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Abstract
The k-median problem is a clustering problem where given n locations one wants to select k
locations such that the total distance between every non-selected location and its nearest se-
lected location is minimized. The problem has applications in several fields, including network
design, resource allocation, and data mining.

There is currently limited research on applying neural networks to combinatorial optimiza-
tion problems and we contribute by presenting a modified Hopfield network for the k-median
problem. Hopfield networks are a type of neural network that can be applied to combinatorial
optimization problems but often run slowly and produce poor solutions.

Our modifications address these speed and solution quality issues. We test our approach
by comparing it with Haralampiev’s competition-based neural network and the local search
algorithm of Arya, Garg, Khandekar, Meyerson, Munagala, and Pandit. Our network produces
competitive results while running significantly faster on larger (n ≥ 300) problems. Further-
more, our network scales well and produces solutions for problems where n = 13509.

Keywords: Hopfield Networks, K-Median Problem, Neural Networks, Combinatorial Op-
timization
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Summary for Lay Audience
Combinatorial optimization problems are an important field of computer science. Here we

are given a group of objects and we want to select the best subgroup of objects in order to solve
a problem. We focus on the k-median problem where we are given several locations and we
want to select k of them. We call these selected locations facilities and our goal is to select
facilities such that the total distance from all locations to their nearest facility is minimized. A
practical application of the k-median problem is placing schools so that student travel time is
minimized.

Unfortunately this problem is difficult to solve and it is not known if there is a fast way to
always produce the best solution. Instead, we can develop an approach that will run quickly
and produce a good solution instead of the best solution.

We use a type of artificial neural network called a Hopfield network to produce solutions for
the k-median problem. Artificial neural networks solve problems by emulating how neurons
in the brain function. We do this by creating simple artificial neurons and connecting them
together so that their output can be used to solve problems. In Hopfield networks, each neuron
has a value that can be 0 or 1 and changes over time based on the other values in the network.
Once the neuron values stop changing, we use the neuron values to determine which facilities
to select.

However, Hopfield networks often run slowly and produce poor solutions. To address
this we make several modifications to the network. We demonstrate the effectiveness of our
modified Hopfield network by using it to solve several k-median problems. We also compare
the performance of our modified Hopfield network with two other approaches and we find that
our network produces competitive solutions. Furthermore, our network scales well as we were
able to solve problems that were too large for the other two approaches solve.
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Chapter 1

Introduction

Combinatorial optimization is an important field of computer science. In a combinatorial opti-
mization problem one is given a set of objects and problem constraints and the goal is to select
the best subset of objects that satisfy the constraints. Each subset of objects is called a solution
and a cost function is defined to give each solution a value. The best solution is called the
optimal solution and depending on the problem it represents either the minimum or maximum
of the cost function.

Examples include the travelling salesman problem where given a set of locations one wants
to find the shortest tour that visits all locations once, and the knapsack problem where given a
set of items one wants to fill a knapsack with the most valuable items without exceeding the
knapsacks maximum weight limit.

In this thesis we focus on the k-median problem where given a set of locations one wants to
select k locations such that the total distance between non-selected locations and their nearest
selected location is minimized. Practical applications of the k-median problem include placing
schools so that student travel time is minimized [34], grouping similar machine parts so that
they may be manufactured more efficiently [45], and determining what variations of a product
should be produced in order to best satisfy customer demands [31].

A well studied variation is the metric k-median problem. In this instance the distance
between two locations is symmetrical and satisfies the triangle inequality. Formally, if Di, j

represents the distance from location i to location j then Di, j = Dj,i and for any three locations
i, j, and k the following equation holds Di,k ≤ Di, j+Dj,k. We will focus on the metric k-median
problem in this thesis.

Unfortunately, this problem is NP-Hard [25] and there is no known polynomial-time algo-
rithm for finding an optimal solution. As a result computing the optimal solution can require
a significant amount of time for small problems and an infeasible amount of time for large
problems as each problem contains n!

(n−k)!k! potential solutions. One way to address this is to
create polynomial-time algorithms that produce satisfactory or near optimal solutions. While
these solutions are not optimal, they can perform well in practice [32].

A type of polynomial-time approach to deal with NP-Hard problems is heuristics. Heuris-
tics can produce solutions within a reasonable amount of time but we do not know how close
these solutions are to optimal ones. The reason why we usually cannot determine how close
solutions computed by heuristics are to optimal ones is because heuristics are very compli-
cated. Heuristics are constructed specifically for a given problem and rely on using techniques

1



2 Chapter 1. Introduction

or methods that have been shown to be effective through empirical testing.

An example heuristic is simulated annealing [26]. Here each solution to a combinatorial
optimization problem is called a state and an energy function gives each state an energy value
such that states representing good or optimal solutions have a low energy value. The heuristic
will transition from state to state until an acceptable solution is found. At each step the heuristic
will select a state to transition to and generate a probability to accept that transition. This
probability will be based on the difference in energy between the two states with decreases in
energy resulting in higher probabilities and a temperature variable that when high increases the
chance of accepting any state and when low only allows state changes that decrease energy.
The heuristic then explores the state space while the temperature is high before settling into a
low energy state when the temperature is low.

For some heuristics we can show that the produced solutions will be of a certain quality.
These are called approximation algorithms and they are constructed to produce an approximate
solution for a problem that is guaranteed to be within some factor α of an optimal solution.
This factor α is called the approximation ratio and the current best approximation ratio for the
metric k-median problem is 2.611 + ϵ for any ϵ > 0 [8]. Local search algorithms are a type
of approximation algorithm which compute an initial solution and repeatedly swap objects of
the solution with objects not in the solution in order to improve the solution value. A solution
is returned when no further improvements can be made through the swaps. For the metric k-
median problem the best known local search algorithm for this problem has an approximation
ratio of 3 + 2/p where p is the number of objects that may be swapped at one time [2].

Neural networks are another approach for solving combinatorial optimization problems
[20]. These networks attempt to emulate the natural computing power of the brain by creating
simple artificial neurons and linking them together such that their output can be used to solve
a problem. One of the more popular network types is the feedforward neural network which
takes in training data, uses it to set neuron connections in a process called training, and then
applies the trained neurons to some problem. A neural network could be trained to solve a
combinatorial optimization problem by providing it with numerous solved examples. After the
neurons have been trained the network should be able to solve new problem instances.

Our work uses neural networks to solve the k-median problem. The neural network we
use is the Hopfield network [19]. This network functions differently compared to the afore-
mentioned feedforward neural network; instead of outputting a solution, each neuron contains
a state value and a solution is derived from these state values. The state values can be be-
tween 0 and 1 and a solution to a general combinatorial optimization problem can be derived
as follows: map each neuron to an object, for each neuron that has the state value 1 select the
corresponding object, and return the selected objects as a solution.

Each neuron in a Hopfield network will repeatedly evaluate its state value and send output
to its connected neurons. When evaluating the state value a neuron will sum the input it receives
and if a certain threshold is reached, it will increase the state value otherwise it will decrease the
state value. This continues until the neurons stop changing their state values and the network is
said to have stabilized. It is from this stabilized state that we derive a solution from the neuron
state values.
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1.1 Our Contributions
Our main contribution is a new Hopfield network for solving the k-median problem. We mod-
ify the Hopfield network operations in order to address the stability and solution quality issues
present in standard Hopfield networks. Additionally, we structure our modified Hopfield net-
work operations as a series of matrix operations which allows us to leverage the computing
power of GPUs. We expand on the previously limited research of applying Hopfield networks
to combinatorial optimization problems and demonstrate how a few modifications can produce
a competitive solver from an underperforming Hopfield network. We empirically tested our
approach and compared the results with both Haralampiev’s competition-based neural network
[16, 17, 18] and Arya et al.’s k-median local search algorithm [2]. Our approach is significantly
faster than Haralampiev’s network for large problem sizes while providing competitive results.
For large problems sizes such as n = 800 our network stabilizes up to 145 times faster than
Haralampiev’s network. When compared with Arya et al.’s local search algorithm our network
returns a better solution in 76% of tests when n ≥ 300 and 86% of tests when both n ≥ 300 and
k ≥ 20. We also demonstrate that our network scales well to larger problem sizes by providing
solutions to problems where n = 13509. This is significant as the two compared approaches
struggled to produce solutions to problems where n ≥ 1000.

1.2 Outline of the Thesis
In Chapter 2 we further explain the k-median problem and provide an integer linear program
formulation for it. We then review approaches that have been proposed in the literature for
solving the problem, including approximation algorithms, parameterized algorithms, meta-
heuristics, and machine learning.

In Chapter 3 we provide a brief overview of neural networks before discussing Hopfield
networks in detail. We describe their construction, use in problem solving, and the issues asso-
ciated with them. We then go over modifications that have been applied to Hopfield networks
in order to improve performance on several combinatorial optimization problems.

In Chapter 4 we construct a Hopfield network for the k-median problem and briefly discuss
its performance and issues.

In Chapter 5 we present a new network based on the previous Hopfield network. We demon-
strate how to modify the network in order to improve solution quality and algorithm runtime.

In Chapter 6 we present our experimental results. We compare our modified Hopfield net-
work with Haralampiev’s network and Arya et al.’s local search algorithm using five datasets.
Three of the datasets contain test data created for this thesis: datasets one and two consist of
randomly selected points on a 2D plane and dataset three consists of North American city co-
ordinates from John Burkardt’s USCA312 dataset [6]. We use an integer linear program solver
to find optimal solutions to the generated problems. The other two datasets are the OR-Library
p-median tests [5] and a subset of the TSPLib dataset [37] which has been adapted for the
k-median problem by Garcı́a et al. [15].

In Chapter 7 we summarize our work and present future research directions.



Chapter 2

K-Median Problem

2.1 Problem Overview

The k-median problem is a classical clustering problem: Given a set of n locations we want to
select a subset of k of them such that the sum of distances between every non-selected location
and their closest selected location is minimized. Non-selected locations are customarily called
clients and selected locations are called facilities. We say that a client is served by its closest
facility, breaking ties arbitrarily so each client is served by a unique facility.

Figure 2.1 shows an instance of the metric k-median problem and Table 2.1 contains the
distances between the locations. In this example there are five potential locations on a 2D plane
for the facilities and the goal is to optimally place facilities at two locations. Each location can
be identified by an (x, y) coordinate pair and the Euclidean distance between locations i and j
is calculated with Di, j =

p
(xi − x j)2 + (yi − y j)2.

In this case the problem size is small enough that we can find an optimal solution by hand.
Visually we see two potential clusters consisting of locations {1, 2} and {3, 4, 5}. We use the
distance matrix in Table 2.1 to evaluate the potential facility locations and we select locations
1 and 4 as the optimal solution with a total distance of D1,2 + D4,5 + D4,3 = 0.64. Note that a
second optimal solution exists that uses the locations 2 and 4 as facilities.

Some related problems are the facility location problem and its variations. In the unca-
pacitated facility location problem there is a cost to open a facility and no limit on how many
facilities can be opened. In this problem the goal is to minimize the total distance from clients
to their nearest facility plus the total cost of the opened facilities. In the capacitated facility

1 2 3 4 5
1 0 0.14 0.63 0.64 0.67
2 0.14 0 0.58 0.67 0.73
3 0.63 0.58 0 0.36 0.50
4 0.64 0.67 0.36 0 0.14
5 0.67 0.73 0.50 0.14 0

Table 2.1: The distance matrix for the locations in Figure 2.1.

4
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Figure 2.1: An example of a solved k-median problem for n = 5 and k = 2. Squares represent
facilities and circles represent clients.

location problem there is a constraint limiting the number of clients that an individual facility
can serve and there might be any number of clients at each location. In the connected facility
location problem there is an extra cost for opening a facility based on that facility’s distance
to other opened facilities. In the k-center problem the goal is to minimize the maximum dis-
tance between a facility and a client instead of the sum of distances between clients and their
facilities.

2.2 Integer Linear Program Formulation

We can formalize the k-median problem as an integer linear program as follows: Let X be a
set of n data points and F be the set of facilities. The distance between two data points Xi and
Xj will be represented by Di, j. We use binary variables yi, j that take the value 1 to indicate that
client Xi is being served by facility Xj. We also use the binary variable Fi that takes the value
1 if data point Xi is selected as a facility.

The k-median problem can be defined with the following integer linear program:

Minimize:
X

Xi∈X

X

X j∈X
yi, jDi, j (2.1)

Subject To:
X

X j∈X
yi, j = 1 for each Xi ∈ X (2.2)

X

Xi∈X
Fi ≤ k (2.3)

yi, j ≤ F j for each Xi, Xj ∈ X (2.4)
Fi, yi, j ∈ {0, 1} (2.5)
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Equation (2.1) represents the goal of minimizing the total distance from the clients to their
nearest facility: Every Xi and Xj pair is evaluated and if Xj serves Xi then the distance between
the two locations is added to the total distance.

Several constraint terms are needed to ensure that a solution is valid. The first constraint,
Equation (2.2), enforces that every client Xi is served by exactly one facility Xj. This is satisfied
for a client Xi when there is exactly one client-facility variable yi, j with the value 1. Equation
(2.3) ensures that at most k facilities are selected and is satisfied when the total number of
facility variables with the value 1 is less than or equal to k. The third constraint is Equation
(2.4) which ensures that a location must be a facility if it is serving a client. There are three
ways to satisfy this equation for a pair of locations Xi and Xj: the client Xi is being served by
a facility Xj which gives us 1 ≤ 1, the client or facility Xi is not being served by a facility Xj

which gives us 0 ≤ 1, or the client or facility Xi is not being served by a client Xj which gives
us 0 ≤ 0. The final constraint is Equation (2.5) which restricts the facility variables Fi and the
client-facility variables yi, j to the values of 0 or 1.

2.3 Algorithms for the K-Median Problem

2.3.1 Exact Algorithms
A popular approach for solving the k-median problem is the branch and bound algorithm [14,
23, 33]. This algorithm functions by representing the search space of potential solutions as
a tree with each node representing a partial or complete candidate solution. At each step the
algorithm will determine which nodes to explore further by calculating if the value of the
corresponding candidate solutions are within some estimated bound of the optimal answer. If
a node passes this check it is expanded by adding child nodes whose corresponding candidate
solutions are derived from the parent node. This expansion process is repeated until the optimal
solution is found.

Another exact approach is provided by Senne et al. [40] who apply the branch and price
algorithm to the k-median problem. The branch and price algorithm is used to solve integer
linear programs with many variables and, like the branch and bound algorithm, it creates a
search tree of solutions that it expands over time. It starts by generating a linear program
relaxation of the original problem which will provide good bounds but also contain many
variables. This relaxation is called the Master Problem and the algorithm will focus on solving
a modified version called the Restricted Master Problem. The Restricted Master Problem will
use a subset of the variables and at each step the algorithm will solve this smaller problem.
Afterwards, the algorithm will try to find variables to add back that will improve the value of
the objective function. This process repeats until no more variables can be introduced at which
point the algorithm can return a solution or branch and try different variables.

2.3.2 Approximation Algorithms
With the k-median problem being NP-Hard and therefore computationally difficult to solve,
several approximation algorithms have been developed. The simplest algorithm is the forward
greedy algorithm [11]. The algorithm starts with no facilities selected and at each step the
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algorithm selects the facility that will result in the shortest increase of the overall distance. It
continues until k facilities are selected. This algorithm results in an approximation ratio of
Ω(n).

The reverse greedy algorithm [11] starts with all locations selected as facilities. From this
state the algorithm removes a facility based on which removal decreases the overall distance
the most. It continues until k facilities remain and results in an approximation ratio between
Ω(log n/ log log n) and O(log n) for the metric k-median problem.

An early non-greedy attempt at approximating the k-median problem was a linear program
rounding approach by Lin and Vitter [29]. Their approach uses a three phase method to solve an
integer linear program: the first phase solves a linear program built by relaxing the integrality
constraints of the integer linear program and produces a fractional solution, the second phase
uses that fractional solution to create an integer linear program that violates constraint 2.3, and
the final phase solves this latter integer linear program through the use of a random sampling
technique. This provides an approximation ratio of 1 + ϵ, for any ϵ > 0, however the solution
is infeasible as it opens up to (1 + 1/ϵ)(ln n + 1)k facilities.

