
Western University Western University

Scholarship@Western Scholarship@Western

Digitized Theses Digitized Special Collections

2009

FEED-FORWARD IN SOFTWARE ENGINEERING WITH PARTICULAR FEED-FORWARD IN SOFTWARE ENGINEERING WITH PARTICULAR

FOCUS ON REQUIREMENTS ENGINEERING AND SOFTWARE FOCUS ON REQUIREMENTS ENGINEERING AND SOFTWARE

ARCHITECTING ARCHITECTING

Shamin Ahmed

Follow this and additional works at: https://ir.lib.uwo.ca/digitizedtheses

Recommended Citation Recommended Citation
Ahmed, Shamin, "FEED-FORWARD IN SOFTWARE ENGINEERING WITH PARTICULAR FOCUS ON
REQUIREMENTS ENGINEERING AND SOFTWARE ARCHITECTING" (2009). Digitized Theses. 3807.
https://ir.lib.uwo.ca/digitizedtheses/3807

This Thesis is brought to you for free and open access by the Digitized Special Collections at
Scholarship@Western. It has been accepted for inclusion in Digitized Theses by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/digitizedtheses
https://ir.lib.uwo.ca/disc
https://ir.lib.uwo.ca/digitizedtheses?utm_source=ir.lib.uwo.ca%2Fdigitizedtheses%2F3807&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/digitizedtheses/3807?utm_source=ir.lib.uwo.ca%2Fdigitizedtheses%2F3807&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

FEED-FORWARD IN SOFTWARE ENGINEERING WITH PARTICULAR FOCUS ON
REQUIREMENTS ENGINEERING AND SOFTWARE ARCHITECTING

(Spine title: Feed-forward in Software Engineering)

(Thesis format: Monograph)

by

Sharmin Ahmed

d-
/

/

Graduate Program in Computer Science

A thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Science

The School of Graduate and Postdoctoral Studies
The University of Western Ontario

London, Ontario, Canada

© Sharmin Ahmed 2009

Abstract

This study is intended to determine the characteristics, impact and state o f the practice o f

feed-forward in software engineering; in particular, in the fields o f Requirements

Engineering (RE) and Software Architecting (SA). Feed-forward is used in many

domains such as systems engineering, neural networks, management and psychotherapy.

However, in software engineering, especially in RE and SA, the concept o f feed-forward

is not well researched. For example, what are the characteristics o f feed-forward

information? W hat effect does feed-forward information have on architectural artefacts

and software project aspects such as cost, quality, time, etc.? W hat is the current state o f

practice o f feed-forward? A knowledge seeking empirical investigation including an

industrial survey and an embedded case study with four projects as four units o f analysis

were carried out based on these questions. The overall findings o f this study show that the

m ost common types o f information that are fed-forward consistently are requirements

and architectural information. This information affects a multitude o f aspects o f a

software project (such as time, cost and quality) and influences several architectural

artefacts (such as tactics, patterns and decisions). The results also show that

approxim ately 20% o f software professionals have never, or rarely, practiced feed

forward in their organizations. On the other hand, approximately 66% o f software

professionals practice feed-forward in their organization in varying levels (“sometimes”,

“m ost o f the time”, “always”). 64% o f software professionals find feed-forward to be

useful for their organization and 4% thought that feed-forward would not be useful, citing

reasons such as inform ation overload and lack o f motivation. From a researcher’s

perspective, determining the properties o f feed-forward could provide ground work for

doing further research on feed-forward such as: the practice o f feed-forward in the other

areas o f software engineering and the comparison o f feedback and feed-forward in

software engineering.

Keywords: software engineering, requirements engineering, software architecting, feed

forward, empirical study.

iii

Definitions

Feed-forward: An anticipatory activity o f passing information from one location in the

process to another where the recipient o f the information could possibly benefit by

making use o f it ahead o f time.

“Push” Feed-forward: A type o f feed-forward in which information is proactively sent

(i.e., pushed) from the source to the recipient without the recipient having to request for

it.

“Pull” Feed-forward: A type o f feed-forward in which information is collected (i.e.,

pulled) from the source by the recipient.

iv

Acknowledgements

First and foremost, I would like to thank Dr. Nazim Madhavji for his constant guidance

and supervision. Without his strong motivation, valuable inspiration and support, this

work could not have been completed. Your passion for education and research are

admirable.

I would also like to thank all the members in my research team. Special thanks goes to

Remo Ferrari who has suggested many valuable ideas for conducting the research.

I would like to thank the participants o f the studies; I greatly appreciate the energy and

effort that was expended on their part, and hope that the project was a great learning

value for each o f them and that the research output will be o f good value to everyone.

Last, but not the least, I would like to thank my husband, Muhammad Iftekher

Chowdhury: my fellow research member, and continuous source of support and ideas. I

am grateful for his love, patience and trust that acted as a driving force for the completion

o f the work.

v

Table of Contents

Certificate of Examination... ii

Abstract... iii

Definitions.. iv

Chapter 1. Introduction..1

1.1 Significance of research... 2

1.2 Originality of research... 2

1.3 Thesis organization.. 3

Chapter 2. Background...4

2.1 Feed-forward in non-Software Engineering Disciplines... 4

2.2 Feed-forward in Software Engineering... 8

2.3 Research Gap..10

Chapter 3. The Empirical Study.. 13

3.1 Goal, Questions and associated Metrics... 13

3.2 Research Procedures...17

3.2.1 Case Study... 18

3.2.2 Survey.. 20

3.3 Participants.. 22

3.3.1 Survey participants.. 22

3.3.2 Case study participants.. 29

3.4 Threats and Risks... 30

3.4.1 Threats to Case study... 30

3.4.2 Threats to survey.. 32

vi

Chapter 4. Results and Interpretations.. 35

4.1 Results from Case study...35

4.1.1 Findings... 36

4.1.2 Results from Industrial survey...47

4.2 Composite Analysis of results and interpretations.. 58

Chapter 5. Implications..63

5.1 Implications in Industry... 63

5.2 Further Empirical Work.. 63

Chapter 6. Limitations, Future Work and Conclusions..66

6.1 Limitations and Future w ork... 66

6.2 Conclusions... 67

References:.. 69

Appendix A: Role of a feed-forward model.. 74

Appendix B: Survey Questionnaire... 78

Appendix C: Survey Data... 83

Appendix D : Case study questionnaire... 86

Curriculum Vitae... 89

vii

List of Figures:
Figure 1 Percentage distribution of types of information fed-forward in the case study.............. 37

Figure 2 Percentage communication of Feed-forward in the case study projects.........................40

Figure 3 Percentage distribution of software aspects affected by feed-forward information in case
study projects..42

Figure 4 Percentage distributions of software architectural artefacts influenced by feed-forward in
case study... 46

Figure 5 Percentage distributions of the different types of information as reported by respondents
of survey.. 48

Figure 6 Percentage distributions of different sources of feed-forward as reported by respondents
of survey.. 50

Figure 7 Percentage distributions of different recipients of feed-forward as reported by
respondents of survey... 51

Figure 8 Percentage distributions of different aspects affected by feed-forward as reported by
survey respondents... 53

Figure 9 Percentage distribution of usefulness of feed-forward in software projects as reported by
survey respondents..56

viii

List of Tables:
Table 1 Possible substance of interest to satisfy the goal... 17

Table 2 Questions in the case study and the associated metrics measured from the questions....20

Table 3 Questions in the survey and the associated metrics measured from the questions.......... 21

Table 4 Percentage distribution of role or title of the respondents of the survey.........................24

Table 5 Frequency distribution of the background experience of the survey participants........... 24

Table 6 Percentage distribution of years of experience of the survey participants....................... 25

Table 7 Frequency distribution of software development lifecycle model followed in survey
participants’ organization.. 26

Table 8 Percentage distribution of typical team size in survey participants’ organization...........26

Table 9 Frequency distribution of typical project duration in survey participants’ organization.. 27

Table 10 Percentage distribution of organization size of survey participants..............................27

Table 11 Percentage distribution of survey participants by geographical location......................28

Table 12 Summary of case participants.. 29

Table 13 Frequency of feed-forward in each of the projects... 35

Table 14 Potential list of types of information fed-forward during case study.............................36

Table 15 Percentage distribution of the roles for the source and reception of feed-forward.........39

Table 16 Percentage of push feed-forward and pull feed-forward in the case study....................41

Table 17 Potential list of aspect affected in the software projects of the case study....................42

Table 18 Software architectural artefacts influenced by feed-forward information in case study. 45

Table 19 List of types of Information fed forward as shown in the survey.................................47

Table 20 List of sources/ recipients of feed-forward information as reported from survey
respondents.. 49

Table 21 List of Aspects reported by survey respondents.. 52
ix

Table 22 Percentage frequency of practice of feed-forward in organizations as reported by
respondents of survey.. 55

Table 23 Composite percentage distribution of the different types of feed-forward information in
case study and survey..58

Table 24 Comparison between the source and recipients of case study and survey......................60

Table 25 Comparison between the aspects affected in case study and survey.............................61

1

Chapter 1. Introduction

Requirements Engineering (RE)1 methods [18] and Software Architecting (SA)2 methods

[5] are iterative and based on feedback. A software architect receives information from

requirements engineers about new or changed requirements after the completion o f an

iteration o f architecting and once the requirement has been validated. An architect also

provides feedback to the requirements engineers after they have validated the architecture

[36]. Both these processes are lengthy and unfavorable for a software process in terms of

cost [19] and effort [9] [23].

Traditionally, in control engineering, feedback and feed-forward are used in combination

to significantly improve performance over simple feedback control [6] [44].This is

because while feedback alone can retain a control variable that has started to deviate due

to any external disturbance to a system, it can only do so after the deviation has started,

but when feed-forward is incorporated to the system, it measures the disturbance prior to

deviation and using that measurement, feedback maintains the control variable. In some

domains, such as in management, feed-forward alone has been more effective and

efficient than feedback [10]. This is because it is difficult to provide professional

feedback that is not taken personally, but since feed-forward is opinion about the future it

is accepted more positively. The mention of feed-forward in conjunction with feedback in

the field o f software engineering has so far been rare [1], [26] and [21]. However, certain

properties o f the activity o f feed-forward or the information fed-forward is not clear from

the literature. For example, what are the characteristics of feed-forward information?

W hat effect does feed-forward information have on software artefacts and software

project aspects? What is the current state of the practice o f feed-forward? If feed-forward

were incorporated into the normal flow of information in RE and SA, it could

1 For the rest of the thesis, the acronym RE refers to Requirements Engineering.
2 For the rest o f the thesis, the acronym SA refers to Software Architecting.

2

significantly improve the performance of the processes. Hence, determining the answer to

such questions has its implications in software development practice in industry and in

research as well.

1.1 Significance of research
From a practitioner’s perspective, determining the impact of feed-forward in RE and SA

may motivate the introduction of the feed-forward concept in software projects.

Determining the characteristics o f feed-forward could provide practitioners with a clearer

idea about the types o f information that are most productive when fed-forward and from

which channel it needs to come from. From a researcher’s perspective, determining the

properties o f feed-forward could provide ground-work for doing further research on feed

forward such as: the practice o f feed-forward in the other areas o f software engineering,

tool development for capitalizing on feed-forward information, and the comparison of

feedback and feed-forward in software engineering.

1.2 Originality of research

To the best of the author’s knowledge, there are currently no studies that discuss the

characteristics, impact and state o f the practice o f feed-forward in software engineering.

The only mention of feed-forward in RE and SA was in [26], [21] and [1]. However,

these papers did not exclusively discuss feed-forward. The process o f conveying

information is obvious but the activity o f feed-forward for conveying information ahead

o f time is not a well researched area in software engineering. This thesis provides

evidence that the concept o f feed-forward can be useful in industry and has a significant

impact in the overall process o f RE and SA.

3

1.3 Thesis organization

The thesis is organized as follows: Chapter 2 discusses the literature related to feed

forward. Chapter 3 describes in detail the empirical study, which includes a discussion on

the GQM (goal, question, metric) approach [4] to structuring of the study, the research

procedures, a description of the participants and the threats and risks involved in the

studies. Chapter 4 describes the findings from the survey and the case study, their

interpretations and a composite analysis o f the results from the study. Chapter 5 discusses

the implications o f the study and Chapter 6 describes the limitations, future work and

conclusions.

4

Chapter 2. Background
Feed-forward has been used extensively in many domains in conjunction with or instead

o f feedback. In the software engineering process, feedback is common but using feed

forward with, or instead of, feedback is not. There are also many processes that resemble

feed-forward but are not explicitly called so. Based on the diverse application of feed

forward, it can be divided into two disciplines. Section 2.1 discusses feed-forward and

activities similar to feed-forward in non-Software Engineering disciplines. Section 2.2

describes feed-forward in Software Engineering disciplines. Finally, Section 2.3

discusses in brief what has been researched so far regarding feed-forward and where the

research gap remains.

2.1 Feed-forward in non-Software Engineering Disciplines
A simple example o f feed-forward in a familiar domain could be in the control o f

temperature by a thermostat inside a building [1]. The feedback of the temperature

created by the heating system in a building is used by the thermostat to check if the

temperature has deviated from its desired level. Based on the feedback the thermostat

triggers the heating/cooling system to begin operating thus bringing the temperature back

within its target range. This is use o f feedback to control temperature. By adding feed

forward mechanism to the thermostat, the thermostat would measure the temperature

outside the building. By obtaining this earlier indication of temperature change, the

outside sensor can trigger the heating/cooling system before there is a deviation from the

inside target level.

