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ABSTR ACT

Diagnosis of diseases is often based on biomarkers with continuous measurements. 

The discriminative ability of a biomarker can be depicted by a receiver operating 

characteristic (ROC) curve, which shows simultaneously the proportions of both ab

normal and normal subjects correctly diagnosed at various cutoff points in the marker 

values. The area (A) under the ROC curve is commonly used to measure the ability 

of the marker to distinguish between two populations. Many biomarkers are subject 

to measurement error, which must be taken into account in statistical inference for 

A to avoid misleading results. Assuming a normal distribution for biomarker values, 

this thesis developed a confidence interval procedure for A adjusted for random mea

surement error that can be quantified by an external reliability study. The basis of 

the new procedure is the method of variance estimates recovery. Simulation results 

show that this procedure outperformed the one based on the Delta method. The 

methodology is illustrated by a data set from a study using thiobarbituric acid reac

tion substance to diagnose cardiovascular disease.

Keywords: diagnosis, coverage, Delta method, simulation
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Chapter 1

INTRODUCTION

1.1 What is a receiver operating characteristic curve?

Many diseases are diagnosed on the basis of biomarkers, which are indicators used to 

measure particular states of diseases or the effects of treatments. The discriminative 

ability of a biomarker can be depicted by a receiver operating characteristic (ROC) 

curve.

The ROC curve is a plot of test sensitivity (i.e. true positive rate) on the y-axis 

versus 1-specificity (i.e. false positive rate) on the x-axis for all possible cutoff points 

(see Fig. 1.1 for three possible cutoff points). Cutoff points are decision thresholds 

used to classify people into “abnormal” and “normal” groups. Thus the ROC curve 

is a graphic means for assessing the ability of a diagnostic test to discriminate be

tween “abnormal” and “normal” subjects. The shape of a ROC curve is determined 

by the amount of overlap between the distributions of test results of “abnormal” and 

“normal” subjects, reflecting the discriminating ability of the test.

1.2 W h y is the R O C  curve useful in epidemiology studies?

Diagnostic tests, such as laboratory tests (e.g. blood, urine tests), diagnostic imaging 

(e.g. X-rays, ultrasound) etc., play an important role in the practice of medical care. 

The performance of a diagnostic test or biomarker is a problem of diagnostic accuracy, 

which is the capability of a test to tell the difference between individuals with and 

without the disease of interest.
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Figure 1.1: Each point on the ROC curve corresponds to a cutoff point. Note: “TN” 
means “true negative rate” , “FN” means “false negative rate” , “TP” means “true 
positive rate” and “FP” means “false positive rate” .

There are a variety of performance measures to quantify the accuracy of a di

agnostic test, such as sensitivity, specificity, positive and negative predictive values, 

accuracy and likelihood ratios. Of them, sensitivity and specificity are two commonly 

used measures to evaluate the diagnostic accuracy (Van Erkel and Pattynama, 1998). 

Sensitivity measures how well a test detects the presence of disease in the individuals 

who are actually in disease status. In other words, sensitivity is the true positive 

rate of correctly diagnosing an “abnormal” individual. Specificity quantifies how well 

a test identifies the absence of disease in the population who are in fact in healthy 

status. That is, specificity is the true negative rate of accurately recognizing a “nor

mal” individual. If diagnostic tests give dichotomous results, such as “yes” or “no” , 

sensitivity and specificity can be easily calculated by a 2x2 contingency table. In 

practice, however, many diagnostic tests provide ordinal results (e.g. the presence of 

disease - definitely, probably, possibly, probably not, definitely not) and continuous
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cutoff point value

Test results

Figure 1.2: Binormal distributions. Note: “TN” means “true negative rate” , “FN” 
means “false negative rate” , “TP” means “true positive rate” and “FP” means “false 
positive rate” .

results (e.g. blood pressure). Consequently, a cutoff point must be chosen to classify 

the ordinal and continuous results into dichotomous results. Since the distributions of 

test results that indicate the presence or absence of a disease usually overlap to some 

extent, any single cutoff point or decision criterion may misclassify some “abnormal” 

individuals as “normal” , or some “normal” as “abnormal” (see Fig.1.2). Therefore, 

both sensitivity (i.e. true positive rate) and specificity (i.e. 1 - false positive rate) may 

vary as the cutoff point shifts. A lower cutoff point value will give a higher sensitivity 

and a lower specificity, or vice versa. Using sensitivity and specificity to describe the 

diagnostic accuracy of a test without presenting a cutoff point may be ambiguous and 

misleading. Also, it is difficult to compare two or more tests only based on a pair 

of sensitivity and specificity. Consequently, both sensitivity and specificity must be 

presented along with the corresponding cutoff point.

The ROC curve, on the other hand, can overcome the limitation that sensitivity
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and specificity change as the cutoff point shifts. In fact, it is the tradeoff between 

the sensitivity and specificity of a diagnostic test, taking the variability of all possible 

cutoff points into account. Since both sensitivity and specificity are determined by 

the discriminative ability of a test, they are independent of disease prevalence. The 

ROC curve describes the test diagnostic accuracy apart from both cutoff point effect 

and disease prevalence (Metz, 1978). Moreover, the ROC curve offers a direct visual 

comparison for two or more tests on a common set of scales at all possible cutoff 

points, making it a more convenient tool for comparing two or more tests.

1.3 What is the area under the R O C  curve?

Usually, when applying ROC curve to evaluate the discriminative capability of a 

diagnostic test, it is convenient to summarize the information of the ROC curve into 

a single index. Of several such summary indices, such as area-related, slope-related 

and intercept-related index (McNeil and Hanley, 1984; Shapiro, 1999; Greiner et a l , 

2000), the area (-A) under the ROC curve is a commonly used index in practice. The 

major reason is that A is independent of decision criteria, thus reducing the cutoff 

point effect on sensitivity and specificity (Van Erkel and Pattynama, 1998). It can 

be shown that A =  P (Y  > V ) (Bamber, 1975), where Y  is the measured value of a 

biomarker on a randomly chosen “abnormal” subject, and X  is the value of the same 

marker measured on a randomly chosen “normal” subject. Thus A is the probability 

that a randomly selected subject in “abnormal” group will have a higher test value 

than that of a randomly selected subject in “normal” group.
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Assuming normality of biomarker measured values, A is given by:

P (Y  > X ) P (Y  -  X  > 0)

(Y -  X ) -  (fly -  fiX)

V a Y +  a X
>

-(^ y  -  fix)

V a Y + <4
under

normal
assumption p z >

p z  <

- ( f ly  -  fix)

V*Y +  *X

flY ~ fix 
y / a fT o j

3>

So A can be written as

A =  $(S)

fJ-Y -  Hx 
V a Y +  a X

s = ¡¡•Y -  Hx ( 1.1)
V aY +  °X  ’

where $  is the standard normal cumulative distribution function, fiy and fix are the 

mean of test values on “abnormal” and “normal” subjects, while Oy and a2x  are the 

variance of test values on “abnormal” and “normal” subjects. In words, A is a function 

for the ratio of mean difference of test values on “abnormal” and “normal” subjects 

to the square root of the sum of variance for “abnormal” and “normal” subjects.

For non-normally distributed test results, A can be estimated based on the Mann- 

Whitney-Wilcoxon statistic (Bamber, 1975; Hanley and McNeil, 1982).

As a probability, the value of A can range from 0.0 to 1.0. A test with an area 

of 1.0 is a perfect test since the sensitivity (true positive rate) is 1.0 while the 1 - 

specificity (false positive rate) is 0.0. Namely, there is no overlap between the dis

tributions of “abnormal” and “normal” subjects. The test can separate “abnormal” 

and “normal” subjects perfectly. On the other hand, A with the value of 0.5 gives 

no information for the accuracy of a test. A test with an area of 0.5 distinguishes 

the “abnormal” and “normal” subjects by pure chance. The ROC curve in this case 

is actually the diagonal of the unit square. Any improvement in false positive rate
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Figure 1.3: The comparison of the area under the ROC curve

comes along with a corresponding decline in the false negative rate. There is no dif

ference between the distributions of “abnormal” and “normal” subjects, because the 

distributions of the “abnormal” and “normal” subjects totally overlap. A test with 

an area of 0.0 means that the test results are totally inaccurate. That is, this test can 

separate the “abnormal” and “normal” subjects as perfect as that with an area of 1.0, 

but mistakenly marks all the “abnormal” subjects as “normal” and all the “normal” 

individuals as “abnormal” . In this case, it is convenient to compare the performance 

of the tests by changing the decision rule such that the test results can be converted, 

and the ROC curve thus can be flipped above the diagonal and have an area value 

greater than 0.5. Therefore, the practical range for A is from 0.5 to 1.0. A test with 

an area greater than 0.5 can provide evidence that it has the ability to distinguish 

between the “abnormal” and “normal” individuals. The closer to 1.0 the value of A 

is, the higher diagnostic accuracy the test has.



7

1.4 Confidence interval for the area under the R O C  curve

Since A can summarize the information of the ROC curve, statistical inference in ROC 

curve study can be made by constructing a confidence interval for A. As shown in 

equation (1.1), A is a monotonic function of <5, a ratio of mean and standard deviation. 

Hence, the estimation of a confidence interval for A is equivalent to that for 5. An 

intuitive approach is to apply the Delta method, resulting in a symmetric confidence 

interval. However, as pointed out by Efron and Tibshirani (1993, p.180), such interval 

may perform poorly in practice due to its enforced symmetry. An alternative is to 

extend the method of variance estimates recovery as discussed by Zou and Donner 

(2008). This method was termed “MOVER” by Zou (2008) and can construct a 

confidence interval that reflects the asymmetric variance. This will be the focus in 

the rest of this thesis.

1.5 W h y is measurement error a concern?

Measurement error is any discrepancy between true value and measured value (Koepsell 

and Weiss, 2003). It includes systematic error and random error. Systematic error 

can be caused by any factor that systematically affects measurements of the variables 

across samples, such as variation in laboratory equipment, inappropriate scale set

ting, etc. It is predictable error of measurement. Random error may be caused by 

any factor that randomly affects measurements of sample variables, such as temporal 

change in operator, data entry mistake before analysis. It is unpredictable.

Measurement error is a major source of bias in epidemiological studies. Usually, 

systematic error affects the mean of observed variable and is called bias. Random 

measurement error affects the variability around the mean and thus can introduce 

over-dispersion in the outcome. Both systematic and random errors can be either 

“differential” or “non-differential.” Differential measurement error can cause the ob

served association between exposures and the outcome to have stronger or weaker
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relationship than the truth, or can result in an opposite association, thus giving a 

totally fallacious conclusion for the study. Non-differential measurement error can 

attenuate the null value of no association when evaluating the association between 

exposures and the outcome. As a result, it gives a less power for a study to detect 

an association for a fixed sample size, or requires a larger study sample size to have 

the same power to detect the true relationship between exposures and the outcome, 

making a statistically significant difference more difficult to achieve (Armstrong et al, 

1992).

Normally, quality control measures in laboratories are used to calibrate mea

surement methods and prevent systematic error. Thus, the effect of non-differential 

systematic error on exposure-disease relationships is easy to predict. However, differ

ential measurement error can introduce unpredictable bias into a study, even though 

it can be prevented by a good study design to some extent (Thomas et al., 1993), 

and non-differential random measurement error is difficult to prevent. Therefore, the 

highest priority in study design and the conduct of study is to eliminate differential 

and non-differential measurement errors.

1.6 W h y is a reliability study needed?

Measurement error can cause serious adverse effects on the results of a study. Thus, 

accurately assessing the amount of measurement error and then correcting error are 

important in an epidemiologic study.

Different from systematic error, which is a primary issue of validity that concerns 

how accurately a measurement represents the truth, measurement error is the basic 

concern of reliability, which focuses on the extent to which a test yields the same re

sults across repeated measurements (Carmines and Zeller, 1979, p .ll). In other words, 

a measure can be trusted if it is stable over time and consistent between observers. 

Consequently, a reliability study, which estimates the consistency of measurements,
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is needed to obtain the measurement error information that can be used to adjust the 

measure for the effect of measurement error.

Reliability studies include external reliability study, which means the replication 

is conducted on an independent set of subjects at the same time with the main study, 

and internal reliability study, which means the replication is carried out on a subset 

of subjects of the main study. In this thesis, measurement error is estimated by an 

external reliability study. The details of reliability studies will be discussed in section 

(2.4) and section (3.1.2).

1.7 The objective o f  the thesis

Epidemiologists have recognized that the statistical analysis of epidemiological data 

must take the measurement error into account (Liu et al, 1978; Ferrari et al, 2007; 

Thiebaut et al., 2008). The awareness that measurement error has been among the 

major weakness of epidemiologic studies stimulates methodological researches to cor

rect the error. A number of statistical methods have been proposed for correcting 

measurement error (Fuller, 1987; Spiegelman et al., 2005; Cole et al., 2006).

In the studies of the area under the ROC curve, researchers have also developed 

methods to adjust the estimate and confidence interval due to measurement error.

Schisterman et al. (2001) presented a corrected estimate and confidence interval for 

A based on the Delta method, assuming the measurement error based on an external 

reliability study is normally distributed.

Since a confidence interval for A can be obtained through that for a ratio of mean 

difference to its standard deviation, we can first obtain the corresponding confidence 

limits, and then apply the MOVER to obtain the confidence interval for A. This is 

the foundation for the method proposed in this thesis.

This thesis will compare the Delta method and MOVER approach to construct a 

confidence interval for A, taking the measurement error into account. The methods
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will be compared in terms of coverage probability, interval width and the symmetry 

of tail errors.

