   |   |
|---------------------------------------------------------|---|---|---|---|---|---|---|
| V24:V26                                                 |   |   |   |   |   | • |   |
| V24:V25                                                 |   | + |   |   | + | • |   |
| V23:V25                                                 |   | + |   |   |   | • | + |
| V23: V24                                                |   |   |   | • |   |   | + |
| V22:V23 V22:V27 V23:V24 V23:V25 V24:V25 V24:V26 V25:V26 |   |   |   |   |   |   |   |
| V22:V23                                                 |   |   | + |   |   |   |   |

# K-5 Sadlermiut females growth fluctuation pattern maps (chronological numbering see Appendix H, H-1)

| VIV C A | Age R      |          |                                              |           |          |             |          | 10       |          |          | <b>-</b> ., | T 11         | <u> </u> |          | <b></b>  | 1        |          |           |
|---------|------------|----------|----------------------------------------------|-----------|----------|-------------|----------|----------|----------|----------|-------------|--------------|----------|----------|----------|----------|----------|-----------|
| VIX-C:% | 3          | 4        | 5                                            | 6         | 7        | 8           | 9        | 10       | 11       | 12       | 13          | 14           | 15       | 16       | 17       | 18       | 19       | 20        |
| /5:V8   |            |          | <u> </u>                                     | <u> </u>  | <u> </u> |             | <u> </u> | <b> </b> | +        | +        |             | <u> </u>     |          | L        | <u> </u> | L        |          |           |
| V5:V17  |            | —        |                                              | <b>I</b>  |          | ļ           |          |          | +        | +        | +           | +            |          |          |          |          |          |           |
| V5:V19  | <b></b>    | <u> </u> | ļ                                            | <u> </u>  |          | <u> </u>    |          | <u> </u> | <u> </u> | <u> </u> | <u> </u>    | <u> </u>     | <u> </u> |          |          |          |          |           |
| V5:V27  | ļ          |          | Ļ                                            | · · · · · |          | L           |          | ļ        | <u> </u> |          | <u> </u>    | <u> </u>     |          | -        | L -      | · ·      | <u> </u> | •         |
| V6:V8   | ļ          |          | <u> </u>                                     |           | L        | ļ           |          |          | +        | +        |             | Į            |          |          |          |          |          |           |
| V6:V17  | <b>_</b>   | L        | ļ                                            |           |          | <u> </u>    |          | ļ        | +        | +        | +           | +            | L        |          |          |          |          |           |
| V6:V19  |            |          |                                              |           |          | <u> </u>    | ļ        | <u> </u> | <u> </u> | •        | <u> </u>    | <u>.</u>     | •        |          |          |          |          |           |
| V6:V27  |            |          |                                              |           | L        |             |          |          | <u> </u> | · ·      | <u> </u>    | •            | <u> </u> | <u> </u> |          | -        | -        | -         |
| V7:V8   |            |          | _                                            |           |          | 1           |          |          | +        | +        |             |              |          |          |          |          |          |           |
| V7:V9   |            |          |                                              |           |          |             |          |          | +        | +        | L           |              |          |          |          |          |          | $\square$ |
| V7:V10  |            |          |                                              |           |          |             |          |          | +        | +        |             |              |          |          |          |          |          |           |
| V7:V15  |            |          |                                              |           |          |             |          |          | -        | -        | -           | -            |          |          |          |          |          |           |
| V7:V17  | _          |          |                                              |           | I        |             |          |          | +        | +        | +           | +            |          |          |          |          |          |           |
| V7:V19  | Ι          |          |                                              |           |          |             |          |          | -        | -        | -           | -            | -        |          |          |          |          |           |
| V7:V20  |            |          | 1                                            | 1         |          |             |          |          | +        | +        | +           | +            | +        |          |          | 1        |          |           |
| V7:V21  |            |          | 1                                            |           |          |             |          | 1        | +        | +        | +           | +            | +        |          |          |          |          |           |
| V7:V27  |            |          | 1                                            |           |          |             |          | 1        | -        | -        | · ·         | <u> </u>     | -        | -        | <u> </u> |          |          | -         |
| V8:V9   |            |          | 1                                            |           |          |             |          |          |          | +        |             |              |          |          |          |          |          |           |
| V8:V10  |            |          |                                              |           |          | <u> </u>    |          |          |          | +        |             |              |          |          | 1        |          |          |           |
| V8:V15  |            |          | 1                                            |           |          |             |          |          |          | -        | · ·         | •            |          |          |          |          |          |           |
| V8:V19  |            |          |                                              |           | 1        |             |          |          |          | •        | -           | -            | -        |          |          | 1        |          |           |
| V8:V23  |            |          | T.                                           |           |          |             |          |          |          | -        | -           | -            | -        |          |          |          |          |           |
| V8:V27  |            |          | 1                                            |           |          |             |          | 1        |          | •        |             | -            | -        | -        | -        | -        | <u> </u> |           |
| V10:V15 | 1          |          |                                              |           |          |             | r – –    |          |          | -        | -           | -            |          |          | [        |          |          |           |
| V10:V22 |            |          |                                              |           |          |             |          |          |          |          | •           | -            |          |          |          |          |          |           |
| V10:V24 | 1          | 1        |                                              | 1         | 1        |             |          | 1        |          | -        | •           | •            | -        | -        |          |          |          |           |
| V15:V16 |            |          | 1                                            |           |          | <u> </u>    | 1        |          |          |          |             | +            |          |          | <u> </u> |          |          |           |
| V15:V17 |            | 1        |                                              | 1         | T        |             | 1        |          |          |          |             | +            |          |          |          |          |          |           |
| V15:V20 | <u> </u>   |          |                                              | 1         |          |             | 1        |          |          |          |             | +            | +        | i —      |          |          |          |           |
| V15:V21 | 1          |          |                                              | <u> </u>  |          |             |          |          |          |          |             | +            | +        |          |          |          |          |           |
| V15:V22 | 1          |          | 1                                            |           |          | 1           |          | 1        |          |          |             | +            | +        |          | 1        |          |          |           |
| V15:V24 |            | 1        | 1                                            |           | 1        |             |          |          |          |          |             | +            | +        | +        | l        |          |          | <u> </u>  |
| V16:V19 | 1          | <u> </u> |                                              |           | 1        |             | 1        | 1        | I        |          |             | -            | -        |          |          |          |          | <u> </u>  |
| V16:V21 | 1          | 1        | 1                                            |           |          | t——         | 1        |          | t        |          |             | +            | +        | 1        |          | 1        |          |           |
| V16:V23 | 1          | 1        |                                              |           | 1        |             |          | t        |          |          | <u> </u>    | -            | -        | t        | 1        | 1        |          |           |
| V16:V25 | t          | <u> </u> | 1                                            | t         | t        | <u> </u>    | <u> </u> |          |          |          | <u> </u>    | +            | +        | +        | <u> </u> | 1        |          |           |
| V16:V27 |            | 1        | 1                                            | <b></b>   | 1        | t           | 1        |          |          |          |             |              |          |          | <u> </u> | · .      | -        |           |
| V17:V19 | t          | 1        |                                              | 1         | <u> </u> |             | t        |          | t        |          | <u> </u>    |              | · ·      | <u> </u>  |
| /17:V21 | +          | l        | <u> </u>                                     | <u> </u>  |          | <u> </u>    |          |          |          |          | <u> </u>    | $\downarrow$ | +        |          | <u> </u> |          | l        |           |
| /17:V23 | <u> </u>   | t —      | t                                            |           | <b></b>  | <b>├</b> ── | <b> </b> |          |          |          |             | <u> </u>     |          | <b> </b> |          | <u> </u> |          | <u> </u>  |
| /17:V25 | <u> </u>   |          | <u>                                     </u> | ł         | l        | <u> </u>    |          |          |          |          | <u> </u>    | +            | +        | +        |          |          |          | <b></b>   |
| /19:V20 | <u>+</u> - | t        | <u> </u>                                     | ł         | l        | <u>├</u> ── |          |          |          |          |             | <u> </u>     | +        | <u> </u> |          | I        |          |           |
|         | 1          | 1        |                                              |           |          |             | 1        |          |          |          |             |              | <b>T</b> |          |          |          |          | 4         |

|                  |                                         |              |           |              |              |          |          |                                               |                                         |       |     |    |            |            |             |          | r.           |          |
|------------------|-----------------------------------------|--------------|-----------|--------------|--------------|----------|----------|-----------------------------------------------|-----------------------------------------|-------|-----|----|------------|------------|-------------|----------|--------------|----------|
| V19:V22          |                                         | l            |           |              |              |          |          |                                               |                                         |       |     |    | _ +        |            |             |          |              |          |
| V19:V24          |                                         |              |           |              |              |          |          |                                               |                                         | -     |     |    | +          | +          |             |          |              | <u> </u> |
| V20:V23          |                                         | ļ            |           | <u> </u>     |              | L        |          |                                               |                                         |       |     |    | _ <b>:</b> |            |             |          |              | <u> </u> |
| V21:V23          |                                         | <b> </b>     |           |              | <u> </u>     |          |          |                                               |                                         |       |     |    | <u> </u>   |            | <b> </b>    |          | <u> </u>     | ——       |
| V22:V23          |                                         |              |           |              | ——           |          |          |                                               |                                         |       |     |    |            |            | <u> </u>    |          |              |          |
| V22:V27          |                                         | <b></b>      |           | <u> </u>     |              |          |          |                                               | -                                       |       |     |    |            | •          | <u> </u>    | <u> </u> | · -          | <u> </u> |
| V23:V24          | L                                       |              | ———       |              |              |          |          |                                               |                                         |       |     |    | +          | +          |             |          |              |          |
| V23:V25          | Ļ                                       | [            | L         | <u> </u>     |              | L        |          |                                               |                                         |       |     |    | +          | +          | L           |          |              |          |
| VIII (           | Age Ran                                 |              |           |              |              | r .      |          | <u> </u>                                      |                                         |       |     |    |            |            | <del></del> |          |              |          |
| XIV-C:112        | 3                                       | 4            | 5         | 6            | 7            | 8        | 9        | 10                                            | 11                                      | 12    | 13  | 14 | 15         | 16         | 17          | 18       | 19           | 20       |
| V1:V7<br>V1:V17  | +                                       | +            | +         | +            | +            | ++++     | +        | +                                             | +                                       |       |     |    |            | <b> </b>   | <b> </b>    |          | <b> </b>     | <b></b>  |
|                  | +                                       | +            | +         | + +          | +            | +        | +<br>    | + + +                                         | +                                       | +     | +   | +  |            |            | <b> </b>    |          | <b>├</b> ──  |          |
| V1:V20<br>V1:V22 | +                                       | +            | · · + · · | · · · ·      | . +          | +        | +        |                                               | +                                       | +     | +   | ++ | +          | ┝──        | <b>├</b> ── |          | <u> </u>     | <u> </u> |
| V1:V22<br>V2:V4  | +++++++++++++++++++++++++++++++++++++++ | +            | +         | + +          | + +          | +        | +        | + +                                           |                                         | +     | +   | ÷  | +          |            | <u></u>     |          | <b> </b>     |          |
| V2:V4<br>V3:V7   | <b>├</b> ─ <sup>†</sup> ─               | +            | +         | <u>↓</u>     | <u> </u>     |          |          | <u> </u>                                      |                                         |       |     |    |            | $\vdash$   | ┣──         | <u> </u> |              | ┣──      |
| V3:V7            | <b> </b>                                | <del> </del> | ┣───      | <del> </del> |              |          | + +      | ++++++                                        | ++                                      | +     |     |    |            | <u> </u>   | ┣──-        |          | I            |          |
| V3:V10           | ┣───                                    | <u> </u>     |           |              |              |          | +        | +                                             | +                                       | +     | +   | +  |            | <b>—</b> — | ╂───        |          | ŀ            |          |
|                  |                                         |              |           | <u> </u>     |              |          |          |                                               | +                                       | +     | +   |    |            | <u> </u>   |             |          |              |          |
| V3:V16<br>V3:V17 | <u> </u>                                |              |           |              |              |          | + +      | + +                                           | ++                                      | + +   | +   | ++ |            | <u> </u>   |             |          |              |          |
| V3:V17<br>V3:V18 |                                         |              |           | <b>}</b>     |              |          |          |                                               |                                         |       |     | +  |            | <u> </u>   |             | <u> </u> | <u> </u>     |          |
| V3:V20           |                                         |              | ┨────     | -            |              |          | +        | +                                             | +++++++++++++++++++++++++++++++++++++++ | + + + | + + | +  | +          |            | <u> </u>    |          |              | ┣──      |
| V3:V20           |                                         | <u> </u>     |           |              |              |          | +        | +                                             | +                                       | +     | +   | +  | +          |            |             | ———      | <u> </u>     |          |
| V3:V24           |                                         | 1            |           | 1            | <del> </del> |          | +        | +                                             | +                                       | +     | +   | +  | +          | +          |             | <u> </u> | <u> </u>     | ┠───     |
| V4:V7            |                                         | t            |           |              |              |          |          | +                                             | +                                       | · ·   |     |    |            | - · -      | t           |          | -            | <u> </u> |
| V4:V22           |                                         | 1            |           |              |              |          |          | +                                             | +                                       | +     | +   | +  | +          |            | <u> </u>    | <u> </u> | <u> </u>     | <u> </u> |
| V5:V6            |                                         | <u> </u>     |           |              |              | <u> </u> | · · · ·  |                                               | +                                       |       |     |    | <u> </u>   | <u> </u>   | l —         |          | <del> </del> |          |
| V5:V7            |                                         | 1            |           | 1            |              | <u> </u> | <u> </u> |                                               | +                                       |       |     |    | <u> </u>   | ł          |             | <u> </u> | 1            | <u> </u> |
| V5:V8            |                                         | <u> </u>     | <u> </u>  |              |              | l        | 1        | <u>                                      </u> | +                                       | +     |     |    |            |            |             | t        | 1            | <u> </u> |
| V5:V17           |                                         | 1            | <u> </u>  | 1            |              | <b></b>  | <u> </u> |                                               | +                                       | +     | +   | +  |            | t —        | t           |          | t            | <u> </u> |
| V5:V18           |                                         | 1            |           | 1            | <b></b>      | t        |          |                                               | +                                       | +     | +   | +  | <u> </u>   |            | 1           |          | t            | <u> </u> |
| V5:V19           |                                         | 1            | <u> </u>  | 1            | 1            |          | ľ        | <u> </u>                                      | +                                       | +     | +   | +  |            |            |             |          | 1            | <u> </u> |
| V5:V20           |                                         | 1            |           | 1            | l –          | <u> </u> |          | r                                             | +                                       | +     | +   | +  | +          |            | T           |          | 1            | <u> </u> |
| V5:V22           |                                         | 1            |           |              |              |          |          |                                               | +                                       | +     | +   | +  | +          | T          | 1           | İ -      | 1            | <u> </u> |
| V5:V24           |                                         |              |           | Ι            |              |          |          |                                               | +                                       | +     | +   | +  | +          | +          | 1           |          |              |          |
| V5:V27           |                                         |              |           |              |              |          |          |                                               | +                                       | +     | +   | +  | +          | +          | +           | +        | +            | +        |
| V6:V7            |                                         |              |           |              |              |          |          |                                               | +                                       |       |     |    |            |            |             |          |              |          |
| V6:V17           |                                         |              |           |              |              |          |          |                                               | +                                       | +     | +   | +  |            |            |             |          |              |          |
| V6:V18           |                                         |              |           |              |              |          |          |                                               | +                                       | +     | +   | +  |            |            |             |          |              |          |
| V6:V20           |                                         |              |           |              |              |          |          |                                               | +                                       | +     | +   | +  | +          |            |             |          |              |          |
| V6:V22           |                                         |              |           |              |              |          |          |                                               | +                                       | +     | +   | +  | +          |            |             |          |              |          |
| V6:V24           |                                         |              |           |              |              |          |          |                                               | +                                       | +     | +   | +  | +          | +          |             |          |              |          |
| V8:V10           |                                         |              |           |              |              |          |          |                                               |                                         | +     |     |    |            |            |             |          |              |          |
| V8:V15           |                                         |              |           |              |              |          |          |                                               |                                         | +     | +   | +  |            |            |             |          |              |          |
| V8:V16           |                                         |              |           |              |              |          |          |                                               |                                         | +     | +   | +  |            |            |             |          |              | L        |
| V8:V20           | L                                       |              |           | 1            |              | I        |          |                                               |                                         | +     | +   | +  | +          |            | 1           | l        |              | <u> </u> |
| V8:V22           |                                         | 1            |           | 1            | 1            | 1        | 1        | 1                                             |                                         | +     | +   | +  | +          |            | 1           |          |              |          |

|         |          |              |          |              | ~     |       |   |          |   |          |   |          |          |   |
|---------|----------|--------------|----------|--------------|-------|-------|---|----------|---|----------|---|----------|----------|---|
|         |          |              |          |              |       |       |   |          |   |          |   |          |          |   |
| V8:V24  | <u> </u> | <u> </u>     | r        | <br>l        |       | +     | + | +        | + | +        |   |          |          |   |
| V8:V27  |          | <br>         | <u> </u> | <br>         | <br>- | +     | + | +        |   | +        | + | +        | +        | + |
| V9:V10  |          | <br>         | <u> </u> | <br>         |       | <br>+ |   | <u>`</u> |   |          |   |          |          | - |
| V9:V16  |          |              |          |              |       | +     | + | +        |   |          |   |          |          |   |
| V9:V20  | +        | <br><u> </u> | t        | <br><u> </u> |       | +     | + | +        | + |          |   | ——       |          |   |
| V9:V20  |          |              |          | 1            |       | +     | + | +        | + | <u> </u> |   | <u> </u> |          |   |
| V9:V26  |          | <br>         |          |              | i     | +     | + | +        | + | +        | + | +        | +        | + |
| V10:V20 |          |              |          |              |       | +     | + | . +      | + |          |   |          |          |   |
| V10:V22 |          | <br>         |          |              |       | +     | + | +        | + |          |   |          |          |   |
| V10:V24 |          | <br>         |          | <u> </u>     |       | +     | + | +        | + | +        | · |          | <u> </u> |   |
| V11:V16 |          |              |          |              |       |       | + | +        |   |          |   |          |          |   |
| V11:V26 |          |              | 1        |              |       |       | + | +        | + | +        | + | +        | +        | + |
| V11:V27 |          |              |          |              |       |       | + | +        | + | +        | + | +        | +        | + |
| V16:V20 |          |              |          |              |       |       |   | +        | + |          |   |          | 1        |   |
| V16:V22 |          |              |          |              |       |       |   | +        | + |          |   |          |          |   |
| V16:V24 | T        |              |          |              |       |       |   | +        | + | +        |   |          | 1        |   |
| V17:V22 |          |              |          |              |       |       |   | +        | + |          |   |          | 1        |   |
| V17:V24 |          |              |          | Ι            |       |       |   | +        | + | +        |   |          | [        |   |
| V19:V20 |          |              | Ι        |              |       |       |   |          | + |          |   |          |          |   |
| V19:V22 |          |              |          | I I          |       |       |   |          | + |          |   |          |          |   |
| V19:V24 |          |              |          |              |       |       |   |          | + | +        |   |          |          |   |
| V21:V22 |          |              |          |              |       |       |   |          | + |          |   |          |          |   |
| V21:V23 |          |              |          |              |       |       |   |          | + |          |   |          |          |   |
| V23:V24 |          |              |          |              |       |       |   |          | + | +        |   |          |          |   |

|           | Age Ran | Ec. |   |   |   |   |   |     |    |    |    |    |     |    |    |    |    |    |
|-----------|---------|-----|---|---|---|---|---|-----|----|----|----|----|-----|----|----|----|----|----|
| XIV-C:175 | 3       | 4   | 5 | 6 | 7 | 8 | 9 | 10  | 11 | 12 | 13 | 14 | 15  | 16 | 17 | 18 | 19 | 20 |
| V1:V4     | -       | -   | - | - | - | - | - | -   |    |    |    |    |     |    |    |    |    |    |
| V1:V7     | -       | •   | - |   | - | - | • | -   | •  |    |    |    |     |    |    |    |    |    |
| V1:V17    | •       | -   |   | - | - | - | - | -   | •  | •  | -  | -  |     |    |    |    |    |    |
| V1:V20    | -       | -   | • | - | - | - | • |     | -  | •  | -  | -  | -   |    |    |    |    |    |
| V1:V22    | -       | -   | • | - | - | - | · | - 1 | •  | -  | -  | -  | -   |    |    |    |    |    |
| V1:V24    | -       | -   | - | - | • | - | - | •   | -  | -  | -  | -  | -   | -  |    |    |    |    |
| V4:V16    |         |     |   |   |   |   |   | -   | •  | -  | -  | -  |     |    |    |    |    |    |
| V4:V21    |         |     |   |   |   |   |   | •   | •  | •  | •  | -  | -   |    |    |    |    |    |
| V4 V22    |         |     |   |   |   |   |   | •   | -  | -  | -  | -  | •   |    |    |    |    |    |
| V4;V23    |         |     |   |   |   |   |   | -   | -  | •  | -  | -  | - I |    |    |    |    |    |
| V5:V6     |         |     |   |   |   |   |   |     | •  |    |    |    |     |    |    |    |    |    |
| V5:V7     |         |     |   |   |   |   |   |     | •  |    |    |    |     |    |    |    |    |    |
| V5:V8     |         |     |   |   |   |   |   |     | -  | -  |    |    |     |    |    |    |    |    |
| V5:V17    |         |     |   |   |   |   |   | 1   | •  |    | -  | •  |     |    |    |    |    |    |
| V5:V19    |         |     |   |   |   |   |   |     | -  | -  | -  | •  | -   |    |    |    |    | I  |
| V5:V20    |         |     |   |   |   |   |   |     | -  | -  | -  | -  | -   |    |    |    |    |    |
| V5:V22    |         |     |   |   |   |   |   |     | •  | •  | •  | •  | -   |    |    |    |    |    |
| V5:V24    |         |     |   |   |   |   |   |     | -  | -  | -  | -  | •   | -  |    |    |    |    |
| V6:V7     |         |     |   |   |   |   | Ι |     | -  |    |    |    |     |    |    |    |    |    |
| V6:V8     |         |     |   |   |   |   |   |     | -  | -  |    |    |     |    |    |    |    |    |

| V6:V16 | T | - 1 | r – | <u> </u> | <u> </u> | <br>• |   | - | <u> </u> |   |   | r     | <u>г —</u> | <u> </u> | <b></b>  |
|--------|---|-----|-----|----------|----------|-------|---|---|----------|---|---|-------|------------|----------|----------|
| V6:V17 |   |     |     |          | <u> </u> |       | • | · | •        |   |   |       |            |          | <u> </u> |
| V6:V19 |   |     |     |          |          | •     | - |   | •        | • |   |       |            |          | r        |
| V6:V20 |   |     |     |          | 1        | -     | - |   | -        |   |   | t – – |            |          |          |
| V6:V22 |   |     |     |          |          | -     | - | - | -        | - | _ |       |            |          |          |
| V6:V23 | _ |     |     |          |          | •     | - | • | •        |   |   | 1     |            |          |          |
| V6:V24 |   |     |     |          |          | •     | • | - | -        | - | - |       |            |          |          |
| V8:V10 |   |     |     |          |          |       | - |   |          |   |   |       | 1          |          |          |
| V8:V15 |   |     |     |          |          |       | • | • | •        |   |   |       |            |          |          |
| V8:V16 |   |     |     |          | I        |       | - | - | •        |   |   | 1     | 1          |          |          |
| V8:V23 |   |     |     |          |          |       | - | - | •        |   |   |       |            | 1        |          |
| V9.V16 |   |     |     |          |          |       | - | - | •        |   |   |       | 1          | 1        |          |
| V9:V20 |   |     |     |          |          |       | - | • | -        | • |   |       |            |          |          |
| V9:V22 |   |     |     |          |          |       | • | - | -        | - |   |       |            |          | f        |

(a) A provide a standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard stand Standard stand standard stand Standard s Standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard stan Standard standard standard standard standard standard standard standard standard standard standard standard stand Standard st Standard standard standard standard standard standard standard standard standard standard standard standard stand Standard standard standard standard standard standard standard standard standard stand Standard stand Standard stand Standar

|           | Age Rar | ige |   |   |   |   |     |    |    |    |     |     |    |    |    |    |    |    |
|-----------|---------|-----|---|---|---|---|-----|----|----|----|-----|-----|----|----|----|----|----|----|
| XIV-C:105 | 3       | 4   | 5 | 6 | 7 | 8 | 9   | 10 | 11 | 12 | 13  | 14  | 15 | 16 | 17 | 18 | 19 | 20 |
| V1:V2     | •       |     |   |   |   |   |     |    |    |    |     |     |    |    |    |    |    |    |
| V1:V22    | +       | +   | + | + | + | + | +   | +  | +  | +  | +   | +   | +  |    |    |    |    |    |
| V1:V24    | +       | +   | + | + | + | + | +   | +  | +  | +  | +   | +   | +  | +  |    |    |    |    |
| V3:V8     |         |     |   |   |   |   | +   | +  | +  | +  |     |     |    |    |    |    |    |    |
| V3:V15    |         | Ι   | 1 |   |   |   | +   | +  | +  | +  | +   | +   |    |    |    |    |    |    |
| V3:V19    |         |     |   | I |   |   | +   | +  | +  | +  | +   | +   | +  |    |    |    |    |    |
| V3:V21    |         |     |   |   |   |   | +   | +  | +  | +  | +   | +   | +  |    |    |    |    |    |
| V3:V23    |         |     |   |   |   |   | +   | +  | +  | +  | +   | +   | +  |    |    |    |    |    |
| V5:V8     |         |     |   | [ |   |   | Ι   |    | +  | +  |     |     |    |    |    |    |    |    |
| V5:V19    |         |     |   | 1 |   |   | I   |    | +  | +  | +   | +   | +  |    |    |    |    |    |
| V6:V8     |         |     |   |   |   |   |     |    | +  | +  |     | 1   |    |    |    |    |    |    |
| V6:V16    |         |     |   |   |   |   |     |    | -  | •  | -   | -   |    |    |    |    |    |    |
| V6:V17    |         |     |   |   |   |   |     |    | -  | •  | -   | - 1 |    |    |    |    |    |    |
| V6:V23    |         |     |   |   |   |   |     |    | +  | +  | +   | +   | +  |    |    |    |    |    |
| V7:V8     |         |     |   |   |   |   |     |    | +  | +  |     |     |    |    |    |    |    |    |
| V7:V15    |         |     |   |   |   |   |     |    | +  | +  | +   |     |    |    |    |    |    |    |
| V7:V16    |         |     |   |   |   |   |     |    | •  | •  | -   | -   |    |    | T  |    |    |    |
| V7:V17    |         |     |   |   |   |   | I . | [  | -  | •  | -   | -   |    |    |    | 1  |    |    |
| V7:V19    |         |     |   |   |   |   |     |    | +  | +  | +   | +   | +  |    |    |    |    |    |
| V7:V21    |         |     |   |   |   |   |     |    | +  | +  | +   | +   | +  |    |    |    |    |    |
| V7:V23    |         |     |   |   |   |   |     |    | +  | +  | +   | +   | +  |    |    |    |    |    |
| V8:V9     |         |     |   |   |   |   |     |    |    | •  |     |     |    |    | Γ  |    |    |    |
| V8:V16    |         |     |   |   |   |   |     |    |    | •  | - 1 | -   |    |    |    |    |    |    |
| V8:V20    |         |     |   |   |   |   |     |    | l  | •  | - 1 | -   | -  |    |    |    |    |    |
| V8:V23    |         |     |   |   |   |   |     |    |    | +  | +   | +   | +  |    |    |    |    |    |
| V10:V15   |         |     |   | I |   |   |     |    |    | +  | +   | +   |    |    |    |    |    |    |
| V10:V16   |         |     |   |   |   |   |     |    |    | -  | -   | [ - |    |    |    |    |    |    |
| V10:V17   |         |     |   |   | L |   | I   |    |    | -  | -   | -   |    |    |    |    |    |    |
| V10:V21   |         |     |   |   | I |   |     |    |    | +  | +   | +   | +  |    |    |    |    |    |
| V11:V12   |         |     |   |   |   |   |     |    |    |    | -   |     |    |    |    |    |    |    |

|         |   |          |   |   |       |   | ~ |      |   |   |   |   |   |          |          |          |
|---------|---|----------|---|---|-------|---|---|------|---|---|---|---|---|----------|----------|----------|
|         |   |          |   |   | <br>· |   |   | <br> |   |   |   |   |   |          |          |          |
| V15:V17 |   |          |   |   |       |   |   |      |   | • |   |   |   |          |          |          |
| V15:V18 |   |          |   | i |       |   |   |      |   |   |   |   |   |          |          |          |
| V15:V20 |   |          |   |   |       | _ |   |      |   | - |   |   | _ |          |          |          |
| V15:V22 |   |          |   |   |       |   |   |      |   | - | · |   |   |          |          |          |
| V15:V23 |   |          | L |   |       |   |   |      |   | + | + |   |   |          |          |          |
| V16:V19 |   |          |   |   |       |   |   |      |   | + | + |   |   |          |          |          |
| V16:V21 |   |          |   |   |       |   |   |      |   | + | + |   |   | <u> </u> |          |          |
| V16:V22 |   |          |   |   |       |   |   |      | L | + | + |   |   | <b></b>  |          |          |
| V16:V23 |   |          |   |   |       |   |   |      |   | + | + |   |   |          |          |          |
| V17:V18 |   |          |   |   |       |   |   |      |   | + |   |   |   |          |          |          |
| V17.V19 |   |          |   |   |       |   |   |      |   | + | + |   |   | <u> </u> |          |          |
| V17:V21 |   |          |   |   |       |   |   |      |   | + | + |   |   | — —      |          |          |
| V17:V22 |   |          |   |   |       |   |   |      |   | + | + |   |   |          |          |          |
| V17:V23 |   |          |   |   |       |   |   |      |   | + | + |   |   | <u> </u> |          |          |
| V17:V24 |   |          |   |   |       |   |   |      |   | + | + | + |   |          |          | <u> </u> |
| V18:V19 |   |          |   |   |       |   |   |      |   | + | + |   |   |          |          |          |
| V18:V22 |   |          |   |   |       |   |   |      |   | + | + |   |   |          |          |          |
| V18:V24 |   |          |   |   |       |   |   |      |   | + | + | + |   |          |          |          |
| V19:V20 | [ | <b>–</b> |   |   |       |   |   |      |   |   | • |   |   | [        | <u> </u> |          |
| V19:V23 |   |          |   |   |       |   |   |      |   |   | + |   |   |          | t —      | t —      |
| V20:V22 |   |          |   |   |       |   |   |      |   |   | + |   |   |          |          | [        |
| V20:V23 |   |          |   |   |       |   |   |      |   |   | + |   |   |          | 1        |          |
| V20:V24 |   |          |   |   |       |   |   |      |   |   | + | + |   |          |          | <u> </u> |
| V22:V23 |   |          |   |   |       |   |   | I    |   |   | + |   |   |          | t —      |          |
| V23:V24 |   |          |   |   |       |   |   |      |   |   | - | - |   | ·        |          |          |

|           | Age Ran | ge       |          |   |     |   |   |       | _  |    |    |    |    |          |    |    |    |          |
|-----------|---------|----------|----------|---|-----|---|---|-------|----|----|----|----|----|----------|----|----|----|----------|
| XIV-C:145 | 3       | 4        | 5        | 6 | 7   | 8 | 9 | 10    | 11 | 12 | 13 | 14 | 15 | 16       | 17 | 18 | 19 | 20       |
| V3:V9     |         |          | <u> </u> |   |     |   | + | +     | +  | +  |    |    | [  |          |    |    |    |          |
| V4:V9     |         |          |          |   |     |   |   | +     | +  | +  |    |    | I  | 1        |    |    |    | <u> </u> |
| V4:V19    |         |          |          |   |     |   |   | +     | +  | +  | +  | +  | +  | <u> </u> |    |    |    |          |
| V4:V23    |         | <u> </u> |          |   |     |   |   | +     | +  | +  | +  | +  | +  |          |    |    |    |          |
| V6:V7     |         |          |          |   | 1 - |   |   |       | +  |    |    |    |    | I —      |    |    |    |          |
| V6:V8     |         |          |          |   |     |   |   |       | +  | +  |    |    |    |          |    |    |    |          |
| V6:V18    |         |          |          |   |     |   |   |       | +  | +  | +  | +  |    | T        |    |    |    |          |
| V6:V19    |         |          |          |   |     |   |   |       | +  | +  | +  | +  | +  |          |    |    |    | <u> </u> |
| V6:V20    |         |          |          |   |     |   |   |       | +  | +  | +  | +  | +  |          |    | [  |    |          |
| V6:V23    |         |          |          |   |     |   |   | · · · | +  | +  | +  | +  | +  |          |    |    |    |          |
| V6:V27    |         |          |          |   |     |   |   |       | +  | +  | +  | +  | +  | +        | +  | +  | +  | +        |
| V7:V9     |         |          |          |   |     |   |   |       | +  | +  |    |    |    |          |    |    |    |          |
| V7:V19    |         |          |          |   |     |   |   |       | +  | +  | +  | +  | +  |          |    |    |    |          |
| V7:V23    |         |          |          |   |     |   |   |       | +  | +  | +  | +  | +  |          |    |    |    |          |
| V8:V9     |         |          |          |   |     |   |   |       |    | +  |    |    |    |          |    |    |    |          |
| V8:V23    |         |          |          |   |     |   |   |       |    | +  | +  | +  | +  |          |    |    |    |          |
| V20:V23   |         |          |          |   |     |   |   |       |    |    |    |    | +  |          |    |    |    |          |

|         |   |   |          |          |   |     | × . |  |             |          |    |       |          |   |
|---------|---|---|----------|----------|---|-----|-----|--|-------------|----------|----|-------|----------|---|
|         |   |   |          |          |   |     |     |  |             |          |    |       |          |   |
| V20:V24 | Т | Τ | <u> </u> | <u>г</u> | 1 | ··· |     |  | <u>г`</u> - | <u> </u> |    |       | <u> </u> | Τ |
| V21:V23 |   |   |          |          |   |     |     |  |             | +        |    | · · · |          |   |
| V22:V23 |   |   |          |          |   | I   |     |  |             | +        | [] |       |          |   |

|           | Age Ran | ge       |     |          | _        |       |           |          | _        |    |     |    |          |                                       |          |    |            |          |
|-----------|---------|----------|-----|----------|----------|-------|-----------|----------|----------|----|-----|----|----------|---------------------------------------|----------|----|------------|----------|
| XIV-C:149 | 3       | 4        | 5   | 6        | 7        | 8     | 9         | 10       | 11       | 12 | 13  | 14 | 15       | 16                                    | 17       | 18 | 19         | 20       |
| V1:V4     | -       | <u>ا</u> | •   |          | •        | -     | -         | -        |          |    |     |    |          |                                       |          |    |            |          |
| V1:V11    | -       | -        | - 1 | -        | -        | -     | · ·       | -        | •        | -  | -   |    |          |                                       |          |    |            |          |
| V1:V20    | +       | +        | +   | +        | +        | +     | +         | +        | +        | +  | +   | +  | +        |                                       |          |    |            |          |
| V1:V24    | +       | +        | +   | +        | +        | +     | +         | +        | +        | +  | +   | +  | +        | +                                     |          |    |            |          |
| V2:V4     | •       | - 1      | -   | -        | •        | •     | - 1       | -        |          |    |     |    |          |                                       |          |    |            |          |
| V2:V27    | -       | · -      | •   | •        | -        |       | -         | · ·      | -        | -  | -   | •  | •        | -                                     |          |    | •          | -        |
| V3:V8     |         |          |     |          |          |       | -         | · ·      | •        | -  |     |    |          |                                       |          |    |            |          |
| V3:V9     |         | ·        |     | 1        | [        |       | - 1       | - 1      | -        | -  |     |    |          |                                       |          |    |            |          |
| V3:V15    |         | 1        |     | 1        | <u> </u> |       | -         | -        | -        | •  | •   | -  |          |                                       |          |    |            |          |
| V3:V16    |         | 1        |     | 1        |          |       | -         | -        | <u> </u> | -  | -   |    |          |                                       |          |    | <u> </u>   |          |
| V3:V18    |         | 1        | 1   |          |          |       | +         | +        | +        | +  | +   | +  |          | r                                     |          |    |            |          |
| V3:V19    |         | t        |     |          |          |       | -         | •        | · ·      | -  | -   |    |          |                                       |          |    |            |          |
| V3:V21    |         | t        |     |          |          |       | •         | -        | <u> </u> | -  |     |    | -        |                                       |          |    |            |          |
| V3:V26    |         | t        | 1   |          |          |       | -         | -        |          | -  | •   |    | -        | -                                     |          |    |            |          |
| V4:V7     |         |          |     |          |          |       |           | +        | +        |    |     |    |          |                                       |          |    |            |          |
| V5:V8     |         |          | 1   |          |          |       |           |          | · ·      | -  |     |    |          |                                       |          |    |            |          |
| V5:V17    |         | t        |     | 1        |          |       |           |          | +        | +  | +   | +  |          |                                       | <u> </u> |    |            | <u> </u> |
| V5:V18    |         |          |     |          | <b></b>  |       |           |          | +        | +  | +   | +  |          |                                       |          |    |            | <u> </u> |
| V5:V20    |         |          |     | 1        |          |       | 1         |          | +        | +  | +   | +  | +        |                                       | h        |    |            | <u> </u> |
| V5:V24    |         | t        |     |          |          |       |           | 1        | +        | +  | +   | +  | +        | +                                     |          |    |            |          |
| V6:V8     |         |          |     | 1        |          |       |           |          | -        | -  |     |    |          |                                       |          |    |            |          |
| V6:V16    |         |          | 1   |          |          |       | <b></b>   | <u> </u> | <u> </u> | •  | •   | -  |          |                                       |          |    |            |          |
| V6:V18    |         |          |     |          |          |       |           |          | +        | +  | +   | +  |          |                                       |          |    |            |          |
| V6:V19    |         |          |     |          |          |       |           | 1        |          | -  | -   | -  | -        |                                       |          |    |            |          |
| V6:V20    |         | t        | 1   |          |          | · · · |           |          | +        | +  | +   | +  | +        | · · · · · · · · · · · · · · · · · · · |          |    |            |          |
| V6:V27    |         |          | 1   |          |          |       |           | 1        | <u> </u> | -  |     |    |          | -                                     | -        | •  | <b>—</b> — | · ·      |
| V7:V8     |         |          |     |          |          |       |           |          | · ·      | -  |     |    |          |                                       |          |    |            |          |
| V7:V9     |         | t        |     |          |          |       | · · · · · | 1        | <u> </u> | -  |     |    | <u> </u> |                                       | 1        |    |            |          |
| V7:V15    |         | 1        | 1   | [        |          |       |           | 1        | <u> </u> | -  | -   | -  |          | 1                                     |          |    |            |          |
| V7:V16    |         | t —      | 1   |          |          |       |           |          | · ·      | •  |     | -  |          |                                       | i        |    |            |          |
| V7:V18    |         | t        | 1   | 1        |          |       | 1         |          | +        | +  | +   | +  | i        | 1 1                                   |          |    |            |          |
| V7:V19    |         |          | 1   | 1        |          |       | t         |          | <u> </u> | -  | -   | -  |          | l                                     |          |    |            |          |
| V7:V20    |         | t        |     |          |          |       | l         | 1        | +        | +  | +   | +  | +        | l                                     |          |    |            |          |
| V7:V21    |         | <u> </u> |     | 1        |          |       | 1         |          | <u> </u> | -  | -   | -  | <u> </u> |                                       |          |    |            | <u> </u> |
| V7:V26    |         | t        | t   | 1        |          |       | 1         |          |          | -  | · · |    |          | -                                     | · .      | •  |            | <u> </u> |
| V7:V27    |         |          |     |          | ti       |       | 1         |          | <u> </u> | •  |     |    | -        | -                                     |          |    |            | -        |
| V8:V20    |         |          | 1   | 1        |          |       | 1         |          | i —––    | +  | +   | +  | +        |                                       | i        |    |            |          |
| V8.V24    |         |          | 1   | <u> </u> |          |       |           | 1        |          | +  | +   | +  | +        | +                                     |          |    |            |          |
| V9:V20    |         | t        | 1   | 1        | <u> </u> |       | 1         | 1        | i — –    | +  | +   | +  | +        | 1                                     |          |    |            |          |
| V9:V26    |         | t        | t   | 1        |          |       | r –       | h        | <u> </u> | -  | -   | -  |          |                                       |          | -  |            | -        |
| V10:V16   |         | t        |     | <u> </u> |          |       |           | 1        | <u> </u> | -  | -   |    |          |                                       |          |    |            |          |