In systems engineering, control systems are mostly either open loop or closed loop [6].

An example o f a closed loop control system is a feedback system. In feedback control

systems, in order to give the output o f a set value, the output is fed back to the input and

then the input is accordingly controlled to get the desired set value output. An example of

5

this is the control o f temperature in a thermostat as already mentioned. An example o f an

open loop control system is a feed-forward control system. In a feed-forward system, the

input to the control is predefined and hence there is no feeding in o f output but rather a

feeding forward o f input to maintain an output o f set value. There is no closed loop and

no feedback o f information from output. Combined feed-forward plus feedback control

can significantly improve performance over simple feedback control whenever the

variable that causes the controlled variable to deviate away from the set point can be

measured before it affects the process output [44].

Feed-forward neural networks are the earliest and simplest form o f artificial neural

networks. In such a network, a mathematical or computational model is pre-determined

based on a large number o f calculations and approximations and then fed-forward into

the system to find the solution to a future new problem. This form of neural network is

commonly used in pattern recognition for e.g. to determine an unknown pattern o f a

DNA. Feed-forward neural networks have been used successfully in conjunction with

recurrent neural networks in projects such as the greenhouse control in [31].

Classical conditioning, for e.g. eyelid conditioning, is a form o f associative learning by

the brain that was first demonstrated by Pavlov [15]. Feedback use o f sensory

information is like that o f a thermostat: a sensory input (the thermometer in this analogy)

is used during the execution of the movement (the heater in this analogy) to produce

accurate movement (maintain room at constant temperature). The utility o f feedback

control is inherently limited by its sloth and by its tendency to oscillate when forced to

operate quickly. Feed-forward control can remove this problem by using sensory

information available prior to movement execution to make decisions about the motor

commands [24].

6

During the 80’s, feed-forward was an innovative technique suggested by Penn for family

therapy [28]. This technique was particularly useful for families with chronic illness

whose concept of a future time is usually frozen. As these families typically avoid

discussing the past, talking about the future opens up solutions to dilemmas and

problems. Goldsmith [10] has trained more than 10,000 business professionals and has

shown how feed-forward can often be preferable to feedback in day-to-day professional

interactions. This is because it is difficult to provide professional feedback that is not

taken personally but since feed-forward discusses something that hasn’t happened yet it is

not taken as personally. In [10], Goldsmith explains the ten minute exercise o f feed

forward and the eleven reasons as to why it should be practiced and, in some cases, why

it is preferable to feedback. In the exercise, each participant is asked to play two roles. In

one role, they are asked to provide feed-forward and give someone else suggestions for

the future. In the second role, they are asked to accept feed-forward and listen to the

suggestions for the future and learn as much as they can. The exercise typically lasts for

10 to 15 minutes, and the average participant has 6 to 7 dialogue sessions. The exercise as

described in the article is mentioned below. In the exercise participants are asked to:

• Pick one behavior that they would like to change.

• Describe this behavior to randomly selected fellow participants.

• Ask for feed-forward.

• Listen attentively to the suggestions and take notes. Participants are not allowed

to comment or critique on the suggestions in any way.

• Thank the other participants for their suggestions.

• Ask the other persons what they would like to change.

• Provide feed-forward.

• Say, “You are welcome” when thanked for the suggestions.

7

The process is repeated with another participant until the exercise is stopped. Goldsmith

has also specified the eleven reasons as to why he thinks that feed-forward is preferable

to feedback. The eleven reasons to try feed-forward instead of feedback as mentioned in

the article are as follows:

1. We can change the future. We can’t change the past.

2. It can be more productive to help people be right, than prove they were wrong.

3. Feed-forward is especially suited to successful people.

4. Feed-forward can come from anyone who knows about the task. It does not

require personal experience with the individual.

5. People do not take feed-forward as personally as feedback.

6. Feedback can reinforce personal stereotyping and negative self-fulfilling

prophecies.

7. Face it. Most o f us hate getting negative feedback, and we don’t like to give it.

8. Feed-forward can cover almost all o f the same material as feedback.

9. Feed-forward tends to be much faster and more efficient than feedback.

10. Feed-forward can be a useful tool to apply with managers peers and team

members.

11. People tend to listen more attentively to feed-forward than feedback.

There are many examples o f feed-forward in the literature. But there are also examples

where the activity o f feed-forward is apparent, but the terminology used is not “feed

forward”. An example o f this is “early warning” systems. Early warning systems are

primarily radars used to detect targets at a long range. By detecting an intruder as early as

possible, defense is able to calculate ahead of time the scale and origin o f the attack, the

potential damage estimate and choose an appropriate response before the intruder reaches

the target [30].

8

Other warning systems include those used to forecast stock market behavior [37]. A

machine learning algorithm is developed that predicts future conditions and issues

warning signals against the possible massive selling and pullout o f investors. These

warning systems are also used to detect financial crisis by checking the financial market.

In [34], Scheffer et al., discusses about complex systems such as abrupt shifts in the

climate in the earth system or abrupt shifts in fish or wildlife populations which may

threaten ecosystem. These systems have a critical threshold called “tipping point” in

which the systems change abruptly from one state to another. However, there are some

generic symptoms that occur in the systems before they approach the “tipping point”. If

these early warning signals can be figured out ahead of time before the critical transition

then something can be done regarding the changes and appropriate measure can also be

taken.

During the war in Kosovo, the Serbs knew about the probable attacks by NATO ahead of

time by regularly observing NATO air bases and facilities, and "phoning home" [8]. As

can be seen, this is a form of feed-forward because the Serbs knew about the attacks of

the NATO air bases ahead o f time and hence took necessary actions to counter them.

2.2 Feed-forward in Software Engineering

RE and SA methods are usually iterative and based on feedback. In the coarse-grain

activity model [18] o f RE process, requirements validation information is fed back from

one activity to another and the different activities are repeated until the entire

requirements document is accepted. Hence if there is any change in requirements or

introduction o f new requirements, then it needs to go through the prolonged process of

validation and analysis before it is actually handed over to the architects for architecting.

In the ADD method of architecting [43], an architect receives new requirements after an

iteration o f architecting and any change to the current architecture or some new critical

9

requirements will only be conveyed to the architects at the end of the iteration. Both these

processes o f RE and SA are lengthy, time consuming and unfavorable for a software

process in terms of cost [19] and effort [23] [9].

In [9], during a four-month case study at IBM Ottawa software lab, the developers

commented about how they were falling behind on their schedule due to the introduction

of changes that they were not aware of. The unexpected changes not only pushed back

their schedule but also the schedule o f other developers whose work was linked with

theirs. This made the developers ask the question as to whether it is possible to get a

“heads up” on unexpected changes ahead of time to help them to face it and so avoid

delay. It was also found out from the study that the information could have been made

available ahead of time but was not.

Feed-forward in conjunction with feedback in the field o f software engineering is not

very well researched. In [1], the author mentions how feed-forward information (e.g.,

anticipated staff-turnover in the coming weeks) can be incorporated into time-estimation

models to improve the re-estimation process in software projects. In the appendix o f [1],

Agresti (also please see Appendix A:! provides a list of critical risks and warning signals

o f problems in software projects. Alongside each risk or problem is a description o f the

way that a feed-forward model may contribute as part o f an overall risk management

approach and hence help and improve the process o f re-estimation. In [26], Miller et al.

mentioned that feed-forward information in RE or SA processes could allow the

requirements engineers to deliver critical information to the architects prior to the

delivery o f the validated new requirements. This information, if made available to the

architects ahead of time, could be useful for specific architectural enhancements and

change while the new requirements are still being elicited in the RE process.

10

In [21], Lehman first discusses about how software evolution processes can be described

as multi-agent, multi-level, multi-loop feedback systems. Unanticipated circumstances

and unexpected conditions, specification changes, performance problems, budget

changes, for example, lead to process adjustments, adaptations and changes. Such

unplanned changes are error prone and undesirable. It is not very desirable using

feedback to deal with such changes and anticipating these changes and knowing about

them ahead o f time avoids much o f the backtracking that may normally need to be done.

Also, in agile methods, the concept o f feed-forward is not common. As a matter o f fact,

in agile architecture modeling, it is expected to consider future changes but not act on

them until needed. Instead one should focus on building what is needed imminently [2].

However, in the case o f a major change or new requirement, such feedback mechanisms

are not useful. Delivery o f the changes ahead o f time can avoid backtrack and rework.

2.3 Research Gap

Feed-forward is a common term in many disciplines as was seen in the previous sections.

In many o f them feed-forward was used together with feedback to enhance the efficiency

o f the process. It can also be seen that die term feed-forward has also been suggested for

use in some software engineering work. For example, in [26] it was mentioned as to how

feed-forward can be used to bundle critical information from requirements engineers to

the software architects. This basis can be used to further explore feed-forward and

determine what the characteristics of this feed-forward information are and what impact

this information can have on different aspects o f software architecture.

As feed-forward is not common in software engineering organizations today, it may also

be a point o f analysis as to what is the current state o f the practice o f feed-forward? Why

is feed-forward not yet practiced in organizations? If it is, how useful is it and what could

11

be the motivation behind feed forwarding information or expecting feed forward

information?

In die exercise suggested by Goldsmith for feed-forward [10], participants provided feed

forward information and also received feed-forward information. This is similar to “Push

Feed-forward” and “Pull Feed-forward” defined in the definitions section. Even though

there is no explicit mention o f “push/ pull feed-forward” in the literature, there are certain

methods that resemble them. For example, the concept o f change cases [3], is similar to

the concept o f “push feed-forward”. A change case is a means to report possible future

new requirement or a modification to an existing requirement ahead of time. It is a

template with three primary fields: the potential change, the likelihood of that change

occurring and the possible impact the change can have on the system. Change cases in the

form of a new potential requirement for a system or modifications to existing

requirements can be identified throughout the course o f the development process and

provided to anyone relevant ahead of time. Change cases can be used in an agile manner

and has a number o f uses:

• I f you know about potential changes to your system, you can make better

architectural decisions.

• As you already have an idea about the future requirements, you can take action on

them right now instead o f learning about the change later on and spending long

hours in meetings, etc.

• It is possible to get the requirements prioritized ahead of time from stakeholders.

In [23], the author poses the question of whether it is possible to pull information ahead

of time from stakeholders to find out what they need and what will be useful for them.

12

However, there is no analysis o f such “push” and “pull” o f feed-forward information and

needs further research.

13

Chapter 3. The Empirical Study

In this chapter, we describe the empirical study. Section 3.1 describes the Goal,

Questions and associated Metrics that were used as the research paradigm. Section 3.2

describes the research procedure for the empirical study. Section 3.3 describes the

participants o f the study and finally section 3.4 describes threats and risks.

3.1 Goal, Questions and associated Metrics

The GQM [4] approach was used as the research paradigm. This approach helps to ensure

that measurements taken during the empirical study are aligned with the specific research

questions which, in turn, are aligned with the overall goal o f the research.

In [25], it is mentioned that the key step towards understanding a process activity is to

develop an understanding of the activity by characterizing the activity. This should be

followed by assessing the impact the activity has on the process and identifying the

improvements in process due to the activity. The final step includes enhancement o f the

current development policies by incorporating the new knowledge. Thus, it is important

to understand characteristics and impact o f feed-forward and also determine what the

current state o f practice of feed-forward is.

So, the overall goal for the research is formulated as:

‘T o determine the characteristics, impact and state o f the practice offeed-forward from

the viewpoint ofproject stakeholders in the context o f software development projects with

focus on requirements engineering (RE) and Software Architecting (SA)."

14

To determine the characteristics o f feed-forward information, the specific questions that

need to be answered are:

Question 1.1: What are the different types o f feed-forward information?

In Chapter 4, a list is made o f the different types o f information that could be fed-

forward, particularly in RE and SA. Data from both the survey and the case study is used

to answer this question. The associated metric (Mi.j) for this question is:

M l.l: Frequency of different types (e.g. requirements, information about architectural

artefacts, etc.) o f feed-forward information.

Question 1.2: What are the different types o f sources and recipients o f feed-forward

information?

Information can be fed-forward from any source to any recipient. However, it is

important to determine the place where it is needed the most and so it is necessary to

determine the source and destination of feed-forward. Data from both the survey and the

case study was used to answer this question. The associated metrics (for this question are:

M 1.2: Frequency of different source (e.g. customers, requirements engineers, software

architects, etc) o f feed-forward information.

M U : Frequency o f different recipients (e.g. customers, requirements engineers, software

architects, etc) o f feed-forward information.

Q uestion U : What is the frequency of “pull” feed-forward as compared to “push” feed

forward?

15

The activity o f feed-forward has already been categorized to “pull” feed-forward and

“push” feed-forward. To find the different characteristics o f feed-forward along with

types, source and recipient it is also important to determine the frequency of “pull” feed

forward as compared to “push” feed-forward. Data from only the case study was used to

answer this question. The associated metric for this question are:

M 1.4: Ratio o f types (push/pull) o f feed-forward

To determine the impact of feed-forward information the specific questions that need to

be answered are:

Q uestion 2.1: What aspects o f a software project are affected by feed-forward

information?