Another approach that provides a feasible solution is Bartal’s randomized approximation
algorithm [3, 4]. This algorithm uses a probabilistic method to simplify the metric space of
the k-median problem into a k-hierarchical well separated tree. From here the simplified prob-
lem can be solved with tree-based algorithms and the approach provides an O(log k log log k)
approximation for the metric k-median problem.

Charikar et al. [9] then build on Lin and Vitter’s approach and provided the first constant
factor approximation algorithm for the metric k-median problem. Their algorithm follows a
similar three phase method of solving a linear program and using the fractional solution to
produce and solve an integer linear program. By making improvements to the second phase
they provide an algorithm with an approximation ratio of 62

3 .
Jain and Vazirani provided a primal-dual approximation method for the k-median prob-

lem and the uncapacitated facility location problem [22]. Their algorithm runs in two distinct
phases: the first phase focuses on finding an integral primal solution satisfying the primal com-
plementary slackness conditions; the second phase ensures that all complementary slackness
conditions are satisfied, but the primal solution may be infeasible which requires that the pri-
mal conditions be relaxed by a factor of 3. This algorithm provides an approximation ratio of 6
for the metric k-median problem and an approximation ratio of 3 for the metric uncapacitated
facility location problem.

A local search approach is provided by Arya et al. [2] for the metric k-median problem.
This algorithm operates by examining a current solution and checking if swapping a facility
with a client will improve the solution. The swapping process repeats until the algorithm can
no longer improve the solution. If the algorithm is constrained to swapping one facility at a
time it has an approximation ratio of 5 but if one allows simultaneous swaps of p facilities with
p clients the approximation ratio is 3 + 2/p.

The current best approximation algorithm for the metric k-median problem is provided by
Byrka et al. [8] with an approximation ratio of 2.611 + ϵ for any ϵ > 0. They built on the
previous best approach of Li and Svensson [27] whose algorithm provided an approximation
ratio of 1 +

√
3 + ϵ. The algorithm first provides an approximate solution to an instance of the

problem with k + 1 facilities and then uses that to construct a solution with k facilities.
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2.3.3 Parameterized Algorithms

An approach for solving the k-median problem that combines approximation algorithms and
fixed-parameter tractable (FPT) algorithms is provided by Cohen-Addad et al. [12]. FPT
algorithms relax the requirement that they must run in polynomial time. Instead a parameter k is
chosen such that the runtime of the algorithm is of the form f (k)nO(1), where f (k) is an arbitrary
function and n is the size of the input. FPT and approximation algorithms can be combined
so that an FPT algorithm finds an approximate solution instead of an optimal solution. Cohen-
Addad et al. take this combined approach and present a 1+2/e+ϵ FPT approximation algorithm
for the k-median problem where e is the Euler number and ϵ > 0. Their algorithm has three
main steps: the first step reduces the size of the client set by consolidating nearby clients, then
the algorithm guesses which clients would be the closest to an optimal facility and searches
around these clients to find the best set of k facilities. The running time of the algorithm is
O(ϵ−2k log k)k · nO(1).

Byrka et al. also study the use of FPT algorithms for approximating the k-median problem
by approximating a closely related problem [7]. Instead of focusing on how many facilities
to open with the parameter k they look at how many facilities to close and define the dual
parameter ℓ = |F| − k where F is a set of facilities. They call this new problem the CO-ℓ-
Median problem and provide an FPT approximation algorithm with an approximation ratio of
(1 + ϵ) for any ϵ > 0 and a running time of 2ℓlog(ℓ/ϵ) · n0(1).

2.3.4 Metaheuristics and Machine Learning

Research on the k-median problem extends past approximation algorithms and includes ap-
proaches such as metaheuristics and machine learning. The following is a small sample of
other approaches to solving and approximating the k-median problem.

Evolutionary Algorithms (EA) are a metaheuristic approach that attempts to mimic the
process of natural selection in order to solve a problem. This can be applied to approximat-
ing combinatorial optimization problems with the following steps: produce an initial set of
potential solutions, apply a fitness function to the set in order to determine the best potential
solutions, and use these selected solutions to produce the next batch of potential solutions.

Silva et al. [41] present an EA that expresses a potential solution to the k-median problem
as a string of numbers where each number is a facility location index. After fitness evaluation
new solutions are created in two ways: a one-point crossover where two strings randomly
exchange index values from a randomly chosen section of the string, and a mutation operation
that randomly changes one index value of a string. They tested their algorithm with the OR-
library and report that it found the optimal solution in the majority of the test cases.

Huang et al. [21] use a specific EA called (1 + 1)EA which formulates a solution to the
k-median problem as a string of bits where a 0 or 1 value indicates if a location is a client or
facility, respectively. These bit strings are evaluated for fitness as described above and new bit
strings are produced by randomly flipping the bits of the current best strings. This approach
provides a 5 approximation in the case where all distance values are integers. They also propose
an improved (1 + 1)EA that provides a 5+ ϵ approximation for any ϵ > 0 in the case where the
distance values are real numbers.

Wilder et al. [43] create a machine learning system to solve the closely related k-center
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problem. Their system runs in three main steps: a graph representation of a problem is first
reduced into a simpler graph, a differentiable solver takes the simplified graph and solves the
problem, and the simpler problem solution is used to produce an approximate solution to the
original problem. They report that by incorporating both the reduction process and the solver
into one machine learning system their system outperforms similar methods that separate the
two. Their system also generalizes well to graphs outside of their training set.

Another machine learning approach for the k-median problem and other combinatorial op-
timization problems is presented by Tayebi et al. [42]. They note that in practice the datasets
used in combinatorial optimization problems do not change significantly over time. For exam-
ple, a logistics company planning vehicle routes would use the same dataset of roads with only
the delivery locations changing. Their approach exploits this by training a machine learning
model to identify what areas of the solution space have contributed to past optimal solutions.
The intuition is that focusing on this smaller solution space will reduce algorithm runtimes
without affecting solution quality. Their method first solves several integer linear programs in
order to gather training data. This data is then used to train a model that will give each location
a numeric value representing how confident the model is that the location could be part of an
optimal solution. The search space of the problem is reduced to only include locations with
a high confidence value and an integer linear program solver solves the problem using this
reduced search space. They report that this reduces runtimes with only a minor degradation in
solution quality.



Chapter 3

Hopfield Networks

3.1 Neural Networks

Neural Networks are a type of computing network designed to emulate the natural computing
power of the brain. A neuron is a relatively simple processing unit that can be reduced to two
main functions: it connects to other neurons in order to give and receive electrical impulses
and it outputs an impulse based on the amount of input it receives. However, the aggregate
of hundreds or thousands of neurons can solve complex tasks in organisms such as processing
vision or reacting to stimulus. The goal is to design a computer neural network that can emulate
these biological systems to solve computational problems.

While there are many approaches and variations for constructing artificial neural networks,
we can mention a few common elements. The first is the artificial neuron which can be viewed
as a function. A neuron will take numerical inputs, it will aggregate them, and an activation
function will take this aggregation and produce a final output value. This output will be sent to
other neurons for future processing.

The second element is the connections between the neurons. As stated above it is the
combination of neurons working together that provides the computing power to solve problems.
We connect the neurons by providing connections from the output of one neuron to the input
of one or many other neurons. These connections will send numerical values between the
neurons. Each connection can be given a weight such that the output placed on a connection
can be weakened or strengthened depending on the value of the weight. These weights are
adjusted during the so-called training stage to improve the quality of the output of the network.
The connections generally send data in one direction from the source neuron to the destination
neuron. For bidirectional data flow, two directed connections are usually used.

With these two elements one can construct the actual network structure. A common base
structure is the feedforward network. Here the neurons are separated into ordered groups called
layers where each layer takes input from the preceding layer and sends output to the subsequent
layer. The two exceptions are the first layer which receives input from outside of the network
and the last layer which outputs data from the network. The first and last layer are given the
names input layer and output layer, respectively and the middle layers are known as hidden
layers. Information in feedforward networks move in one direction only: from the input layer,
through each hidden layer in sequence, and finally to the output layer from which the output is

10
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read. This flow of information is where the feedforward title gets its name. Figure 3.1 depicts a
simple three layer network. There are several variations of neural networks where small cycles
or backward connections are allowed such as in recurrent neural networks.

Figure 3.1: An example of a feedforward neural network containing three layers.

With a neural network structure in place one now has to set the weights of the connections
and the neuron values. As mentioned, this is known as training the network and two common
training methods are supervised learning and unsupervised learning.

Supervised learning utilizes a common training format for tasks that range from labelling
images to analyzing sentences. The neural network is given training data which consists of
pairs of input data and expected output values. For each piece of training data the neural
network processes it and produces an output. This output is compared to the expected output
and the difference is recorded as the error. The specific function that determines the error is
the loss function and the goal is to minimize the loss function over the training data. A process
called backpropogation is then performed where working backwards from the output layer the
connection weights are adjusted so that future runs on the training data will have a smaller
error. This is repeated several times until the overall error rate reaches an acceptably low value.

In unsupervised learning, the neural network trains using only the input data. This training
method is used for tasks such as clustering or aggregating elements of a dataset. The neural
network will attempt to find patterns in the data and use those patterns to complete the clus-
tering or aggregation tasks. These neural networks can also use backpropagation to update
their connection weights by using an error metric specific to their task. For example, a neural
network performing distance based clustering can use the distances from datapoints to their
nearest cluster center as an error value that backpropogation will attempt to reduce.

3.2 Hopfield Networks
An alternative to the above feedforward network is the Hopfield neural network. While they
both share the goal of emulating a biological system with artificial neurons and connections,
Hopfield networks differ from other neural networks in their construction and operation.

Instead of building a system of calculations and reading the final values as output, Hopfield
networks consist of a network of neurons in which the values of the neurons can be interpreted
as a solution to a problem: Each neuron contains an internal state variable with a value between
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0 and 1. When the internal state variable is 0, the neuron is considered off and does not send
output to other neurons. When the internal state variable is 1, the neuron is considered on and
it will send output to other neurons. The set of all these internal state variables is the state of
the network and each state can be seen as a potential solution.

For example, the state of the network could be used as a solution for the knapsack problem.
Here there are n items each with their own weight and value and the goal is to pack a knapsack
with a subset of the items such that the total value is maximized while the total weight is less
than or equal to the weight limit of the knapsack. A Hopfield network representation for this
problem could use n neurons with each neuron representing one item. The state of the network
can be used as a potential solution by selecting all items whose corresponding neuron is on.

The Hopfield network operates by moving between states with the final state being pre-
sented as the solution. This movement is driven by an energy function which gives each state
a numeric value called energy. The energy function will be unique to each problem and be
defined such that the states with low energy will correspond to good or optimal solutions. The
Hopfield network will attempt to move between states in order to reduce the current energy of
the system. When the Hopfield network has reached a global or local energy minimum it stops
moving and the network is said to have stabilized. This stabilized state is the aforementioned
final state and is presented as a solution.

Unlike feedforward networks where neurons can be connected only to those neurons in
the preceding and succeeding layers, Hopfield neurons can connect to any other neuron in the
network. This generally creates a well connected and cyclical network. The weights of these
connections are derived from terms in the energy function and will be further explained later. A
connection can have a positive or negative weight with positive weights indicating a excitatory
connection, which encourages other neurons to turn on, and negative weights indicating an
inhibitory connection, which encourages other neurons to turn off.

In terms of operation, the Hopfield Network runs completely asynchronously. Each neuron
will periodically aggregate its input and evaluate that aggregate with its activation function. The
result of this activation function determines if the neuron will modify its state and what value,
if any, the neuron will output. Each neuron will perform this and then wait some arbitrarily
selected time interval before repeating the process. This waiting period ensures that other
neurons have a chance to modify their state before the current neuron repeats its calculations.
As the individual neurons change state, so does the network as a whole and as described earlier
the network will gradually move to a stable low energy state. Once the Hopfield network enters
a stable state, the individual neurons will still evaluate their state but will not change it.

Finally, there is no learning process in a Hopfield network. As discussed in the previous
section, feedforward networks adjust their connection weights in the training phase in order to
minimize a loss function. While the Hopfield energy function may appear to be analogous to
the loss function, it has a different role in the operation of the network. The energy function is
used to derive connection weights that result in the network transitioning to some low energy
state. There is no backpropagation and the weights do not change unless the energy function
itself changes. Once the energy function is created and the connection weights are set the
network is ready to operate.
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3.3 Hopfield Networks for Content Addressable Memory
The first application to demonstrate the computational power of Hopfield networks was using
a Hopfield network to implement Content Addressable Memory (CAM). Here one wants to be
able to store a piece of information in a neural network, and at a later time be able to retrieve
it by querying the network with some fragment of the stored information. For example, if one
wants to store a contact with the name ”John Smith” then the queries ”John”, ”Smith”, and
”J Smith” should return the contact. Ideally, the network would also be able to handle minor
errors in the query such as ”Simth”.

For a physical system to be able to operate as CAM a few requirements need to be met. The
first is that the system must be able to navigate between several states; this allows the system
to effectively ”search” the state space for the requested information. Second, there must be
stable states where the system stops changing and it stabilizes. These will be the states that
contain the desired information and one can consider a query finished once the system reaches
any stable state. Finally, starting near a stable state should result with the system entering that
stable state. To use the above example, ”John Smith” should be represented by a stable state
and the system should be able to transition from the neighbouring state ”Smith” to that stable
state.

To begin building the Hopfield neural network, we first define its components and their
function. Each neuron i will contain an individual state value Vi such that the value is 0 when
not firing (or off) and 1 when firing (or on). The state of the system will then be a vector V
containing all Vi values and can be viewed as a binary word.

A symmetrical matrix of real numbers T will represent the connections between neurons
with Ti, j representing the connection between neuron i and neuron j. A non-zero value for
Ti, j will indicate that the two neurons are connected. The value that a neuron places on this
connection will be multiplied by the connection weight in order to increase or decrease the
output value.

The network will function asynchronously with every neuron calculating if it should change
or maintain its state. This is determined by a threshold value Ui: Each neuron i will calculate
the sum of all its input and will activate if the threshold is met or exceeded, otherwise it will
deactivate. The neurons will repeatedly attempt to update their state and once every neuron
stabilizes to a state value, the system will have reached a stable state and information can be
retrieved.

The above system can be used as CAM. The neurons can take on 0 or 1 values so they can
be used to store binary words. The set S will contain all binary words that one wants to store
in the system and a specific state vector V s will correspond to a specific binary word s in S .
The individual neurons of the state V s are denoted by V s

i . For example, if V s corresponds to
”10” in a two neuron system and the system has entered the state corresponding to that word,
then V s

1 will be 1 and V s
2 will be 0.

The system will have connection values set such that each stored state corresponding to a
vector V s is stable and low energy. Hopfield proposes the following formula for defining the
connections:

Ti, j =



P
s∈S (2V s

i − 1)(2V s
j − 1) if i , j

0 if i = j
(3.1)
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1 2 3
1 0 1 -1
2 1 0 -1
3 -1 -1 0

Table 3.1: Example connection values for a matrix T in a Hopfield network storing the binary
word ”110”.

Neuron Input Change Resulting System State
V1 (0 × 1) + (0 × −1) = 0 No Change 1, 0, 0
V2 (1 × 1) + (0 × −1) = 1 Turn On 1, 1, 0
V3 (1 × −1) + (1 × −1) = −2 No Change 1, 1, 0
V1 (1 × 1) + (0 × −1) = 1 No Change 1, 1, 0
V2 (1 × 1) + (0 × −1) = 1 No Change 1, 1, 0
V3 (1 × −1) + (1 × −1) = −2 No Change 1, 1, 0

Table 3.2: The calculations performed by a Hopfield network starting from the state ”100” and
stabilizing at the state ”110”.

