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 Introduction 

 When a bivariate association is examined for two fac-
tors such as an explanatory variable and a response, a 
crude summary table or figure is commonly used. Re-
searchers conventionally construct such a presentation 
mode by categorizing a prognostic factor by quantiles of 
its distribution and then providing descriptive statistics 
of the response variable within each category. This ap-
proach is primarily used because of its simplicity and ease 
in understanding but may misrepresent the true relation-
ship.

  Finding the optimal rule for variable categorization is 
an important statistical undertaking, because widely ac-
cepted ad hoc methods are known to be inefficient  [1] . 
Identifying too few categories may not be very informa-
tive, while too many categories tend to yield an unstable 
model fit with the risk of excessive fluctuations. The issue 
of estimating ‘optimal cutpoint’ has been extensively 
studied and widely utilized in prognostic factor model-
ing, in deciding cutoff of normal values for laboratory 
markers, and medical decision making in patient man-
agement. Mazumdar and Glassman  [2]  and Mazumdar 
et al.  [3]  reviewed various statistical solutions for this 
problem in bivariate and multivariate settings with bi-
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 Abstract 
 Data analysts consider standard regression models (e.g., 
generalized linear model) or nonparametric smoothing 
techniques (e.g., loess or splines) when examining the asso-
ciation between two variables. Before this step, a quantile-
based summarization is typically used for exploring the 
 exposure-response relationship. Unfortunately, these ex-
ploratory approaches may not be optimal or efficient for 
guiding the formal analysis in many biological and nutrition-
al data settings. We suggest a recently developed method 
for selection of cutpoints as a tool of data summary and seg-
mented regression as a modeling approach in the analysis of 
plasma total homocysteine and related vitamins. These 
methods are often complementary in discovering the un-
derlying complex pattern of association. 
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nary and censored survival endpoints. These methods 
are based on adjusting the p values due to multiple test-
ing. However, the authors restricted their attention to one 
fixed cutpoint, which is useful for risk stratification (e.g., 
high vs. low risk), but not as useful for summary table 
construction. No suggestion was made for determining 
the number of categories.

  Recently, O’Brien  [4]  proposed an efficient and reli-
able method for estimating the number of categories and 
the placement of associated cutpoints when a continuous 
covariate needs to be categorized in relation to the re-
sponse. In this nonparametric approach, the optimum 
categorization is defined as the partition that minimizes 
a distance measure between the expected value of the out-
come for each subject and the corresponding estimated 
average outcome among subjects in the same category. 
This method is mainly useful for creating tabular and/or 
graphical summaries of the exposure effect on the re-
sponse.

  Following the above exploratory and descriptive ap-
proaches, regression analysis is well accepted to be the 
standard tool in establishing the potential risk factors 
that affect the response. The type of regression model to 
be used depends on the research goal, data type (e.g., con-
tinuous, binary, censored outcome), study design (e.g., 
cross-sectional, longitudinal), appropriate summary 
measure (e.g., mean, median), type of hypothesized rela-
tionship (e.g., linear vs. nonlinear; simple vs. multiple re-
gression), and various statistical approaches (e.g., para-
metric vs. nonparametric; fixed vs. time-varying regres-
sion coefficients). 

  In biological and nutritional data, multiple cutpoints 
often exist, meaning the relationships are expected to be 
different in the segments created by the cutpoints. The 
methodology called ‘segmented (polynomial) regression 
modeling’, in which above and below fixed but unknown 
critical point(s), the regression lines/curves are expected 
to change substantially seems to be an appropriate choice 
for this setting  [5–8] . This model utilizes the full power 
of the continuous exposure data and does not make the 
unrealistically simple (log) linear model assumption. 
There are many possible scenarios, but a common one is 
that the exposure (or dose) increases the response lin-
early up to some level and the risk remains constant for 
greater exposure. The opposite scenario is also possible 
(i.e., there is no influence of the exposure on the response 
below a certain limiting value, while it increases when the 
exposure exceeds that threshold). In these situations, es-
timating transition points correctly is often regarded as 
the main goal of research. This problem has been exten-

sively studied in (bio)statistics, but is not widely adopted 
in analyzing clinical data.