In Table 17 and Table 21, a list o f the different types o f aspects that could be affected by

feed-forward information is shown. To get a better idea about the impact o f feed-forward,

it is important to determine the different aspects that are influenced by feed-forward

information. Data from both the survey and the case study was used to answer this

question. The associated metric for this question is:

M 2.1: Frequency of different aspects (e.g. cost, quality, time, etc.) affected by feed

forward information.

Question 2.2: Which software artefacts (e.g., architectural artefacts) are influenced by

feed-forward information?

In Table 18, a list o f the different types of artefacts that could be affected by feed-forward

information is shown. To get a better idea about the impact o f feed-forward, it is

important to determine the different artefacts that are influenced by feed-forward

16

information. Data from only the case study was used to answer this question. The

associated metric for this question is:

M 2.2: Frequency of different software artefacts (e.g. architectural driver, tactics, patterns,

etc.) influenced by feed-forward information.

To determine the state o f the practice of feed-forward information the specific question

that needs to be answered is:

Q uestion 3: What is the current state o f the practice o f feed-forward?

If feed-forward were to be practiced in the industry, it would be necessary to get the

opinion of relevant industry professionals about their view on feed-forward. It would be

necessary to ask them about the level (refer to Section 4.1.2.1) o f practice o f feed

forward and the underlying reasons for the practice of feed-forward. Data from only the

survey was used to answer this question. The associated metrics for this question are:

M 3.1: Frequency of different levels (“Never”, “Rarely”, “Sometimes”, “Most o f the

time”, “Always”) of practice o f feed-forward

M 3.2: Proportion of feed-forward that is being useful for software projects.

M 3.3: Frequency o f different reasons behind the absence of feed-forward in software

projects.

In [45], Yin mentioned that the key to a research question is the understanding that it has

“substance”, (for e.g. what the study is about) and “form” by asking a “what, who, where,

how many, how much, how, and why” question. Table 1 shows the possible substance of

interest along with the form o f the question. The table shows that all the forms of

17

questions have been asked to reach the overall goal. Because o f these we can say that the

research questions satisfy the goal.

Table 1 Possible substance of interest to satisfy the goal

Parts of goal Question
Format

Substance Research
Question

Characteristics of feed-

forward

"What" types of information fed-forward Question 1.1

"Who" types of sources/ recipients Question 1.2

"How" frequency of "pull" as compared to

"push" feed-forward

Question 1.3

Impact of feed-forward "What" aspect of software project affected Question 2.1

"What" software artefacts influenced Question 2.2

State of the practice "how much" level of practice of feed-forward Question 3.1

"why" why feed-forward is useful Question 3.1

"why" why is feed-forward not practiced? Question 3.1

___ 1"Where" RE and SA context o f the

goal

It is, however important to mention that due to time and resource constraints the metrics

to satisfy the questions were limited to certain aspects. For example, to determine the

impact o f feed-forward, the metric used was aspects affected and software artefacts

influenced. However, metrics such as degree o f impact or the degree o f influence were

not measured in this thesis due to constraints o f time and resource.

3.2 Research Procedures

The following sections discuss the research procedures used for the empirical study.

Section 3.2.1.1 discusses the design o f the instrument and data collection for the case

study. Section 3.2.1.2 discusses the analysis o f data for the case study. Section 3.2.2

discusses the survey and Section 3.2.2.1 discusses the instrument design and data

18

collection for the survey. Finally section 3.2.2.2 discusses the data analysis for the

survey.

3.2.1 Case Study

Using an exploratory research methodology [32], an interpretive [32] single case

embedded case study was conducted in accordance with [33]. A single case embedded

study is a single case study with embedded units o f analysis. In this case, the units of

analysis are four group projects that were undertaken in two graduate level Software

Architecting courses, one held in spring, 2009 and the other held in summer 2009.

In each o f the projects, the group members were assigned to elicit the requirements and

develop the architecture for a particular system. A teaching staff acted as a customer to

each o f the projects. In the four projects, the systems that were to be implemented were

that for a “Banking System” and a “Garage Door system”. Project 1 and Project 3 group

members implemented the Banking system while Project 2 and Project 4 group members

implemented the Garage Door system. The group members were chosen based on their

academic and/or industry experience in RE and SA and convenience sampling [41].

Convenience sampling is a non random sampling technique where subjects are chosen

based on proximity, ease o f access and willingness to participate. As the participants

were registered students they were available and because the group members willingly

completed die questionnaires even though it was not part o f their coursework the

sampling is considered convenience sampling. The placement o f the group members in

the different projects were based on their background to make sure that project members

had the relevant application domain knowledge. The projects were each implemented

over the span of 4 weeks. Projects 1 and 3 had two 2 hour sessions every week while

project 2 and project 4 had 6 hour sessions with breaks in between once every week.

19

3.2.1.1 Instrument design and Data collection
According to Lethbridge et al. [22], a data collection technique of category first degree is

when there is direct involvement o f researchers during data collection. During the

collection of data from the case study, the researcher was in direct contact with the

project members hence the data collection technique was o f category first degree. Also an

instrument was used for data collection. After every session, a questionnaire (please see

Appendix D) was handed to each of the individuals involved in the project. The teaching

staff present in die role o f customer was also expected to fill out the questionnaire after

each session. A discussion was held between the participants o f each project for 10

minutes to discuss the feed-forward during that particular session and then the

questionnaire was completed. The projects had a fixed design process [32] because

everything including the questionnaires were designed before the projects started and

were not changed over time. The questions in the questionnaire were based on the metrics

shown in section 3.1 and were limited to the area o f RE and SA in accordance to the

study. The questionnaire for projects 1 and 2 were in the form of an excel spreadsheet

and provided to the group members and they had to fill it in and submit it after every

session. Since the process seemed a bit arduous for the group members o f project 1 and 2,

for projects 3 and 4 the questionnaire was redeveloped (without changing the semantics

or content) as a php [29] mysql [27] tool using the framework CakePHP [7] (the tool is

not in the scope of the thesis). In these two projects, the requirements and artefacts

developed were automatically connected for better reference. The group members

accessed the tool and filled in the form and their results were later extracted from the

database. The metrics measured in each of the questions in the questionnaire o f the case

study is shown in Table 2.

20

Table 2 Questions in the case study and the associated metrics measured from the questions

Ouestion #
Metrics

M l.l M1.2 M1.3 M1.4 M2.1 M2.2
2(a) X X

2(b) X

2(c) X

2(d) X

2(e) X

3(a) X X

3(b) X

3 (0 X

3.2.1.2 Data Analysis

The data was collected from the questionnaire provided. There were both closed [17] and

open ended [17] questions involved so the researcher had to check the artifacts for the

first two case studies to check for coherency. In the latter projects, artifacts were

automatically connected to the answer. Since there was both qualitative and quantitative

data involved it was actually a “mixed methods” approach [32]. Hence, both statistical

and analytical generalization was done.

3.2.2 Survey
In order to get opinions o f software professionals regarding feed-forward, an industry

survey was conducted. The survey was exploratory and involved both quantitative and

qualitative data. The inclusion criteria [16] and exclusion criteria [16] are used to identify

subjects who will or will not be participants in the survey. The survey was carried out

amongst software professionals who had a good knowledge in requirements engineering,

software architecting and other software engineering processes, hence this was the

inclusion criteria and all other professionals were excluded. The participants for the

survey were chosen based on availability sampling [12] and snowball sampling [12].

21

Availability sampling is the seeking of responses that fall under the inclusion criteria and

are available and willing to participate in the research. Snowball sampling refers to the

reliance on reference from initial respondents to generate additional respondents.

3.2.2.1 Instrument design and Data collection

The survey was of type descriptive design survey [17] where descriptors o f the

phenomenon are captured. There were both closed and open ended questions involved.

The questions o f the survey were designed based on the metrics mentioned in section 3.1.

The survey was web based, hosted in [39] and restricted to a single page. Participants had

the option to fill out the survey partially, save the information and return at a later time to

fill out the rest o f the survey and then submit it. Definitions of relevant terms and the

objective o f the study were explained in general terminology upfront in the survey.

It is important to mention that one industrial survey was conducted to collect data for two

studies: the first study is the one described in this thesis and the second is a

complementary investigation3. The survey questionnaire was divided into three sections.

Section 1 was the background section and development o f this part can be attributed to

the authors o f both the studies. Section 2 and section 3 focused on individual topics and

the design for these sections can be attributed to the respective researchers. Also, both the

studies involved analysis o f the participants demographic data found from the

background section.

The metrics measured in each o f the questions in the survey (please see Appendix B:

Survey Questionnaire! is shown in Table 3.

Table 3 Questions in the survey and the associated metrics measured from the questions

3 This complementary investigation is on the concept of information lost during software engineering.

22

Survey
Metrics

M l.l M1.2 M1J M1.4 M2.1 M2.2 M3.1 M3.2 M33
Q#15 X

Q# 16 X
0 # 17 X

0 # 18 X

0 # 19 X

O # 20 X

0 # 21 X

0 # 22 X

Q#23 X

3.2.2.2 Data Analysis

There were both ordinal and categorical data involved and so both statistical and

analytical generalizations were done for the analysis o f the data.

3.3 Participants

Determining the participants for the study was an important step in the design of the

empirical study. Section 3.3.1 discusses the survey participants, including their

background, organization and geographical distribution. Section 3.3.2 describes the case

study participants.

3.3.1 Survey participants4

The participants o f the survey ranged from programmers to consultants and chief

technical officers with varying number o f years o f experience and different geographical

distribution. In total there were 32 participants from a total o f 23 different companies

with 1 to 15 years o f industrial experience. The background of the participants will be

4 As mentioned in Section 3.2.2.1, this participant section is used as it is in another complementary
investigation.

23

described in more detail in the following three subsections. In the participants’

background subsection, the role or title o f the participants, their area o f expertise and

number o f years o f experience will be described. In participants’ organization section, the

team and project size and the type of process models followed in the organization will be

discussed. In the final subsection the geographical distribution of the participants will be

discussed.

3.3.1.1 Participants’ background

The role o f the majority o f survey participants was that o f programmer (38%) or senior

software engineer and analyst (38%) while only 3% o f the participants were software

maintenance engineer or a consultant. The main focus o f this study was in the area o f RE

and SA. Upon verbal communication with the participants, it was determined that in the

organizations the participants worked in, there was no explicit role or title o f software

architect or requirements engineer and the senior software engineer and system analysts

were responsible for RE and SA. A reason behind this was that a good number o f the

participants followed agile methods and so even though an individual in an organization

had one role they could have several different responsibilities. The distribution of the

role o f the participants in the organizations is shown in Table 4. The difference between

the role o f programmer and senior software engineer and analyst is that a programmer is

mostly responsible for coding and low level design whereas a senior software engineer

and analyst are responsible for upfront activities such as RE, SA, high level design and

planning. It should also be noted that other stakeholders were also involved and

responsible for RE and SA.

24

Table 4 Percentage distribution of role or title of the respondents of the survey

Participants Background Percentage

Programmer 38%

Senior software engineer and analyst 38%

Quality assurance engineer 6%

Testers 6%

Software maintenance engineer 3%

Management 6%

Consultant 3%

The background experience o f the participants is shown in Table S. A high number o f the

participants have experience o f design and coding. This may be due to the fact that in

many o f the organizations, the participants joined in the entry level job of programmer

and/ or tester and are either promoted or switch to other areas such as RE and SA.

However, a large number o f the participants have background experience o f both RE and

SA as well.

Table 5 Frequency distribution of the background experience of the survey participants

A rea of background experience Num ber of participants

Requirements engineering 17

Software architecting 17

Design and Coding 28

Testing 20

Software maintenance 14

Project management 9

Quality control and/ or assurance 9

Process improvement 10

25

The participants have a range of experience from 1 to 15 years. One of the minimum

criteria for the selection o f the participants for this survey was at least one year o f

industrial experience in software engineering. The number o f years o f experience o f the

participants was broken down into four clusters as shown in Table 6.

Table 6 Percentage distribution of years of experience of the survey participants

Num ber of years of experience Percentage

1 year 13%

2 years 25%

3 to 4 years 31%

More than 5 years 31%

33.1.2 Participants’ organization

The software development lifecycle models followed by the participants ranged from

traditional models like waterfall and iterative to a combination of agile methods like XP

and Scrum. Table 7 represents the different lifecycle models followed by the participants.

The “Others” models followed include lifecycle models such as rational unified process,

model driven development and any other customized lifecycle model followed in the

organization.

26

Table 7 Frequency distribution of software development lifecycle model followed in survey

participants’ organization

The total o f the number o f respondents is more than 100 because the participants had the option
to choose more than one lifecycle models.

Software development lifecycle
models followed

Number of
respondents Cumulative num ber of

respondents
Waterfall 16

21

Iterative 12

Spiral 6

Agile-eXtreme Programming 8

20

Agile-Scrum 14

Feature Driven Development 5

Others 4 4

The typical team size o f the projects that the participants worked in ranged from 1 to 5 to

m ore than 10 which is why the team size were grouped into three clusters. The clusters

and their percentage are shown in Table 8.