| V10;V18 |   |          |   |   |     |          |      | + | + | + | _ |   |          |          |     |          |
|---------|---|----------|---|---|-----|----------|------|---|---|---|---|---|----------|----------|-----|----------|
| V10:V20 |   | <u> </u> |   |   |     |          |      | + | + | + | + | _ |          | <u> </u> |     |          |
| V10:V21 |   |          |   |   | · · |          |      | • | - | - |   |   |          | h        |     |          |
| V11:V12 |   |          |   |   |     |          |      |   | + |   |   |   |          | <u> </u> |     |          |
| V15:V17 |   |          | 1 |   |     |          |      |   |   | + |   | _ |          | <u> </u> |     |          |
| V15:V18 |   |          |   |   |     |          | <br> |   |   | + |   |   | <u> </u> |          |     |          |
| V15:V19 |   |          | Ι |   |     | <u> </u> |      |   |   |   | • |   |          |          |     |          |
| V15:V20 |   |          | 1 |   |     |          |      |   |   | + | + |   |          |          |     |          |
| V15:V21 |   |          |   |   |     |          |      |   |   | - | • |   |          |          |     |          |
| V15:V22 |   |          |   |   |     |          |      |   |   | + | + |   |          |          |     |          |
| V15:V24 |   |          |   |   |     |          |      |   |   | + | + | + |          | <b></b>  |     |          |
| V16:V17 |   |          |   |   |     |          |      |   |   | + |   |   | <u> </u> |          |     |          |
| V16:V18 |   |          |   |   |     |          |      |   |   | + |   |   |          |          |     |          |
| V16:V20 |   |          |   |   |     |          |      |   |   | + | + |   |          | 1        |     | <u> </u> |
| V16:V21 |   |          |   |   |     |          |      |   |   | - |   |   |          | <b></b>  |     |          |
| V16:V22 |   |          |   |   |     |          |      |   |   | + | + |   |          |          |     |          |
| V16:V24 |   |          |   |   |     |          |      |   |   | + | + | + |          |          |     |          |
| V17:V18 |   |          |   | } |     |          |      |   |   | + |   |   |          |          |     |          |
| V17:V19 |   |          |   |   |     |          |      |   |   | • | • |   |          |          |     |          |
| V17:V20 |   |          |   |   |     |          |      |   |   | + | + |   |          |          |     | <u> </u> |
| V17:V21 |   |          |   |   |     |          |      |   |   | • | • |   |          |          |     |          |
| V17:V26 |   |          | I |   |     |          |      |   |   | • | - | - | •        |          | - 1 | -        |
| V18:V19 |   |          |   |   |     |          |      |   |   | • | • |   |          |          |     |          |
| V18:V22 |   |          |   |   |     |          |      |   |   | - | • |   | -        |          |     |          |
| V18:V27 |   |          |   |   |     |          |      |   |   | - | • |   |          | •        | -   | -        |
| V19:V20 |   |          |   |   |     |          |      |   |   |   | + |   |          |          |     |          |
| V19:V22 |   |          |   |   |     |          |      |   |   |   | + | _ |          |          |     |          |
| V19:V24 |   |          |   |   |     |          |      |   |   |   | + | + |          |          |     |          |
| V20:V22 |   |          |   |   |     | [        |      |   |   |   | - |   |          |          |     |          |
| V20:V24 |   |          |   |   |     |          | <br> |   |   |   | - | • |          |          |     |          |
| V20:V26 |   |          | L |   |     |          |      |   |   |   | - |   | -        | -        | -   | <u> </u> |
| V22:V24 |   |          |   |   |     |          |      |   |   |   | + | + |          |          |     |          |
| V22:V26 |   |          |   |   |     |          | <br> |   |   |   | - | - | -        | -        | -   | •        |
| V22:V27 | _ |          |   |   |     |          |      |   |   |   | - | - | -        | -        | -   | •        |
| V23:V26 |   |          |   |   |     |          |      |   |   |   | - | • |          | -        | -   | •        |
| V23:V27 |   |          |   |   |     |          |      |   |   |   | - | - |          | -        | -   | -        |

|           | Age Ran | ige |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |
|-----------|---------|-----|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|
| XIV-C:153 | 3       | 4   | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| V1:V2     | +       |     |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |
| V5:V8     |         |     |   |   |   |   |   |    | +  | +  |    |    |    |    |    |    |    |    |
| V5:V17    |         |     |   |   |   |   |   |    | -  | -  | •  | -  |    |    |    |    |    |    |
| V5:V18    |         |     |   |   |   |   |   |    | -  | -  | -  | -  |    |    |    |    |    |    |
| V5:V19    |         |     |   |   |   |   | I |    | -  | -  | •  | -  | -  |    |    |    |    |    |
| V5:V20    |         |     |   |   | I |   |   |    | -  | -  | •  | -  | -  |    |    |    |    |    |
| V5:V24    |         |     |   |   |   |   |   |    | -  | •  | -  | -  | •  | -  |    |    |    |    |
| V6:V8     |         |     |   |   |   |   |   |    | +  | +  |    |    |    |    |    |    |    |    |

|         |          |   |   |   |   |   |   | - |   |   |   |   |  |   |   |
|---------|----------|---|---|---|---|---|---|---|---|---|---|---|--|---|---|
| V6:V16  |          |   |   | I |   |   | - | - |   | - |   |   |  |   |   |
| V6:V17  |          |   |   |   |   |   | - | • | - | • |   |   |  |   |   |
| V6:V18  |          |   |   |   |   |   | • | - | - | - |   |   |  |   |   |
| V6:V20  |          |   |   |   |   |   | • | - |   |   | - |   |  |   |   |
| V6:V23  |          |   |   |   |   |   | • | • | - | • | • |   |  |   |   |
| V6:V24  |          |   |   |   |   |   | • | - | - | - | • | - |  |   |   |
| V7:V8   |          |   |   |   |   |   | + | + |   |   |   |   |  |   |   |
| V7:V9   |          |   |   |   |   |   | + | + |   |   |   |   |  |   |   |
| V7:V10  |          |   |   | 1 |   | L | • | - |   |   |   |   |  |   |   |
| V7:V17  |          |   |   |   |   |   | • | • | • | - |   |   |  |   |   |
| V7:V18  |          |   |   |   |   |   | - | - | • | - |   |   |  |   |   |
| V7:V20  |          |   |   |   |   |   | - | - | - | • | - |   |  |   |   |
| V7:V24  |          |   |   |   |   |   | - | - | - | - | - |   |  |   |   |
| V8:V10  |          |   |   |   |   |   |   | - |   |   |   |   |  |   |   |
| V8:V16  |          |   |   |   |   |   |   | • | - | - |   |   |  |   |   |
| V8:V19  |          |   |   |   |   |   |   |   | - | - | - |   |  | L |   |
| V8:V20  |          |   |   |   |   |   |   | - | - | - | - |   |  |   |   |
| V8:V22  |          |   |   |   |   |   |   | - |   | • | - |   |  |   |   |
| V8:V23  |          |   |   | Ι |   |   |   |   | • | - | • |   |  |   |   |
| V8:V24  |          |   |   |   |   |   |   | • | - | - | • | - |  |   |   |
| V9:V10  |          |   |   |   |   |   |   | • |   |   |   |   |  |   |   |
| V9:V13  | [        |   |   |   |   |   |   | - | - |   |   |   |  |   |   |
| V9:V20  |          |   |   |   |   |   |   | - | • | - | - |   |  |   |   |
| V10:V15 | <br>     |   |   |   |   |   |   | + | + | + |   |   |  |   | Γ |
| V12:V13 |          |   |   |   |   |   |   |   | • |   |   |   |  |   |   |
| V15:V16 |          |   |   |   |   |   |   |   |   | - |   |   |  |   |   |
| V15:V17 |          |   |   |   |   |   |   |   |   | • |   |   |  |   |   |
| V15:V18 |          |   |   |   |   |   |   |   |   | - |   |   |  |   |   |
| V15:V20 | L        |   |   |   | L |   |   |   |   | - | • |   |  |   |   |
| V15:V23 | <b></b>  | L | L |   |   |   |   |   |   | - | • |   |  |   |   |
| V15:V24 |          |   |   |   |   |   |   |   |   | - | - | - |  |   |   |
| V19:V20 | <u> </u> |   |   |   |   |   |   |   |   |   | • |   |  |   |   |
| V20:V22 | L        |   |   |   | L |   |   |   |   |   | + |   |  |   | I |
| V22:V24 |          |   |   |   |   |   |   |   |   |   | • | • |  |   |   |

|           | Age Ras | ge |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |     |
|-----------|---------|----|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|-----|
| XIV-C:103 | 3       | 4  | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20  |
| V1:V7     | •       | -  | - | - | - | - | - |    | -  |    |    |    |    |    |    |    |    | _   |
| V1:V13    | +       | +  | + | + | + | + | + | +  | +  | +  | +  |    |    |    |    |    |    |     |
| V2:V26    | -       | •  | - | • | - | - | - | -  | -  | -  | -  | -  | -  | -  | •  | -  | -  |     |
| V3:V22    |         |    |   |   |   |   | + | +  | +  | +  | +  | +  | +  |    |    |    |    |     |
| V3:V24    |         |    |   |   |   |   | + | +  | +  | +  | +  | +  | +  | +  |    |    |    |     |
| V3:V25    |         |    |   |   |   |   | - | •  | -  | •  | •  | -  | -  | -  |    |    |    |     |
| V4:V26    |         |    |   |   |   |   |   | •  | •  | -  | •  | •  | -  | -  | -  | -  | -  | · · |
| V5:V7     |         |    |   |   |   |   |   |    | -  |    |    |    |    |    |    |    |    |     |
| V5:V17    |         |    |   |   |   |   |   |    | -  | •  | -  | -  |    |    |    |    |    |     |
| V6:V7     |         |    |   |   |   |   |   |    | -  |    |    |    |    |    |    |    |    |     |

| V7:V8            |                 |   |   |          |              |          |           |          | + | +        |        |            |              |          |          |                   |          |            |
|------------------|-----------------|---|---|----------|--------------|----------|-----------|----------|---|----------|--------|------------|--------------|----------|----------|-------------------|----------|------------|
| V7:V18           |                 | - |   |          |              |          |           |          | + | +        | +      | +          |              |          |          |                   |          |            |
| V7:V20           | łł              |   |   |          |              | ,        |           |          | + | +        | +      | +          | +            |          |          |                   |          |            |
| V7:V20           | <b>}}</b>       |   |   |          |              |          |           |          | + | +        | +      | +          | +            |          |          |                   |          |            |
| V7:V22<br>V7:V24 |                 |   |   |          | <b></b>      |          |           |          | + | +        | +      | +          | +            | +        |          |                   |          | <u> </u>   |
| V8:V9            | ┼──┼            |   |   | <u> </u> |              | _        |           |          |   | <u>.</u> |        | <u> </u>   |              | Ŧ        |          |                   |          |            |
| V8:V24           |                 |   |   |          |              |          |           |          |   | +        | +      | +          | +            | +        |          |                   |          |            |
| V8:V24           |                 |   |   |          |              |          |           |          |   | <u>.</u> | -      |            |              |          |          |                   |          | Η.         |
| V9:V13           |                 |   |   |          | <u> </u>     |          |           |          |   | +        | +      | _ <u>.</u> | _ <b>-</b> - | <u> </u> | · ·      | · ·               | -        | <u>⊢</u> ∙ |
| V9:V13           |                 |   |   |          | <u> </u>     |          |           |          |   | +        | +      | +          | +            |          |          | -                 |          | <u> </u>   |
| V9:V20<br>V9:V22 |                 |   |   |          | <del> </del> |          |           |          |   | +        | +      | +          | +            |          |          |                   |          | I          |
|                  | + +             |   |   |          | <u> </u>     |          |           |          |   |          |        |            |              |          |          |                   |          |            |
| V9.V26           | ┢──┼            |   |   |          |              |          |           |          |   | -+       | -<br>+ | -+         | +            |          | <u> </u> |                   | <u> </u> | <u> </u>   |
| V10:V20          | ┟───┤           |   |   |          |              |          |           |          |   |          |        | _          |              |          |          | <u> </u>          |          | ┣—         |
| V10:V22          | +               |   |   |          | <b> </b>     | <u> </u> | ——        |          |   | +        | +      | +          | +            |          |          | · · · · · · · · · | <b> </b> | <u> </u>   |
| V10:V24          | +               |   |   |          | <b> </b>     |          |           |          |   | +        | +      | +          | +            | +        |          |                   | ļ        | I—         |
| V10:V25          |                 |   |   |          | ļ            |          |           |          |   | -        | -      | <u> </u>   | -            | <u> </u> |          |                   |          |            |
| V11:V13          |                 |   |   |          | <b>_</b>     |          |           | <u> </u> |   |          | +      |            |              |          |          |                   |          |            |
| V11:V16          | $ \rightarrow $ |   |   |          |              |          |           |          |   |          | •      |            |              |          |          |                   | '        |            |
| V11:V26          |                 |   |   |          |              |          |           |          |   |          | •      |            | •            | ·        | •        | -                 | •        |            |
| V12:V13          |                 |   |   |          | L            |          |           |          |   |          | +.     |            |              |          |          |                   |          |            |
| V15:V22          |                 |   |   |          |              |          |           |          |   |          |        | +          | +            |          |          |                   |          |            |
| V15:V24          |                 |   |   |          |              |          |           |          |   |          |        | +          | +            | +        |          |                   |          |            |
| V16:V19          |                 |   |   |          | ļ            |          |           |          |   |          |        | +          | +            |          |          |                   |          |            |
| V16:V20          |                 |   |   |          | ļ            |          |           |          |   |          |        | +          | +            |          |          |                   |          |            |
| V16:V22          |                 |   |   |          |              |          |           |          |   |          |        | +          | +            |          |          |                   |          |            |
| V16:V24          |                 |   |   |          |              |          |           |          |   |          |        | +          | +            | +        |          |                   |          |            |
| V16:V25          |                 |   |   |          |              |          |           |          |   |          |        | -          | •            | •        |          |                   |          |            |
| V17:V18          |                 |   |   |          |              |          |           |          |   |          |        | +          |              |          |          |                   |          |            |
| V17:V19          |                 |   |   |          |              |          |           |          |   |          |        | +          | +            |          |          |                   |          |            |
| V17:V20          |                 |   |   |          |              |          |           |          |   |          |        | +          | +            |          |          |                   |          |            |
| V17:V22          |                 |   |   |          |              |          |           |          |   |          |        | +          | +            |          |          |                   |          |            |
| V17:V24          |                 |   |   |          |              |          |           |          |   |          |        | +          | +            | +        |          |                   |          |            |
| V17:V25          |                 |   |   |          |              |          |           |          |   |          |        | •          | •            | •        |          |                   |          |            |
| V18:V20          |                 |   |   |          |              |          |           |          |   |          |        | +          | +            |          |          |                   |          |            |
| V18:V22          |                 | Π |   |          |              |          |           |          |   |          |        | +          | +            |          |          |                   |          |            |
| V18:V24          |                 |   |   |          |              |          |           |          |   |          |        | +          | +            | +        |          |                   |          |            |
| V19:V22          |                 |   |   |          |              |          |           |          |   |          |        |            | +            |          |          |                   |          |            |
| V19:V24          |                 |   |   |          |              |          |           |          |   |          |        |            | +            | +        |          |                   |          |            |
| V20:V22          |                 | 1 |   |          | <b>I</b>     |          | <b>1</b>  |          |   |          |        |            | +            |          |          |                   |          |            |
| V20:V24          |                 |   |   |          |              |          |           |          |   |          |        |            | +            | +        |          |                   |          |            |
| V20:V26          |                 |   |   |          |              |          | · · · · · | 1        |   |          |        |            | -            | -        |          | -                 |          | -          |
| V21:V22          |                 |   | - |          |              |          |           |          |   |          |        |            | +            |          |          |                   |          |            |
| V21:V25          | t +             |   |   |          |              |          | i         |          |   |          |        |            | · .          | -        |          |                   |          |            |
| V21:V26          |                 |   |   |          | l            |          |           |          |   |          |        |            |              | -        |          |                   | -        |            |

Security and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s Second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s Second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se Second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec

|                  |             |          |          |                |                                              |          |              |              |                                               |          |    | ,        |          |          |          |           |    |          |
|------------------|-------------|----------|----------|----------------|----------------------------------------------|----------|--------------|--------------|-----------------------------------------------|----------|----|----------|----------|----------|----------|-----------|----|----------|
|                  | Age Ran     |          |          |                |                                              |          | 9            | 10           | 11                                            | 12       | 13 | 14       | 15       | 16       | 17       | 18        | 19 | 20       |
| XIV-C:104        | 3           | 4        | 5        | 6              | 7                                            | 8        | <u>,</u>     | 10           |                                               |          |    | _14      | 15       | 16       | 1/       | -10       |    |          |
| V1:V2            | +           |          |          |                | <u> </u>                                     |          |              |              |                                               | -        |    |          |          |          | <u> </u> |           |    |          |
| V1:V11<br>V1:V24 | <u> </u>    | · -      | <u> </u> |                | H÷.                                          |          |              | ÷.           | <u> </u>                                      | -        | -  |          |          | -        |          |           |    |          |
|                  |             | · ·      | <u> </u> |                | <u> </u>                                     | <u> </u> | <u> </u>     | - <u>-</u> - | <u> </u>                                      |          |    |          |          |          |          |           |    |          |
| V4:V6<br>V4:V8   |             |          |          |                |                                              |          |              |              |                                               | <u> </u> |    |          |          |          |          |           |    |          |
|                  |             |          | <u> </u> |                |                                              |          |              | <u> </u>     |                                               |          |    |          |          | _        |          |           |    |          |
| V4:V19<br>V4:V21 |             |          |          |                |                                              | -        | ł            | +            | +                                             | +        |    |          |          |          |          |           |    |          |
| V4:V21<br>V5:V7  |             |          | <u> </u> | <del> </del> _ |                                              |          | 1            | ⊢-́–         | +                                             | <u> </u> |    |          | -        |          |          |           |    | <u> </u> |
| V6:V7            | Ļ           |          | <u> </u> | <u> </u>       |                                              |          | 1            | <b> </b>     | +                                             |          |    |          |          |          | ——       |           |    | <u> </u> |
| V6:V7            |             |          | <b></b>  | t              | <b></b>                                      |          | <del> </del> | <u> </u>     |                                               |          |    |          |          |          |          |           |    |          |
| V0.V8            |             |          | <u>+</u> | <del> </del>   | <u> </u>                                     | <u> </u> | 1            | <b>—</b> —   |                                               |          |    |          |          | <u> </u> |          |           |    |          |
| V7:V15           |             |          | -        | <u> </u>       | <u>                                     </u> |          | 1            |              | -                                             |          |    | -        |          |          |          |           |    |          |
| V7:V16           |             | <u> </u> | I        | <u> </u>       | <u> </u>                                     |          | <u>+</u>     | <u> </u>     |                                               | -        |    | -        |          | <u> </u> | <u> </u> |           |    |          |
| V7:V17           |             |          |          |                |                                              |          |              |              | H÷.                                           |          | -  |          |          |          |          |           |    |          |
| V7:V18           |             |          |          |                |                                              |          | <u> </u>     |              |                                               | <u> </u> |    | -        |          |          |          |           |    |          |
| V7:V19           |             |          | <u> </u> |                | 1                                            |          | 1            | <u> </u>     | -                                             |          |    |          |          |          |          |           |    |          |
| V7:V20           |             |          | <u> </u> | <u> </u>       |                                              |          |              |              | -                                             | -        |    |          |          |          | <u> </u> |           |    |          |
| V7:V20           |             |          |          | <u> </u>       |                                              |          | 1            |              | +                                             | +        | +  | +        | +        |          |          |           |    | -        |
| V7:V22           |             |          | <u> </u> |                |                                              | <u> </u> | 1            | <u> </u>     |                                               |          |    |          |          |          |          |           |    |          |
| V7:V24           | r           | <u> </u> |          |                |                                              |          | 1            |              | <u> </u>                                      |          | -  | <u> </u> | -        | -        |          |           |    |          |
| V8:V9            |             |          |          | t              |                                              | <u> </u> | 1            | <u> </u>     | <u>                                      </u> | +        |    |          |          |          |          |           | †  |          |
| V8:V10           |             |          |          | 1              |                                              | 1        |              |              |                                               | +        |    |          |          |          |          |           |    |          |
| V9:V20           |             |          | 1        | t              |                                              |          | 1            | <b>—</b> —   |                                               |          | -  |          |          |          |          | · · · · · |    |          |
| V10:V17          |             | 1        | <u> </u> | 1 -            |                                              |          |              |              | Î                                             | •        | •  | -        |          |          |          |           |    |          |
| V10:V18          |             | İ        | l        |                |                                              |          | 1            | 1            | 1                                             | -        | •  | -        |          |          |          |           | Î  | ł        |
| V10:V20          |             |          | 1        |                | 1                                            |          |              |              |                                               | •        | •  | -        | -        |          |          |           |    |          |
| V10:V21          |             |          |          |                | T                                            |          |              |              |                                               | +        | +  | +        | +        |          |          |           |    |          |
| V15:V16          |             | l i      | 1        |                |                                              | I        |              |              |                                               |          |    | -        |          |          |          |           |    |          |
| V15:V19          |             |          |          |                |                                              |          | I            |              |                                               |          |    | -        | -        |          |          |           |    |          |
| V15:V21          |             | 1        | T        |                |                                              |          |              |              |                                               |          |    | +        | +        |          |          |           |    |          |
| V16:V21          | · · · · · · |          | 1        |                | 1                                            |          | 1            | Γ            |                                               |          |    | +        | +        |          |          |           |    |          |
| V16:V25          |             |          |          |                |                                              |          |              |              |                                               |          |    | +        | +        | +        |          |           |    |          |
| V17:V21          |             |          |          |                |                                              |          | I            |              |                                               |          |    | +        | +        |          |          |           |    |          |
| V17:V25          |             |          |          |                |                                              |          | I            |              |                                               |          |    | +        | +        | +        |          |           |    |          |
| V22:V24          |             | T        |          | 1              |                                              |          | I            |              | I                                             |          |    |          | <u> </u> | -        |          |           |    |          |

|          | Age Rat | ige |   |   |   |     |   |    |    |    |    |    |    |    |     |    |     |    |
|----------|---------|-----|---|---|---|-----|---|----|----|----|----|----|----|----|-----|----|-----|----|
| XIV-C:98 | 3       | 4   | 5 | 6 | 7 | 8   | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | _17 | 18 | 19  | 20 |
| V1:V2    | •       |     |   |   |   |     |   |    |    |    |    |    |    |    |     |    |     |    |
| V1:V11   | -       | -   | • | - | • | •   | - |    | -  | •  | -  |    |    |    |     |    |     |    |
| V1:V13   | -       | -   | - | - | - | • • | - | -  | -  | -  | •  |    |    |    |     |    |     |    |
| V3:V6    |         |     |   |   |   |     | - | •  | -  |    |    |    |    |    |     |    |     |    |
| V3:V7    |         |     |   |   | I |     | - | -  | •  |    |    |    |    |    |     |    |     |    |
| V3:V18   |         |     |   |   |   |     | - | -  | -  | -  | -  | •  |    |    |     |    |     |    |
| V3:V19   |         |     |   |   |   |     | + | +  | +  | +  | +  | +  | +  |    |     |    | I . |    |

| V3:V20  | Γ        |          | Ι        | T        |          | Ι        |          | •                                            | • | •        | •        | •        | -        |          |          |     |          |          |
|---------|----------|----------|----------|----------|----------|----------|----------|----------------------------------------------|---|----------|----------|----------|----------|----------|----------|-----|----------|----------|
| V3:V21  | L        |          |          |          |          | [        |          | · .                                          | • | •        | -        | •        | •        |          |          |     |          |          |
| V3:V23  |          |          |          |          |          |          | -        | <b>.</b>                                     | - | •        | •        | -        | •        |          |          |     |          |          |
| V3:V25  |          |          |          |          |          |          | +        | +                                            | + | +        | +        | +        | +        | +        |          |     |          |          |
| V3:V26  |          |          |          | [        |          |          | -        | -                                            | • | •        | •        | -        |          | -        | •        | •   | -        | <u> </u> |
| V4:V6   |          |          | 1        |          |          |          |          | -                                            | - |          |          |          |          |          |          |     |          |          |
| V4:V8   |          |          |          |          |          |          |          | +                                            | + | +        |          |          |          |          |          |     |          |          |
| V4:V16  |          |          |          | [        |          |          |          | +                                            | + | +        | +        | +        |          |          |          |     |          |          |
| V4:V19  |          |          | ļ        | <u> </u> |          | <b>_</b> |          | +                                            | + | +        | +        | +        | +        |          |          |     |          |          |
| V5:V6   | L        |          |          |          |          |          |          | L                                            | · |          |          |          | L        |          |          |     |          |          |
| V5:V19  |          |          |          |          |          |          |          |                                              | + | +        | +        | +        | +        |          |          |     |          |          |
| V6:V7   |          |          |          | L        | L        | ļ        | ļ        | L                                            | + |          |          |          | i        |          |          |     |          |          |
| V6:V8   | L        | ļ        | <b> </b> | I        | L        | I        | <u> </u> |                                              | + | +        | ļ        |          | <u> </u> |          |          |     |          |          |
| V6:V16  | <u> </u> | L        | I        | ļ        | Ļ        | I        |          |                                              | + | +        | +        | +        |          |          |          |     |          |          |
| V6:V17  |          |          | I        | L        | L        | ļ        | L        | L                                            | + | +        | +        | +.       |          | L        |          |     |          |          |
| V6:V19  | <b></b>  | <b>.</b> | <b>_</b> |          | L        |          |          | L                                            | + | +        | +        | +        | +        |          |          |     |          |          |
| V6:V20  |          |          |          | <u> </u> | I        | <u> </u> |          | I                                            | + | +        | +        | +        | +        |          |          |     |          |          |
| V6:V22  | ļ        |          | L        |          | I        | ļ        | I        | L                                            | + | +        | +        | +        | +        |          |          |     |          |          |
| V6:V24  |          |          |          |          |          |          | L        |                                              | + | +        | +        | +        | +        | +        |          |     |          |          |
| V7:V10  |          |          |          |          |          |          |          |                                              | + | +        |          |          |          |          |          |     |          |          |
| V7:V15  |          |          |          |          |          |          |          |                                              | + | +        | +        | +        |          |          |          |     |          |          |
| V7:V16  |          |          |          |          |          |          | <u> </u> |                                              | + | . +      | +        | +        |          |          |          |     |          |          |
| V7:V17  |          |          |          |          | L        |          | <u> </u> |                                              | + | +        | +        | +        |          |          |          |     |          |          |
| V7:V19  |          |          |          |          | L        |          |          |                                              | + | +        | +        | +        | +        |          |          |     |          |          |
| V7:V22  | L        |          | <b> </b> | <b>_</b> | <u> </u> |          | 1        | ļ                                            | + | +        | +        | +        | +        |          |          |     |          |          |
| V7:V26  | <u> </u> |          | L        |          | I        |          | 1        | L                                            | • | •        | •        | -        | <u> </u> | -        | ÷        |     | •        | <u> </u> |
| V8.V9   |          |          | L        | I        | I        | ļ        | L        | L                                            |   | <u> </u> |          |          |          |          |          |     |          |          |
| V8:V15  | <b>.</b> | <u> </u> |          | ļ        | <u> </u> |          |          |                                              |   | +        | +        | +        |          |          |          |     |          |          |
| V8:V19  | ļ        |          | <u> </u> | <b>↓</b> | ļ        |          | <b> </b> | L                                            |   | +        | +        | +        | +        |          |          |     |          |          |
| V8:V26  | Ļ        | L        | ļ        | ļ        | L        | ļ        | ļ        | ļ                                            |   | · ·      | -        | ·        | <u> </u> | -        | •        | · . | <u> </u> | <u> </u> |
| V8:V27  | <b> </b> | ļ        |          | <b> </b> | <u> </u> |          | Ļ        |                                              |   | -        | -        | -        | l ·      | •        | -        | •   |          | -        |
| V9:V10  | <b> </b> | <b> </b> | <b> </b> | <b> </b> | I        | I        | <u> </u> | I                                            |   | +        |          |          | L        |          |          | L   |          | L        |
| V9:V13  | <b> </b> |          | I        | <b> </b> | L        | <b> </b> | <u> </u> | <u> </u>                                     |   | <u> </u> | <u> </u> |          | I        |          | <u> </u> |     | i        | <b> </b> |
| V9:V16  | ļ        | <u> </u> | <b> </b> | <b> </b> | ļ        | <b> </b> | <u> </u> | <b> </b>                                     |   | +        | +        | +        | I        |          |          | L   | ļ        | <b> </b> |
| V9:V26  | <b> </b> |          | I        |          | ļ        | <u> </u> | I        | L                                            |   | •        | -        | -        | <u> </u> | •        | •        | •   | <u> </u> | <u> </u> |
| V10:V15 |          | <u> </u> | <b>I</b> | <b>I</b> | ļ        |          | Į        | ļ                                            |   | +        | +        | +        | L        |          |          |     |          |          |
| V10:V21 |          | ļ        | <b> </b> |          |          | <u> </u> | ļ        |                                              |   |          | -        | -        | · ·      |          |          |     |          |          |
| V10:V25 |          | L        | <b> </b> |          | ·        | <b> </b> | ļ        | <u> </u>                                     |   | +        | +        | +        | +        | +        |          |     |          |          |
| V11:V16 | <b> </b> |          |          | <b> </b> | L        | <b>_</b> | <u> </u> | <u>                                     </u> |   |          | +        | +        | ļ        |          |          |     |          | <u> </u> |
| V15:V19 | <b> </b> |          | <b>+</b> | -        | <b>I</b> | —        | I        | <b> </b>                                     | ļ | ļ        |          | +        | I        |          | <b> </b> | L   | ļ        | <u> </u> |
| V15:V20 | ł        | <u> </u> | <b> </b> | <b> </b> | <b> </b> | <b> </b> | <b> </b> | <b> </b>                                     |   |          | L        | <u> </u> |          |          | <b> </b> | L   | L        | I        |
| V15:V21 | I        | I        | I        | <b> </b> | L        |          | <u> </u> | L                                            |   |          | L        | -        | -        |          | ļ        |     | L        | <u> </u> |
| V15:V22 | <b>I</b> | <b> </b> | <u> </u> | <b> </b> | <u> </u> | +        | <b> </b> | ļ                                            |   |          |          | •        | -        | <u> </u> |          |     | L        | <b>I</b> |
| V15:V23 |          | <u> </u> | l        | <b> </b> | I        | Į        | <u> </u> | ļ                                            |   |          |          | -        | · ·      |          | h        |     |          | I        |
| V15:V24 | ───      |          | <b>I</b> | <b> </b> | <u> </u> |          | Į        | ļ                                            |   | <u> </u> | <u> </u> | -        |          | •        |          |     | I        | L        |
| V16:V19 |          | <b> </b> |          |          | ļ        |          | ļ        |                                              |   | <u> </u> |          | +        | +        | ļ        |          |     | <b>I</b> | I        |
| V16:V21 |          | L        | 1        |          | L        |          |          |                                              |   |          |          | -        | -        |          | L        |     |          |          |

| V16:V23 |   |          | Ī |          |   |          |   |   |      |          | • |          |          |          |   |   |          |
|---------|---|----------|---|----------|---|----------|---|---|------|----------|---|----------|----------|----------|---|---|----------|
| V16:V25 |   |          |   |          |   |          |   |   |      |          | + | +        | +        |          |   |   |          |
| V16:V26 | 1 |          |   |          |   |          |   |   |      |          | - | -        | -        | -        |   | - | <u> </u> |
| V16:V27 |   | L        |   | _        |   |          |   |   |      |          | • |          | -        | -        | - |   | <u> </u> |
| V17:V19 |   |          |   | L        |   |          |   |   |      |          | + | +        |          |          |   |   |          |
| V17:V21 |   | L        |   |          |   |          |   |   |      |          | - | <u> </u> |          |          |   |   |          |
| V17:V25 |   |          |   |          |   |          |   |   |      |          | + | +        | +        |          |   |   | L        |
| V17:V26 |   |          |   |          |   |          |   |   |      |          | - | · -      | -        | •        | - | - | <u> </u> |
| V18:V19 |   | L        |   |          | t |          |   | I |      | <u> </u> | + | +        |          |          |   |   |          |
| V19:V20 |   | L        |   |          |   | i        |   |   |      |          |   | -        |          |          | _ |   |          |
| V19:V22 |   | L        |   |          |   |          |   |   |      |          |   | -        |          |          |   |   |          |
| V19:V23 | L |          |   |          |   |          | L |   | <br> |          |   |          |          |          |   |   |          |
| V19:V24 |   |          |   |          |   |          |   |   | <br> |          |   |          | <u> </u> |          |   |   |          |
| V20:V22 |   |          | L |          |   |          |   |   | <br> |          |   | +        |          |          |   |   |          |
| V20:V26 |   | L        |   | <u> </u> |   | <u> </u> | L |   |      | ]        |   |          | L-       | <u> </u> | - | - | -        |
| V21:V25 |   | <u> </u> |   |          | ļ |          | L |   |      |          |   | +        | +        |          |   |   |          |
| V21:V26 |   | L        |   |          | L |          | L |   | <br> |          |   | -        |          | •        | - | - | -        |
| V22:V24 |   | L        |   | L        |   |          | L | ļ |      |          |   |          | <u> </u> |          |   |   |          |
| V22:V26 |   | L        | L |          |   |          |   |   |      |          |   | -        | •        |          | - | - |          |
| V22:V27 |   | L        |   |          |   |          | L |   |      |          |   | -        | · .      | · ·      |   |   | -        |
| V23:V25 |   | L        |   | ļ        |   |          | L |   |      | <u>ا</u> |   | +        | +        | L        |   |   |          |
| V23:V26 |   | L        |   |          |   |          |   |   |      |          |   | -        | L • _    |          | - |   | •        |

Age Range XIV-C:219 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 + V1:V4 + + + + + + + V2:V4 + + + + + + + + V2:V26 -• --• . • --• --------V4:V8 --. V4:V9 --• V4:V21 -• --. -V4:V22 ------V4:V26 ------• - 7 ---V4:V27 -. ---. . • • , -V5:V6 + V5:V7 + V5:V19 + + + + + • V6:V18 ---V6:V20 --. --V6:V22 -----V7:V18 -• --V7:V20 -• ---V7:V21 • --• -V7:V22 . • -• -V7:V24 • -----

|         |  |  |  | <br>_ |   |   |     |   |   |   |   |   |   |   |
|---------|--|--|--|-------|---|---|-----|---|---|---|---|---|---|---|
| V7:V26  |  |  |  |       | + | - |     |   | - | - | - |   |   | - |
| V8:V16  |  |  |  |       |   | + | +   | + |   |   |   |   |   |   |
| V8:V19  |  |  |  |       |   | + | +   | + | + |   |   |   |   |   |
| V9:V13  |  |  |  |       |   | + | +   |   |   |   |   |   |   |   |
| V11:V12 |  |  |  |       |   |   | +   |   |   |   |   |   |   |   |
| V11:V13 |  |  |  |       |   |   | +   |   |   |   |   |   |   |   |
| V11:V26 |  |  |  |       |   |   | · . |   | - | - | - | - | 1 | - |
| V15:V19 |  |  |  |       |   |   |     | + | + |   |   |   |   |   |
| V15:V22 |  |  |  |       |   |   |     | - | • |   |   |   |   |   |
| V16:V20 |  |  |  |       |   |   |     | - | - |   |   |   |   |   |
| V17:V18 |  |  |  | <br>  |   |   |     |   |   |   |   |   |   |   |
| V17:V19 |  |  |  |       |   |   |     | + | + |   |   |   |   |   |
| V17:V20 |  |  |  |       |   |   |     | - | • |   |   |   |   |   |
| V18:V19 |  |  |  |       |   |   |     | + | + |   |   |   |   |   |
| V18:V20 |  |  |  |       |   |   |     | • |   |   |   |   |   |   |
| V19:V20 |  |  |  |       |   |   |     |   | - |   |   |   |   |   |
| V19:V22 |  |  |  |       |   |   |     |   | • |   |   |   |   |   |
| V20:V24 |  |  |  |       |   |   |     |   |   | - |   |   |   |   |
| V22:V24 |  |  |  |       |   |   |     |   | + | + |   |   |   | 1 |

an na hara baran yang baran kanan 
|           | Age Ran | ge |   |   |   |   |   |    |    |    |          |    |     |    |    |    |     |         |
|-----------|---------|----|---|---|---|---|---|----|----|----|----------|----|-----|----|----|----|-----|---------|
| XIV-C:183 | 3       | 4  | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13       | 14 | 15  | 16 | 17 | 18 | 19  | 20      |
| V1:V7     | +       | +  | + | + | + | + | + | +  | +  |    |          |    |     |    |    |    |     |         |
| V1:V13    | -       | •  | - | - | - | - | - | -  | -  | -  | -        |    |     |    |    |    |     | <b></b> |
| V1:V17    | +       | +  | + | + | + | + | + | +  | +  | +  | +        | +  |     |    |    |    |     |         |
| V3:V9     |         |    |   |   |   |   | - | •  | -  | •  |          |    |     |    |    |    |     |         |
| V3:V17    |         |    |   |   |   |   | + | +  | +  | +  | +        | +  |     |    |    |    |     |         |
| V3:V18    |         |    |   |   |   |   | + | +  | +  | +  | +        | +  |     |    |    |    |     |         |
| V3:V21    |         |    |   |   |   |   | + | +  | +  | +  | +        | +  | +   |    |    |    |     |         |
| V3:V25    |         |    |   |   |   |   | + | +  | +  | +  | +        | +  | + [ |    |    |    |     |         |
| V4:V8     |         |    |   |   |   |   |   | -  | -  | -  |          |    |     |    |    |    |     |         |
| V4:V9     |         |    |   |   |   |   |   | -  | -  | •  |          |    |     |    |    |    | 1   |         |
| V4:V11    |         |    |   |   |   |   |   | •  | -  | -  | <u> </u> |    | Ι   |    |    |    |     |         |
| V4:V21    |         |    |   |   |   |   |   | +  | +  | +  | +        | +  | +   |    |    |    |     |         |
| V4:V22    |         |    |   |   |   |   |   | -  | -  | •  | -        | -  | -   |    |    |    |     |         |
| V5:V6     |         |    |   |   |   |   |   |    | •  |    |          |    |     |    |    |    |     |         |
| V5:V7     |         |    |   |   |   |   |   |    | -  |    |          |    |     |    |    |    |     |         |
| V5:V8     |         |    |   |   |   |   | Γ |    | -  | -  |          |    |     |    |    |    | Γ   |         |
| V5:V18    |         |    |   |   |   |   |   |    | •  | -  | · ·      | •  |     |    |    |    |     |         |
| V5:V19    |         |    |   |   |   |   |   |    | -  | -  | -        | -  | -   |    |    |    | l I |         |
| V5:V20    |         |    |   | 1 |   |   |   |    | -  | -  | -        | -  | -   |    |    |    |     |         |
| V5:V22    |         |    |   |   |   |   |   |    | -  | •  | -        | -  | -   |    |    |    |     |         |
| V5:V24    |         |    |   |   |   |   |   |    | -  | -  | -        | -  | I - | -  |    |    |     |         |
| V6:V8     |         |    |   |   |   |   |   |    | -  | -  |          |    |     |    |    |    | Γ   |         |
| V6:V17    |         |    |   |   |   |   |   |    | +  | +  | +        | +  |     |    |    |    |     |         |
| V6:V22    |         |    |   |   |   |   |   |    | +  | +  | +        | +  | +   |    |    |    |     |         |
| V6:V24    |         |    |   |   |   |   |   |    | •  | -  | -        | -  | -   | -  |    |    |     |         |

|         |          |                                              |          |         |              |          | ~         |   |   |   |   |   |   |     |          |   |   |
|---------|----------|----------------------------------------------|----------|---------|--------------|----------|-----------|---|---|---|---|---|---|-----|----------|---|---|
|         |          |                                              |          |         |              |          |           |   |   |   |   |   |   |     |          |   |   |
|         |          |                                              |          |         | -            |          |           |   |   |   |   |   |   |     |          |   |   |
| V7:V8   | T        |                                              |          |         |              | Γ        | [         | - | - |   |   |   |   |     |          |   |   |
| V7:V9   |          |                                              |          |         |              | 1        |           | - | - | _ |   |   |   |     |          |   |   |
| V7:V15  | 1        |                                              | 1        |         | · · · ·      |          |           |   | • | • |   |   |   |     |          |   |   |
| V7:V17  |          | <u>†                                    </u> | (        | 1       |              |          |           | + | + | + | + |   |   |     |          |   |   |
| V7:V21  |          |                                              |          |         |              |          |           | + | + | + | + | + |   |     | <u> </u> |   |   |
| V7:V22  |          |                                              |          |         |              |          | T         | • |   | • | - | • | - |     |          |   |   |
| V7:V23  |          |                                              |          |         |              |          |           | - | - | • | • |   |   |     |          |   |   |
| V7:V24  |          |                                              |          |         |              |          |           | • |   | - | - | - | - |     | <u> </u> |   |   |
| V8:V9   |          |                                              |          | 1       |              |          |           |   | - | _ |   |   |   | -   |          |   |   |
| V8:V10  |          |                                              |          | 1       |              |          |           |   | + | _ |   |   |   |     |          |   |   |
| V8:V19  |          |                                              |          |         | F            |          | T         |   | + | + | + | + |   |     |          |   |   |
| V8:V26  |          | T                                            |          |         | <u> </u>     |          |           |   | + | + | + | + | + | +   | +        | + | + |
| V9:V10  | 1        | 1                                            |          |         |              |          |           |   | + |   |   |   |   |     | t        |   |   |
| V9:V26  |          | 1                                            | 1        |         |              |          |           |   | + | + | + | + | + | +   | +        | + | + |
| V10:V21 | 1        | 1 -                                          | 1        |         | i            | 1        | · · · · · |   | + | + | + | + |   |     |          |   |   |
| V10:V22 |          |                                              | _        |         |              |          |           |   | • | • | - | - |   | F   |          |   |   |
| V10:V24 |          |                                              |          |         |              |          | 1         |   | - | • | • |   | - | F   |          |   |   |
| V11:V12 | <u> </u> |                                              |          |         |              |          |           |   |   | - |   |   |   |     | <u> </u> |   |   |
| V11:V13 | t        | 1                                            |          |         | <br><u> </u> |          | 1         |   |   | - |   |   |   |     | F        |   |   |
| V11:V26 |          | <u> </u>                                     |          |         | <br>         | <u> </u> | <u> </u>  |   |   | + | + | + | + | +   | +        | + | + |
| V15:V17 |          |                                              | 1        |         |              |          | t—–       |   |   |   | + |   |   | -   | t        |   |   |
| V15:V19 |          | <b>_</b>                                     | <u> </u> |         |              | 1        |           |   |   | _ | + | + |   | t—– | <u> </u> |   |   |
| V15:V21 |          |                                              |          |         |              | · · · ·  | t – –     |   |   |   | + | + |   |     | <u> </u> |   |   |
| V16:V17 | <u> </u> |                                              |          |         |              |          | <u> </u>  |   |   |   | + |   |   |     | <u> </u> |   |   |
| V16:V19 | 1        |                                              |          |         | <u> </u>     |          |           |   |   |   | + | + |   |     |          |   |   |
| V16:V21 |          |                                              |          |         |              |          |           |   |   |   | + | + |   |     |          |   |   |
| V16:V24 |          |                                              |          |         |              | 1        |           |   |   |   | - | - | - |     | t        |   |   |
| V16:V25 |          |                                              |          | 1       |              |          | 1         |   |   |   | + | + | + |     |          |   |   |
| V16:V26 |          |                                              |          |         | t            |          | 1         |   |   | _ | + | + | + | +   | +        | + | + |
| V17:V21 |          |                                              |          |         |              |          | 1         |   |   |   | + | + |   |     |          |   |   |
| V17:V22 | 1        |                                              |          |         | <b></b>      |          |           |   |   |   | - | • |   |     |          |   |   |
| V17:V23 | 1        |                                              |          | · · · - |              |          |           |   |   |   | • | - |   |     |          |   |   |
| V17:V24 |          |                                              |          |         |              | 1        |           |   |   |   | - | - | - |     | 1        |   |   |
| V18:V22 | 1        | 1                                            | 1        | 1       | <u> </u>     |          |           |   |   | _ | - | - |   |     | 1        |   |   |
| V18:V24 | <u> </u> | -                                            |          |         |              |          | 1         |   |   |   | - | • | - |     | 1        |   |   |
| V19:V22 |          |                                              |          |         |              |          |           |   |   |   |   |   |   |     | Î        |   |   |
| V19:V23 |          |                                              |          |         |              | [ · · ·  |           |   |   | - |   | • |   |     |          |   |   |
| V19.V24 | Γ        |                                              |          |         |              |          |           |   |   |   |   | - | - |     | r –      |   |   |
| V20:V22 |          |                                              |          |         |              |          |           |   |   |   |   | • |   |     | Î        |   |   |
| V20:V23 |          |                                              | T        |         |              |          |           |   |   |   |   | - |   |     | 1        |   |   |
| V20:V24 |          |                                              |          |         | 1            | ľ        | i         |   |   |   |   | - |   |     | r        |   |   |
| V21:V22 | 1        |                                              | 1        |         |              |          |           |   |   |   |   |   |   |     | t –      |   |   |
| V21.V23 | 1        | 1                                            |          |         |              | 1        | r         |   |   |   |   | • |   |     | 1        |   |   |
| V22:V26 |          |                                              |          |         |              |          |           |   |   |   |   | + | + | +   | +        | + | + |
| V23:V26 |          |                                              | <u> </u> |         |              |          |           |   |   |   |   | + | + | +   | +        | + | + |