As an example, suppose we have a three neuron Hopfield network with the binary word
”110” stored. Equation (3.1) is used to generate the connection values and the resulting matrix
is shown in Table 3.1. The layout of the network is illustrated in Figure 3.2.

The system can be queried by setting the neuron state values to another state such as ”100”
and allowing the network to run. Table 3.2 shows the calculations the system will perform in
the case where each neuron is evaluated sequentially and in ascending numerical order. The
neurons will use the threshold value Ui = 0 as that is the value Hopfield suggests as a default.
The first row displays neuron V1 aggregating the input from the other nodes and the result is
0. As this meets the threshold and the neuron is already on, no change occurs to the neuron’s
state. The second row shows neuron V2 perform its calculations and since the result of 1 is
greater than the threshold it turns on. Then V3 performs the same calculation and stays off as
its value of -2 does not meet or exceed the threshold. The neurons then repeat their calculations
to confirm that no further changes will occur and therefore the system is in a stable state.

V1 V2 V3
1 −1

−1

Figure 3.2: A three neuron Hopfield network for content addressable memory with the state
”110” stored.
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3.4 Applications in Combinatorial Optimization
Building on the principles of neural networks for CAM, Hopfield and Tank [20] extended the
network to solve combinatorial optimization problems. Here, the network is constructed such
that the stable states represent possible solutions to a problem. The neurons will function as
described above but the actual network construction will be handled differently.

As stated in the overview, the first step is to establish a set of neurons such that their state
values can be interpreted as a solution to a problem. A simple example would be having n
neurons for the knapsack problem. Here, each neuron would represent an item and its state
would indicate if it was selected. Once the system has stabilized, one can select the items that
are assigned to the on neurons and present that as a solution.

More complex cases could be structured by larger sets of neurons. For example, we could
construct a Hopfield network to solve the graph colouring problem. In this problem one is
given a graph and wants to label each node with a colour such that no two adjacent nodes have
the same colour. If there are k colours and n nodes, then one could have k groups of n neurons
where each state Vk,i represents if the node i has the colour k. Like the knapsack solution, the
on neurons will represent which colour is chosen for a node.

The next step is to construct the energy function and for combinatorial optimization prob-
lems Hopfield and Tank propose the following general equation for a n neuron Hopfield net-
work where neurons are numbered from 1 to n:

E = −1
2

nX

i=1

nX

j=1

Ti jViV j −
nX

i=1

ViIi (3.2)

The neuron state variables Vi and the connection matrix T are defined as they were in the
previous section. The variable Ii is the input bias and will add a constant amount of input to a
neuron i. Hopfield and Tank claim that the local minima of the equation will correspond to the
stable states of the system.

A potential issue with the above structure and energy function is that there is no guarantee
that the solution provided by a stable state will be a valid solution i.e., it satisfies the constraints
of the problem. In the graph colouring example, the network could return an invalid solution
where the node i is labelled with zero colours or more than one colour. The goal in this case
would be to compute a valid solution where each node is labelled with exactly one colour and
no two adjacent nodes have the same colour.

To address this we introduce terms to the energy function similar to how constraints are
added to integer linear programs. These terms are built so that they add little or no energy to
the total energy when the state’s corresponding solution satisfies the constraints of the combi-
natorial optimization problem. However, these terms should add a significant amount of energy
when the corresponding solution does not satisfy the constraints. In the literature these terms
are referred to as constraint terms due to their role in ensuring that the produced solutions are
valid.

A constant value can also be multiplied to these terms in order to prioritize a constraint
or loosen it. The selection of these constant values is crucial as setting them too low leads to
invalid solutions but setting them too high leads to valid but potentially poor solutions. For
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example, in the knapsack problem there could be a constraint term to ensure that the total
weight of the items is at most the weight limit of the knapsack. If this constraint is set too
low, the proposed set of items could be far heavier than the knapsack allows. If set too high,
only the lightest items may be selected regardless of their value or the knapsack may only be
partially filled.

As these constant values are selected externally and passed to the network, they can be
seen as tuning parameters. A simple way to select these parameters is to run the network
with arbitrarily selected values and if the returned solution is invalid then the values should be
increased. If the returned solution is poor then the values should be decreased. This process is
then repeated until the produced solutions are both good and valid.

Once the constraint terms are defined they can be used to produce the full energy function
as well as the connection and input bias values. Continuing the knapsack problem example,
each item i has a weight wi and the knapsack has a maximum weight limit of W. The constraint
that the total weight of the selected items is at most W can be represented with the following
constraint term:

C1




nX

i=1

Viwi

 −W


2

(3.3)

This term is zero when the total weight of the selected items is the same as the weight
limit of the knapsack and increases when the total weight is larger than W. However, if the
total weight is less than W then negative energy is introduced and this is addressed by squaring
the term to remove negative values. This also encourages a full knapsack as a partially filled
knapsack will also increase the total energy. Finally, the constant C1 is multiplied to the term
in order to prioritize or loosen the constraint.

In order to derive the connection values and input biases the constraint terms must be rewrit-
ten into the form of Equation (3.2). The following steps are used to rewrite the constraint term:

Expand the squared term:

E = C1

W
2 − 2W

nX

i=1

Viwi +


nX

i=1

Viwi


2 (3.4)

Replace the squared summation:

E = C1

W
2 − 2W

nX

i=1

Viwi +

nX

i=1

nX

j=1

ViVjwiwj

 (3.5)

Multiply in the constant:

E = C1W2 − 2C1W
nX

i=1

Viwi +C1

nX

i=1

nX

j=1

ViVjwiwj (3.6)

Multiply by −2
−2 in order to get a leading −1

2 in the first term; reduce the other −2
−2 instances

to 1:

E = −1
2

C1

nX

i=1

nX

j=1

(−2ViVjwiwj) − 2C1W
nX

i=1

Viwi +C1W2 (3.7)
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Rearrange the variables in order to correspond to the position of the Ti, j and Ii variables in
Equation (3.2):

E = −1
2

nX

i

nX

j

(−2C1wiwjViV j) −
nX

i

Viwi2C1W +C1W2 (3.8)

With the energy function now in the form of Equation (3.2) the values can be derived. The
connection values will be defined as:

Ti j = −2C1wiwj (3.9)

The input bias will be defined as:

Ii = 2C1Wwi (3.10)

The constant term C1W2 will be discarded as it adds a constant amount of energy to the
equation. Note also that this energy function only ensures that the knapsack is full. A second
term would be needed to ensure that the value of the items in the knapsack is maximized.

3.5 Travelling Salesman Problem
To demonstrate the effectiveness of Hopfield networks for combinatorial optimization, Hop-
field and Tank created a solver for the Travelling Salesman Problem (TSP) [20]. The problem
was chosen as it is a well researched NP-hard combinatorial optimization problem. Here, one
is given a set of n locations and the goal is to find the shortest tour that visits all locations once
before returning to the starting location.

To begin, several TSP variables are defined. There will be n cities to consider and each city
will have a unique label A, B,C, .... The distance between cities A and B will be represented by
dAB and the total distance of the tour will have the form d = dAB + dBC + · · · + dKA.

The next step is to define how the neurons can be constructed so that a solution can be
decoded from their states. Each city will be represented by n neurons that indicate where the
city is on the tour. Of these n neurons, only one should be on and that on neuron indicates
when the city is visited. For example, if city A is visited second, and there are three cities then
the neurons representing A should have the following state values: {0, 1, 0}. When constructing
the energy function a subscript will be used to indicate which specific city neuron state is being
evaluated. Using the information from the above example the neuron states for A would be
VA1 = 0, VA2 = 1, and VA3 = 0.

This means that n2 neurons are used to represent the entire problem and a solution can be
visualized in tabular format where the rows are cities and the columns are the order in which
they are visited. Table 3.3 contains an example tour.

With the network constructed, the next step is to define an energy function such that the
state with the lowest energy value represents the best solution. This will require four constraint
terms.
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1 2 3
A 0 1 0
B 1 0 0
C 0 0 1

Table 3.3: An example TSP tour for three cities. Here the tour is B→ A→ C→ B.

The first constraint is that every city should be visited once. Each city satisfies this con-
straint when one of their neurons has the value 1 and all other neurons have the value 0. In the
tabular format this constraint ensures that each row has at most one active neuron. Each city
X will determine if this is being satisfied with the summation

P
i
P

j,i VXiVX j: When one state
value is equal to 1 and all others are 0, then this summation will have the value 0. If there are
multiple state values equal to 1 then the energy will increase. Note that this summation will
also be 0 if all neurons have the value 0. This is addressed by the third constraint that ensures
that n neurons are active. Hopfield and Tank also use the constant term C1 which amplifies how
much extra energy is added when the constraint is violated. The full constraint term is then:

C1

X

X

X

i

X

j,i

VXiVX j (3.11)

The second constraint is that each tour index should be used once. This is satisfied when
only one city neuron X has a value of 1 for a tour index i and all other city neurons Y have the
value 0. This constraint can be viewed in the tabular format as a way to ensure each column
has at most one active neuron. Like the first constraint, no extra energy will be added if there
are no active neurons and the third constraint will address this issue. The summation used will
be
P

i
P

X
P

X,Y VXiVYi . This term will also have a constant C2 and the full term becomes:

C2

X

i

X

X

X

X,Y

VXiVYi (3.12)

The third constraint is that n cities are selected and this is satisfied when there are n neurons
with a 1 value and all other neurons have a 0 value. This term is built by summing all state
values and then subtracting n. However, this term could introduce negative energy if the sum of
the state values is less than n. To address this the term is squared which removes any possible
negative numbers. Finally, the constant C3 is multiplied to the term and the full term is:

C3



X

X

X

i

VXi

 − n


2

(3.13)

The fourth and final constraint is that the total distance between cities on the tour should
be minimized. This term is built by considering a city X at index i and all other cities Y at the
indices i − 1 and i + 1. If the city neuron at Xi has the value 1 and so does either Yi−1 or Yi+1,
then the distance between the two cities is added to the total energy. The summation used isP

X
P

Y,X
P

i dXYVXi(VYi+1 + VYi−1). Like the previous terms, a constant C4 is used and the full
term is:
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C4

X

X

X

Y,X

X

i

dXYVXi(VYi+1 + VYi−1) (3.14)

Combining these constraint terms gives the full energy function E:

E = C1

X

X

X

i

X

j,i

VXiVX j

+C2

X

i

X

X

X

X,Y

VXiVYi

+C3



X

X

X

i

VXi

 − n


2

+C4

X

X

X

Y,X

X

i
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With E defined, the connection values and input biases can be derived by rewriting the
equation into the general form of Equation (3.2). The variable δ will be used to determine if
two indices are the same and will be defined as δi, j = 1 if i = j and 0 otherwise.

The connection values are defined by:

TXi,Y j = −C1δXY(1 − δi j) −C2δi j(1 − δXY) −C3 −C4dXY(δ j,i+1 + δ j,i−1) (3.16)

The input bias is:
IXi = C3n (3.17)

Hopfield and Tank applied the network to several test cases with 10 to 30 cities. They
reported that the shortest path was selected 50% of the time in the 10 city tests and that solutions
were within 2 times of the optimal answer in the 30 city tests.

3.6 Issues
Despite the promising results reported by Hopfield and Tank, attempts to recreate their exper-
iments ran into issues. Wilson and Pawley [44] evaluated the model and found that even for
the small 10 city test case they could not recreate the above results. They note that the network
primarily returned invalid solutions and that the few valid solutions were not much better than
random.

Other researchers continued to look into the faults reported by Wilson and Pawley and
attempted to recreate the successes of Hopfield and Tank. Aiyer et al. [1] examined the state
space set up by the network and provided constraint values that always return valid solutions
for tests of up to 50 cities. However they do not comment on the quality of solutions in terms
of approximation ratios.

Kamgar-Parsi and Kamgar-Parsi [24] also tackled the discrepancy between the papers. In
their testing they note that while it is difficult to find valid solutions, the solutions presented
are often good or optimal. They do note that the network does not scale well and succeeds less
in finding valid solutions as n increases. They posit that while technically functional for TSP,
Hopfield networks are better suited for clustering problems. With this in mind they tested the
Hopfield network on the k-means problem which performed well for n values up to 128 [24].
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3.7 Applications of and Modifications to Hopfield Networks
Several researchers have attempted to apply Hopfield networks to combinatorial optimization
problems. In order to address the issues discussed in the previous section they often modify the
network to improve the runtime, solution feasibility, and solution quality. Liang [28] extends
Hopfield networks by adding ”Adjusting Neurons” to the network. In a standard Hopfield net-
work the neurons can be placed into two categories: hypothesis neurons that are used to derive
a solution and slack neurons that enforce problem constraints. The new adjusting neurons exist
outside of these two categories and are not directly related to the problem being solved. Instead
they are connected to existing neurons in order to modify the energy of the system and help
the network find better solutions. For example, an adjusting neuron could be connected to the
set of neurons for a single problem constraint and add energy to ensure that the constraint is
satisfied. Liang tests this new network on several quadratic assignment problems and reports
that it provides better solutions than a standard Hopfield network [28].

Chen et al. [10] apply a Hopfield network variation to the vertex cover problem. They
note that Hopfield networks will attempt to enter low energy states but these states may not
always provide a good solution. To continue exploring the state space and to provide a better
solution they introduce a second step after the network has stabilized. This step changes the
energy equation such that the energy in the current stable state is raised which causes the
network to begin moving to a new and potentially lower energy state. They empirically test
this method and report that it provides better solutions than an unmodified Hopfield network
and a 2-approximation vertex cover algorithm [10].

Salcedo-Sanz and Yao [38] present a hybrid algorithm that combines Hopfield networks
with genetic algorithms for the terminal assignment problem. This problem is similar to the
k-median problem except that each client has a capacity value that must be fulfilled by a fa-
cility and each facility has a maximum capacity limit. As described in Section 2.3.4, genetic
algorithms create a population of potential solutions, evaluate those solutions, and then keep,
modify, and propagate the best performing solutions. The process is repeated until a satisfac-
tory solution is found.

The hybrid algorithm uses Hopfield networks to improve the solutions before they are eval-
uated. The population consists of binary strings where each value indicates if a client is as-
signed to a facility. These strings can be directly mapped to a Hopfield network where each
neuron indicates an assignment from a client to a facility. For each solution X in the popula-
tion, the binary string values will be used to initialize the state values of a Hopfield network.
Once the Hopfield network has stablized the resulting state values will be converted to a so-
lution string X′ that replaces X for the next steps of the genetic algorithm. Salcedo-Sanz and
Yao report good results on test problems and attribute this to the Hopfield network keeping the
potential solutions feasible while the genetic algorithm searches for high quality solutions [38].

Manjunath et al. [30] provide a system for solving NP-complete problems using Hopfield
networks. Their system solves a NP-complete problem through two main steps: it generates a
set of related NP-complete problems through reduction and then it uses Hopfield networks to
solve these new problems. The solutions are applied to the original problem and the best solu-
tion is returned. They tested their system on three problems: the travelling salesmen problem,
finding the minimum vertex cover of a graph, and finding the maximum cut of a graph. They
report that their system performs well for small problem instances and is a promising start for
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using reductions and Hopfield networks to solve NP-complete problems [30].
Haralampiev [16, 17, 18] has provided a neural network approach for the k-median prob-

lem that derives from both Hopfield networks and Boltzmann machines. In machine learning,
Boltzmann machines function similarly to Hopfield networks: they contain neurons that change
state based on their connections, they use the energy function in Equation (3.2) and attempt to
minimize the total energy, and a solution to a combinatorial optimization problem can be re-
trieved from the stabilized neuron state values. The main difference is their update method that
includes the concept of a temperature T which determines the probability of accepting a neuron
update and decreases over time. The update operation for a neuron begins by calculating the
difference in energy D if the neuron’s state value changes. If D < 0 then the neuron changes
its state value, otherwise it changes the state value with probablity (1 + exp(D/T ))−1.