Table 8 Percentage distribution of typical team size in survey participants’ organization

T ypical team size (in persons) Percentage

1 to 5 53%

6 to 10 41%

more than 10 6%

The typical project duration o f participants’ team ranges from less than 1 month to more

than 2 years. The duration o f the projects has been split into 4 ranges and is shown in

Table 9.

27

T able 9 Frequency distribution o f typical project duration in survey participants’ organization

Typical project duration Num ber of respondents

< 1 Month 4

>=1 month and < 6 months 20

>=6 months to <1 year 9

>=1 year to <2 years 9

>= 2 years 4

The organizations o f the participants ranged from small (<50 people) to large (>2000

people). This was also broken down into four clusters as shown in Table 10.

Table 10 Percentage distribution of organization size of survey participants

O rganization Size Percentage

< 50 people 50%

>=50 people and < 200 people 15.63%

>=200 people to <2000 people 9.38%

>= 2000 people 25.00%

3.3.1.3 P articipan ts' geographic distribution

It is important to note that the geographical distributions were based on the participants

and not the organizations in which they work because some of the companies were

multinational and hence had branches all over the world so it was more important to

consider the location o f the participation rather than the location of the main branch of

the organization. The geographical distributions o f the participants are shown in Table

11.

28

T able 11 Percentage distribution o f survey participants by geographical location

Participants* geographic location Percentage

Bangladesh 47%

Canada 31%

US 6%

Finland 6%

Australia 10%

According to government statistics reported in [42] on the experience o f developers in

China in 2007, it was found that 42% of the developers had less than two years of

industry experience. This is comparable to the percentage of respondents in our survey

with 1 to 2 years o f experience (38%). The number o f developers in China with

experience o f 2 to 5 years is 38%, which is comparable to the percentage of respondents

in the survey with more than 2 and less than 5 years o f experience (31%). 20% o f the

developers in China had an experience o f more than 5 years which in the case o f the

survey was 31%. Thus, if the percentage distribution o f experience o f the survey

respondents is compared to the statistics o f developers in China it can be said that the

experience o f the respondents o f the survey is equal or more than that o f the developers

experience distribution in China. According to a report published in 2008, China was the

4th largest software producer in the world [20].

According to a survey on 1298 software professionals by Forrester research [11], in 2009

the ratio between agile and traditional development in development teams is

approximately 0.82 (45% agile: 55% traditional). If we look at the ratio between agile

and traditional development in the survey, it is approximately 0.95 (63% agile: 66%

traditional; please see Table 7).

29

So, from the above examples it can be concluded that the respondents o f this survey are a

good representation o f a large population of software professionals.

3.3.2 Case study participants

The embedded case study had four units o f analysis, namely four projects. The

participants for two o f the projects were drawn from the final year and graduate level

Software Architecture Course at the University o f Western Ontario. The participants for

the other two projects were drawn from industry professionals taking a graduate course

on Software Architecture. Each project had a teaching staff acting as a customer, who

provided the project members with requirements and provided on-site feedback. Hence,

there were a total o f four customers for the four projects. O f the total 8 group members

(excluding the customers) for the project 1 and project 2 that were held in a course

conducted in academia, only two of the group members were undergraduate students

while the remaining 6 group members where graduate level students with years of

industry experience ranging from 2-5 years with an average of approximately 4 years. All

the group members o f project 3 and project 4 were industry professionals with industry

experience ranging from 3 to 15 years with an average of approximately 9 years. The

courses were conducted in winter 2009 and summer 2009. A summary of the four

projects are shown in Table 12.

Table 12 Summary of case participants

Project 1 Project 2 Project 3 Project 4

Number of
participants

5(including

one customer)

5(including

one customer)

4(including

one customer)

3(including

one customer)
Course
conducted in

Academia Academia Industry Industry

Software
development

Agile Agile Traditional

Iterative

Agile

BO

3.4 Threats and Risks

Since our study is exploratory, we are not looking for causal relationships with respect to

the study constructs. Internal validity is of concern when investigating whether one factor

affects an investigated factor and there is a risk that the investigated factor is also affected

by a third factor. As such, we will not discuss threats to the internal validity o f this study.

In the following subsection, we will discuss separately the threats involved during the

case study and the threats involved during the survey.

3.4.1 Threats to Case study

This section describes the threats to the case study that was conducted. Section 3.4.1.1

describes triangulations such as data triangulation, observer triangulation and

methodological triangulation of the findings o f the case study. Section 3.4.1.2 describes

the external validity of the results o f the case study.

3.4.1.1 Triangulation
Triangulation [32] is important for empirical research where qualitative data is involved.

It is also relevant for qualitative data to compensate for measurement errors. It is a

method of establishing the accuracy of a study’s findings by taking different angles

towards the studied object. There are different types o f triangulation that can be used

together to form a strong basis o f validity. Three different triangulations were used for

this study.

Data Triangulation: This triangulation refers to the use o f more than one data source or

collecting the same data at different occasions [32]. If there is consistency in the data

31

collected in the different occasions, then the data is not invalidated. In the case study, the

data from the project members were collected after every session. To verify that the

project members were reporting accurate feed-forward information, the artefacts and

requirements implemented were checked against the reported feed-forward. In project 3

and project 4 the process o f manual checking against requirements and artfacts was

avoided because the participants had the facility to tag the particular requirements and

artefacts they were referring to during their feed-forward. Hence, more than one data

source was used for the collection o f data.

O bserver Triangulation: This refers to the use of more than one observer for the study

[32]. After each session, all the project members sat for approximately 10 minutes to

discuss die different information fed-forward during that session and then they reported

their individual feed-forward. Thus, all the project members were observers in identifying

feed-forward in the case study. Also two researchers were responsible for the collection

o f data.

M eth odologica l Triangulation : This refers to the triangulation of combining different

types o f data collection methods [32]. In this study, both qualitative and quantitative data

collection method was used and the quantitative data was consistent with the qualitative

data. For example, when a project group member provided information regarding feed

forward, they also provided their rationales behind feed-forwarding the information. This

rationale was consistent with the information that they had fed-forward. This consistency

establishes methodological triangulation for the study.

3.4.1.2 External Validity

P opu la tion Validity: This validity is concerned with the extent to which it is possible to

generalize the findings [32]. Using students as participants is a threat to the generalization

32

o f the findings in industrial context. However, this threat is partially reduced by the fact

that all the group members for project 3 and project 4 are industry professionals so that

the settings would more closely mirror real-world context. In project 1 and project 2, only

20% o f the group members were senior level undergrad students while the rest o f the

group members were all graduate students with previous industry experience. Also,

recent research in software engineering [13] has shown that senior level students perform

similarly to “novice” industry professionals with 1-2 years of industry experience.

3.4.2 Threats to survey

This section describes the threats to the survey that was conducted. Section 3.4.2.1

describes the construct validity o f the survey including content and face validity. Section

3.4.2.2 describes the internal validity. Section 3.4.2.3 describes the external validity of

the findings o f the survey. Section 3.4.2.4 describes the reliability o f the findings of the

survey and finally section 3.4.2.5 describes the conclusion validity o f the results of the

survey.

3.4.2.1 Construct Validity

This refers to the extent to which the operational measures studied represent what is

being investigated according to the research questions [32]. There are two types of

construct validity that can be used as a strong basis o f validation for the survey

questionnaire and these are discussed below.

Content Validity: This refers to the extent to which the content o f the questionnaire

measure the metrics o f the research question [35]. The questionnaire is based on GQM

[4] and was reviewed, in several iterations, by at least three other researchers to iron out

any issues with the questionnaire. In the survey, the options (such as requirements,

33

rationales, etc.) for the characteristics of feed-forward, the aspects (such as cost, quality,

time, etc) influenced, and the artefacts affected (such as tactics, patterns, etc.) were all

rooted in literature (e.g., [18], [5] and [36]). However, each survey question also had

additional space that could be used by the participants to enter any additional options that

may have been missing from the list but used in the organization of the particular

participant. The idea o f pull and push were completely new but agreed upon by several

researchers.

Face Validity: Face validity is a measure o f how representative a research project is ‘at

face value,’ and whether it appears to be a ‘good project’ [40]. Face validity is

strengthened by the consensus o f experts [35]. In the survey, consensus was taken from

three other researchers who specialized in RE and SA.

3.4.2.2 Internal Validity

Since no causal relationships were being inferred and since the study was exploratory

threats to internal validity will not be discussed.

3.4.23 External Validity

This aspect o f validity is concerned with the extent to which it is possible to generalize

the findings, and to what extent the findings are o f interest to other people outside the

investigated case [32]. If we look at the profile o f the participants o f the study, it becomes

clear that a wide range o f software engineers from various companies took part in the

survey and to make the survey questions applicable for the diverse participants, more

options were added as compared to the options in the case study. For example, in the

aspects affected section in the case study, the options were limited to RE and SA type

aspects within the scope o f the case study but in the survey more options such as coders,

34

testers, integrators, etc., were added. This way, the survey results are not just valid for RE

and SA, but also other areas o f software engineering.

3.4.2.4 Reliability

The objective o f reliability is to be sure that if an investigator later carried out the same

study all over again then they would arrive at the same findings and conclusions [45].

Research bias was removed from the survey in the following ways:

• The objective o f the survey was defined in general terminology in the beginning

of the survey

• To make sure that the questions of the survey were not limited to focus o f die

research, several open ended questions were asked where applicable

• Another researcher was involved during the data collection and data analysis to

remove research bias and error

3.4.2.5 Conclusion Validity

Conclusion validity is defined as “the degree to which conclusions we reach about

relationships in our data are reasonable” [40]. The conclusions made were based on the

findings o f the study. Section 4.2 discusses composite analysis o f the common questions

asked in both the survey and the case study and it was found both the studies yielded

similar findings. Thus, the conclusion for the empirical study can be considered valid.

35

Chapter 4. Results and Interpretations
This chapter describes the results and their interpretations. Section 4.1 discusses the

results and interpretations for the case study and section 4.1.2 discusses the results and

interpretations for the industrial survey. Section 4.2 discusses the composite analysis of

the results of the case study and survey. It is important to note that the interpretations

made based on the results are limited to the study and should not be generalized widely.

4.1 Results from Case study
Table 13 shows the frequency o f feed-forward in the different projects. There were a total

o f 24 feed-forward with project 1 having the highest number o f feed-forward (13) and

project 4 having the lowest number o f feed-forwards (2). On average there were 6 feed

forwards in each o f the projects.

Table 13 Frequency of feed-forward In each of the projects

U nit o f Analysis N um ber o f feed-forw ard incidents

Project 1 13

Project 2 4

Project 3 5

Project 4 2

Total 24

Mean 6

It can be seen from Table 13 that the number o f feed-forwards were highest in project 1

followed by project 3, project 2 and project 4. It is worth noting that the project 1 had the

highest number o f requirements implemented (56 requirements) followed by project 3

(48 requirements), project 2 (36 requirements) and project 4 (27 requirements). Hence the

number o f feed-forward increased with increase in number of requirements. Also, feed

forward was more frequent in the banking projects (project 1 and project 3) than in the

36

garage door projects (project 2 and project 4). The banking project had a higher number

o f subsystems (4 subsystems) as compared to the garage door project (3 subsystems).

These results can be used to formulate questions for future research such as whether the

number o f requirements and the application domain influences the number o f feed

forward in a project.

4.1.1 Findings
The first research question was the following:

Q1.1 W hat a re the d ifferen t types o f feed-forw ard inform ation?

In the case study, after every session of the project meetings, the project members were

asked to identify if there were any feed-forwards during that session and if there was

what type o f information it was. The project members were asked to select from a list of

types o f information as shown in Table 14. As already mentioned in section 3.4.2.1, the

options provided to the participants were all rooted in literature (i.e., [18], [5] and [36]).

Table 14 Potential list of types of information fed-forward during case study

Type o f inform ation Description

Requirements This refers to one or more requirements

Requirements) related

information

This refers to information such as assumption,

rationale, relationship between requirements

Information about requirements This refers to information such as requirements

decomposition, refinement, etc

Information about requirement

characteristics

This refers to information such as cost of

implementation, implementation effort, resources

needed, prioritization, change-related info, etc

Information about the architecture This refers to information about the architecture to be

implemented

Other Any other type of information is specified here

37

The types of information that were reported by the project members as feed-forward

information in the four projects are represented in Figure 1.

information
about

requirements
characteristics

information
about

requirements
13%

Requirements
related

information
13%

Requirements
37%

Information
.about the
architecture

33%

Figure 1 Percentage distribution of types of information fed-forward in the case study

There is a high proportion of feed-forward information which is based on requirements

(37%) and information about the architecture (33%). The main deliverables for the

projects were the requirements and software architecture which is why information about

these was fed-forward the most. However, the results may be different in a development

project where the code in the main deliverable. The findings calls for further research in a

project where architecting, development and software testing were done to see whether

actual “code snippets” or test cases get fed-forward.

Requirements (37%) : A high amount o f the information fed-forward was requirements as

was reported by the members o f the projects. They were asked also to explicitly state the

particular requirements that they think was fed-forward. The participants were provided

with a list o f all the requirements that they had elicited till that particular session as a

reference.