| XIV-C:148 | 3 | 4 | 5 | 6 | 7 | 8 | 9        | 10  | 11       | 12  | 13  | 14 | 15 | 16 | 17       | 18      | 19 | 20       |
|-----------|---|---|---|---|---|---|----------|-----|----------|-----|-----|----|----|----|----------|---------|----|----------|
| V3:V6     |   |   |   |   |   |   | -        | -   | <b>.</b> |     |     |    |    |    | <u> </u> |         |    |          |
| V3:V7     |   |   |   |   |   |   |          | · · | <u> </u> |     |     |    |    |    | 1        |         |    |          |
| V3:V17    |   |   |   |   |   |   | -        | · · | -        | -   | -   | -  |    |    | t        |         |    |          |
| V3:V19    |   |   |   |   |   |   | <u> </u> | -   | -        | •   | -   | -  |    |    |          |         |    |          |
| V3:V20    |   |   |   |   |   |   | -        | -   | · ·      | -   | -   | -  |    |    |          |         |    | <b>—</b> |
| V3:V22    |   |   |   |   |   |   | -        | -   | -        | •   | -   | -  | •  |    |          |         |    |          |
| V3:V24    |   |   |   |   |   |   | -        | -   | -        | •   | -   | -  | •  | -  |          |         |    |          |
| V7:V15    |   |   |   |   | I |   |          |     | +        | +   | +   | +  |    |    |          |         |    |          |
| V8:V19    |   |   | l |   |   |   |          |     |          | -   | -   | -  | -  |    |          |         |    |          |
| V8:V20    |   |   |   |   |   |   |          |     |          | -   | -   | -  |    |    |          |         |    |          |
| V8:V22    |   |   |   |   |   |   |          |     |          | •   | -   | -  | -  |    |          |         |    |          |
| V8:V24    |   |   |   |   |   |   |          |     |          | -   | -   | -  |    | -  |          |         |    |          |
| V9:V16    |   |   |   |   |   |   |          | 1   |          | •   | -   | -  |    |    |          |         |    |          |
| V9:V20    |   |   | T |   |   |   |          |     | L        | •   | -   | -  | -  |    |          |         |    |          |
| V9:V22    |   |   |   |   |   |   |          |     | [        | · · | · · | -  | -  |    | 1        |         |    |          |
| V10:V16   |   |   | 1 |   |   | 1 | 1        |     |          | · · | •   | -  |    |    |          | · · · · |    |          |
| V10:V17   |   |   | 1 | 1 |   | 1 | 1        |     |          | - 1 | •   |    |    |    |          |         |    |          |
| V10:V18   |   |   |   |   |   | l | T        |     |          | •   | -   | -  |    |    |          |         |    |          |
| V10:V20   |   |   |   |   |   |   | 1        | 1   | 1        | · · | •   | -  | -  |    |          |         |    |          |
| V10:V22   |   |   |   |   |   |   |          |     | r – –    | •   | •   | -  | •  |    |          |         |    |          |
| V10:V24   |   |   |   |   |   |   |          |     |          | •   | -   | -  | •  | -  |          |         |    |          |
| V11:V16   |   |   |   |   | L |   |          | [   | 1        |     | -   | -  |    |    |          |         |    |          |
| V12:V13   |   |   |   |   |   |   |          | [   |          |     | -   |    |    |    |          |         |    |          |
| V15:V17   |   |   |   |   |   |   |          |     |          |     |     | -  |    |    |          |         |    |          |
| V15:V18   |   |   |   |   |   |   |          |     | ſ        |     |     | -  |    |    |          |         | _  |          |
| V15:V19   |   |   |   |   |   |   |          |     |          |     |     | -  | -  |    |          |         |    |          |
| V15:V20   |   |   |   |   |   |   |          |     |          |     |     | -  |    |    |          |         |    |          |
| V15:V22   |   |   |   |   |   |   |          |     |          |     |     | -  | -  |    |          |         |    |          |
| V15:V24   |   |   |   |   |   |   |          |     |          |     |     | -  | -  | •  |          |         |    |          |
| V16:V17   |   |   |   |   | [ |   |          |     |          |     |     | -  |    |    | r –      |         |    |          |
| V16:V18   |   |   |   |   |   |   |          |     |          |     |     | -  |    |    |          |         |    |          |
| V16:V19   |   |   |   |   |   |   |          |     |          |     |     | -  | -  |    |          |         |    |          |
| V16:V20   |   |   |   |   |   |   |          |     |          |     |     | -  | -  |    |          |         |    |          |
| V16:V22   |   |   |   |   |   |   |          |     |          |     |     | -  | -  |    |          |         |    |          |
| V16:V24   |   |   |   |   |   |   |          |     |          |     |     | -  | -  | -  |          |         |    |          |
| V21:V22   |   |   |   |   |   |   | 1        |     |          |     |     |    |    |    |          |         |    |          |

|           | Age Ran | gc |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |
|-----------|---------|----|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|
| XIV-C:100 | 3       | 4  | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| V1:V7     | +       | +  | + | + | + | + | + | +  | +  |    | I  |    |    |    |    |    |    |    |
| V1:V13    | +       | +  | + | + | + | + | + | +  | +  | +  | +  |    |    |    |    |    | ł  |    |
| V1:V20    | +       | +  | + | + | + | + | + | +  | +  | +  | +  | +  | +  |    |    |    | L  |    |
| V2:V26    | +       | +  | + | + | + | + | + | +  | +  | +  | +  | +  | +  | +  | +  | +  | +  | +  |

|         |   |   |   |   |   |   |   | ~   |     |   |   |   |   |   |          |   |   |   |
|---------|---|---|---|---|---|---|---|-----|-----|---|---|---|---|---|----------|---|---|---|
|         |   |   |   |   |   |   |   |     |     |   |   |   |   |   |          |   |   |   |
| V4:V7   | T |   |   |   |   |   |   | +   | +   |   |   |   |   |   |          |   |   |   |
| V4:V8   |   |   |   |   |   |   |   | +   | +   | + |   |   |   |   |          |   |   |   |
| V4:V9   | 1 |   |   |   |   |   |   | +   | +   | + |   |   |   |   |          |   |   |   |
| V4:V19  | 1 |   |   |   |   |   |   | +   | +   | + | + | + | + |   |          |   |   |   |
| V4:V21  | 1 |   |   |   |   |   |   | - 1 | · · | • | • | - |   |   |          |   |   |   |
| V5:V7   | 1 |   |   |   |   |   |   |     | +   |   |   |   |   |   |          |   |   |   |
| V5:V8   |   | Г |   |   |   |   | 1 | 1   | +   | + |   |   |   |   |          |   |   |   |
| V5:V19  | 1 | Γ |   | Γ |   |   |   |     | +   | + | + | + | + |   |          |   |   |   |
| V6:V7   |   |   |   |   |   |   |   |     | +   |   |   |   |   |   |          |   |   |   |
| V6:V8   |   |   |   | [ |   |   |   | 1   | +   | + |   |   |   |   |          |   |   |   |
| V6:V19  |   |   |   |   |   |   |   |     | +   | + | + | + | + |   |          |   |   |   |
| V6:V23  |   |   |   |   |   |   |   |     | -   | • | • | • | • |   |          |   |   | 1 |
| V7:V21  |   |   |   |   |   |   |   |     | -   | - |   | • | - |   |          |   |   |   |
| V7:V23  |   |   |   |   |   |   |   |     | -   | • |   | • | - |   | <u> </u> |   |   |   |
| V8:V23  |   |   |   | Γ |   |   |   |     |     | • | - | - | • |   |          |   |   |   |
| V12:V13 |   |   |   |   |   |   | - |     |     |   | + |   |   |   |          |   |   | 1 |
| V19:V23 |   |   |   |   |   |   | ] |     |     |   |   |   | - |   |          |   | 1 |   |
| V20:V23 |   | 1 |   |   |   |   | 1 |     |     |   |   |   | - |   | [        |   |   | 1 |
| V21:V22 |   |   |   |   | 1 |   |   |     | l l |   |   |   | + |   |          |   |   |   |
| V21:V26 | 1 | 1 | 1 |   | 1 | 1 | 1 |     |     |   |   | _ | + | + | +        | + | + | + |
| V22:V23 | 1 | 1 |   |   | 1 |   | 1 | 1   |     |   |   |   | - |   |          |   |   | 1 |
| V23:V26 |   |   |   | 1 | 1 | 1 | 1 |     |     |   |   |   | + | + | +        | + | + | + |

|           | Age Ran | ige |   |          | _ |   |   |     |    |    |    |    |    |    |    |    |    |    |
|-----------|---------|-----|---|----------|---|---|---|-----|----|----|----|----|----|----|----|----|----|----|
| XIV-C:192 | 3       | 4   | 5 | 6        | 7 | 8 | 9 | 10  | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| V1:V4     | -       | -   | - | -        | • | - | - | -   |    |    |    |    |    |    |    |    |    |    |
| V2:V26    | +       | +   | + | +        | + | + | + | +   | +  | +  | +  | +  | +  | +  | +  | +  | +  | +  |
| V3:V6     |         | ŀ   |   |          |   |   | - | -   | -  |    |    |    |    |    |    |    |    |    |
| V3:V8     |         |     |   |          |   |   | • | -   | -  | -  |    |    |    |    |    |    |    |    |
| V3:V19    |         |     |   |          |   |   |   | -   | -  | -  | •  | •  | •  |    |    |    |    |    |
| V3:V21    |         |     |   |          |   |   | + | +   | +  | +  | +  | +  | +  |    |    |    |    |    |
| V3:V24    |         |     |   |          |   |   | + | +   | +  | +  | +  | +  | +  | +  |    |    |    |    |
| V3:V26    |         |     |   |          |   |   | + | +   | +  | +  | +  | +  | +  | +  | +  | +  | +  | +  |
| V4:V6     |         |     |   |          |   |   | ] | -   | -  |    |    |    |    |    |    |    |    |    |
| V4:V8     |         |     |   |          |   |   | I | -   | -  | •  |    |    |    |    |    |    |    |    |
| V4:V11    |         |     |   |          |   |   | 1 | +   | +  | +  | +  |    |    |    |    |    |    |    |
| V4:V19    |         |     |   |          |   |   |   | - 1 | -  | -  | •  | •  | •  |    |    |    |    |    |
| V4:V21    |         |     |   |          |   |   |   | +   | +  | +  | +  | +  | +  |    |    |    |    |    |
| V4:V26    |         |     |   |          |   |   |   | +   | +  | +  | +  | +  | +  | +  | +  | +  | +  | +  |
| V5:V6     |         |     |   |          |   |   |   |     | -  |    |    |    |    |    |    |    |    |    |
| V5:V8     |         |     |   |          |   |   |   |     | -  | •  |    |    |    |    |    |    |    |    |
| V5:V22    |         |     |   |          |   |   |   |     | +  | +  | +  | +  | +  |    |    |    |    |    |
| V5:V24    |         |     |   |          |   |   |   |     | +  | +  | +  | +  | +  | +  |    |    |    |    |
| V6:V7     |         |     |   | <u> </u> |   |   |   |     | +  |    |    |    |    |    |    |    |    |    |
| V6:V16    |         |     |   | [        |   |   |   |     | +  | +  | +  | +  |    |    |    |    |    |    |
| V6:V17    |         |     |   |          |   |   |   |     | +  | +  | +  | +  |    |    |    |    |    |    |
| V6:V20    |         |     |   |          |   |   |   |     | +  | +  | +  | +  | +  |    |    |    |    |    |

|                    |                                               |            |              |             |          |               |          |                                              |              | -        |   |          |            |   |             |          | <u>.</u>                                      |          |
|--------------------|-----------------------------------------------|------------|--------------|-------------|----------|---------------|----------|----------------------------------------------|--------------|----------|---|----------|------------|---|-------------|----------|-----------------------------------------------|----------|
| V6:V22             |                                               |            |              | L           |          | ļ             |          | ļ                                            | +            | +        | + | +        | +          |   | L           | L        | I                                             |          |
| V6:V24             |                                               | $\bot$     |              |             | ļ        | L             |          | ļ                                            | +            | +        | + | +        | +          | + |             | L        | Ļ                                             |          |
| V7:V8              |                                               |            |              | L           | 1        | <u> </u>      |          | L                                            |              | · ·      |   |          |            |   |             | L        | L                                             |          |
| V7:V9              |                                               |            |              | L           |          |               | L        |                                              | <u> </u>     | •        |   | L        |            |   |             |          | L                                             |          |
| V7:V19             |                                               |            |              | L           |          | <u> </u>      |          |                                              |              | -        | - | <u> </u> |            |   |             |          |                                               |          |
| V7:V21             |                                               |            |              |             |          |               |          |                                              | +            | +        | + | +        | +          |   |             |          |                                               |          |
| V7:V22             |                                               |            |              |             |          |               |          |                                              | +            | +        | + | +        | +          |   |             |          |                                               |          |
| V7:V24             |                                               |            |              |             |          |               |          |                                              | +            | +        | + | +        | +          | + |             |          |                                               |          |
| V7:V26             |                                               |            |              |             |          | L             |          |                                              | +            | +        | + | +        | +          | + | +           | +        | +                                             | +        |
| V8:V16             |                                               |            |              |             |          |               |          |                                              |              | +        | + | +        | _          |   |             |          |                                               |          |
| V8:V22             |                                               |            |              |             |          |               | <b></b>  | 1                                            |              | +        | + | +        | +          |   |             |          |                                               |          |
| V8:V24             |                                               |            |              | <b>F</b>    |          |               |          |                                              |              | +        | + | +        | +          | + |             |          |                                               |          |
| V8:V26             |                                               |            |              |             |          |               |          | 1                                            |              | +        | + | +        | +          | + | +           | +        | +                                             | +        |
| V9:V22             |                                               |            |              |             |          |               |          | T                                            | 1            | +        | + | +        | +          |   |             |          |                                               |          |
| V9:V26             | 1                                             | 1          |              | 1           |          | <u> </u>      |          | i —                                          |              | +        | + | +        | +          | + | +           | +        | +                                             | +        |
| V10:V21            | 1                                             | †—         | T .          |             | 1        |               | 1        | 1                                            |              | +        | + | +        | +          |   |             | 1        | t                                             |          |
| V10:V22            |                                               |            |              | <u> </u>    | <u> </u> | <b></b>       |          |                                              |              | +        | + | +        | +          |   | <u> </u>    |          | <u>+</u>                                      |          |
| V10:V24            | 1                                             |            |              |             | <u> </u> | <u> </u>      |          |                                              |              | +        | + | +        | +          | + |             |          | <u>                                     </u>  |          |
| V11:V12            | t                                             | -          |              |             | <u> </u> | <u> </u>      |          |                                              | <u> </u>     |          | + |          |            |   |             | -        | <u> </u>                                      |          |
| V15:V19            |                                               |            | <u> </u>     |             |          | h             |          |                                              |              |          |   |          |            |   | <u> </u>    |          | <u>                                     </u>  | <u> </u> |
| V15:V21            | +                                             | <u> </u>   | <u> </u>     |             |          | ł             |          |                                              |              |          |   | +        | +          |   |             | <u> </u> | <u> </u>                                      |          |
| V15:V22            | †                                             |            | <u>├</u>     | <b>├</b> ── | <u> </u> | <del> </del>  |          | <u> </u>                                     | <u> </u>     |          |   | +        | +          |   |             |          | ┼──                                           | I        |
| V15:V24            |                                               |            |              |             |          | <u> </u>      |          |                                              | <u> </u>     |          |   | +        | +          | + | <u> </u>    |          | <u> </u>                                      |          |
| V16:V19            |                                               |            |              |             | <u> </u> |               | —        |                                              |              |          |   | -        | <u> </u>   |   |             |          | <u> </u>                                      |          |
| V16:V21            | 1                                             | <u> </u>   | <u> </u>     |             |          |               |          | 1                                            |              |          |   | +        | +          |   |             |          | 1                                             | <u> </u> |
| V16:V22            |                                               | <u>+</u>   |              |             | t        | <u> </u>      |          | 1 -                                          | t            |          |   | +        | +          |   |             |          | <u> </u>                                      | <u> </u> |
| V16:V24            |                                               | 1          | <u> </u>     |             | <u> </u> |               |          |                                              |              |          |   | +        | +          | + | <u> </u>    |          | <u>                                      </u> | <u> </u> |
| V16:V25            | <u> </u>                                      |            |              | <u> </u>    | <u> </u> | <u> </u>      |          |                                              |              |          |   | -        | <u>-</u> - | • |             |          | <u> </u>                                      | <u> </u> |
| V16:V26            |                                               | <u> </u>   | I –          | <u> </u>    | <u> </u> |               |          |                                              |              |          |   | +        | +          | + | +           | +        | +                                             |          |
| V17:V19            | 1                                             | <u> </u>   |              | }           | 1        |               |          | <u>}                                    </u> |              | -        |   |          | <u> </u>   |   | <u> </u>    | <u> </u> | +                                             | +        |
| V17:V21            | <u>                                      </u> |            | <u> </u>     | <u> </u>    |          |               | -        | <del> </del>                                 |              |          |   | +        |            | - |             |          | <u> </u>                                      | <u> </u> |
| V17:V24            | <b>—</b> —                                    |            |              | <u> </u>    | -        | <u> </u>      |          |                                              | -            | _        |   | +        | +          | + |             |          | <u> </u>                                      | <u> </u> |
| V17:V25            | t                                             |            | <u> </u>     |             | 1        |               |          | <u>├</u>                                     |              |          |   |          |            |   |             |          | ├──                                           |          |
| V17:V26            | 1                                             | <u> </u>   | <del> </del> | <u>├</u> ── |          | ł             | ——       |                                              |              |          |   | -        |            | • | <u> </u>    | <u> </u> |                                               | ⊢.       |
| V17:V26<br>V18:V19 | <u> </u>                                      | t          | <u> </u>     |             |          |               |          | ł                                            |              |          |   | +        | +          | + | +           | +        | +                                             | +        |
| V18:V19            | <u> </u>                                      | I          | <u> </u>     |             | <u>+</u> | <b> </b>      |          |                                              |              |          |   | +        |            |   | ————        |          | <b>├</b> ──                                   | ├        |
| V18:V20            | +                                             | <u> </u>   | <u> </u>     |             | I        | ł             | -        | <u> </u>                                     |              |          |   | + +      | +          |   |             |          | <u> </u>                                      | <b> </b> |
| V18:V22            | <del> </del>                                  | <u> </u>   |              |             | I        | <b>├</b> ───┤ |          |                                              | <b>├</b> ──- |          |   |          | +          |   | <u> </u>    |          | <b> </b>                                      |          |
| V18:V24<br>V19:V22 | ŧ                                             | <u> </u>   | <u> </u>     | L           | ł        | <b>├</b> ──┤  | <u> </u> | <u> </u>                                     | <b> </b>     |          |   | +        | +          | + | <b>└</b> ── | <u> </u> | ┣──                                           |          |
|                    | <u> </u>                                      |            |              |             | <u> </u> | <b> </b>      |          |                                              |              |          |   |          | +          |   | <u> </u>    |          | <b> </b>                                      | <b>—</b> |
| V19:V24            | +                                             |            |              |             | ł        |               |          | <b> </b>                                     |              |          |   |          | +          | + | <b></b>     |          | <b>—</b> —                                    | <u> </u> |
| V20:V22            | ╉────                                         | <u> </u>   |              |             | <u> </u> | <b> </b>      | -        | <b>—</b>                                     | <b></b>      |          |   | <b></b>  | +          | Ļ | <b></b>     |          | <b> </b>                                      | <b>—</b> |
| V20:V24            | ł                                             | <b>—</b> — | ——           |             | <b> </b> |               |          | ļ                                            |              |          |   |          | +          | + |             | L        |                                               | <u> </u> |
| V20:V26            | ∔                                             | <u> </u>   | <u> </u>     |             | L        | L             |          | ļ                                            |              |          |   |          | +          | + | +           | +        | +                                             | +        |
| V21:V25            | <b> </b>                                      | <u> </u>   | <u> </u>     | L           | <b>I</b> | <b> </b> i    | L        | I                                            |              | <u> </u> |   |          | •          | • |             |          | <b> </b>                                      | <u> </u> |
| V22:V24            | <b> </b>                                      | L          | L            | <u> </u>    | <u> </u> | <b>—</b>      |          | ļ                                            |              |          |   |          | +          | + |             |          |                                               |          |
| /22:V26            |                                               | []         | L            |             |          |               |          |                                              |              |          |   |          | +          | + | +           | +        | +                                             | +        |

|           |              |          |                                              |          |           |     | ,        | ~        |          |             |          |          |          |             |                                              |                                               |                                               |          |
|-----------|--------------|----------|----------------------------------------------|----------|-----------|-----|----------|----------|----------|-------------|----------|----------|----------|-------------|----------------------------------------------|-----------------------------------------------|-----------------------------------------------|----------|
|           | 4 P          |          |                                              |          |           |     |          |          |          |             |          |          |          |             |                                              |                                               |                                               |          |
| XIV-C:221 | Age Ran<br>3 | 4        | 5                                            | 6        | 7         | 8   | 9        | 10       | 11       | 12          | 13       | 14       | 15       | 16          | 17                                           | 18                                            | 19                                            | 20       |
| VI:VII    | +            | +        | <b>+</b>                                     | +        | +         | + · | +        | +        | +        | +           | +        |          |          |             | 1                                            | <u> </u>                                      |                                               | <u> </u> |
| V1:V17    | +            | +        | +                                            | +        | +         | +   | +        | +        | +        | +           | +        | +        |          |             |                                              |                                               | <u>+                                     </u> | t        |
| V3:V6     |              |          | <u> </u>                                     |          | <u> </u>  |     | +        | +        | +        |             |          | t        |          | <b>├</b> ── |                                              |                                               | <u> </u>                                      | t        |
| V3:V8     |              | 1        | <u> </u>                                     |          | 1         |     | -        | -        | -        |             |          | t        |          |             | <u> </u>                                     | <u> </u>                                      | +                                             |          |
| V3:V9     |              |          | <u>                                     </u> |          | 1         |     | <u> </u> |          | -        | · ·         |          |          |          | <u> </u>    |                                              | <u>                                     </u>  | + —                                           |          |
| V3:V10    |              |          | <u> </u>                                     | <u> </u> |           |     |          | <u> </u> | 1 .      | <u> </u>    |          |          |          | <u>+</u>    | t                                            | <u>+</u>                                      | <u> </u>                                      |          |
| V3:V18    |              | <u> </u> | <u> </u>                                     | 1        | <u> </u>  |     | · .      |          | - T      | <u> </u>    | <u> </u> | · ·      |          |             | <u>}                                    </u> | <u>+</u>                                      | <u>}</u>                                      | <b>}</b> |
| V4:V6     |              |          | t——                                          |          | <u> </u>  |     | <u> </u> | +        | +        |             |          |          |          |             | t                                            | <u> </u>                                      |                                               |          |
| V4:V9     |              |          |                                              |          | · · · · · |     |          | <u> </u> | -        | <u> </u>    |          |          |          | <b> </b>    | ╂───                                         | <u>                                     </u>  | <u> </u>                                      |          |
| V4:V11    |              |          | t –                                          |          | <u> </u>  |     |          | +        | +        | +           | +        | i — —    |          |             | t —                                          | <u>+</u>                                      | <u> </u>                                      | ł        |
| V4:V16    |              | t        | t                                            | 1        | t         | -   |          | +        | +        | +           | +        | +        |          | <u> </u>    |                                              | ┼──                                           | <del> </del>                                  | +        |
| V5:V6     | <u> </u>     | 1        | t                                            |          | <u> </u>  |     |          | <u> </u> | +        | 1           |          | i        | <u> </u> |             | t                                            |                                               |                                               | <u> </u> |
| V5:V8     |              | 1        | <u> </u>                                     |          |           |     | h        | <b> </b> | -        | · ·         | 1        |          | <u> </u> |             | <u> </u>                                     | <u>+</u>                                      | t —                                           | <u> </u> |
| V6:V7     |              | 1        | 1                                            | <b> </b> |           |     | <u> </u> |          | -        |             | <u> </u> | i — –    |          | <u> </u>    | t                                            | <u>                                      </u> |                                               | t        |
| V6:V8     |              |          | t——                                          |          |           |     |          | 1        | <u> </u> | <u>⊢</u> .− | 1        |          |          | 1           | <u> </u>                                     | <u> </u>                                      | <u> </u>                                      | ╂───     |
| V7:V8     |              | 1        | <u> </u>                                     | 1        |           |     |          | -        | •        | •           |          |          |          | t           | 1                                            |                                               | <u> </u>                                      | ┣        |
| V7:V9     |              |          | <u> </u>                                     |          | <u> </u>  |     |          |          | -        | <u> </u>    | l        | <u> </u> |          |             |                                              |                                               | F                                             |          |
| V7:V10    |              | ·        | <u> </u>                                     | <u> </u> | <u> </u>  |     |          | t        | - 1      | <u> </u>    | -        | <u> </u> |          |             |                                              |                                               |                                               |          |
| V7:V16    |              |          | <u> </u>                                     |          |           | _   |          | 1        | +        | +           | +        | +        |          |             | t                                            |                                               |                                               |          |
| V7:V17    |              | t        | t                                            |          | <u>†</u>  |     | t        |          | t +      | +           | +        | +        |          |             | t—–                                          | t                                             | <u> </u>                                      | ┠───     |
| V8:V9     |              | 1        |                                              |          | 1         |     |          |          |          | -           |          |          |          |             |                                              | <u> </u>                                      | 1                                             |          |
| V8:V10    |              |          | <u> </u>                                     |          | 1         |     |          |          | I        | <u> </u>    |          |          |          |             |                                              | <u> </u>                                      |                                               |          |
| V8:V15    |              |          |                                              |          |           |     |          | 1        |          | +           | +        | +        |          |             | <u> </u>                                     |                                               | <u> </u>                                      |          |
| V8:V16    |              |          |                                              |          |           | -   |          |          |          | +           | +        | +        |          |             | -                                            |                                               | <b>—</b>                                      |          |
| V8:V19    |              | 1        |                                              |          | 1         |     |          |          | 1        | +           | +        | +        | +        | 1           | 1                                            |                                               | 1                                             | 1        |
| V8:V22    |              |          |                                              |          |           |     |          | 1        | 1        | +           | +        | +        | +        |             |                                              |                                               |                                               | 1        |
| V8:V23    |              |          |                                              |          |           |     |          | 1        | 1        | +           | +        | +        | +        |             |                                              | 1                                             |                                               | <u> </u> |
| V9:V16    |              |          |                                              |          |           |     |          |          |          | +           | +        | +        |          |             |                                              |                                               | T –                                           |          |
| V9:V20    |              |          |                                              |          |           |     |          |          |          | +           | +        | +        | +        |             |                                              |                                               |                                               | <b>r</b> |
| V9:V22    |              |          | <u> </u>                                     |          |           |     |          |          | 1        | +           | +        | +        | +        |             |                                              |                                               |                                               | 1        |
| V10:V15   |              |          |                                              |          |           |     |          |          |          | +           | +        | +        |          |             |                                              |                                               |                                               |          |
| V10:V16   |              |          |                                              |          |           |     |          |          |          | +           | +        | +        |          |             |                                              |                                               |                                               |          |
| V10:V17   |              |          |                                              |          |           |     |          |          |          | +           | +        | +        |          |             |                                              |                                               |                                               |          |
| V10:V18   |              |          |                                              |          |           |     |          |          | [        | +           | +        | +        |          |             |                                              |                                               |                                               |          |
| V10:V20   |              |          |                                              |          |           |     |          |          |          | +           | +        | +        | +        |             |                                              |                                               |                                               |          |
| V10:V21   |              |          |                                              |          |           |     |          |          |          | +           | +        | +        | +        |             |                                              |                                               |                                               |          |
| V10;V22   |              |          |                                              |          |           |     |          |          |          | +           | +        | +        | +        |             |                                              |                                               | L                                             |          |
| V10:V24   |              |          |                                              |          |           |     |          |          |          | +           | +        | +        | +        | +           |                                              |                                               |                                               |          |
| V10:V25   |              |          |                                              |          |           |     |          |          |          | +           | +        | +        | +        | +           |                                              |                                               |                                               |          |
| V11:V12   |              |          |                                              |          |           |     |          |          |          |             | -        |          |          |             |                                              |                                               |                                               |          |
| V15:V16   |              |          |                                              |          |           |     |          |          |          |             |          | +        |          |             |                                              |                                               |                                               |          |
| V15:V17   |              |          |                                              |          |           |     |          |          |          |             |          | +        |          |             |                                              |                                               |                                               |          |
| V17:VI8   |              |          |                                              |          |           |     |          |          |          |             |          | -        |          |             |                                              |                                               |                                               |          |
| V17:V20   |              |          |                                              |          |           |     |          |          |          |             |          | -        | •        |             |                                              |                                               |                                               | Ľ        |
| V17:V22   |              |          |                                              |          |           |     |          |          |          |             |          | -        | •        | [           |                                              |                                               |                                               |          |

| V17:V24 | Т | 1 | <u> </u> |          | <u> </u> | r | <b></b> | r |  | <u> </u> | <u> </u> | <u> </u> |   | r        | <br>- |  |
|---------|---|---|----------|----------|----------|---|---------|---|--|----------|----------|----------|---|----------|-------|--|
| V19:V20 | - |   |          | <u> </u> | $\vdash$ | t |         |   |  |          | <u> </u> | <u>+</u> |   | <u> </u> |       |  |
| V22:V24 |   |   |          |          |          |   |         |   |  |          |          |          | - |          |       |  |

# K-6 Sadlermiut males growth fluctuation pattern maps (chronological numbering see Appendix H, H-2)

| XIV-C:230 | 3 | 4       | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12       | 13  | 14  | 15 | 16 | 17           | 18 | 19       | 20       |
|-----------|---|---------|---|---|---|---|---|----|----|----------|-----|-----|----|----|--------------|----|----------|----------|
| V2:V3     |   | +       | + | + | + | + | + | +  |    |          |     |     |    |    |              |    |          |          |
| V2:V24    |   |         | • | • | - | - |   |    |    |          | •   | -   |    |    |              |    |          |          |
| V3:V25    |   |         |   |   |   |   |   | -  | •  | -        | •   | -   |    | -  |              |    |          | <u> </u> |
| V3:V26    |   |         |   |   |   |   |   | •  | -  | - 1      |     | - 1 | -  |    |              | -  | · .      | · ·      |
| V4:V8     |   |         |   |   |   |   |   |    |    | •        | · 1 |     |    |    |              |    | 1        |          |
| V4:V25    |   |         |   |   |   |   |   |    |    | -        | - 1 | -   |    |    | - <u>-</u> - |    | <u> </u> | - ·      |
| V5:V13    |   |         |   |   |   |   | 1 |    | [  | •        | •   | -   |    |    |              |    | 1        |          |
| V5:V25    |   |         |   |   |   |   | 1 |    | 1  | -        | -   | -   | •  | -  | -            |    |          |          |
| V6:V25    |   |         |   |   |   |   |   |    |    | -        | -   | -   | -  |    |              |    |          |          |
| V6:V26    |   |         |   |   |   |   |   |    | 1  | •        | -   | -   | -  |    |              |    |          |          |
| V7:V8     |   |         |   |   |   |   |   |    |    |          |     |     |    |    |              |    |          | -        |
| V7:V12    |   | 1       |   |   |   |   | 1 |    |    | <u> </u> | +   | +   | +  | +  | +            |    | 1        |          |
| V7:V25    |   | <b></b> |   |   |   |   | 1 |    |    |          | · · | - 1 |    | -  |              |    | <u> </u> | <u> </u> |
| V7:V26    |   |         |   |   |   |   | † |    | 1  |          | -   | · · | •  | -  |              |    | <u> </u> | <u> </u> |
| V8:V14    | T | 1       |   |   |   | 1 |   |    |    |          | +   | +   | +  | +  | +            |    | r        |          |
| V\$:V18   |   |         |   |   |   |   |   |    |    |          | +   | +   | +  | +  | +            | +  | 1        |          |
| V8:V24    |   |         |   |   |   |   |   |    |    |          | -   | -   |    | -  | -            | -  | 1.       | -        |
| V14:V25   |   |         |   |   |   |   |   |    | 1  |          |     |     |    |    | -            |    | <u> </u> |          |
| V14:V26   |   |         |   |   |   |   |   |    |    |          |     |     |    |    |              | -  | -        | -        |
| V15:V25   |   |         |   |   |   |   |   |    |    |          |     | r—  |    |    |              | •  | <u> </u> | . I      |
| V15:V26   |   |         |   |   |   |   |   |    |    |          |     |     |    |    | -            | -  | •        |          |
| V15:V27   |   |         |   |   |   |   |   |    |    |          |     |     |    |    | +            | +  | +        | +        |
| V18:V25   |   |         |   |   |   |   |   |    | 1  |          |     |     |    |    |              | -  | -        |          |
| V18:V26   |   |         |   |   |   |   |   |    | ł  |          |     |     |    |    |              | -  | -        |          |
| V18:V27   |   |         |   |   |   |   |   |    | I  |          |     |     |    |    |              | +  | +        | +        |
| V25:V27   | T |         |   |   |   |   |   |    |    |          |     |     |    |    |              |    |          | +        |

|          | Age Ra | age |   |   |   |   |   |          |    |     |    |    |     |     |     |    |    |         |
|----------|--------|-----|---|---|---|---|---|----------|----|-----|----|----|-----|-----|-----|----|----|---------|
| XIV-C:74 | 3      | 4   | 5 | 6 | 7 | 8 | 9 | 10       | 11 | 12  | 13 | 14 | 15  | 16  | 17  | 18 | 19 | 20      |
| V3:V18   |        |     |   |   |   |   |   | +        | +  | +   | +  | +  | +   | +   | +   | +  | ł  | <b></b> |
| V3:V19   |        | Γ   |   |   |   |   |   | -        | -  | -   | -  | -  | -   | - 1 |     | -  |    |         |
| V3:V26   |        |     |   |   |   |   |   | +        | +  | +   | +  | +  | +   | +   | +   | +  | +  | +       |
| V4:V7    |        |     |   |   |   |   |   |          |    | - 1 | •  |    |     |     |     |    |    | · · ·   |
| V4:V8    |        |     |   |   |   |   |   |          |    | +   | +  |    |     | Γ   | ·   |    |    |         |
| V4:V10   |        |     |   |   |   |   |   | <u> </u> |    | +   | +  | +  | +   | +   |     |    |    |         |
| V4:V18   |        |     |   |   | Γ |   |   |          |    | +   | +  | +  | +   | +   | +   | +  |    |         |
| V4:V19   |        |     |   |   | I |   |   |          |    | -   | -  | •  | -   | -   | · · | •  |    |         |
| V4:V23   |        |     |   |   |   |   |   |          |    | -   |    |    | -   | -   | · · | •  | -  |         |
| V6:V19   |        |     | 1 |   | Γ |   |   |          |    | - 1 | -  | -  | - 1 | · · |     | -  |    |         |
| V6:V21   |        |     |   |   |   |   |   |          |    | •   | -  | -  | -   | -   |     | •  | -  |         |
| V6:V22   |        |     |   |   |   |   |   |          |    | - 1 | •  | •  | -   | -   |     | -  | •  |         |
| V6:V23   |        |     |   |   |   |   |   |          |    | -   | -  | -  | -   | -   | - 1 | -  | -  |         |
| V7:V8    |        |     |   |   |   |   |   |          |    |     | +  |    |     |     |     |    |    |         |
| V7:V10   |        |     |   |   |   |   |   |          |    |     | +  | +  | +   | +   |     |    |    |         |

|         |   |   |    |   | · | ~ |   |   |   |   |          |   |   |   |    |
|---------|---|---|----|---|---|---|---|---|---|---|----------|---|---|---|----|
|         |   |   |    |   |   |   |   |   |   |   |          |   |   |   |    |
| V7:V18  | T |   |    |   | Γ |   |   | + | + | + | +        | + | + |   |    |
| V7:V19  |   |   |    |   |   |   |   | - | - |   | -        | • | - |   |    |
| V7:V22  |   |   |    |   | · |   |   | • | - | - | •        | - | - | • |    |
| V8:V18  |   |   |    | [ | 1 |   |   | - |   | • | -        | - | • |   | [] |
| V8:V24  |   |   |    |   |   |   |   | • |   | - | -        | • | • | - | -  |
| V8:V25  |   |   |    |   |   |   |   | - | - | - | - 1      | - | • | • | -  |
| V11:V19 |   |   | Ι. |   |   |   |   |   |   |   | <u> </u> | - | • |   |    |
| V18:V19 |   | I |    |   |   |   |   |   |   |   |          |   | - |   |    |
| V18:V21 |   |   |    | I |   |   |   |   |   |   |          |   |   |   |    |
| V18:V25 | Τ |   |    |   |   |   |   |   |   |   | Γ        |   | • | - | •  |
| V19:V26 |   |   |    |   |   |   |   |   |   |   |          |   | + | + | +  |
| V21:V22 |   |   |    |   |   |   | I |   |   |   |          |   |   |   |    |
| V21:V23 |   |   |    |   | ł |   |   |   |   |   |          |   |   | • |    |