1.8 Organization o f  the thesis

The rest of the thesis is organized as follows. Chapter 2 presents the literature review 

for the development of the ROC curve and the area under the ROC curve. Chapter 3 

describes the theoretical background of the Delta method and the MOVER approach 

and shows how to apply these two methods to construct an approximate confidence 

interval for the area under the ROC curve in the presence of random measurement 

error. Chapter 4 shows the results and conclusions of simulation studies for com

paring the performances between the Delta method and the MOVER approach. An 

example of Thiobarbituric acid reaction substances (TBARS) biomarker is presented 

in Chapter 5, and the thesis is concluded with a discussion.
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Chapter 2

LITERATURE REVIEW

2.1 A  brief history o f  the R O C  curve

The development of the ROC curve was based on signal decision theory (Wald, 1950). 

It can be traced back to the work done in electronic communications in the early 1940s 

and first appeared in the literature in the early 1950’s (Van Meter and Middleton, 

1954; Peterson et a l , 1954). It was Peterson and Birdsall who showed how to plot the 

data to get an ROC curve when applying statistical decision theory to radar detection 

problems, in which it was necessary for an observer to distinguish a signal plus noise 

from noise alone.

By the mid 1960’s, the ROC curve had been widely used in visual and auditory 

experiments in psychology and psychophysics. Tanner and Swets (1954) studied the 

human observer’s behavior in detecting light signals and briefly presented a new theory 

in the visual detection, assuming the false-alarm rate and correct detection varied 

together, as well as that the neural activity was a monotonically increasing function 

of light intensity, not necessarily linear. Based on Tanner and Swets’ work, Swets 

et al (1961) described the theory of ROC analysis adequately by four more vision 

experiments in addition to the first experiment described in Tanner and Swets (1954). 

The ROC curve was also used in the later work of Swets (1964, 1973) and Green and 

Swets (1966) on the detection and recognition of auditory and visual signals.

Lusted (1968), a radiologist, considered that the ROC curve for medical diagnosis 

had the same meaning as it did in signal detection studies, and then introduced 

ROC analysis into medical decision making. Lusted (1971 a, b) applied signal detection
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theory, of which the essential feature was the ROC curve, to evaluate the performance 

of criteria for radiologists’ assistants and radiologic systems. From then on, ROC 

analysis began to be widely used in medical imaging and other medical diagnosis. 

Goodenough et al. (1974) used the ROC curve to described the detectability of the 

image of some tiny beads in a noisy background of a radiographic mottle. Metz 

(1986a) showed that ROC analysis was the most meaningful approach after comparing 

the advantages and limitations of various traditional techniques and ROC analysis to 

assess the diagnostic performance. Also, using the ROC curve, Han and Kim (1998) 

evaluated the diagnostic ability of several cephalometric measurements in determining 

the presence of two different class of skeletal patterns by ROC curve, and Boquete 

et al. (2003) assessed the diagnostic accuracy of an insulin-like growth factor and 

a binding protein in growth hormone-deficient children and adults. Today, ROC 

analysis plays a crucial role in the field of medical diagnosis.

2.2 The indices o f  accuracy based on the R O C  curve

Several indices related to the ROC curve have been used to evaluate the accuracy of 

a test.

2.2.1 A two-parameter index

A two-parameter index termed D(Am, s) is used in the situation that the “abnormal” 

and “normal” individuals follow normal distributions with unequal variances. Am 

denotes the difference between the means of two normal distributions with unequal 

variance. Its value is equal to the absolute normal-deviate value of false positive rate, 

z(D|n), at the intercept point on the ROC curve where the normal-deviate value of 

true positive rate, z(D\d), is zero. Usually, Am is presented along with s, the slope of 

the ROC curve at the intercept point, as the two-parameter index termed D (A m ,s) 

to give the information of the entire ROC curve.
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2.2.2 Youden index

Youden index, J, which was first presented by Youden (1950), is a global measure of 

overall diagnostic effectiveness. It is a function of sensitivity and specificity Faraggi 

(2000) and Reiser (2000) pointed out that it was the optimal cutoff point that maxi

mizes the discriminating ability of a diagnostic marker when equal weight was given to 

sensitivity and specificity. Graphically, J is the maximum vertical distance between 

the ROC curve and the diagonal chance line. Its value ranges from 0.0, indicating an 

ineffective test, to 1.0, meaning a perfect effective test.

2.2.3 Likelihood ratio

Different from the “likelihood” used in statistical inference, a likelihood ratio here is 

defined as the ratio of the probability of a particular test result among individuals 

with the disease of interest to the probability of the same test result among individuals 

without the disease of interest (Fletcher et a/., 1988). In other words, likelihood ratio 

is the ratio of sensitivity (i.e. true-positive fraction) to (1 - specificity) (i.e. false

positive fraction). Actually, it is the slope of a ROC curve at a given cutoff point. It 

describes how many times more (or less) likely a particular test result can be found 

in “abnormal” individuals, compared to “normal” individuals, and summarizes the 

information of sensitivity and specificity. The disadvantage of using likelihood ratio 

is that it is an odds rather than a probability. Also, the report of the likelihood ratio 

must be accompanied by a cutoff point.

2.2.4 The area under the ROC curve

The area under the ROC curve, once was called Az, is defined as the proportion of the 

total area of the ROC graph that lies under an ROC curve. This index is recommended 

for describing the ROC curve (Wolfe and Hogg, 1971; Swets and Pickett, 1982) because 

it is less affected by the location of the point on the curve and thus independent of
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cutoff point effect.

Green and Swets (1966) explained the meaning of A in terms of the result of a 

signal detection experiment, in which A corresponds to the probability of correctly 

identifying “signal plus noise” from “noise” among two stimuli. Also, suppose Y  is 

the measured value of a biomarker on a randomly chosen “abnormal” subject, and X  

is the value of the same marker measured on a randomly chosen “normal” subject, 

Bamber (1975) pointed out that A — P (Y  > X ). Based on Bamber’s result, Hanley 

and McNeil (1982) interpreted A as the probability that a randomly selected subject 

in “abnormal” group will have a higher test value than that of a randomly selected 

subject in “normal” group.

2.3 Confidence intervals for the area under the R O C  curve

Usually, diagnostic test results can be measured in dichotomous (e.g. disease positive 

or negative), ordinal (e.g. the presence of disease - definitely, probably, possibly, 

probably not, definitely not) and continuous (e.g. blood pressure) scales. According 

to the types of diagnostic test outcomes, many approaches proposed in literatures 

for estimating A can be classified as parametric, non-parametric and semi-parametric 

approaches, respectively.

2.3.1 Parametric approach

A simple parametric approach for estimating A is to assume that X  and Y, the di

agnostic test measurements on the “normal” and “abnormal” subjects, respectively, 

are independent and distributed as classic models, such as normal, log-normal, expo

nential (Green and Swets, 1966) and gamma (Pham and Almhana, 1996) etc. The 

most popular model is the binormal model, which was developed by Dorfman and Alf 

(1969). It assumes that the test results of “abnormal” and “normal” subjects follow 

normal distributions with different means and variances. Dorfman and Alf (1969) and
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Grey and Morgan (1972) applied maximum likelihood method to obtain the variance- 

covariance matrix and confidence interval for the binormal model. In this model, two 

parameters can be used to describe the ROC curve. Let a represents the “y-intercept” 

and b represents the “slope” of a particular ROC when the ROC curve is plotted as 

straight lines on “normal-deviate” axes. In terms of a pair of normal distributions, 

a stands for the difference between the conditional means, relative to the standard 

deviation of the distribution of the actually abnormal subjects, and b stands for the 

ratio of the standard deviations of the distributions for the actually normal subjects 

to the actually abnormal subjects (Metz, 19866).

Then A can be expressed as

A =  $(ô) Ô = Hy — Hx
\/l +  b2 y'Vy + ax

where $  is the standard normal cumulative distribution function.

Using the Delta method (Rao, 1973), Wieand et al (1989) derived the variance 

of 5, given by

-  1 /  a \  dy \  52 f  &x
d2x  +  dy \nx riy)  2(5^ +  dy)2 \nx — 1 "** ny — 1

The advantage of the parametric approach is that it can create a smooth ROC 

curve that is defined by a small number of parameters, from which the statistical 

inferences are derived. However, this approach for the estimation of A is sensitive 

to the departure from assumptions. In practice, the assumptions in the parametric 

approach may not be completely satisfied (Goddard and Hinberg, 1990). In such 

a case, non-parametric methods that estimate the confidence interval of A without 

making distributional assumption are preferred.

2.3.2 Non-parametric approach

Non-parametric procedures are the appropriate methods to estimate A based on con

tinuous test results in that they need no assumption about the distributions of the
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“abnormal” and “normal” subjects, and no parameter is needed to model the ROC 

curve. Non-parametric methods use the empirical ROC curve, which asymptotic 

properties have been derived by Hsieh and Turnbull (1996), to evaluate A.

The Mann-Whitney-Wilcoxon statistic is one of the popular non-parametric inter

val estimators for A. When estimated by the trapezoidal rule, Bamber (1975) showed 

that A is linked to the Mann-Whitney U statistic, which is used for comparing distri

butions of test results from two samples. Based on the variance equation of Noether 

(1967), Bamber also derived a formula for the variance of the Mann-Whitney U for 

A. Hanley and McNeil (1982) indicated that A measured the same quantity that was 

estimated by the Wilcoxon statistic.

Kernel density estimation is another non-parametric method for the estimation 

of A. It calculates A based on the ranks of the observations in the combined sample 

and, therefore, is free of distributional assumptions (Campbell, 1994). Zou et al 

(1997) showed that a smoothed ROC curve can be obtained using kernel density 

estimation. Lloyd and Yong (1999) recommended the kernel-based ROC estimator 

rather than the fully empirical estimator in terms of the asymptotic accuracy. This 

is consistent with the results of Hsieh and Turnbull (1996) who studied kernel-based 

and empirical-based estimators of the Youden index.

Recently, Zhou et al (2005) estimated A based on ordinal-scale tests measure

ments without a gold standard by a non-parametric maximum likelihood method. 

Qin and Zhou (2006) proposed an alternative empirical likelihood based method for 

the confidence interval of A, They indicated that the empirical likelihood method for 

inference on A has better coverage accuracy than other nonparametric methods when 

A is close to 1.0. When tests are carried out on the same individuals, DeLong et al 

(1988) proposed a non-parametric method to the calculate confidence interval of A 

based on the theory on generalized [/-statistics. Also, the Bootstrap method can be 

applied to obtain a confidence interval for A (Efron and Tibshirani, 1993; Qin and 

Hotilovac, 2008).
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2.3.3 Semi-parametric approach

The semi-parametric approach is an intermediate strategy between the parametric and 

non-parametric approaches. Metz et al. (1998) presented a semi-parametric algorithm, 

LABROCA, to estimate A by assuming that the underlying distributions of test 

results could be transformed to normal distributions by an unspecified monotone 

transformation, and then applying the maximum likelihood estimation to estimate A 

in the same way that a parametric approach does. In fact, the characteristic of a semi- 

parametric approach is that the transformation is unspecified and non-parametric, but 

the model is parametric after transformation (Zou et al., 1997).

Recently, some new semi-parametric methods were proposed. Erkanli et al. (2006) 

describes a semi-parametric Bayesian approach for estimating ROC curves. The paper 

showed that this Bayesian estimation was similar to the kernel density estimation 

approach. Wan and Zhang (2007) proposed a new smooth semi-parametric ROC curve 

estimator based on a semi-parametric kernel distribution function estimator. They 

pointed out that the proposed estimators were more efficient than the traditional non- 

parametric kernel distribution estimators, as well as the non-parametric estimators 

proposed by Zou et al. (1997) and Lloyd (1998) in terms of asymptotic bias and 

variance of the proposed estimators.

2.4 The assessment o f  reliability

Reliability is the extent to which measurements remain the same over repeated tests 

on the same subjects. It can be assessed by the test-retest method, alternative- 

form method, split-halves method, internal consistency method (Carmines and Zeller, 

1979).
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2.4-1 Test-retest method

The test-retest method is the easiest way to assess the reliability of measurements. 

It gives the same test in the same way to the same subject at two points in time. 

The reliability coefficient is given by the correlation between two tests, pxlX2, where 

X\ and X2 are the two tests.

The straightforward and intuitively appealing procedure by which to assess reli

ability is the advantage of this method. The disadvantage is that effects of memory, 

learning and reactivity can confound reliability assessment.

2-4-2 AIternative-form method

The alternative-form method with refined test-retest technique involves similar, but 

not the same tests on two testing situations with the same subject. Of the two tests, 

the second test is an alternative form of the the first test without any systematic dif

ference (i.e. with equal observed means and variance). The alternative-form method 

is widely used in assessing the reliability of all types of educational tests.

The alternative-form method is superior to the test-retest method because it 

minimizes the effects of memory. However, the disadvantage is that the alternative- 

form method has difficulty of developing an alternative form that is parallel to the 

first test, apart from sharing the other limitations with the test-retest method.

2-4-3 Split-halves method

The Split-halves method can simultaneously conduct two alternative forms of a test, 

which is typically divided into halves. Correlations between each half-test are deter

mined. The reliability coefficient of the total test can be calculated by the Spearman- 

Brown prophecy formula (Spearman, 1910; Brown, 1910),

2 Phh
Pt ?

1 +  Phh
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where pt is the reliability coefficient for the total test, phh is the two half-tests corre

lation.

The advantage of this method is that it can be conducted on a single test adminis

tration, overcoming the limitations of the test-retest method and the alternative-form 

method. The disadvantage is that different reliability estimates will be obtained due 

to different possible splits.

2-4-4 Internal consistency method

Rather than calculating the reliability between arbitrary half-tests, the internal con

sistency method involves a single test administration and gives a unique reliability 

coefficient that is equivalent to the average of the correlations between any possible 

pair of items. The most popular reliability estimate to give the measure of internal 

consistency is Cronbach’s a (Cronbach, 1951), which is defined as:

a
N

N -  1
1

a:

where N  is the number of test items, ^ c r 2(Ŷ ) is the sum of item variances, and a2x 

is the total variance.