Haralampiev structures the neural network using 2 · n · k neurons and splits them into two
n · k groups: Each neuron in the first group represents a client i connecting to a facility j and
each neuron in the second group represents a facility j being placed at a location s. These are
further divided into subgroups of competing neurons. For instance one subgroup will contain
the n neurons that represent client 1 connecting to a facility. These subgroups are used to
enforce the problem constraints as the update function will allow only one neuron in a subgroup
to be active when the system stabilizes. Neurons in this network have a cost value based on
their incoming connections and will activate if their cost value is lower than their competitors.
For example, a neuron representing a client connected to a nearby facility will have a lower
cost value and activate whereas a neuron with a more distant connection will deactivate. This
cost value comparison is used instead of the energy difference for D in the Boltzmann update
function.

The full update process starts with a neuron checking if there are any other active neurons
in its subgroup and if there are none, it activates. Otherwise, it compares its cost value with the
active neurons in the group. If the cost value is lower than the current best value it activates,
and if it is higher than the best value it deactivates. Finally, the Boltzmann update described
earlier is applied to the neuron which may cause it to change its state. Haralampiev reports that
this network performs well and returned the optimal solution in 88% of the performed tests
[16].
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K-Median Hopfield Network Formulation

We now describe our implementation of a Hopfield network for computing approximate solu-
tions for the k-median problem. We follow the steps presented in Section 3 and start by creating
the set of neurons whose state values will represent a solution. There will be two groups of
neurons in our network: the first group will represent if a client i is being served by facility j
and the second group will represent if a location j is selected as a facility. These two groups
can be viewed as the client-facility variables yi, j and the facility variables F j from the k-median
integer linear program in Section 2.2. Note however that the neurons can take on state values
between 0 and 1.

This results in n2 + n neurons and we visualize these in a tabular format as an n × (n + 1)
neuron matrix. The first column contains neurons that map to the facility variables and the
remaining columns contain neurons that map to the the client-facility variables. Table 4.1 con-
tains four figures for a three location k-median problem demonstrating how the neuron matrix
corresponds to integer linear program variables, how the neuron state values are arranged, and
how to derive a solution from the neuron state values.

Matrix 4.1 (a) shows how the neuron matrix is structured such that each row begins with a
facility neuron and how the following neurons in the row represent the potential client-facility
connections for that facility.

Matrix 4.1 (b) demonstrates how the neuron state variables Vi are arranged. The neuron
state variables V1 to Vn correspond to the F j facility variables and the remaining neuron state
variables Vn+1 to Vn2+n correspond to the yi, j client-facility variables.

Matrix 4.1 (c) contains example neuron state values for a stabilized Hopfield network. In
this example, the active facility neuron state values are V1 and V3 which correspond to F1 and
F3 in Matrix 4.1 (a). The active client-facility neuron state values are V4, V7, and V12 which
correspond to y1,1, y2,1, and y3,3 in Matrix 4.1 (a).

Table 4.1 (d) demonstrates the solution derived from the values in Matrix 4.1 (c). Facilities
1 and 3 have been selected and serve themselves; client 2 will be served by facility 1.

We now construct the energy function and for the k-median problem we will need five
constraint terms. The energy function will use the neuron state variables Vi and to simplify our
notation we define a function V(i, j) that maps a client-facility variable yi, j to its corresponding
neuron state variable Vh. We define this function as V(i, j) = Vn∗i+ j where the i and j values
come from the yi, j variable and n is the number of locations. For example, if we use the variable
y2,3 and n = 3 from Table 4.1 (a) then we get V(2, 3) = V(3∗2)+3 = V9 which is the corresponding
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F1 y1,1 y2,1 y3,1

F2 y1,2 y2,2 y3,2

F3 y1,3 y2,3 y3,3

(a)

V1 V4 V7 V10

V2 V5 V8 V11

V3 V6 V9 V12

(b)

1 1 1 0
0 0 0 0
1 0 0 1

(c)
Selected Facility Clients Served

1 1, 2
3 3

(d)

Table 4.1: Matrix representation of the neurons in a three location k-median problem as well
as how to derive a solution from the neuron state values. Matrix (a) displays the neurons as
the integer linear program variables that they represent, Matrix (b) displays the neuron state
values, Matrix (c) contains example values for the neuron state values of Matrix (b), and Table
(d) presents the solution derived from Matrix (c).

neuron state variable in Table 4.1 (b). The indices for facility variables F j range from 1 to n so
we define the mapping F j → Vj e.g., F2 → V2.

The first constraint term for the energy function is intended to minimize the total distance
between clients and the facilities that serve them. This is represented by evaluating every client-
facility neuron and for each active neuron we add the distance between the corresponding client
and facility to the total distance. The other constraint terms will restrict the number of activated
client-facility neurons which means that this constraint term will provide the smallest amount
of energy when client-facility neurons corresponding to shorter distances are activated. As
described in Section 3.4, we introduce a constant value C1 that will increase or decrease the
amount of energy the first constraint term produces; each other constraint term will also have
its own constant value as explained in Section 3.4. The variable Di, j represents the distance
between the client i and the facility j of the client-facility neuron yi, j. The first constraint term
is:

C1

nX

i=1

nX

j=1

V(i, j)Di, j (4.1)

The second constraint term tries to ensure that only k facilities are selected; to represent
this we sum the facility neuron state values and subtract k from that sum. Note that if fewer
than k facilities are active then this constraint term would add negative energy. We address this
by squaring the term so the second constraint term is:

C2




nX

i=1

Vi

 − k


2

(4.2)

The third constraint term is designed to enforce that a client can be served by only one
facility. This corresponds to having one active client-facility variable per column of the neuron
matrix. For each client its neuron state variables are summed and 1 is subtracted from the sum.
Like the previous constraint term, if no client-facility neuron is active then negative energy



24 Chapter 4. K-Median Hopfield Network Formulation

would be introduced and we handle this by squaring the term. For a client i this constraint
term will be

��Pn
j=1 V(i, j)

�
− 1
�2

. As there are n clients, we add a second summation to the
constraint term which becomes:

C3

nX

i=1




nX

j=1

V(i, j)

 − 1


2

(4.3)

The fourth constraint term tries to ensure that exactly n client-facility neurons are active.
Note that this constraint term does not guarantee that each client would be connected to an
active facility; that is handled by the fifth constraint term (4.5). The neuron state variables for
the client-facility neurons are summed and n is subtracted from the sum. If there are fewer than
n active neurons negative energy would be introduced so we square the term to handle this:

C4
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nX

j=1

V(i, j)

 − n


2

(4.4)

The final constraint term is intended to enforce that a client-facility neuron is active only if
the corresponding facility neuron is active. In the neuron matrix this means that a row can only
have active neurons if the first entry of the row corresponds to a facility neuron that is active.
This term only adds energy in the case where a facility neuron is inactive and its client-facility
neurons are active. We determine this by subtracting the facility neuron state value from 1 and
multiplying the result with the client-facility neuron state values. If the facility neuron is active
then the result is 0 and therefore no energy will result from the multiplication. If the facility
neuron is inactive then the result is 1 and energy will be added only if some of its client-facility
neurons are active. We check every facility and client-facility pair and the constraint term
becomes:

C5

nX

i=1

nX

j=1

(1 − Vi)V( j, i) (4.5)

Combining the above constraint terms gives the full energy equation:
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E = C1
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(1 − Vi)V( j, i) (4.6)

We then rearrange the energy equation into the form of Equation (3.2). The steps can be
found in Appendix A. From this rearranged form we can derive the connection values T and
input bias values I. Note that unlike the examples in Section 3, the constraint terms are defined
for subsets of the neurons. For example the k facility constraint term (4.2) applies only to the
facility neurons numbered 1 to n and the n client-facility constraint term (4.4) applies only to
the client-facility neurons numbered n+1 to n2+n. This means that the connection matrix T will
be defined by a piecewise function that uses the indices of neurons i and j to determine their
connection. As described above a neuron i is a facility neuron if 1 ≤ i ≤ n or a client-facility
neuron if (n + 1) ≤ i ≤ n2 + n.

The connection values are defined as:

Ti, j =



−2C2 if i and j are facility neurons
2C5 if i is a facility neuron and j is a client-facility neuron served by i
−2C3 − 2C4 if i and j are client-facility neurons in the same column
−2C4 if i and j are client-facility neurons in different columns
0 otherwise

(4.7)
The input bias values are defined as:

Ii =


2C2k if i is a facility neuron
−C1D(i) + 2C3 + 2C4n −C5 if i is a client-facility neuron

(4.8)

Where D(i) is a distance function that takes a client-facility neuron i and returns the distance
between the represented client and facility. We need this function because our previous distance
variable Dj,k requires two locations j and k whereas the input bias function operates using
a neuron i. This function allows us to map a neuron i to a distance Dj,k and is defined as
D(i) = D⌊(i−1)/n⌋,((i−1) mod n)+1. For example, neuron 9 in Table 4.1 (a) corresponds to the client-
facility variable y2,3 in Table 4.1 (b). Using D(i) with i = 9 and n = 3 produces D(9) =
D⌊(9−1)/3⌋,((9−1) mod 3)+1 = D2,3.
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The performance of the above network is underwhelming and we experience the same
issues as described in Section 3.6: The network takes a significant amount of time to stabilize
and the solutions returned are often poor or invalid. We speculate that constraint value selection
plays a large role in these issues as it is a known problem in the literature and our network
requires selecting five values. We do not report test results for this network due to the poor
performance.
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The Modified Hopfield Network

We now describe how to create a modified Hopfield network that addresses the issues of the
Hopfield network described in the preceding section. Our new modified Hopfield network will
reuse parts of the previous Hopfield network’s structure but differ in construction and operation.

We use the same neuron groups as in Section 4 and we arrange and visualize the neurons
as in Table 4.1. Each neuron will also have a state variable which can take a value between 0
and 1. This state variable will determine if the neuron is on or off and going forward we will
refer to it as the neuron’s activation value.

Our first modification will be adding a second variable to each neuron that stores the sum
of all positive input into the neuron. As described in Section 3.2 a positive connection will
encourage a neuron to activate and is referred to as an excitatory connection. The excitatory
connections in our network will be determined by the distance between locations, with smaller
distances producing larger excitatory connection values. As a result the sum of the positive
input will be referred to as the neuron’s inner value and will determine how valuable a neuron
is to a potential solution. Ideally, the active neurons will have a large inner value as that would
mean they are connected to neurons that represent nearby locations.

The next step for a Hopfield network would be to generate an energy function from the
constraint terms. Our implementation does not do this and we instead incorporate the constraint
terms (4.1) - (4.5) into the neuron update operations. For example, instead of a facility neuron
activating because its input crosses a threshold, it activates only if its inner value is one of the k
largest facility inner values. Moving the constraint terms into the network itself makes energy
an implicit part of the system; the network will still move between states before stabilizing
onto what would be a stable state in a traditional Hopfield network. This removes the difficult
problem of selecting values for the constraint term constants that result in both valid and good
solutions. The update operations will be explained further in Section 5.1.

The connection values are no longer derived from the energy function. Instead we cre-
ate a connection scheme specifically for our representation of the k-median problem. Each
facility neuron will have an excitatory connection to all the client-facility neurons that it can
potentially serve and an inhibitory connection to all other facility neurons. Likewise, each
client-facility neuron will have an excitatory connection to the potential serving facility neuron
and an inhibitory connection to all competing client-facility neurons.

Figure 5.1 demonstrates the connections for a three location k-median problem where Fig-
ure 5.1 (a) contains the excitatory connections and Figure 5.1 (b) contains the inhibitory con-

27



28 Chapter 5. TheModified Hopfield Network

F1

F2

F3

y1,1 y2,1 y3,1

y1,2 y2,2 y3,2

y1,3 y2,3 y3,3

(a) Excitatory Connections

F1

F2

F3

y1,1 y2,1 y3,1

y1,2 y2,2 y3,2

y1,3 y2,3 y3,3

(b) Inhibitory Connections

Figure 5.1: The neuron connections for a three location k-median problem. Figure (a) displays
the excitatory connections and Figure (b) displays the inhibitory connections.

nections. Using neuron F1 as a facility neuron example, we see it has an excitatory connection
to the neurons y1,1, y2,1, and y3,1 in Figure 5.1 (a) and an inhibitory connection to all other
facility neurons in 5.1 (b). Likewise, the neuron y2,1 demonstrates the client-facility neuron
connections where it has a single excitatory connection to the potential serving facility neuron
F1 and inhibitory connections to the competing client-facility neurons y2,2 and y2,3.

The excitatory connections will be based on the distances between locations: As discussed
earlier each neuron’s inner value will be the sum of all its excitatory input so we will modify the
distances such that short distances produce large excitatory values and long distances produce
low excitatory values. We use a n × n matrix D to store the Di, j values and perform two steps
to get a modified matrix D′. The first step is to use min-max normalization in order to scale the
distances to the range [0, 1]: Given the maximum value, max(D), and minimum value, min(D),
of D we apply the following formula to a value Di, j in order to get the normalized form:

normalized(Di, j) =
Di, j − min(D)

max(D) − min(D)
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1 2 3 4 5
1 0 0.14 0.63 0.64 0.67
2 0.14 0 0.58 0.67 0.73
3 0.63 0.58 0 0.36 0.50
4 0.64 0.67 0.36 0 0.14
5 0.67 0.73 0.50 0.14 0

(a) D

1 2 3 4 5
1 0 0.19 0.86 0.88 0.92
2 0.19 0 0.79 0.92 1
3 0.86 0.79 0 0.49 0.68
4 0.88 0.92 0.49 0 0.19
5 0.92 1 0.68 0.19 0

(b) normalized(D)
1 2 3 4 5

1 1 0.81 0.14 0.12 0.08
2 0.81 1 0.21 0.08 0
3 0.14 0.21 1 0.51 0.32
4 0.12 0.08 0.51 1 0.81
5 0.08 0 0.32 0.81 1

(c) D′

Table 5.1: An example of converting a distance matrix D into the modified distance matrix D′.
Matrix (a) contains the distance data from Table 2.1, Matrix (b) is the result of normalizing all
values to the range [0, 1], and Matrix (c) shows the final result of subtracting each value from
1.

The second step is to take the normalized value and subtract it from 1 i.e., D′i, j = 1 −
normalized(Di, j). These two operations are applied to every element of D to produce the modi-
fied matrix D′. Table 5.1 contains an example of modifying the distances using data from Table
2.1.

The neurons will use the values in D′ for their excitatory connections. In our Hopfield
network the only excitatory connections will be between a facility neuron and a client-facility
neuron that can potentially be served by that facility: Formally, the connection from a facility
neuron F j and a client-facility neuron yi, j will have the value D′i, j. Note that we are not using
bidirectional connections; there will be a connection from F j to yi, j and a second connection
from yi, j to F j. The excitatory output that a neuron produces is the connection value multiplied
by the neuron’s activation value. For example, if facility neuron F j is partially activated with
an activation value of 0.7 it will output 0.7 × D′i, j to the connected client-facility neuron yi, j.

This scheme of using the modified distance matrix D′ for excitatory connections has several
benefits. The first is that nearby neurons will encourage each other to activate due to nearby
locations sending large excitatory output to each other. This can cause a positive feedback
loop as a facility near many potential clients will encourage those neurons to activate which
will then further encourage the facility neuron to activate. For client-facility neurons, their
inner value will be based entirely on the distance to their serving facility which means that it is
simple to determine for a client i which of the client-facility neurons yi, j should activate further
by selecting the neuron with the largest inner value. Having the client-facility neuron with the
largest inner value activate will also result in the client-facility neurons being assigned to the
nearest facility when the network stabilizes.

The inhibitory connections will be used to discourage competing neurons from activating.
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Our connection scheme will assign a value of 1 to every inhibitory connection and an inhibitory
output is produced by multiplying a neuron’s inner value with the inhibitory connection value.
For example, if a facility neuron F j has the inner value 2.5 it will output 2.5 to all other facility
neurons.