  We bring together these two statistical methods (i.e., 
optimal cutpoints and segmented regression), and revis-
it the relationship of plasma total homocysteine (tHcy) 
and serum levels of vitamin B 12  (cobalamin) and folate as 
agents that are involved in its metabolism. This clinical 
observation has been discussed in many papers  [9–13] . 
Robertson et al.  [12]  used a quartile plot that displayed 
the negative linear association between serum B 12  and 
tHcy, while some nonlinear patterns were shown in decile 
plots by Selhub et al.  [11]  and Spence et al.  [13] . It was 
concluded that these findings are not necessarily conver-
gent and therefore definite statements are difficult to 
make. It was also acknowledged that the study popula-
tions are not homogeneous, but comparable patterns 
were observed in some common ranges of B 12  level.

  In this paper, we perform a more rigorous investiga-
tion of this issue utilizing the nationally representative 
National Health and Nutrition Examination Survey 
(NHANES) data. We begin by reviewing various meth-
ods for categorization of a continuous covariate in rela-
tion to a continuous outcome, and also contrast the seg-
mented regression model with other traditional compet-
ing approaches in the context of the NHANES data 
analysis. We find that using the O’Brien method for find-
ing the optimal ‘number of categories’ followed by seg-
mented regression (with multiple cutpoints in bivariate 
and multivariate settings) illustrates the tHcy-vitamin 
association more clearly than what was achieved by stan-
dard methods. In the ‘Appendix’, we provide simple 
codes that can be implemented in SAS and S-plus/R 
along with the suggested steps for performing similar 
data analysis.

  Methods 

 The context of our problem is discovering the relationship be-
tween two numeric variables (dose/response; exposure/response; 
covariate/outcome) through finding changepoint(s) for the expo-
sure variable. We review available statistical methods for (1) cat-
egorization of the covariate and (2) regression-based approaches 
for modeling the association. The first part is more for explor-
atory analysis and the latter is for statistical estimation and infer-
ence, guided by the results from the first part. We first describe 
methods commonly used by data analysts currently, followed by 
approaches that are either new or not utilized commonly to their 
fullest extent.

  Commonly Utilized Methods 
 In any research that studies a covariate effect on an outcome, 

most would agree that a two-dimensional scatter plot should be 
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the initial step for visualization of the crude pattern of the raw 
data and the potential outliers. Without this simple but essential 
step, the whole effort to be followed could be misleading. Then 
one may attempt a tabular or graphical summary of the covari-
ate-outcome relationship. When the covariate is continuous, it is 
not meaningful to make a table for all distinct values for the co-
variate. It is common practice to divide the covariate into a cer-
tain number of groups for creating straightforward summariza-
tion of the data. Groups with nearly equal numbers of observa-
tions are generally used (for example, tertiles to quintiles). 
Statistically oriented researchers may use tree-based methods 
(e.g., classification and regression tree and recursive partition-
ing)  [14, 15] , but these methods also are not necessarily opti-
mal  [4] .

  The next step in data analysis typically is to try various model-
ing approaches. In this stage, a generalized linear model (GLM) 
using polynomial (often, up to the cubic) terms of a covariate is 
most likely to be the starting point. If the relation seems to be 
more complex than polynomials, a smoothed regression model 
can be a better alternative (e.g., loess and splines). Although this 
approach is quite complex and advanced, procedures built into 
standard statistical packages make possible its widespread use. 
The ‘loess’ method has become part of statistical training and 
common practice for many nonstatisticians. A variety of special-
ized smoothing techniques are also widely available (for example, 
‘sm’ option in GPLOT, GAM and TRANSREG procedures in 
SAS). ‘Loess’ in particular combines much of the simplicity of lin-
ear least squares regression with the flexibility of nonlinear re-
gression. Although implementation of these elegant techniques is 
becoming ever easier, operating mechanisms under the attractive 
graphics are still difficult to grasp for many users. So, when 
threshold effects or breakpoints are expected, loess provides some 
sense about where they are located, but formal evaluation and in-
ference are still not easy.