|           | Age Ran | ige     |   |     |          |     | _ |    |    |    |     |           |    |    |     |          |          |    |
|-----------|---------|---------|---|-----|----------|-----|---|----|----|----|-----|-----------|----|----|-----|----------|----------|----|
| XIV-C:117 | 3       | 4       | 5 | 6   | 7        | 8   | 9 | 10 | 11 | 12 | 13  | 14        | 15 | 16 | 17  | 18       | 19       | 20 |
| V2:V3     |         | +       | + | +   | +        | +   | + | +  |    |    |     |           |    |    |     |          |          |    |
| V2:V14    |         | +       | + | +   | +        | +   | + | +  | +  | +  | +   | +         | +  | +  | +   |          |          |    |
| V2:V19    |         | -       | - | ·   | •        | -   |   | -  |    | -  | -   | -         | -  | -  | -   |          |          |    |
| V2:V26    |         |         | - | - 1 | -        | - 1 | - | -  | -  | -  |     | -         | -  | -  | · · | -        | · - ·    | -  |
| V3:V19    | 1       |         |   |     |          |     |   | •  | -  | •  | -   | -         | •  | -  | -   | · ·      |          |    |
| V3:V22    | T       |         |   | T   | 1        |     |   | -  | -  | -  |     | -         | -  | -  |     |          |          |    |
| V3:V23    |         |         |   | [   |          |     |   | -  | -  | -  | -   | -         | -  | -  | -   |          | <u> </u> |    |
| V3:V26    |         |         |   | 1   |          |     | Ι | -  | -  | •  | -   | -         | -  | -  | -   | · 1      | · ·      | -  |
| V3:V27    |         |         |   |     |          |     |   | -  | -  | -  | -   | -         | •  | -  | -   | •        | <u> </u> | -  |
| V4:V6     |         |         |   |     |          |     |   | 1  |    | •  |     |           |    |    |     |          |          |    |
| V4:V9     |         |         |   | 1   |          |     |   |    |    | +  | +   | +         | +  | +  | 1   |          |          |    |
| V4:V13    |         |         | 1 | Ι   |          |     |   |    |    | +  | +   | +         | +  | +  | +   |          |          |    |
| V4:V14    |         |         |   |     |          |     |   |    |    | +  | +   | +         | +  | +  | +   |          |          |    |
| V4:V15    |         |         |   |     |          |     |   |    |    | +  | +   | +         | +  | +  | +   |          |          |    |
| V4:V18    |         |         |   |     | 1        |     |   |    |    | +  | +   | +         | +  | +  | +   | +        |          |    |
| V5:V6     |         |         |   | T   |          |     |   |    |    | -  |     |           |    |    | 1   | 1        |          |    |
| V5:V13    |         | ŀ       |   |     |          |     |   |    |    | +  | +   | +         | +  | +  | +   |          |          |    |
| V5:V18    |         |         |   | 1   |          |     |   |    |    | +  | +   | +         | +  | +  | +   | +        |          |    |
| V5:V22    |         |         | T |     |          |     |   |    |    | -  | ·   | -         | -  | -  | -   | -        | -        |    |
| V5:V23    |         |         |   |     |          | T T |   |    |    | •  | · · | -         | -  | -  | -   | <u> </u> | •        |    |
| V5:V27    |         |         |   | 1   |          | 1   |   |    |    | •  | - I | -         | •  |    | -   | •        | -        | •  |
| V6:V15    |         |         | 1 |     |          |     | 1 |    |    | +  | +   | +         | +  | +  | +   |          |          |    |
| V6:V21    |         | 1       |   |     |          | 1   |   |    |    | +  | +   | +         | +  | +  | +   | +        | +        |    |
| V6:V25    |         |         | 1 |     | 1        | i – |   |    |    | +  | +   | +         | +  | +  | +   | +        | +        | +  |
| V7:V11    | 1       | 1       |   |     |          |     |   |    |    |    | +   | +         | +  | +  |     |          |          |    |
| V7:V14    |         | 1       |   |     | T        |     |   |    |    |    | +   | +         | +  | +  | +   |          |          |    |
| V7:V18    |         |         |   | 1   | 1        | 1   |   |    |    |    | +   | +         | +  | +  | +   | +        |          |    |
| V7:V22    | 1       | <b></b> | 1 | 1   | 1        | 1   |   |    |    |    | -   | -         | -  | -  | -   | -        | -        |    |
| V7:V23    |         | 1       | 1 | 1   |          | 1   | 1 |    |    |    | -   | -         | -  | -  |     | -        | -        |    |
| V8:V13    |         | 1       | 1 | 1   |          | î — |   |    |    |    | +   | +         | +  | +  | +   |          |          |    |
| V8:V14    |         |         | 1 | 1   | 1        | 1   |   |    |    |    | +   | +         | +  | +  | +   |          |          |    |
| V8:VIB    |         |         | 1 |     |          | 1   | 1 |    |    |    | +   | +         | +  | +  | +   | +        |          |    |
| V9:V13    |         |         | 1 | 1   | <u> </u> | 1   |   |    |    |    |     | · · · · · | h  | +  | +   |          |          |    |

|         |              |           |      |          |          |          | ~        |          |     |              |    |   |   |          |              |            |
|---------|--------------|-----------|------|----------|----------|----------|----------|----------|-----|--------------|----|---|---|----------|--------------|------------|
|         |              |           |      |          |          |          |          |          |     |              |    |   |   |          |              |            |
|         | <br><b>T</b> |           | r    |          | r        |          | r        | r        | r   | <br>         | r— |   |   | <u> </u> | <del>r</del> | <u> </u>   |
| V9:V14  |              | Ļ         | L    |          | I        | L        | L        |          |     | <br>         |    | + | + |          |              | <u> </u>   |
| V9:V18  | <br>         | <b></b> _ |      | L        | <b></b>  | I        | ļ        | —        |     | <br>—        |    | + | + | +        | L            | <b>—</b> — |
| V9:V23  | <br>         |           |      | <u> </u> |          | <b>_</b> | <b> </b> | <b> </b> |     | <br><b> </b> |    | • |   | · ·      | <u> </u>     |            |
| V10:V18 | <br>         | L         |      | <u> </u> |          | <b></b>  |          | <u>ا</u> |     | <br><b>—</b> |    | + | + | +        | I            | I          |
| V11:V19 | <br>         | L         | L    | └──      | <u> </u> | L        | ļ        | <b> </b> |     | ·            |    |   | - | <u> </u> |              |            |
| V11:V23 | -            | <u> </u>  |      | L        | <u> </u> | L        | L        | L        |     | <br>L        | L  | - | - | <u> </u> | -            |            |
| V13:V15 |              | $\square$ | ·    | L        | L        | L        |          |          |     |              |    | _ | - |          |              |            |
| V14:V19 | <br>         |           |      |          |          |          |          |          |     |              |    |   | - | -        |              |            |
| V14:V21 |              |           |      | L        | <u> </u> | L        |          |          |     |              |    |   | - | -        |              | l          |
| V14:V22 |              | L         |      |          |          |          |          |          |     |              |    |   | - | -        | -            |            |
| V14:V23 |              |           |      |          |          |          | L.       |          |     |              |    |   | - | -        | -            |            |
| V14:V27 |              |           |      |          |          |          |          |          |     |              |    |   | • |          | -            | -          |
| V15:V18 |              |           |      |          |          |          |          | [        |     |              |    |   | + | +        | 1            |            |
| V15:V19 |              |           | l. – |          |          |          |          |          |     |              |    |   | - |          |              |            |
| V15:V22 |              |           |      |          |          |          |          | Ι        |     |              |    |   |   | -        | -            | <u> </u>   |
| V15:V23 |              |           |      |          |          |          |          | [        |     | _            |    |   | • | · ·      | -            |            |
| V16:V23 |              |           |      |          |          |          |          | 「        |     |              |    |   |   | <u> </u> | -            |            |
| V18:V19 |              |           |      |          |          |          |          |          |     |              |    |   |   | · ·      | r            |            |
| V18:V27 |              |           |      |          |          |          |          |          |     |              |    |   |   |          | 1 -          | <u> </u>   |
| V19:V23 |              | <u> </u>  |      |          | Γ        |          |          |          |     |              |    |   |   | -        | <u> </u>     |            |
| V21:V22 |              |           |      | <u> </u> | 1        |          | T        |          |     |              |    |   |   | 1        | - T          |            |
| V21:V23 |              |           |      |          | 1        | <b></b>  |          | <u> </u> | i i |              |    |   |   | i        | <u> </u>     |            |
| V22:V23 |              |           |      |          |          | 1        |          |          |     |              |    |   |   | <u> </u> | <u> </u>     | <u> </u>   |
| V25:V27 | 1            | 1         | 1    |          |          | r—       |          |          |     |              | [  | i |   | <b></b>  |              | <u> </u>   |

| Age Range |   |   |          |   |   |   |          |          |     |         |     |     |     |          |     |          |     |    |
|-----------|---|---|----------|---|---|---|----------|----------|-----|---------|-----|-----|-----|----------|-----|----------|-----|----|
| XIV-C:126 | 3 | 4 | 5        | 6 | 7 | 8 | 9        | 10       | 11  | 12      | 13  | 14  | 15  | 16       | 17  | 18       | 19  | 20 |
| V2:V14    |   | - |          | - | - | - |          | -        | -   | -       | -   | -   | -   | -        | -   |          |     |    |
| V2:V19    |   | - | _ ·      | - | - | - | <u>.</u> | •        |     | •       | -   | -   | -   |          | -   | •        |     |    |
| V2:V24    |   | - |          | - | - | • | -        | -        | -   | -       | -   | -   | -   | -        | -   | -        | - 1 |    |
| V2:V25    |   | - | -        | - | - | - | -        |          | -   |         | -   | -   | •   | -        | -   | •        | •   | -  |
| V3:V11    |   |   |          |   |   |   |          | - 1      |     | - 1     | _ • | -   |     |          |     |          |     |    |
| V3:V14    |   |   |          |   |   |   |          | •        | - 1 | •       | -   | •   | - 1 | -        | -   |          |     |    |
| V3:V25    |   |   |          |   |   |   |          |          | -   | -       | -   | - 1 | -   | - 1      | -   | - 1      | - 1 |    |
| V3:V27    |   |   |          |   |   |   |          | -        | · · | - I     | -   | · · | -   | · ·      | •   | <u> </u> | -   | -  |
| V4:V6     |   |   |          |   |   |   |          |          |     | +       |     |     |     |          |     |          |     |    |
| V4:V8     |   |   |          |   |   |   |          |          | 1   | +       | +   |     |     | 1        | 1   | 1        |     |    |
| V4:V9     | 1 |   | <u> </u> |   |   | 1 |          |          |     | +       | +   | +   | +   | +        | 1   | 1        |     |    |
| V4:V25    |   |   |          |   |   |   |          | <b></b>  |     | -       | -   | -   | -   | -        | -   |          | -   | -  |
| V5:V6     |   |   |          |   |   |   |          |          |     | +       |     | I   |     | <u> </u> | 1   |          |     |    |
| V5:V13    |   |   | 1        |   |   |   |          | <u> </u> |     | +       | +   | +   | +   | +        | +   |          |     |    |
| V5:V17    |   |   | 1        |   |   |   |          |          |     | +       | +   | +   | +   | +        | +   | +        |     |    |
| V5:V25    |   |   |          | 1 |   | 1 |          |          |     | · ·     | -   | · · | -   |          | -   |          |     | -  |
| V5:V27    |   |   |          |   |   |   | 1        |          |     | -       | -   | -   | -   |          | -   |          | •   | -  |
| V6:V21    |   |   |          |   |   |   |          |          |     | -       | -   | -   | -   | · · ·    |     |          | •   |    |
| V6:V23    |   |   | [        |   | t |   |          |          | t   | - 1     |     | -   |     | - 1      | - 1 | -        | -   |    |
| V6:V25    |   |   | T        |   |   | I |          |          | ·   |         | -   | · · |     | -        | -   | · ·      | -   | -  |
| V6:V27    |   |   | <b></b>  |   |   |   |          |          | r   | -       | -   | -   |     | -        | •   |          | -   | -  |
| V7:V8     |   |   |          |   |   |   |          |          |     | <b></b> | +   |     |     |          |     | 1        |     |    |

|         |       |   |   |   |          |           | ~ |   |          |   |   |   |   |          |          |   |          |
|---------|-------|---|---|---|----------|-----------|---|---|----------|---|---|---|---|----------|----------|---|----------|
|         |       |   |   |   | ,        |           |   |   |          |   |   |   |   |          |          |   |          |
| V7:V9   | 1     |   |   |   |          |           |   |   |          | + | + | + | + |          | Γ        |   | <u> </u> |
| V7:V11  |       |   |   |   |          |           |   |   |          | • | - | • |   |          |          |   |          |
| V7:V25  |       |   |   |   |          |           |   |   |          | • | - | - | • | · ·      | •        | - | •        |
| V8:V14  |       |   |   |   |          |           |   | I |          |   | - | • | • | -        | <b></b>  |   |          |
| V8:V25  |       |   |   |   | Γ        |           |   |   |          | • | • | - | - | -        | •        | - | -        |
| V9:V24  |       |   |   |   |          |           |   |   |          |   |   |   |   | -        | <u> </u> | • | -        |
| V9:V25  |       |   |   |   |          |           |   |   |          |   |   |   |   |          | <u> </u> | - | •        |
| V9:V27  |       |   |   |   |          |           |   |   |          |   |   |   | - | •        | -        | - | 1.       |
| V14:V27 |       |   |   |   |          |           |   | Ι |          |   |   |   |   | · .      |          | - | <u> </u> |
| V15:V25 |       |   |   |   |          |           |   |   |          |   |   |   |   |          |          | • | · ·      |
| V15:V27 |       |   |   |   |          |           |   |   |          |   |   |   |   | -        |          | • | <b>—</b> |
| V18:V25 |       |   |   |   |          |           |   |   |          |   |   |   |   |          |          |   | · ·      |
| V18:V27 |       |   |   |   |          |           |   |   |          |   |   |   |   |          | •        |   | - 1      |
| V19:V25 |       |   |   |   |          | _         |   |   |          |   |   |   |   | · · · ·  |          | - | 1.       |
| V21:V25 |       |   |   |   |          |           |   |   |          |   |   |   |   | <u> </u> |          | - | · ·      |
| V21:V26 |       |   |   |   |          |           |   |   |          |   |   |   |   |          | h        | - | · ·      |
| V21:V27 | T     | Ι |   |   |          |           |   |   |          |   |   |   |   | <u> </u> |          |   |          |
| V22:V25 |       | 1 |   |   |          |           |   |   |          |   |   |   |   |          |          | - | · -      |
| V22:V27 |       | I |   |   | T        |           |   |   |          |   |   |   |   |          |          | - | 1.       |
| V23:V25 | 1     | 1 | 1 | 1 |          | · · · · · |   | 1 |          |   |   |   |   |          |          | - | <u> </u> |
| V23:V27 | <br>1 | 1 | 1 | 1 | 1        |           |   | 1 |          |   |   |   |   |          | <b></b>  | - | <u> </u> |
| V24:V25 |       | 1 |   |   |          |           |   |   |          |   |   |   |   | <u> </u> |          |   | 1.       |
| V25:V26 |       | 1 | 1 | 1 | <u> </u> |           |   | 1 | <u> </u> |   |   |   |   |          | <u> </u> |   | +        |

|           | Age Ras | ge |   |     |   |   |   |    |     |     |    |    |    |    |    |    |     |    |
|-----------|---------|----|---|-----|---|---|---|----|-----|-----|----|----|----|----|----|----|-----|----|
| XIV-C:246 | 3       | 4  | 5 | 6   | 7 | 8 | 9 | 10 | 11  | 12  | 13 | 14 | 15 | 16 | 17 | 18 | 19  | 20 |
| V2:V3     |         | -  | • | -   | - | - | - | -  |     |     |    |    |    |    |    |    |     |    |
| V2:V18    |         | •  | - | - 1 | - | - | - | -  | -   | · · | -  | -  | •  | -  | -  | •  |     |    |
| V2:V25    |         | -  | - |     | - | - | - | -  | -   | -   | -  | -  | -  | -  | -  | -  | · · | -  |
| V2:V26    | _       | -  |   | -   | - | - | • | -  | L - | -   | -  |    | -  | -  | •  | -  | -   | -  |
| V3:V11    |         |    |   |     |   |   |   | +  | +   | +   | +  | +  | +  | +  |    | _  |     |    |
| V3:V14    |         |    |   |     |   |   |   | +  | +   | +   | +  | +  | +  | +  | +  |    |     |    |
| V4:V7     |         |    |   |     |   |   |   |    |     | +   | +  |    |    |    |    |    |     |    |
| V4:V10    |         |    |   |     |   |   |   |    |     | -   | -  | -  | -  | -  |    |    |     |    |
| V4:V13    |         |    | Ι |     |   |   |   |    |     | +   | +  | +  | +  | +  | +  |    |     |    |
| V4:V18    |         |    |   |     |   |   |   |    |     | -   | -  | -  | -  | -  | -  |    |     |    |
| V5:V13    |         |    |   |     |   |   |   |    |     | +   | +  | +  | +  | +  | +  |    |     |    |
| V5:V23    |         |    |   |     |   |   | 1 |    |     | +   | +  | +  | +  | +  | +  | +  | +   |    |
| V6:V23    |         |    |   |     |   |   |   |    |     | +   | +  | +  | +  | +  | +  | +  | +   |    |
| V6:V27    |         |    |   |     |   |   |   |    |     | -   | -  | -  | -  | -  | -  | -  | -   | -  |
| V7:V10    |         |    |   |     |   |   |   |    |     |     | -  | -  | -  | -  |    |    |     |    |
| V7:V12    |         |    | I |     |   |   |   |    |     |     | -  | -  | -  | -  | -  |    |     |    |
| V7:V18    |         |    |   |     |   |   |   |    |     |     | -  | -  | •  | -  | -  | -  |     |    |
| V7:V19    |         |    | L |     |   |   |   |    |     |     | -  | -  | -  | -  | -  | -  |     |    |
| V7:V25    |         |    |   |     |   |   |   |    |     |     |    | -  | -  | -  | -  | •  |     | -  |
| V7:V26    |         |    |   |     |   |   |   |    |     |     |    | -  | -  | -  |    | •  | •   | -  |
| V8:V9     |         |    |   |     |   |   |   |    |     |     | -  | •  | •  |    |    |    |     |    |
| V8:V10    |         |    |   |     |   |   |   |    |     |     | -  | •  | •  | •  |    |    |     |    |
| V8:V13    |         |    |   | [   |   |   |   |    |     |     | +  | +  | +  | +  | +  |    |     |    |

| V8:V18                                                                                                                                 |         |            |          |              |          | r        | <b></b>  |     |          |             |          |          | -             | -           | •           | · .      | · ·      |                |
|----------------------------------------------------------------------------------------------------------------------------------------|---------|------------|----------|--------------|----------|----------|----------|-----|----------|-------------|----------|----------|---------------|-------------|-------------|----------|----------|----------------|
| V8:V25                                                                                                                                 | 1       |            |          | <u> </u>     |          |          |          |     |          |             | •        |          |               | -           | •           |          |          | -              |
| V9:V13                                                                                                                                 | 1       |            | t —      | <u> </u>     |          |          |          |     |          |             |          |          |               | +           | +           |          |          | 1              |
| V9:V14                                                                                                                                 |         |            | 1        |              |          |          |          |     |          |             |          |          |               | +           | +           |          |          |                |
| V9:V18                                                                                                                                 |         |            |          | <u> </u>     |          | <u> </u> |          |     |          |             |          |          |               | <u> </u>    | -           |          |          |                |
| V11:V12                                                                                                                                | -       |            |          |              |          |          |          |     | <u> </u> |             |          |          |               |             | •           |          |          |                |
| V13:V15                                                                                                                                |         |            |          |              |          |          |          |     |          |             | -        |          |               | <u> </u>    |             |          |          | +              |
| V13:V18                                                                                                                                |         |            |          | <u> </u>     |          |          |          |     | <u> </u> |             | -        |          |               |             |             |          | <u> </u> | <u>├</u>       |
| V14:V18                                                                                                                                | 1       |            |          |              |          |          |          | r   |          |             |          |          |               |             | -           |          | <u> </u> | <u> </u>       |
| V14:V21                                                                                                                                | 1       |            |          |              |          |          |          |     |          |             |          |          |               |             | <u> </u>    |          | <u> </u> | <u> </u>       |
| V14:V27                                                                                                                                |         |            |          | 1            |          |          |          |     |          |             |          |          |               |             |             |          |          | <del>  .</del> |
| V15:V18                                                                                                                                |         |            |          |              |          |          | <u> </u> |     |          |             |          |          | -             |             |             |          | <u> </u> | -              |
| V15:V21                                                                                                                                | 1       | ·          |          | 1            |          | 1        |          | i – |          |             |          |          |               |             |             | + :-     | <u> </u> |                |
| V15:V27                                                                                                                                | 1       |            |          |              |          |          |          |     | <u> </u> |             |          |          |               |             |             | <u> </u> | <u> </u> | <u> </u>       |
| V19:V21                                                                                                                                | 1       |            |          | t            |          |          |          |     | <u> </u> |             |          |          | _             | <u> </u>    |             |          | <u> </u> |                |
| V19:V23                                                                                                                                | 1       |            | 1        | t            | <u> </u> | <u> </u> |          |     | <u> </u> |             |          |          |               |             |             | +        | +        | +              |
| V19:V24                                                                                                                                |         |            |          | <u> </u>     |          |          |          |     |          |             |          |          |               |             |             | <u> </u> | <u> </u> | 1.             |
| V21:V22                                                                                                                                | 1       |            | 1        | 1            | · · · ·  |          |          | -   |          |             |          |          |               |             |             |          | +        | +              |
| V21:V23                                                                                                                                |         |            |          | 1            |          |          |          |     | <u> </u> |             |          |          |               |             | <b>├</b> ── |          | +        | <del> </del>   |
| V22:V25                                                                                                                                | 1       |            |          | <u> </u>     |          |          |          |     | <u> </u> |             |          |          |               |             |             |          | <u></u>  | <del>.</del>   |
| V22:V27                                                                                                                                |         |            |          | <u>├</u> ─── |          |          |          |     |          |             | <u> </u> |          |               | -           | -           | -        | <u> </u> | <del>  .</del> |
| V23:V25                                                                                                                                | 1       | ~~         |          | <u> </u>     |          |          |          |     | <u> </u> |             |          |          |               |             |             |          | <u> </u> |                |
| V23:V27                                                                                                                                |         |            |          |              |          |          |          |     |          |             |          |          |               | <u> </u>    |             | <u> </u> | <u> </u> | 1.             |
|                                                                                                                                        |         |            |          | 4            |          | I        | L        |     | <b></b>  |             |          |          | <b>L</b>      | L           |             | 1        | <u> </u> | -              |
|                                                                                                                                        | Age Ras | <b>5</b> 5 |          |              |          |          |          |     |          |             |          |          |               |             |             |          |          |                |
| XIV-C:111                                                                                                                              | 3       | 4          | 5        | 6            | 7        | 8        | 9        | 10  | 11       | 12          | 13       | 14       | 15            | 16          | 17          | 18       | 19       | 20             |
| V2:V9                                                                                                                                  |         | -          | -        | <u> </u>     | -        | · ·      | · ·      | •   | Ŀ÷       | •           | •        |          | •             | -           |             |          |          |                |
| V2:V18                                                                                                                                 |         | •          |          |              | -        | •        | _ ·      | -   | · .      | •           |          | <u> </u> | -             | •           | •           | •        |          |                |
| V2:V19                                                                                                                                 | 4       |            | <u> </u> | · -          | -        | •        | <u> </u> |     | Ŀ        | -           |          | -        |               | -           | <u> </u>    | •        |          | 1              |
| V3:V9                                                                                                                                  |         |            |          | <u> </u>     |          |          |          | Ŀ   | <u> </u> | <u> </u>    | •        | Ŀ        | -             | •           |             |          | Ļ        |                |
| V3:V11                                                                                                                                 | -       |            |          |              | _        |          |          | •   | <u> </u> | -           | <u> </u> | · ·      | -             | •           |             |          |          |                |
| V3:V18                                                                                                                                 | -       |            |          | L            |          |          |          | -   | Ŀ        | -           | •        | -        | -             | -           | · ·         | -        |          |                |
| V3:V19                                                                                                                                 |         | _          |          |              |          |          | L        | •   | <u> </u> |             | -        | Ŀ.       | -             | -           | -           | -        |          | L              |
|                                                                                                                                        |         |            | 1        | 1            | 1        | 1        |          | +   | +        | +           | +        | +        | +             | +           | +           | +        | +_       |                |
|                                                                                                                                        |         |            |          |              |          |          |          |     |          |             |          |          |               |             |             |          |          |                |
| V3:V22                                                                                                                                 |         |            |          |              |          |          |          | +   | +        | +           | +        | +        | +             | +           | +           | +        | +        |                |
| V3:V22<br>V4:V6                                                                                                                        |         |            |          |              |          |          |          | +   | +        | +           |          |          |               |             |             | +        | +        |                |
| V3:V22<br>V4:V6<br>V4:V13                                                                                                              |         |            |          |              |          |          |          | +   | +        | _           | + +      | +        | +             | +           | +           | +        | +        |                |
| V3:V22<br>V4:V6<br>V4:V13<br>V5:V15                                                                                                    |         |            |          |              |          |          |          | +   | +        | +           |          |          |               |             |             | +        | +        |                |
| V3:V22<br>V4:V6<br>V4:V13<br>V5:V15<br>V5:V18                                                                                          |         |            |          |              |          |          |          | +   | +        | +<br>+<br>- | +        | +        | +             | +           | +           | -        |          |                |
| V3:V22<br>V4:V6<br>V4:V13<br>V5:V15<br>V5:V18<br>V6:V19                                                                                |         |            |          |              |          |          |          | +   | +        | +<br>+      | +        | +        | +             | +           | +           |          | +        |                |
| V3:V22<br>V4:V6<br>V4:V13<br>V5:V15<br>V5:V18<br>V6:V19<br>V7:V14                                                                      |         |            |          |              |          |          |          | +   | +        | +<br>+<br>- | +        | +        | + +           | + +         | +           | -        | +        |                |
| V3:V22<br>V4:V6<br>V4:V13<br>V5:V15<br>V5:V18<br>V6:V19<br>V7:V14<br>V7:V15                                                            |         |            |          |              |          |          |          | +   | +        | +<br>+<br>- | +        | +        | +             | +           | +           | -        | +        |                |
| V3:V22<br>V4:V6<br>V4:V13<br>V5:V15<br>V5:V18<br>V6:V19<br>V7:V14<br>V7:V15<br>V7:V22                                                  |         |            |          |              |          |          |          | +   | +        | +<br>+<br>- | +        | +        | + +           | + +         | +           | -        | +        |                |
| V3:V22<br>V4:V6<br>V4:V13<br>V5:V15<br>V5:V15<br>V5:V18<br>V6:V19<br>V7:V14<br>V7:V14<br>V7:V15<br>V7:V22<br>V8:V9                     |         |            |          |              |          |          |          | +   | +        | +<br>+<br>- | + + + +  | +        | + + + + + + + | + + + + + + | +           | -<br>-   |          |                |
| V3:V21<br>V3:V22<br>V4:V6<br>V4:V13<br>V5:V15<br>V5:V18<br>V5:V19<br>V7:V14<br>V7:V14<br>V7:V15<br>V7:V22<br>V8:V9<br>V8:V10<br>V8:V13 |         |            |          |              |          |          |          | +   | +        | +<br>+<br>- | + + + +  | +        | + + + + +     | + + + +     | +           | -<br>-   |          |                |

V8:V13 V9:V13

V12:V17

V13:V14

.

-

• --

•

-

-

-

|         |   |   |   |          |          |      | ~ |  |  |   |   |     |   |          |
|---------|---|---|---|----------|----------|------|---|--|--|---|---|-----|---|----------|
|         |   |   |   |          |          |      |   |  |  |   |   |     |   |          |
| V13:V18 | T | 1 |   | <u>г</u> | <u> </u> |      |   |  |  |   | • | · • |   |          |
| V14:V18 |   | T | 1 |          |          |      |   |  |  | 1 | • |     |   |          |
| V14:V19 |   |   |   |          |          |      |   |  |  |   | - | -   |   |          |
| V14;V21 |   |   |   |          |          |      |   |  |  |   | + | +   | + |          |
| V14:V22 |   |   |   | Ι        |          |      |   |  |  |   | + | +   | + |          |
| V15:V18 |   |   |   |          |          |      |   |  |  |   | - | -   |   |          |
| V15:V19 |   |   |   |          |          |      |   |  |  |   |   | -   |   |          |
| V15:V21 |   |   |   |          |          |      |   |  |  |   | + | +   | + |          |
| V15:V22 |   |   | 1 | $\Box$   |          | Ι. – |   |  |  |   | + | +   | + |          |
| V18:V21 |   |   |   |          |          |      |   |  |  |   |   | +   | + |          |
| V19:V21 |   |   |   |          | Ι        |      |   |  |  |   |   | +   | + | <u> </u> |
| V19:V22 |   |   |   |          |          |      |   |  |  |   |   | +   | + |          |
| V22:V26 |   |   |   |          |          | I    |   |  |  |   |   |     | - | · ·      |

|           | Age Ra | age |   |   |   |   |   |     |    |    |     |    |    |    | -        |       |    |    |
|-----------|--------|-----|---|---|---|---|---|-----|----|----|-----|----|----|----|----------|-------|----|----|
| XIV-C:243 | 3      | 4   | 5 | 6 | 7 | 8 | 9 | 10  | 11 | 12 | 13  | 14 | 15 | 16 | 17       | 18    | 19 | 20 |
| V2:V3     |        | +   | + | + | + | + | + | +   |    |    |     |    | L. |    |          |       |    |    |
| V2:V8     |        | -   |   |   | - | - |   | -   | -  | -  | - 1 |    |    |    |          |       |    |    |
| V3:V14    |        |     |   |   |   |   |   | •   | •  | •  | -   | -  | -  | -  | -        |       |    |    |
| V3:V18    |        |     |   |   |   |   |   | -   | •  | -  | -   |    | -  |    | •        | -     |    |    |
| V3:V21    |        | T   |   |   |   |   | [ | -   | -  | •  | •   |    | -  | -  | •        |       |    |    |
| V3:V22    | 1      |     |   |   |   |   |   | -   | •  | -  | -   | •  | •  | -  | -        |       | -  |    |
| V3:V25    | _      |     | T | - |   | [ |   | - 1 | •  | -  | - 1 | -  | •  | -  | <u> </u> |       | -  | -  |
| V3:V26    |        |     |   |   |   | 1 |   |     | -  | •  | •   | -  | •  | -  | •        | -     | -  | -  |
| V4:V7     |        |     |   |   |   |   |   |     |    | -  | •   |    |    |    |          |       |    |    |
| V4:V8     |        |     |   |   | • |   |   |     |    | -  | •   |    |    |    |          |       |    |    |
| V4:V10    |        |     | T |   |   |   |   |     |    | -  | •   | -  | -  |    |          |       |    |    |
| V4:V15    |        |     | I | 1 | 1 |   |   |     |    | •  | -   |    | -  | -  | -        |       |    |    |
| V4:V18    |        | 1   |   |   |   |   |   |     |    | -  | -   | -  | •  | -  |          | -     |    |    |
| V4:V25    |        |     | 1 |   |   |   |   | I   |    | -  |     | -  | •  | -  |          | -     |    |    |
| V5:V6     |        |     |   |   |   |   |   |     |    | +  |     |    |    |    |          | Г — Т |    |    |
| V5:V17    |        |     |   |   |   |   |   |     |    | +  | +   | +  | +  | +  | +        | +     |    |    |
| V6:V15    |        |     |   |   |   |   |   |     |    | -  |     | -  | •  | -  | · ·      |       |    |    |
| V6:V21    |        |     |   |   |   |   |   |     |    |    | -   | •  | •  | -  | -        | -     | •  |    |
| V6:V22    |        |     |   |   |   |   |   |     |    | -  | •   |    | •  | -  | -        | -     | •  |    |
| V6:V25    |        | T   | 1 |   |   |   |   |     | _  | •  | · · | -  | •  | -  |          | -     | -  |    |
| V6:V26    |        |     |   |   |   |   | r |     |    |    | -   | -  | -  | •  |          |       |    |    |
| V7:V11    |        |     | 1 |   |   |   |   |     |    |    | +   | +  | +  | +  |          | 1     |    |    |
| V7:V19    |        |     |   |   |   |   |   |     |    |    | +   | +  | +  | +  | +        | +     |    |    |
| V7:V23    |        | 1   |   |   |   |   |   |     |    |    | +   | +  | +  | +  | +        | +     | +  |    |
| V11:V12   | 1      |     | 1 |   | f |   |   |     |    |    |     |    |    | +  | +        |       |    |    |
| V11:V14   |        | 1   |   |   |   |   |   |     |    |    |     |    |    |    |          |       |    |    |
| V13:V15   |        | 1   |   |   |   |   |   |     |    |    |     |    |    |    | -        |       |    |    |
| V14:V15   |        | 1   |   | 1 |   |   |   |     |    |    |     |    |    | 1  | -        | T     |    |    |
| V14:V18   |        | 1   | 1 |   | 1 |   |   |     |    |    |     |    |    |    | •        | -     |    |    |
| V15:V23   |        | 1   |   | 1 |   |   |   |     |    |    |     |    |    |    | +        | +     | +  |    |
| V16:V19   |        |     |   |   | 1 |   | r |     |    |    |     |    |    |    | -        |       |    |    |
| V16:V23   |        | 1   |   |   | 1 |   | r |     |    |    |     |    |    |    | -        |       | -  |    |
| V19:V21   |        |     |   |   |   |   |   |     |    |    |     |    |    |    |          |       |    |    |

| V19:V25   |               | _                |   |   |   |   |   |    |    |   |   |   |    |    |    |    |    |   |
|-----------|---------------|------------------|---|---|---|---|---|----|----|---|---|---|----|----|----|----|----|---|
| TTTO TTAC | $\frac{1}{2}$ | ┨                | 1 | Ţ | Ī |   | Ţ | Ţ  |    |   |   |   |    |    |    | ·  |    |   |
| V19:V20   |               |                  |   |   |   |   | T | T  | Ţ  |   |   |   |    |    |    |    | ·  | , |
| V21:V23   |               |                  |   |   |   |   |   |    |    |   |   |   |    |    |    |    | +  |   |
| V22:V25   |               | H                |   | Π |   |   |   |    |    |   |   |   |    |    |    |    | ·  | • |
| V23:V25   |               | _                |   |   |   |   |   |    |    |   |   |   |    |    |    |    |    | • |
|           |               |                  |   |   |   |   |   |    |    |   |   |   |    |    |    |    |    |   |
|           | Age Range     | $\left  \right $ | ſ |   | ſ | ſ | ſ | ſ  |    |   |   |   |    |    |    |    |    | [ |
| XIV-C:216 | ~             | 4                | ~ | • | ٢ | - | • | 10 | 11 | 1 | 5 | Ξ | 51 | 16 | 17 | 18 | 19 | ន |
| V2:V3     |               | •                | • | • | • | • | ٠ | ·  |    |   |   |   |    |    |    |    |    |   |
| V2:V19    |               | +                | + | + | + | + | + | +  | +  | + | + | + | +  | +  | +  | +  |    |   |
| V2:V24    |               | +                | + | + | + | + | + | +  | +  | + | + | + | +  | +  | +  | +  | ÷  | + |
| V3:V18    | -             |                  |   |   |   |   |   | +  | +  | + | + | + | +  | +  | +  | +  |    |   |
| V3:V19    | ╞             | ╞                |   |   |   |   |   | +  | +  | + | + | + | +  | ŀ  | +  | +  |    |   |
| V3:V23    |               |                  | 1 | Γ |   |   | Γ | +  | +  | + | + | ŀ | +  | +  | •  |    | 1  |   |
| V4:V7     | ╞             |                  | Γ | Γ |   |   | Γ |    |    | + | + |   |    |    |    |    |    |   |
| V4:V8     | ╞             | ╞                |   | Γ |   |   | Γ |    |    | • |   |   |    |    |    | Γ  | T  | Γ |
| V4:V9     | ╞             | ╞                |   | Γ |   |   | Γ |    |    |   |   | • | ŀ  |    |    | Γ  |    |   |
| V4:V10    |               |                  |   |   |   |   |   |    |    | + | + | + | +  | +  |    |    | ľ  |   |
| V5:V15    |               |                  |   |   |   |   |   |    |    | + | + | + | +  | +  | ÷  |    |    | Γ |
| V5:V27    |               |                  |   |   |   |   |   |    |    |   |   | • | •  | •  | •  |    |    |   |
| V6:V15    |               |                  | Γ |   |   |   |   |    |    | + | + | + | +  | +  | +  |    |    |   |
| V6:V19    |               |                  |   |   |   |   |   |    |    | + | + | + | +  | +  | +  | +  |    |   |
| V6:V27    |               |                  |   |   |   |   |   |    |    | • | • | • | •  | •  |    | •  |    | , |
| V7:V8     |               |                  |   |   |   |   |   |    |    |   |   |   |    |    |    |    |    |   |
| V7:V9     |               |                  |   |   |   |   |   |    |    |   | - | 1 | -  | •  |    |    |    |   |
| V7-V18    |               |                  |   |   |   |   |   |    |    |   | • | • | •  | •  | •  | •  |    |   |
| V7:V22    | +             | ┥                |   |   |   |   |   |    |    |   | • | ' | •  | ,  | ۱  | •  |    |   |
| V8:V10    |               | ┥                |   |   |   |   |   |    |    |   | + | + | +  | +  |    |    |    |   |
| V8:V15    |               | ┥                | 1 |   |   |   |   |    |    |   | + | + | +  | +  | +  |    |    |   |
| V9:V15    |               |                  |   |   |   |   |   |    |    |   |   |   |    | +  | +  |    |    |   |
| V9:V19    | ┥             |                  |   |   |   |   |   |    |    |   |   |   |    | +  | +  | t  |    |   |
| V12:V17   | ╡             | ┥                |   |   |   |   |   |    |    |   |   |   |    |    | +  | +  |    |   |
| V13:V15   |               | ┥                | 1 | 1 | T |   | T |    |    |   |   |   |    |    | t  |    |    |   |
| V15:V18   | ┦             | ╉                | 1 | T | Ι |   | T |    |    |   |   |   |    |    | ·  |    |    |   |
| V15:V21   |               | ┥                |   | T |   |   | T |    |    |   |   |   |    |    | ·  | '  | ·  |   |
| V15:V22   | ┦             | ┨                | 1 |   | T |   |   |    |    |   |   |   |    |    | ·  | ·  | ·  |   |
| V15:V27   | ┨             | ┥                |   |   |   |   | 1 |    |    |   |   |   |    |    | ·  | ·  | ,  | , |
| V16:V19   |               |                  |   |   |   |   |   |    |    |   |   |   |    |    | +  | +  |    |   |
| V18:V19   |               |                  |   |   |   |   |   |    |    |   |   |   |    |    |    | +  |    |   |
| V18:V27   |               |                  |   |   |   |   |   |    |    |   |   |   |    |    |    | •  | •  | - |
| V19:V22   |               |                  |   |   |   |   |   |    |    |   |   |   |    |    |    | •  | -  |   |
| V19:V25   |               |                  |   |   |   |   |   |    |    |   |   |   |    |    |    | •  | •  | • |
| V19:V27   |               |                  |   |   |   |   |   |    |    |   |   |   |    |    |    | •  | •  | • |
| V21:V27   |               |                  |   |   |   |   |   |    |    |   |   |   |    |    |    |    | •  |   |
| V22:V23   |               |                  |   |   |   |   |   |    |    |   |   |   |    |    |    |    | +  |   |
| V22:V27   |               |                  |   |   |   |   |   |    |    |   |   |   |    |    |    |    | •  |   |
| V23.V27   |               | -                |   |   |   |   |   |    |    |   |   |   |    |    |    |    | •  | • |
| V25:V27   |               |                  |   | _ |   |   |   |    |    |   |   |   |    |    |    |    |    | • |

|             | Age Range |          |   |   |   |   |   |          |   |    |    |    |    |    |    |    |    |   |
|-------------|-----------|----------|---|---|---|---|---|----------|---|----|----|----|----|----|----|----|----|---|
| XIV-C:217   | 3         | •        | 5 | 6 | 7 | 8 | 9 | <u>0</u> | = | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 8 |
| V2:V14      |           |          | • | • |   |   | - | ·        | • | •  | •  | •  |    |    |    |    |    |   |
| V3:V11      |           |          |   |   |   |   |   | •        |   |    | •  |    | -  | ,  |    |    |    |   |
| V4:V7       |           |          |   |   |   |   |   |          |   | +  | +  |    |    |    |    |    |    |   |
| V4:V8       |           |          |   |   |   |   |   |          |   | +  | +  |    |    |    |    |    |    | i |
| V5:V22      |           |          |   |   |   |   |   |          |   | +  | +  | +  | +  | +  | +  | +  | +  |   |
| V5:V25      |           |          |   |   |   |   |   |          |   | +  | +  | ++ | +  | ÷  | I+ | +  | +  | + |
| V5:V27      |           |          |   |   |   |   |   |          |   | +  | +  | +  | +  | ł  | +  | ŀ  | +  | + |
| V6:V22      |           |          |   |   |   |   |   |          |   | +  | ł  | +  | ŀ  | +  | +  | ŀ  | ŀ  |   |
| 11/2/2      |           |          |   |   |   |   |   |          |   |    |    |    |    |    |    | Γ  |    |   |
| V7:V15      |           |          |   |   |   |   |   |          |   |    |    | •  |    |    |    |    |    |   |
| V8:V13      |           | ┢        | T |   |   |   |   | Γ        |   |    | •  |    |    |    |    | Γ  |    |   |
| VE-VIS      | ſ         | t        | T | Ι |   |   |   |          |   |    |    | •  | ŀ  | ŀ  | Ī  | T  | T  |   |
| 011-012     |           | T        |   | Γ |   |   |   | Ī        | Ι |    | '  | ·  |    | 1  | ·  | T  |    |   |
| 21 1 1 1    | T         | t        |   |   | T |   |   | I        | T | ſ  | T  | T  | T  | ľ  | ,  | T  | Į  |   |
| 77 \        | T         |          | T |   |   |   |   |          |   | Ţ  |    | T  | Ī  | T  | +  | +  | +  |   |
| 77.1.7A     |           | 1        | Ţ | T |   |   |   |          |   | Ţ  |    |    | T  | T  |    | T  | +  |   |
| 47 A . 77 A |           | 1        | 1 |   |   |   |   |          |   |    |    |    | 1  | ]  | 1  | ]  | ,  | · |
|             | Age Range |          |   |   |   |   |   |          |   |    |    |    |    |    |    |    |    |   |
| XIV-C:179   |           | -        | 5 | 4 | - |   | 6 | 10       | 1 | 12 | 13 | 14 | 15 | 16 | 17 | =  | =  | 8 |
| V5.V6       |           |          |   |   |   |   |   |          |   | +  |    |    |    |    |    |    |    |   |
| V5:V13      |           |          |   |   |   |   |   |          |   | +  | +  | +  | +  | +  | +  |    |    | Ì |
| V5:V17      |           |          |   |   |   |   |   |          |   | •  | •  | •  | -  | •  |    |    | ļ  |   |
| V5:V18      |           |          |   |   |   |   |   |          |   | +  | +  | +  | +  | +  | +  | +  |    |   |
| V5:V27      |           |          |   |   |   |   |   |          |   | +  | +  | +  | +  | +  | +  | +  | +  | + |
| V6:V19      |           |          |   |   |   |   |   |          |   | +  | +  | +  | +  | +  | +  | +  |    |   |
| V6:V26      |           |          |   |   |   |   |   |          |   | +  | +  | +  | +  | +  | +  | +  | +  | + |
| V7:V10      |           |          |   |   |   |   |   |          |   |    | •  | •  | •  | •  |    |    |    |   |
| 11V:7V      |           |          |   |   |   |   |   |          |   |    | +  | +  | +  | +  |    |    |    |   |
| V8:V14      |           | -        |   |   |   |   |   |          |   |    | +  | +  | +  | +  | +  |    |    |   |
| 81A:3A      |           |          |   |   |   |   |   |          |   |    | +  | +  | +  | +  | +  | +  |    |   |
| V8:V26      |           |          |   |   |   |   |   |          |   |    | +  | +  | +  | +  | +  | +  | +  | + |
| 81V:01V     |           |          |   |   |   |   |   |          |   |    |    |    |    | +  | +  | +  |    |   |
| V12:V17     |           |          |   |   |   |   |   |          |   |    |    |    |    |    | •  | •  |    |   |
| V13:V14     |           |          |   |   |   |   |   |          |   |    |    |    |    |    | +  |    |    |   |
| V14:V2I     |           | _        |   |   |   |   |   |          |   |    |    |    |    |    | -  | •  | •  |   |
| V16:V19     |           | _        |   |   |   |   |   |          |   |    |    |    |    |    | +  | +  |    |   |
| V18:V21     |           |          |   |   |   |   |   |          |   |    |    |    |    |    |    | •  | •  |   |
| V18:V26     |           |          |   |   |   |   |   |          |   |    |    |    |    |    |    | +  | +  | + |
| V19:V2I     |           |          |   |   |   |   |   |          |   |    |    |    |    |    |    |    | •  |   |
| V19:V22     |           |          |   |   |   |   |   |          |   |    |    |    |    |    |    | •  | •  |   |
| V21:V27     |           | -        |   |   |   |   |   |          |   |    |    |    |    |    |    |    | +  | + |
| V22:V26     |           |          |   |   |   |   |   |          |   |    |    |    |    |    |    |    | +  | + |
| V22:V27     |           |          |   |   |   |   |   |          |   |    |    |    |    |    |    |    | +  | + |
| V23.V27     |           |          | 1 |   |   |   |   |          |   |    |    |    |    |    |    |    | +  | + |
| V24:V26     |           |          |   |   |   |   |   |          |   |    |    |    |    |    |    |    |    | + |
| V25:V26     |           | <b>—</b> |   |   |   |   |   |          |   |    |    | Γ  |    |    |    |    |    | + |
| V25:V27     |           | F        |   | Γ |   | ſ |   |          | Γ |    | Γ  |    |    |    |    |    |    | + |
|             |           |          |   |   | 1 | 1 |   |          |   |    | i  | 1  |    |    |    |    |    |   |