38

Example: A requirement being fed-forward during the project was seen in the very first

session. The customer for project 2 was explaining the requirements to the requirements

engineer. The requirements engineer, based on his previous experience o f working in a

similar project, asked the customer whether a web based system was needed to access the

log o f entry through the garage door for the whole day. To this, the customer mentioned

that it is an important requirement that was supposed to be provided after 3 weeks

because o f the priority o f the requirement. However, from an architectural perspective,

this requirement would have required a considerable overhauling of the architecture if it

were known 2 weeks later. Thus a requirement was collected from the customer by “Pull

feed-forward”.

Q1.2. Who a re the sou rces o f feed-forw ard inform ation?

Q1.3. Who a re the recip ien ts o f feed -fo rw a rd inform ation?

In the questionnaire provided to the project group members, if they mentioned that they

received feed-forward from someone, they would have to explicitly state who or what the

source was. On the contrary, if the project group members mentioned that they fed

information forward to someone, they would have to explicitly state who they feed

forward the information to. It is possible that a project group member can claim as a

source that they had feed-forwarded information but the recipient may not really count it

as any sort o f useful feed-forward information. To verify this, the recipient was shown

the particular claim from the source and if it was not accepted by the recipient, it was

rejected. Based on this, a path o f communication of feed-forward information from

source to recipient can be traced as shown in Table 15.

39

Table 15 Percentage distribution of the roles for the source and reception of feed-forward

Recipients (%)
Sources (%)

Customer Requirements engineer Software architect

Customer 0.00 4.35 21.74

Requirements engineer 26.09 0.00 0.00

Software architect 8.70 0.00 39.13

A plausible reason behind the high proportion of software architect to software architect

feed-forward may be due to the interchangeable roles of the group members in each

session (please see section 3.3.2). When a requirements engineer had some information to

feed-forward to a software architect or a group of software architects, due to their

interchangeable roles, the requirements engineer interprets the information from an

architect’s point o f view and when the information gets fed-forward, it was recognized as

a feed-forward from a software architect to another software architect. This also explains

why there was no feed-forward from a requirements engineer to a software architect or

from a software architect to a requirements engineer. More emphasis was placed in

architecting (as it was a project in an architecting course) than detailed modeling of the

requirements which, along with the other interpretations provided earlier, might

contribute to the fact that there was no feed-forward from a requirements engineer to

another requirements engineer.

From an agile point o f view, the results clearly indicate intra team feed-forward.

However, the result also calls for further research in an isolated project where there are

no overlapping roles to check for feed-forward from one activity to another (RE, SA,

Coding, Testing, etc.).

Overall, the communication path in the case study can be represented as in Figure 2.

40

Figure 2 Percentage communication of Feed-forward in the case study projects

Figure 2 shows that a customer provides more feed-forward (35%) than they receive

feed-forward (26%). On the contrary, the highest amount o f feed-forward is within the

development team (39%). It is possible that development team members provided more

feedback to the customer o f their work as compared to feed-forward. Whereas, within the

team, the project members knew what information might be useful ahead of time for

whom and so information was effectively fed-forward.

Q1.4 W hat is the frequ en cy o f “p u ll” feed -fo rw a rd as com pared to “push ’’fe e d

fo rw a rd ?

According to the definition of “pull” feed-forward and “push” feed-forward (please see

Definitions section), the source participants were asked whether the information that they

had fed-forward was done on their own accord (i.e., without a request from the recipient)

The opposite o f this case is “pull” feed-forward where the recipient were asked whether

they had to request for the information that they had received as feed-forward. The

aggregated percentage distribution from the four projects for “push” feed-forward and

“pull” feed-forward is shown in Table 16.

41

Table 16 Percentage of puih feed-forward and pull feed-forward in the case study

Type of feed-forward Distribution (%)

Push 75

Pull 25

Push (75%): A majority o f the feed-forward in the four projects has been “push” feed

forward. A plausible reason behind this could be that the recipients were busy doing their

current tasks and were usually “late” anyway and so they did not have the luxury of

thinking ahead in time. It was seen in Figure 2 that there was a lot o f intra team feed

forward. Breakdown of the source and recipients o f push feed-forward shows that

approximately 80% o f the sources o f push feed-forward were software architects and the

corresponding recipients were also, not surprisingly, software architects. Hence, there

was a tendency to help out a fellow software architect by proactively providing them with

information ahead of time that they may need.

Q2.1: W hat a sp ects o f a softw are p ro jec t are a ffected by feed -fo rw a rd inform ation?

Once the project members had identified the types o f information that were feed-

forwarded, they were also asked to mention the particular aspect of the project that they

think the information had an effect on. As stated in section 3.4.2.4, all the different

aspects mentioned in the list are rooted in literature (i.e., [36]). The list o f aspects that the

participants were asked to choose from is shown in Table 17.

42

Table 17 Potential list of aspect affected in the software projects of the case study

Aspect Explanation

Cost Whether the information could cause a potential

saving o f expense (denoted by effort)

Time Whether the information could potentially save

time and things could get done earlier/ on time

instead o f late

Quality Whether it could enhance the quality o f the

architecture o f the software system and

potentially save much evolution and rework

The percentage distribution of the different aspects affected during the course o f the

projects is shown in Figure 3.

Figure 3 Percentage distribution of software aspects affected by feed-forward information in case study projects

43

Time (46%)\ When the participants selected the aspect that they thought was influenced

by the feed-forward infonnation, they were also asked to provide the rationale behind

their selection. It is obvious that a major aspect influenced by getting information early

would be time.

Cost (25%)\ This is the second major aspect influenced by feed-forward information.

When information was fed-forward from a domain expert it obviously saved the effort

that would have otherwise been spent on hours with another domain expert. Hence cost

was an important aspect.

Since this was a class project and the work to be done in the project was to be evaluated,

there were two main constraints in the project: time and quality. The project members

had a clear idea about the timelines (project deadline) and the expected quality o f the

project was explained to them as a guideline rather than a reference. Whenever a project

member got an opportunity for feed-forward that could have affect on time, it was done

with much motivation. Even though all the project members had a good background in

RE and SA they were not as experienced to rationalize the potential impact feed-forward

information can have on the overall quality and cost o f the software. This might be the

reason why time was affected a lot more than quality. This result suggests that a

constrained aspect that project members had experience in might be affected more by

feed-forward information.

It is important to note that some participants reported feed-forward but also claimed that

no aspect was influenced. In cases such as these the participants were also asked to

provide their rationale behind their opinion. After going through the rationale it was

found that even though information was fed-forward, it was not confirmed as to whether

the information will be implemented. For example, in one of the projects the customer

talked about a requirement on inter-banking support so that bank customers can transfer

money from one bank account to another bank account through ATM. This requirement

44

was not part o f the current architecture and the customer seemed confused about whether

it would be implemented in the future. Eventually that requirement was never

implemented and so even though there was a feed-forward, it was not put to any

particular use.

Q2.2: W hich so ftw are artefacts a re influenced by feed -fo rw a rd inform ation?

Feed-forward could potentially have an influence on any software aretfact (e.g., software

code, test-cases, change related information, etc.). For this study, the group members

were required to complete two major steps o f the software process-RE and SA. Since the

study was conducted in an architecting course, architecting was the main focus o f the

project and requirements were not modeled in detail. For this reason, the main influence

o f feed-forward was observed to be in the architectural artefacts. The findings o f these

influence is shown in Figure 4. However, it is acknowledged that feed-forward can have

an influence on artefacts other than simply the architectural artefacts.

Based on the type o f information that was fed-forward, the participants were also asked

to select the software artifact that was influenced by the feed-forward information. As in

previous sections, the list o f different architectural artefacts is rooted in literature (e.g.

[5]). The list o f architectural artefacts that the project members selected is shown in Table

18.

Table 18 Software architectural artefacts influenced by feed-forward information in case study

I Software architectural I Explanation

artefacts 1

Architectural Driver 1 A collection of functional, quality, and business

I requirements that shape an architecture [5]

Pattern 1 An architectural pattern is a description o f element and

1 relation types together with a set of constraints on how

1 they may be used. [5]

Tactics 1 a design decision that influences the control o f a quality

1 attribute response. [5]

Decisions A description of the set of architectural additions,
subtractions and modifications to the software

1 architecture, the rationale, and the design rules, design
constraints and additional requirements that (partially)
realize one or more requirements on a given
architecture I’M]

Architectural Element 1 Modules which encapsulate some functionality of the

system [5]

Quality Scenario 1 Attribute specific requirements of a systems [S]

No Influence 1 This means that no architectural artefact was influenced

Figure 4 shows the percentage distribution of software artefacts influenced by feed

forward information.

46

Architectural _ 9% \ __
No influence

Patterns
2596

Tactics
33%

Figure 4 Percentage distributions of software architectural artefacts influenced by feed-forward in case study

A high proportion of the architectural artefacts affected by feed-forward were tactics and

patterns. For all the projects, redundant tactics and well known architectural patterns

were used. For example, in the garage door projects, there was redundancy of sensors and

in the banking door projects there was redundancy of database. In project 1, the group

members used façade which is a well known architectural pattern while in project 3 the

group members used a combination of multitier and distributed application. Since low

level design decisions were beyond the scope of the project only high level design

decisions were taken. Tactics, patterns and decisions were in higher levels o f abstraction

whereas architectural driver, architectural elements and quality scenarios were modeled

in more detail. The results from Figure 4 show that artefacts which are at a higher level o f

abstraction are influenced more by feed-forward information. A plausible explanation for

this could be that enough details were not known regarding the artefacts at a lower level

o f abstraction to be fed-forward ahead of time.

47

4.1.2 Results from Industrial survey

As we have already said, the research question was sent to 29 professionals and through

snowball sampling [12] the survey was referred to 12 more people. Out o f this total o f 41

people approx 78% o f the participants, i.e., 32 software professionals completed the

survey. Hence the response rate was 78%.

4.1.2.1 Findings

The first research question was the following:

Q1.1 W hat are the d ifferen t types o f feed-forw ard inform ation?

Selected industry professionals with the necessary background were asked to select from

a list o f different types o f information and select appropriate information(s) which has

been fed-forward. The list o f different types o f information is shown in Table 19 and as

was mentioned in section 3.4.2.4, each of the different type of information is rooted in

literature (e.g., [18], [5] and [36]). The survey involved a larger diversity o f software

professionals and so more options were added to the potential list o f types o f information

fed forward as compared to the case study projects (where the roles o f the respondents

were limited to customer, requirements engineer and software architect).

Table 19 Lilt of types of Information fed forward as shown In the survey

Types of Information
Prospective requirements

Requirements

Rationale, priority, source and assumptions

Architectural artefacts

48

Other artefacts

Architectural relevance of requirements

Cost, effort and change related information

Process related information

Domain related information

Constraints

Information about artefact decomposition

Others

The percentage distribution of the type of information feed-forwarded by industry

professionals is as follows. It may be noted that the aggregate o f the percentages is not

100% because the participants were given the option to select more than one type of

information as they felt necessary.

Information about artefact decomposition 4
Constraints ■ ■ ■ ■ ■ ■ ■ 40

Architectural relevance of requirements ■ ■ ■ i
Other artefacts li 4

1 16

0 10 20 30 40 50 60 70 80

Figure 5 Percentage distributions of the different types of information as reported by respondents of survey

The major types o f information fed-forward are:

• Requirements (76%)

• Prospective requirements (52%)

49

• Cost, effort and change related information (48%)

• Process related information (48%)

Just as in the case study projects, in the survey the software professionals also reported

that requirements were the most popular type of information fed forward. The other most

popular types o f information were information related to requirements. And according to

a lot o f the respondents, process and domain related information was also fed forward.

Since domain and process were not constraints in the case study projects, they were not

found in the case study. However, these findings suggest that in industry, process and

domain related information are also prominently fed forward.

Q1.2. Who are the sources o f feed-forw ard inform ation?

Q1.3. Who are the recipien ts o f feed-forw ard inform ation?

In the survey, the software professionals were also asked to select from a list o f sources

and recipients whom they think are the sources of the feed-forward information were and

who tiie recipients were. The list of sources and recipients that the software professionals

were asked to choose from are shown in Table 20.

Table 20 List of sources/ recipients of feed-forward information as reported from survey respondents

Source/ Recipients of feed-forward information
Customers

Requirements engineers

Software architects

50

Developers

Managers

Others

Again the aggregate o f the percentage distributions for both the sources and the recipients

is not 100% because the participants had the option to choose more than one source and

more than one recipient.

The percentage distribution of the sources of feed-forward is shown in Figure 6.

Others Ï 4

Managers

Developers

Software Architects

Requirement Engineers

Customers

Figure 6 Percentage distributions of different sources of feed-forward as reported by respondents of survey

The major sources o f feed-forward are:

o Requirements engineers (68%)

• Software architects (60%)

• Developers (56%)

The percentage distribution of the recipients o f feed-forward is shown in Figure 7

51

Requirement Engineers

Software Architects

Developers

Customers

Managers

Others

72

0 20 40 60 80

Figure 7 Percentage distributions of different recipients of feed-forward as reported by respondents of survey

The major recipients o f feed-forward are:

• Requirements engineer (72%)

• Software architect (68%)

• Developers (64%)

It is interesting to note that while a customer was a moderately high source o f feed

forward information (48%), they were a comparatively low recipient o f feed-forward

information. This means that while a customer does feed-forward a lot o f information, a

software project member more often feeds back information to a customer. There is also

high consistent feed-forward between software project members. This can be seen from

the fact that requirements engineers, software architects and developers were always

consistently high sources and recipients o f feed-forward information. Thus, it is more

common to feed-forward information to internal stakeholders than external stakeholders.