  The exact number and locations of changepoints, if they are 
present, are difficult to identify unless strong biological rationale 
or previous consolidated research supports the theory. Change-
points are not immediately apparent in a scatter plot, particularly 
for large datasets. In this situation, a ‘parametric’ segmented re-
gression model is appealing, giving an explicit mathematical ex-
pression of the equation and formal estimation and inference with 
confidence interval (CI) about changepoints. Often in real appli-
cations, a piecewise linear regression model with one or two 
breaks is sufficient, although an extension to higher-order poly-
nomials and/or an increased number of cutpoints does not entail 
appreciably more effort. Using a correct number of breakpoints is 
important. For example, if two segmentations are needed but the 
data are actually modeled with only one changepoint, the statisti-
cal analysis could be problematic, as we will demonstrate in our 
example below.

  Novel Methods and Not Commonly Utilized Methods 
 Suppose that an explanatory variable x i  is ‘continuous’ but we 

want to categorize it, while the response variable y i  can be dis-
crete, ordinal or continuous, where  i  indexes the total  n  subjects. 
We assume that the first two moments of y i  conditional on x i  are 
E(y i   �  x i )  {   �  i   {   �  i (x i ) and var(y i   �  x i ) =  �  2 v i   {   �  2 v(x i ), where ‘E’ 
denotes expectation and ‘var’ denotes variance.

  O’Brien  [4]  proposed a new method that determines the
‘asymptotically’ optimal choice of categories of a predictor by 

minimizing a newly invented measure of distance called average 
expected distance (AED):

  AED( � ) = E{1/n  �  i  ( y   � i  –  �  i ) 2 /v i } =
1/n  �  i  ( �   � i  –  �  i ) 2 /v i  +  �  2 /n  �  i    v   � i  /( v  i  n  � i )

  where  �  = { �  0   !   �  1   !  …  !   �  k–1   !   �  k } represents a partition of k
(k  ̂   n) categories and  y   � i ,  �   � i , and  v   � i  are the sample average of 
y’s,  � ’s and v’s, respectively, in the category to which subject  i  is 
assigned with the corresponding sample size n  � i . Here,  y   � i  can be 
granted as an estimator of  �  i  and two summations represent sys-
tematic error (information loss) and sampling variability. The 
performance of this method has been shown to be superior to and 
more reliable than most existing methods. Interested readers are 
referred to the original paper by O’Brien  [4] .

  Next, we intend to briefly explain segmented regression mod-
els, which represent a form of nonlinear regression or change-
point model. O’Brien’s  [4]  optimal categorization, outlined above, 
can also be viewed as piecewise constant regression within this 
rich class of changepoint models. Furthermore, these two tech-
niques tend to complement each other because a figure obtained 
from optimal categorization often successfully reveals meaning-
ful changepoints that are not noticeable in a busy plot with raw 
data points.

  A general ‘changepoints’ model can be formulated as follows: 
a function of a predictor and a response can have a different ana-
lytic form, as well as parameters in different subdomains of the x 
axis. There exist qualitatively different scenarios – a function can 
be continuous or discontinuous at changepoints, and the loca-
tions, as well as the number of changepoints, can be known or 
unknown. In this paper, we restrict our attention only to the mod-
els with unknown but ‘continuous-at-the-join points’ [see ref.  6, 
7, 16–19  for a wide application of such models and mathematical 
and numerical properties]. Let us introduce an equation for sim-
ple linear regression but the slope changes after a certain level of 
a covariate:

  E(y i  � x i ) =  � { �  0  +  �  1 x i  +  �  2 (x i  –  � ) + } (1)

  where  �  –1  is a known link function for GLM, and (a) +  is defined 
to be 0 if a  !  0 and a if a  6  0. Here,  �  = { �  0,   �  1,   �  2 } are the regres-
sion parameters and  �  is the changepoint parameter. Additional 
changepoints as well as other covariates (e.g., confounders or ef-
fect modifiers) can also be introduced in Eq. (1).

  Parameter estimates can be obtained by maximizing a judi-
ciously selected likelihood function or nonlinear least squares. 
For instance, a maximizer of  �  by utilizing the following profile 
likelihood can be sought:

   f(  � ) = max  � ,  �      �  i  loglik{y i ,  �  0  +  �  1 x i  +  �  2 (x i  –  � ) + ,  � }

  where ‘loglik’ denotes the log-likelihood and  �  is a vector of nui-
sance parameters. Most statistical software (e.g., SAS, S-plus/R 
and SPSS) provides a procedure for nonlinear modeling, so ‘seg-
mented regression’ can be flexibly programmed, although the 
method of optimal categorization is not yet a part of the statistical 
packages.