At a high level this is how neurons can compare themselves to their competition. As
described earlier, all facility neurons will have an inhibitory connection to all other facility
neurons and for each client, the corresponding client-facility neurons will have an inhibitory
connection to each other. The neurons will all attempt to activate and giving a neuron access
to the inner value of its competitors allows us a simple way to determine which neuron has the
largest inner value. For example, the client-facility neurons for a client 2 in a three location
k-median problem may have the following inner values: y2,1 = 0.5, y2,2 = 1, and y2,3 = 0.3. In
this case all three neurons can see that y2,2 has the best inner value which means y2,2 should be
activated further and the other neurons should be deactivated.

To be consistent with the previous Hopfield network notation we can summarize the con-
nection values between neurons i and j into a connection matrix T as:

Ti, j =



D′i, j if i to j is an excitatory connection
1 if i to j is an inhibitory connection
0 if i is not connected to j

(5.1)

Note also that we do not add an input bias I to our neurons.

5.1 Modified Hopfield Network Update Operations

As discussed previously we modify the Hopfield network update operation to include the prob-
lem constraints. Our implementation will use two update operations: one for facility neurons
and a second for client-facility neurons.

The facility update operation checks if the current facility’s inner value is one of the k
largest facility inner values. If so the facility neuron is activated by setting its activation value
to 1 and if not the neuron is deactivated by setting its activation value to 0. This operation en-
sures that only k facilities are selected and it contributes to the overall goal of reducing the total
distance by preferring facilities that are serving nearby clients. Algorithm 1 contains the sim-
plified steps of this operation while Algorithm 4 contains the pseudocode our implementation
uses.

Algorithm 1 Simple Facility Update Operation
Input: Facility f

Sort the facility inner values in decreasing order
if f has a larger inner value than any of the first k facilities then

Set the activation value of f to 1
else

Set the activation value of f to 0
end if
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The client-facility update operation also modifies the neurons based on their inner val-
ues. The main difference is that the client-facility update operation updates the neurons as
a batch instead of individually. For each client location, the client-facility neuron with the
maximum inner value will be selected and its activation value will set to 1 while the other
neurons will have their activation value set to 0. Grouping the client-neuron updates together
increases performance by reducing the number of individual update operations and it allows
us to use efficient GPU matrix operations in our implementation. There also does not appear
to be a decrease in solution quality when performing batch updates instead of individual up-
dates. Algorithm 2 contains the simplified steps of the operation while Algorithm 5 contains
the pseudocode our implementation uses.

Algorithm 2 Simple Client Update Operation
for Each client location i do

Get the client-facility neuron yi, j with the largest inner value
Set the activation value of yi, j to 1
for Each facility location h that is not j do

Set the activation value of yi,h to 0
end for

end for

The client-facility update operation ensures that several problem constraints are satisfied:
each client will have exactly one active client-facility neuron so each client will be served by
only one facility, the client-facility neuron with the largest inner value will be activated which
means that each client will be connected to the nearest active facility, and activating client-
facility neurons based on how close they are to an active facility also reduces the total distance
between facilities and their clients.

5.2 Modified Hopfield Network Algorithm

Our implementation uses a sequential control flow that alternates facility neuron and client-
facility neuron updates. We start by initializing matrices that contain the activation values,
inner values, and modified distance values. We define both the activation value matrix and the
inner value matrix as n× (n+ 1) matrices whose elements correspond to the variables in matrix
4.1 (a) i.e., the first column contains the facility neurons and the remaining columns contain
client-facility neurons. Our modified distance matrix D′ is a n × n matrix where each element
(i, j) corresponds to the modified distance between locations i and j. In our pseudocode we
refer to these matrices as activationValues, innerValues, and distances, respectively.

Our algorithm then enters the runFunction which will call the update functions updateFacility
and updateClient until the network stabilizes and a solution is returned. This section will ex-
plain these three functions in depth.

The main program flow is handled by the runFunction. This function coordinates the
update operations and proceeds until the neurons have stabilized. It consists of a while loop
that continues until a stabilization variable is set to true. In each iteration the function will
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operate differently depending on if it is updating the facility neurons (hereon called facilities)
or the client-facility neurons (hereon called clients).

A facility update will start by arbitrarily selecting a facility and updating its activation value
based on its competitors. If there is no change (the facility stayed on or off) then the next update
will also be a facility update as there has been no change to the client inner values. If there was
a change the network is checked for stabilization, the client inner values are updated, and the
next update will be a client update.

A client update will start by increasing or decreasing the activation values of all clients.
If there was a change to any client value then the facility inner values are updated. The next
update will always be a facility update. This reduces unneeded computations as clients will
stabilize much sooner than facilities as well as giving facilities more opportunities to change
their activation values before the network begins stabilizing.

Algorithm 3 contains the pseudocode for the runFunction. The variables stabilized, updateType,
and hasChanged will direct the flow of operations. stabilized controls the while loop and ini-
tializes to false. It is set to true when k facilities and n clients are active and in a valid configu-
ration i.e., all clients are connected to their nearest active facility. updateType determines the
update operation and is set to one of two constant values: FACILITY or CLIENT . Finally,
hasChanged is the return value of the update operations and specifies if an activation value has
been changed.

The updateFacility function operates as described in Algorithm 1 but contains extra steps
for the actual implementation. It starts by caching the current activation value of the facility
from the activation values matrix. This will be used in the return value to determine if it has
changed. We then sort the inner values matrix to get the top k facility inner values and the
indices for the corresponding facilities. The if statement is based on either the facility having
a better value than any of the top k facilities or the facility already being in the top k facility
indices. The activation value is set to 1 if the statement is true and set to 0 otherwise. The update
operation then returns a boolean that indicates if the activation value has changed. Algorithm
4 contains the pseudocode.

Note that we will use python slice notation for selecting sections of the matrices. The
character ”:” indicates that all elements should be selected. If a value is placed before it such
as ”5:” then we select all elements starting from element 5 onwards. If a value is placed after it
such as ”:7” then we select all elements from the first element up to but not including element
7. For matrices we can apply the above operations as follows on some arbitrary x× x matrix A;
A[:, :] returns all rows and columns, A[: 4, :] returns the first four rows and all columns, A[:, 7 :]
returns all rows and columns 7 through x, A[: 3, 9] returns the first three rows and column 9.

Like the updateFacility function, the updateClient function contains a simple description
in Algorithm 2 and includes extra steps in the implementation. This function starts by caching
the current activation values of all clients in order to test for any changes at the end of the
function. Then for each client column (columns 1 through n + 1) the function gets the index
of the client with the largest inner value. The client with the largest inner value will have
its activation value set to 1 and all other clients in the same column will have their activation
values set to 0. Finally a boolean is returned that indicates if the activation values have changed.
Algorithm 5 contains the pseudocode.
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Algorithm 3 runFunction
stabilized ← f alse
updateType← FACILITY
while stabilized is false do

if updateType is FACILITY then
# selectFacility is an arbitrary facility selection function
f acility← selectFacility()
hasChanged ← updateFacility( f acility)
if hasChanged is true then

# Update the client inner values
updateClientValues()
stabilized ← isS tabilized()
updateType← CLIENT

else
updateType← FACILITY

end if
else

hasChanged ← updateClients()
if hasChanged is true then

# Update the facility inner values
updateFacilityValues()

end if
updateType← FACILITY

end if
end while

Algorithm 4 updateFacility
Input: f acility, activationValues, innerValues

# The first column contains the facilities
oldValue← activationValues[ f acility, 0]
f acilityValue← innerValues[ f acility, 0]

# sort will return the largest k inner values and the corresponding indices
values, indices← sort(innerValues[:, 0], k)

if f acilityValue > values or f acility in indices then
f acilityValue← 1

else
f acilityValue← 0

end if

return f acilityValue , OldValue
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Algorithm 5 updateClient
Input: activationValues, innerValues

# Clients are in columns 1 to (n + 1)
oldValues← activationValues[:, 1 :]

# argmax() returns the maximum index for each column
indices← argmax(innerValues[:, 1 :])

activationValues[indices, 1 :]← 1
# We use ¬indices as a shorthand to indicate all non-max value indices
activationValues[¬indices, 1 :]← 0

return activationValues[:, 1 :] , oldValues

5.3 Extensions to the Algorithm
Our modified Hopfield network will also contain two reinforcement learning based extensions
to improve performance and solution quality. The first extension will reduce the number of
facility update calls by selecting facilities based on whether they have stabilized or not. The
second extension focuses on solution quality by restricting the state space to areas that have
shown potential to have good solution values.

5.3.1 Reinforcement Learning Facility Selection
Our first optimization uses a variation of the reinforcement learning bandit algorithm for our
selectFacility function in Algorithm 3. The bandit algorithm is given several possible actions
with some reward distribution for taking an action and its goal is to maximize the total reward
over time. The name comes from the slot machine slang term ”one armed bandit” and a simple
example is given n slot machines, which machine or machines should be played the most in
order to maximize the total winnings over time? This type of algorithm balances exploitation
(repeatedly performing known high reward actions) with exploration (trying new and possibly
suboptimal actions to find better actions) in order to maximize the reward.

We use this type of algorithm in our facility selection function to avoid repeatedly evaluat-
ing facility neurons that have stabilized. The action our bandit algorithm performs is selecting
a facility to update. Internally, it contains two sets: an active set of facilities with the potential
to change their activation values and an inactive set containing facilities who have been updated
but did not change. The bandit algorithm will randomly select a facility from the active set and
is given a reward of 1 if it changes and 0 if it does not. Facilities with a reward of 1 stay in the
active set otherwise they are moved to the inactive set.

To encourage exploration and to accommodate facility neurons that may change after reach-
ing an activation value of 0 or 1, we allow the algorithm to occasionally select a facility from
the inactive set. To do this we introduce a probability variable ϵ where 0 ≤ ϵ ≤ 1 and have
the algorithm select a random number between 0 and 1 when selecting a facility; if the random
number is less than ϵ, then the algorithm will select from the inactive set, and if it is equal to
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or larger than ϵ, it selects from the active set. If a facility changes after being selected from the
inactive set it will be moved to the active set.

The use of a bandit algorithm reduces the number of redundant facility updates when com-
pared to simpler methods of sequentially iterating over all facilities or randomly selecting fa-
cilities. However, it does introduce another hyperparameter ϵ which requires more testing in
order to find which values of ϵ best reduce the number of facility updates. We use ϵ = 0.05
as we find in practice that stabilized facility neurons tend to stay stabilized. Other reinforce-
ment learning improvements could also be used such as starting with a high ϵ to encourage
exploration and reducing it over time to focus on reward exploitation.

5.3.2 State Space Exploration

The second optimization is adding functionality to our modified Hopfield network to search the
state space for better solutions. Our current implementation evaluates all neurons and produces
a solution when the network stabilizes. Due to the randomness in activation value initializa-
tion and facility update selection we can attempt to get a better solution by reinitializing the
network values and allowing the network to stabilize again. We will refer to each iteration of
initialization and stabilization as a run of the network and we can try to find a better solution by
performing several runs and returning the best solution. Building on this we attempt to improve
the solution quality by performing multiple runs where the network only evaluates a subset of
facilities.

We call this variation the searching Hopfield network. At a high level the searching Hop-
field Network keeps track of previously found solutions and uses that data to narrow down the
search space over time. Given a set of k facilities from a previous solution the network will
only consider those facilities and nearby locations in the next run. If the solution improves
then the new solution’s facility set and a smaller set of nearby locations is used for the next
run. Otherwise, the network will try a previous solution with a different set of nearby locations.

This search process can be visualized as a search tree where each node determines what
area of the state space should be considered during a run. When a node is selected the network
uses its state space values and produces a new solution. This new solution will be used to
create a node and it will be attached as a child to the original node. A node can be evaluated
several times and have multiple children. The search aspect comes from selecting a node with
a promising solution and using it to direct future runs. This process will continue until a certain
number of runs have been completed and the best solution found will be returned.

The nodes of the search tree will contain three values: a set of k facilities, a search radius
value r, and a node score. The facility set will be the solution that was used to create the node
and comes from a run that used the parent node’s information. These facilities will be used
alongside the search radius to reduce the search space.

The search radius r is an integer value that determines how many nearby locations should
be included alongside the facility set. For each facility we find the r closest locations and
include them in our search. The value of r will decrease the further down the tree the node is
in order to narrow down the search space. We use a simple formula for this where given the
distance between a node i and the root node dist(i, root) and the total number of locations n,
r = (n/k)/(dist(i, root) + 1).
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For our test results in Section 6 we make two modifications to our search radius values. The
first is adding a randomly selected small integer between 1 and 5 to r. This slightly varies the
locations that will be evaluated by the Hopfield network. The second is adding a probability
to exclude the original facility set from the search. In this case, the Hopfield network will
construct a set of potential facility locations using the node’s facility set but will not include
the facility set in its search. This prevents the network from continually returning the same
solution and forces it to search different areas of the state space. We set the probability of
excluding the starting facilities to 0.5.

The node score represents how good of a search candidate a node is. The score is initialized
to the solution value of the node’s facility set S i.e., the sum of distances between all clients
and their nearest facility in S . The score is a rolling average of the solution value of S and all
solution values derived directly from this node: Every time a node is evaluated a facility set is
produced and the value of this solution is added to the rolling average. The intent is that if on
average a node produces a good solution then the area of the state space it evaluates should be
further explored.

The root node of the search tree is a special case in that it always evaluates all n locations.
The node score will be initialized to the distance value of the first returned solution and will be
updated in the same way as the other nodes. Figure 5.2 contains an illustration of a four node
search tree.

N/A, N/A, 3

[1,3], r1, 2.5 [1,4], r1, 2.7

[2,3], r2, 2.8

Figure 5.2: A searching Hopfield Network search tree. Each node stores a tuple containing the
k facility solution set, a search radius value r determining how many nearby locations should
be evaluated, and the node score. Note that the root node will always evaluate the entire state
space.
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Experimental Results

We evaluated our modified Hopfield network using five datasets. Each dataset contains test
problems for various n and k values. Three of the datasets have been created by us and we
used an integer linear program solver to find the optimal solutions. The remaining two datasets
are publicly available and come with precalculated optimal solution values. The datasets are
further explained in Section 6.3.

We focus on two statistics for our modified Hopfield network: the approximation ratio of
the returned solution and the total time taken to create the solution. Through these statistics we
show that our approach can produce competitive solutions in a relatively short amount of time.
To demonstrate that our approach is competitive we report the same statistics for Haralampiev’s
competition-based neural network [16, 17, 18] and Arya et al.’s local search algorithm [2].
Haralampiev’s approach was chosen as it is based on Hopfield networks and is used for solving
the k-median problem. The local search algorithm was chosen as it is considered one of the
simplest and most effective algorithms for the k-median problem [13, 35].

6.1 Haralampiev’s Competition-Based Neural Network

6.1.1 Overview

We introduced Haralampiev’s competition-based neural network [16, 17, 18] in Section 3.7.
As in Hopfield networks the neurons contain state values and are arranged such that a solution
can be derived from these state values. Haralampiev’s network contains 2 · n · k neurons split
into two groups of size n · k. The first group C determines the assignment of clients to facilities
where each neuron indicates if a client in location i is being served by a facility j. The second
group F is responsible for placing facilities in locations and each neuron indicates if a facility
j is placed in a location s. The individual neurons in C will be referenced by their location
and serving facility e.g., the neuron representing a client in location 1 being served by facility
3 is C1,3. Likewise, the individual neurons in F will be referenced by their facility number and
location e.g., the neuron for facility 2 being placed in location 4 is F2,4.

C and F will be further split into subgroups of competing neurons. These subgroups will
be used to ensure that the solution produced is valid as the neuron update process will result
in one neuron per subgroup activating. C will be split into n subgroups of size k where each
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(a) Neuron Subgroups
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(b) Example Neuron State Values

Figure 6.1: The neuron layout for Haralampiev’s network where n = 3 and k = 2. Figure
(a) displays the subgroups of the neurons and Figure (b) displays an example solution using
neuron state values.

subgroup is responsible for the assignment of one client to a facility. For example, if n = 3 and
k = 2 then the client in location 1 can be served by facility 1 or facility 2 which produces the
subgroup {C1,1,C1,2}. F will be split into k subgroups of size n where each subgroup determines
where the facility is placed. Using n = 3 and k = 2, facility 2 can be placed at locations 1, 2,
or 3. The subgroup for this facility is {F2,1, F2,2, F2,3}.