A special case of Cronbach’s <a, Kuder-Richardson formula number 20 (KR20) 

(Kuder and Richardson, 1937), can be used to calculate the reliability of scales com

posed of dichotomously variables as follow:

N
KR20 -  — YtPiQi

a:

where N is the number of dichotomous items, p* is the proportion responding correctly 

to the ith item, qi =  l - Pi, and a2 is the total variance.

The advantage of this method is that it provides a unique reliability coefficient on a 

single test administration without splitting. The disadvantage is that it involves more 

complex computations. Also, it requires equal expected means, observed variance and 

correlations between test items.
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In the studies of ROC curve, Coffin and Sukhatme (1996, 1997) studied the effects of 

measurement error on the parametric and nonparametric estimates of A and showed 

that ignoring measurement error could result in biased estimation of A. Faraggi (2000) 

considered the effect of neglecting measurement error on the confidence interval for A, 

based on a normal model, and pointed out that not taking measurement error into ac

count could give seriously spurious results that understated the diagnostic efficacy of a 

biomarker. Reiser (2000) developed an adjusted confidence interval on A, taking mea

surement error into account, based on the information of measurement error offered 

by an internal study. Schisterman et al. (2001) also suggested a random measurement 

error correction method, based on an external study, for the estimator and confidence 

interval of A based on the Delta method. The authors showed that the result was 

affected by the correction for random measurement error. When measurement error 

is ignored, the effectiveness of the biomarker could be seriously understated. Tosteson 

et al. (2005) studied the effects of heterogenous measurement error on binormal ROC 

curves and corrected the estimators and confidence intervals for specific points on the 

curve by assuming that the measurement error is non-normally distributed.

2.5 Confidence intervals for the area under the R O C  curve in the pres

ence o f  measurement error
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Chapter 3

CONFIDENCE INTERVALS FOR THE AREA UNDER 
THE ROC CURVE WITH MEASUREMENT ERROR

3.1 The Delta M ethod

3.1.1 The estimation of the area under the ROC curve without measurement error

Suppose Xi and represent the values of a biomarker in the “normal” and “abnor

mal” subjects, respectively, and follow normal distributions. That is, X\ N (vx,

(i =1 ,...,nx ), Yt 7V(/iy,cry), (i — l,...,ny). When there is no random measurement 

error, the area under the ROC curve can be written as

A = <¡>{6),
¡ay — \Xx

a‘V a Y  +  - X

where $  is the standard normal cumulative distribution function.

The above function shows that A is a monotonie function of 5. Therefore, to 

evaluate A is equivalent to calculate 5 first and then obtain the standard normal 

cumulative distribution function of 5, which actually is the ratio of mean difference to 

the square root of the sum variance of Y  and X . A can be estimated by substituting 

sample mean difference and variances into the above formula to get

A =  $
y — x

7 W+M
where x, y, S^y and Sy denote the sample means and variances for the “normal” and 

“abnormal” population, respectively.
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3.1.2 External reliability study

Schisterman et al. (2001) considered the case where an external reliability study was 

conducted to estimate measurement error. This external reliability study is indepen

dent of the main study, in which the variations of the observed values of the biomarker, 

ax and ay, can be estimated.

Suppose, in the main study, the observed values of a biomarker on the “normal” 

and “abnormal” subjects are

Xi = X i  +  ef i =  1, ...,nx (3.1)

yi = Yl +  evl i =  1,..., ny, (3.2)

where Xi and yi are the observed values of the biomarker, X{ and Y) are the true values 

of the biomarker, ef and ef are the measurement errors of Xi and Y), respectively, 

ef ~  N(0,a^) and ef ~  N{Q,a2e).

Assume that Xi, Yi} ef, and erf are independent, and the variations that result 

in measurement error do not rely on the person’s risk status or the true value of the 

biomarker. Therefore, the variances of erf and erf can be assumed to be equal. They 

can be estimated by an external reliability study.

Let Wij denotes the jth observed value of the biomarker on the ith subject in an 

external reliability study.

rrrp' IT) ~\~ Eij i 1,..., tiq , j  1 > - - -Pi,

where IT) is the ’’ true” value of the biomarker for the ¿th subject, and ~  N(0, a 

Further let
no Pi

i=l j=l
where nj reflects the degree of freedom for o\.
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The unbiased estimator of c\ is
no Pi

EE<W i j  -  Wi .

~2 i=l j=1 
=  ---------

nf
The sample variances for the observed xi}yi are

nx

Y  {Xi -  x f  
Si =  i=1

nx -  1

Y  (y* ~ y)2
5; 2 =  1

Hy -  1

respectively, where x ,y  are the sample means for 

From equations (3.1), (3.2), we know

E (S2X) X +  c l

E (S2y) =  a2Y +  a2£.

Thus, the unbiased estimators of c\  and c\  are

^ 2  _  q 2 ^ 2
G X  ”  GE

^ 2  _  c 2 -2:2
C y  — Oy ~  G e .

The ratio of the true to observed variance is called the reliability of the observed 

value as a measure of the true value (Carmines and Zeller, 1979, p.31). The reliability 

can be measured by i?, which is used as a “reliability index” in the social sciences. R 

reflects the amount of measurement error related to the inherent biomarker variability 

and can be written as
c 2x  + o \

ax  +  aY +  2
R ranges between 0 and 1. When R is close to 1, the measurement error is regarded 

as small and the reliability is high. If R close to 0 implies that the measurement error 

is relatively large and the reliability is small.
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3 .1 .3  Area under the R O C  curve in the presence o f  m easurem ent error

To consider the random measurement error, A can be corrected as

a c =  m , 5 = Î Y -  HX

V ax + a 2(7?
(3-3)

where $  is the standard normal cumulative distribution function. Then the estimate 

of the corrected A is given by

Ac =  $(<5) y X

V s ! +  SI -  251 ’

where $  is the standard normal cumulative distribution function. It is possible that 

Si < a\ or S1  < which gives Si — af) < 0 or Sy(— Sy — a1 ) < 0 , resulting

in an undefined ^JSI +  — 2<r|. In such case, the negative variance estimate is

replaced by a very small number (Rao, 1997).

The denominator of Ac is smaller than the denominator of A so that the area is 

larger if random measurement error is taken into account. In other words, if ignoring 

measurement error, A will be underestimated, and the ability of the biomarker to dis

tinguish between “abnormal” subjects and “normal” subjects will be falsely regarded 

as less than what it really is.

3.1.4 Variance estimate by the Delta method

If random measurement error exists, the variance of 8 can be estimated by the Delta 

method (see Appendix A) and written as the following:

var(<5) =  ( — ~\— {Si +  S2y — 2a\) * +
\ n x Hy  J

(y -  r f  (  2S\ 2S4 8a4e \
4(£x + SI -  2d2ef  \nx -  1 ny — 1 nf )  '
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The approximate (1 - a )x  100 % confidence interval for 5 is

3 .1 .5  Confidence intervals fo r  the area under the R O C  curve in the presence o f

m easurem ent error

5 ±  za/2\ fC x f )

where za/ 2 is the a/2th upper quantile of the standard normal distribution. The 

corresponding confidence interval for Ac is

$  U  -  Za/2y  var(5) , $  <5 +  za/2 yveLv(5)

3.2 The M O V E R  Approach

3.2.1 Traditional confidence interval approach

The confidence interval constructed by the Delta method is a traditional two-sided 

confidence interval like the Wald interval, which is obtained by assuming the symmet

ric distribution of an estimate. For example, suppose that 0*, i =  1,2, are parameters 

of interest, and 0*, i — 1,2, are independently distributed estimates. The endpoints 

for a (1 — a )100% two-sided traditional confidence interval (l,u) for a sum, 9\ +  02, 

are given by

(/, u) =  6i +  e2 =F za/2\Jvar(01) +  var(02),

where 6{ and var(0 )̂, z =  1 , 2 , are the estimates of 6{ and var(0i), i — 1, 2 , respectively, 

and za/2 is the a/2th upper quantile of the standard normal distribution. Note that 

variances on the lower and upper limits of 61 +  02 are equal.

However, this confidence interval may perform poorly unless sample sizes are 

large, or the sampling data of 0* follow normal distributions. This occurs because the
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sampling distributions of 0* may not be normally distributed when the sample sizes 

are small or moderate. In other words, the variances at the endpoints of a confidence 

interval for a parameter may not be equal. However, they are forced to be equal when 

using the traditional method to construct a confidence interval, leading to a poor 

coverage confidence interval. Hence, it is more reasonable to get the variances near 

the confidence limit boundaries rather than estimating the variance at the maximum 

likelihood estimate of the parameter.

3.2.2 The MOVER approach

The MOVER approach recovers the variance estimates in the neighborhood of the 

lower and upper confidence limits of a parameter. It only requires the reliable confi

dence limits, which have coverage probabilities close to the nominal, of the parameters 

involving in the estimate.

Suppose 9\ and 02 are two parameters of interest with confidence limits (¿i,iq) 

and (/2,w2), respectively. A is the ratio of 9\ to 92 (i-e. A =  0i/02), which can be 

rewritten as 9\ +  (—A02) =  0. This suggests that the confidence interval of A can 

be converted from the confidence interval for a sum, 9\ +  (—A02), since the plausible 

value for A can be obtained if 9\ and 92 also have their plausible values within their 

confidence limits and satisfy the equations above. Hence, to obtain the confidence 

interval for A, first construct the confidence interval for a simple sum, 9\ +  02) then 

extend it to the one for 9\ +  (—A02) and finally convert it back to the confidence 

interval for A.

Let l and u be the minimum and maximum values of 9\ +  02. By the central limit 

theorem, l and u are given by

l =  #1 +  02 -  za/2\j v&r(0i) +  var(02) (3.4)

u =  6i + d 2 +  zaj2 \J var(0i) +  var(02). (3.5)

To reflect the asymmetry of the distribution for 9\ +  02) the estimate of var(i^) can
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be recovered by substituting the possible true values at the neighborhood of the 

confidence limits l and u instead of using the point estimates, because the possible 

true value lx +  l2 is closer to l, and the possible true value ux +  u2 is closer to u than 

the point estimate 0X +  02 is, respectively.

By the central limit theorem, k,i =  1,2, is given by

k =  0 i -  za/2J  vSxiO,)',

then vai(di) can be recovered at 0X =  U as

var(OJi, =  (ft -  l i f l z l /2 (3.6)

Replaced the var(^) in (3.4) with the recovered var(#j);. in (3.6), l is obtained as

l = d i + 0 2 -  Za/2 yvar^O ij +  var(02)/

= 6\ +  02 — ZQ/2
\

I oz2Za/2 ‘a/2

— 0X +  02 — (Q\ — lx)2 +  (d2 — h )2

Similarly, var(^) in (3.5) can be recovered at 6i =  ux as

var(0i)Ut =  (m -  0i)2l z 2a/2.

Then the upper limit in (3.5) is obtained as

(3.7)

u — 0\ +  02 +  y  (u\ — 9X)2 +  (u2 — d2)2 (3.8)

For the confidence interval of 0X +  (~\)02, just replace the confidence limits (l2, u2) 

in (3.7) and (3.8) with the confidence limits of — \02) which are ( — Au2, — \l2), and get

i =  0i -  xe2 -  \J(0x - h ) 2 +  \2(u2 - d 2)2

U = 0X~ X02 + \J{uX- d X)2 + \ 2{02 - l 2)2.
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For the lower limit of A (i.e. L\), since

P r ( | < L A) = |  = *  P r{9 x - L x92 < 0) =  | ,

a possible minimum value of 9\ +  ( — L\)92 is

1 =  6, -  Lx92 -  ^ ( 9 , - h )2 +  L l(u2 - d 2)*.

Let l =  0 to solve for L\ and get

M 2 -  \Je\ei -  (2u202 -  u2){2 iA  - 1\)
L\ ~ -------------------------- -------------------------------.

2u292 -  u\

Similarly, for the upper limit of A (i.e. U\), since

P r {v2 > U x ) = I  =*■ Pr(ei - u xe2 > 0) =  |,

a possible maximum value of 0j +  {—U\)92 is

u =  91 -  U\92 +  \ l { u , - 9 ly  +  Ul{92 - l 2y .

Let u =  0 to solve for U\ and get

_  e A  +  ^ e \ e i ~ { 2 i A ~ i l ) { 2 u A ~ u \ )

2l292 —

In the process of deriving the confidence limits of A, the MOVER approach uses 

the central limit theorem to recover the variance estimates of 9i}i — 1, 2 , rather than 

imposing symmetry on the confidence interval as the Delta method does.

3.2.3 Confidence intervals for the area under the ROC curve in the presence of 

measurement error

Suppose the confidence limits of each parameter in equation (3.3) are available. The 

numerator and the denominator of 5 can be denoted as 9\ (i.e. fiy — fix) and 92

3.10
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(i.e. \Jax -h cry — 2cr|), respectively. Then the problem of constructing a confidence

interval for 5 is reduced to that of 61/62.

To use the MOVER approach to estimate the confidence interval of 6, taking 

random measurement error into account, first apply equations (3.7) and (3.8) to get 

the confidence limits of 6\ and 62, respectively, then use equations (3.9) and (3.10) to 

obtain confidence limits for the ratio of 6\ to 62 ■

For the confidence limits of 6j, substitute the confidence limits of ¡xY and ¡¿x, 

which are (lY,uY) and (lx ,u x ), respectively, for (h ,u i) and (/2,ti2) in equations (3.7) 

and (3.8), then the confidence limits of 6\ are given by

For the confidence limits of d2, first, substitute the confidence limits of a2x  and aY, 

which are (lcr2x,ua2.) and (la2 ,ua2 ), respectively, for and (/2,u2) in equations

Second, substitute the confidence limits of ax + a 2 and a2, which are (la2 +a2 ,ua2 +a2 )
jc y  x  v

and (la2,ua2), respectively, for (h ,u i) and (/2,u2) in equations (3.7) and (3.8) again,

i\ =  y - X -  V ( y  ~  W )2 + ( ux  -  x )2

u x =  y -  x +  y / ( u Y -  y )2 +  (x -  lx )2-

(3.7) and (3.8) to obtain the confidence limits of o\  +  cry as

then the confidence limits of [(ax  +  a2 ) — 2a2] are given by

Since 62 is the square root of (ax  +  o\ — 2a2), its confidence limits are given by
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u2 \/U(^x+crV')_2'T?