  An important issue in the use of segmented regression, often 
overlooked in practice, is that we should have knowledge about 
the optimal number of segmentations. Akaike Information Cri-
terion (AIC) or Bayesian IC (BIC), among others, can decide the 
optimal number by testing whether the broken line offers a sig-
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  Fig. 1.  The association of plasma tHcy with B 12  and folate using quartiles ( a ) and deciles ( b ) – NHANES data (n = 7,260). 
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nificantly better fit to the data than a single straight line (i.e., with 
no changepoint), etc. in a stepwise fashion. Classical AIC assumes 
large sample size and may cause overfitting, so some suggested a 
modified version of AIC  [20, 21] . Here are the formulae:

  AIC = –2 loglik + 2 p,
  BIC = –2 loglik + log(n) p,
  a modified AIC = –2 loglik + {n(n + p)/(n – p – 2)},

  where p = the number of estimated parameters. In the model of 
linear fits, p = 2 * (the number of changepoints + 1). There are also 
some computational packages specializing in various change-
points models  [17, 20, 22, 23] .

  We apply all methods discussed here to discover the relation-
ship between tHcy and some B vitamins and find that the novel 
O’Brien method provided the best view of possible cutpoints for 
data summarization. Guided by the result from this method, a 
segmented regression with extension to bivariate and multivari-
able settings and use of a modified AIC for model selection finds 
the optimal setting.

  Results 

 In this section, we analyzed the data in a part of the 
national survey, NHANES, that was conducted by the 
National Center for Health Statistics, Centers for Disease 
Control and Prevention, in several phases over a decade. 
This survey was designed by stratified probability sam-
ples of the civilian, noninstitutionalized US population 
with some underrepresentative subgroups oversampled; 
all the data are available in the public domain (http://
www.cdc.gov/nchs/nhanes.htm). Comprehensive medi-
cal information and laboratory and interview data were 
ascertained.

  For this investigation, 8,832 participants in the nutri-
tional biochemistry examination during 1999–2000 were 
included. We extracted three variables: serum vitamin 
B 12 , serum folate and plasma tHcy, and analyzed cross-
sectional associations. Fifteen percent of the data were 
deleted due to missing values, resulting in 7,511 complete 
observations. In our main analysis, we also excluded 3% 
of the extreme values (to be specific, tHcy  1  30.3, B 12   1  
1,096 or folate  1 94.3) so the final sample size was 7,260. 
We also repeated the same analysis using the entire data-
set (n = 7,511) to examine the influence of outliers, and 
report the findings later.

  We first analyzed the data with commonly used meth-
ods. Standard descriptive methods of categorizing the co-
variate (B 12  and folate) using quartiles and deciles and 
plotting the midpoints corresponding to mean (and 95% 
CI) of the corresponding response (tHcy) are shown in 
 figure 1 . A summary table for deciles is provided in  table 1  

as well. A small number of categories such as quartiles are 
generally insufficient to elucidate sophisticated curvature. 
The plot based on deciles reveals nonlinearity but fails to 
show a plateau pattern. Both are indexed by the number/
order of observations and lose the original scale of a co-
variate. Tree analysis produced exceedingly large numbers 
of terminal nodes, 183 for B 12  and 157 for folate.

  In contrast, the O’Brien method yields 13 cutpoints for 
B 12  and 12 cutpoints for folate ( fig. 2 ). Interestingly, these 
two vitamins behave quite similarly in their effects on 
tHcy, with the patterns implying floor effects.