|           |         |          |          |           |          |          |          | ~   |          |         |            |          |          |    |    |          |          |          |
|-----------|---------|----------|----------|-----------|----------|----------|----------|-----|----------|---------|------------|----------|----------|----|----|----------|----------|----------|
|           |         |          |          |           |          |          |          |     |          |         |            |          |          |    |    |          |          |          |
|           |         |          |          |           |          |          |          |     |          |         |            |          |          |    |    |          |          |          |
|           | Age Ras | ge       |          |           |          |          |          |     |          |         |            |          |          |    |    |          |          |          |
| XIV-C:182 | 3       | 4        | 5        | 6         | 7        | 8        | 9        | 10  | 11       | 12      | 13         | 14       | 15       | 16 | 17 | 18       | 19       | 20       |
| V2:V8     |         | +        | +        | +         | +        | +        | +        | +   | +        | +       | +          |          |          |    |    |          |          |          |
| V2:V9     |         | +        | +        | +         | +        | +        | +        | +   | +        | +       | +          | +        | +        | +  |    |          |          |          |
| V2:V18    |         | +        | +        | +         | +        | +        | +        | +   | +        | +       | +          | +        | +        | +  | +  | +        |          |          |
| V2:V24    |         | +        | +        | +         | +        | +        | +        | +   | +        | +       | +          | +        | +        | +  | +  | +        | +        | +        |
| V2:V25    |         | +        | +        | +         | +        | +        | +        | +   | +        | +       | +          | +        | +        | +  | +  | +        | +        | +        |
| V2:V26    |         | · ·      |          | •         | •        | -        | -        |     | -        | -       | -          |          | -        | -  | -  | -        | -        |          |
| V3:V9     |         |          |          |           |          |          |          | +   | +        | +       | +          | +        | +        | +  |    |          |          |          |
| V3:V18    |         |          |          |           |          |          |          | +   | +        | +       | +          | +        | +        | +  | +  | +        |          |          |
| V3:V25    |         |          |          |           | Ι        |          |          | +   | +        | +       | +          | +        | +        | +  | +  | +        | +        | +        |
| V3:V26    |         |          |          |           |          |          |          | -   | -        | -       | -          | -        |          | -  | -  | -        | - 1      | •        |
| V3:V27    |         |          |          |           |          |          |          | +   | +        | +       | +          | +        | +        | +  | +  | +        | +        | +        |
| V4:V7     | T       | T        |          |           |          |          |          |     |          | -       | -          |          |          |    |    | 1        | 1        |          |
| V4:V10    | Т       |          |          |           |          |          |          |     |          |         | -          | -        | -        | -  |    |          | i –      |          |
| V4:V13    |         |          |          |           |          |          |          |     |          | -       | -          | -        | •        | -  |    | T        | i –      |          |
| V4:V23    | 1       | 1        |          | 1         |          |          | I        |     |          | -       | -          | -        |          | -  | -  | -        | -        |          |
| V5:V13    |         | 1        |          |           |          | 1        |          |     |          | -       | -          | -        |          | -  |    | <u> </u> | 1        |          |
| V5:V17    |         |          |          |           |          | 1        |          |     | 1        | -       | •          | -        | -        | •  |    | -        | t        |          |
| V5.V21    |         | t        | 1        |           |          | 1        |          |     | 1        | · ·     | -          | -        |          | -  |    | <u> </u> | 1.       |          |
| V5:V22    |         |          |          | t         |          |          |          |     |          | -       | •          | -        |          |    | -  | <u> </u> | <u> </u> |          |
| V6:V21    |         |          |          |           |          |          |          |     |          | -       | -          | •        | -        | -  | -  | · ·      |          |          |
| V6:V25    |         | <u> </u> |          | <u> </u>  |          |          | t        |     |          | +       | +          | +        | +        | +  | +  | +        | +        | +        |
| V6:V26    |         |          | <u> </u> | ŀ – –     |          |          |          | 1   | 1        | •       | •          | •        |          | -  | -  | -        |          | -        |
| V7:V8     |         |          | 1        | l         |          |          |          |     | 1        |         | +          |          |          |    |    |          |          |          |
| V7:V9     |         |          |          | · · · · · |          | 1        |          |     |          | 1       | +          | +        | +        | +  |    | <u> </u> |          |          |
| V7:V10    |         | 1        |          |           |          | 1        | 1        |     |          | 1       | -          | -        |          | -  |    | 1        |          |          |
| V7:V18    |         |          | <b></b>  |           |          | 1        | t        |     |          |         | +          | +        | +        | +  | +  | +        | 1        |          |
| V7:V25    |         |          |          | T         |          |          |          |     |          |         | +          | +        | +        | +  | +  | +        | <u> </u> | +        |
| V7:V26    |         |          | T        |           |          | t        |          |     |          | 1       | -          |          | -        |    | -  |          | 1.       |          |
| V8:V10    | 1       | 1        | 1        | 1         | 1        | 1        |          | 1   | 1        | i –     | -          | -        |          | -  | 1  | 1        | 1        |          |
| V8:V13    |         | 1        |          |           | 1        | 1        | 1        | 1   |          | 1       | -          | -        | -        | -  | -  | T        |          |          |
| V8:V14    |         | 1        | 1        | 1         | i — 1    | 1        | i – I    | t — | 1        | I       | -          | •        | -        | -  |    | 1        | 1        |          |
| V8:V25    | 1       | F        | 1        | 1         | i –      | 1        |          | t   | <u> </u> |         | +          | +        | +        | +  | +  | +        | +        | +        |
| V8:V26    |         |          |          | 1         | <u> </u> | t        | î.       | 1   | 1        |         |            | -        | -        | -  |    |          |          | -        |
| V9:V13    |         | 1        | 1        |           |          | 1        |          |     |          |         |            |          |          | -  | -  | 1        |          |          |
| V9:V16    |         | <u> </u> | 1        |           | t i      | 1        |          |     | 1        |         |            |          |          |    | -  | 1        | 1        |          |
| V9:V26    | 1       | T        | 1        | 1         | İ        | 1        | Γ        | T.  | 1        |         |            |          |          | -  | -  | -        | -        | -        |
| V10:V15   | 1       | 1        | 1        | i i       | 1        | 1        | 1        | t i | 1        | 1       |            |          |          | +  | +  |          |          |          |
| V10:V18   | 1       | 1        |          |           | 1        |          |          | t   |          | 1       |            |          | <u> </u> | +  | +  | +        | 1        |          |
| V12:V17   | 1       | <u> </u> | 1        | 1         | 1        | 1        | 1        |     | 1        | 1       | -          |          |          |    |    |          | 1        |          |
| V13:V15   | 1       | <u> </u> | 1        | 1         | l        | 1        | t        | 1   | 1        | I       | -          |          |          |    | +  | 1        |          |          |
| V13:V18   | 1       | 1        |          | 1         |          |          |          | 1   |          | <b></b> |            |          |          |    | +  | +        |          |          |
| V14:V15   | 1       | t        |          | 1         | t ··     |          | t        | t   |          | -       |            |          |          |    | +  | 1        | 1        |          |
| V14:V18   | 1       | t        | 1        | 1         | t –      | i –      | t – t    | t   |          |         | <b>—</b> — |          |          |    | +  | +        | t        | <u> </u> |
| V14:V25   | 1       | t        | 1        |           | t        | i —      | 1        | t   | 1        |         |            |          |          |    | +  | +        | +        | +        |
| V14:V27   |         | t        | <u> </u> | <u> </u>  |          | <u> </u> | ł        | t   | <u> </u> | †       |            | <u> </u> |          |    | +  | +        | +        | +        |
| V15:V18   | +       | <u> </u> | 1        | <u> </u>  | I        | 1        | <u> </u> | t   | t        | 1       |            |          |          |    | +  | +        | <u> </u> | <u> </u> |

|         |          |          |   |          |       | ~ |   |   |       |          |   |   |   |   |
|---------|----------|----------|---|----------|-------|---|---|---|-------|----------|---|---|---|---|
|         |          |          |   |          |       |   |   |   |       |          |   |   |   |   |
| V15:V21 | <u> </u> | <u> </u> | 1 | r        |       |   |   |   |       | <u> </u> | - | - | - |   |
| V15:V25 | 1        |          |   | I        |       |   |   |   |       |          | + | + | + | + |
| V15:V26 |          | 1        | 1 | 1        |       |   |   |   |       |          | - | • | - | - |
| V16:V23 |          |          |   |          |       |   |   |   |       |          | + | + | + |   |
| V18:V21 |          |          |   |          |       |   |   |   |       |          |   | • | - |   |
| V18:V25 |          |          |   |          |       |   |   |   |       |          |   | + | + | + |
| V18:V26 |          |          |   |          | _     |   |   |   |       |          |   |   | - | - |
| V19:V24 |          |          |   | <u> </u> | <br>_ |   | I |   |       |          |   | + | + | + |
| V19:V25 |          |          |   |          |       |   |   |   | <br>_ |          |   | + | + | + |
| V19:V26 |          |          |   | [        |       |   |   |   |       |          |   |   | - | - |
| V19:V27 |          |          |   |          |       |   |   |   |       |          |   | + | + | + |
| V21:V23 |          |          | Ι |          |       |   |   |   |       |          |   |   | + |   |
| V21:V24 |          |          |   |          |       |   |   |   |       |          |   |   | + | + |
| V21:V25 |          |          |   |          | <br>  |   |   |   |       |          |   |   | + | + |
| V21:V26 |          |          |   |          |       |   |   |   |       |          |   |   | + | + |
| V21:V27 |          |          |   |          |       |   |   |   |       |          |   |   | + | + |
| V22:V24 |          |          |   |          |       |   |   |   |       | <br>     |   |   | + | + |
| V22:V25 |          |          |   |          |       |   |   | _ |       |          |   |   | + | + |
| V22:V26 |          |          |   | [        |       |   |   |   |       |          |   |   | - | - |
| V22:V27 |          |          |   |          |       |   |   |   |       |          |   |   | + | + |
| V23:V25 |          | I        |   |          |       |   |   |   | 1     |          |   |   | + | + |
| V24:V25 |          |          |   |          |       |   |   |   |       |          |   | [ |   | + |
| V24:V26 |          |          |   |          |       |   |   |   |       |          |   |   |   | - |
| V25:V26 |          |          |   | r        |       |   |   |   |       |          |   |   |   | - |

|           | Age Ra | ige      |   |     |     |          | _        |          |    |          |       |     |     |     | _   |     |          |          |
|-----------|--------|----------|---|-----|-----|----------|----------|----------|----|----------|-------|-----|-----|-----|-----|-----|----------|----------|
| XIV-C:157 | 3      | 4        | 5 | 6   | 7   | 8        | 9        | 10       | 11 | 12       | 13    | 14  | 15  | 16  | 17  | 18  | 19       | 20       |
| V2:V8     |        | •        |   | L - |     | -        | -        | -        | -  | -        | -     | I   |     |     |     | I   |          |          |
| V2:V9     |        |          |   | •   | - 1 | -        | -        |          | -  | •        | •     | - 1 | -   | · · |     |     |          |          |
| V2:V14    |        | •        |   | L - |     | -        | -        | -        | -  |          | L -   | . • |     |     |     |     |          |          |
| V2:V18    |        |          | - | -   | -   | <u> </u> | <u> </u> | <u> </u> | -  | -        | -     | -   | -   |     | •   | - 1 |          |          |
| V2:V26    |        | +        | + | +   | +   | +        | +        | +        | +  | +        | +     | +   | +   | +   | +   | +   | +        | +        |
| V3:V9     |        |          |   |     |     |          |          |          | •  |          | - 1   | · · | · · | -   |     |     |          |          |
| V3:V11    | T      | <u> </u> |   |     |     |          | I        | +        | +  | +        | +     | +   | +   | +   |     |     |          |          |
| V3:V18    |        |          |   |     |     |          |          | -        | •  |          |       |     | •   | -   | •   | -   |          |          |
| V4:V13    |        |          |   | L   |     |          |          |          |    | <u> </u> | - 1   | - 1 | -   | - 1 | - 1 |     |          |          |
| V4:V15    |        |          | Γ | [   |     | <u> </u> |          |          |    | · ·      | •     | · 1 | I   | -   | •   |     |          |          |
| V5:V13    |        |          |   |     |     |          |          |          |    |          | •     | •   | •   | -   | -   |     |          |          |
| V5:V15    |        |          | } |     |     | <u> </u> |          |          |    | -        | •     | · - | -   | -   | -   |     | Ι        |          |
| V5:V18    |        |          | 1 |     | Γ   |          |          |          |    | -        | -     | - 1 | · · | -   | · - | - 1 |          |          |
| V6:V15    |        |          |   |     |     |          |          |          |    | •        | •     | -   | -   | -   | •   |     |          |          |
| V7:V8     |        |          |   |     | 1   | <u> </u> |          |          |    |          |       |     |     |     |     |     |          |          |
| V7:V9     |        |          | Γ |     |     |          | <u> </u> |          |    |          | -     | -   | •   | - 1 |     |     | <u> </u> |          |
| V7:V12    |        |          |   |     |     |          |          |          |    |          | - 1   | - 1 |     |     | -   |     |          | <u> </u> |
| V7:V14    |        |          |   | 1   | 1   |          |          |          |    |          |       | - 1 | -   |     | · . |     |          |          |
| V7:V15    |        |          |   |     |     |          |          |          |    |          | -     | -   |     | -   | -   |     |          |          |
| V7:V18    |        |          |   | 1   |     |          |          |          |    |          | [ · ] |     | -   | -   | -   | - I |          |          |
| V8.V13    |        |          |   |     |     |          |          |          |    | Ι        | · 1   | - 1 | -   |     | -   |     |          |          |
| V8:V15    |        |          |   | I   |     |          |          |          |    | T        | - 1   | -   | -   | -   | -   |     |          |          |

|                  |            |          |              |              |              | 7                                             |          |          |    |          |    |          |    |          |          |          |       |          |
|------------------|------------|----------|--------------|--------------|--------------|-----------------------------------------------|----------|----------|----|----------|----|----------|----|----------|----------|----------|-------|----------|
| V9:V13           |            | Ι        |              |              |              |                                               |          |          |    |          |    |          |    | -        | •        | •        |       |          |
| V9:V15           |            |          |              |              | Ι            |                                               |          |          |    |          |    |          |    | -        | -        |          |       |          |
| V9:V16           |            |          | 1            |              |              |                                               |          |          |    |          |    |          |    | +        | +        |          |       |          |
| V10:V15          |            |          | 1            |              | 1            | 1                                             |          |          |    |          |    |          |    |          | -        |          |       |          |
| V10:V18          |            | <u> </u> | 1            | <u> </u>     |              | 1                                             |          |          |    |          |    |          |    |          |          |          |       |          |
| V11;V14          |            |          | 1            |              |              |                                               |          |          |    |          |    |          |    |          |          |          |       |          |
| V12:V17          |            | <u> </u> | 1            |              |              |                                               |          |          |    |          |    |          |    |          | -        |          |       |          |
| V14:V15          |            | 1        |              |              | 1            | 1                                             |          | -        |    |          |    |          |    |          | -        |          |       |          |
| V14:V18          |            |          |              | <u> </u>     |              | <u> </u>                                      |          |          |    |          |    |          |    |          | <u> </u> | · ·      |       |          |
| V16:V19          |            | <b> </b> |              | <u> </u>     |              |                                               |          |          |    |          |    |          |    |          |          | <u> </u> |       |          |
| V18:V25          |            |          |              |              |              |                                               |          |          |    |          |    |          |    |          | · · ·    | <u> </u> | +     | +        |
| V25:V27          | -          |          | <b> </b>     |              | <u> </u>     | 1                                             | l        |          |    |          |    |          |    |          |          | <u> </u> |       | <u> </u> |
|                  | - <b>I</b> |          | 1            |              | <b>I</b>     |                                               | L        |          |    |          |    |          | L  |          |          |          |       |          |
|                  | Age Ras    | ige .    |              |              |              |                                               |          |          |    |          |    |          |    |          |          |          |       |          |
| XIV-C:181        | 3          | 4        | 5            | 6            | 7            | 8                                             | 9        | 10       | 11 | 12       | 13 | 14       | 15 | 16       | 17       | 18       | _19   | 20       |
| V3:V19           |            |          |              |              |              |                                               |          | +        | +  | +        | +  | +        | +  | +        | +        | +        |       |          |
| V3:V21           |            |          |              |              |              |                                               |          | +        | +  | +        | +  | +        | +  | +        | +        | +        | +     |          |
| V3:V22           |            |          |              |              |              |                                               |          | +        | +  | +        | +  | +        | +  | +        | +        | +        | +     |          |
| V3:V25           |            |          |              |              |              |                                               |          | +        | +  | +        | +  | +        | +  | +        | +        | +        | +     | +        |
| V3:V26           |            | 1        | 1            |              |              |                                               |          | +        | +  | +        | +  | +        | +  | +        | +        | +        | +     | +        |
| V4:V6            | 1          |          |              |              |              |                                               |          |          |    | +        |    |          |    |          |          | <b></b>  |       |          |
| V4:V7            |            | 1        |              | <u> </u>     |              | t                                             |          |          |    | +        | +  |          |    |          |          | F        |       | ·        |
| V4:V8            |            |          |              |              |              |                                               |          |          |    | +        | +  |          |    |          |          |          |       |          |
| V4:V9            |            |          |              |              |              | t                                             |          |          |    | +        | +  | +        | +  | +        |          |          |       | <u> </u> |
| V4:V14           | 1          | <b> </b> |              |              |              | <b></b>                                       |          |          |    | +        | +  | +        | +  | +        | +        |          |       |          |
| V4;V15           |            |          | 1            |              |              |                                               |          |          |    | +        | +  | +        | +  | +        | +        |          |       | —        |
| V4:V18           |            |          | t            | <u> </u>     |              | 1                                             | †        |          |    | +        | +  | +        | +  | +        | +        | +        |       |          |
| V4:V19           | -          |          |              | <u> </u>     |              | <u>                                      </u> |          |          |    | +        | +  | +        | +  | +        | +        | +        |       |          |
| V4:V23           |            |          | 1            |              |              |                                               | 1        |          |    | +        | +  | +        | +  | +        | +        | +        | +     |          |
| V4:V25           |            |          | 1            |              |              | <u> </u>                                      | <b>†</b> |          |    | +        | +  | +        | +  | +        | +        | +        | +     | +        |
| V5:V6            | -          | <u> </u> |              | <u> </u>     | t            | 1                                             |          |          |    | +        |    | <u> </u> |    | <u> </u> | · · ·    | <u> </u> | · · · | <u> </u> |
| V5:V15           |            | <u> </u> | t            |              | <u> </u>     | <u> </u>                                      |          |          |    | +        | +  | +        | +  | +        | +        |          |       |          |
| V5:V18           | 1          | <u> </u> | <del> </del> |              | t            | <u> </u>                                      |          |          |    | +        | +  | +        | +  | +        | +        | +        |       |          |
| V5:V21           | 1          |          | <b></b>      |              |              | <u> </u>                                      | <u> </u> |          |    | +        | +  | +        | +  | +        | +        | +        | +     | <u> </u> |
| V5:V22           | +          | t        | <del> </del> | <u> </u>     | <u> </u>     | t                                             | I        |          |    | +        | +  |          | +  | +        | +        | +        | +     |          |
| V5:V25           | +          | <u> </u> |              | ·            | I            |                                               |          |          |    | +        | +  | +        | +  | +        | +        | +        | +     | +        |
| V6:V25           | +          |          | t            | <b>├</b> ─── |              | <u> </u>                                      |          |          |    | +        | +  | +        | +  | +        | +        | +        | +     | +        |
| V6:V25<br>V6:V26 | +          | <u> </u> | <del> </del> | <b>├</b> ─── | t            | <del> </del>                                  | <u> </u> |          |    | +        | +  | +        | +  | +        | + +      | +        | +     | +        |
| V7:V18           | +          |          | <u> </u>     | t            |              |                                               |          | <u>├</u> |    | <u> </u> | +  | +        | +  | + +      | +        | +        | -     | <u> </u> |
| V7:V18           | +          | <u> </u> | l            |              | <u> </u>     | <u> </u>                                      |          |          |    |          | +  | +        |    |          |          |          |       | <u> </u> |
| V7:V19           | +          | l        | <u> </u>     | ł            | <u> </u>     | <del> </del>                                  |          | -        |    |          |    |          | +  | +        | +        | +        |       |          |
| V7:V22<br>V7:V25 | 1          |          | ł            | +            | <del> </del> | <u> </u>                                      | -        |          |    |          | +  | +        | +  | +        | +        | +        | +     | <u> </u> |
| V7:V25<br>V7:V26 |            | ł        | <del> </del> | ───          | I            | <u> </u>                                      | <b> </b> |          |    |          | +  | +        | +  | +        | +        | +        | +     | +        |
|                  | +          | <b> </b> | <b> </b>     | <b> </b>     | <u> </u>     | <b> </b>                                      | ł        |          |    |          | +  | +        | +  | +        | +        | +        | +     | +        |
| V8:V9            | +          | ł        | <b> </b>     | <b>↓</b>     |              | <b> </b>                                      | <b> </b> |          |    | <b> </b> | +  | +        | +  | +        | <u> </u> |          |       |          |
| V8:V18           |            | <b> </b> | I            | ───          | <b>—</b>     | <b> </b>                                      | l        |          |    |          | +  | +        | +  | +        | +        | +        |       |          |
| V8:V24           | +          | ļ        | I            | ───          | <u> </u>     | l                                             |          |          |    |          | +  | +        | +  | +        | +        | +        | +     | +        |
| V8:V25           | +          | <u> </u> | I            | ┝────        | <u> </u>     | ļ                                             |          |          |    |          | +  | +        | +  | +        | +        | +        | +     | +        |
| V8:V26           | <b></b>    | Ļ        | <b>I</b>     | <b></b>      | <b> </b>     | L                                             |          | L        |    |          | +  | +        | +  | +        | +        | +        | +     | +        |
| V9:V19           | 1          | 1        | I.           | 1            | 1            | I.                                            |          |          |    |          | 1  | 1        |    | +        | +        | +        |       | 1        |

| V9:V24  | <u>.</u> | r | T | T | r        |          | <br>[ |   |   | <u> </u> | <br>+   | + | + | + | + |
|---------|----------|---|---|---|----------|----------|-------|---|---|----------|---------|---|---|---|---|
| V9:V26  |          |   |   |   |          |          |       |   |   |          | +       | + | + | + | + |
| V11:V14 |          |   |   | 1 |          | <u> </u> |       |   |   |          | +       | + |   |   |   |
| V11:V19 |          |   | 1 | 1 |          |          |       |   |   |          | +       | + | + |   |   |
| V11:V23 | 1        | 1 |   |   |          |          | <br>  |   |   |          | +       | + | + | + |   |
| V13:V14 | 1        |   |   |   |          |          |       |   |   |          |         | + |   |   | _ |
| V13:V15 |          |   |   |   |          |          |       |   |   |          |         | + |   |   |   |
| V13:V18 |          | 1 |   |   |          |          |       |   |   |          |         | + | + |   |   |
| V14:V19 |          |   |   |   |          |          |       |   |   |          |         | + | + |   |   |
| V14:V21 |          |   |   |   |          |          |       |   |   |          |         | + | + | + |   |
| V14:V22 |          |   |   | 1 |          |          |       |   |   |          |         | + | + | + |   |
| V14:V25 |          |   |   |   |          |          |       |   |   |          |         | + | + | + | + |
| V14:V26 |          |   |   |   |          |          |       |   |   |          |         | + | + | + | + |
| V14:V27 |          |   |   |   |          |          |       |   |   |          |         | + | + | + | + |
| V15:V19 |          | - |   |   |          |          |       |   |   |          |         | + | + |   |   |
| V15:V22 |          |   |   |   |          |          |       |   |   |          |         | + | + | + |   |
| V15:V25 |          |   |   |   |          |          |       |   |   | 1        |         | + | + | + | + |
| V15:V26 |          |   |   | T |          | r        |       |   |   |          |         | + | + | + | + |
| V15:V27 | 1        |   |   | 1 | <u> </u> |          |       |   |   | [        |         | + | + | + | + |
| V16:V19 |          |   |   |   |          |          |       |   |   |          | <b></b> | + | + |   |   |
| V18:V19 | Т        |   |   |   |          |          |       | Γ |   | Γ        |         |   | + |   |   |
| V18:V25 |          |   | 1 | 1 |          | <u> </u> |       | t |   |          |         |   | + | + | + |
| V18:V26 |          |   |   | Τ | <u> </u> |          |       |   |   | T        |         |   | + | + | + |
| V19:V24 |          |   |   | - | 1        | r——      |       |   |   |          |         |   | + | + | + |
| V19:V25 |          |   |   |   |          |          | <br>ľ |   |   | r        |         |   | + | + | + |
| V22:V24 |          |   |   |   | r –      |          |       |   |   | <u> </u> |         |   |   | + | + |
| V23:V25 |          |   |   |   |          |          |       |   | [ | t        |         |   |   | + | + |

|           | _Age Rai | igc_ |          |   |   |          |          |    |          |          |          |          |          |    |    |                                              |    |    |
|-----------|----------|------|----------|---|---|----------|----------|----|----------|----------|----------|----------|----------|----|----|----------------------------------------------|----|----|
| XIV-C:101 | 3        | 4    | 5        | 6 | 7 | 8        | 9        | 10 | 11       | 12       | 13       | 14       | 15       | 16 | 17 | 18                                           | 19 | 20 |
| V4:V7     |          |      |          |   |   |          |          |    |          |          | ŀ.       | [        |          |    |    |                                              |    |    |
| V4:V8     |          |      |          |   |   |          |          |    |          | -        | 1-       |          |          | 1  |    |                                              |    |    |
| V4:V14    |          |      |          |   |   |          |          |    |          | ŀ        |          | ţ.       |          | -  | -  |                                              |    |    |
| V4:V18    | _        |      |          |   |   | r        |          |    |          | I        | -        | Ŀ        | -        | -  | -  | -                                            |    |    |
| V5:V17    |          |      |          |   |   |          |          |    |          | -        | -        |          | -        | -  | -  | -                                            |    |    |
| V5:V22    |          |      |          |   |   |          |          |    | 1        | -        | -        | -        | -        | 1- | 1. | <u>1</u>                                     | ŀ. |    |
| V7:V8     |          |      |          |   |   |          | <u> </u> |    |          | <u> </u> |          |          |          |    |    |                                              |    |    |
| V7:V14    |          |      |          |   | 1 | <u> </u> |          |    | <u> </u> |          | 1.       |          | -        | 1- | -  |                                              |    |    |
| V8:V14    |          | 1    |          |   |   |          |          |    |          | <u> </u> |          | <u>.</u> |          | -  | -  |                                              |    |    |
| V9:V14    |          |      |          |   |   |          |          |    | t        | 1        |          | t        | t——      | -  |    | t                                            | 1  |    |
| V10:V18   | _        |      |          |   |   |          |          |    |          |          |          | 1        |          |    | -  | -                                            |    |    |
| V11:V14   |          |      |          |   |   |          |          |    |          |          |          |          | <u> </u> |    | -  |                                              |    |    |
| V13:V14   |          |      |          |   |   |          |          |    |          |          |          |          |          |    | -  |                                              |    |    |
| V13:V18   |          |      |          |   | - |          |          |    | <u> </u> |          | <u> </u> | 1        |          |    | -  | <u>.                                    </u> |    |    |
| V15:V18   |          |      |          |   |   |          |          |    |          |          |          |          |          |    | -  | -                                            |    |    |
| V15:V19   |          |      | <u> </u> | [ |   |          |          |    |          |          |          | 1        | <u> </u> |    | -  | -                                            |    |    |
| V22:V23   |          |      |          |   |   |          |          |    |          |          |          | 1        |          |    | Γ  |                                              | ŀ  |    |
| V24:V25   |          |      |          |   |   |          |          |    |          |          |          |          |          |    | I  |                                              |    | -  |
| V24:V26   |          |      |          |   |   |          |          |    | Γ        |          |          | Γ        |          |    | Ι  |                                              |    | -  |

|           | Age Ran    | ge          |             |              |             |              |              |                 |                                              | ——       |             |                                              |              |                                         |                                             |             |             |                                               |
|-----------|------------|-------------|-------------|--------------|-------------|--------------|--------------|-----------------|----------------------------------------------|----------|-------------|----------------------------------------------|--------------|-----------------------------------------|---------------------------------------------|-------------|-------------|-----------------------------------------------|
| XIV-C:156 | 3          | 4           | 5           | 6            | 7           | 8            | 9            | 10              | 11                                           | 12       | 13          | 14                                           | 15           | 16                                      | 17                                          | 18          | 19          | 20                                            |
| V2:V8     |            | +           | +           | +            | +           | +            | +            | +               | +                                            | +        | +           | L                                            |              |                                         |                                             |             |             |                                               |
| V2:V9     |            | +           | +           | +            | +           | +            | +            | +               | +                                            | +        | +           | +                                            | +            | +                                       |                                             |             | I           |                                               |
| V2:V14    |            | +           | +           | +            | +           | +            | +            | +               | +                                            | +        | +           | +                                            | +            | +                                       | +                                           |             |             |                                               |
| V2:V18    |            | +           | +           | +            | +           | +            | +            | +               | +                                            | +        | +           | +                                            | +            | +                                       | +                                           | +           |             |                                               |
| V3:V14    |            |             |             |              |             |              |              | +               | +                                            | +        | +           | +                                            | +            | +                                       | +                                           |             |             |                                               |
| V3:V18    |            |             |             |              |             |              |              | +               | +                                            | +        | +           | +                                            | +            | +                                       | +                                           | +           |             |                                               |
| V3:V21    |            |             |             |              |             |              |              | +               | +                                            | +        | +           | +                                            | +            | +                                       | +                                           | +           | +           |                                               |
| V3:V22    |            |             |             |              |             |              |              | +               | +                                            | +        | +           | +                                            | +            | +                                       | +                                           | +           | +           |                                               |
| V3;V23    |            |             |             |              |             |              |              | +               | +                                            | +        | +           | +                                            | +            | +                                       | +                                           | +           | +           |                                               |
| V3:V27    |            |             |             |              |             |              |              | +               | +                                            | +        | +           | +                                            | +            | +                                       | +                                           | +-+         | +           | +                                             |
| V4:V8     | 1          |             | 1           | <u> </u>     | 1           | <u> </u>     |              |                 | I                                            | +        | +           |                                              |              |                                         |                                             | <u> </u>    | <u> </u>    |                                               |
| V4:V14    |            |             |             |              |             |              |              | 1               |                                              | +        | +           | +                                            | +            | +                                       | +                                           |             |             | <u> </u>                                      |
| V4:V15    |            |             | 1           | 1            |             | 1            |              | t               |                                              | +        | +           | +                                            | +            | +                                       | +                                           | h           |             | <u> </u>                                      |
| V4:V18    |            |             |             |              |             |              |              |                 |                                              | +        | +           | +                                            | +            | +                                       | +                                           | +           | <u> </u>    |                                               |
| V4:V23    |            |             |             | <u> </u>     | <u> </u>    |              |              |                 |                                              | +        | +           | +                                            | +            | +                                       | +                                           | +           | +           | ⊢—                                            |
| V5:V15    |            | h           | t           |              | <u>—</u> —  | 1            | <u> </u>     | <u> </u>        | <u> </u>                                     | +        | +           | +                                            | +            | +                                       | +                                           | <u> </u>    |             |                                               |
| V5:V21    |            |             | <u> </u>    |              | <u> </u>    | <u> </u>     |              |                 | <u> </u>                                     | +        | +           | +                                            | +            | +                                       | +                                           | +           | +           | ┣──                                           |
| V6:V15    |            |             |             | <u> </u>     |             | <u> </u>     |              | <u> </u>        | <u> </u>                                     | +        | +           | +                                            | +            | +                                       | <u></u> + +                                 |             | +           |                                               |
| V6:V21    |            |             | t           |              | <u>+</u>    | <u> </u>     | <u>+</u>     | <u> </u>        | <u> </u>                                     | +        | +           | +                                            | +            | +                                       | <u></u> <u> </u> +                          | ++          | +           |                                               |
| V6:V23    |            | ——          | <u> </u>    | <u> </u>     | <u> </u>    | <u> </u>     | <u> </u>     | <u> </u>        |                                              | +        | +           | +                                            | +            | <u></u>                                 | ┝╌┿                                         | +           | +           | <u> </u>                                      |
| V6:V27    |            | <u> </u>    | ╂───        | <u>+</u>     | <u>+</u>    | <u> </u>     | <u> </u>     |                 |                                              | +        | +           | +                                            | +            | +                                       | <u> </u>                                    | <u>⊢</u> +  | +           | +                                             |
| V7:V8     |            |             |             | <u> </u>     |             |              |              |                 | <u> </u>                                     | ┟──      | +           | <u> _`</u> _                                 | <u> </u>     |                                         | <u> </u>                                    | ┝╌┷─        | <u>↓</u>    | <u>↓</u> <u> </u>                             |
| V7:V12    | +          | <u> </u>    |             |              |             |              |              | <u> </u>        | <u> </u>                                     |          | <b>└─</b> ┿ | +                                            | +            | +                                       | +                                           | <u> </u>    | ł —         | <b></b>                                       |
| V7:V12    |            |             |             | <u> </u>     | <u>—</u> —  | I            | 1            | <u> </u>        |                                              |          | +           | +                                            | +            | +-+                                     | + +                                         |             |             | <u> </u>                                      |
| V7:V18    |            |             | <u> </u>    |              | <u> </u>    |              |              |                 |                                              |          | +           | +                                            | +            | +                                       | <u>↓</u>                                    | <u>↓</u>    | ł           | <u> </u>                                      |
| V7:V23    |            | <u> </u>    | t —         | t            | <u>+</u>    | +            | <u> </u>     | $+ \cdot \cdot$ | <u> </u>                                     | <u> </u> | +           | +                                            | +            | +                                       | +                                           | +           | <u>├</u>    |                                               |
| V8:V9     |            | ———         | <u>+</u>    | <u>+</u>     | <u> </u>    | <u> </u>     |              | <u> </u>        | <u> </u>                                     |          | 1           |                                              |              | <u> </u>                                | ┝╌                                          | <u> </u>    | <u> </u>    | <u> </u>                                      |
| V8:V15    | +          | ———         | 1           | <u> </u>     | _−          | t——          | <b>├</b>     | <u>+</u>        | ┣───                                         |          |             | <u>†</u> _+                                  | <u> </u>     | <u> </u>                                | <u>├</u>                                    |             |             |                                               |
| V8:V24    | +          | <u> </u>    | <u> </u>    | <u> </u>     |             | <u> </u>     | <u> </u>     | <u> </u>        | <u> </u>                                     |          | <u> </u>    | <u> </u>                                     | <u> </u>     | <u> </u>                                | <u>⊢</u>                                    | <u>├</u> .  | <u>  .</u>  | <u> </u>                                      |
| V9:V14    | -          | - · · ·     | <u> </u>    |              |             | <u> </u>     | <u> </u>     | <b>├</b> ~─     | <u> </u>                                     | <u> </u> | <u>⊢-</u> - | t-i-                                         | <u> </u>     | ⊢÷-                                     | +                                           | ┟╧          | <u> </u>    | <u>⊢-</u>                                     |
| V9:V15    | +          |             | ┣           | <u>}</u>     | <u>+</u> -  | ╂──          | ┣──          | <u> </u>        | <u> </u>                                     | ┨───     | <u> </u>    |                                              |              | +                                       | <u> </u> ++                                 | <u> </u>    | ──          | ——                                            |
| V9:V16    |            |             | <u> </u>    | <u> </u>     | <u> </u>    | <u> </u>     | <u> </u>     |                 | <u> </u>                                     | <u> </u> | <u> </u>    |                                              |              | +                                       | <u>├</u>                                    | ┣           |             | <u> </u>                                      |
| V9.V18    | -          |             | 1           | <u> </u>     | <u> </u>    | <u>├</u>     | <u></u>      |                 |                                              |          | ╂───        | <u>                                     </u> | <u> </u>     | +                                       | $\begin{bmatrix} \frac{1}{4} \end{bmatrix}$ | <u>├</u> _+ | ┝──         | <u>                                      </u> |
| V9:V23    |            |             | <u></u>     |              | 1           |              | <u> </u>     | <u> </u>        |                                              |          | ┣───        | <u> </u>                                     | <u> </u>     | +                                       | +                                           | ┝╤          | <u></u> + + |                                               |
| V9:V24    |            |             | <u> </u>    | <u> </u>     | <u> </u>    | <u> </u>     | <u> </u>     | <u> </u>        | ┣                                            | ╂───     | ├           | <u> </u>                                     | <u> </u>     | <u>  -</u> ;                            | <u>+</u>                                    |             | <u>+-</u> : | <u> </u>                                      |
| V9:V27    |            | <u> </u>    | <u>+</u>    | <u> </u>     | <u>+</u>    | <u>+</u>     | <u>+</u>     | <u>+</u>        | <u>                                     </u> | <b> </b> | ┣──         | <u> </u>                                     | <u> </u>     | <u> </u>                                | <u>+</u>                                    | <u> </u>    | <u> </u>    | <u> </u>                                      |
| V10:V15   |            | <b>├</b> ── | <u>+</u>    | <u>+</u>     | <u> </u>    | <u> </u>     | <b> </b>     | ┝──             | <u> </u>                                     | <u> </u> | <u> </u>    | <u> </u>                                     | <b> </b>     | +                                       | +                                           | ╆╍┷┷╍       | <u>↓</u>    | <u>├</u>                                      |
| V10:V15   |            |             | <b> </b>    | 1            |             | <b> </b>     |              | ┣──             | ┝───                                         | ┣───     | <b>├</b> ── | t                                            | ┣───         | +                                       | <u> </u>                                    | <b> </b>    | <b> </b>    |                                               |
|           |            |             | t——         | <u> </u>     | <u>+</u>    | t            | <del> </del> | 1               | <b> </b>                                     |          | <b>├</b> ── |                                              | <b> </b>     | +                                       | +++++++++++++++++++++++++++++++++++++++     | +           | <u> </u>    | <b></b>                                       |
| V11:V12   | +          | <u> </u>    | ┝───        | t —          | <u> </u>    | <del> </del> | [            | <u> </u>        | <u> </u>                                     | <b>├</b> | <u> </u>    | <u> </u>                                     | <b>├</b> ─── |                                         | +++++++++++++++++++++++++++++++++++++++     | <b>├</b> ── | <u> </u>    | <u> </u>                                      |
| V11:V14   | +          | <b> </b>    | <b>├</b> ── |              | l           | <u> </u>     | <u> </u>     | <u> </u>        | <u> </u>                                     | <u> </u> |             | <u> </u>                                     | <u> </u>     | +++++++++++++++++++++++++++++++++++++++ | +++++++++++++++++++++++++++++++++++++++     |             | <u> </u>    | <b>—</b> —                                    |
| V11:V23   |            | — —         | I           | <u> </u>     | I           | <u> </u>     |              | <b> </b>        | <u> </u>                                     | <u> </u> | <u> </u>    | <u> </u>                                     | <b> </b>     | <u> </u>                                |                                             | <u> </u>    | +           | <u> </u>                                      |
| V13:V14   | +          | <u> </u>    | ╂           | <b>├</b> ─── | <b>├</b> ── | <b>└─</b> ─  | <u> </u>     | <u> </u>        | ┣                                            | <b> </b> |             | <u> </u>                                     | <u> </u>     | <u> </u>                                | +                                           | <b> </b>    | ┣           | <b>├</b> ──                                   |
| V13:V15   |            | <u> </u>    | +           | <u> </u>     | <b>├</b> ── | <u> </u>     | <u> </u>     | <b> </b>        | <u> </u>                                     | ┣        | ┣───        | <u> </u>                                     | <b> </b>     | <u> </u>                                | +                                           | +           | <u> </u>    | <u> </u>                                      |
| V13:V18   | +          | <u> </u>    | ┣           | <b>├</b> ──  | <u> </u>    | ┣            | <u>+</u>     | +——             | <b>├</b> ──                                  | ł        | —           | <b>{</b> −−−                                 | <b>├</b> ──  | ⊢—                                      | +                                           | +           | ┣──-        | ┝───                                          |
| V14:V15   | +          | }           | ┣           | <b> </b>     | ┣──         | <u> </u>     | ↓            | <b>I</b>        | i                                            | <b> </b> | ——          | ┥                                            | <b> </b>     | <u> </u>                                | +                                           | <b></b> -   | <u> </u>    | <b>—</b> —                                    |
| V14:V21   | _ <b>_</b> |             |             | 1 .          |             |              |              | L               |                                              |          |             | <u>i</u>                                     |              |                                         | +                                           | +           | +           | L                                             |

|         | <br> |   | <br> | <br>_ | <br> |   | _ | _ | <br> | <br> |            |         |
|---------|------|---|------|-------|------|---|---|---|------|------|------------|---------|
| V18:V26 |      |   |      | [     |      |   |   |   |      | -    | -          | <u></u> |
| V19:V21 |      |   |      |       |      |   |   |   | L    | +    | +          |         |
| V19:V22 |      |   | Τ. – |       |      |   |   |   |      | +    | +          |         |
| V19:V23 |      |   |      |       | L    |   | L |   |      | +    | +          |         |
| V19:V24 |      |   |      |       |      | L |   |   |      | -    | -          | <u></u> |
| V19:V27 |      | L |      |       | [    |   | L |   |      | +    | +          | +       |
| V21:V24 |      | 1 |      |       |      | 1 |   |   | L    | [    | <b>-</b> . |         |
| V21:V25 |      |   |      |       |      |   |   |   |      |      |            |         |
| V21:V26 |      |   |      |       |      |   |   |   |      |      | <b>-</b> . |         |
| V22:V24 |      |   |      |       | I    |   |   |   |      |      | <u>г</u> . | •       |
| V24:V25 |      |   |      |       |      |   |   |   |      |      |            | +       |
| V25:V27 |      |   |      |       |      |   |   |   |      |      |            | +       |

|          | Age Ras | 18°      |   |   |   |   |   |    |    |          |       |          |    |     |     |          |    |    |
|----------|---------|----------|---|---|---|---|---|----|----|----------|-------|----------|----|-----|-----|----------|----|----|
| XIV-C:99 | 3       | 4        | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12       | 13    | 14       | 15 | 16  | 17  | 18       | 19 | 20 |
| V4:V6    |         |          |   |   |   |   |   |    |    |          |       |          |    |     |     |          |    | [  |
| V4:V7    |         | I .      |   |   |   |   |   |    |    | -        | L     |          |    |     |     |          |    | r  |
| V5:V6    |         | [        |   |   |   |   |   |    |    | <u> </u> |       |          |    |     |     |          |    |    |
| V5:V13   |         |          |   |   |   |   |   |    |    | +        | +     | +        | +  | +   | +   |          |    |    |
| V5:V17   |         |          |   |   |   |   |   |    |    | +        | +     | +        | +  | +   | +   | +        |    |    |
| V6:V21   |         |          |   |   |   |   |   |    |    | +        | +     | +        | +  | +   | +   | +        | +  |    |
| V6.V22   |         |          |   |   |   |   |   |    |    | +        | +     | +        | +  | +   | +   | +        | +  |    |
| V7:V8    |         |          |   |   |   |   |   |    |    |          | +     |          |    |     |     |          |    |    |
| V7:V9    |         |          |   |   |   |   |   |    |    |          | +     | +        | +  | +   |     | <u> </u> |    |    |
| V7:V10   |         |          |   |   |   |   |   |    |    |          | +     | +        | +  | +   |     |          |    |    |
| V7:V11   |         |          |   |   | 1 |   |   |    |    |          | [ • _ | <u> </u> | -  | -   |     |          |    | r  |
| V7:V12   |         |          |   |   |   |   |   |    |    |          | +     | +        | +  | +   | +   |          |    |    |
| V8:V10   |         |          |   |   |   |   |   |    |    |          | +     | +        | +  | +   |     |          |    |    |
| V8:V14   |         | r        |   |   |   |   |   |    |    |          | -     | -        | -  | -   |     |          |    |    |
| V8:V15   |         |          |   |   |   |   |   |    | [  |          | •     | -        | •  | -   | -   |          |    |    |
| V9:V15   |         |          | _ |   |   |   | I |    |    |          |       |          |    | •   | L - |          |    |    |
| V9:V18   |         | <u> </u> |   | L |   |   |   |    |    |          |       |          |    | - 1 | - 1 |          |    |    |
| V9:V19   |         |          |   |   |   |   |   |    |    |          |       |          |    | -   | - 1 | -        |    |    |
| V11:V14  |         |          |   |   |   |   |   |    |    |          | Γ     |          |    | +   | +   |          |    |    |
| V11:V19  | _       | Γ        |   |   |   |   |   |    |    |          |       |          |    | +   | +   | +        |    |    |
| V13:V14  |         |          |   |   |   |   |   |    |    |          |       |          |    |     |     |          |    |    |
| V14:V18  |         |          |   | [ |   |   |   |    |    |          |       |          |    |     | +   | +        |    |    |
| V16:V19  |         |          |   |   |   |   |   |    |    |          |       |          |    |     | -   | - 1      |    |    |
| V19:V22  |         |          |   | [ |   |   |   |    |    |          |       |          |    |     |     | +        | +  |    |

energia en producto en esta en esta en esta en esta en esta en esta en esta en esta en esta en esta en esta en