^ 2a| (“ ai+a* -  (3; a l ) f  +  {2a\ -  2 u y

For the confidence limits of 6 , substitute the confidence limits of d\ and d2 derived 

above for the corresponding and (l2,u2) in equations (3.9) and (3.10), then

obtain the confidence limits of 5, (l$,us).

To obtain the confidence interval of Ac, use the transformation defined as ($(¿5), $(us)).
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Chapter 4

SIMULATION STUDY

4.1 Study design and data generation

To investigate the performance of the Delta method and the MOVER approach, a 

series of simulation studies, in which the data was generated with measurement error, 

were carried out.

4-1.1 Study design

4 .1.1.1 Parameter selection

In the simulation studies, the parameters examined were sample size (n), the area 

under the ROC curve (/l), the reliability index (R) and the variance of test values 

for the “abnormal” subjects (cry). The sample sizes were selected based on the study 

of Schisterman et al (2001). The sample size combination (n^?ny,n/ )  corresponds 

to sample sizes of “normal” , “abnormal” subjects and the degree of freedom for the 

variance of measurement error, respectively. Values of the sample size combinations 

were small balanced (50, 50, 19), medium balanced (100, 100, 49), large balanced 

(1,000, 1,000, 199) and unbalanced (900, 50, 49) samples with measurement error. A 

was chosen so that the two procedures can be evaluated under different discriminative 

abilities of tests. Since A ranges from 0.5 to 1, the values of A were selected as 0.6, 

0.7, 0.8, 0.9 and 0.95 to reflect a wide range of test accuracy in practice from low to 

high. The values of R were 0.2, 0.4, 0.6 and 0.8 to provide the determined amount 

of measurement error relative to the biomarker variability from small to large, and 

on the other hand, to represent the measurement error due to measurement process
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from large to small. The variance of measurement error, a2, was selected based on 

a2 — (ax  +  Oy) x '"'-¿jf- • The mean and variance of test values for the “normal” 

subjects were selected as fix =  0 and a\ =  1. While the mean of test values for the 

“abnormal” subjects, ¿¿y, was given by \iy — <E>_1(A) x a x  +  dy +  where the 

corresponding variance for the “abnormal” subjects, a\ , was chosen as 0.5, 1.0, 3.0 

and 5.0, so that it was fairly close, equal, moderately close and the least close to o\. 

The nominal levels a =  0.05,0.10 were considered.

4.1.1.2 Method comparison

The two confidence interval construction procedures for A discussed in this thesis are 

regarded as parametric approaches, since the samples for “abnormal” and “normal” 

subjects used in the two approaches follow normal distributions. The performances 

of the two procedures were evaluated in terms of coverage probability, interval width 

and the symmetry of tail errors (i.e. non-coverage probabilities).

Here, the coverage probability is an estimate of the percentage that the true 

value of the parameter is contained in the range of the interval. It is expected that 

the calculated coverage probability is close to the nominal coverage 1 - a. For the 95% 

confidence interval with 10,000 simulations, it is preferable to have calculated coverage 

probability that falls in the range of 94.6-95.4 percent, which is 0.95 ±  1 .9 6 ^ ^ ^ ^ .

Also, the interval width is the range between the upper limit and the lower limit 

of the parameter. It is desirable to obtain the required coverage probability with the 

least width, which represents a more precise estimate of the parameter.

As for the symmetry of tail errors, the difference of the left and right tail errors 

is used as a proxy for the symmetry of tail errors. The left tail error is obtained by 

calculating the proportion that the true value is less than the lower limit, and the 

right tail error is the proportion that the true value is greater than the upper limit. If 

the confidence interval is constructed appropriately, then the overall two sided error 

should approximately equal to the nominal level a, and the miss coverage for each
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side of the interval is required to be a/2 (Efron and Tibshirani, 1993, p.156). Thus, 

for a 95% confidence interval, it is preferable to have left and right miss coverage 

equal to 2.5%.

In summary, for a good performance, a procedure is expected to have its coverage 

probability close to the nominal percent level with the least width and have symmetric 

tail errors. In this thesis, a 95% confidence interval constructed with approximately 

95% coverage probability, approximately equal missing left and missing right coverage 

and a narrow width is preferred.

4-1.2 Data generation

The values of “normal” subjects, were generated from a normal distribution with 

mean fix =  0 and variance u\ + a\. Similarly, the values of “abnormal” subjects, Y, 

were obtained as normally distributed with mean ¡iy and variance a\ +  a\. There 

were two ways to obtain the estimate of a2e . The first way was to calculate it by 

using Wij and HV, which were mentioned in the previous “External reliability study” 

section (section 3.1.2). Knowing the sampling variance of measurement error followed
2

chi-square distribution, the second way was to obtain it directly by ~  ^Xnf > where
2

Xnf was a chi-square variate with rif degree of freedom. Since the calculation of ~^Xnf 

was simpler than the calculation of Wij and uV, the second way therefore was chosen 

to calculate the estimate of a\ in the simulations for simplicity.

For each parameter combination, a total of 10,000 replicates were conducted. 

Confidence intervals were constructed at a — 0.05 and 0.1 using both the Delta method 

and the MOVER approach as described in chapter 3. The coverage probability, 

interval width and the percentage of the true value of the parameter laid completely 

beyond the left (missing left) and right (missing right) sides of the interval were 

estimated to evaluate the performances of the two procedures.
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4.2 Results

The simulation results are showed from Table 4.1 to Table 4.4, in which only results 

for a =  0.05 and a\ ~  0.5 and 5.0 were presented, since the results for o  — 0.1 was 

similar to those for a — 0.05, and the results for a\ — 1.0 and 3.0 are similar to those 

for ay =  0.5 and 5.0.

4-2.1 For nx  — Tiy — 50,71/ =  19

Table 4.1 shows the simulation results for nx  =  rty =  50, rtf — 19.

There is no obvious trend in the coverage probability for either approach as a\ 

changes. For the Delta method, when R — 0.2, all of the estimated coverage probabili

ties for different values of A do not fall within the target range of coverage probability. 

Most of them are far away from the target range. Some coverage probabilities are 

even less than 90% when A > 0.8. This indicates that the coverage probability of 

a higher test accuracy is greatly affected when the measurement error is relatively 

large. For R > 0.4, few coverage probabilities fall inside the target range, while the 

majority still fail to fall inside the range. This implies that the coverage probability 

is not close to the nominal level when the sample size is relatively small for the Delta 

method. For the MOVER approach, some of the coverage probabilities fall inside the 

target range, and those fell outside the range are close to the target range.

The confidence interval widths for the two approaches are stable as the a\ 

changes, but vary as A and R change. The interval widths in both approaches be

come narrower when R  increases, which implies that the estimation of A is more 

precise when measurement error is relatively small. The interval width obtained by 

the MOVER approach is much narrower than its corresponding width in the Delta 

method when R — 0.2, while it is slightly wider when R — 0.4 and 0.6 if a test with 

lower accuracy is applied, but gets much narrower if a test with higher accuracy is 

applied. This implies that if a test with higher accuracy is applied, the MOVER
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approach can give a more precise estimate than the Delta method when measurement 

error is relatively large. The interval widths obtained by both approaches are very 

close when R =  0.8.

As for the symmetry of tail errors, the difference between the left and right tail 

errors changes as A and R change. For the Delta method, it is seriously unbalanced 

for the left and right tail errors as A gets larger, especially when R < 0.6. For R 

— 0.8, the tail errors are approximately symmetric. This implies that the symmetry 

of tail errors of a confidence interval for a test with high accuracy is more sensitive 

to the measurement error in the Delta method. For a given A, the difference of tail 

errors decreases as R increases, which means the left and right tail errors approach 

symmetry if measurement error is relatively small. The difference of tail errors for the 

MOVER approach is different from those for the Delta method. The difference for the 

tail errors is getting smaller if a test with higher accuracy is applied. In summary, a 

more symmetric distribution of tail errors is obtained by the MOVER approach than 

by the Delta method when the test accuracy is high. Also, the tail errors are more 

symmetric when measurement error is small for both approaches.

4-2.2 For rtx =  rty — 100, rtf — 49

Table 4.2 presents the simulation results for the combination of rtx =  rty =  100, n / = 

49.

As with rix — Tiy =  50,n/ — 49, there is no trend for the estimated coverage 

probabilities as a\ changes for both approaches. For the Delta method, when R =  0.2, 

all of the coverage probabilities are still far away from the target range, and some of 

them are still less than 90%. Also, for R — 0.4 and 0.6, only one coverage probability 

falls inside the target range. Most of the others still fall beyond the range. When 

R =  0.8, some of the coverage probabilities are covered by the target range. This 

suggests that slightly increasing sample size has no obvious improvement on coverage 

probability when measurement error is large, but the coverage probability is improved
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to some extent when measurement error is small. For the MOVER approach, most of 

the coverage probabilities are in the target range. Even though some are not included 

in the target range, but they are close to the range.

The interval width is similar to that for the combination of nx  =  ny =  50, Uf =  19 

for the Delta method and the MOVER approach. But the width is slightly narrower 

than the corresponding interval in the small sample combination, which means slightly 

increasing sample size can somewhat improve the precision of the estimate.

The difference of tail errors for both approaches are varied as A and R change. 

For the Delta method, the asymmetry of left and right tail errors is smaller than 

that when nx  =  ny =  50, n / =  19. However, similar to the case when nx =  ny =  

50, nf — 19, the asymmetry is more serious when A increases, especially for R < 0.6, 

while the tail errors are close to symmetry for R =  0.8. For a given A, the difference 

decreases as R increases in all cases. For MOVER approach, the difference of tail 

errors slightly decreases compared to the combination nx =  ny =  50, n / =  19, except 

for R =  0.2. The left and right tail errors approach symmetry when R > 0.6. As A 

increases, the difference of tail errors gradually become smaller. On the whole, almost 

all of the differences for the MOVER approach are smaller than the correspondingly 

differences in the Delta method. Also, as a test with higher test accuracy is applied, 

the difference of the tail errors decreases in the MOVER approach, but increases in 

the Delta approach. As measurement error decreases, the difference decreases in both 

approaches.

4-2.3 For nx =  900, ny =  50,n / =  49

Table 4.3 presents the results for a unbalanced combination of nx =  900, ny = 

50, n , -  49.

Unlike the balanced case, the coverage probability gets larger as increases in 

the Delta method, but there is no such trend in the MOVER approach. As with 

the Delta method in the balanced case of nx  =  ny =  100,n / =  49, most coverage
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probabilities fall far beyond the target range when R =  0.2. Only one coverage 

probabilities are included in the target range when R is between 0.4 and 0.6. When 

R =  0.8, even though there is still only one coverage probability in the range, but 

most of the others fall close to the target range. For the MOVER approach, most of 

the coverage probabilities are in the target range. Those not included are very close 

to the target range.

As with the coverage probability, the width of the confidence interval gradually 

increases as ay increases for both approaches. Also, the width increases more when 

R is relatively large than those when R is small for a given A as Oy increases. This 

suggests that as the a\ increases, the confidence intervals become wider for both 

approaches when data is unbalanced, and the interval width is more affected by the 

ay if measurement error is small for a given test. Similar to the balanced data, if a 

test with higher accuracy is applied, the interval obtained by the MOVER approach 

is gradually getting much narrower than its corresponding width in the Delta method 

when R =  0.2, but is slightly wider when R =  0.4 and 0.6 and A < 0.7. When R =  0.8, 

the interval produced by both approaches are very close in values. Also, the values 

of the width in the unbalanced combination are close to that in the combination of 

nx =  ny =  100, n / =  49.

As for the symmetry of tail errors, most of the difference of tail errors for the Delta 

method becomes larger as A increases. For a fixed A, the difference gets smaller as R 

increases. However, for the MOVER approach, the imbalance of the left and right tail 

errors slightly increases as the ay increases in most cases. The symmetry of tail errors 

in nx — 900, ny =  50, n / =  49 is somewhat less than that in nx =  ny =  100, n / =  49 

for the MOVER approach. This may be due to the imbalance of sample size. When 

R =  0.2, the symmetry is gradually improved in MOVER approach if a test with 

higher accuracy is applied. When A is fixed, the difference of tail errors decreases 

as measurement error decreases. In summary, the difference of tail errors slightly 

increases in the MOVER approach as ay increases. If a test with higher accuracy
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is applied, the difference of tail errors becomes larger in the Delta method, while 

becomes smaller in the MOVER approach. It also gets smaller as measurement error 

decreases in both approaches.

4 .2.4  For nx — 1000 , ny =  1000, n / =  199

Table 4.4 displays the simulation results of combination nx =  ny =  1000, n / =  199.

Like the other balanced data, the coverage probability does not vary when o\ 

changes. For the Delta method, when R — 0.2, most of the coverage probabilities 

still fall far beyond the target range. This suggests that if the measurement error is 

relatively large, increasing sample size has little effect on the improvement of coverage 

probability. When R — 0.4, most of the coverage probabilities are still not included in 

the range, but very close to it. When R > 0.6, most of the coverage probabilities are 

included in the range. For the MOVER approach, all of the coverage probabilities are 

in the target range and close to their nominal levels as expected. This suggests that 

greatly increasing sample size can greatly improve the performance of the procedures.