  Next, we implemented various commonly utilized re-
gression modeling strategies such as two polynomial re-
gression models with (1) linear, quadratic and cubic terms 
of the covariate; (2) the same terms of the inverse of the 
covariate; (3) loess, and (4) smooth splines. In the para-
metric models of (1) and (2), each term is statistically sig-
nificant with all p values  ! 0.0025. Smoothing parameter 
in the loess fit was estimated as 0.236 for B 12  and 0.112 for 

Table 1. Summary1 of relationship between plasma tHcy with B12 
(upper) and folate (lower) using deciles

Deciles tHcy

sample size mean SD

B12 range
1 (^217) 733 8.97 4.57
2 (217–264) 717 7.89 3.44
3 (264–304) 728 7.52 3.17
4 (304–342) 732 7.13 2.92
5 (342–381) 734 6.97 2.85
6 (381–424) 704 6.76 2.74
7 (424–477) 725 6.31 2.71
8 (477–545) 739 5.97 2.86
9 (545–654) 726 5.64 2.35

10 (1654) 722 5.28 2.57

Folate range
1 (^16.5) 738 9.29 4.31
2 (16.5–20.8) 717 7.78 3.12
3 (20.8–24.5) 749 7.37 3.15
4 (24.5–28.1) 740 6.99 2.86
5 (28.1–31.9) 700 6.56 2.76
6 (31.9–36.0) 716 6.32 2.69
7 (36.0–40.5) 752 6.14 2.84
8 (40.5–45.5) 699 5.95 2.92
9 (45.5–58.7) 727 5.69 2.66

10 (158.7) 722 6.28 3.18

SD = Standard deviation.
1 Corresponds to the lower panels in figure 1.
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folate.  Figure 3  overlaid the fitted curves from these four 
models. We find these methods to be suboptimal for our 
purpose as none of them prompt us to the number and 
the location of potential changepoints and, more impor-

tantly, the estimation and inference about changepoints 
are difficult, if not impossible.

  Based on the result using the O’Brien method in  fig-
ure 2 , we obtained some evidence for the existence of 
(more than one) changepoints and the plateau pattern. 
We therefore reanalyzed the same data using nonsmooth 
segmented regression. AIC  [20]  presented in  table 2  de-
termined the optimal number of changepoints to be 2 for 
B 12  and 3 for folate in relation to tHcy. Segmented regres-
sion fits ( fig. 4  and the upper part in  table 3 ) clearly cap-
ture the steep rise in plasma tHcy as serum B 12  falls before 
the first breakpoint and the regression line becomes more 
flat after each changepoint thereafter: 184 (95% CI: 169–
200) and 497 (95% CI: 450–544) pmol/l. In contrast, fo-
late seems to convey three breakpoints of 11.6 (95% CI: 
10.7–12.5), 26.6 (95% CI: 23.3–29.9) and 50.0 (95% CI: 
46.0–54.0) nmol/l – an extremely steep slope seems to be 
true up to the first breakpoint and the lowering effects of 
serum folate on tHcy continue approximately up to the 
last breakpoint with intermediate slope changes.

  Next, multivariate regression models adjusting key 
confounders such as age, sex and the status of the other 
nutrient were analyzed.  Table 3  (the lower part) summa-
rizes regression results that are somewhat different from 
the previous ones in bivariate counterparts (i.e., using 
one covariate). Models were dramatically better explained 
by introducing these potential confounders as reflected 
in sum of squares (i.e., 67,840–39,241 for the B 12  model 
and 67,393–37,455 in the folate model). Two prominent 
changes emerged: in the B 12  model, the second change-
point significantly moved downward (497 to 426); in the 
folate model, three breakpoints did not change materi-
ally, while the apparent increase in tHcy at very high fo-
late (slope estimate = 0.04) almost disappeared (slope es-
timate = –1.00 + 0.88 + 0.09 + 0.04 = 0.01). This change 
may affect recommendations for vitamin intake.
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  Fig. 2.  The association of plasma tHcy with B 12  ( a ) and folate ( b ) 
using O’Brien’s optimal categorization method. 

Table 2. Model selection criteria for segmented regression model 
for plasma tHcy with B12 and folate

Number of
changepoints

AIC1 in
B12 model

AIC1 in
folate model

0 (i.e., linear term) 23,671 23,984
1 23,546 23,586
2 23,498 23,474
3 23,498 23,455
4 23,503 23,458

1 Using a modified version of AIC by Jones and Dey [20], where 
the smaller value indicates improved model fit.
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 Fig. 4. Segmented regression fit for plasma 
tHcy with B 12  ( a ) and folate ( b ) along with 
raw data – unadjusted analysis. Fitted re-
gression functions are tHcy = 16.3443 – 
0.0435  *  B12 + 0.0358  *  (B12 – 184) +  + 
0.00581  *  (B12 – 497) +  and tHcy = 21.2327 
– 1.0567  *  folate + 0.9118  *  (folate – 11.6) +  
+ 0.0893  *  (folate – 26.6) +  + 0.0947  *  (folate 
– 50) + . Note that wider y axis than the one 
in figure 3 was used to show entire data 
points. 
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  Discussion 