Figure 6.1 contains all subgroups for a network where n = 3 and k = 2 as well as an
example of a valid solution. In Figure 6.1a the client neurons are in groups of two. Only
one of the neurons in each group will be active and that will indicate if the client is served
by facility 1 or facility 2. The facility neurons are in groups of three and indicate if a facility
is placed at location 1, 2, or 3. Figure 6.1b contains the neuron state values for an example
solution. Looking at the client groups we see that client 1 is being served by facility 1, client
2 by facility 1, and client 3 by facility 2. For the facilities we see that facility 1 is placed at
location 1 and facility 2 is placed at location 3. The returned solution is then {1, 3}.

However, when running our tests we encountered issues with the above facility subgroup
definition producing invalid solutions. While the facility subgroups ensure that one facility per
subgroup is active, they do not prevent facilities in different subgroups from being placed in
the same location. Using the n = 3 and k = 2 example, the network could have activated both
F1,1 and F2,1 which would return {1} as the solution. This violates the constraint that k facilities
are selected.
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To address this we modify the subgroup for each facility neuron and to explain how this
fixes the problem we briefly go over the neuron state value update process. Again, as in Hop-
field networks each neuron may connect to several other neurons and when a neuron evaluates
its state value it begins by summing the input received from other neurons connected to it.

This is called the neuron’s cost value and this cost value will be compared with the cost
values of the neurons in its subgroup. If a neuron has the smallest cost value in its subgroup it
changes its state value to 1, otherwise it changes its state value to 0.

When a facility neuron is selected for an update it will compare its cost value with those
of the facility neurons in its facility subgroup. For example, the neuron F1,1 will compare its
cost value with the cost values of F1,2 and F1,3. As stated above this process of only comparing
neurons in a facility subgroup can result in invalid solutions. Our fix involves having each
facility neuron compare itself with the members of its facility subgroup as well as any other
neurons that represent a facility being placed in the same location. Since the neuron F1,1

represents placing facility 1 on location 1 it will also compare its cost value with that of F2,1

which represents placing facility 2 on location 1. Thus the full group that F1,1 competes with is
F1,2, F1,3, and F2,1. This ensures that only one facility is placed on a location as a facility neuron
will only activate if it has both a better cost value than the facility neurons in its subgroup as
well as any other neuron that may place a facility in the same location.

Continuing with the description of the network structure we now define the neuron con-
nections. The connections will be between client neurons in C and facility neurons in F. The
neurons will connect based on their facility index i.e., a client neuron Ci, j will have a connection
to a facility neuron F j,s. The connection values will be the distance between the client location
and the facility location. For the above example, the connection between Ci, j and F j,s will have
the value Di,s where D is the distance matrix used to store the distances between locations. The
value that one neuron outputs to another will be the sending neuron’s state value multiplied by
the connection value. Continuing the previous example, the output that Ci, j sends to F j,s will be
stateValue(Ci, j) · Di,s where stateValue() is a function that returns a neuron’s state value. Fig-
ure 6.2 contains two connection visualizations: Figure 6.2 (a) shows the neurons that a client
neuron is connected to and Figure 6.2 (b) shows the neurons that a facility neuron is connected
to.

We now expand on the neuron state value update process mentioned earlier. The neurons
will repeatedly evaluate and update their state values until no further changes occur at which
point the network is said to have stabilized and a solution can be derived from the neuron
state values. The network will attempt to activate neurons that have smaller connection values
than their competitors which corresponds to searching for good or optimal solutions as the
connection values are based on the distances between clients and facilities. While there is
no explicit energy function to minimize, this process functions similarly as a stabilized state
containing small connection values corresponds to a low energy state in a Hopfield network.

The main difference is that the neuron update function now contains an extra step in regards
to the changed state value. When a neuron is selected for an update it starts by summing its
incoming connection values to produce a cost value. It then compares its cost value with the
minimum cost value of the neurons in its competing subgroup. If no other competing neuron is
active or the neuron’s cost value is lower than the groups minimum value the neuron activates,
otherwise it deactivates.

The state value is then passed to an accept function that determines if the state value will be
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Figure 6.2: Example neuron connections for Haralampiev’s network where n = 3 and k = 2.
Figure (a) displays the connections for C2,1 and Figure (b) displays the connections for F2,3.
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flipped to the opposite value. The accept function uses a cost difference ∆ and a temperature
value T to generate the probability to flip the neuron’s state value. The cost difference ∆ is
the difference between the neuron’s cost value and the best competing cost value i.e., ∆ =
|neuronCost − BestCost|. A high ∆ will decrease the probability of flipping the state value
whereas a low ∆ will increase this probability.

The temperature value T modifies the probability in the opposite way: A high T value
increases the probability of flipping the neuron state value whereas a low T value decreases the
probability of flipping it. T is used for exploration as it will start at a high value that results
in most state values being flipped before being lowered so that only state value changes that
reduce the cost of the network will be accepted. Haralampiev defines the probability of flipping
a neuron state value using ∆ and T as 1/(1 + exp(∆/T )).

When using Haralampiev’s network we will initialize the neuron state values and wait for
the network to stabilize. Like our modified Hopfield network, we refer to each iteration of
this initialization and stabilization process as a run of the network and we try to improve the
solution by running the network multiple times. Haralampiev’s suggestion for neuron state
value initialization is to randomly set every neuron state value to 0 or 1.

We differ by using a previous solution to set the initial neuron state values. When we run the
network we generate a random solution to the current k-median problem and use the selected
facilities in the solution to initialize the neuron state values. The neuron state values are set
such that the network is in a stable state from which the input facilities can be derived. For
example, given two facilities {1, 3} the network will activate F1,1 and F2,3 and then activate the
client neurons such that each client is connected to the nearest facility. We use this approach as
it results in faster stabilization compared to a completely random start and it still encourages
exploration as a high temperature will immediately move the network out of the starting stable
state.

When we run the network multiple times we only generate a random solution for the first
run. The subsequent runs are initialized with the best solution found in the previous runs. In
testing we found this to produce better solutions than selecting a random solution for each run.

6.1.2 Algorithm
We present pseudocode for three of the Haralampiev network functions: run, update, and
accept. The run function is the main function of the algorithm and it selects which neuron to
update and modifies the temperature value over time. The update function takes in a neuron
and determines the neuron’s state value. The accept function uses neuron cost values and the
temperature to determine if a neuron state value will be flipped to the opposite value.

Algorithm 6 contains pseudocode for the run function. The function will update every
neuron in a random order before decreasing the temperature. This differs from Haralampiev’s
suggestion of using a specified number of updates between temperature changes and selecting
any neuron at random for an update. We use our approach as we found the network stabilized
faster without any noticeable difference in solution quality.

For the temperature we want the initial value to start high and be reduced to a near 0 value
over time. To do this we select a value α that will be used to decrease the temperature. We
select α externally using the following steps: select an initial temperature value, decide on
the number of temperature updates w that will reduce temperature to almost 0, and solve the
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equation temperature · αw = 0.001 for α. For example, if temperature = 1 and w = 3 we have
1 · α3 = 0.001 which produces α = 0.1.

Algorithm 6 run (temperature, α)
# α is selected to reduce temperature to a near 0 value after a desired number
# of while loop iterations.

Input: temperature, α
hasS tabilized ← f alse
# Note that the update process ensures that a stabilized network contains a valid solution.
while not hasS tabilized do

for Each neuron x in a random order do
update(x, temperature)

end for
temperature← temperature · α
# Call a helper function to see if the network has stabilized
# i.e., each competing subgroup has exactly one active neuron.
hasS tabilized ← checkNetworkS tabilization()

end while

Algorithm 7 contains pseudocode for the update function which determines the potential
state change of a neuron. The pseudocode follows the steps listed previously for updating
neurons and we make no changes to Haralampiev’s approach here.

Algorithm 8 contains pseudocode for the accept function which determines if a neuron’s
state value remains the same or is flipped to the opposite value. It does this by generating a
probability to flip the neuron’s state value based on a cost difference ∆ and the temperature.
The cost difference ∆ is the difference between the neuron’s cost value and the smallest cost
value of its competitors.
∆ increases the probability of flipping the neuron’s state value when it is low and decreases

the probability when it is high. This is to encourage retaining good changes such as keeping a
neuron active when it has a much smaller cost value than its competitors. The temperature func-
tions differently as it increases the probability to flip the state value when high and decreases
it when low. This promotes exploration as this value will start high and will be decreased over
time.

The interaction between ∆ and temperature can be seen in Table 6.1. In this table we see
that temperature has a greater influence on the resulting probability value than ∆. When the
temperature is equal to 5 we see that there is a non-zero probability for all ∆ values. This table
also shows how a low temperature value allows the network to stabilize as the probabilities
become 0 when the temperature is equal to 0.1.

We make one modification to Haralampiev’s accept function by adding a check to see if ∆
is 0 as this results in the probability becoming 0.5. This was an issue in our testing as without
the check the network could randomly activate neurons when the system is close to stabilization
which greatly prolonged the algorithm runtime.
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Algorithm 7 update (neuron, temperature)
Input: neuron, temperature

# getOnCompetitors() returns the active neurons in the competing subgroup.
onCompetitors← getOnCompetitors(neuron)
# If no competitors are active.
if onCompetitors is empty then

# V is the array containing the neuron state values.
V[neuron]← 1

else
# costValue() returns the sum of the input connection values for a neuron.
neuronValue← costValue(neuron)
# calculateCostValues() returns a list of values produced by calling
# costValue() on each neuron in onCompetitors.
onValues← calculateCostValues(onCompetitors)
bestValue← min(onValues)
# ∆ is the cost difference between the neuron’s cost value and its best competitor.
∆← |neuronValue − bestValue|

if neuronValue < bestValue then
V[neuron] = 1
if accept(∆, temperature) then

V[neuron] = 0
end if

else
V[neuron] = 0
if accept(∆, temperature) then

V[neuron] = 1
end if

end if
end if

∆

1 2 4 8
0.1 0.00 0.00 0.00 0.00

Temperature 1 0.27 0.12 0.02 0.00
5 0.45 0.40 0.31 0.17

Table 6.1: Sample probability values for different cost difference ∆ and temperature values.
The formula used to generate each value is 1/(1 + exp(∆/T )).
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Algorithm 8 accept (∆, temperature)
# ∆ is the difference between the current neuron’s cost value
# and that of the smallest competing cost value.

Input: ∆, temperature
# If ∆ is 0 then the probability becomes 0.5.
# In this case we immediately return false.
if ∆ == 0 then

return False
else

probability← (1/(1 + exp(∆/Temperature)))
# RandomValue(0, 1) returns a random real number between 0 and 1.
return RandomValue(0, 1) < probability

end if

6.2 Local Search Algorithm

As discussed in Section 2.3.2 Arya et al.’s local search algorithm operates by repeatedly at-
tempting to swap facility locations with non-facility locations in order to reduce the cost of the
solution. If the algorithm swaps p locations in one operation then it has an approximation ratio
of 3+2/p [2]. Our implementation of the algorithm will swap only one non-facility and facility
location per operation giving a worst-case approximation ratio of 5 [2]. However, in practice
we often end up with better approximation results. Algorithm 9 contains the pseudocode for
our local search algorithm.

We add two early exit conditions to the algorithm in order to improve the runtime. The first
exit condition is a simple timeout check that bounds the maximum runtime. When that bound
is exceeded the algorithm stops and returns the current solution. The second exit condition is a
minimum improvement requirement. As the algorithm runs, the later swaps tend to contribute
smaller improvements to the total cost of the solution. Instead of spending a large amount of
time getting minuscule improvements, we stop making swaps when they cause an improvement
below a certain threshold. We use the following threshold equation presented by Cohen-Addad
and Mathieu [13] and only swap when it holds:

distance(F′) ≤ (1 − 1/n)distance(F)

where F is the original set of selected facilities and F′ is the set created by swapping a member
of F with another location. The distance() function returns the total distance from clients to
their nearest facilities and n is the number of locations.

Our local search implementation uses the GPU for distance calculations to allow a fair
comparison with our GPU-bound Hopfield network. We implemented the distance calculation
as a series of matrix operations and this greatly improved the algorithm runtime.
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Algorithm 9 Local Search Algorithm (maxTime, initialFacilities)
Input: maxTime, initialFacilities

# calculateDistance returns the total distance from all clients to their nearest facility
bestDistance← calculateDistance(initialFacilities)
f acilityS et ← initialFacilities
while true do

# allLocations is a set containing every location. By removing the facilities
# from this set we get the set of client locations.
clientS et ← allLocations − f acilityS et
# For every client location we check if swapping it with a facility location will
# improve the solution.
for client in clientS et do

# swapCandidate will contain the facility that will be swapped with the
# current client if there exists a swap that reduces the total cost of the solution.
swapCandidate← none
for f acility in f acilityS et do

if Maximum time has been reached then
return f acilityS et

end if
# For each client-facility pair we check if the corresponding swap results in a
# better solution. swapFacility() creates a new facility set where the
# inputted facility and client have been swapped.
newFacilities← swapFacility( f acilityS et, f acility, client)
newDistance← calculateDistance(newFacilities)
# A swap is only considered if it satisfies our distance reduction requirement.
if newDistance < (1 − (1/n)) ∗ bestDistance then

BestDistance← newDistance
swapCandidate← f acility

end if
end for
# If a satisfying swap has been found then swap the facility and client
# and return to the start of the while loop.
if swapCandidate is not none then

f acilityS et ← swapFacility( f acilityS et, swapCandidate, client)
break

end if
end for
# If there is no better swap or no potential swap satisfies the minimum improvement
# requirement then return the current solution and exit.
if No swap has occurred then

return f acilityS et
end if

end while
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6.3 Datasets

6.3.1 Random Point Datasets

Our first two datasets are constructed by randomly selecting points on a 2D plane. Each point
i is a potential location and is assigned a randomly generated coordinate pair (xi, yi) where xi

and yi can take any value between 0 and 1.
Each individual test was constructed using a n and k pair. Each test generated n points and

solved the k-median problem for k. We formulated the problems as integer linear programs
and used the Coin-OR solver [39] to produce optimal solutions.

The first dataset is called the random-small dataset. The n value for a test pair can be one of
[20, 30, 40, 50, 60, 70, 80, 90, 100] and the k value can be one of [2, 3, 4, 5, 6, 7, 8, 9, 10]. Each
n and k pair has 100 tests.

The second dataset is the random-large dataset. Its n value can be one of [500, 600, 700, 800]
and its k value can be one of [20, 30, 40, 50]. Each n and k pair has 3 tests.

6.3.2 Cities USCA312 Dataset

The third dataset uses cities located across North America as the potential facility locations.
We use John Burkardt’s USCA312 dataset [6] which provides a list of 312 cities and their
location information. The dataset converts a city’s longitude and latitude into an equivalent x
and y coordinate pair which we used for our calculations.

We used this data to construct several tests. For each n and k pair we randomly selected n
locations and used the Coin-OR solver to produce a solution. The n value can be any multiple
of 10 between 30 and 300 and the k value is any integer between 2 and 10. Each n and k pair
has 100 tests.

6.3.3 OR-Library P-Median Dataset

The fourth dataset comes from the OR-Library [5] and contains 40 tests labelled pmed1 through
pmed40. The dataset locations are nodes in a graph and the dataset provides a list of edge values
that correspond to the distance between nodes. We used this list of edge values to construct
a distance matrix for the nodes. Additionally, each test is assigned a k value and contains the
value of an optimal solution for each k-median problem. The n values range from 10 to 900
and the k values range from 5 to 200. Each test file contains one test using a single n and k pair.