The widths for both approaches in this combination are much narrower than 

those that occur in the other combinations. As with the other balanced data, the 

interval width is stable when the a\ changes, but decreases in both approaches as R 

increases. When R =  0.2, the interval width is wider in the MOVER approach than 

in the Delta method if the test accuracy is low, but quickly gets narrower than that 

in the Delta method as a test with higher accuracy is applied. The widths in both 

approaches are quite similar when R > 0.4.

The difference of the tail errors does not change obviously as Oy changes. For 

the Delta method, as with the other sample size combinations, the asymmetry for 

the left and right tail errors is less serious when the value of A is small, but become 

serious unbalanced when A is large, especially when R is small. For the MOVER 

approach, the tail errors approach symmetry when a test with higher accuracy is 

applied and finally “converges” to the range of less than 1.0. Overall, if a test with
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higher accuracy is applied, the differences of the left and right tail errors increases in 

the Delta method, but decreases in the MOVER approach. Also, the difference gets 

smaller as the measurement error decreases for the both approaches.

4.3 Conclusion

We compared the Delta method and the MOVER approach in terms of confidence 

interval coverage, interval width and symmetry of tail errors.

For coverage probability, as the variance of y changes, the coverage probability 

does not change for the balanced data, while it tends to increase for the unbalanced 

data under the Delta method. The proportion of coverage probability that is beyond 

the target range of coverage probability, (94.6%, 95.4%), is much higher for the Delta 

method than for the MOVER approach based on the sample size, reliability index 

and the test accuracy (see Fig.4.1, 4.2 and 4.3). For the Delta method, some coverage 

probabilities fall far away from the target range, especially in the cases of small sample 

size, relatively large measurement error and high test accuracy. In the case of large 

measurement error, it seems that increasing sample size has a slight effect on reducing 

the non-coverage probability in the Delta method. On the contrary, in the MOVER 

approach, most of the coverage probabilities fall in the target interval, and those not 

included in the target range are close to the range.

For the width of the confidence interval, as the variance of y changes, the inter

val width is stable for balanced data. However, the width becomes wider for both 

approaches if the data is unbalanced. Such increase in width is also greater if mea

surement error is smaller for a given test accuracy. This suggests that if measurement 

error is relatively small, the confidence interval is mainly affected by the variances 

of the biomarker values if the data is unbalanced. However, if the measurement 

error is relatively large, the confidence interval is greatly affected by the measure

ment error instead of the variances of the biomarker values. The interval widths in
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both approaches are getting narrower and nearly equal when sample size is large and 

measurement error is relatively small (see Fig.4.4, 4.5). If sample size is small or mea

surement error is relatively large, the interval in the Delta method is wider than that 

in the MOVER approach. Also, it is slightly wider in the MOVER approach than 

that in the Delta method when a low accuracy test is applied, while it gets narrower 

than that in the Delta method when a high accuracy test is applied (see Fig. 4.6).

For the symmetry of tail errors (see Fig. 4.7, 4.8 and 4.9), the difference of tail 

errors in the Delta method is larger than that in the MOVER approach in terms of 

sample size, measurement error and test accuracy. Increasing sample size seems to 

have no effect on reducing the difference in the Delta method, but slightly reduces the 

difference in the MOVER approach. When measurement error is relatively large, the 

difference of the tail errors in the Delta method is much larger that in the MOVER 

approach. As the measurement error decreases, the difference tend to be more sym

metric for both approaches. When a low accuracy test is applied, the difference of 

tail errors in the Delta method is slightly larger than that in the MOVER approach. 

However, as higher accuracy tests are applied, the difference in the Delta method is 

getting larger, while getting smaller in the MOVER approach. Hence, the MOVER 

approach gives more symmetric tail errors than the Delta method, especially when 

measurement error is large and test accuracy is high.

On the whole, in terms of coverage, interval width and symmetry of tail errors, the 

performance of the MOVER approach is much better than the Delta method in the 

presence of measurement error, especially when sample size is small, the measurement 

error is large and the accuracy of a test is high.
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Table 4.1: Observed Coverage Probabilities for the Delta Method and the MOVER
Approach to Construct a Two-Sided 95% Confidence Interval for the Area under the
ROC Curve (nx =  50, ny  =  50,n j  — 19)

D e l ta  m e th o d M O V E R  a p p ro a c h

A R <Jy =  0 .5 o\ =  5 .0 <7y =  0.5 Oy =  5.0

C V (M L , M R )%  w id th C V (M L , M R )%  w id th C V (M L , M R )%  w id th C V (M L , M R )%  w id th

0.2 97 .9 0  (0 .0 5 , 2 .0 5 ) 0 .62 97 .94  (0 .05 , 2 .01 ) 0 .62 93 .7 9  (4 .35 , 1 .86) 0 .54 93 .4 9  (4 .64 , 1 .87) 0 .54

0.6
0.4 97 .6 2  (0 .27 , 2 .1 1 ) 0 .44 97.61 (0 .26 , 2 .13 ) 0 .44 94 .2 9  (4 .02 , 1 ,69) 0 ,50 94 ,14 (4 .12 , 1 .74) 0 .50

0 .6 96 .4 8  (1 .0 3 , 2 .4 9 ) 0 .30 96 .46  (1 .06 . 2 .48 ) 0 .30 94 .87  (3 .24 , 1 ,89) 0 ,39 94 .88 (3 .32 , 1 .80) 0 .39

0 .8 94 .9 7  (2 .3 9 . 2 .6 4 ) 0 .24 95 .04  (2 .35 , 2 .61 ) 0.24 94.51 (2 ,97 . 2 .5 2 ) 0 .25 94.41 (3 .18 , 2 .41 ) 0 .25

0 .2 93 .8 8  (0 .0 0 , 6 .1 2 ) 0 .64 94.01 (0 .00 , 5 .99) 0 .64 95 .34  (3 .30 , 1 .36) 0 .4 9 95 .33 (3 .28 , 1 .39) 0 .49

0.7
0.4 96.11 (0 .0 5 , 3 .8 4 ) 0 .46 96.14 (0 .0 3 , 3 .83 ) 0 .46 94 .89  (4 .0 0 , 1 .11) 0 .4 3 94 .80  (4 .01 , 1 .19) 0 .43

0 .6 96.51 (0 .5 1 , 2 .9 8 ) 0 .29 96 .59  (0 .4 1 , 3 .0 0 ) 0 .30 94 .92  (3 .6 3 , 1 .45) 0 .34 94 .95  (3 .70 , 1 .35) 0 .34

0 .8 95 .1 6  (2 .1 2 , 2 .7 2 ) 0 .22 95 .22  (2 .0 8 , 2 .7 0 ) 0 .23 94 .65  (3 .15 , 2 .2 0 ) 0 .2 3 94 .66  (3 .20 , 2 .14 ) 0 .24

0 .2 89 .7 8  (0 .00 , 10 .22) 0 .66 89 .75  (0 .00 , 10 .25) 0 .66 95 .8 6  (2 .84 , 1 .30) 0.41 95 .88  (2 .77 , 1 .35) 0.41

0.8
0 .4 94 .6 4  (0 .00 , 5 .36 ) 0 .4 7 94 .59  (0 .00 , 5 .41 ) 0 .47 94 .9 9  (3 .79 , 1 .22) 0 .33 94 .94  (3 .79 , 1 .27) 0 .33

0 .6 96.21 (0 .1 9 , 3 .60 ) 0 .28 96 .47  (0 .1 4 , 3 .39 ) 0 .28 95 .0 5  (3 .57 , 1 .38) 0 .27 94 .99  (3 .66 , 1 .35) 0 .28

0 .8 95 .42  (1 .77 , 2 .8 1 ) 0 .20 95 .30  (1 .75 , 2 .95 ) 0 .20 94 .9 7  (3 .14 . 1 .89) 0 .20 94.81 (3 .21 , 1 .98) 0.21

0 .2 86 .4 0  (0 .0 0 , 13 .60) 0 .67 86 .4 9  (0 .00 , 13 .51) 0 .67 95 .6 5  (2 .60 , 1 .75) 0 .29 95 .58  (2 .62 , 1 .80) 0 .29

0.9
0 .4 92 .6 2  (0 .00 , 7 .3 8 ) 0 .45 92 .5 7  (0 .00 , 7 .43 ) 0 .45 95 ,2 0  (3 .25 , 1 .55) 0 .23 95 .23  (3 .17 , 1 .60) 0 .23

0 .6 95 .6 9  (0 .03 , 4 .2 8 ) 0 .23 95 .75  (0 .05 , 4 .2 0 ) 0 .23 95.21 (3 .34 , 1 .45) 0 .18 94 .98  (3 .47 , 1 .55) 0 .19

0 .8 95 .6 5  (1 .34 , 3 .0 1 ) 0 .1 4 95 .62  (1 .33 , 3 .05 ) 0 .15 95 .0 8  (2 .99 , 1 .93) 0 .14 95 .05  (3 .11 , 1 .84) 0 .15

0 .2 84 .6 6  (0 .0 0 , 15 .34) 0 .6 7 84 .73  (0 .00 , 15 .27) 0 .67 95 .7 0  (2 .39 , 1 .91) 0 .22 95 .45  (2 .59 , 1 .96) 0 .22

0 .95
0 .4 91 .34  (0 .00 , 8 .6 6 ) 0 .43 91 .39  (0 .00 , 8 .61 ) 0 .43 95.31 (2 .97 , 1 .72) 0 .16 95 .22  (2 .91 , 1 .87) 0 .16

0 .6 95 .24  (0 .01 , 4 .7 5 ) 0 .18 95 .32  (0 .01 , 4 .67 ) 0 .19 95 .3 5  (3 .02 , 1 .63) 0 .12 94 .9 7  (3 .32 , 1 .71) 0 .12

0 .8 95 .7 9  (1 .14 , 3 .07 ) 0 .10 95 .83  (1 .07 , 3 .10 ) 0 .10 95 .1 9  (2 .80 , 2 .01 ) 0 .10 95 .14 (2 .99 , 1 .87) 0 .10

Note: CV means coverage probability. ML means missing left coverage probability. MR means missing right

coverage probability.
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Table 4.2: Observed Coverage Probabilities for the Delta Method and the MOVER
Approach to Construct a Two-Sided 95% Confidence Interval for the Area under the
ROC Curve (nx =  100, ny =  100, nj  =  49)

D e l ta  m e th o d M O V E R  a p p ro a c h

A R oy =  0 .5 <7y ~  5 .0 tjy — 0 .5 li in

C V (M L , M R )%  w id th C V (M L , M R )%  w id th C V (M L , M R )%  w id th C V (M L , M R )%  w id th

0 .2 97 .3 3  (0 .0 2 , 2 .6 5 ) 0 .50 97 .32  (0 .02 , 2 .6 6 ) 0 .5 0 93 .71 (4 .38 , 1 .91) 0 .5 0 93.81 (4 .3 3 , 1 .80) 0 .50

0 .6
0 .4 96 .7 0  (0 .6 3 , 2 .6 7 ) 0 .28 96 .7 0  (0 .5 6 , 2 .7 4 ) 0 .2 9 94 .90  (3 .3 1 , 1 .79) 0 .38 94 .78  (3 .41 , 1 .81) 0 .38

0.6 95 .7 4  (1 .74 , 2 .52 ) 0 .20 95 .7 8  (1 .6 5 , 2 .5 7 ) 0 .2 0 94 .9 8  (2 .90 , 2 .1 2 ) 0 .22 95 .06  (2 .83 , 2 .11) 0 .22

0.8 9 5 .3 2  (2 .26 , 2 .42 ) 0 .17 95 .4 7  (2 .10 , 2 .43 ) 0 .1 7 95 .1 6  (2 .53 , 2 .31 ) 0 .17 95 .17  (2 .58 , 2 .25) 0 .1 7

0.2 94 .11 (0 .0 0 , 5 .8 9 ) 0 .54 94 .12  (0 .01 , 5 .87) 0 .54 94 .78  (3 .9 3 , 1 .29) 0 .44 94 .73  (3 .94 , 1 .33) 0 .44

0 .7
0.4 96 .1 6  (0 .1 2 , 3 .72 ) 0 .30 96 .26  (0 .09 , 3 .65 ) 0 .30 94 .89  (3 .55 , 1 .56) 0 .33 94 .89  (3 .62 , 1 .49) 0 .33

0.6 96.21 (1 .07 , 2 .72 ) 0 .20 96.21 (1 .03 , 2 .76 ) 0 .20 95 .12  (3 .11 , 1 .77) 0.21 95 .14 (3 .02 , 1.84) 0 .22

0.8 95 .5 7  (1 .99 . 2 .44 ) 0 .16 95.71 (1 .88 . 2 .41 ) 0 .16 95 ,2 7  (2 .62 . 2 .1 1 ) 0 .16 95 .36  (2 .54 , 2 .10 ) 0 .16

0.2 91 .2 2  (0 .0 0 , 8 .7 8 ) 0 .5 7 91.21 (0 ,00 . 8 .79 ) 0 .57 94 .9 9  (3 .40 , 1 .61) 0 .34 94 .92  (3 .47 , 1 .61) 0.34

0.8
0.4 95 .3 0  (0 .0 2 , 4 .6 8 ) 0 .3 0 95 .1 7  (0 .03 , 4 .80 ) 0 .30 95 .0 0  (3 .2 7 , 1 .73) 0 .27 95 .09  (3 .31 , 1 .60) 0 .27

0.6 96 .4 7  (0 .5 1 , 3 .0 2 ) 0 .1 8 96 .5 0  (0 .50 , 3 .00 ) 0 .18 95 .16  (3 .01 , 1 .83) 0 .19 95.21 (3 .01 , 1 .78) 0 .19

0 .8 95 .6 9  (1 .8 6 , 2 .4 5 ) 0 .14 95 .85  (1 .7 3 , 2 .4 2 ) 0 .14 95 .44  (2 .60 , 1 .96) 0 .14 95 .46  (2 .64 , 1 .90) 0 .14