# K-7 Sacred Heart females growth fluctuation pattern maps

(chronological numbering see Appendix H, H-1)

V15:V23

V15:V27

V16:V19

V16:V27

V17:V18

V17:V20

V17:V24

V19:V23

V19:V27

V22:V24

|         | Age Ras | 8°       |           |          |          |          |            |          |            |          |          |            |     |          |         |          |     |          |
|---------|---------|----------|-----------|----------|----------|----------|------------|----------|------------|----------|----------|------------|-----|----------|---------|----------|-----|----------|
| SH88    | 3       | 4        | 5         | 6        | 7        | 8        | ,          | 10       | 11         | 12       | 13       | 14         | 15  | 16       | 17      | 18       | 19  | 20       |
| V1:V27  | +       | +        | +         | +        | +        | +        | +          | +        | +          | +        | +        | +          | +   | +        | +       | +        | +   | +        |
| V2:V27  | +       | +        | +         | +        | +        | +        | +          | +        | +          | +        | +        | +          | +   | +        | +       | +        | +   | +        |
| V3:V5   |         |          |           | <b></b>  |          |          | •          | •        | -          |          |          |            |     | r—       |         |          | T   | Γ        |
| V3:V10  |         |          | L         |          |          |          | <b>—</b> — | -        | •          | 1.       |          |            |     | <u> </u> |         |          | 1   |          |
| V5:V10  |         |          |           |          |          |          |            |          | •          |          |          | Г <u> </u> |     |          |         |          |     |          |
| V6:V8   |         |          |           |          |          |          |            |          | <u> </u>   | <u> </u> |          |            |     |          |         |          |     |          |
| V6:V19  |         |          |           | Γ        |          |          |            | 1        | •          | 1.       | •        | - 1        |     |          |         |          |     |          |
| V7:V9   |         |          |           |          |          | 1        |            |          | -          | · ·      |          |            |     |          |         |          |     |          |
| V7:V10  |         |          |           | <u> </u> |          |          | 1          |          | · ·        | · ·      |          | F          |     |          |         |          | 1   |          |
| V8:V27  |         |          |           | T        | 1        |          |            | t        |            | +        | +        | +          | +   | +        | +       | +        | +   | +        |
| V9:V17  |         |          | 1         | <u> </u> | 1        |          |            |          |            | +        | +        | +          |     |          | [****** |          | 1   |          |
| V10:V16 |         | <u> </u> |           |          |          |          |            | 1        |            | +        | +        | +          |     |          |         |          |     |          |
| V10:V17 |         | 1        |           | 1        |          |          |            |          |            | +        | +        | +          |     |          |         |          |     |          |
| V10:V18 | 1       |          |           |          |          |          |            |          |            | +        | +        | +          |     |          |         |          |     |          |
| V10:V19 | 1       |          | 1         |          |          |          | 1          | 1        | l –        | +        | t +      | +          | +   |          |         |          |     |          |
| V10:V27 |         |          |           | 1        |          | <u> </u> | 1          |          |            | +        | +        | +          | 1 + | +        | +       | +        | +   | +        |
| V12:V27 |         |          |           |          |          |          | t          |          |            |          | +        | +          | +   | +        | +       | +        | +   | +        |
| V17:V24 |         |          | 1         | 1        | T        |          |            |          | 1          |          |          | +          | +   | +        |         |          |     |          |
| V20:V22 |         |          |           | h        |          |          | 1          |          |            |          |          |            | +   |          |         |          |     | <u> </u> |
| V23:V27 |         | 1        |           |          | 1        |          |            |          |            | 1        |          |            | +   | +        | +       | +        | +   | +        |
|         |         |          |           |          |          |          | •          |          |            |          |          | •          | •   | •        | •       | • •      |     |          |
|         | Age Rau |          | · · · · · | <u> </u> | т —-     | <u> </u> |            |          |            |          |          |            |     | <b>-</b> |         |          | r   |          |
| SH24    | 3       | 4        | 5         |          | 7        | 8        | 9          | 10       | 11         | 12       | 13       | 14         | 15  | 16       | 17      | 18       | 19  | 20       |
| V1:V6   |         | <u> </u> | <u> </u>  | ŀ        | <u> </u> | l.       | - ·        | <u> </u> | -          | I        |          | L          | I   |          |         | L        |     |          |
| V3:V6   |         |          | <b> </b>  | <u> </u> | I        | L        | <u> </u>   | L-       | <u> </u>   | L        | I        |            | ļ   |          |         |          | ļ   | L        |
| V3:V8   |         |          | <u> </u>  | <u> </u> | ļ        | <u> </u> | <u> </u>   | <u> </u> | · ·        | <u> </u> |          | L          | L   |          |         | L        | —   | L        |
| V3:V27  |         | L        |           | <u> </u> | ļ        | I        | -          | · ·      | <u>  :</u> | <u> </u> |          | · ·        |     | <u> </u> | -       | <u> </u> | · · | Ŀ        |
| V5:V6   |         | I        |           | I.—      | ļ        | L        | <u> </u>   | I        | · -        | L        |          |            |     | L        |         |          |     | L        |
| V7:V9   |         | L        | <b> </b>  | I        | I        | <u> </u> | <b> </b>   | L        | <u> </u>   |          |          |            |     |          |         |          | L   |          |
| V7:V10  |         | L        |           | L        | L        | L        | ——         | L        | -          | <u> </u> | L        |            | L   | L        |         |          | L   |          |
| V7:V18  |         | L        | <b> </b>  | <b></b>  | <u> </u> | L        | <u> </u>   | L        | <u> </u>   | Ŀ        | <u>.</u> | -          |     | L        |         | L        | L   | L        |
| V7:V20  |         | L        | L         | L        | L        | L        |            | I        |            | <u> </u> | Ŀ        | <u> </u>   | -   |          |         | L        |     |          |
| V7:V24  |         | L        | L         | <u> </u> | L        |          | I          | L        | •          | •        | <u> </u> | <u> </u>   | -   | -        |         | L        | L   | L        |
| V14:V27 |         | L        |           | L        |          |          | L          | L        |            | L        | -        |            | · · | <u> </u> | •       |          |     |          |
| V15:V16 |         | L        | L         |          |          |          |            |          |            |          |          | +          |     |          |         |          |     |          |
|         |         |          |           |          |          |          |            |          |            |          |          |            |     |          |         |          |     |          |

•

-

.

-

•

-

-

-Ξ

-

-

•

-

-

-

-•

•

• -

-

-

-

-

-

-

-

--

•

--

-

|         |          |                                              |     |      |          |   |            | ~   |          |          |             |          |         |             |          |     |             |            |
|---------|----------|----------------------------------------------|-----|------|----------|---|------------|-----|----------|----------|-------------|----------|---------|-------------|----------|-----|-------------|------------|
|         |          |                                              |     |      |          |   |            |     |          |          |             |          |         |             |          |     |             |            |
|         |          |                                              |     |      |          |   |            |     |          |          |             |          |         |             |          |     |             |            |
|         | Age Ran  | _                                            |     |      |          |   |            |     |          |          |             |          |         |             |          |     |             |            |
| SH9     | 3        | 4                                            | 5   | 6    | 7        | 8 | 9          | 10  | 11       | 12       | 13          | 14       | 15      | 16          | 17       | 18  | 19          | 20         |
| V1:V5   | + +      | $\uparrow_{+}$                               | +   | +    | +        | + | +          | +   | +        |          |             | <u> </u> |         | <u>  ~~</u> | <u> </u> | 1   |             |            |
| V1:V12  | + .      |                                              | · · | · ·  | <u> </u> |   | -          | -   | · ·      | · ·      | · ·         |          |         | <u> </u>    | <u> </u> |     |             |            |
| V2:V6   | +        | +                                            | +   | +    | +        | + | +          | +   | +        |          |             |          |         |             | 1        | 1   |             |            |
| V2:V12  | · ·      | -                                            | - 1 | 1.   | 1.       |   | <u>⊢</u> . | · · | - 1      |          | · ·         |          | 1       | <u> </u>    |          | 1   |             | 1———       |
| V3:V5   |          |                                              |     | Γ    |          |   | +          | +   | +        |          |             |          |         |             |          | 1   |             |            |
| V4:V11  |          |                                              |     |      |          |   |            | -   | Γ.       | -        | -           |          |         |             | 1        | 1   |             |            |
| V4:V26  |          |                                              |     |      |          |   |            | - 1 | · ·      | -        | - I         | - 1      | · ·     | -           |          | · · | •           |            |
| V5:V10  |          |                                              |     |      |          |   |            |     | · ·      | - I      |             |          |         | <b></b> _   |          |     |             |            |
| V5:V16  |          | [                                            |     |      |          |   |            |     | -        |          |             | -        |         |             |          | 1   |             |            |
| V5:V19  |          |                                              |     |      |          |   |            |     | -        |          | •           |          |         |             |          | 1   |             |            |
| V5:V25  |          |                                              |     |      |          |   |            |     | - 1      |          | -           | -        | -       | -           |          | 1   |             |            |
| V8:V10  |          |                                              |     |      |          |   |            |     |          |          |             | 1        |         |             |          | Γ   | T           |            |
| V8:V19  |          |                                              |     |      |          |   |            |     |          | -        | •           | •        | -       |             |          |     | 1           |            |
| V9:V10  |          |                                              |     |      |          |   |            |     |          | +        |             | 1        |         |             |          |     | <u> </u>    |            |
| V10:V17 |          |                                              |     | I    |          |   |            |     |          | •        | -           | - 1      |         |             |          |     |             |            |
| V10:V20 |          |                                              |     |      |          |   |            |     |          |          | -           | -        | •       |             |          |     |             |            |
| V11:V23 |          |                                              |     |      |          |   | 1          |     |          |          | +           | +        | +       |             |          |     |             |            |
| V11:V27 | _        |                                              |     |      |          |   |            |     |          |          | +           | +        | +       | +           | +        | +   | +           | +          |
| V12:V15 | T        |                                              |     |      |          |   |            |     |          |          | +           | +        |         |             |          |     | <u> </u>    |            |
| V12:V23 |          |                                              |     |      | _        |   |            |     |          |          | +           | +        | +       |             |          |     |             |            |
| V12:V27 |          |                                              |     |      |          |   |            |     |          |          | +           | +        | +       | +           | +        | +   | +           | +          |
| V13:V14 |          |                                              |     |      |          |   |            |     |          |          | +           | L        |         |             |          |     |             |            |
| V16:V21 |          |                                              |     |      |          |   |            |     |          |          |             | +        | +       |             |          |     |             |            |
| V18:V20 |          |                                              |     |      |          |   |            |     |          |          |             | L -      | -       |             |          |     |             |            |
| V18:V21 |          |                                              |     |      |          |   |            |     |          |          |             | +        | +       |             |          |     |             |            |
| V19:V27 |          |                                              |     |      |          |   |            |     |          |          |             |          | +       | +           | +        | +   | +           | +          |
| V20:V22 |          |                                              |     |      |          |   |            |     |          |          |             |          | -       |             |          |     |             |            |
| V23:V26 |          |                                              |     |      |          |   |            |     |          |          |             |          | •       | •           | -        | •   | <u> </u>    | 1          |
| V26:V27 |          |                                              |     |      |          |   |            |     |          |          |             |          |         |             |          |     |             | +          |
|         |          |                                              | _   |      |          |   |            |     |          |          | _           |          | _       |             |          | _   |             |            |
|         | Age Ran  |                                              |     |      |          |   |            | T   |          |          | <del></del> | r        | <b></b> |             | ,        | r   | <del></del> |            |
| SH120   | 3        | L                                            | 5   | 6    | 7        | 8 | , ,        | 10  | 11       | 12       | 13          | 14       | 15      | 16          | 17       | 18  | 19          | 20         |
| V1:V2   | <u> </u> | <u>+                                    </u> | F   | ┣─── | <u> </u> | I | <u> </u>   | L   | <u> </u> | <u> </u> | ł           | L        |         | <u> </u>    | ł        | L   | <u> </u>    | <b> </b> _ |
|         |          |                                              |     |      |          |   |            |     |          |          |             |          |         |             |          |     |             |            |

| SH120  | 3  | 4 | 5 | 6 | 7 | 8 | 9   | 10         | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
|--------|----|---|---|---|---|---|-----|------------|----|----|----|----|----|----|----|----|----|----|
| V1:V2  | Τ. |   |   |   | [ |   |     |            |    |    | 1  |    |    |    | 1  |    |    |    |
| V1:V4  | -  |   | - | - |   | - | · · | - 1        |    |    |    |    |    |    |    |    |    |    |
| V1:V8  | +  | + | + | + | + | + | +   | +          | +  | +  |    |    |    |    |    |    |    |    |
| V2:V8  | +  | + | + | + | + | + | +   | +          | +  | +  |    |    |    |    |    |    |    |    |
| V2:V11 | -  | - | - | - | - | - | -   | <u>∣</u> . | •  | •  | -  |    |    |    |    |    |    |    |
| V2:V12 | +  | + | + | + | + | + | +   | +          | +  | +  |    |    |    |    |    |    |    |    |
| V2:V15 | +  | + | + | + | + | + | +   | +          | +  | +  | +  | +  |    |    |    |    |    |    |
| V2:V19 | +  | + | + | + | + | + | +   | +          | +  | +  | +  | +  | +  |    |    |    |    |    |
| V4:V5  |    |   |   |   |   |   |     | +          | +  |    |    |    |    |    |    |    |    |    |
| V4:V6  |    |   |   |   |   |   |     | +          | +  |    |    |    |    |    |    |    |    |    |
| V4:V12 |    |   |   |   | [ |   |     | +          | +  | +  | +  |    |    |    |    |    |    |    |
| V4:V15 |    |   |   |   |   |   |     | +          | +  | +  | +  | +  |    |    |    |    |    |    |
| V5;V8  |    |   |   |   |   |   |     |            | +  | +  |    |    |    |    |    |    |    |    |
| V5:V10 |    |   |   |   |   |   |     |            | +  | +  |    |    |    |    |    |    |    |    |

and the second of the start

|         |   |  |   | <br>, | <br> |   | - |   | <u> </u> | r |   | <br> |     | <del>r –</del> |
|---------|---|--|---|-------|------|---|---|---|----------|---|---|------|-----|----------------|
| V5:V21  |   |  |   |       | <br> | + | + | + | +.       | + |   |      | · · | <u> </u>       |
| V6:V8   |   |  |   |       |      | + | + |   |          |   |   |      |     |                |
| V7:V9   | T |  |   |       |      | + | + |   |          |   |   |      |     |                |
| V7:V10  |   |  | 1 |       |      | + | + |   |          |   |   |      |     | <u> </u>       |
| V7:V20  |   |  |   | I     |      | + | + | + | +        | + |   |      |     |                |
| V8:V10  | 1 |  |   |       |      |   | + |   |          |   |   |      | Γ   |                |
| V11:V12 |   |  |   |       |      |   |   | + |          |   |   |      |     |                |
| V11:V13 |   |  |   |       |      |   |   | + |          |   |   |      | Γ   |                |
| V12:V16 |   |  | Ι |       |      |   |   | + | +        |   |   | 1    |     |                |
| V16:V25 |   |  |   |       |      |   |   |   | +        | + | + | 1    |     | T              |
| V17:V20 |   |  |   |       |      |   |   |   | +        | + |   | 1    |     |                |

|         | Age Ran | t.        |     |   |     |   |   |          |     |     |     |     |    |           |    |     |           |    |
|---------|---------|-----------|-----|---|-----|---|---|----------|-----|-----|-----|-----|----|-----------|----|-----|-----------|----|
| SH124B  | 3       | 4         | 5   | 6 | 7   | 8 | 9 | 10       | 11  | 12  | 13  | 14  | 15 | 16        | 17 | 18  | 19        | 20 |
| V1:V5   |         | -         | - 1 | - | -   | - | - | -        | -   |     |     |     |    |           |    |     |           |    |
| V1:V15  | -       | -         | -   | - | - 1 | - | - | -        | -   | -   | -   | -   |    | · · · · · |    |     |           |    |
| V2:V4   | -       | -         | -   | • | -   | - | - | -        |     |     |     |     |    |           |    |     |           |    |
| V2:V15  | -       | -         | -   | - | -   | - | - | -        | -   | -   | •   |     |    |           |    | 1   |           |    |
| V3:V8   |         |           |     |   |     |   | + | +        | +   | +   |     | 1   |    |           |    | 1   | l         |    |
| V3:V23  |         |           |     | Γ | 1   |   | + | +        | +   | +   | +   | +   | +  |           | _  | 1   | · · · · · |    |
| V3:V25  |         | 1         | 1   |   |     |   |   | •        | •   | •   | •   | •   | -  | -         |    |     | 1         |    |
| V3:V27  |         | · · · · · |     |   |     | 1 | + | +        | +   | +   | +   | +   | +  | +         | +  | +   | +         | +  |
| V4:V5   |         |           | 1   |   |     |   | 1 | •        | •   |     |     |     |    |           |    |     | 1         |    |
| V4:V11  |         |           | Î.  |   |     |   | 1 | +        | +   | +   | +   |     |    |           |    | 1   |           |    |
| V4:V23  |         |           |     |   |     | 1 | 1 | +        | +   | +   | +   | +   | +  |           |    | 1   |           |    |
| V4:V25  |         | T         |     |   | r   |   | 1 |          |     | -   | -   | -   | -  | -         |    |     |           |    |
| V4:V27  |         | 1         |     | 1 |     |   |   | +        | +   | +   | +   | +   | +  | +         | +  | +   | +         | +  |
| V5:V6   | 1       |           |     | 1 |     |   | 1 |          | +   |     |     |     |    |           |    |     |           |    |
| V5:V8   |         |           |     |   | 1   |   | 1 | 1        | +   | +   |     |     |    |           |    |     | 1         |    |
| V5:V23  |         |           |     | 1 |     | 1 | 1 | 1        | +   | +   | +   | +   | +  |           |    |     | 1         |    |
| VS:V27  |         |           |     |   |     |   | 1 |          | +   | +   | +   | +   | +  | +         | +  | T + | +         | +  |
| V7:V17  |         |           |     |   |     |   |   | <u> </u> | -   | -   | -   | -   |    |           |    |     |           |    |
| V7:V18  |         |           |     | 1 |     |   | 1 |          | -   | -   | -   | -   |    |           |    | 1   |           |    |
| V7:V20  |         | T         | Γ   |   |     | l | 1 |          | -   | -   | -   | -   | -  |           |    |     |           |    |
| V8:V10  |         | 1         |     |   | 1   |   | 1 |          |     | -   | 1   |     |    |           |    |     |           |    |
| V8:V16  |         |           |     |   | l   |   |   |          |     | -   | -   | -   |    |           |    |     |           |    |
| V8:V18  |         |           |     |   |     |   |   |          |     | -   | - 1 | -   |    |           |    |     | I         |    |
| V8:V21  |         |           |     |   |     |   |   |          |     | •   | -   | -   | -  |           |    |     |           |    |
| V9:V10  |         |           |     |   |     |   | 1 | 1        |     | -   | T   |     |    |           |    |     |           |    |
| V9:V16  |         |           |     |   | L   |   |   | T        |     | •   | · · | -   |    |           |    |     |           |    |
| V9:V17  |         |           |     |   |     |   |   |          |     | •   | - 1 | -   |    |           |    |     |           |    |
| V9:V18  | 1       | T         |     |   |     | 1 | 1 | 1        |     | - 1 | - 1 | •   |    |           |    |     |           |    |
| V9:V20  |         | 1         |     |   |     |   | 1 | 1        | 1   | •   | - 1 | - 1 | -  |           |    |     |           |    |
| V10:V12 |         |           |     |   |     |   |   |          |     | +   | +   | T   |    |           |    |     |           |    |
| V10:V17 |         |           |     | 1 |     |   |   |          |     | -   | - 1 | - 1 |    |           |    |     |           |    |
| V10:V18 |         |           |     |   |     |   |   | I        | r — | -   | •   | · · |    | ľ         |    |     |           |    |
| V10:V20 |         |           |     |   |     |   |   |          |     | •   | i . |     | -  |           |    |     |           |    |
| V10;V23 |         |           |     | Ι |     |   | Ι |          |     | +   | +   | +   | +  |           |    |     |           |    |
| V12:V15 |         |           |     | I |     |   | 1 | I        |     |     | · - | -   |    |           |    |     |           |    |

|         |  | <br> | ·<br>+ | r |    | r—–      | <b></b>  | <b>-</b> |   |   |   |     |   |   |
|---------|--|------|--------|---|----|----------|----------|----------|---|---|---|-----|---|---|
| V12:V16 |  | <br> | <br>ļ  |   | L  |          | L.       |          |   |   |   |     |   | 1 |
| V12:V25 |  |      | <br>   |   |    |          | · ·      | <u> </u> | - | • |   |     |   |   |
| V13:V25 |  |      |        |   |    |          | <u> </u> | •        | - | - |   |     |   |   |
| V15:V16 |  |      | ľ      |   |    | <u> </u> |          | •        |   |   |   |     |   | 1 |
| V15:V23 |  |      | I      |   |    |          |          | +        | + |   |   |     |   |   |
| V15:V25 |  |      |        |   | L. |          |          | -        | - | - |   |     |   |   |
| V16:V19 |  |      |        |   | L  |          | [        | +        | + |   |   |     |   | Ι |
| V16:V27 |  |      | Ι      |   |    |          |          | +        | + | + | + | +   | + | + |
| V19:V25 |  |      | Γ      |   |    |          | Ι        |          | - |   |   |     |   |   |
| V23:V26 |  |      |        |   |    |          |          |          | - | - | - | •   | • | - |
| V23:V27 |  |      |        |   |    |          |          |          | - | - | - | - 1 | - | - |

|         | Age Ras | ge |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |
|---------|---------|----|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|
| SH97    | 3       | 4  | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| V8:V21  |         |    |   |   |   |   | Γ |    |    | +  | +  | +  | +  |    |    |    |    |    |
| V9:V17  |         |    |   |   |   |   | Г |    |    | +  | +  | +  |    | F  |    |    |    |    |
| V11:V26 |         |    |   |   |   |   |   |    | Ι  |    | +  | +  | +  | +  | +  | +  | +  | +  |
| V12:V13 |         |    |   |   |   |   |   |    |    |    | +  |    |    | Γ  |    |    |    |    |
| V12:V25 |         |    |   |   |   |   | T |    |    |    | +  | +  | +  | +  |    |    |    |    |
| V15:V21 |         |    | I |   |   |   | T |    |    |    |    | +  | +  |    |    | Ι  |    |    |
| V15:V23 |         |    |   |   |   |   | Г |    |    |    |    | +  | +  |    |    |    |    |    |
| V15:V25 |         |    |   |   |   |   | 1 |    |    |    |    | +  | +  | +  |    |    |    |    |
| V16:V21 |         |    |   |   |   |   | T |    |    |    |    | +  | +  | I  |    |    |    |    |
| V16:V25 |         |    |   |   |   |   | 1 |    | Ι  |    |    | +  | +  | +  |    |    |    |    |
| V17:V20 |         |    |   |   |   |   | 1 |    |    |    |    | +  | +  | Γ  |    |    |    |    |
| V19:V23 |         |    |   | L |   |   |   |    |    |    |    |    | +  |    |    | Ι  |    |    |
| V19:V25 |         |    |   |   |   |   | Г |    |    |    |    |    | +  | +  |    |    |    |    |
| V23:V26 |         |    | I |   |   |   |   |    | Γ  |    |    |    | +  | +  | +  | +  | +  | +  |

|        | Age Ran | ge |   |   |          |   |      |          |     |          |     |     |    |    |          |    |    |    |
|--------|---------|----|---|---|----------|---|------|----------|-----|----------|-----|-----|----|----|----------|----|----|----|
| SH71   | 3       | 4  | 5 | 6 | 7        | 8 | ,    | 10       | 11  | 12       | 13  | 14  | 15 | 16 | 17       | 18 | 19 | 20 |
| V1:VS  | +       | +  | + | + | +        | + | +    | +        | +   |          |     |     |    |    |          |    |    |    |
| V1:V6  | +       | +  | + | + | +        | + | +    | +        | +   |          |     |     |    |    |          |    |    |    |
| V1:V8  | +       | +  | + | + | +        | + | +    | +        | +   | +        |     |     |    |    | Ι        |    |    |    |
| V1:V12 | +       | +  | + | + | +        | + | +    | +        | +   | +        | +   |     |    |    |          |    |    |    |
| V1:V15 | +       | +  | + | + | +        | + | +    | +        | +   | +        | +   | +   | 1  |    |          |    | 1  |    |
| V1:V19 | +       | +  | + | + | +        | + | T_ + | +        | +   | +        | +   | +   | +  |    |          |    | 1  |    |
| V3:V10 |         |    |   |   |          |   | +    | +        | +   | +        |     | 1   | 1  |    | 1        |    | 1  |    |
| V3:V14 |         |    |   |   |          |   | -    | L -      | -   | 1        | - 1 | [   | 1  |    | 1        |    |    |    |
| V3:V19 |         |    |   |   |          | 1 | +    | +        | +   | +        | +   | +   | +  |    | Γ        |    |    |    |
| V3:V21 |         |    |   |   |          |   | · ·  | -        | · · | - 1      | -   | -   | •  |    |          |    | 1  |    |
| V5:V6  |         |    |   |   |          |   | Γ    |          | +   |          |     |     | 1  |    |          |    | 1  |    |
| V5:V19 |         |    |   |   |          |   | T    |          | +   | +        | +   | +   | +  |    |          |    |    |    |
| V5:V21 |         |    |   | 1 |          |   |      |          | -   | · ·      | -   | - 1 | •  |    | 1        |    | 1  |    |
| V7:V17 |         |    |   |   |          |   |      | <u> </u> | -   | - 1      | -   | - 1 |    |    |          |    |    |    |
| V8:V19 |         |    |   |   |          |   |      |          |     | +        | +   | +   | +  |    | 1        |    |    |    |
| V8:V21 |         |    |   |   |          |   | 1    |          |     | -        | -   | -   | •  |    |          |    |    |    |
| V8:V23 |         |    |   | [ |          | 1 |      | T        |     | <u> </u> |     | -   | -  |    |          |    |    |    |
| V8:V27 |         |    |   |   | <u> </u> |   |      |          |     | -        | -   | -   | •  |    | <u> </u> | -  | -  | •  |

|         |   |              |          |          |     |   |   | ~ |   |   |   |     |          |   |   |      |            |     |
|---------|---|--------------|----------|----------|-----|---|---|---|---|---|---|-----|----------|---|---|------|------------|-----|
|         |   |              |          |          |     |   |   |   |   |   |   |     |          |   |   |      |            |     |
| V9:V10  | 1 | <u> </u>     | T        | <u> </u> | т — | T |   |   | 1 | + |   |     |          |   |   | · ·  | г <u></u>  |     |
| V9:V12  | + | <del> </del> | 1        | t        |     |   |   |   | 1 | + | + | t—– | <u> </u> |   |   | ———— |            | t — |
| V9:V15  |   | <u> </u>     | <u>+</u> | 1        | 1   | 1 |   |   |   | + | + | +   | <b>F</b> |   |   |      |            | 1   |
| V9:V16  | 1 |              |          |          | 1   |   |   |   |   | + | + | +   |          |   |   |      |            |     |
| V10:V19 | _ |              | Ι        |          |     |   |   |   |   | + | + | +   | +        |   |   |      | Г <u> </u> |     |
| V10:V20 |   |              |          |          |     |   |   |   |   | - | - | -   | -        |   |   |      |            |     |
| V12:V19 |   |              |          |          | L.  |   |   |   |   |   | + | +   | +        |   |   |      |            |     |
| V13:V14 |   |              |          | L        |     |   |   |   |   |   | - |     |          |   |   |      |            |     |
| V13:V25 |   |              |          |          |     |   |   |   |   |   | + | +   | +        | + |   |      |            |     |
| V14:V27 |   |              |          | 1        |     |   |   |   |   |   | + | +   | +        | + | + | +    | +          | +   |
| V15:V19 |   |              |          |          |     |   |   |   |   |   |   | +   | +        |   |   |      |            |     |
| V15:V21 |   |              |          |          |     |   |   |   |   |   |   | -   | -        |   |   |      |            |     |
| V16:V19 |   |              |          |          |     |   |   |   |   |   |   | +   | +        |   |   |      |            |     |
| V16:V21 |   |              |          |          |     |   |   |   |   |   |   | •   | -        |   |   |      |            |     |
| V17:V24 |   |              |          |          |     |   | I |   |   |   |   | +   | +        | + |   |      | Г          |     |

|         | Age Ran | ge. |   |   |   |   |   |    |    |        | _        |    |    |    |    |    |     |    |
|---------|---------|-----|---|---|---|---|---|----|----|--------|----------|----|----|----|----|----|-----|----|
| SH5     | 3       | 4   | 5 | 6 | 7 | 8 | , | 10 | 11 | 12     | 13       | 14 | 15 | 16 | 17 | 18 | 19  | 20 |
| V5:V15  |         |     | Ι | Ι |   |   |   |    | -  | -      | <u> </u> | -  |    |    |    | [  | Γ   |    |
| V5:V16  |         |     |   |   |   |   |   |    | -  | - 1    | •        | •  |    |    |    |    | Γ   |    |
| V6:V15  |         |     |   |   |   |   |   |    | -  | -      | -        | -  |    |    |    |    |     |    |
| V6:V19  |         |     |   |   |   |   |   |    | -  | -      | -        | -  | -  |    |    |    |     |    |
| V7:V20  |         |     |   |   |   |   |   |    | +  | +      | +        | +  | +  |    |    |    |     |    |
| V7:V22  |         |     |   |   |   |   |   |    | +  | +      | +        | +  | +  |    |    |    | Γ   |    |
| V7:V24  |         |     |   |   |   |   |   |    | +  | +      | +        | +  | +  | +  |    |    |     |    |
| V8:V15  |         |     |   |   |   |   |   |    |    | -      | -        | -  |    |    |    |    |     |    |
| V8:V16  |         |     |   |   |   |   |   | Ι  |    | -      | -        |    |    |    |    |    |     |    |
| V8;V19  |         |     |   |   |   |   |   |    |    | -      | -        | -  | -  |    |    |    |     |    |
| V8:V27  |         |     |   |   |   |   |   |    |    | -      | •        | -  | -  | -  | -  | -  | - 1 | •  |
| V9:V12  |         |     |   |   |   |   |   |    |    |        |          |    |    |    |    |    |     |    |
| V9:V15  |         |     |   |   | _ |   |   |    |    | -      | •        | •  |    |    |    |    |     |    |
| V9:V16  |         |     |   |   |   |   |   |    |    | -      | -        | -  |    |    |    |    |     |    |
| V9:V20  |         |     |   |   |   |   |   |    |    | +      | +        | +  | +  |    |    |    |     |    |
| V10:V12 |         |     |   |   |   |   |   |    |    | -      | -        |    |    |    |    |    | Γ   |    |
| V10:V15 |         |     |   |   |   |   |   |    |    | •      | •        | -  |    |    |    |    |     |    |
| V10:V16 |         |     |   |   |   |   |   |    |    | -      | · ·      | -  |    | I  |    |    |     |    |
| V10:V19 |         |     |   |   |   |   |   |    |    | -<br>- | -        | -  | -  |    |    |    |     |    |
| V10:V20 |         |     |   |   |   |   |   |    |    | +      | +        | +  | +  |    |    |    |     |    |
| V11:V12 |         |     |   |   |   |   |   |    |    |        | -        |    |    |    |    |    |     |    |
| V11:V13 |         |     |   |   |   |   |   |    |    |        | -        |    |    |    |    |    |     |    |
| V17:V22 |         |     |   |   |   |   |   |    |    |        |          | +  | +  |    |    |    |     |    |
| V17:V24 |         |     |   |   |   |   |   |    |    |        |          | +  | +  | +  |    |    |     |    |
| V18:V20 |         |     |   |   |   |   |   |    |    |        |          | +  | +  |    |    |    |     |    |
| V18:V21 |         |     |   | [ |   |   |   |    |    |        |          | -  | •  |    |    |    |     |    |