 The methodological and computational advance-
ments in the last decade have been remarkable in statis-
tics and applied mathematics, but the complexity of the 
methodology has kept them from being widely used in 
biomedical applications. Some methods are not under-
stood well, while others are not accessible because user-
friendly computer programs are not available. In this pa-
per, we highlight two statistical methods with important 
potential for applications in epidemiology and biomedi-
cine: (1) how to categorize a continuous covariate opti-
mally to describe its underlying relationship to a study 
outcome and (2) how to address potential changepoints 
if they exist.

  Thresholds and changepoints are key features in la-
tency and dose-response analyses in virtually the entire 
realm of epidemiology (e.g., environmental, occupation-
al, nutritional, clinical and neuroepidemiology). All cat-
egorization procedures, including those illustrated here, 
are inherently data-driven. Scientifically or biologically 
meaningful cutpoints should be adopted whenever pos-

sible. However, when such information is not available a 
priori, which is indeed often the case in new or emerging 
research, the methods for finding ‘optimal’ cutpoints are 
a valuable component of the statistical toolbox. For the 
resulting cutpoints to be reasonable, they should be de-
rived from data that are large enough and reliable. Oth-
erwise, such results are seldom reproducible in indepen-
dent investigations and cannot avoid the criticism of be-
ing ‘data-dependent’.

  Strictly speaking, statistical analysis for NHANES 
data should account for complex survey design. However, 
we analyzed this dataset assuming simple random sam-
pling. To the best of our knowledge, nonlinear program-
ming and the associated ‘correct’ statistical inference ful-
ly accounting for complex sampling design are not yet 
available, although standard weighted regression can be 
conducted easily. This should be an important topic for 
statistical research.

  The utility and efficacy of cost-effective vitamin regi-
mens on various medical endpoints such as vertical trans-
mission of HIV, carotid plaque, cardiovascular diseases, 
and cognitive function have recently received growing 

Table 3. Segmented regression model
for plasma tHcy with B12 and
folate-unadjusted (above) vs.
multivariate-adjusted (below) analyses

B12 model Folate model

Unadjusted analysisa

Parameter estimate (95% CI) estimate (95% CI)
1st changepoint 184 (167, 199) 11.6 (10.7, 12.5)
2nd changepoint 497 (450, 544) 26.6 (23.3, 29.9)
3rd changepoint not needed 50 (46, 54)
Initial slope –0.04 (–0.06, –0.03) –1.06 (–1.33, –0.79)
Slope change after

1st changepoint 0.04 (0.02, 0.05) 0.91 (0.64, 1.18)
2nd changepoint 0.006 (0.004, 0.007) 0.09 (0.05, 0.12)
3rd changepoint not needed 0.09 (0.07, 0.12)

Multivariate-adjusted analysis
Age, years 0.083 (0.081, 0.085) 0.081 (0.079, 0.084)
Female gender –1.01 (–1.12, –0.91) –0.97 (–1.07, –0.86)
Nutrientb –0.04 (–0.043, –0.036) –0.002 (–0.0023, –0.0016)
1st changepoint 200 (187, 214) 11.5 (10.8, 12.2)
2nd changepoint 426 (367, 485) 24.5 (21.9, 27.1)
3rd changepoint not needed 50.1 (43.8, 56.4)
Initial slope –0.03 (–0.04, –0.02) –1.00 (–1.22, –0.79)
Slope change after

1st changepoint 0.026 (0.02, 0.03) 0.88 (0.66, 1.09)
2nd changepoint 0.003 (0.002, 0.005) 0.09 (0.06, 0.12)
3rd changepoint not needed 0.04 (0.03, 0.06)