Q2.1: What aspects o f a software project are affected by feed-forward information?

52

The software professionals were asked to select from a list o f aspects the aspects o f a

software project that they think are affected by feed-forward information. Table 21 shows

a list o f aspects reported by the respondents o f the survey. As in the previous section, the

options for the aspects are all rooted in literature (i.e., [36]).

Again the aggregate o f the percentage distributions for aspects is not 100% because the

participants had the option to choose more than one aspect.

Table 21 List of Aspects reported by survey respondents

Aspect affected by feed-forward information
Cost

Quality

Time

Requirements engineer and Software architect

Morale

Designers, coders, testers, integrators

Management and Quality assurance

Customers

Process improvement agents

Process

Resources

Others

The percentage distribution of the aspects is shown in Figure 8

53

Others
Resources

Process
Process Improvement Agents

Customers
Management and Quality Assurance

Designers, Coders, Testers, Integrators
Morale

Requirement Engineer and Software Architect
Time

Quality
Cost

0 10 20 30 40 50 60 70 80 90

Figure 8 Percentage distributions of different aspects affected by feed-forward as reported by survey
respondents

The major aspects affected by feed-forward information are:

• Time (80%)

• Cost (68%)

• Quality (60%)

• Management and Quality assurance (60%)

These findings are in unison with the findings o f the case study in that time, cost and

quality were also noted as important aspects affected by feed-forward information.

However, other aspects such a management and quality assurance were not present in the

case study and hence provide a more realistic picture of the aspects affected by feed

forward in industry. This result indicates that process aspects such as management and

quality assurance are also affected by feed-forward along with product aspects such as

time, cost, quality, etc.

54

Q3: What is the current state o f the practice of feed-forward?

To determine the possible implications o f feed-forward in the industry, it is important to

analyze what the current state o f die practice o f feed-forward is like. Three things were

measured from the survey to determine the answer to this question.

M 3.1: Frequency of different levels (“Never”, “Rarely”, “Sometimes”, “Most o f the

time”, “Always”) o f practice o f feed-forward

Here the different levels refer to the ordinal scale (Never, Rarely, Sometimes, Most o f the

time and Always) [12] with an extra scale called “Not Sure” added. This was the most

preliminary question added and based on the answer to the question a participant would

have to answer differently for the rest o f the sections o f the survey. The professionals

who chose “Never” and “Rarely” had to answer an extra question regarding the reason

behind absence of feed-forward in their organization. Since these professionals have very

little experience with feed-forward, questions such as type of information fed forward

and aspects affected where asked in the form of opinions (e.g., what type of information

do you think could be fed forward?).The actual frequency of the response from the

survey participants is shown in [39]. Table 22 shows the aggregation of the answers

provided by the 32 participants regarding whether feed-forward is practiced in their

organization or not. The later rows show die median and the 95% confidence intervals for

the answers. Since the data was ordinal, a median was taken. A median o f 2.999993 as

shown in Table 22 means that the median frequency of usage of feed-forward in industry

is “Sometimes”. This implies that information is fed forward sometimes in industry but

not very prominently. The low frequency of “Always” and high frequency o f “Not Sure”

and “Never” also shows that feed-forward is not well recognized in industry. A 95%

confidence interval (Cl) was also found of the median value. If the 95% Cl does not

55

include zero (i.e., either the upper and lower bound of Cl are positive or both of them are

negative) then the medians are considered statistically reliable [38]. Hence, the median

for the frequency of usage is statistically reliable.

Table 22 Percentage frequency of practice of feed-forward in organizations as reported by respondents of
survey

Number of response Percentage

Never 4 12.50

Rarely 3 9.38

Sometimes 17 53.13

Most of the time 3 9.38

Always 1 3.13

Not sure 4 12.50

Median of ordinal scale 2.999993 « “sometimes”

95 % Confidence interval (+) 3.000034

95 % Confidence interval (-) 2.499967

M 3.3: Frequency of different reasons behind the absence of feed-forward in software

projects.

7 o f the total 32 participants answered either “never” or “rarely”. These respondents were

asked to provide their opinion regarding why feed-forward was not practiced in their

organization. Upon breakdown and categorization o f the answers, the following major

reasons were found as cited by the respondents as the reasons behind the absence of feed

forward in organizations:

• The structure of their organization does not support feed-forward (42.86%)

• The participant has never heard o f feed-forward before (28.57%)

56

• Feed-forward was not considered important for their organization (28.57%)

M 3.2: Proportion o f feed-forward that is being useful for software projects.

Irrespective o f the frequency o f feed-forward of software projects, respondents were

asked, based on their understanding of feed-forward, to provide their opinion as to

whether they think that feed-forward will be useful for software projects in their

organizations. The three options for the respondents were “Yes”, “No” and “Not Sure”.

The percentage distribution of the response from the participants is shown in Figure 9.

Figure 9 Percentage distribution of usefulness of feed-forward in software projects as reported by survey
respondents

As can be seen from the percentage distribution, majority o f the respondents reported that

feed-forward is or could be useful in software projects in organizations. The fact that

feed-forward is unknown to some of the participants is shown by the 32% response o f “I

don’t know”. Only a few respondents didn’t find feed-forward to be useful for their

organization. However, it is important to analyze the reasons why the respondents

perceived feed-forward as not useful. One rationale o f a respondent against feed-forward

was:

57

“J think it's information overload. In our daily work we already get too many

notifications and emails on topics that only remotely affect our work. It's difficult to pin

point the feed-forwarded information that is relevant to our work because we are so

focused on the work being done at the moment. Too often the information pertaining to

some future piece o f work will ju st get lost in one's inbox, and then you have to dig

through the old emails when that information is actually needed

It is clear from this response that one of the possible disadvantages o f feed-forward is

information overload. It was also mentioned in [1] by Agresti that if a feed-forward

apparatus was sensitive to every disturbance, then there would a constant fluctuation in

software estimation because every event would signal an update to the estimates. This

cautions us about what information should be fed forward. Feeding forward too much

information will result in information overload such that they will get lost and will be put

to no use ahead o f time. Thus, this comment signifies the necessity o f knowing the

characteristics and impact o f feed-forward information so that a better idea can be gained

about which information would be most useful when fed-forward.

Another rationale from another respondent was as follows:

“Developers are told pretty specifically the tasks that are expected by management,

regardless o f what feed-forward information they may receive from other stakeholders. I

fin d that businesses will not adjust their work processes unless they know that will be

getting pa id for it and it has value (i.e., new or changed requirements being fed-forward

have no impact until they are contractually accepted). Also, I'm not sure i f feed-forward

58

is something you ‘do or not do it is a more natural phenomenon that occurs given a

particular situation in a project...

This comment suggests that for feed-forward to be incorporated into a software process,

it is necessary to promote feed-forward in an organization. Unless, a software

professional is encouraged to feed-forward information, they would not always do so. As

was already seen in the results in section 4.1.2.1, information is fed forward sometimes in

an organization but it is not done frequently because it is not an established activity. If the

usefulness o f feed-forward is established, it can then be accepted explicitly as an activity

in software processes in industry and organizations can motivate their employees to feed

forward information ahead of time.

4.2 Composite Analysis of results and interpretations

Q l.l. What are the different types o f feed-forward information?

Table 23 Composite percentage distribution of the different types of feed-forward information in case study and

survey

Types of inform ation in case study Percentage Types of inform ation in

Survey

Cumulative

Percentage

Requirements 37% Requirements (76%), 78%

Prospective requirements

(52%)

Requirements) related information such

as assumption, rationale, relationship

between requirements

13% Rationale, priority, source

and assumptions (44%)

13%

Information about requirements such as

requirement decomposition, refinement,

etc

13% Information about artefact

decomposition and

refinement (4%)

56%

Constraints (40%)

59

Domain related

information (48%)

Information about requirement

characteristics such as cost of

implementation, implementation effort,

resources needed, prioritization, change-

related info, etc

4% Cost, effort and change

related information (48%)

4%

Information about the architecture 33% Architectural artefacts

(44%),

53.13%

Architectural relevance of

requirements (16%),

Information about artifact

decomposition and

refinement(4%)

Table 23 shows the percentage distribution of the types o f information from the case

study and survey. As there were more options in the survey as compared to the case

study, certain options in the survey are grouped to represent a particular type of

information comparable to the case study. In this case, requirements and prospective

requirements were grouped to compare with requirements. Information about artefact

decomposition and refinement, constraints and domain related information were grouped

to compare with information about decomposition, refinement, etc. Architectural

artefacts, Architectural relevance o f requirements and information about artifact

decomposition and refinement were grouped to compare with information about the

architecture. The cumulative percentage of the groups were taken (individual percentages

are mentioned in brackets beside each individual types in the groups). In both the case

study and the survey, requirements are the major type of information fed-forward.

Information about the architecture was also a major type of information fed-forward.

However, while information about requirements such as requirement decomposition,

refinement, etc was not a major type of information fed forward in the case study, it was

the second highest type in the survey. Upon closer inspection, it will be noticed that

60

individual feed-forward about decomposition and refinement type of information was low

in both the case study and the survey and constraints and domain related information

reported in the survey was comparatively higher. Constraint and domain related

information was not dealt with in detail in the case study which is why the feed-forward

o f information related to these were low in the case study. However, its higher frequency

in the survey results give us a better idea about the type o f information that is fed-forward

in industry level projects where domain related information and constraints are important

factors.

Q1.2. Who are the sources o f feed-forward information?

Q1.3. Who are the recipients o f feed-forward information?

Table 24 Comparison between the source and recipients of case study and survey

case study survey

M utually exclusive percentage O verlapping percentage

Source Recipients Source Recipients

Custom ers 34.78 26.09 48 24

Requirem ents engineers 4.35 26.09 68 72

Softw are architects 60.87 47.83 60 68

Developers - - 56 64

M anagers - - 48 56

O thers - - 4 8

As there were three roles recognized in the case study, the other rows of roles that are

present in the survey results are missing from the results o f the case study.

61

From the findings o f the case study and the survey, it was seen that in both the case study

projects and in the survey, customers fed forward more information than they received as

feed-forward. Other than the common roles of customer, software architect and

requirements engineer, Table 24 also shows that developers and managers are also major

source and recipients o f feed-forward information. Thus the findings provide a clearer

idea about the sources and recipients o f feed-forward in industry where the main

deliverable is the software and a large number o f stakeholders are involved.

Q2.1 What aspects of a software project are affected by feed-forward information?

Table 25 Comparison between the aspects affected in case study and survey

Aspect affected in case study Aspect affected in survey

Name of aspect I Mutually exclusive

percentage

Name of aspect I Overlapping

percentage

Cost 45.83 Cost 60

Quality 25.00 Quality 68

Time 20.83 Time 80

requirements engineer and

software architect

44

- - morale 8

designers, coders, testers,

integrators

28

management and quality

assurance

60

- - Customers 36

“ " process improvement agents 24

- - Process 8

- - Resources 32

62

- - Others 0

No affect 8.33 - -

From the findings o f the case study, it was seen that feed-forward information has an

effect on product aspects such as cost, quality, time (here time refers to time of delivery

o f product), etc. However, there was no significant affect in process aspects. However,

the findings from the survey provide a clearer picture o f industry process aspects (such as

management and quality assurance) that are affected by feed-forward information. Thus,

the findings from this study shows that feed-forward has an impact on software process

aspects as well.

63

Chapter 5. Implications
This chapter discusses the implication of the study in various areas. Section 5.1 discusses

the implications in industry. Section 5.2 discusses the implications o f the results in

further empirical work.

5.1 Implications in Industry

The results from Table 22 shows that feed-forward is practiced “sometimes” in

organizations and that while many professionals are not aware feed-forward, it is

considered by many as a useful activity (please see Figure 9). These findings can act as a

motivation for the incorporation or enhancement o f feed-forward in software processes in

industry. Knowing the characteristics and impact o f feed-forward has implications in

industry so that software professionals have a better idea about which information would

be most effective as feed-forward. In order to understand the effect o f feed-forward

information in a software process, empirical investigations such as case studies or control

studies could be conducted. Even though in principle a control study can be conducted in

industry in reality it would be extremely difficult. This is due to the unavailability of

equivalent projects and the inability to impose research control (i.e., feed-forward in

software engineering processes). However, it is possible to do archival analysis o f

software projects to get an idea about feed-forward in industry software projects and

whether it had an impact on software aspects and influenced software artefacts. The

GQM developed for this study can also be used as a primary template for the archival

analysis o f feed-forward in software processes in industry.

5.2 Further Empirical Work

Based on the findings o f the exploratory study, the following emergent hypotheses can be

raised:

64

H I: The constrained aspects o f a project will have more impact from feed-forward in a

software project as compared to the other aspects o f a project.