|                    | A as Bar |         |                                              |             |          |          |             |          |          |            |            | ,        |          |          |            |               |          |          |
|--------------------|----------|---------|----------------------------------------------|-------------|----------|----------|-------------|----------|----------|------------|------------|----------|----------|----------|------------|---------------|----------|----------|
| SH114              | Age Ran  | 4       | 5                                            | 6           | 7        | 8        | ,           | 10       | 11       | 12         | 13         | 14       | 15       | 16       | 17         | 18            | 19       | 29       |
| V1:V2              | +        |         | <u>                                     </u> |             |          | <u> </u> |             |          |          |            |            |          |          |          |            |               |          |          |
| V1:V8              |          |         | <del>  .</del>                               | <u> </u>    |          |          | ——          |          |          |            |            |          |          | <u> </u> |            | t             |          |          |
| V1:V12             | +        | +       | +                                            | +           | +        | +        | +           | +        | +        | +          | +          |          |          |          | <u> </u>   |               | <u> </u> |          |
| V1:V13             | +        | +       | +                                            | +           | +        | +        | +           | +        | +        | +          | +          |          |          |          | _          | 1             | <u> </u> |          |
| V2:V8              | 1.       | -       |                                              | -           | 1 -      | -        | -           | ·        | •        | - ·        |            |          |          |          |            | 1             | t        |          |
| V2:V11             | +        | +       | +                                            | +           | +        | +        | +           | +        | +        | T +        | +          |          |          |          | <u> </u>   |               | <u> </u> |          |
| V2:V12             | +        | +       | +                                            | +           | +        | +        | +           | +        | +        | +          | +          |          |          |          |            |               | <u> </u> |          |
| V2:V13             | +        | +       | +                                            | +           | +        | +        | +           | +        | +        | +          | +          |          |          |          |            |               |          |          |
| V2:V23             |          | -       | · ·                                          | · ·         | · ·      | -        |             |          | -        | <u> </u>   | -          |          |          |          |            |               |          | 1        |
| V2:V27             | •        | -       | <u> </u>                                     | -           | -        | -        | <b>—</b> —  | -        | -        | - T        | •          | -        | -        | -        | <u> </u>   | -             | <u> </u> | -        |
| V3:V15             |          |         |                                              |             |          |          | +           | +        | +        | +          | +          | +        |          |          | Ľ          |               |          |          |
| V3:V16             |          |         |                                              |             |          |          | +           | +        | +        | +          | +          | +        |          |          |            |               |          |          |
| V3:V21             |          |         |                                              |             |          | i        | +           | +        | +        | +          | +          | +        | +        |          |            |               |          |          |
| V3:V25             |          |         |                                              |             |          |          | +           | +        | +        | +          | +          | +        | +        | +        |            |               |          |          |
| V5:V8              |          |         |                                              |             |          |          |             |          | Ŀ        | Ŀ          |            |          |          |          |            |               |          |          |
| V5:V25             |          |         |                                              |             |          |          |             |          | +        | +          | +          | +        | +        | <u>+</u> |            |               |          |          |
| V6:V8              |          |         |                                              |             |          |          |             |          | Ŀ        | <u> </u>   |            |          | L        |          |            |               |          |          |
| V7:V9              |          |         |                                              |             |          |          |             |          | +        | +          |            |          | L        |          |            |               |          |          |
| V8:V15             |          |         | L                                            | <u> </u>    |          |          |             |          | L        | +          | +          | +        |          |          |            |               |          |          |
| V9:V12             |          |         |                                              |             | <u> </u> | I        | <u> </u>    |          | L        | <u>+</u>   | +          |          | <b>}</b> | <u> </u> | <u> </u>   |               | L        | L        |
| V9:V17             |          | [       | L                                            | I           |          | L        |             | L        | L        | <u>⊢∸</u>  | <u> </u>   | •        | L        |          | ┣────      |               |          |          |
| V9:V18             |          |         |                                              |             | I        |          |             | L        | L        | <u>⊢·</u>  | <u> </u>   | <u> </u> | L        | <u> </u> | ——         |               |          |          |
| V9:V20             |          | ļ       | I                                            | Ļ           | <u> </u> | ļ        |             | l        | Ļ        | Ļ-         | <u> </u>   | •        | <u> </u> | ļ        | <u> </u>   | ┣             | └──      | <u> </u> |
| V10:V12            |          | l       |                                              | -           | L        | I        |             | <u> </u> | <u> </u> | <u>+</u> + | +          |          |          | <b> </b> | ——         | ł             | <u> </u> | <u> </u> |
| V10:V17            |          | · · · - | <u> </u>                                     | I           |          | <u> </u> | ——          | l – –    |          | ŀ·         | <u> </u> · | -        | ┣        | ┣───     | <u> </u>   | <u> </u>      |          | <u> </u> |
| V10:V20            |          |         |                                              | <b> </b>    | <u> </u> | ┣───     | <u> </u>    | h        |          | ÷-         | <u> </u>   | •        | ŀ        |          | ł          | <u> </u>      |          |          |
| V10:V23<br>V10:V27 | +        | i —     |                                              |             | <b>}</b> | }        | <b>I</b> —— | <u> </u> | }        | <u>+-</u>  | <u>.</u>   | •        | <u> </u> | <u> </u> | ┣───       | <u> </u>      | _−       | +        |
| V10:V27            | +        |         |                                              |             |          | <u> </u> | ┣───        |          | <u> </u> | <u> </u>   | +          | ÷.       | <u> </u> | <u> </u> | <u>├</u> · | <u> </u>      | 1:       | <u> </u> |
| V11:V25            | -        |         |                                              |             | -        | ł        | <u> </u>    | <u> </u> | ┣──      |            | ⊢÷-        |          | <u> </u> | -        | <u>+.</u>  | <del> .</del> | <u> </u> | <u> </u> |
| V11:V27            |          |         |                                              | <u>├</u> ── | t        | t        |             | <u> </u> | <u> </u> |            | <u> </u>   | -        | <u> </u> |          |            | <u>––</u>     | 1        | +        |
| V12:V15            |          |         | <u> </u>                                     |             | h        | <u> </u> |             | I        |          | <u> </u>   | <u> </u>   | -        |          | <u> </u> | <u> </u>   | <u> </u>      | <u> </u> |          |
| V12:V19            |          |         |                                              | t           |          |          |             |          | <u> </u> |            |            | -        | · ·      | i        | 1          |               | <u> </u> | <u> </u> |
| V12:V23            |          | · · · · | t                                            | t           |          | <u> </u> | <u> </u>    | 1        |          |            | -          | -        | I        |          | t          | r             | <u> </u> | 1        |
| V12:V27            |          |         |                                              | <u> </u>    |          | f        | <u> </u>    | 1        |          |            | - 1        |          | 1.       | - 1      | <u> </u>   | h.            | <u> </u> | -        |
| V13:V14            |          |         | 1                                            |             |          |          | 1           |          | 1        |            | <u> </u>   |          |          |          |            | -             | <u> </u> |          |
| V15:V19            |          |         |                                              |             | -        |          | <u> </u>    |          |          |            |            | •        |          |          |            |               |          |          |
| V15:V23            |          |         | 1                                            |             |          | t        | <u> </u>    |          |          | 1          |            | -        | -        |          |            | 1             | T        |          |
| V15:V25            |          |         |                                              |             | 1        | [        |             |          |          | <u> </u>   |            | +        | +        | +        |            |               |          |          |
| V15:V27            |          |         |                                              |             |          |          |             |          |          |            |            | -        | · ·      | -        | -          | -             | •        | -        |
| V16:V19            |          |         |                                              |             |          |          |             |          |          |            |            | •        | •        |          |            |               |          |          |
| V16:V25            |          |         |                                              |             |          |          |             |          |          |            |            | +        | +        | +        |            |               |          |          |
| V16:V27            |          |         |                                              |             |          |          |             |          |          |            |            | -        | •        | •        | -          | · ·           | -        | -        |
| V19:V25            |          |         |                                              |             |          |          |             |          |          |            |            |          | +        | +        |            |               |          |          |
| V21:V27            |          |         |                                              |             |          |          |             |          |          |            |            |          |          | ·        |            | Ŀ             |          | · · ·    |
| V26:V27            | 1        |         |                                              |             |          |          | 1           | I _      | 1 7      | 1          | _          |          | 1        | 1        | 1          |               | 1        | l        |

|         |          |          |          |          |          |     |   | ~        |    |          |     |    |    |    |    |    |          |     |
|---------|----------|----------|----------|----------|----------|-----|---|----------|----|----------|-----|----|----|----|----|----|----------|-----|
|         |          |          |          |          |          |     |   |          |    |          |     |    |    |    |    |    |          |     |
|         | Age Ran  | ge.      |          |          |          |     |   |          |    |          |     |    |    |    |    | •  |          |     |
| SH122   | 3        | 4        | 5        | 6        | 7        | 8   | 9 | 10       | 11 | 17       | 13  | 14 | 15 | 16 | 17 | 18 | 19       | 20  |
| V1:V4   | <b>+</b> | +        | † +      | +        | +        | - + | + | +        |    |          |     |    |    |    |    |    |          |     |
| V1:V12  | +        | +        | +        | +        | +        | +   | + | +        | +  | +        | +   |    |    |    |    |    |          |     |
| V1:V13  | -        | -        | <u> </u> | •        | -        | -   | - | -        | -  |          | · · |    |    |    |    |    |          |     |
| VI:VI5  | +        | +        | +        | +        | +        | +   | + | +        | +  | +        | +   | +  |    |    |    |    |          | L   |
| V1:V23  | +        | +        | +        | +        | +        | +   | + | +        | +  | +        | +   | +  | +  |    |    | -  |          |     |
| V1:V27  | +        | +        | +        | +        | +        | +   | + | +        | +  | +        | +   | +  | +  | +  | +  | +  | +        | +   |
| V2:V4   | +        | +        | +        | +        | +        | +   | + | +        |    |          |     |    |    |    |    |    |          |     |
| V2:V13  | -        | <u> </u> | <u> </u> | <u> </u> | <u> </u> | -   | - | -        | -  | <u> </u> |     |    |    |    |    |    |          | [ _ |
| V2:V15  | +        | +        | <u> </u> | +        | +        | +   | + | +        | +  | +        | +   | +  |    |    |    |    |          |     |
| V2:V23  | +        | +        | +        | +        | +        | +   | + | +        | +  | +        | +   | +  | +  |    |    |    |          |     |
| V2:V27  | +        | +        | +        | +        | +        | +   | + | +        | +  | +        | +   | +  | +  | +  | +  | +  | +        | +   |
| V3:V4   |          |          |          | [        |          |     | + | +        |    |          |     |    |    |    |    |    |          |     |
| V3:V8   |          |          |          |          |          |     | + | +        | +  | +        |     |    |    |    |    |    |          |     |
| V3:V10  |          |          |          |          |          |     | + | +        | +  | +        | [   |    |    |    |    |    |          |     |
| V3:V15  | 1        | {        | L        |          | I        |     | + | +        | +  | +        | +   | +  |    |    |    |    |          |     |
| V3:V16  |          |          |          |          |          |     | + | +        | +  | +        | +   | +  |    |    |    |    |          |     |
| V3:V23  |          |          |          |          |          |     | + | +        | +  | +        | +   | +  | +  |    |    |    |          |     |
| V3:V27  |          |          |          |          |          |     | + | +        | +  | +        | +   | +  | +  | +  | +  | +  | +        | +   |
| V5:V8   |          |          |          |          |          |     |   |          | +  | +        |     |    |    |    |    |    |          |     |
| V5:V15  |          |          |          |          |          | I   |   |          | +  | +        | +   | +  |    |    |    |    |          |     |
| V5:V16  |          |          |          |          |          |     |   |          | +  | +        | +   | +  |    |    |    |    | L _      |     |
| V5:V23  |          |          |          |          |          |     |   |          | +  | +        | +   | +  | +  |    |    |    |          |     |
| V5:V27  |          |          |          |          |          |     |   |          | +  | +        | +   | +  | +  | +  | +  | +  | +        | +   |
| V6:V8   |          | L        |          | L        | ·        |     |   |          | +  | +        |     |    |    |    |    |    |          |     |
| V6:V15  |          |          |          |          |          |     |   |          | +  | +        | +   | +  |    |    |    |    |          |     |
| V6:V19  |          |          |          |          |          |     |   |          | +  | +        | +   | +  | +  |    |    |    |          |     |
| V6:V23  |          |          |          |          |          |     |   |          | +  | +        | +   | +  | +  |    |    |    |          |     |
| V6:V27  |          |          |          |          |          |     |   |          | +  | +        | +   | +  | +  | _+ | ÷  | +  | +        | +   |
| V9:V15  |          |          |          |          |          |     |   |          |    | +        | +   | +  |    |    |    |    |          |     |
| V10:V12 |          |          |          |          | L        |     |   |          |    | +        | +   |    |    |    |    |    |          |     |
| V10:V15 |          | 1        |          |          |          |     |   |          |    | +        | +   | +  |    |    |    |    |          |     |
| V10:V16 |          |          |          |          |          |     |   |          |    | +        | +   | +  |    | L  |    |    |          |     |
| V10:V17 |          |          |          |          | L        | L   |   | <u>ا</u> |    | +        | +   | +  |    |    |    | L  | <u> </u> |     |
| V13:V15 |          |          |          |          |          |     |   |          |    |          | +   | +  |    |    |    |    | _        | 1   |
| V19:V23 |          |          |          |          |          |     |   |          |    |          |     |    | +  |    |    |    |          |     |
| V21:V27 |          |          |          |          |          |     | 1 |          | I  |          |     |    | +  | +  | +  | +  | +        | +   |

# K-8 Sacred Heart males growth fluctuation pattern maps

(chronological numbering see Appendix H, H-2)

|         | Age Ran | Ec.      |   |          |          |          |   |    |    |          |     |          |          |          |     |    |    |    |
|---------|---------|----------|---|----------|----------|----------|---|----|----|----------|-----|----------|----------|----------|-----|----|----|----|
| SH139   | 3       | 4        | 5 | 6        | 7        | 8        | 9 | 10 | 11 | 12       | 13  | 14       | 15       | 16       | 17  | 18 | 19 | 20 |
| V2:V14  |         | +        | + | +        | +        | +        | + | +  | +  | +        | +   | +        | +        | +        | +   |    |    |    |
| V2:V22  |         | •        | - | <u> </u> | <u> </u> |          | • |    | -  | <u> </u> | •   | <u> </u> | -        | -        | -   | -  |    |    |
| V3:V7   |         |          |   |          |          |          |   | +  | +  | +        | +   |          |          |          |     |    |    |    |
| V3:V11  |         |          |   |          |          |          |   | +  | +  | +        | +   | +        | +        | +        |     |    |    |    |
| V3:V13  |         |          |   |          |          |          |   | +  | +  | +        | +   | +        | +        | +        | +   |    |    |    |
| V3:V15  |         | _        |   |          |          |          |   | +  | +  | +        | +   | +        | +        | +        | +   |    |    |    |
| V3;V21  |         |          |   |          |          |          |   | -  | -  | -        | -   | -        | -        | -        | -   | -  |    |    |
| V4:V13  |         |          |   |          |          |          |   |    |    | +        | +   | +        | +        | +        | +   |    |    |    |
| V4:V15  |         |          |   |          |          |          |   |    |    | +        | +   | +        | +        | +        | +   |    |    |    |
| V4:V21  |         |          |   |          |          |          |   |    |    | -        | •   | -        | -        | -        | -   | -  | •  |    |
| V4:V22  |         |          |   |          |          |          |   |    |    | -        | -   | •        | -        | -        |     | -  | -  |    |
| V5:V15  |         |          |   |          |          |          |   |    |    | +        | +   | +        | +        | +        | +   |    | _  |    |
| V6:V12  |         |          |   |          |          |          |   |    |    | -        | -   | -        | -        | -        | -   |    |    |    |
| V6:V17  |         |          |   |          |          |          |   |    |    |          | · . |          | •        | •        | -   | -  |    |    |
| V7:V8   | 1       |          |   |          |          |          |   |    |    |          | +   |          |          |          |     |    |    |    |
| V7:V11  |         |          |   | 7        | 1        |          |   |    |    |          | +   | +        | +        | +        |     |    |    |    |
| V7:V23  |         |          | 1 | 1        | 1        | <u> </u> |   |    |    |          | · - | •        | •        | •        | -   | -  | -  |    |
| V7:V24  | 1       |          |   |          |          |          |   |    |    |          | -   | •        | •        | -        | •   | -  | •  | -  |
| V7:V25  |         |          |   | <u> </u> |          |          |   |    |    |          | -   | -        | •        | <u> </u> | -   | -  | -  | -  |
| V8:V26  |         |          |   |          | 1        |          |   |    |    |          | - 1 | -        | -        | -        | -   | -  | -  | -  |
| V9:V18  |         |          |   |          |          |          |   |    |    |          |     |          |          | +        | +   | +  |    |    |
| V11:V16 |         |          |   |          |          |          |   |    |    |          |     |          |          | •        | -   |    |    |    |
| V11:V17 |         |          |   |          |          |          |   |    |    |          |     |          |          | -        | · 1 | -  |    |    |
| V11:V26 |         |          |   | 1        |          |          |   |    |    |          |     |          |          | ·        | -   | •  | -  | -  |
| V12:V13 |         |          |   |          |          |          |   |    |    |          |     |          |          |          | +   |    |    |    |
| V12:V21 |         |          | 1 |          | 1        |          |   |    |    |          |     |          |          |          | - 1 | -  | -  |    |
| V12:V22 |         |          |   |          |          |          |   |    |    |          |     |          |          |          | -   | -  |    |    |
| V13:V14 |         |          |   |          |          |          |   |    |    |          |     |          |          |          | [   |    |    |    |
| V13:V19 |         |          |   |          |          |          |   |    |    |          |     |          |          |          | •   |    |    |    |
| V13:V21 |         |          |   |          |          |          |   |    |    |          |     |          |          |          | -   | -  | •  |    |
| V13:V23 | T       |          |   | 1        |          |          |   |    |    |          |     |          |          |          | •   | -  | -  |    |
| V14:V15 |         |          |   |          |          |          |   |    |    |          |     |          |          |          | +   |    | _  |    |
| V14:V21 |         |          |   |          |          |          |   |    |    |          |     |          |          |          | •   | -  | -  |    |
| V14:V22 |         |          | 1 |          |          |          |   |    |    |          | 1   |          |          |          | -   | -  | •  |    |
| V15:V17 |         |          |   |          |          |          |   |    |    |          |     |          |          |          | -   | -  |    |    |
| V15:V19 | 1       |          |   | T        |          |          |   |    |    |          |     |          |          |          | -   | -  |    |    |
| V15:V24 |         |          |   |          |          |          |   |    |    |          |     |          |          |          | -   | -  | •  | -  |
| V15:V25 |         |          |   | T        | Γ        |          |   |    | _  |          |     |          |          |          | -   |    | -  |    |
| V17:V18 |         |          | 1 |          | 1        |          |   | I  |    |          |     |          |          |          |     | +  |    |    |
| V17:V21 |         |          | 1 |          |          |          |   | T  |    |          | 1   |          |          |          |     | -  | -  |    |
| V17:V22 | 1       | <u> </u> | 1 | 1        | 1        | 1        | 1 |    |    |          | 1   |          | <u> </u> | J        |     | -  | -  |    |

|                    |         |     |   |              |          | · ·          |              |              |            |           |               |    |         |          |          |          |              |          |
|--------------------|---------|-----|---|--------------|----------|--------------|--------------|--------------|------------|-----------|---------------|----|---------|----------|----------|----------|--------------|----------|
|                    | Age Ras | ge  |   |              |          |              |              |              | _          |           |               | ,  |         |          |          |          |              | <b>.</b> |
| SH115              | 3       | 4   | 5 | 6            | 7        | 8            | 9            | 10           | 11         | 12        | 13            | 14 | 15      | 16       | 17       | 18       | 19           | 20       |
| V2:V4              |         | +   | + | +            | +        | +            | +            | +            | +          | +         |               |    |         |          |          |          |              |          |
| V2:V22             |         | +   | + | +            | +        | +            | +            | +            | +          | +         | +             | +  | +       | +        | +        | +        | +            |          |
| V3:V15             |         |     |   |              |          |              |              | +            | +          | +         | +             | +  | +       | +        | +        |          |              |          |
| V3:V17             |         |     |   |              |          |              |              | +            | +          | +         | +             | +  | +       | +        | +        | +        |              |          |
| V3:V20             |         |     |   |              |          |              |              | +            | +          | +         | +             | +  | +       | +        | +        | +        |              |          |
| V3:V26             |         |     |   |              |          |              |              | -            | •          | •         | -             | -  | •       | •        | -        | -        | · -          | -        |
| V4:V5              |         |     |   | Ι            |          |              |              |              |            | +         |               |    |         | _        |          |          |              |          |
| V4:V13             |         |     |   |              |          |              |              |              |            | •         | -             | -  | •       | •        | -        |          |              |          |
| V4:V14             |         |     |   | 1            |          |              |              |              |            | -         | •             | -  | -       | -        | -        |          |              |          |
| V4:V19             |         |     |   |              |          |              |              |              |            | -         | •             | -  | -       | •        | -        | -        |              |          |
| V5:V9              |         |     |   |              |          |              |              |              |            | -         |               | -  | -       | -        |          |          |              |          |
| V5:V19             |         |     |   | I            |          |              |              |              |            | -         | · ·           | •  | -       | -        | -        | -        |              |          |
| V6:V14             |         |     |   | T            |          |              |              | [            |            |           | -             | -  | -       | -        | -        |          |              |          |
| V6:V16             |         |     |   |              |          |              |              |              |            | •         | •             | •  | -       | •        | -        |          |              |          |
| V6:V23             |         |     |   | 1            |          |              |              | 1            |            |           | <u> </u>      | •  | -       | -        | -        |          | -            |          |
| V7:V15             |         |     |   | 1            |          |              |              |              |            |           | +             | +  | +       | +        | +        |          |              |          |
| V8:V15             |         |     |   | 1            |          |              |              | 1            |            |           | +             | +  | +       | +        | +        |          |              |          |
| V8:V20             | +-      |     |   | <u> </u>     |          |              |              |              |            |           | +             | +  | +       | +        | +        | +        |              | <u> </u> |
| V11:V15            |         |     |   | 1            |          |              |              | <u> </u>     |            |           |               |    |         | +        | +        |          |              |          |
| V11:V20            |         |     |   |              |          |              |              |              |            |           |               |    |         | +        | +        | +        |              | <u> </u> |
| V12:V13            |         |     |   | <u> </u>     |          |              | ·            |              |            |           |               |    |         |          |          |          |              | <u> </u> |
| V12:V14            |         |     |   | <u> </u>     |          |              |              |              |            |           |               |    |         |          | -        |          |              |          |
| V12:V21            |         |     |   |              |          |              |              | <u> </u>     |            |           |               |    |         |          |          | •        |              |          |
| V12:V23            | +       |     |   |              |          |              |              | <u> </u>     |            | · · · · · |               |    |         |          | <u> </u> |          | <u> </u>     |          |
| V13:V15            | 1       |     |   | t —          |          |              | <u> </u>     |              |            |           |               |    |         |          | +        |          |              | <u> </u> |
| V13:V15            |         |     |   | <u>†</u>     |          |              |              | l            | -          |           |               |    |         |          | +        | +        |              | <u> </u> |
| V14:V15            |         |     |   | <u> </u>     |          |              | <u> </u>     | l            |            |           |               |    |         |          | +        |          |              | <u> </u> |
| V14:V15            |         |     |   |              |          |              |              |              |            |           |               |    |         |          | +        | +        |              | <u> </u> |
| V14:V22            |         |     |   | <del> </del> |          |              | l —          | t            |            |           |               |    |         | ——       | +        | +        | +            | <u> </u> |
| V15:V19            | -       |     |   | <u> </u>     |          |              |              | <del> </del> |            |           |               |    |         |          | -        |          |              |          |
| V15:V23            |         |     |   |              |          |              |              |              |            |           |               |    |         |          | -        | <u> </u> |              | <u> </u> |
| V15:V25            | +       |     |   | <del> </del> |          |              |              |              |            |           | <u> </u>      |    |         | ——       | <u> </u> | <u> </u> | <u> </u>     |          |
|                    | +       |     |   | <del> </del> |          |              |              | <del> </del> |            | <u> </u>  | <b>∤</b> ·    |    |         |          | •        | · -      | <u>⊢ ·</u>   | -        |
| V15:V26            | +       |     |   | t            |          |              | <b>—</b>     | <del> </del> | <b> </b>   | ł         |               |    |         |          | -        |          | · ·          | -        |
| V16:V17            | +       |     |   | <del> </del> |          |              |              | <b> </b>     |            |           | <b>↓</b>      |    |         |          | +        | +        | <b>├</b> ──┤ | <u> </u> |
| V17:V19            | +       |     |   | <u> </u>     | <u> </u> |              |              | <u> </u>     |            | <u> </u>  | <b>├</b> ──── |    |         | <u> </u> |          | · -      | <b> </b>     | <u> </u> |
| V17:V23            | +       |     |   | <u>+</u>     | <b> </b> | <b>├</b> ──- | <del> </del> | <del> </del> | <u></u>    | }         | <b>├</b> ─-   |    |         | <b> </b> | $\vdash$ | · -      | <u> </u>     | ┣        |
| V18:V23            | +       |     |   | <u> </u>     |          |              | <b> </b>     | l            | l          | <b> </b>  | <u> </u>      |    |         |          | ļ        | <u> </u> |              | ┣—       |
| V20:V23            | +       |     |   | <b> </b>     | ———      |              | I            | l            |            | <u> </u>  | ┥────         |    |         |          | <u> </u> |          | · ·          | ┣        |
| V20:V25            | +       | ——— |   | <b> </b>     |          |              | ┨────        | <u> </u>     | <b>—</b> — | <u> </u>  | <b> </b>      |    | <b></b> |          |          | · -      | · ·          |          |
| V20:V26            |         |     |   | <u> </u>     |          |              | I            | <b> </b>     | I          |           | ──-           |    |         |          |          | · · ·    | -            | -        |
| V21:V22            |         |     |   | l            |          |              | <b> </b>     | I            |            | I         | <b></b>       | —  |         |          |          |          | +            | <u> </u> |
| V22:V23<br>V25:V26 |         |     |   | 1            |          | L            | 1            | i            |            |           | 1             | 1  |         |          |          |          | •            |          |

|         | Age Rai | nge.     |   |   |          | ,        |   |          |    |     |          |    |    |            |     |         |    |    |
|---------|---------|----------|---|---|----------|----------|---|----------|----|-----|----------|----|----|------------|-----|---------|----|----|
| SH145   | 3       | 4        | 5 | 6 | 7        | 8        | 9 | 10       | 11 | 12  | 13       | 14 | 15 | 16         | 17  | 18      | 19 | 20 |
| V2:V3   |         | •        | - | - | <u> </u> | -        | - | <u> </u> |    |     |          |    |    |            |     |         |    |    |
| V2:V14  |         | -        | • | • | -        | <u> </u> | - | -        | -  | -   | -        | -  | -  | -          | -   |         |    | [  |
| V2:V21  |         |          | - | - | <u> </u> | -        | - | -        | -  | -   |          | -  | -  | -          | -   | ·       | -  |    |
| V2:V22  |         | <u> </u> | - | - | •        | •        | - | -        | -  | •   | -        | •  |    | •          | -   | -       | -  |    |
| V2:V23  |         | -        | • | - | -        | -        | - |          | •  | -   | -        | -  | •  | -          | -   | -       | -  |    |
| V3:V4   |         |          |   |   |          |          |   | •        | -  | •   |          |    |    |            |     | 1       |    |    |
| V3:V13  |         | Γ        |   |   |          |          |   | -        | -  | -   | -        | -  | -  | -          | -   |         |    |    |
| V3:V14  |         |          |   |   | _        |          |   | -        | -  | -   | -        | -  | •  |            | -   |         |    |    |
| V3:V15  |         |          |   |   |          |          |   | -        | -  | -   |          | -  |    | -          |     |         |    |    |
| V3:V17  |         |          |   |   |          |          |   | -        | -  | -   | -        | -  | -  | -          | -   | -       |    |    |
| V3:V19  |         |          |   |   |          |          |   | •        | -  | -   | -        | -  | -  | -          | -   | -       |    |    |
| V3;V23  |         |          |   |   |          |          |   | -        | -  | •   | •        | -  | -  |            | -   | -       | -  |    |
| V3:V25  |         |          |   |   |          |          |   | +        | +  | +   | +        | +  | +  | +          | +   | +       | +  | +  |
| V4:V5   |         | Г        |   |   |          |          |   |          |    | · · |          |    |    |            |     |         |    |    |
| V4:V13  |         |          |   |   |          |          |   | l        |    | •   | -        | -  | •  | <b>—</b> . | -   |         |    |    |
| V4:V14  |         |          |   |   |          |          |   |          |    | -   | - 1      | -  | •  | <u> </u>   | -   |         |    |    |
| V4:V15  |         |          |   |   |          |          |   |          |    | Γ.  |          | -  | -  | Γ.         | •   |         |    |    |
| V4:V19  |         | Γ        |   |   |          |          |   |          |    | -   | - 1      | -  | -  |            | -   |         |    |    |
| V4:V21  |         |          | 1 |   |          | _        |   | 1        |    | -   | -        | •  | -  | <b>—</b> . | · · |         | •  |    |
| V7:V13  | 1       |          |   |   |          |          |   |          |    |     | · ·      | -  |    |            | · · |         |    |    |
| V7:V14  |         |          |   | 1 |          |          |   |          |    |     | -        | -  |    | -          | -   |         |    |    |
| V7:V15  |         |          |   |   | 1        |          |   |          | ·  |     | <u> </u> | -  |    | <u> </u>   |     |         |    |    |
| V7:V25  |         |          |   |   |          |          | 1 |          |    |     | +        | +  | +  | +          | +   | +       | +  | +  |
| V9:V17  |         |          |   |   |          |          |   |          |    |     | 1        |    |    |            | -   | -       |    |    |
| V11:V13 |         |          |   |   |          |          |   |          |    |     |          |    |    | -          | -   | 1 –     |    |    |
| V11:V16 |         |          |   |   |          |          |   |          |    |     | 1        |    |    | -          | -   |         |    |    |
| V11:V17 |         |          |   |   |          |          |   |          |    |     |          |    |    |            |     | -       |    |    |
| V14:V25 |         |          |   |   |          |          |   |          |    |     |          |    |    |            | +   | +       | +  | +  |
| V15:V17 |         |          |   |   |          |          |   |          |    |     |          |    |    |            | -   |         |    |    |
| V15:V25 |         | <u> </u> |   |   |          |          |   |          |    |     |          |    |    |            | +   | +       | +  | +  |
| V18:V23 |         |          |   |   |          |          |   |          |    |     |          |    |    |            |     | -       | -  |    |
| V19:V25 | T       | Γ        |   |   |          |          |   |          |    |     |          |    |    |            | I   | -       | -  | -  |
| V20:V25 |         |          |   |   |          |          |   |          |    |     |          |    |    |            |     | +       | +  | +  |
| V22:V23 |         |          |   |   |          |          |   |          |    |     | I        |    |    |            |     |         | -  |    |
| V23:V25 | 1       |          |   |   |          |          |   |          |    |     |          |    |    |            |     |         | +  | +  |
| V24:V25 |         |          | 1 |   |          |          |   |          |    |     |          |    |    |            |     | <b></b> |    | +  |

|        | Age Ras | ze |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |          |
|--------|---------|----|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----------|
| SH30   | 3       | 4  | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20       |
| V2:V3  |         | +  | + | + | + | + | + | +  |    |    |    |    |    |    | 1  |    |    | <u> </u> |
| V2:V23 |         | +  | + | + | + | + | + | +  | +  | +  | +  | +  | +  | +  | +  | +  | +  |          |
| V2:V25 |         | +  | + | + | + | + | + | +  | +  | +  | +  | +  | +  | +  | +  | +  | +  | +        |
| V3:V4  |         |    |   |   |   |   |   | +  | +  | +  |    |    |    |    | [  |    |    |          |
| V4:V13 |         |    |   |   |   |   |   |    |    | +  | +  | +  | +  | +  | +  |    |    |          |
| V4:V14 |         |    |   |   |   |   |   |    |    | +  | +  | +  | +  | +  | +  | -  |    |          |
| V4:V15 |         |    |   |   |   |   |   | Γ  |    | +  | +  | +  | +  | +  | +  |    |    |          |
| V4:V19 |         |    |   |   |   |   | I | T  |    | +  | +  | +  | +  | +  | +  | +  |    |          |

|         |    |   |   |      |   |      | <b>`</b> |   |   |   |     |   |   |   |   |          |
|---------|----|---|---|------|---|------|----------|---|---|---|-----|---|---|---|---|----------|
|         |    |   |   | <br> | , | <br> |          |   |   |   |     |   |   |   |   |          |
| V4:V24  |    |   |   |      |   |      |          | + | + | + | . + | + | + | + | + | +        |
| V5:V9   |    |   |   |      |   |      |          | + | + | + | +   | + |   |   |   |          |
| V5:V15  |    |   |   |      |   |      |          | + | + | + | +   | + | + |   |   |          |
| V5:V19  |    |   |   |      |   |      |          | + | + | + | +   | + | + | + |   |          |
| V6:V12  |    |   |   |      |   |      |          | + | + | + | +   | + | + |   |   |          |
| V6:V14  |    |   |   |      |   |      |          | + | + | + | +   | + | + |   |   |          |
| V6:V16  |    |   |   |      |   |      |          | + | + | + | +   | + | + |   |   |          |
| V6:V17  | Ţ. | _ | L |      |   |      |          | + | + | + | +   | + | + | + |   |          |
| V6:V20  |    |   |   |      |   |      |          | + | + | + | +   | + | + | + |   |          |
| V6:V23  |    | _ |   |      |   |      |          | + | + | + | +   | + | + | + | + |          |
| V9:V23  |    |   |   |      |   |      |          |   |   |   |     | + | + | + | + |          |
| V12:V23 |    |   |   |      |   |      |          |   |   |   |     |   | + | + | + | <u> </u> |
| V13:V20 |    | _ |   |      |   |      |          |   |   |   |     |   | + | + | + |          |
| V13:V23 |    |   |   |      |   |      |          |   |   |   |     |   | + | + | + |          |
| V13:V26 |    |   |   |      |   |      |          |   |   |   |     |   | + | + | + | +        |
| V14:V18 |    |   |   |      |   |      |          |   |   |   |     |   | + | + |   | <u> </u> |
| V14:V20 |    |   |   |      |   |      |          |   |   |   |     |   | + | + |   |          |
| V14:V23 |    |   |   |      |   |      |          |   |   |   |     |   | + | + | + | <u> </u> |
| V14:V24 |    |   |   |      |   |      |          |   |   |   |     |   | + | + | + | +        |
| V14:V25 |    |   |   |      |   |      |          |   |   |   |     |   | + | + | + | +        |
| V14:V26 | T  |   |   |      |   |      |          |   |   |   |     |   | + | + | + | +        |
| V15:V18 | 1  |   |   |      |   |      |          |   |   |   |     |   | + | + |   |          |
| V15:V20 |    |   |   |      |   |      |          |   |   |   |     |   | + | + |   |          |
| V15:V23 |    |   |   |      |   |      |          |   |   |   |     |   | + | + | + |          |
| V15:V24 |    |   |   |      |   |      |          |   |   |   |     |   | + | + | + | +        |
| V15:V25 |    |   |   |      |   |      |          |   |   |   |     |   | + | + | + | +        |
| V16:V23 | 1  |   |   |      |   |      |          |   | I | I |     |   | + | + | + | <b>F</b> |
| V17:V20 |    |   |   |      |   |      |          |   |   | [ |     |   |   | + |   | <b></b>  |
| V17:V23 | 1  |   |   |      |   |      |          |   |   |   |     |   |   | + | + |          |
| V19:V25 |    |   |   |      |   |      |          |   |   |   |     |   |   | + | + | +        |
| V21:V23 | T  |   |   |      |   | 1    |          |   |   | [ | [   |   |   |   | + | r        |
| V22:V23 |    |   |   |      |   |      |          |   |   |   |     |   |   |   | + | ——       |

|         | Age Ran | ge |   |   |   |   |   |     |    |    |    |          |    |    |    |    |    |          |
|---------|---------|----|---|---|---|---|---|-----|----|----|----|----------|----|----|----|----|----|----------|
| SH72    | 3       | 4  | 5 | 6 | 7 | 8 | 9 | 10  | 11 | 12 | 13 | 14       | 15 | 16 | 17 | 18 | 19 | 20       |
| V2:V4   |         | -  | - |   | - | - |   | - 1 | -  | •  |    |          | 1  |    |    |    |    | <u> </u> |
| V6:V16  |         |    |   |   |   |   |   |     |    | -  | -  | l •      | -  |    | •  |    |    |          |
| V9:V18  |         |    |   |   |   |   |   |     |    |    |    |          |    | -  | -  | -  |    |          |
| V11:V15 |         |    |   | Ι |   |   |   |     |    |    |    |          | I  | -  | -  |    |    |          |
| V11:V17 |         |    |   |   |   |   |   |     |    |    |    |          |    |    | -  | -  |    |          |
| V11:V20 |         |    |   |   |   |   |   |     |    |    |    |          |    | -  | -  | -  |    |          |
| V11:V23 |         |    |   |   |   |   |   |     |    |    |    |          |    | -  | •  | -  | -  |          |
| V13:V14 |         |    |   |   |   |   |   |     |    |    |    |          |    |    | -  |    |    |          |
| V13:V15 |         |    |   | I |   |   |   |     |    |    |    |          |    |    | -  |    |    |          |
| V13:V20 |         |    | _ |   |   |   |   |     |    |    |    |          |    |    | -  | -  |    |          |
| V16:V17 |         |    |   | 1 | { |   |   |     |    |    |    | <u> </u> |    |    | -  | -  |    |          |
| V16:V20 |         |    |   |   |   |   |   |     |    |    |    |          |    |    | -  | -  |    |          |
| V16:V23 |         |    |   |   |   |   |   |     |    |    |    |          |    |    | -  | -  | -  |          |
| V17:V18 |         |    |   |   |   | T |   |     |    |    |    |          |    |    |    | -  |    |          |

|         | Age Ras  |           |                                               |          |   |                                               |           |          |    |          |          |           |    |     |          |          |          |             |
|---------|----------|-----------|-----------------------------------------------|----------|---|-----------------------------------------------|-----------|----------|----|----------|----------|-----------|----|-----|----------|----------|----------|-------------|
| SH33    | 3        | 4         | 5                                             | 6        | 7 | 8                                             | 9         | 10       | 11 | 12       | 13       | 14        | 15 | 16  | 17       | 18       | 19       | 20          |
| V2:V21  | <u> </u> | +         | +                                             | +        | + | +                                             | · +       | +        | +  | +        | +        | +         | +  | +   | +        | +        | +        |             |
| V2:V22  | h        | +         | +                                             | +        | + | +                                             | +         | +        | +  | +        | +        | +         | +  | +   | +        | +        | +        |             |
| V4.V21  | <u> </u> | t         |                                               |          |   | 1                                             |           |          |    | +        | +        | +         | +  | +   | +        | +        | +        |             |
| V4:V22  |          |           |                                               |          | 1 | 1                                             |           | t        | t  | +        | +        | +         | +  | +   | +        | +        | +        |             |
| V7:V10  | <u> </u> | 1         |                                               |          | 1 | F                                             |           |          |    | 1        | +        | +         | +  | +   | <u> </u> |          | <u> </u> | <u> </u>    |
| V7:V10  | 1        | 1         | <u> </u>                                      | <u> </u> |   | F                                             |           | t        | 1  | <u> </u> | +        | +         | +  | +   |          |          |          | <u> </u>    |
| V7:V20  | 1        |           | <u> </u>                                      | <u> </u> | t | <u> </u>                                      |           | <u> </u> |    |          | +        | +         | +  | +   | +        | +        | <u> </u> | <u> </u>    |
| V7:V23  | 1        |           |                                               | <u> </u> | 1 | † ·                                           | <u> </u>  | <u> </u> |    |          | +        | +         | +  | +   | +        | +        | +        | <u> </u>    |
| V8:V11  | t        | t         | <u> </u>                                      | t        | t | t                                             |           |          | t  | t        | +        | +         | +  | +   | <u> </u> | <u> </u> | ┝─┊──    | t           |
| V8:V20  | 1        | t ·       | 1                                             | 1        | 1 |                                               |           | 1        |    | 1        | +        | +         | +  | +   | +        | +        |          | <b>├</b> ── |
| V9:V17  | †        |           | <u> </u>                                      | 1        | t | 1                                             |           |          | t  | 1        | 1        | İ         |    | +   | +        | +        |          | <u> </u>    |
| V11:V13 | 1        | t         | <u> </u>                                      | <u> </u> | 1 | 1                                             | i         |          | 1  | 1        | t        | i – – – i |    |     | <u> </u> | t        |          | †           |
| V11:V15 | 1        |           | t                                             | <u> </u> | 1 | tt                                            |           | t        | 1  | 1        |          | l         |    | · · | -        | <u> </u> | t        |             |
| V11:V16 | 1        |           | t                                             | <u> </u> | 1 | 1                                             |           | <u> </u> | 1  | 1        | r        | Î         |    | +   | +        | <u> </u> | t——      | tt          |
| V12:V13 | 1        | t         | <u> </u>                                      | t        | 1 | <u> </u>                                      |           |          | 1  | 1        | · · · ·  | t         |    |     | -        |          | <u> </u> | 1           |
| V12:V14 | 1        | 1         | t                                             | <u> </u> | 1 | 1                                             |           |          | 1  | 1        | 1        | 1         |    |     | <u> </u> | t        | <u> </u> | 1           |
| V12:V16 | <u> </u> | t         | <u>                                      </u> | 1        | 1 | 1                                             | t         |          | 1  | 1        | <u> </u> | 1         |    |     | +        |          | t        | <b></b>     |
| V12:V17 | 1        | 1 · · · · | t                                             | 1        | 1 | 1                                             |           |          | 1  | 1        | 1        | Î         |    |     | +        | +        | 1        | <u> </u>    |
| V13:V14 | 1        | 1         | <u> </u>                                      |          | 1 | 1                                             | 1         | ·        | 1  | 1        | t —      |           |    |     | +        |          |          | 1           |
| V13:V17 | 1        |           | <u> </u>                                      | <u> </u> |   |                                               |           | -        |    | t        | t —      | 1         |    |     | +        | +        | -        |             |
| V13:V20 |          | 1         | <u> </u>                                      | r—-      |   | <u>                                      </u> |           | t        | 1  | İ 👘      | 1        |           |    |     | +        | +        |          |             |
| V13:V21 |          | 1         |                                               | 1        |   |                                               |           |          |    | 1        | 1        |           |    |     | +        | +        | +        | <u> </u>    |
| V13:V23 | 1        | 1         | 1                                             |          |   | ſ                                             | · · · · · | <u> </u> |    |          |          | [         |    |     | +        | +        | +        | 1           |
| V14:V17 | 1        | 1         | <b></b>                                       | 1        | 1 | 1                                             |           | 1        | 1  | 1        | 1        |           |    |     | +        | +        | 1        | 1           |
| V14:V20 | 1        | 1         |                                               |          | 1 | 1                                             |           | i –      | 1  |          |          | I         |    |     | +        | +        |          | 1           |
| V14:V21 | 1        | 1         |                                               |          | T |                                               |           | 1        |    |          |          | 1         |    |     | +        | +        | +        | 1           |
| V14:V24 | 1        | T         | 1                                             |          | I | 1                                             |           | 1        |    |          |          | 1         |    |     | -        |          | -        | - 1         |
| V15:V17 |          |           |                                               |          |   |                                               |           |          |    |          |          |           |    |     | +        | +        |          |             |
| V15:V20 |          |           |                                               |          |   |                                               |           |          |    |          |          |           |    |     | +        | +        |          |             |
| V17:V18 | [        |           |                                               |          |   |                                               |           |          |    |          |          |           |    |     |          | -        |          |             |
| V18:V20 |          |           |                                               |          |   |                                               |           |          | 1  | I        |          |           |    |     |          | +        |          |             |
| V20:V24 |          | I         |                                               |          |   |                                               |           | <u> </u> | 1  |          |          |           |    |     |          | -        | -        | · 1         |
| V20:V25 |          |           |                                               |          |   |                                               |           |          |    |          |          |           |    |     |          | - 1      | -        | 1 -         |
| V23:V24 |          |           |                                               |          |   |                                               |           |          |    |          |          |           |    |     |          |          |          | -           |

|        | Age Ran | ge |   |   |   |   |   |          |    |    |     |    |    |    |    |    |    |    |
|--------|---------|----|---|---|---|---|---|----------|----|----|-----|----|----|----|----|----|----|----|
| SH73   | 3       | 4  | 5 | 6 | 7 | 8 | 9 | 10       | 11 | 12 | 13  | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| V2:V4  |         | +  | + | + | + | + | + | +        | +  | +  |     |    |    |    |    |    |    |    |
| V3:V11 |         |    |   |   |   |   |   | -        | -  | •  |     | -  | -  | -  |    |    |    |    |
| V3:V19 |         |    |   |   |   |   |   | -        | -  | -  | -   | -  | -  | -  | •  | -  |    |    |
| V4:V14 |         | I  |   |   |   |   |   |          |    | -  | - 1 | -  | -  | -  | -  |    |    |    |
| V4:V15 |         | Ι  |   |   |   |   |   |          |    | -  | -   | -  | -  | -  | -  |    |    |    |
| V4:V22 |         | Γ  |   |   |   |   |   |          |    | -  | •   | -  | -  | -  | -  | -  | -  |    |
| V5:V15 |         |    |   |   |   |   |   |          |    | •  | -   | -  | •  | -  | -  |    |    |    |
| V5:V19 |         |    |   |   |   |   |   |          |    | +  | +   | +  | +  | +  | +  | +  |    |    |
| V7:V10 |         |    |   |   |   |   |   | <u> </u> |    |    | -   | -  | -  | -  |    |    |    |    |