6.3.4 TSPLib Dataset

The final dataset is the TSPLib dataset [37] which contains large problems for the travelling
salesman problem. Each problem contains over 1000 locations and each location is specified
by an x and y coordinate. This dataset has been adapted for the k-median problem by Garcı́a
et al. [15] and they provide solutions for several different k values. There are several tests per
problem with k values ranging from 5 to 5000.
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6.4 Testing Environment
All tests were performed on a desktop computer running Ubuntu 21.10. The machine has a 6
core AMD Ryzen 5 1600X CPU, 16 GB of RAM, and a Nividia GeForce GTX 1060 GPU with
6 GB of memory.

The code is written in python and makes extensive use of the PyTorch framework [36]. Py-
Torch allows us to express matrices as tensors and perform calculations on a CUDA supported
Nividia GPU. This greatly improves performance as we structured most of the calculations as
matrix operations which can be executed in parallel on the GPU.

6.5 Results
We present test results for our modified Hopfield network, Haralampiev’s competition-based
neural network [16, 17, 18], and Arya et al.’s local search algorithm [2]. For each test we report
two statistics: the approximation ratio and the total runtime in seconds. The approximation
ratio is calculated as S/S ∗ where S is the value of the solution computed by an algorithm and
S ∗ is the value of the optimal solution. The total runtime of a test is calculated by starting a
timer when an algorithm begins initialization and ending the timer when a solution is returned.
When there are multiple tests for a single n and k pair we return the average approximation
ratio and average runtime of each algorithm for the n and k pair.

In the tests we use our modified Hopfield network from Section 5 and include the extensions
described in Section 5.3. The network was allotted 1, 4, and 10 runs for each test and the best
solution found was returned.

Haralampiev’s network functions as described in Section 6.1. We present results for 4
runs of Haralampiev’s network and directly compare the results with 4 runs of our modified
Hopfield network. The network will use temperature = 1 and α = 0.1 for each test as we
found that these values produced good solutions while also stabilizing quickly. Note that we
do not include TSPLib results as the Haralampiev network tests did not complete despite being
given several days of computation time. We also ran Haralampiev’s network on the CPU due
to the update process not being optimized for GPU calculations. When running Haralampiev’s
network on the GPU we found that the run times were significantly longer.

The local search algorithm operates as described above in Section 6.2. We allowed a max-
imum runtime of 1, 5, or 15 seconds and for a fair comparison we attempt to match the local
search runtime with the Hopfield network runtime.

Tables 6.2, 6.3, and 6.4 contain a selection of the test results. Refer to Appendix B for the
complete set of test results.

6.6 Analysis
From these test results we can view a few general trends when comparing the algorithms. For
the Haralampiev network comparison we see that both networks produce good approximations
with Haralampiev’s often returning the better solution. The caveat is that Haralampiev’s net-
work does not appear to scale as well as our modifed Hopfield Network. For the random-small
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Our Network (4 runs) Haralampiev’s Network (4 runs)
Test n k Ratio Time (s) Ratio Time (s)
random-small 20 5 1.09 0.04 1.05 0.10
random-small 50 5 1.08 0.11 1.02 0.41
random-small 100 5 1.08 0.21 1.01 1.13
random-large 500 50 1.12 1.32 1.07 91.57
random-large 600 50 1.09 1.67 1.06 126.27
random-large 700 50 1.10 1.85 1.05 167.77
random-large 800 50 1.09 2.78 1.05 235.13
USCA312 100 5 1.08 0.20 1.05 0.42
USCA312 200 5 1.11 0.43 1.06 1.95
USCA312 300 5 1.06 0.64 1.01 8.42
pmed25 500 167 1.34 1.21 1.38 47.05
pmed30 600 200 1.31 1.75 1.37 76.52
pmed35 800 5 1.04 2.06 1.01 3.45
pmed40 900 90 1.10 2.72 1.18 58.17

Table 6.2: Selection of test results comparing our modified Hopfield network with Har-
alampiev’s network.

Our Network (10 Runs) Local Search
Test n k Ratio Time (s) Ratio Time (s)
random-small 20 5 1.06 0.11 1.07 0.01
random-small 50 5 1.06 0.25 1.04 0.03
random-small 100 5 1.06 0.47 1.02 0.09
random-large 500 50 1.11 3.25 1.12 5
random-large 600 50 1.08 4.10 1.14 5
random-large 700 50 1.08 4.95 1.16 5
random-large 800 50 1.08 6.41 1.18 5
USCA312 100 5 1.07 0.43 1.02 0.08
USCA312 200 5 1.10 0.88 1.01 0.24
USCA312 300 5 1.05 1.35 1.01 0.48
pmed25 500 167 1.38 3.36 1.42 5
pmed30 600 200 1.31 4.10 1.51 5
pmed35 800 5 1.04 4.58 1.00 5
pmed40 900 90 1.10 5.78 1.31 5
rl1304 1304 50 1.36 14.20 1.61 15
fl1400 1400 50 1.97 6.32 2.44 5
u1432 1432 50 1.34 16.58 1.62 15
vm1748 1748 50 1.29 22.27 1.57 15

Table 6.3: Selection of test results comparing our modified Hopfield network with the local
search algorithm.
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Our Network (1 Run) Our Network (10 runs)
Test n k Ratio Time (s) Ratio Time (s)
usa13509 13509 300 1.50 838 1.47 6583
usa13509 13509 400 1.51 831 1.48 6521
usa13509 13509 500 1.51 830 1.49 3291
usa13509 13509 800 1.53 825 1.52 5408
usa13509 13509 1000 1.54 812 1.52 5448
usa13509 13509 2000 1.55 785 1.55 6001
usa13509 13509 3000 1.54 771 1.54 6614
usa13509 13509 4000 1.63 750 1.63 5921
usa13509 13509 5000 1.72 774 1.70 6261

Table 6.4: The performance of our modified Hopfield network on the TSPLib dataset usa13509.
Note that the dataset does not provide an optimal solution for k values of 600, 700, and 900.

and USCA312 datasets our modified Hopfield network runtime stays under one second whereas
Haralampiev’s network takes up to 8 seconds in the larger tests. The pmed and random-large
tests can take several minutes with the TSPLib dataset being excluded as the Haralampiev
network tests did not complete even with several days of runtime.

This makes Haralampiev’s network a good choice for smaller problems, especially as the
network size of 2 · n · k neurons will be significantly smaller than our n2 + n neuron network.
However, as the problems get larger the runtime becomes infeasible and our network may be
preferred. For the random-large n = 800 and k = 50 example we could run our network many
times in the 235 seconds it takes to run Haralampiev’s network four times as our approach takes
approximately 0.7 seconds per run.

Furthermore, if we compare the runtimes for the random-large dataset results in Appendix
B we see that on average our network stabilizes 67 times faster than Haralampiev’s network.
This speedup can increase dramatically as n grows as we see individual tests complete up to
145 times faster when n = 800. When performing multiple runs of the networks, our approach
produces a solution up to 285 times faster for four runs when n = 800. This multiple run
speedup comes from the state space exploration functionality described in Section 5.3.2. Our
network will narrow down the search space over time in order to focus on promising areas for
facility locations. This decreases the runtime as only locations in those promising areas will be
evaluated.

This runtime difference can also be attributed to how the Haralampiev network selects and
updates neurons. In each iteration of the main loop every neuron is updated before the network
is checked for stabilization. This can result in wasted updates as the neurons stop changing their
state values, particularly when the network is close to a stable state. Our network addresses
this by choosing neurons that are likely to change, and keeping track of neurons that have
not changed. Additionally, our network groups client neuron updates which greatly decreases
runtime in comparison to individually updating every neuron.

For the local search comparison we see that when the n and k values are relatively small
(n ≤ 300 and k = 5) the local search algorithm outperforms our network. This is unsurprising
because even though there are an exponential number of possible solutions, the problem sizes
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are still small enough that the local search algorithm can quickly evaluate a significant number
of solutions. While our network does return competitive solutions, it cannot compete with a
method that can exhaustively search the state space in a short amount of time.

We also note that modern computing power makes solving these smaller problems trivial.
Although not presented, both brute force methods and integer linear program solvers can pro-
vide the optimal solution in a time frame of seconds to minutes. Additionally, our early testing
of the local search algorithm without GPU functionality gave similar optimal and near optimal
solutions for these small problems.

When the values of n and k start to grow (n > 300 and k > 5) we see our network outper-
forming the local search algorithm. Here the local search algorithm suffers due to the exponen-
tial number of potential solutions. In contrast, our network appears to scale well as it returns a
better solution in all cases except for the pmed35 test where the small value of k greatly reduces
the number of potential solutions.

We attribute this scaling to how our modified Hopfield network performs updates: the
n2 client-facility neurons are updated in a single operation no matter the size of n and while
the facility neurons need to be updated individually, there are at most n neurons and we have
introduced measures to reduce unnecessary updates. This scaling allows our network to process
relatively large problems such as the TSPLib usa13509 dataset which contains 13509 locations.
This problem size is significant as both the local search algorithm and Haralampiev’s network
would require a huge amount of processing time to produce a solution. Table 6.4 shows the
performance of our network on this large dataset. We believe that our network will scale to
larger values due to our resource usage growing quadratically, but our testing was restricted by
the testing machine’s 6 gigabytes of GPU memory.
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Conclusions

In this thesis we provide a neural network approach for solving the k-median problem. Here
we are given n locations and want to select k locations such that the total distance between each
unselected location and its nearest selected location is minimized.

Our approach is based on modifying a Hopfield network for the k-median problem. We
acknowledge that when Hopfield networks are applied to combinatorial optimization problems
they may take an unfeasibly large time to produce solutions as well as provide solutions that
are of poor quality or invalid. We address these issues by rewriting the neuron update functions
in order to efficiently produce valid solutions.

We empirically show that our modified Hopfield network quickly produces approximate
solutions that are often within 2 times of the optimal solution. Furthermore, we demonstrate
that our approach scales well by producing solutions for problems where n = 13509. To
demonstrate the effectiveness of our approach we compare our modified Hopfield network with
Haralampiev’s competition-based neural network [16, 17, 18] and Arya et al.’s local search
algorithm [2]. Our network stabilizes significantly faster than Haralampiev’s in the majority
of the tests while also providing competitive solutions. Our network stabilizes up to 145 times
faster than Haralampiev’s when n = 800.

For the local search algorithm our network outperforms it once n ≥ 300. We compare the
two approaches by taking the runtime required for our network to produce a solution and using
resulting runtime as the maximum runtime for the local search algorithm. I.e., if our network
takes X seconds to produce a solution, we compare it with the solution provided from running
the local search algorithm for X seconds. For these large problems the solution returned by
our approach is better in 76% of tests when n ≥ 300 and 86% of tests when both n ≥ 300 and
k ≥ 20.

Additionally, our restructuring of the update operations allows us to efficiently run our
network on a GPU which greatly improved runtimes. We also extend the neuron selection
algorithm to focus on neurons that have a higher probability to change their status which further
improves the network runtime. Finally, we believe that our network will scale well to larger
problems given sufficient GPU memory for storing the matrices used by our neural network.
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7.1 Future Work
A starting point for improving our approach is enhancing how our modified Hopfield network
searches the state space. Our implementation uses a relatively simple method of evaluating in-
creasingly smaller sets of locations near previously selected facilities. While this does provide
better solutions our testing shows that the improvements plateau relatively quickly. Inves-
tigating alternate or more complex search heuristics could greatly improve our results. For
example, we could combine our modified Hopfield network with another algorithm such as the
local search algorithm. In this case the network would produce a solution which would then be
improved by the second algorithm. The resulting improved solution could be returned as is or
used as the basis for a new search.

Another area of improvement is optimizing or rewriting the Hopfield network update op-
erations. We have shown that converting the update operations of a Hopfield network into a
series of matrix calculations allows us to utilize GPUs to quickly produce solutions. We believe
that improvements can be found by further optimizing our update operations or using alternate
update operations. For example, would grouping together facility updates improve the total
runtime without significantly reducing the solution quality? Also, could we apply reinforce-
ment learning to our client updates in order to only update the sections of the client matrix that
may change?

Additionally, we can move away from the k-median problem and use the ideas presented
here to make modified Hopfield networks for other combinatorial optimization problems. A
starting point would be clustering problems such as the facility location problem or the k-means
problem. These would be good candidates as their similarity to the k-median problem could
allow us to reuse parts of the network structure and update operations.

A more difficult problem would be applying these ideas to create a modified Hopfield net-
work for the travelling salesman problem. This is the original problem presented by Hopfield
and Tank [20] and subsequent literature discusses the viability of using Hopfield networks as a
solver. Creating a modified Hopfield network for this problem would allow direct comparisons
of our approach with the results in those papers.

Furthermore, we could evaluate larger Hopfield network sizes. As mentioned in Section 3.1
artificial neural networks are an attempt at emulating the natural computing power of neurons in
the brain. These relatively simple biological neurons can perform complex tasks when working
together in large groups. However, the number of artificial neurons in our Hopfield network is
significantly smaller than the number of biological neurons found in the brain. Feedforward
neural networks have found success by increasing the number of neuron layers and these larger
networks are referred to as deep neural networks. The question then is can we get better results
by adding more neurons to a Hopfield network in order to create a ”deep” Hopfield network and
what would this new network look like? The issue here would be that increasing the network
size would likely exacerbate the runtime and stability problems already present in Hopfield
networks. Ideally our method of incorporating constraints into the update operations as well as
moving the calculations to the GPU would provide a start to alleviating these issues on large
networks.
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Appendix A

K-Median Hopfield Network Energy
Equation

A.1 Constraint Term 1

Steps for rearranging Equation (4.1):

C1

nX

i=1

nX

j=1

V(i, j)Di, j

We start by rewriting the equation in order to remove the function V(i, j) and replacing it
with the neurons that it maps to. As a reminder, V(i, j) = Vn∗i+ j where the i and j values come
from the client-facility yi, j variable and n is the number of locations.

C1

nX

i=1

nX

j=1

Vn∗i+ jDi, j (A.1)

For this constraint term we are evaluating only the client-facility neurons and we can sim-
plify further by rewriting the two summations into one summation that evaluates neurons n+ 1
to n2 + n. For convenience we define N = n2 + n. Reducing to one summation means that
we lose the j variable and therefore cannot use the Di, j variable for distance. We define a new
distance function D(i) = D⌊(i−1)/n⌋,((i−1) mod n)+1 that takes a client-facility neuron i and returns
the distance between the represented client and facility.