Results from Figure 3, Figure 5 and Table 25 support the hypothesis stated above in that

information is fed forward such that it has an effect on aspects that are constraints in the

project. In the case study, since time and quality were constraints for the projects, they

were affected more by feed-forward as compared to the other aspects. The results from

the survey supported the results from the case study and it was also seen that key

constraints to a project such as time, quality and cost were affected more by feed-forward

information as compared to other aspects o f a software project.

H2: Software artefacts at a higher level o f abstraction are affected more by feed-forward

information as compared to artefacts at a lower level o f abstraction.

The findings from Figure 4 shows that architectural artefacts that were implemented at a

higher level o f abstraction were affected more by feed-forward as compared to artefacts

at a lower level o f abstraction. While the findings o f Figure 4 may seem intuitive, further

testing o f this hypothesis in other areas o f software engineering (such as development,

testing, etc.) as well as other software aspects (such as software codes, test cases, etc.)

would only confirm as to whether this finding is generalizable across other areas of

software engineering. Also further testing of the hypothesis in different domains and

project contexts would also help confirm whether the results are generalizable across

different setting and indicate the variance across the different settings.

When software professionals were asked the reasons behind the absence of feed-forward

in software organizations, the most common reasoning was that their organizational

65

structure doesn’t support feed-forward. This finding can be used to formulate a research

question for future research:

Q l: Which organizational structure is most suitable fo r feed-forward?

The answer to this question can help researchers decide whether feed-forward will be

suitable for their organization or not.

66

Chapter 6. Limitations, Future Work and

Conclusions

This chapter will describe the limitations, future work and conclusions. Section 6.1 will

discuss the limitations and future work that can be generated from this work and section

6.2 will make conclusions based on all the findings.

6.1 Limitations and Future work

To the best o f the author's knowledge, this study was a first o f its kind study of feed

forward in RE and SA. While these findings contribute new scientific knowledge

concerning feed-forward in RE and SA, it is important to note that the survey and case

study were both exploratory studies. Significant as it is, caution is advised when making

business or project decisions based on the findings o f this foundation study alone.

Confirmatory studies in other areas o f software engineering and contexts are encouraged

to help build a grounded theory on feed-forward in software engineering.

In this empirical study, the impact o f feed-forward on different software project aspects

and influence o f feed-forward on different architectural artefacts were identified. But it is

also important to determine the extent o f the impact o f feed-forward information.. This

aspect is a limitation o f this study.

However, it is important to mention that data from the four projects was captured using

video and audio but due to time constraint could not be analyzed. Thus, as part o f a

continuation of this study, further analysis o f the projects will be done using the

multimedia data. Based on the data, a comparison can be made between the amount of

67

feedback and feed-forward in the four projects and an analysis can be done on the extent

o f impact o f feed-forward information on software artefacts and aspects.

6 .2 Conclusions

W hile providing feedback and communication across the various areas o f software

engineering has been discussed several times before (e.g. in [9] and [21]), not many

papers have discussed feed-forward in software engineering [26] [21] and [1]. And while

feed-forward has been used with or instead of feedback in many non-software

engineering domains, there has not been any particular research on the properties of feed

forward in RE and SA. In this paper, we described two empirical studies including a case

study and a survey to determine the characteristics, impact and state o f the practice of

feed-forward in software engineering.

In summary, it was found that number of feed-forward is influenced by the number of

requirements and die application domain o f the system (please see Table 13). The most

common type o f information fed forward were requirements, prospective requirements,

information about the architecture and process and domain related information (please

see Table 23). It was interpreted that the type of information fed forward in a project

relies on the deliverables of the project (please see Figure 1). It was found that intra team

feed-forward was more common and external stakeholders such as customers did not

receive as many information as feed-forward as they had provided (please see Figure 2).

Aspects such as time, quality and cost were the major aspects affected by feed-forward

information and it was seen that such aspects which act as constraints for a software

project are most affected (please see Table 25). It was found that architectural artefacts

such as tactics and patterns were most affected by feed-forward information (please see

Figure 4) and architectural artefacts implemented at a higher level o f abstraction were

influenced most by feed-forward information. Factors such as occupation with current

task and no time to think “ahead o f time” attributed to the high percentage of “push feed

forward” as compared to “pull feed-forward”. While the activity o f feed-forward is not

68

prominent in software industry, the findings suggests that feed-forward is practiced

“sometimes” in organizations while many of other professionals are not aware o f it

(please see Table 22). Reasons attributing to the absence of feed-forward in software

organizations include inability o f organization structure to support feed-forward, zero

knowledge on feed-forward and perceived insignificance of feed-forward. However,

majority o f software professionals acknowledge the usefulness o f feed-forward (please

see Figure 9). Those who don’t consider feed-forward to be useful cited reasons such as

information overflow and lack of motivation from organization.

It is expected that this study can act as a stepping stone towards the conduction of further

research on feed-forward in software engineering.

69

References:

[1] Agresti, W. W. (2006). A Feedforward Capability to Improve Software

Reestimation. In N. H. Madhavji, J. C. Femândez-Ramil, & D. E. Perry (Eds.),

Software Evolution and Feedback (pp. 443-458). John Wiley & Sons.

[2] Ambler, S. W. (n.d.). Agile Architecture: Strategies fo r Scaling Agile

Development. Retrieved November 2009, from Agile Modeling (AM) Home

Page: Effective Practices for Modeling and Documentation:

http://www.agilemodeling.com/essays/agileArchitecture.htm

[3] Ambler, S. W. (n.d.). Introduction to Change Cases. Retrieved November 2009,

from Agile Modeling (AM) Home Page: Effective Practices for Modeling and

Documentation: http://www.agilemodeling.com/artifacts/changeCase.htm

[4] Basili, V. R., Caldiera, G., & Rombach, H. (1994). The Goal Question Metric

Approach. In J. J. Marciniak (Ed.), Encyclopedia o f Software Engineering (2nd

ed., Vol. 2, pp. 528-532). John Wiley & Sons, Inc.

[5] Bass, L., Clements, P., & Andkazman, R. (2003). Software Architectures in

Practice (2nd ed.). Boston,MA: Pearson Education Inc.

[6] Brosilow, C. B., & Joseph, B. (2002). Techniques o f model-based control. Upper

Saddle River, NJ: Prentice-Hall.

[7] CakePHP: the rapid development php framework. (n.d.). Retrieved November

2009, from CakePHP: the rapid development php framework: http://cakephp.org/

[8] Cordesman, A. H. (2002). Threat Assessment. In J. G. Cordesman, Cyber-threats,

information warfare, and critical infrastructure protection: defending the U.S.

homeland (pp. 35-37). Westport, CT: Praeger Publishers.

http://www.agilemodeling.com/essays/agileArchitecture.htm
http://www.agilemodeling.com/artifacts/changeCase.htm
http://cakephp.org/

70

[9] Damian, D., Izquierdo, L., Singer, J., & Kwan, I. (2007). Awareness in the Wild:

Why Communication Breakdowns Occur. International Conference on Global

Software Engineering (pp. 81-90). Munich: IEEE Computer Society.

[10] Goldsmith, M. (2002). Try Feedforward Instead of Feedback. In J. LeBoeuf, F.

Hesselbein, & F. Hesselbein (Ed.), Leader to Leader (Voi. 25).

[11] Chant, T., & West, D. (n.d.). Agile Adoption In The Real World. Retrieved

November 2009, from Forrester Research:

http://www.forrester.eom/rb/teleconference/agile_adoption_in_real_world/q/id/58

81/t/l

[12] Grinnell, R. M., & Unrau, Y. A. (2008). Social work research and evaluation:

foundations o f evidence-based practice. New York: Oxford University Press.

[13] Höst, M., Regnell, B., & Wohlin, C. (2000). Using Students as Subjects—A

Comparative Study ofStudents and Professionals in Lead-Time Impact

Assessment. Empirical Software Engineering, 5 (3), 201 - 214.

[14] Jansen, A., & Bosch, J. (2005). Software Architecture as a Set o f Architectural

Design Decisions. Working IEEE/IFIP Conference on Software Architecture (pp.

109—120). Pennsylvania, USA: IEEE Computer Society.

[15] Kimble, G. A. (1967). Foundations o f Conditioning and Learning. New York:

Appleton-Century-Crofts, Inc.

[16] Kitchenham, B. A., Pfleeger, S. L., Pickard, L. M., Jones, P. W., Hoaglin, D. C.,

Emam, K. E., et al. (2002). Preliminary guidelines for empirical research in

software engineering. IEEE Transactions on Software Engineering, 28 (8), 721 -

734.

[17] Kitchenham, B., & Pfleeger, S. L. (2001-2002). Principles o f survey research -

parts 1-6. SIGSOFTSoftware Engineering N otes, 26,27 (6,1,2,3,5), 16—18,18—

20,20-24,20-23,17-20.

http://www.forrester.eom/rb/teleconference/agile_adoption_in_real_world/q/id/58

71

[18] Kotonya, G., & Sommerville, I. (1998). Requirements Engineering: Process and

Techniques. John Wiley & Sons.

[19] Kwan, I., Damian, D., & Storey, M. (2006). Visualizing a Requirements-centred

Social Network to Maintain Awareness Within Development Teams.

International workshop on Requirements Engineering Visualization (p. 7). IEEE

Computer Society.

[20] LaLonde, J. (2008). China becomes world's 4th largest Software producer.

Retrieved November 2009, from China Bits:

http://bits.typepad.com/chinabits/2008/06/china-becomes-w.html

[21] Lehman, M. M., & Ramil, J. F. (2002). Software Evolution and Software

Evolution Processes. Annals o f Software Engineering, 14 (1-4), 275 - 309.

[22] Lethbridge, T. C., Sim, S. E., & Singer, J. (2005). Studying Software Engineers:

Data Collection Techniques for Software Field Studies. Empirical Software

Engineering, 10 (3), 311 - 341.

[23] Lung, C.-H. Z. (2005). Reflection on Software Architecture Practices - What

Works, What Remains to Be Seen, and What Are the Gaps. Working IEEE/IFIP

Conference on Software Architecture (pp. 221 - 222). Pittsburgh, Pennsylvania,

USA: IEEE Computer Society.

[24] Mauk, M., Medina, J., Nores, W., & Ohyama, T. (2000). Cerebellar function:

Coordination, learning or timing? Current Biology, 10 (14), R522-R525.

[25] McGarry, F., Pajersk, R., Page, G., Waligora, S., Basili, V., & Zelkowitz, M.

(1994). Software Process Improvement in the NASA Software Engineering

Laboratory. Technical.

[26] Miller, J. A., Ferrari, R., & Madhavji, N. (2009). An Exploratory Study of

Architectural Effects on Requirements Decisions. Journal o f System and Software

, Submitted.

http://bits.typepad.com/chinabits/2008/06/china-becomes-w.html

[27]

72

MySQL :: The world's most popular open source database. (n.d.). Retrieved

November 2009, from M ySQL:: The world's most popular open source database:

http://www.mysql.com/

[28] Penn, P. (1985, September). Feed-Forward: Future Questions, Future Maps.

Family Process , 299-310(12).

[29] PHP: Hypertext Preprocessor. (n.d.). Retrieved November 2009, from PHP:

Hypertext Preprocessor: http://php.net/index.php

[30] Podvig, P. (2002). History and the Current Status of the Russian Early-Warning

System. Science and Global Security ,10(1) , 21-60.

[31] Fourati, F., & Chtourou, M. (2007). A greenhouse control with feed-forward and

recurrent neural networks. Simulation Modelling Practice and Theory, 1016 -

1028.

[32] Runeson, P., & H6st, M. (2008). Guidelines for conducting and reporting case

study research in software engineering. Empirical Software Engineering, 14 (2),

131-164.

[33] Scholz, R. W., & Tietje, O. (2002). Embedded case study methods: integrating

quantitative and qualitative knowledge. Thousand Oaks, CA: Sage.

[34] Scheffer, M., Bascompte, J., Brock, W. A., Brovkin, V., Carpenter, S. R., Dakos,

V., Held, H., van Nes, E. H., Rietkerk, M., and Sugihara, G. (2009). Early-

warning signals for critical transitions. Nature, 461(7260):53-59.

[35] Sim, S. E., Perry, D. E., & Easterbrook, S. M. (2006). Case Studies for Software

Engineers. International Conference on Software Engineering (pp. 1045 -1046).

Shanghai, China: ACM.

[36] Sommerville, I. (2007). Software Engineering (8th ed.). Essex, UK: Pearson

Education Ltd.

http://www.mysql.com/
http://php.net/index.php

73

[37] Son, I. S., Oh, K. J., Kim, T. Y., & Kim, D. H. (2009). An early warning system

for global institutional investors at emerging stock markets based on machine

learning forecasting. Expert Systems with Applications: An International Journal,

36 (3), 4951-4957.

[38] StatisticalHelp from StatsDirect. (n.d.). Retrieved November 2009, from StatsDirect:
Software to improve statistical practice: http://www.statsdirect.com/help/statsdirect.htm

[39] Survey on Documentation and Feed forward information in Software Projects

(http://survey.obviousdesign.net/)

[40] Trochim, W. M. (2006). Research Methods Knowledge Base. Retrieved

November 2009, from Social Research Methods:

http://www.socialresearchmethods.net/

[41] Urdan, T. C. (2005). Statistical Significances, effect size and confidence intervals.