0 .2 8 8 .8 4  (0 .00 , 11 .16) 0 .58 88 .90  (0 .00 , 11 .10) 0 .58 95 .1 0  (2 .91 , 1 .99) 0 .24 95 .1 8  (2 .90 , 1 .92) 0 .24

0 .9
0.4 9 3 .9 7  (0 .0 0 , 6 .0 3 ) 0 .2 7 94 .15  (0 .0 0 , 5 .85 ) 0 .27 95 .1 3  (2 .85 , 2 .02 ) 0 .18 95 .1 8  (3 .02 , 1 .80) 0 .18

0.6 9 6 .3 7  (0 .1 4 , 3 .49 ) 0 .14 96 .38  (0 .12 , 3 .50 ) 0 .14 95.31 (2 .77 , 1 .92) 0 .13 95 .4 8  (2 .82 , 1 .70) 0 .13

0.8 95 .7 8  (1 .65 , 2 .5 7 ) 0 .1 0 95 .82  (1 .62 , 2 .56 ) 0 .10 95 .6 0  (2 .42 , 1 .98) 0 .10 95 .6 5  (2 .43 , 1 .92) 0 .10

0.2 87 .8 3  (0 .0 0 , 12 .17) 0 .58 87 .90  (0 .00 , 12 .10) 0 .58 94 .9 8  (2 .83 , 2 .19 ) 0 .18 95.01 (2 .80 , 2 .19 ) 0 .18

0 .95
0.4 93 .24  (0 .00 , 6 .7 6 ) 0 .23 93 .33  (0 .00 , 6 .67 ) 0 .24 95 .03  (2 .76 , 2 .21 ) 0 .12 95 .0 8  (2 .91 , 2 .01 ) 0 .12

0.6 96 .0 6  (0 .03 , 3 .9 1 ) 0 .1 0 96.31 (0 .04 , 3 .65 ) 0 .10 95 .60  (2 .5 5 , 1 .85) 0 .09 95 .43  (2 .73 , 1 .84) 0 .09

0.8 95 .8 3  (1 .4 6 , 2 .7 1 ) 0 .0 7 95 .72  (1 .5 6 , 2 .7 2 ) 0 .07 95 .64  (2 .40 , 1 .96) 0 .0 7 95 .63 (2 .45 , 1 .92) 0 .07

Note: CV means coverage probability. ML means missing left coverage probability. MR means missing right

coverage probability.
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Table 4.3: Observed Coverage Probabilities for the Delta Method and the MOVER
Approach to Construct a Two-Sided 95% Confidence Interval for the Area under the
ROC Curve (nx =  900, ny  =  50,n j  =  49)

D e l ta  m e th o d M O V E R  a p p ro a c h

A R (Ty =  0 .5 oy =  5 .0 tJy =  0 .5 a\ =  5.0

C V (M L , M R )%  w id th C V (M L , M R )%  w id th C V (M L , M R )%  w id th C V (M L , M R )%  w id th

0 .2 97 .3 3  (0 .0 1 , 2 .6 6 ) 0 .50 97 .63  (0 .02 , 2 .35 ) 0 .53 93 .8 7  (4 .58 , 1 .55) 0 .50 93 .36  (5 .02 , 1 .62) 0.51

0 .6
0 .4 96 .6 9  (0 .73 , 2 .5 8 ) 0 .27 97 .15  (0 .55 , 2 .3 0 ) 0 .33 94 .73  (3 .61 , 1 .66) 0 .37 94 ,52  (3 .77 , 1 .71) 0.41

0 .6 95 .1 4  (1 .9 5 , 2 .9 1 ) 0 .19 95 .6 0  (1 .55 , 2 .85 ) 0 .24 94 .52  (2 .94 , 2 .54 ) 0 .20 94 .33  (3 .20 , 2 .47) 0 .27

0 .8 94 .5 2  (3 .08 , 2 .4 0 ) 0 .15 94 .79  (2 .88 . 2 .3 3 ) 0.21 94 .3 7  (3 .27 , 2 .3 6 ) 0 .15 94 .34 (3 .50 , 2 .16) 0.21

0.2 94 .2 0  (0 .00 , 5 .8 0 ) 0 .54 94 .48  (0 .00 , 5 .52 ) 0 .56 94 .6 7  (3 .95 , 1 .38) 0 .44 94 .5 7  (4 .06 , 1 .37) 0 .45

0 .7
0.4 96 .3 8  (0 .14 , 3 .4 8 ) 0 .2 9 96 .52  (0 .09 , 3 .39 ) 0 .34 94 .8 9  (3 .72 , 1 .39) 0 .32 94 .96 (3 .74 , 1 .30) 0 .36

0 .6 95 .7 0  (1 .2 8 , 3 .0 2 ) 0 .18 95 .96  (0 .97 , 3 .07 ) 0 .23 94.71 (3 .18 , 2 .11 ) 0 .20 94.61 (3 .37 , 2 .02) 0 .25

0 .8 94.21 (3 .2 8 , 2 .5 1 ) 0 .14 94.71 (2 .80 , 2 .49 ) 0 .20 9 4 .1 7  (3 .58 , 2 .25 ) 0 .14 94 .18  (3 .73 , 2 .09) 0 .20

0 .2 91 .8 2  (0 .00 , 8 .1 8 ) 0 .5 7 92 .00  (0 .0 0 , 8 .0 0 ) 0 .59 95 .06  (3 .30 , 1 .64) 0 .34 95 .05  (3 .36 , 1 .59) 0 .36

0.8
0 .4 95 .5 8  (0 .01 , 4 .4 1 ) 0 .29 95.84 (0 .0 0 , 4 .1 6 ) 0 .34 94 .7 9  (3 .62 , 1 .59) 0 .26 94 .93  (3 .66 , 1 .41) 0 .29

0.6 96 .0 5  (0 .84 , 3 .1 1 ) 0 .16 96 .22  (0 .52 . 3 .26 ) 0.21 94 .88  (3 .24 , 1 .88) 0 .17 94 .75  (3 .36 , 1 .89) 0 .22

0.8 94 .3 2  (3 .3 1 , 2 .3 7 ) 0 .12 94 .78  (2 .72 , 2 .50 ) 0 .18 94 .23  (3 .71 . 2 .0 6 ) 0 .12 94 .28  (3 .77 . 1 ,95) 0 .18

0 .2 89 .33  (0 .00 , 10 .67) 0 .58 89 .9 0  (0 .00 , 10.1) 0 .60 95.14 (2 .86 , 2 .0 0 ) 0 .24 95 .04 (2 .91 , 2 .05 ) 0 .25

0.9
0 .4 9 4 .0 7  (0 .00 , 5 .93 ) 0 .26 94.71 (0 .00 , 5 .29 ) 0.31 94 .89  (3 .18 , 1 .93) 0 .18 95 .08  (3 .21 , 1 .71) 0 .20

0 .6 96 .39  (0 .3 5 , 3 .2 6 ) 0 .12 96 .32  (0 .2 4 , 3 .44) 0 .17 94 .9 7  (3 .14 , 1 .89) 0 .12 95.01 (3 .11 . 1 .88) 0 .16

0 .8 94 .5 6  (3 .09 , 2 .35 ) 0 .08 95 .08  (2 .57 , 2 .35 ) 0 .13 94 .4 7  (3 .49 , 2 .0 4 ) 0 .09 94 .62  (3 .52 , 1 .86) 0 .13

0.2 8 8 .3 7  (0 .0 0 , 11 .63) 0 .58 88 .89  (0 .00 , 11 .11 ) 0 .6 0 95 .16  (2 .65 , 2 .1 9 ) 0 .18 95 .14  (2 .63 , 2 .23 ) 0 .19

0 .95
0.4 93 .1 3  (0 .00 , 6 .8 7 ) 0 .22 93 .88  (0 .00 , 6 .12 ) 0 .28 94.91 (2 .97 , 2 .1 2 ) 0 .12 94 .99  (3 .00 , 2 .01 ) 0 .13

0.6 96 .1 3  (0 .18 , 3 .6 9 ) 0 .0 9 96 .35  (0 .07 , 3 .58 ) 0 .12 94 .9 5  (3 .13 , 1 .92) 0 .08 95 .06  (2 .95 , 1 .99) 0.11

0 .8 94 .6 8  (2 .97 , 2 .3 5 ) 0 .06 95 .26  (2 .35 , 2 .3 9 ) 0 .09 94 .6 9  (3 .29 , 2 .02 ) 0 .06 94 .7 7  (3 .39 , 1 .84) 0 .09

N o te : C V m e a n s  c o v e ra g e  p ro b a b il i ty . M L  m e a n s  m is s in g  le f t c o v era g e  p ro b a b il i ty .  M R  m e a n s  m iss in g  r ig h t

c o v era g e  p ro b a b il i ty .
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Table 4.4: Observed Coverage Probabilities for the Delta Method and the MOVER
Approach to Construct a Two-Sided 95% Confidence Interval for the Area under the
ROC Curve (nx  -  1000, nK -  1000, n, =  199)