|         |   | T |   |   | 1        |          | T |   | T |   |     |          |         |   |   | <br>T   |
|---------|---|---|---|---|----------|----------|---|---|---|---|-----|----------|---------|---|---|---------|
| V8:V10  |   |   | L |   |          | <b>_</b> | — | L |   | • |     | <u> </u> | L.      |   |   |         |
| V8:V11  |   |   |   |   |          |          |   |   |   |   | . • | Ŀ        | -       |   |   |         |
| V8:V15  |   |   |   |   |          |          |   |   |   | - | -   | -        |         | - |   |         |
| V8:V20  |   | Γ |   |   | <u> </u> | 1        |   |   |   | • | -   | •        | $\cdot$ |   | • |         |
| V9:V17  |   |   |   |   |          |          | - |   |   |   |     |          |         |   | - |         |
| V13:V15 |   | Ι |   |   |          |          |   |   |   |   |     |          |         | • |   | Γ       |
| V13:V17 |   | [ |   |   |          |          |   |   |   |   |     |          |         | - | - | r –     |
| V13:V19 | 1 | Γ |   |   |          |          |   |   |   |   |     |          |         | + | + |         |
| V14:V17 | L |   |   |   |          |          |   |   |   |   |     |          |         | - | - |         |
| V14:V19 |   |   |   |   |          |          |   |   |   |   |     |          |         | + | + |         |
| V15:V19 | I | I |   |   |          |          | 1 |   |   |   |     |          |         | + | + | <br>T   |
| V17:V19 |   | Γ |   |   | 1        | 1        |   |   | 1 |   |     | 1        |         |   | + | <br>1   |
| V19:V20 |   |   |   |   |          |          |   |   |   |   |     |          |         |   | - | <br>    |
| V19:V25 |   |   |   |   |          |          | 1 |   |   |   |     |          |         |   | - | · ·     |
| V19:V26 |   |   |   |   | 1        |          |   |   |   |   |     |          |         |   | - | -       |
| V21:V22 |   |   |   |   |          |          |   |   |   |   |     |          |         |   |   | 1       |
| V24:V25 |   |   |   | T | T        |          | T |   |   |   |     |          |         |   |   | <br>- 1 |

|         | Age Ra | age . |          |   |   |   |   |    |    |    |    |    |    |    |     |    |           |     |
|---------|--------|-------|----------|---|---|---|---|----|----|----|----|----|----|----|-----|----|-----------|-----|
| SH64    | 3      | 4     | 5        | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17  | 18 | 19        | 20  |
| V3:V19  |        |       |          |   |   |   |   | +  | +  | +  | +  | +  | +  | +  | +   | +  |           |     |
| V3.V24  |        |       |          |   |   |   |   | -  | -  | -  | -  | -  | -  | -  | · · | •  | -         | -   |
| V4:V5   |        |       |          |   |   |   |   |    |    | +  |    |    |    |    |     |    |           |     |
| V6:V14  |        |       | <u> </u> |   |   |   |   | 1  |    | +  | +  | +  | +  | +  | +   |    |           |     |
| V6:V17  |        |       |          |   |   |   |   |    |    | +  | +  | +  | +  | +  | +   | +  | 1         |     |
| V7:V18  |        |       |          |   |   |   |   |    |    |    | +  | +  | +  | +  | +   | +  |           |     |
| V7:V20  |        |       | _        |   |   |   |   |    |    |    | -  | -  | •  | -  | -   | -  |           |     |
| V7:V24  |        |       |          |   |   |   |   |    |    | 1  | -  | -  | -  | -  | -   | •  | · 1       | -   |
| V8:V15  |        |       |          |   |   |   |   | 1. |    |    | +  | +  | +  | +  | +   |    |           |     |
| V8:V20  |        |       |          |   |   |   |   |    |    |    |    | -  | -  | -  |     | -  |           |     |
| V11:V15 |        |       |          |   |   |   |   |    |    |    |    |    |    | +  | +   |    |           |     |
| VII:V17 |        |       | ·        |   |   |   |   |    |    |    |    |    |    | +  | +   | +  | <u> </u>  |     |
| V12:V14 |        |       |          |   |   |   |   |    |    |    |    |    |    |    | +   |    | <b></b> _ |     |
| V12:V17 |        |       |          |   |   |   |   |    |    |    |    |    |    |    | +   | +  |           |     |
| V15:V20 |        |       |          |   |   |   |   |    |    |    |    |    |    |    | •   | •  |           |     |
| V17:V20 |        |       |          |   |   |   |   |    |    |    |    |    |    |    |     | •  |           |     |
| V19:V24 |        |       |          |   |   |   |   |    |    |    |    |    |    |    |     | -  | •         | · · |
| V24:V25 |        |       |          |   |   |   |   |    |    |    |    |    |    |    |     |    |           | +   |

|        | Age Ra | age |     |   |   |   |   |    |     |    |    | _  |    | _  |    |          |    |    |
|--------|--------|-----|-----|---|---|---|---|----|-----|----|----|----|----|----|----|----------|----|----|
| SH83   | 3_     | 4   | 5   | 6 | 7 | 8 | 9 | 10 | 11  | 12 | 13 | 14 | 15 | 16 | 17 | 18       | 19 | 20 |
| V2:V3  |        |     | Γ.  | - | - | - |   | -  |     |    |    |    |    |    |    |          |    |    |
| V2:V25 |        | -   | · · | - | - | - | - | -  | -   | •  | -  | -  | -  | -  | -  | <u> </u> | -  | -  |
| V3:V4  |        |     |     |   |   |   | 1 | -  | - 1 | -  | 1  | T  |    |    |    |          |    |    |
| V3:V13 |        |     |     |   |   |   | Γ | +  | +   | +  | +  | +  | +  | +  | +  |          |    |    |
| V3:V14 |        | I   |     |   |   |   |   | +  | +   | +  | +  | +  | +  | +  | +  | Γ        |    |    |
| V3:V17 |        |     |     |   |   |   |   | +  | +   | +  | +  | +  | +  | +  | +  | +        |    |    |
| V3:V21 |        |     |     |   |   |   |   | +  | +   | +  | +  | +  | +  | +  | +  | +        | +  |    |
| V3:V23 |        |     |     |   |   | Г |   | +  | +   | +  | +  | +  | +  | +  | +  | +        | +  |    |

|                  |              |          |           |            |              |          |         | ×          |              |          |          |       |          |    |          |          |   |
|------------------|--------------|----------|-----------|------------|--------------|----------|---------|------------|--------------|----------|----------|-------|----------|----|----------|----------|---|
| V3:V26           | <u> </u>     | <u> </u> | <u> </u>  | <u>г</u> — | L            | <u> </u> | r –     | <u> </u>   | -            | <u> </u> | <u> </u> | -     | •        | -  | <u> </u> |          | - |
| V4:V5            | †            |          |           |            |              |          |         |            |              |          |          |       |          |    |          |          |   |
| V4:V15           | <u> </u>     |          | <u> </u>  |            |              |          |         | <u> </u>   | <br>•        |          | · .      | -     |          | -  |          |          |   |
| V4:V19           |              | <u> </u> | <u> </u>  | <u> </u>   | <del> </del> | <u> </u> |         |            |              | <u> </u> | <u> </u> |       | <u>.</u> |    | <u> </u> | <u> </u> |   |
| V4:V19<br>V4:V21 | <u> </u>     | ┣──      |           |            |              | ──       |         | <u> </u>   | <br>+        | +        | +        |       | +        | -  |          | +        |   |
| V4:V21           |              |          | <u> </u>  |            | <u> </u>     | <u> </u> |         |            | +            | +        | +        | +     | +        | ++ | ++       | +        |   |
| V4:V22           |              | ┣──      |           | ┣──        |              | <u> </u> |         |            | +            | +        | +        | _     |          |    | +        |          |   |
|                  |              |          |           | ┣──        | <u> </u>     |          |         |            | <br>-        |          | <u> </u> | +     | +        |    |          |          |   |
| V6:V20           | <del> </del> | <u> </u> | ł         | <u> </u>   | ├──          | ┞───     | Į       |            | <br><u> </u> |          | <u> </u> |       | <u> </u> | -  | -        |          |   |
| V7:V8            |              | <u> </u> |           | ┣──~       | <u> </u>     | ┣──      |         |            | <br>         |          |          |       |          |    |          |          |   |
| V7:V10           | <b> </b>     | <u> </u> | ł         | ┣──-       | <u> </u>     | <b> </b> | I —     | <b>├</b>   | <br>         | +        |          | · · · | -        |    |          |          |   |
| V7:V14<br>V7:V18 | <u> </u>     |          |           | <u> </u>   |              |          |         |            | <br>         |          | -        | +     | +        | +  |          |          |   |
|                  |              |          |           | <u> </u>   |              |          | ·       |            | <br>         | +        | +        | +     | +        | +  | +        |          |   |
| V7:V23           |              |          |           | ┣──        | l            | ł        |         |            | <br>         | +        | +        | +     | +        | _+ | +        | +        |   |
| V8:V13           | ļ            |          | <b> </b>  | ┣          | <u> </u>     | <b> </b> |         | ┣          | <br>         | +        | +        | +     | +        | +  |          | <u> </u> |   |
| V8:V14           | <b>I</b>     |          | <u> </u>  |            | <b> </b>     | ┣───     | I       | ļ          | <br>         | +        | +        | +     | +        | +  |          | <u> </u> |   |
| V9:V23           | <u> </u>     |          | I         | <u> </u>   | <u> </u>     | I        |         | L          | <br>         | -        |          |       | +        | +  | +        | +        |   |
| V11:V13          | <u> </u>     | ——       | L         | ┣──        |              | L        |         |            | <br>_        |          |          |       | +        | +  |          |          |   |
| V11:V17          | <u> </u>     |          | L         | I          |              | L        |         |            |              |          |          |       | +        | +  | +        |          |   |
| V11:V23          | L            |          |           |            | L            | L        |         | L          | <br>         |          |          | L     | +        | +  | +        | +        |   |
| V12:V16          |              |          |           | L          |              | l        |         |            |              |          |          |       |          | -  |          |          |   |
| V12:V17          |              |          |           |            |              |          |         |            |              |          |          |       | _        | -  | -        |          |   |
| V12:V20          |              |          |           |            |              |          |         |            |              |          |          |       |          | -  | -        |          |   |
| V12:V22          |              |          |           |            |              |          |         |            |              |          |          |       |          | +  | +        | +        |   |
| V13:V14          |              |          |           |            | L            |          |         |            |              |          |          |       |          | +  |          |          |   |
| V13:V15          |              |          |           |            |              |          |         |            |              |          |          |       |          | -  |          |          |   |
| V13:V19          |              |          |           |            |              | Γ.       |         |            |              |          |          |       |          | •  | -        |          |   |
| V13:V20          |              |          |           |            |              |          |         |            |              |          |          |       |          | -  | •        |          |   |
| V13:V21          |              |          |           |            |              |          |         |            |              |          |          |       |          | +  | +        | +        |   |
| V13:V23          |              |          |           |            |              |          |         |            |              |          |          |       |          | +  | +        | +        |   |
| V13:V26          |              |          | i         |            |              |          |         |            |              |          |          |       |          |    |          | •        | - |
| V14:V15          |              |          | I         |            |              |          |         |            |              |          |          |       |          | -  |          |          |   |
| V14:V19          |              |          |           |            |              | _        |         |            |              |          |          |       |          | -  | •        |          |   |
| V14:V20          |              |          |           |            |              |          |         |            |              |          |          |       |          | -  | -        |          |   |
| V14:V22          |              |          |           |            |              |          |         |            |              |          |          |       |          | +  | +        | +        |   |
| V14:V25          |              |          |           |            |              |          |         |            |              |          |          |       |          |    | -        | -        | - |
| V14:V26          |              |          |           |            | T            |          |         |            |              |          |          |       |          | -  | -        | -        | - |
| V15:V17          |              |          |           |            |              |          |         |            |              |          |          |       |          | +  | +        |          |   |
| V15:V18          |              |          |           |            |              |          |         |            |              |          |          |       |          | +  | +        |          |   |
| V15:V23          |              |          |           |            | I            |          |         | <b>—</b> — |              |          |          |       |          | +  | +        | +        |   |
| V16:V17          |              |          | <b></b>   | <u> </u>   |              |          |         | <u> </u>   |              |          |          |       |          | +  | +        |          |   |
| V16:V23          |              |          | i         |            | 1            |          |         |            | <br>         |          |          |       |          | +  | +        | +        |   |
| V17:V19          | · · · · ·    |          |           |            | <b>F</b>     |          |         |            |              |          |          |       |          |    | -        |          |   |
| V17:V20          |              |          |           |            | 1            |          |         |            |              |          |          |       |          |    |          |          |   |
| V17:V21          |              |          |           | <u> </u>   |              |          |         | h          | <br>         |          |          |       |          |    | +        | +        |   |
| V17:V22          |              |          |           |            | <u> </u>     | <u> </u> | · · · · |            | <br>         |          |          |       |          |    | +        | +        |   |
| V17:V23          |              |          |           |            |              |          |         |            |              |          |          |       |          |    | +        | +        |   |
| V18:V20          |              |          | · · · · · |            |              |          | ·       |            |              |          |          |       |          |    | -        |          |   |
| V20:V21          | ·            |          | <u> </u>  | -          |              |          |         | i          | <br>         |          |          |       |          |    | +        |          |   |
|                  |              |          |           |            | 1            |          |         |            |              |          |          |       |          |    | +        | +        |   |

|         | <br> |   |   |   |   |          | <br> |   | <b></b> | <br> |   |   |   |          |
|---------|------|---|---|---|---|----------|------|---|---------|------|---|---|---|----------|
| V23:V25 |      |   | Γ |   |   |          |      |   | L       |      |   | · | - | <u> </u> |
| V24:V25 |      |   |   |   |   | [        |      |   |         | <br> | _ |   |   |          |
| V24:V26 |      | 1 | Γ |   |   |          | <br> | L | L       | <br> |   |   |   |          |
| V25:V26 |      |   |   | L | L | <u> </u> | L    |   |         |      |   |   |   | •        |

|         | Age Ran | ge |   |    |   |   |   |    |    |    |    |    |    |    | -  |     |            |    |
|---------|---------|----|---|----|---|---|---|----|----|----|----|----|----|----|----|-----|------------|----|
| SH55    | 3       | 4  | 5 | 6  | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18  | 19         | 20 |
| V5:V9   |         |    |   |    |   |   |   |    |    | -  | -  |    | -  |    |    |     |            |    |
| V6:V14  |         |    |   |    |   |   |   |    |    | +  | +  | +  | +  | +  | +  |     |            |    |
| V7:V14  |         |    |   |    |   |   |   |    |    |    | +  | +  | +  | +  | +  |     |            |    |
| V7:V18  |         |    |   | I  |   |   |   |    |    |    | -  | -  | -  |    | -  | -   |            |    |
| V9:V14  |         |    |   |    |   |   |   |    |    |    |    | _  |    | +  | +  |     |            |    |
| V9:V17  |         |    |   |    |   |   |   |    |    |    |    |    |    | +  | +  | +   |            |    |
| V9:V23  |         |    |   |    | I |   |   |    |    |    |    |    |    | +  | +  | +   | +          |    |
| VII:V13 |         |    |   | Ι  |   | L |   |    |    |    |    |    |    | +  | +  |     |            |    |
| V11:V26 |         |    |   |    |   |   |   |    |    |    |    |    |    | +  | +  | +   | +          | +  |
| V12:V13 |         |    |   |    |   |   |   |    |    |    |    |    |    |    | +  |     | <b></b>    |    |
| V12:V14 |         |    | 1 |    |   |   |   |    |    |    |    |    |    |    | +  | [   |            |    |
| V12:V21 |         |    |   |    |   |   |   |    |    |    |    |    |    |    | +  | +   | <b>_</b> + |    |
| V14:V18 |         |    |   | Γ_ |   |   |   |    |    |    |    |    |    |    | -  | · · |            |    |
| V15.V18 |         |    |   |    |   |   |   |    |    |    |    |    |    |    | •  | -   |            |    |
| V16:V20 |         |    |   |    |   |   |   |    |    |    |    |    |    |    | +  | +   |            |    |
| V17:V18 |         |    |   |    |   |   |   |    |    |    |    |    |    |    |    |     |            |    |
| V17:V20 |         |    |   |    |   |   |   |    |    |    |    |    |    |    |    | +   | +          |    |
| V17:V21 |         |    |   |    |   |   |   |    |    |    |    |    |    |    |    | +   | +          | +  |
| V18:V20 |         |    |   |    |   |   |   |    |    |    |    |    |    |    |    | +   |            |    |
| V18:V23 |         |    |   |    |   |   |   |    |    |    |    |    |    |    |    | +   | +          |    |
| V23;V24 |         |    |   |    |   |   |   |    |    |    |    |    |    |    |    |     | +          | +  |
| V23:V25 |         |    |   |    |   | 1 | T | 1  |    |    |    |    |    |    |    |     | +          | +  |

# K-9 Growth fluctuation pattern maps - Individual summaries

These summaries provide a brief overview of the growth disruption and fluctuation patterns noted in each adult individual from the Sadlermiut and Sacred Heart population samples. Statures estimates for each individual are also included.

Sadlermiut Females (Appendix K, Table K-5)

### XIV-C:96

XIV-C:96 showed evidence for periods of both growth disruption and growth acceleration beginning around the age of 11 years. Growth disruption was most clearly shown between the ages of 11 and 15 years followed by a short growth acceleration between 14 and 15 years mainly affecting the later maturing BSIs of the foot, the tibia, and the maximum length of the ulna and radius. However, this brief episode of growth acceleration was then followed by another growth disruption period between 15 and 20 years of age. XIV-C:96 was one of the tallest Sadlermiut females with a stature estimate of 157.82cm.

### XIV-C:98

XIV-C:98 showed marked growth disruption between nine and 14 years of age, mainly affecting the maximum length of the tibia, the distal tibia and the maximum length of the calcaneus. Growth acceleration was also noted in this individual between the ages of 11 and 14 years, followed by another episode of growth disruption. This secondary growth disruption was mainly present between 15 and 20 years of age affecting the distal femur and lumbar vertebrae. XIV-C:98 was slightly over the stature average for the Sadlermiut females, with a stature estimate of 154.08cm.

## XIV-C:100

XIV-C:100 showed an interesting pattern of growth acceleration in her early childhood period that lasted from three years to approximately 11 years of age. Following this initial growth acceleration, this individual again showed acceleration consistently between the ages of 12 to 15 years and 15 to 20 years. There was evidence to suggest that XIV-C:100 did fall below the confidence interval as there was some mild growth disruption between the ages of 11 and 15 years primarily affecting the distal tibia and the calcaneus. A stature estimate for XIV-C:100 was not calculated due to missing skeletal data.

### XIV-C:103

XIV-C:103 showed both growth disruption and acceleration in her first three variable pairs. These data provided the preliminary information to further narrow down the age ranges in which this individual experienced either disruption or acceleration. Growth acceleration was present mainly between the ages of 12 and 15 years affecting the tibia, fibula, ulna and radius. Growth disruption appeared to be minimal for this individual but was most evident between the ages of 12 and 16 years, mainly affecting the lumbar spine. XIV-C:103 had a stature estimate that was slightly below the subsample average at 151.08cm.

## XIV-C:104

XIV-C:104 was mainly affected by growth disruption most prominent between the ages of 11 and 14 years. This disruption mainly affected the femur, fibula and humeral head. Some growth acceleration was present in this individual between the ages of 14 and 15 and affected the distal tibia, the distal femur, and the maximum length of the

humerus. The stature estimate for XIV-C:104 was below the average calculated for the Sadlermiut females at 150.00cm.

# XIV-C:105

XIV-C:105 showed a consistent growth acceleration pattern between the ages of three and 15 years, during the maturation of the maximum ulna and radius lengths. This acceleration span was further narrowed into a period between nine and 15 years. During this acceleration period there was some evidence of growth disruption between 12 and 15 years in a variety of lower limb bone variables (V16, V17 V18 and V20). The stature estimate for XIV-C:105 was lower than most of the Sadlermiut female sub-sample at 145.85cm.

## XIV-C:112

XIV-C:112 was the only Sadlermiut female to have all variable pairs fall above the confidence interval showing growth acceleration relative to the rest of the sample. Her first five variable pairs all showed evidence of growth acceleration between the ages of three and 10 years. XIV-C:112 also showed a consistent growth acceleration period between 11 and 15 years, mainly affecting the maximum length of her femur, tibia and fibula as well as femoral midshaft circumference and femoral head size. XIV-C:112 was the tallest female in the Sadlermiut female sub-sample measuring 169.04cm, which was also well above the Sadlermiut male average (164.22cm).

# XIV-C:145

XIV-C:145 showed primary growth acceleration between the ages of 11 and 15 years with no evidence of early childhood growth disruption. This acceleration mainly affected the lower limb bones and the humerus. However, there was some minimal

growth disruption during the maturation of V24 (maximum ulna length) between 15 and 16 years. A stature estimate for XIC-C:145 was not calculated due to missing skeletal data.

## XIV-C:148

XIV-C:148 was of interest in that she only showed growth acceleration in one variable pairing, V15 affecting her femoral head size, which would mature by 14 years of age. There was some evidence that growth disruption began in this individual around nine years of age; however, she more consistently showed disruption later on in her growth period between the ages of 12 and 15 years mainly affecting her lower limb bones and the maximum length of her ulna and radius. XIV-C:148 was one of the shortest individuals in the Sadlermiut female sub-sample, her stature was estimated to be 138.37cm

#### XIV-C:149

XIV-C:149 demonstrated both growth disruption and acceleration between the ages of three and 10 years and three and 15 years, respectively. This timeframe of early growth disruption was minimal, with a more consistent disruption period between the ages of nine and 14 years. Evidence of accelerated growth was present later on during growth maturation, specifically between 11 and 14 years and was focused on the maximum length of the tibia, fibula, radius and ulna. This acceleration period was then followed by a final growth disruption between the ages of 16 and 20 years, affecting both the L1 and L5 vertebrae. The stature estimate for XIV-C:149 was 153.33cm, which was above the Sadlermiut female sub-sample average.

### XIV-C:153

XIV-C:153 showed growth acceleration in her first variable pair at three years of age. Growth disruption in this individual began primarily at 11 years of age and lasted until 14 years of age. This growth disruption mainly affected the maximum length of the femur, fibula, ulna and radius, as well as the femoral head and humeral head. Some growth acceleration was present in V8, V9, V15 and V22 (humerus midshaft circumference, tibia midshaft width, femoral head diameter and maximum radius length) and occurred mainly between 12 and 14 years of age. XIV-C:153 had a stature estimate that was just slightly below the sub-sample average at 148.84cm.

### XIV-C:175

In contrast to XIV-C:112, XIV-C:175 was the only Sadlermiut female to fall consistently below the confidence interval. Interestingly, this individual had five of same the six Y variables affected as XIV-C:112 (V4 – sacrum superior surface area, V7 – maximum humerus length, V17 – maximum femur length, V20 – maximum tibia length, V22 – maximum radius length and V24 – maximum ulna length), the only difference being that in XIV-C:112, these variables were above the confidence interval and in XIV-C:175 they all fell below the confidence interval between three and 15 years of age. The variables affected were: the superior surface area of the sacrum, maximum humerus length, maximum femur length, maximum tibia length, maximum radius length and maximum ulna length. XIV-C:175 also showed a consistent growth disruption pattern between 11 and 15 years of age. XIV-C:175 was the shortest female individual not only within the Sadlermiut female sub-sample but also compared to all four sub-samples. Her stature was estimated to be 133.88cm.

### XIV-C:183

XIV-C:183 showed both growth acceleration and disruption among her first three variable pairs from early childhood into adolescence. Through the closer examination of these variables, this timeframe was narrowed down to show consistent growth acceleration between the ages of 10 and 14 years and consistent growth disruption between 11 and 15 years. Following this period of growth disruption, XIV-C:183 showed some growth acceleration in later maturing BSIs between 15 and 20 years. The stature estimate for XIV-C:183 was slightly above the average of this sub-group at 155.57cm.

# XIV-C:192

XIV-C:192 in her first two variable pairs showed that during her early childhood years she experienced a growth disruption, approximately between three and 10 years of age which was followed by accelerated growth between 10 and 20 years. Following these first two variables pairs it appeared that XIV-C:192 experienced some growth disruption between nine and 12 years mainly affecting her humerus. This period of growth disruption was then followed by acceleration between the ages of 11 and 15 years. XIV-C:192 had a stature estimate that was above the average for the Sadlermiut female subsample; her stature was estimated to be 154.45cm.

#### XIV-C:219

XIV-C:219 showed growth acceleration during early childhood between three and 10 years. This period of rapid growth was then followed by a growth disruption period where this individual fell consistently below the confidence interval between 11 and 15 years of age. Some minimal growth acceleration was also noted during this time period between the ages of 13 and 15 years. Similar to individual XIV-C:192, XIV-C:219 also had a stature estimate above the sub-sample average at 154.82cm.

# XIV-C:221

XIV-C:221 showed evidence of mild growth disruption between the ages of nine and 12 years, followed by extensive growth acceleration between 12 and 15 years of age. This growth acceleration mainly affected the lower limb bones, the foot bones and the radius. Some mild growth disruption was noted following this period of acceleration and mainly affected the later maturing BSIs in the lower legs and the spine. XIV-C:221 had a stature estimate well above the remainder of the Sadlermiut female sub-sample; this individual was estimated to have a stature of 160.81cm.

Sadlermiut Males (Appendix K, Table K-6)

# XIV-C:74

XIV-C:74 showed episodes of both growth disruption and acceleration. Acceleration was mainly present between the ages of 12 and 16 years, while disruption was evident for a longer period between 13 and 18 years. Acceleration mainly affected the radius and tibia while growth disruption was most prominent in the tibia, ulna, calcaneus and talus. The stature of XIV-C:74 was not calculated due to missing skeletal data.

### **XIV-C:99**

XIV-C:99 showed minimal growth disruption at the age of 12 years followed by significant growth acceleration from 13 years to approximately 18 years. This acceleration affected the femoral head, maximum tibia length and the calcaneus. Following this period of acceleration there was evidence of further growth disruption

between the ages of 13 and 17 years affecting the distal femur and proximal tibia. XIV-C:99 was slightly above the Sadlermiut male stature average at 168.29cm.

# XIV-C:101

XIV-C:101 was the only Sadlermiut male to show only growth disruption among his variable pairs. These disruptions were consistent between 13 and 17 years of age and mainly affected femoral head breadth and the proximal tibia. The stature average of XIV-C:101 was significantly lower than the rest of the Sadlermiut males. While the Sadlermiut male average was 164.22cm, this individual was estimated to have the shortest male stature of 152.95cm.

# XIV-C:111

XIV-C:111 mainly showed growth disruption that occurred between the ages of 10 and 16 years, affecting the patella and the proximal and distal tibia. Growth acceleration was also noted in this individual between the ages of 13 years and 17 years of age during the maturation of the calcaneus and the femur. Similar to XIV-C:101, XIV-C:111 was also estimated to have a shorter stature than the remainder of the Sadlermiut male sub-sample at 156.32cm.

# XIV-C:117

XIV-C:117 showed early childhood acceleration and disruption as the first two variable pairs fell consistently above the confidence interval, while the next two variables fell below the confidence interval. Growth disruption was also evident between the ages of 10 and 20 years, affecting most of the later maturing variables in the legs, the foot and the spine. Between the ages of 12 and 17 years, growth acceleration was present and affected the tibia, patella, the proximal and distal femur and the proximal tibia. The stature estimate of XIV-C:117 160.43cm, slightly less than the Sadlermiut male average.

# XIV-C:126

XIV-C:126 mainly showed patterns of growth disruption, specifically between the ages of 10 and 17 years of age. Variables affected during this disruption were: the calcaneus, the talus and the thoracic and lumbar vertebrae. After this initial period of growth disruption, XIV-C:126 was again affected by disruption between 18 and 20 years. Some growth acceleration was noted between the ages of 12 and 16 years mainly affecting the tibia, humerus and patella. The stature estimate for XIV-C:126 was 162.68cm.

## XIV-C:156

XIV-C:156 mainly showed patterns of growth acceleration that were most dominant between the ages of 12 and 17 years. This growth acceleration period mainly affected the humerus, femoral head, maximum femur length, proximal tibia and the calcaneus. Some minimal growth disruption was evident but only in variables V24 and V26 (T12 superior surface area and L5 superior surface area) which fell between the ages of 16 and 20 years. XIV-C:156 had a stature estimate that was above most of the remainder of the Sadlermiut male group at 169.04cm.

# XIV-C:157

XIV-C:157 primarily demonstrated growth disruption beginning at four years of age which continued until approximately 17 years of age. By examining later maturing variables this time frame was narrowed down to show that XIV-C:157 consistently fell below the confidence interval between 10 and 17 years of age. The BSIs affected the

most by this disruption included both arm and leg bones. Some evidence of growth acceleration was present in this individual affecting the lumbar vertebrae. The stature estimate for XIV-C:157 was 164.17cm.

# XIV-C:179

XIV-C:179 primarily showed growth acceleration that began at approximately 12 years of age and lasted until 17 years of age, followed by a mild acceleration period between 19 and 20 years. These acceleration periods mainly affected the tibia, femoral head, talus and pelvic width. There was some evidence of growth disruption in XIV-C:179 affecting variables V10, V17, V21 and V22 (radial head diameter, maximum tibia length, maximum calcaneus length and posterior length of calcaneus) and occurred between 13 and 16 years and 17 and 19 years. XIV-C:179 had an estimated stature of 163.05cm, slightly less than the sub-sample average.

# XIV-C:181

XIV-C:181 was the only Sadlermiut male to demonstrate only growth acceleration during the growth and development time period. Beginning at approximately 12 years of age XIV-C:181 showed accelerated growth up to 19 years of age affecting nearly all variables in his arms, legs, vertebrae and feet. This individual also had a higher stature estimate than the Sadlermiut male sub-sample at 170.16cm.

## XIV-C:182

XIV-C:182 showed significant growth acceleration during much of his growth and development period, specifically between the ages of 10 and 20 years. A growth disruption period was also evident during the same time period between the ages of 12 and 17 years, affecting the humerus, radius, femoral head, maximum tibia length, lumbar vertebrae and the calcaneus. XIV-C:182 was one of the male individuals from this subsample that had a stature estimate below average at 157.44cm.

# XIV-C:216

XIV-C:216 showed both growth disruption and acceleration in the first two variable pairs, with disruption lasting from four to 10 years of age. The growth acceleration was much more significant in that it spanned from four years to 19 years of age. This acceleration estimate was further narrowed down by examining later maturing variables and is most evident between the ages of 12 and 17 years. This acceleration period mainly affected the humerus, ulna, tibia and femur. There was some growth disruption between the ages of 13 and 17 years followed by another brief disruption at the end of the growth period between 18 and 20 years. The stature estimate for XIV-C:216 was 164.92cm, similar to the sub-sample average.

### XIV-C:217

XIV-C:217 demonstrated a distinct period of growth acceleration between the ages of 12 and 19 years affecting the calcaneus, lumbar vertebrae and pelvic width. However, this individual also showed evidence of growth disruption where he consistently fell below the confidence interval between the ages of 13 and 17 years. During this period of disruption the humeral head, calcaneus and proximal and distal femur were affected. XIV-C:217 had an estimated stature of 165.67cm.

#### XIV-C:230

XIV-C:230 showed an interesting pattern of growth disruption and acceleration through his period of growth and development. Growth acceleration was noted in his first variable pair between the ages of four and 10 years. This acceleration was then followed by significant disruption from approximately 12 years of age to 20 years of age. This growth disruption mainly affected the humerus, the femoral head and the lumbar vertebrae. During this lengthy period of growth disruption, XIV-C:230 did show some evidence of acceleration but only in four variables affecting the fibula, femur and width of the pelvis. XIV-C:230 showed the tallest stature in the Sadlermiut male sub-sample. While the average stature estimate was 164.22cm, XIV-C:230 had an estimated stature of 176.89cm.

# XIV-C:243

XIV-C:243 showed early childhood growth acceleration between the ages of four and 10 years. This acceleration period was then followed by a significant growth disruption period from 12 to 17 years of age. This disruption mainly targeted the calcaneus, the lumbar vertebrae, the distal femur and proximal tibia. Some minimal growth acceleration was present between the ages of 13 and 17 years. The stature estimate for XIV-C:243 was 169.78cm, slightly above the sub-sample average.

### XIV-C:246

XIV-C:246, similar to XIV-C: 126, mainly showed growth disruption. The first disruption period was during the early childhood years between four and 10 years. This period of disruption was then followed by acceleration between 12 and 17 years, which mainly affected the talus, calcaneus and the femur. Also during this period of acceleration XIV-C:246 experienced another episode of growth disruption between the ages of 13 and 17 years of age. Slightly below the sub-sample stature average, the stature estimate for XIV-C:246 was 161.56cm.

### Sacred Heart Females (Appendix K, Table K-7)

### **Individual 5**

Individual 5 showed growth disruption mainly between the ages of 12 and 14 years affecting the growth of the femur and cranium. Growth acceleration was also present in Individual 5 between 12 and 15 years affecting tibial, radial and ulnar length. Individual 5 had an estimated stature that was slightly less than the sub-sample average at 157.82cm.

### Individual 9

Individual 9 showed an interesting pattern of growth and development in her early stages of maturation; in particular she demonstrated both disruption and acceleration from three to 11 years of age affecting her distal humeral joint and her interorbital breadth. After this initial period, Individual 9 consistently fell below the confidence interval between the ages of 11 and 14 years which affected some of her lower limb bones and later maturing cranial features; however, she did move above the confidence interval around 13 years of age and continued to show accelerated growth in later maturing BSIs. Individual 9 had a stature estimate that was far below the remainder of the Sacred Heart female sub-sample at 151.83cm.

### **Individual 24**

Individual 24 showed two primary growth disruption events during her growth and development period, specifically between the ages of nine and 13 years and 14 and 16 years. In only one Y variable (V16), did Individual 24 fall above the confidence interval, which occurred at 14 years and affected her femoral head breadth. Because Individual 24 fell below the confidence interval during her later period of growth, it can be assumed that no catch-up growth occurred, or that it may have occurred once certain BSIs had already passed their growth threshold and no longer had the capacity to "catchup" in size. The stature estimate of Individual 24 was 160.06cm.

# **Individual 71**

Individual 71 had a distinct pattern of growth acceleration between the ages of three and 11 years, primarily affecting the growth of the humerus. There was some evidence that this individual experienced mild growth disruption between the ages of 12 and 15 years affecting the overall size of the lower limb bones; however, there does appear to be further growth acceleration after 15 years in other later maturing BSIs. The stature estimate of Individual 71 was slightly below the Sacred Heart female sub-sample average at 158.56cm.

## **Individual 88**

Individual 88 demonstrated minimal growth disruption during her growth and development period. Between the ages of nine and 12 years, Individual 88 showed mild signs of growth disruption as she consistently fell below the confidence interval while her upper limb bones were reaching maturity. She did however, demonstrate extensive accelerated growth between the ages of 12 and 15 years when her lower limb bones were reaching maturity. Individual 88 had a stature estimate that was slightly above the remainder of the female sub-sample at 162.68cm.

### **Individual 97**

Individual 97 was the only Sacred Heart female who fell above the confidence interval in all variable pairings. Between the age of 13 and 16 years Individual 97 was consistently above the confidence interval demonstrating accelerated growth of her lower limb bones, specifically the distal tibia, distal femur and calcaneus. The statures estimate for Individual 97 was well above the remainder of the Sacred Heart female sub-sample at 166.79cm.

### Individual 114

Individual 114 showed early signs of growth acceleration as she consistently fell above the confidence interval during the maturation of her cranial features and femur. The timeframe of this acceleration was mainly between nine and 13 years. There was evidence of growth disruption between the ages of 13 and 15 years as she fell below the confidence interval during the maturation of her foot bones, lumbar spine and tibia. The stature estimate calculated for Individual 114 was 154.45cm, falling below the subsample average.

### **Individual 120**

Individual 120 fell above the confidence interval in almost all variable pairings; however there was some evidence of early growth disruption in regards to cranial and spinal column growth up to the age of 10 years. Accelerated growth was consistent in Individual 120 in both the arm and leg bones that mature up to the age of 15 years, after which Individual 120 resumed a normal trajectory within the Sacred Heart female sample. Individual 120 was the tallest Sacred Heart female with a statures estimate of 173.15cm.

### Individual 122

Individual 122, comparable to Individual 97, fell above the confidence interval in almost all of her variable pairings. The only exception to this was V13 (maximum mandible breadth) which fell consistently below the confidence interval. This evident

growth acceleration was primarily in the lower limbs bones, specifically the femur. The stature estimate for Individual 122 was well above the sub-sample average at 166.79cm.

# **Individual 124B**

Individual 124B demonstrated two growth disruptions between the ages of three and 10 years and 12 and 14 years as she consistently fell below the confidence interval. Between the age of nine and 14 years there was some evidence of growth acceleration in the foot bones and the later maturing cranial bones as Individual 124B moved above the confidence interval. In her final stages of growth and development Individual 124B again fell below the confidence interval at 20 years of age. The stature estimate for Individual 124B was considerably shorter than most of the Sacred Heart female sub-sample at 153.33cm.

Sacred Heart Males (Appendix K, Table K-8)

# **Individual 30**

Individual 30 was the only individual in the Sacred Heart male sample that fell consistently above the confidence interval in every variable pair. The largest growth acceleration in this individual was between the ages of 12 and 17 years. There were no variables that fell below the confidence interval. Individual 30 was one of the tallest males from the Sacred Heart male sub-sample, with an estimated stature of 186.61cm.

# **Individual 33**

Individual 33 primarily showed growth acceleration between the ages of 13 and 17 years, with some evidence of growth disruption during the maturation of the upper arm bones, the foot bones and the lower spine between 16 and 18 years as well as 19 and

20 years. Similar to Individual 30, Individual 33 had the tallest estimated stature of the sub-sample at 188.48cm.

# **Individual 55**

Individual 55 showed accelerated growth between the ages of 13 and 17 years which affected the proximal femur, the calcaneus and the spine. Evidence of growth disruption was only present in V9 (patella maximum breadth) and V18 (proximal tibia breadth) and was present between the ages of 13 and 16 years, followed by further growth acceleration up to 20 years of age. Individual 55 has a stature estimate slightly greater than the sub-sample average at 179.51cm.

# **Individual 64**

Individual 64 demonstrated both accelerated and disrupted growth in his first two variable pairs. The accelerated growth lasted between the ages of 10 and 18 years while the growth disruption period was between 10 and 20 years. This was then followed by accelerated growth between 13 and 18 years and evidence of another growth disruption between 13 and 18 years. Growth acceleration mainly affected the lower limb bones, specifically the femur and tibia while the growth disruptions mainly affected the upper limb bones and the spine, in particular the ulna and the thoracic vertebrae. Individual 64 had a stature estimate of 180.63cm.

# **Individual 72**

Individual 72, in contrast to Individual 30, was the only Sacred Heart male individual that fell completely below the confidence interval in all variable pairs. This growth disruption affecting Individual 72 was present mainly between the ages of 16 and 18 years. Individual 72 had a stature estimate slightly shorter than the sub-sample average at 174.64cm.

# **Individual 73**

Individual 73 showed growth acceleration in his first set of variable pairs suggesting the acceleration of growth between four and 12 years, perhaps in response to growth disruption occurring before four years of age. This acceleration period was then followed by a growth disruption between the ages of 12 and 17 years and again in the final stages of growth between 18 and 20 years. There was some evidence of accelerated growth after the initial period of growth disruption particularly in the proximal tibia between 17 and 18 years. The stature estimate for Individual 73 was far below the stature average for this sub-sample at 167.91cm.

### **Individual 83**

Individual 83 showed consistent growth disruption between the ages of four and 20 years as was illustrated in his first two variable pairs. Growth acceleration, possibly in response to this growth disruption, was evident between the ages of 10 and 17 years. This acceleration mainly affected the femur, tibia and foot bones of this individual. Further growth disruption was evident between the ages of 12 and 18 years also affecting the femur, tibia and the ulna. Individual 83 had a comparable stature estimate to the sub-sample average at 176.14cm.

### **Individual 115**

Individual 115 showed accelerated growth during the early period of growth and development, which was perhaps in response to a growth disruption that occurred before the age of four years. There was also a consistent disruption shown between the ages of

12 and 17 years affecting the patella and the femur. This disruption episode was then followed by another acceleration of growth between the ages of 17 and 18 years with further disruption shown at the very end of the adolescent maturation period around 20 years of age. The stature estimate for individual 155 was 175.02cm.

### **Individual 139**

Individual 139 demonstrated both growth disruption and acceleration in his first two variable pairs between the ages of four and 19 years. This age range was further narrowed down to show the majority of growth disruption between 13 and 20 years and acceleration between 10 and 16 years. Growth disruption mainly affected his spine, lower limbs and foot bones and growth acceleration was most evident in his lower limb bones. Individual 139 had a stature estimate very similar to the sub-sample average at 176.14cm.

### **Individual 145**

Individual 145 showed an interesting pattern of growth disruption and acceleration. This individual consistently fell below the confidence interval in all variable pairs except for the Y variable V25 (L1 superior surface area) which fell above the confidence interval. This suggested that a growth disruption occurring before the maturation of V25 at 20 years caused this acceleration, which may explain the extensive period of growth disruption in Individual 145. This disruption period occurred mainly between the ages of 10 and 17 years. Individual 145 had the shortest estimated stature in this male sub-sample at 159.31cm.