In T. C. Urdan, Statistics in Plain English (2nd ed., pp. 57-72). Mahwah, NJ:

Lawrence Erlbaum Associates, Inc.

[42] Wheeler, J. (2009, January). Overcoming the Software Developer Experience Gap

in China. Retrieved November 2009, from China software outsourcing and

Chinese offshore development blog: http://www.daoofoutsourcing.com/software-

developer-experience-in-china/

[43] Wojcik, R., Bachmann, F., Bass, L., Clements, P. C., Merson, P., Nord, R., et al.

(2006). Attribute-Driven Design (ADD), Version 2.0. Technical.

[44] Ye, X. (n.d.). The introducton o f automatic process control. Retrieved November

2009, from http://zdh.course.ecustmde.com/exres/info/jaxz/0800.ppt

[45] Yin, R. K. (2003). Case Study Research Design and Methods (3rd ed.). Thousand

Oaks, CA: SAGE Publications, Inc.

http://www.statsdirect.com/help/statsdirect.htm
http://survey.obviousdesign.net/
http://www.socialresearchmethods.net/
http://www.daoofoutsourcing.com/software-developer-experience-in-china/
http://www.daoofoutsourcing.com/software-developer-experience-in-china/
http://zdh.course.ecustmde.com/exres/info/jaxz/0800.ppt

74

Appendix A: Role of a feed-forward model

The role of a feed-forw ard model to address project risks or W arning Signal of
Problem

T opic a re a
o f risk

Project risk o r W arning
Signal of Problem

How a feedforw ard model
would provide support to
risk management

Requirements
and
specifications

Number of TBD (To Be
Determined) requirements higher
than norm or not declining

Make projections from any
parameters that relate to the extent
to which users and customers
know what they want; and make
those projections in the same form
as die data being used in the
project, namely, tell the project
manager the expected number of
TBDs at various points in
development. In this way, the
manager could see how die actual
TBDs compare to the projected
number to know if the estimate is
realistic or needs revision. This
problem area from is based on
their practice of explicitly
recording and tracking TBD
requirements.

High number of specification
modifications received versus
number completed; continuing
stream of requirement changes

Make projections from die
parameters it is using for
requirements volatility, and make
those projections in terms of die
data being used in the project,
namely, expected number of
changes to requirements and
specifications at various points in
development. In this way, the
manager could see how the actual
changes compare to the projected
number to know if the estimate is
realistic or needs revision.

75

Developing the wrong software
functions and user interface

Prompt the manager (e.g. on a
biweekly frequency) with related
questions, such as, ‘When is the
last time the current user interface
and system functionality were
checked with the customer?’
‘Does the development process
provide prototypes or other ways
to gain early customer buy-in and
agreement?’ ‘How do you know
this is what your customer wants?’

Gold plating Prompt the manager (triggered
when requirements are added or
functionality is reviewed) with key
questions, ‘What is the source of
this feature or requirement - does
the customer really want this?’ ‘Is
this new requirement required by
the contract?’ ‘Is the customer
paying extra for this - for
example, via a change order?’

Number of completed units
increases dramatically prior to the
scheduled end of a build/release
(the ‘miracle finish’) and/or effort
drops dramatically just after a
milestone is reached

Issue alerts at each milestone for
the manager to check if a miracle
finishoccurred orifeffort
dramatically drops off after the
milestone, and, if so, to check the
quality of the work completed
during the miracle finish and the
reason for the drop off.

Testing phase was significantly
compressed

Make projections on the needed
length of the testing phase; alert
the manager to the importance of
not compressing the testing phase.

The number of errors found
during

Make projections from the model

testing is below the norm on the expected number of errors
to be found; issue alerts to be on
guard to check the actual error
data, and, if lower than expected,
to ensure that adequate resources
and an effective process are being
applied to testing.

More than one person controls the
configuration

Generate questions periodically
for the manager to check on the
number of people controlling the
product configuration.

76

Capabilities originally planned for
one time period are moved to a
later time period

Make projections from the model
on the estimated functionality (e.g.
in function points or features) that
is planned for each time period or
product release; generate alerts for
the manager to check actuals to
ensure the plan is followed and to
take action.

Real-time performance shortfalls Make projections from the model
if the system to be built is
identified as one with real-time
performance requirements, so the
manager is alerted early in the
project to conduct off-line studies
(e.g. simulations and lab
exercises) to ensure that real-time
requirements will ultimately be
met as the product takes form.

‘Corrected’ errors reappear Issue an alert to check on the
frequency of errors reappearing,
from the error data being reported.

Continual schedule slippage Make projections on expected
numbers of components designed,
coded, tested or integrated, and
pose advisories to the manager to
check against actual values.

Personnel shortfalls and turnover Monitor actively the size and
composition of the team at all
times; alert management when
changes occur based on
comparison to projected size and
composition.

Unrealistic schedules and budgets Prompt managers to check realism
of parameter values; if the model
parameters continue to be
accurate, use the model to make
schedule and budget projections; if
actual resources are not sufficient
based on projections, issue
prompts to raise visibility of lack
of realism

77

Straining computer-science
capabilities

Monitor action items from reviews
for indications that there are
science and technology shortfalls;
prompt manager to consider
review by external expert panel to
get independent view of extent to
which project is pushing stat-of-
the-art and relying on unproven
technology.

Change or decrease in planned
use of methods or procedures
occurs

Make projections from model
parameters on expected
development platform, tools and
maturity of development process;
prompt manager to compare these
projections to reality.

Shortfalls in externally furnished Monitor receipt and integration of

components and tasks externally furnished components;
monitor completion o f externally
furnished tasks; compare to
projected dates and issue alerts if
differences exist

78

Appendix B: Survey Questionnaire

The first section o f the survey consisted o f six questions that were intended to determine

the background o f the respondents. The questions in the third section were meant to

collect data for measuring the metrics for this study. This appendix focuses on questions

o f the second section. The complete questionnaire can be found at [39].

Title: A Survey on Documentation and Feed forward information in Software Projects.

Questions about Feed-forward

Q uestion 15: Do you think feed-forward is practised in software projects at your

organization?

• Never

• Rarely

• Sometimes (Jump to question 17)

• Most o f the Time (Jump to question 17)

• Always (Jump to question 17)

Question 16: Which of the following do you think are the reasons behind the absence of

feed-forward in software projects at your organization? (Please select all that apply)

• Organizational structure does not support

• Never heard o f it before

• Not considered important

• Requirement Engineers and Software Architects work isolated from one another

with little room for communication

79

• Requirement Engineers and Software Architects work in an integrated

environment such that feed-forward is not necessary

• Others (Please specify)

Q uestion 17: Do you think that feed-forward might be/is useful in software projects at

your organization?

• lam not sure

• Yes

• No

Additional Comment:

Question 18: Which o f the following types o f information could be/is being fed-forward?

(Please select all that apply)

• Prospective requirements

• Requirements

• Rationale, priority, source and assumptions behind requirements

• Architectural artefacts

• Other artefacts (Please specify)

• Architectural relevance of requirements

• Cost, effort and change related information

• Process related information

• Domain related information

• Constraints

80

• Information about artefact decomposition and refinement

• Others (Please specify)

Q uestion 19: Which of the following aspects of a project can be/is being influenced by

that fed-forward information? (Please select all that apply)

• Cost

• Quality

• Time

• Requirement Engineer and Software Architect

• Designers, Coders, Testers, Integrators

• Management and Quality Assurance

• Customers

• Process Improvement Agents

• Morale

• Process

• Resources

• Others (please specify)

Q uestion 20: Which of the following stakeholders do you think could be/are the sources

o f the feed-forward information? (Please select all that apply)

• Customers

Requirements Engineers

81

• Software Architects

• Developers

• Managers

• Others (please specify)

Q uestion 21: If a stakeholder has some information that can be fed-forward, how often

would they /do they pass the information on to appropriate recipients even if these

recipients didn’t request for it?

• Never

• Rarely

• Sometimes

• Most o f the time

• Always

Q uestion 22: Which of the following stakeholders do you think could be/are the

recipients o f the feed-forward information? (Please select all that apply)

• Customers

• Requirements Engineers

• Software Architects

• Developers

• Managers

• Others (please specify)

82

Q uestion 23: How often do you think (/do) the recipients obtain information as feed

forward from a stakeholder only after they requested for it?

• Never

• Rarely

• Sometimes

• Most o f the time

Always

83

Appendix C: Survey Data

Raw data of results from the survey

Level of Feed-forward practice Percentage

Never 12.50%
Rarely 9.38%
Sometimes 53.13%

Most of the time 9.38%

Always 3.13%
Not sure 12.50%

Reasons behind absence of feed
forw ard in organization

num ber of
respondents

Organizational Structure doesn’t
support

3

Never Heard o f it before 2
Not Considered Important 2

Usefulness of feed-forward Num ber of respondents Num ber of respondents
(“never”+”rarely”)

I am not sure 8 4
Yes 16 3
No 1 0

84

Type of feed-forward
Inform ation

Num ber of
respondents

Num ber of respondents
(“never”+”rarely”)

Prospective requirements 13 2
Requirements 19 6
Rationale, priority, source and
assumptions behind
requirements

11 6

Architectural artefacts 11 4
Other artefacts (Please specify) 1
Architectural relevance of
requirements

4 1

Cost, effort and change related
information

12 3

Process related information 12 4
Domain related information 12 1
Constraints 10 3
Information about artefact
decomposition and refinement

1 0

Others (Please specify) 0 0

Aspects influenced by Feed
forw ard Inform ation

Num ber of respondents Num ber of respondents
(“never”+”rarely”)

Cost 15 2
Quality 17 6
Time 20 4
Requirement Engineer and
Software Architect

11 6

Morale 2 2
Designers, Coders, Testers,
Integrators

7 1

Management and Quality
Assurance

15 6

Customers 9 4
Process Improvement Agents 6 3
Process 2 1
Resources 8 3
Others 0 0

85

Sources of Feed-forw ard
Inform ation

Num ber of respondents Num ber of respondents
(“never”+”rarely”)

Customers 12 4
Requirement Engineers 17 6
Software Architects 15 3
Developers 14 1
Managers 12 3
Others 1 1

Recipients of Feed-forward
Inform ation

Number of respondents N um ber of respondents
(“never”+”rarely”)

Customers 6 2
Requirement Engineers 18 4
Software Architects 17 5
Developers 16 4
Managers 14 3
Others 2 1

How often inform ation is fed-
forw ard to appropriate recipients

Num ber of respondents N um ber of respondents
(“never”+”rarely”)

Never 0 0
Rarely 5 2
Sometimes 12 4
Most o f the time 6 2
Always 1 0

Recipients obtain inform ation
w ithout having to request for it

Num ber of respondents N um ber of respondents

Never 3 2
Rarely 7 0
Sometimes 20 5
Most o f the time 2 0
Always 0 0

86

Appendix D : Case study questionnaire

Case study questionnaire

1. Did you receive any information as feed-forward from any of your group member/sub

group/customer in today’s session?

• Yes

• No

If yes, Please answer the following questions.

1.1. Who was die source of that information?

• Name:

• Role:

1.2. What type o f information was it?

• actual one or more requirements

• information tightly related to the requirement(s), such as assumption,

rationale, relationship between requirements.

• information about requirement decomposition, refinement, etc.

• information about requirement characteristics (such as cost o f implementation,

implementation effort, resources needed, prioritization, change-related info,

etc.)

• information about software architecture

• Other (please specify)

1.3. Were you able to use that information in your architectural design?

• Yes

• No

87

If No,

1.3.1. Why could you not use that information?

If Yes, Please answer the following questions.

1.3.2. What was affected by the information that was fed-forward to you?

Example:

• A software artefact (e.g., an architectural artefact such a s : (Architectural

Driver, Element, Interface, Pattern, Quality Scenario, Decisions,

Rationale, implications, Relationships, Tactics, Use Cases, etc., or others-

state which))

• A process activity (state which)

• A decision o f some sort (state which)

1.3.3. Why do you think it was helpful to receive that fed-forward information?

1.3.4. Which aspect (cost, quality, time, people, morale, etc.) of your architecture

was influenced by that fed-forward information? Why do you think that

particular aspect was influenced?

1.3.5. How much effort (in person-hours) was reduced (if any) by receiving that

fed-forward information? What is your rationale behind this estimation?

1.4. Did you have to request for the information?

• Yes

• No

2. Did you feed-forward any information to any of your group member/sub

group/customer in today’s session?

• Yes

88

• No

If yes, Please answer the following questions.

2.1. Whom did you feed-forward that information to?

• Name:

• Role:

2.2. What type o f information was it?

• actual one or more requirements

• information tightly related to the requirements), such as assumption,

rationale, relationship between requirements.

• information about requirement decomposition, refinement, etc.

• information about requirement characteristics (such as cost of implementation,

implementation effort, resources needed, prioritisation, change-related info,

etc.)

• information about the architecture (please specify the type of the information)

• Other (please specify)

2.3. Did anyone have to request you for the information?

• Yes

• No

	FEED-FORWARD IN SOFTWARE ENGINEERING WITH PARTICULAR FOCUS ON REQUIREMENTS ENGINEERING AND SOFTWARE ARCHITECTING
	Recommended Citation

	tmp.1679683605.pdf.uf5Z7