A  R

0.2

0.4
0.6

0.6

0.8

0.2

0 .4
0 .7

0.6

0.8

0.2

0 .4
0.8

0.6

0.8

0.2

0 .4
0 .9

0.6

0.8

0.2

0 .4
0 .9 5

0.6

0.8

D e l ta  m e th o d

a\ =  0 .5  ffy =  5 .0

C V (M L , M R )%  w id th  C V (M L , M R )%  w id th

9 5 .6 0  (0 .0 1 , 4 .3 9 ) 0 .1 9

9 5 .8 9  (1 .0 7 , 3 .0 4 ) 0 .0 8

9 5 .1 5  (2 .3 2 , 2 .5 3 ) 0 .0 6

9 5 .2 3  (2 .3 3 , 2 .4 4 ) 0 .0 5

9 3 .1 9  (0 .0 0 , 6 .8 1 )  0 .25

9 6 .1 9  (0 .2 6 , 3 .5 5 ) 0 .10

9 5 .4 3  (1 .9 0 , 2 .6 7 ) 0 .0 6

9 5 .2 6  (2 .3 0 , 2 .4 4 ) 0 .05

9 2 .0 0  (0 .0 0 , 8 .0 0 ) 0 .2 8  

9 5 .7 2  (0 .0 2 , 4 .2 6 )  0 .1 0  

9 5 .5 5  (1 .4 7 , 2 .9 8 ) 0 .0 6

9 5 .2 3  (2 .2 2 , 2 .5 5 ) 0 .0 4

9 1 .2 6  (0 .0 0 , 8 .7 4 ) 0 .2 7  

9 4 .6 4  (0 .0 0 , 5 .3 6 ) 0 .0 8

9 5 .4 3  (1 .0 5 , 3 .5 2 ) 0 .0 5

9 5 .1 0  (2 .0 6 , 2 .8 4 ) 0 .0 3

9 0 .9 0  (0 .0 0 , 9 .1 0 ) 0 .2 5

9 4 .3 7  (0 .0 0 , 5 .6 3 ) 0 .0 6

9 5 .3 8  (0 .8 5 , 3 .7 7 ) 0 .0 3

9 5 .1 0  (1 .9 5 , 2 .9 5 ) 0 .0 2

95 .5 9  (0 .0 1 , 4 .4 0 ) 0 .19

9 5 ,8 3  (1 .1 3 , 3 .0 4 ) 0 .0 8

95 ,0 6  (2 .2 9 , 2 .6 5 ) 0 .0 6  

94 .8 7  (2 .5 8 , 2 .5 5 ) 0 .05

93 .3 9  (0 .0 0 , 6 .6 1 ) 0 .25

96 .2 2  (0 .2 6 , 3 .5 2 ) 0 .10

95 .3 0  (1 .9 7 , 2 .7 3 ) 0 .0 6

95 .0 5  (2 .4 1 , 2 .5 4 ) 0 .05

91 .9 4  (0 .0 0 , 8 .0 6 ) 0 .28  

95 .6 3  (0 .0 2 , 4 .3 5 ) 0 .10

9 5 .4 7  (1 .4 6 , 3 .0 7 ) 0 .0 6

95 .1 6  (2 .4 1 , 2 .4 3 ) 0 .05

91 .2 3  (0 .0 0 , 8 .7 7 ) 0 .2 7  

94.81 (0 .0 0 , 5 .1 9 ) 0 .0 8

95.31 (1 .0 0 , 3 .6 9 ) 0 ,05  

95 .3 0  (2 .1 6 , 2 .5 4 ) 0 .03

9 1 .0 0  (0 .0 0 , 9 .0 0 ) 0 .25

9 4 .4 8  (0 .0 0 , 5 .5 2 ) 0 .0 6

9 5 .3 4  (0 .7 0 , 3 .9 6 ) 0 .0 3

95 .3 5  (2 .0 2 , 2 .6 3 ) 0 .02

M O V E R  a p p ro a c h

Uy =  0 .5

C V (M L , M R )%  w id th

9 4 .9 0  (3 .3 6 . 1 .74) 0 .30

9 5 .0 5  (2 .8 5 . 2 .1 0 ) 0 .09

9 5 .0 7  (2 .6 5 , 2 .2 8 ) 0 .06  

95.21 (2 .4 4 , 2 .35 ) 0 .05

<Ty =  5 .0

C V (M L , M R )%  w id th

94 .8 4  (3 .3 9 , 1 .77) 0 .30  

9 4 .7 9  (2 .9 7 , 2 .24) 0 .0 9  

9 4 .9 3  (2 .6 6 . 2 .41) 0 .0 7  

94 .9 2  (2 .6 6 . 2 .42 ) 0 .05

9 4 .9 3  (3 .0 8 , 1 .99) 0 .2 7  

9 4 .9 8  (3 .0 9 , 1 .93 ) 0 .11 

9 5 .1 2  (2 .8 2 , 2 .0 6 ) 0 .0 7  

9 5 .2 9  (2 .4 3 , 2 .2 8 ) 0 .0 5

9 4 .8 6  (3 .1 3 , 2 .01) 0 .2 7

94 .8 5  (3 .1 6 , 1 .99) 0 .11

9 5 .2 0  (2 .7 0 , 2 .10) 0 .0 7

9 5 .0 5  (2 .6 6 , 2 .29) 0 .0 5

9 4 .9 7  (2 .6 5 . 2 .3 8 ) 0 .2 3  

9 5 .1 9  (2 .8 4 , 1 .97) 0 .11 

9 5 .1 5  (2 .7 9 , 2 .0 6 ) 0 .0 6  

9 5 .1 2  (2 .6 2 . 2 .2 6 ) 0 .0 4

9 5 .0 9  (2 .5 5 , 2 .3 6 ) 0 .1 6  

9 5 .3 0  (2 .6 7 , 2 .0 3 ) 0 .0 9

9 5 .2 6  (2 .6 6 , 2 .0 8 ) 0 .0 5

9 5 .1 0  (2 .5 3 , 2 .3 7 ) 0 .0 3

9 4 .8 6  (2 .7 5 , 2 .39 ) 0 .23

95 .01  (2 .9 5 , 2 .04 ) 0 .11  

9 5 .2 8  (2 .6 7 , 2 .05 ) 0 .0 6  

9 5 .1 4  (2 .6 7 , 2 .19 ) 0 .05

9 4 .9 9  (2 .5 9 , 2 .42) 0 .1 6

9 5 .1 6  (2 .8 1 , 2 .03) 0 .0 9

95 .11  (2 .6 4 , 2 .25) 0 .0 5  

9 5 .2 2  (2 .6 0 , 2 .18) 0 .0 3

95 .11  (2 .5 0 , 2 .3 9 ) 0 .1 0  

9 5 .3 3  (2 .5 7 , 2 .1 0 ) 0 .0 6

95 .21  (2 .6 4 , 2 .1 5 ) 0 .0 3  

9 4 .9 5  (2 .5 4 , 2 .5 1 ) 0 .02

9 5 .0 8  (2 .4 8 , 2 .44) 0 .10  

95 .0 4  (2 .7 1 , 2 .25) 0 .06

95 .21  (2 .5 2 , 2 .27) 0 .0 3

9 5 .3 2  (2 .4 9 , 2 .19) 0 .0 2

Note: CV means coverage probability. ML means missing left coverage probability. MR means missing right

coverage probability.
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nx«ny«50,nf»19 nx»ny«100.nW9 nx-900,ny-50.nM9 nx=ny»1000.nf-199
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Figure 4.1: The coverage probability based on 10,000 runs for the 95% confidence 
intervals of the area under the ROC curve. Each boxplot was based on sample size 
combination and was drawn from coverage probabilities of 80 parameter combinations. 
Methods ‘D ’ and ‘M’ represent ‘Delta method’ and ‘MOVER approach’ , respectively.
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Figure 4.2: The coverage probability based on 10,000 runs for the 95% confidence 
intervals of the area under the ROC curve. Each boxplot was based on the reliabil
ity index and was drawn from coverage probabilities of 80 parameter combinations. 
Methods ‘D ’ and ‘M’ represent ‘Delta method’ and ‘MOVER approach’ , respectively.
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Figure 4.3: The coverage probability based on 10,000 runs for the 95% confidence in
tervals of the area under the ROC curve. Each boxplot was based on the area under 
the ROC curve and was drawn from coverage probabilities of 80 parameter combi
nations. Methods ‘D ’ and ‘M’ represent ‘Delta method’ and ‘MOVER approach’ , 
respectively.
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Figure 4.4: The interval width based on 10,000 runs for the 95% confidence intervals 
of the area under the ROC curve. Each boxplot was based on sample size combination 
and was drawn from coverage probabilities of 80 parameter combinations. Methods 
‘D’ and ‘M 1 represent ‘Delta method’ and ‘MOVER approach’ , respectively.
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Figure 4.5: The interval width based on 10,000 runs for the 95% confidence intervals 
of the area under the ROC curve. Each boxplot was based on the reliability index 
and was drawn from coverage probabilities of 80 parameter combinations. Methods 
‘D ’ and ‘M ’ represent ‘Delta method’ and ‘MOVER approach’ , respectively.
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Figure 4.6: The interval width based on 10,000 runs for the 95% confidence intervals 
of the area under the ROC curve. Each boxplot was based on the area under the 
ROC curve and was drawn from coverage probabilities of 80 parameter combinations. 
Methods ‘D ’ and ‘M’ represent ‘Delta method’ and ‘MOVER approach’ , respectively.
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nx-ny-50, nM 9 nx«ny-100. nW9 nx-900. ny-50, nW9 nx-ny-1000, nf-199

Figure 4.7: The difference of tail errors based on 10,000 runs for the 95% confidence 
intervals of the area under the ROC curve. Each boxplot was based on sample size 
combination and was drawn from coverage probabilities of 80 parameter combinations. 
Methods ‘D ’ and ‘M’ represent ‘Delta method’ and ‘MOVER approach’ , respectively.
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Figure 4.8: The difference of tail errors based on 10,000 runs for the 95% confidence 
intervals of the area under the ROC curve. Each boxplot was based on the reliabil
ity index and was drawn from coverage probabilities of 80 parameter combinations. 
Methods ‘D ’ and ‘M’ represent ‘Delta method’ and ‘MOVER approach’ , respectively.
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Figure 4.9: The difference of tail errors based on 10,000 runs for the 95% confidence 
intervals of the area under the ROC curve. Each boxplot was based on the area under 
the ROC curve and was drawn from coverage probabilities of 80 parameter combi
nations. Methods ‘D ’ and ‘M’ represent ‘Delta method’ and ‘MOVER approach’ , 
respectively.
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Chapter 5

EXAMPLE

Oxygen free radicals are believed to be related to the processes of atherosclerotic 

coronary heart disease. Recent studies (Hoffman and Garewal, 1995) suggest that 

the key factor in the atherosclerotic process may be the oxidative modification of 

low density lipoproteins. Thiobarbituric acid reaction substances (TBARS) measure 

subproducts of lipid peroxidation and thus can be used as a biomarker to discriminate 

measurements between cardiovascular disease cases and healthy controls.

A population-based sample was randomly selected from residents of Erie and 

Niagara counties, New York, who were aged 35-79 years. The New York state De

partment of Motor Vehicles driver’s license rolls were used as the sampling frame for 

adults between ages 35 and 64 years, while the sample for those who were aged 65-79 

was randomly selected from the Health Care Financing Administration.

The cases were defined as persons with myocardial infarction. Each participant 

in the study provided blood sample, physical measurements, and answering a detailed 

questionnaire on various behavioral and physiologic patterns. Of the participants, 60 

subjects had a history of cancer, 68 subjects had incomplete information on TBARS 

and 75 subjects were non-White. All of these subjects were excluded from the study. 

After the exclusion, a total of 474 White men and 494 White women were selected 

for the analysis.

Schisterman et al. (2001) found that measurements of TBARS on the raw scale 

were skewed, thus reciprocal of square root transformation was applied. Note that 

the values of biomarker for the cases become smaller than those for controls after the 

transformation. Therefore, when the area under the ROC curve was being estimated,
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the sign of the estimator of <5 needs to be reversed so that the area under the ROC 

curve is greater than 0.5. The following is the summary of the transformed data.

x =  0.604 nx =  928 S2X =  0.0913

y =  0.450 ny -  40 S2y =  0.0886.

The estimation of variance for the random measurement error in the analysis of 

TBARS was carried out by a reliability study on a sample of 10 participants. Seven 

women and three men were followed for 6 months. Twelve-hour fasting blood samples 

were obtained every month on the same day of each female’s menstrual cycle and every 

month on the same calendar day for each male.

From the reliability study, the variance of the random measurement error and 

other summary data are obtained as follow:

a2 =-0.0567 n / =  41.

Hence, the data had values of nx =  928, ny =  40 and nj =  41; these values were very 

close to the unbalanced combination nx =  900, ny =  50 and n / =  49 in the simulation 

study.

The estimate of R was obtained by substituting estimates of the parameters in 

the formula of R as follow:

o\ +  o\
cr\ +  <jy +  2of ’

which is estimated by

~ Sl +  Sl 
R -  52 +  52 +

0.0913 +  0.0886 
0.0913 +  0.0886 +  2 x 0.0567 

=  0.613
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When measurement error is considered, the estimate of A can be corrected as

a c =  m

y - x
\/ S'i +  SI -  2 ai
________ 0.450 -  0.604________
V0.0913 +  0.0886 -  2 x 0.0567 

=  $(-0 ,597)

=  $(0,597)

=  0.725

Note that since the value of <5 is less than 0, the sign of 5 is reversed so that the value 

of Ac is greater than 0.5. The same way will be done in the following estimations for

A.

The lower and upper limits of Ac can be obtained by the Delta method and the 

MOVER approach, respectively.

For the Delta method, the variance for Ac is given by

var(5) si si___X

X̂ ru
x (S* +  Sy -  2of) 1 +

(■y ~ x f
4(S2 +  S3 -  23?)3

X
2 Si

n 1
+ 2 S4y 41

ny -  1
+

8a

n f  J
Substitute the estimates for the parameters in the above formula and get

var(5) — 0.0559

Then, the lower and upper limits of 5 is given by

h 6 -  ¿a/ 2 x V var(?) 

-0 .5 9 7 -  1.96 x \/0.0559

-1.060
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ys j ys
Us = 8 +  Za/2 X Y var(<5)

-  -0 .5 9 7 +  1.96 x ^0.0559 

=  -0.134

The confidence limits of Ac using the Delta method therefore are given by

LAc =  $ (-U i) =  $(0,134) =  0.553 

Uac =  =  $(1,060) =  0.856

That is, using the Delta method, the 95% confidence limits for Ac when considering 

measurement error are (0.553, 0.856).

An alternative way to calculate the confidence limits for Ac is to apply the 

MOVER approach. The lower and upper limits for ¡j,x and ny are

l

0.604 -  1.96 x 

0.585

0.0913
928

u x +  za/ 2

0.604 +  1.96 x

0.623

0.0913
928

lf̂ y

= 0.450 -  1.96 x
0.0886

40
0.358
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uHy — y +  za/2

= 0.450+ 1.96 x 

= 0.542

0.0886
40

Let 61 denote ¡iy — jxx. Then the lower and upper limits for 9\ are

h =  y - x  -  \ J {y -i^ v)2 +  (u„x -  x )2

=  0.450 -  0.604 -  \/(0.450 -  0.358)2 +  (0.623 -  0.604)2 

=  -0.248

U\ =  y -  X +  y j (uMy -  y)2 +  (x -  l^ )2

=  0.450 -  0.604 +  a/ (0.542 -  0.450)2 +  (0.604 -  0.585)2 

=  -0.060

For and crj, since
2 2 2 2 

° y ~ X n y-V

Hence, the lower and upper limits for a\ and a2y are

5?
(rix 1) ^

X(\-ot/2),(nx- l )

=  (9 2 8 -  1) x
1 ; 1013.27

=  0.084

S'2
(nx -  l ) - r - ^ ------

X(a/2),(nx-~l)
,nnn , ,  0.0913(928 -  1 x ---------
v ' 844.52
0.100
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2
-

K  -  1)
X ( l - a / 2 ) , K - l )  

0.0886(40 -  l) x
58.12

0.059

U a 2°y

0 2

K  - 1) y
X(ot/2),(ny- l )

, , n 0.0886 =  (40 -  l) x
23.65

=  0.146

Then the lower and upper limits for <j 2x +  a2 are

ial+al =  52 +  5y2 -  ^ ( 5 2  -  ialy  +  (52 -  î v)2

=  0.0913 +  0.0886 -  ^(0.0913 -  0.084)2 +  (0.0886 -  0.059)2 

=  0.149

u„i+„i =  Sl +  s j  +  -  SlY +  («„J -  SlY

= 0.0913 +  0.0886 +  ^(0.100 -  0.0913)2 +  (0.146 -  0.0886)2 

=  0.238

For sjcrl +  cr2 — 2<rf, which is denoted by 02, first calculate the confidence limits for 

a2, which follows \nf distribution.

cr;
nf —-----------

^(1—a/2),nf

41 x
0.0567
60.56

= 0.038

cr;
n /^ r ~X a / 2 , n  f

41 x 0.0567
25.21

0.092



60

Then the lower limits for a2X +  a2 — 2a2 can be estimated as

<rx +  d*y - 2 d ‘e y j +  dl ~  l*l+ai)2 +  4 K ?  -  di )2

=  (0.0913 +  0.0886)- 2 x 0 .0567-

(0.0913 +  0.0886 -  0.149)2 +  4 x (0.092 -  0.0567)2 

- 0.010

Since la2+0.2_2cr2 is less than 0, in order to have a defined ■yo^~+~a2~^~2o ,̂ we re

placed the negative ZCTg+0.2_2<T2 by a tiny positive value, say 0 .0001 , according to ? ’s 

recommendation. The upper limit for o\ +  a2 — 2a2 is

Ua2+a2_2a2 °l  +  ° 2y-  +  \J(.ua2+a2 -  (a2x +  a*))2 +  4 (ct| -  ^ ) 2

(0.0913 + 0.0886) -  2 x 0.0567 +

\J(0.238 -  (0.0913 +  0.0886))2 +  4 x (0.0567 -  0.038)2 

0.136

Therefore the lower and upper limits for 02 =  ^¡o2x +  <j2 — 2a2 are given by

l2 =  VO.OOOl =  0.010 

u2 =  \/0.136 =  0.369

Finally, substitute the estimates and confidence limits of parameters into the equa

tions (3.9) and (3.10), we get

L6 =  -1.239

Since the lower limit of 8 is less than 0, the sign of Lg needs to be reversed. Therefore, 

the upper limit of Ac is

UAc =  $(1,239) =  0.892

Similarly, replacing the corresponding parameters in the formula of U$ with the esti

mates, we get

Us =  -0.189
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Then the lower limit of A r is

LAc =  $(0,189) =  0.575

Therefore, when considering measurement error, the 95% confidence limits using the 

MOVER approach for Ac are (0.575, 0.892).