C1

NX

i=n+1

ViD(i) (A.2)

Multiply by −1
−1 in order to make the term negative and rearrange to follow the form of

Equation (3.2):

−
NX

i=n+1

Vi(−C1D(i)) (A.3)
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A.2 Constraint Term 2
Steps for rearranging Equation (4.2):

C2




nX

i=1

Vi

 − k


2

Expand the squared term:

C2

k
2 − 2k

nX

i=1

Vi +


nX

i=1

Vi


2 (A.4)

Expand the squared summation:

C2

k
2 − 2k

nX

i=1

Vi +

nX

i=1

nX

j=1

ViVj

 (A.5)

Multiply in the constant:

C2k2 − 2C2k
nX

i=1

Vi +C2

nX

i=1

nX

j=1

ViVj (A.6)

Multiply by −2
−2 in order to get a leading −1

2 in the first term:

−1
2

C2

nX

i=1

nX

j=1

−2ViVj − 2C2k
nX

i=1

Vi +C2k2 (A.7)

Rearrange the variables in order to correspond to the position of the Ti, j and Ii variables
in Equation (3.2). Drop the constant term C2k2 as it adds a constant amount of energy to the
equation:

−1
2

nX

i

nX

j

(−2C2)ViVj −
nX

i

Vi(2C2k) (A.8)

A.3 Constraint Term 3
Steps for rearranging Equation (4.3):

C3

nX

i=1




nX

j=1

V(i, j)

 − 1


2

Expand the first summation:

C3




nX

j=1

V(1, j)

 − 1


2

+C3




nX

j=1

V(2, j)

 − 1


2

+ · · · +C3




nX

j=1

V(n, j)

 − 1


2

(A.9)



A.3. Constraint Term 3 59

Each term in Equation (A.9) will evaluate a separate group of n client-facility neurons.
Each of these n groups will correspond to one client location e.g., the first term will evaluate all
client-facility neurons where the client is in location 1. The summations can then be rewritten
to replace the V(i, j) function with the actual neurons:

C3




2nX

i=n+1

Vi

 − 1


2

+C3




3nX

i=2n+1

Vi

 − 1


2

+ · · · +C3




NX

i=n2+1

Vi

 − 1


2

(A.10)

Each individual term will then be rearranged. We show the steps for a single term as they
will be the same for all terms. For a given term let a and b be the indices for the first and last
neuron in that term, respectively:

C3




bX

i=a

Vi

 − 1


2

(A.11)

Expand the squared term:

C3

1 − 2
bX

i=a

Vi +


bX

i=a

Vi


2 (A.12)

Expand the squared summation:

C3

1 − 2
bX

i=a

Vi +

bX

i=a

bX

j=a

ViV j

 (A.13)

Multiply in the constant:

C3

bX

i=a

bX

j=a

ViV j − 2C3

bX

i=a

Vi +C3 (A.14)

Multiply by −2
−2 in order to get a leading −1

2 in the first term:

−1
2

C3

bX

i=a

bX

j=a

−2ViVj − 2C3

bX

i=a

Vi +C3 (A.15)

Rearrange the variables in order to correspond to the position of the Ti, j and Ii variables
in Equation (3.2). Drop the constant term C3 as it adds a constant amount of energy to the
equation:

−1
2

bX

i=a

bX

j=a

(−2C3)ViVj −
bX

i=a

Vi(2C3) (A.16)

With the term rearranged we can replace the indices a and b with the indices from (A.10)
and produce the full constraint term:
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− 1
2

2nX

i=n+1

2nX

j=n+1

(−2C3)ViVj −
2nX

i=n+1

Vi(2C3)

− 1
2

3nX

i=2n+1

3nX

j=2n+1

(−2C3)ViVj −
3nX

i=2n+1

Vi(2C3)

− · · ·

− 1
2

NX

i=n2+1

NX

j=n2+1

(−2C3)ViVj −
NX

i=n2+1

Vi(2C3) (A.17)

A.4 Constraint Term 4
Steps for rearranging Equation (4.4):

C4




nX

i=1

nX

j=1

V(i, j)

 − n


2

Expand the squared term:

C4

n
2 − 2n

nX

i=1

nX

j=1

V(i, j) +


nX

i=1

nX

j=1

V(i, j)


2 (A.18)

Using N = n2 + n we rewrite the summations to use the actual neuron indices:

C4

n
2 − 2n

NX

i=n+1

Vi +


NX

i=n+1

Vi


2 (A.19)

Expand the squared summation:

C4

n
2 − 2n

NX

i=n+1

Vi +

NX

i=n+1

NX

j=n+1

ViVj

 (A.20)

Multiply in the constant:

C4

NX

i=n+1

NX

j=n+1

ViVj − 2C4n
NX

i=n+1

Vi +C4n2 (A.21)

Multiply by −2
−2 in order to get a leading −1

2 in the first term:

−1
2

C4

NX

i=n+1

NX

j=n+1

−2ViVj − 2C4n
NX

i=n+1

Vi +C4n2 (A.22)
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Rearrange the variables in order to correspond to the position of the Ti, j and Ii variables
in Equation (3.2). Drop the constant term C4n2 as it adds a constant amount of energy to the
equation:

−1
2

NX

i=n+1

NX

j=n+1

(−2C4)ViVj −
NX

i=n+1

Vi(2C4n) (A.23)

A.5 Constraint Term 5

C5

nX

i=1

nX

j=1

(1 − Vi)V( j, i)

Expand the term:

C5


nX

i=1

nX

j=1

(V( j, i) − ViV( j, i))

 (A.24)

Split the summations:

C5


nX

i=1

nX

j=1

V( j, i) −
nX

i=1

nX

j=1

ViV( j, i)

 (A.25)

Use N = n2 + n to replace the first summation with one that uses the actual neuron indices;
Replace the V(j,i) function in the second summation with the neuron indices:

C5


NX

i=n+1

Vi −
nX

i=1

nX

j=1

ViVn j+i

 (A.26)

Multiply in the constant:

−C5

nX

i=1

nX

j=1

ViVn j+i +C5

NX

i=n+1

Vi (A.27)

Multiply by 2
2 in order to get a leading −1

2 in the first term:

−1
2

C5

nX

i=1

nX

j=1

2ViVn j+i +C5

NX

i=n+1

Vi (A.28)

Multiply by −1
−1 in order to make the second term negative:

−1
2

C5

nX

i=1

nX

j=1

2ViVn j+i −C5

NX

i=n+1

−Vi (A.29)

Rearrange the variables in order to correspond to the position of the Ti, j and Ii variables in
Equation (3.2):
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−1
2

nX

i=1

nX

j=1

(2C5)ViVn j+i −
NX

i=n+1

Vi(−C5) (A.30)

A.6 Connection and Input Bias Values
With the constraint terms in the form of Equation (3.2) we can now collect these terms and
determine the Ti, j and Ii values. Note that unlike the examples in Section 3, the constraint terms
are defined for subsets of neurons. For example the k facility constraint term (4.2) applies only
to the facility neurons numbered 1 to n and the n client-facility constraint term (4.4) applies
only to the client-facility neurons numbered (n+ 1) to (n2 + n). This means that our connection
matrix T and input biases I will be defined by piecewise functions that use the indices of
neurons i and j to determine their values. A neuron i is a facility neuron if 1 ≤ i ≤ n or a
client-facility neuron if (n + 1) ≤ i ≤ (n2 + n).

For reference, we include below the general energy Equation (3.2). Note that the original
equation uses n to denote the total number of neurons in the network. For clarity we maintain
that n refers to the number of locations in the k-median problem and that our network contains
N = (n2 + n) neurons.

E = −1
2

NX

i=1

NX

j=1

Ti jViV j −
NX

i=1

ViIi

For each constraint term, we will demonstrate how to derive the T and I values for our
piecewise functions by matching the values in our constraint terms to the Ti, j and Ii variables
in Equation (3.2). For clarity, we will refer to −1

2

PN
i=1
PN

j=1 Ti jViV j as the connection term
and −PN

i=1 ViIi as the bias term. The piecewise functions will be constructed incrementally
by evaluating each constraint term individually and adding the new values to the piecewise
functions.

We begin with the first constraint term (A.3):

−
NX

i=n+1

Vi(−C1D(i))

This constraint term contains no value for T as there is no connection term. The bias term
only evaluates client-facility neurons and the input bias Ii corresponds to −C1D(i). This gives
us the first values for the piecewise functions:

Ti, j = 0

Ii =


0 if i is a facility neuron
−C1D(i) if i is a client-facility neuron

Next is the second constraint term (A.8):
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−1
2

nX

i

nX

j

(−2C2)ViVj −
nX

i

Vi(2C2k)

This constraint term evaluates the facility neurons and we see that Ti, j corresponds to −2C2

and Ii corresponds to 2C2K. We add these to the functions to produce:

Ti, j =


−2C2 if i and j are facility neurons
0 otherwise

Ii =


2C2k if i is a facility neuron
−C1D(i) if i is a client-facility neuron

The third constraint term (A.17) is:

− 1
2

2nX

i=n+1

2nX

j=n+1

(−2C3)ViVj −
2nX

i=n+1

Vi(2C3)

− 1
2

3nX

i=2n+1

3nX

j=2n+1

(−2C3)ViVj −
3nX

i=2n+1

Vi(2C3)

− · · ·

− 1
2

NX

i=n2+1

NX

j=n2+1

(−2C3)ViVj −
NX

i=n2+1

Vi(2C3)

This constraint has been expanded to several sub-constraint terms where each sub-constraint
term refers to one group of client-facility neurons. Each group will correspond to a column
of client-facility neurons in the matrix representation. The connection term for each sub-
constraint term will evaluate only the neurons in a client-facility group and therefore each
client-facility neuron will have a connection value of −2C3 if they are in the same group. The
bias term in each sub-constraint term also evaluates the neurons in a client-facility group. How-
ever, we can combine the individual bias terms and as a result each client-facility neuron has
2C3 added to its input bias. These terms are then added to the piecewise functions:

Ti, j =



−2C2 if i and j are facility neurons
−2C3 if i and j are client-facility neurons in the same column
0 otherwise

Ii =


2C2k if i is a facility neuron
−C1D(i) + 2C3 if i is a client-facility neuron

The fourth constraint term (A.23) is:

−1
2

NX

i=n+1

NX

j=n+1

(−2C4)ViVj −
NX

i=n+1

Vi(2C4n)
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The connection term evaluates all client-facility neurons. This means that all connections
between client-facility neurons have the value −2C4. For the client-facility neurons in the same
column, this value is subtracted from the previous −2C3 value. Like the third constraint term,
the bias term adds 2C4n to all client-facility neurons and this is added to the previous values in
our function. The piecewise functions are now:

Ti, j =



−2C2 if i and j are facility neurons
−2C3 − 2C4 if i and j are client-facility neurons in the same column
−2C4 if i and j are client-facility neurons in different columns
0 otherwise

Ii =


2C2k if i is a facility neuron
−C1D(i) + 2C3 + 2C4n if i is a client-facility neuron

The fifth constraint term (A.30) is:

−1
2

nX

i=1

nX

j=1

(2C5)ViVn j+i −
NX

i=n+1

Vi(−C5)

The connection term only evaluates neuron pairs where one neuron is a facility neuron
and the second neuron is a client-facility neuron that can potentially be served by that facility
neuron. These connections will have a value of 2C5. The bias term evaluates only the client-
facility neurons and −C5 will be added to the input bias.

The final connection values are defined as:

Ti, j =



−2C2 if i and j are facility neurons
2C5 if i is a facility neuron and j is a client-facility neuron served by i
−2C3 − 2C4 if i and j are client-facility neurons in the same column
−2C4 if i and j are client-facility neurons in different columns
0 otherwise

(A.31)
The final input bias values are defined as:

Ii =


2C2k if i is a facility neuron
−C1D(i) + 2C3 + 2C4n −C5 if i is a client-facility neuron

(A.32)



Appendix B

Full Dataset Test Results

The following sections contain test results for our modified Hopfield network, Haralampiev’s
competition-based neural network, and Arya et al.’s local search algorithm. We used our mod-
ified Hopfield network from Section 5 and included the extensions described in Section 5.3.
We report data for 1, 4, and 10 runs of our modified Hopfield network: The 1 run results are
to demonstrate how well our network can produce an initial approximation, the 4 run results
are for comparing with Haralampiev’s network which was also allotted 4 runs, and the 10 run
results are to show how well our approach can improve on an initial approximation.

Haralampiev’s network functions as described in Section 6.1. We report data for 1 and
4 runs of the network in order to show the initial approximation and how multiple runs can
improve the solution. We use 4 runs as it is Haralampiev’s suggestion for getting a good
solution from the network. The network will use temperature = 1 and α = 0.1 for each test as
we found these values to produce good solutions while stabilizing quickly. We do not present
test results for the TSPLib dataset as Haralampiev’s network did not finish despite being given
several days of computation time.

The local search algorithm works as described in Section 6.2. We allowed a maximum run-
time of 1, 5, or 15 seconds. For a fair comparison we attempt to match the local search runtime
with our modified Hopfield network runtime and report the matched times. For example, the
local search algorithm finishes all random-small tests in less then a second so we do not report
the 5 and 15 second results. Conversely, the difficult TSPLib tests result in the local search
algorithm using the full 15 seconds and for those tests we report all three times.

We report several statistics for the algorithms. The first is the approximation ratio which
we calculate using S/S ∗ where S is the value of the proposed solution and S ∗ is the value of
the optimal solution. The second statistic is the total runtime of the algorithm in seconds where
the timer starts when the algorithm begins initialization and ends when a solution is returned.

When there are multiple tests for a single n and k pair we return the average approximation
ratio and average runtime values for the n and k pair. In this case we also calculate the stan-
dard deviation for the approximation ratios in order to determine how consistent an algorithms
approximation ratio is.

65



66 Chapter B. Full Dataset Test Results

B.1 Random-Small Dataset
The random-small dataset was constructed by randomly selecting points on a 2D plane. Each
point i is a potential location and was assigned a randomly generated coordinate pair (xi, yi)
where xi and yi can take any value between 0 and 1.

Each individual test was constructed using a n and k pair. Each test generates n points and
solves the k-median problem for k. The n value for a test pair can be one of [20, 30, 40, 50, 60, 70, 80, 90, 100]
and the k value can be one of [2, 3, 4, 5, 6, 7, 8, 9, 10]. Each n and k pair has 100 tests.

For each n and k pair we report the average approximation ratio of the 100 tests, the standard
deviation of the approximation ratios, and the average runtime in seconds. These values are
denoted in the results as A. Ratio, σ, and A. Time, respectively.

B.1.1 Hopfield Network and Haralampiev Network Results
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70 Chapter B. Full Dataset Test Results

B.1.2 Hopfield Network and Local Search Results
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B.2 Random-Large Dataset
The random-large dataset was constructed by randomly selecting points on a 2D plane. Each
point i is a potential location and was assigned a randomly generated coordinate pair (xi, yi)
where xi and yi can take any value between 0 and 1.

Each individual test was constructed using a n and k pair. Each test generates n points and
solves the k-median problem for k. The n value can be one of [500, 600, 700, 800] and the k
value can be one of [20, 30, 40, 50]. Each n and k pair has 3 tests.

For each n and k pair we report the average approximation ratio of the 3 tests, the standard
deviation of the approximation ratios, and the average runtime in seconds. These values are
denoted in the results as A. Ratio, σ, and A. Time, respectively.

B.2.1 Hopfield Network and Haralampiev Network Results
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B.2.2 Hopfield Network and Local Search Results
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B.3 Cities USCA312 Dataset Results
The Cities USCA312 Dataset uses cities located across North America as the potential facility
locations. We used John Burkardt’s USCA312 dataset [6] which provides a list of 312 cities
and their location information. The dataset converts a city’s longitude and latitude into an
equivalent x and y coordinate pair which we used for our calculations.

We used this data to construct several tests. For each n and k pair we randomly selected n
locations and solved the resulting k-median problem. The n value can be any increment of 10
between 30 and 300 and our k value can be between 2 and 10. Each n and k pair has 100 tests.

For each n and k pair we report the average approximation ratio of the 100 tests, the standard
deviation of the approximation ratios, and the average runtime in seconds. These values are
denoted in the results as A. Ratio, σ, and A. Time, respectively.

B.3.1 Hopfield Network and Haralampiev Network Results
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88 Chapter B. Full Dataset Test Results

B.3.2 Hopfield Network and Local Search Results
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B.4 OR-Library P-Median Dataset Results
The OR-Library [5] contains 40 k-median tests labelled pmed1 through pmed40. Each test
uses a single n and k value and includes a list of locations as well as the optimal distance value
for the k-median problem. The n values range from 10 to 900 and the k values range from 5 to
200.

We report the approximation ratio and total runtime in seconds for each test.

B.4.1 Hopfield Network and Haralampiev Network Results
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B.4.2 Hopfield Network and Local Search Results
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B.5 TSPLib Dataset Results
The TSPLib dataset [37] contains large problems for the travelling salesman problem. Each
problem contains over 1000 locations and each location is specified by an x and y coordinate
pair. This dataset has been adapted for the k-median problem by Garcı́a et al. [15] and they
provide solutions for several different k values. There are several tests per problem with k
values ranging from 5 to 5000. Note that due to the size of the problems the solver of Garcı́a
et al. was unable to provide an optimal solution for a small number of test cases and as a result
some k values are not included in the test results.

We report the approximation ratio and total runtime in seconds for each test.

B.5.1 Hopfield Network and Local Search Results
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B.5.2 Hopfield Network usa13509 Results
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