When ignoring measurement error, the estimate of A is given by

- ( y - x )A =  $ 

= $

V s T + s *
-(0.450 -  0.604) ^
x/o.osse +  o.Ofnly

=  $(0,363)

=  0.642

The confidence limits of 6 can be obtained using both the Delta method and the 

MOVER approach.

First, using the Delta method, the variance of 5 is given by

var(<5) = £ 1  +  3 '
U-x Tly

(y -  x ?

x (s x2 +  s 2yr i +

2 St 2 S'4
X  ---------—  +  y

TiX 1 Tly4 (5X2 + s ^

Replacing the estimates of parameters in the above formula with the given values, 

then we get

var(6) =  0.0133

Then, the lower and upper limits of A are given by

La =  $(-W i)

+  Za / 2 X=  $

=  $ [ -  ( -  0.363 +  1.96 x V0.0133)] 

=  $(0,137)

0.554
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Table 5.1: The estimates and confidence intervals for the area under the ROC curve 
when considering measurement error (Ac) and ignoring measurement error (A)

m easurem ent error M eth ods 6(k,us) A ( L a ,U a ) width for A

consider
T h e D elta  m ethod  

T h e  M O V E R

-0 .5 9 7  (-1 .0 6 0 , -0 .1 3 4 )  

-0 .5 9 7  (-1 .2 3 9 , -0 .1 8 9 )

0 .7 2 5  (0 .553 , 0 .856)  

0 .7 2 5  (0 .5 7 5 , 0 .892)

0 .303

0 .317

ignore
T h e D elta  m ethod -0 .3 6 3  (-0 .5 8 9 , -0 .1 3 7 ) 0 .6 4 2  (0 .5 5 4 , 0 .722) 0 .168

T h e  M O V E R -0 .3 6 3  (-0 .6 0 3 , -0 .1 4 0 ) 0 .642  (0 .556 , 0 .727) 0.171

UA =  $ H i )

$ 5 -  zaj2 x \J var(<5

= $ [ -  ( -  0.363 -  1.96 x \/0 .0133)] 

=  $(0,589)

-  0.722

Hence, when ignoring measurement error, the 95% confidence limits for A using the 

Delta method are (0.554, 0.722).

Second, using the MOVER approach, the way to obtain the variance of 5 when 

ignoring measurement error is similar to the case when considering measurement error. 

The only difference is that, when ignoring measurement error, 02 is y/ +  a rather 

than yjct'x +  cr;) — 2a'j. Therefore, the estimate and confidence limits of 0\ are -0.154 

and (-0.248, -0.060), respectively. The estimate and confidence limits of [a\ +  a^) 

are 0.180 and (0.149, 0.238), respectively. Then the estimate and confidence limits 

of 02 are \/0.180, which is 0.424, and (\/0.149, \/0.238), which are (0.386, 0.488), 

respectively. Applying equations (3.9) and (3.10), the confidence limits of <5 are (- 

0.603, -0.140). Hence, when ignoring measurement error, the corresponding 95% 

confidence limits for A using the MOVER approach are (0.556, 0.727).

Overall, the estimates and confidence intervals for Ac and A are given in Table

5.1.
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Comparing the above estimates and confidence intervals of Ac and A } we knew 

that the estimate of A is underestimated when ignoring the measurement error. The 

estimates of 5 are the middle points of the corresponding confidence intervals obtained 

using the Delta method, while they are located close to the right confidence limits 

obtained using the MOVER approach when considering and ignoring measurement 

error. This provides evidence that the Delta method forced symmetry on the distri

bution of (y — x)/yJSl +  S% — 2a*, but the MOVER recovered the variance estimates 

at the neighborhood of the confidence limits and reflected the fact of asymmetric 

distribution. Also, the confidence intervals of A obtained by the two methods when 

considering the measurement error were both wider than those when ignoring mea

surement error. The MOVER offered a slightly wider interval width than the Delta 

method does. This is consistent with the simulation results.
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Chapter 6

DISCUSSION

This thesis presents two methods of constructing confidence interval for the area 

under the ROC curve in the presence of measurement error. The simulation study 

shows that the MOVER approach outperforms the Delta method in terms of coverage 

probability, interval width and the symmetry of tail errors, especially in the cases of 

relatively large measurement error, small sample size and high test accuracy.

The different performances of the two approaches can be explained by the normal

ity assumption. The Delta method assumes that the sampling data for the parameter 

of interest is normally distributed and enforces symmetric variances even though the 

sample actually follows a skewed distribution. This leads to a poor performance in 

constructing confidence interval. However, the MOVER approach recovers the asym

metric variances by using the neighborhood confidence limits and thus yields a good 

performance.

In fact, the MOVER approach can not only be used to construct a confidence 

interval, where coverage probability is close to the nominal if the estimate of a pa

rameter is asymmetrically distributed, but it can also be reduced to the traditional 

confidence interval if the estimate of a parameter is normally distributed. Moreover, 

the area under the ROC curve is actually a function of a ratio. Apart from the Delta 

method and the MOVER approach, Fieller’s theorem (Fieller, 1954) can be used to 

construct the confidence interval for a ratio. However, the confidence interval for the 

area under the ROC curve cannot be constructed using the Fieller’s theorem. This 

is because that Fieller’s theorem requires both the numerator and denominator of 

the ratio to be normally distributions, yet the estimator for S is a ratio of a normal
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variate to a square root of a linear combination of chi-square distributed variates, 

respectively. Contrary to the normality assumption of Fieller’s theorem, the MOVER 

approach has no such requirement, and the confidence interval of a ratio given by the 

MOVER can even be reduced to the confidence interval obtained by Fieller’s theo

rem when the ratio is of two normal means (see Appendix B). This suggests that the 

traditional confidence interval and the interval obtained by Fieller’s theorem are only 

the special cases of the confidence intervals given by the MOVER.

In practice, the problem of erroneously measuring data is very common in many 

fields, for example there are data errors due to the inaccuracy of an instrument in 

a hospital laboratory. Simply ignoring the measurement error usually results in un

derestimated estimators, low test power and even misleading conclusion. Also, the 

sample size of a test may be small, and the high accuracy of a test is preferred. Hence, 

it is necessary to get a confidence interval with a coverage probability closed to its 

nominal level in the cases of large measurement error, small sample size and high test 

accuracy, where the application of the Delta method is not appropriate. Our work 

shows that the MOVER is a better confidence interval construction approach in the 

cases mentioned above. The advantage of using the MOVER to construct confidence 

interval for a function of parameters is that it only requires the reliable confidence 

limits of the parameters rather than normality assumption. This makes the MOVER 

more general than the other methods that require assumptions. The disadvantage 

of applying the MOVER is that if the parameter of interest is a complex function 

of several parameters, the calculations might be complicated. However, this can be 

overcome by the application of computer.

In this thesis, we only discussed independently normally distributed values of a 

biomarker. Further studies can consider the situations involving skewed distributed 

values of a biomarker, small sample size data and measurement error measured by an 

internal reliability study.

First, consider skewed distributed values of a biomarker. In the example, the
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original values of x and y were skewed. Schisterman et al (2001) transformed the 

original values to normally distributed values x~1/2 and y~1̂ 2 in order to meet the 

normality assumption. However, the interpretation of the area under the ROC curve, 

a function of x ~ 1//2 and y-1/2, was difficult due to the transformation. To avoid the 

difficult interpretation, the original skewed data can be used directly. In such cases, 

the application of the Delta method is not appropriate, but the MOVER approach 

still can be used since it only requires that x and y are independently distributed 

and the availability of their confidence limits. When applying the MOVER approach, 

the confidence limits of the x and y can be obtained by the other confidence interval 

construction methods first (for example, a nonparametric method), then follow the 

MOVER approach for the confidence interval of the parameter of interest.

Second, in our simulation study, the smallest sample size is 50. According to 

the central limit theorem, a sample size of 50 enables the skewed data to approach 

normality to some extent. This limited the exploration for the generality of the 

MOVER approach. Therefore, a smaller sample size (for example n—20) should be 

investigated in further studies.

Third, measurement error measured by an internal reliability study can be con

sidered in the further studies. In this thesis, the variance of measurement error is 

estimated by an external reliability study that is independent of the main study, in 

which the observed variances of the biomarker values for the “normal” and “abnor

mal” are estimated. The implied assumption of using an external reliability study is 

that the same parameter estimates, such as variance, can be carried over from the 

external study to the main study without bias (Carroll et a l , 1995, p.29). That is, 

the error distribution is the same in the subjects of both studies. If the assumption 

does not hold, then estimation bias can be produced when external estimates are car

ried over to the main study. In such case, if sufficient information in the main study 

can be obtained to estimate measurement error directly, an internal reliability study 

that uses the subset of subjects within the main study to conduct the replication can
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avoid the transferred bias. Hence, an internal reliability study should be considered 

in further studies.
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Appendix A : Derivation o f variance o f § using the Delta method

In the measurement error case, Xi and yj are independent normal random variables 

with means and variances Hx, +  of and ¡ly, &y +  of. Consequently, x and y are 

independent normal random variables with means and variances ¡jlx > Wx + ° 2e)/nx 

and ¡ly, (cy +  o f)/?^ , respectively. Thus,

~  _  _  „ j  f  ° x  +  o l  +  erf
A =  y -  x ~  N [ f ly ~ f i x , ----------- +n> n

and

{p*x 1)
5?

crl +  al Xnx —1 ’
0 2

{Uy -  1 ) - ^ Xn-u — 1 >erf +  of 'v"v

are all mutually independent. Also,

? a =  oa + o *  = ( S 2 - o e2) +  ( S ? - a f )

(Al)

( « /)
a
a:£ ~  x2nv ’

Let

5 =

Suppose ju and a are independent. Use the Delta method to obtain the approximate 

variance of 5

~ f d s Y  f d s V
var(o) «  I ^  I x var(/i) + 1 ^ 1  x var(cr)

i —2
— x var(ju) +  x var(a)i (A2)

cr
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where var(/2) is given in equation (A l). var(a) also can be calculated by the Delta 

method

var(a) =  var((cr2) 2 )

d ( P 2) h
da2

x var(a2)

1

4 a2 
1

x var(a2)

4~ 2 x var(52 +  5 2 -  2a2)

x [var(52) +  var(S'2) +  4var(a2)]
4a2

1

4a2

2 (a i  +  a2)2 +  2 (âf: +  a2)2

n. 1 n, 1

Apply equations (A l) and (A3) to equation (A2), then get

1 ‘ ° x +
x̂

fi2
X

2(a2x
4(a2)3 nx

+
a 2 +  a2

n„
+

8(a2)2

nf

:2\2
H"

(A3)

(A4)
1 n .y- 1 nf

Substitute the estimates for the unknown parameters in equation (A4), and it results

in

var(5) —
si s 2

+Ti ri,
x (S2X -  a2 +  S2V -  32) - 1 +

(x -  y )
4{Sl -  al +  SI -  af)3
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2 St
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Appendix B : The Reduction o f confidence interval for a ratio obtained 

by the M O V E R  to that obtained by the Fieller’s theorem

The following is the proof of reducing the confidence interval obtained by the MOVER 

approach to that obtained by Fieller’s theorem in the case of the ratio of two normal 

means.

Suppose that 9\ and 02 are two normal means with confidence limits of (l\,u\) 

and (Z2,^2), respectively. From equation (3.9), we know the lower limit of a ratio 

(A =  Q\j62) is

eA -  \Je\ei -  (2u2e2 -  u22)(2iA - 1\)
2i/2#2 — 2̂

oA -  ^92A - [§22 -  A -  2u2e2 + ui)][e\ -  A -  2iA + 1\)\
9% ~ 02 ~ ZU202 +  uj)

o02 -  \Jm -  [oi -  a  -  q2ym -  0 , -  m 2]

91 -  {U2 -  92)2

61O2 “ 02 _  t2 2

§ 2 _ t2

9 0 2 ~  \ j9 20 \ ~  \9* -  i 2var(02 )][02 -  t2var(0i)]

91 ~  i2var(0|)
(Bl)
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Similarly, the upper limit of a ratio (A =  0i/02) from equation (3.10) is

M 2 +  \le\ e i - { 2 i 2e2 - i i ) { 2 u A - u \ )

2h02 -  ll _____________________

0 1 0 2  +  \]d\el -  [02 -  (0| -  2/202 +  ll)}[92 -  (0? -  2uA  +  u\)\

0.2 -  (022 -  2 /202 +  ll)

0102 +  V^ 2 -  [022 -  (02 -  k )2][0? -  (m -  0l)2]

022 -  (02 -  h)2

#1#2 +  \ 01&2 “ 02 - i 2 02 t2
V I" "I

0]02 +  \JQ292 -  [0| -  f2var(02)][02 -  t2var(0i)] 

0| — f2var(02)

2

(B2)

On the other hand, the two roots for the equation of Fieller’s theorem

(0i -  i2var(0i)) -  2A(0!02 -  t2var(0i02)) +  A2(02 -  t2var(02)) =  0 

are given by

(0i02 -  f2var(0i02)) ±  \J(0i02 -  t2var(0i02))2 -  01 -  t2var(02))(0? -  t2var(0i))

02 — f2var(02)

When 0i and 02 are independent (i.e. var(0i02) =  0), the formulae in (B 3) can be 

reduced to formulae (B 1) and (52), respectively. This shows that the confidence 

limits for the ratio of two means by the MOVER approach can be reduced to the 

confidence limits yielded by Fieller’s theorem if the two means are normally and 

independently distributed.
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