CI = Approximate confidence interval.
a Corresponds to the regression fits presented in figure 4.
b For the B12 model, it is folate and for the folate model, it is B12. 
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attention  [12, 13, 24–30] . tHcy is not only known to be an 
independent risk factor for vascular events, but is also 
believed to lie in the pathway between B vitamins and 
medical outcomes  [26, 28] . In the era of mandated folate 
fortification of the grain supply in North America (as of 
March 1996), it has been suggested that B 12  is likely to play 
a key role in vitamin therapy for tHcy and the term of 
‘folate therapy’ is no longer meaningful  [12, 13, 29] . Pre-
viously, the covariate-outcome association was presented 
in a graphic or tabular form after a vitamin variable was 
naively categorized using quartiles, quintiles or deciles, 
and statistical modeling was not attempted in general. 
Some authors implied the plausibility of inherent nonlin-
ear effects, but did not address this issue more rigorously 
 [11, 13] . Our objective was to better understand the role 
of these vitamins in reduction of tHcy. We confirmed 
that segmented regression is an essential analytic tool in 
this type of efficacy study. Furthermore, the estimated 
changepoints may offer useful information for determin-
ing treatment dosage in designing clinical trials, and de-
fining what are ‘adequate’ as opposed to ‘normal’ (gener-
ally meaning within 95% CI) levels of vitamins, and what 
should be the goal of therapeutic interventions in out-
come studies.

  The NHANES comprises a general population in the 
US. Therefore, the range of tHcy is considerably lower 
than that of subjects in clinical settings  [12, 26] . It would 
be interesting to reanalyze these data utilizing the meth-
odologies discussed here and also to study different pop-
ulations or other subgroups of interest. Higher or lower 
doses of vitamin than are usually regarded as normal or 
adequate may be needed to maintain tHcy low in certain 
groups of people. For example, Rajan et al.  [24]  reported 
that elderly patients with serum B 12  levels below
221 pmol/l (still within the ‘normal’ range) require
1,000  � g/day of B 12  to obtain adequate absorption, where-
as the generally accepted recommended daily intake is 
only 6  � g/day.

  Segmented regression methodology is highly under-
utilized for data scenarios where it could be ideal, al-
though its use is increasing  [31–36] . One weakness of this 
methodology is that even when it is adequately coded, if 
the model is fit under an incorrect number of change-
points, the output obtained can be erroneous without any 
proper error message, or without prompting the need for 
changing the number of changepoints. All the publica-
tions in clinical applications cited above used a single cut-
off value for fitting. Some might have used one change-
point informed by adequate model selection criteria or 
only for convenience. If these models were fitted without 

taking into account the possibility of multiple segments, 
reexamination of these data would be desirable. In our 
dataset, when we fitted a one-changepoint model, param-
eter estimates tended to converge to different midpoints 
depending on the starting values (results not shown). If 
such unstable estimation occurs, it can be seen as infor-
mal evidence that the model chosen (and the number of 
changepoints) is probably incorrect.

  It is also important to keep in mind the effect of outli-
ers on these methodologies, and to perform sensitivity 
analysis. We replicated our main analyses performed on 
a sample of n = 7,260 using the full dataset of n = 7,511 
(also containing all implausibly large values). The result-
ing numbers of cutpoints were minutely changed. This is 
expected because the optimal cutpoints method by 
O’Brien is nonparametric, so it is robust to outliers. How-
ever, segmented regression is more vulnerable to undue 
influence due to outliers as expected from any parametric 
methods. Therefore, we recommend exclusion of those 
outlying observations before final analysis. Transforma-
tion (of response and/or explanatory variables) is a valid 
alternative for handling highly skewed data although nei-
ther method we advocate is invariant to variable-trans-
formation and results should be interpreted with more 
care. Lastly, one should use reasonable starting values or, 
more realistically, try different starting values to ensure 
that sensible convergence (not to local minima) is reached. 
These are general recommendation for any nonlinear 
modeling.

  In this tutorial, we illustrate how to assess the number 
of cutpoints needed for data presentation and to fit a seg-
mented regression model in bivariate and multivariate 
settings with the possibility of multiple changepoints for 
a continuous outcome. More effort to popularize this 
methodology for binary, quantal or survival data is still 
needed  [37–42] .

  It is important to mention that any optimal cutpoint 
procedure should not be used when one categorizes co-
variates in the regression model without proper consid-
eration of multiplicity adjustment – it is well documented 
that maximally selected test statistics greatly inflate type-
I error, so p values should be adjusted  [2, 15, 43] .

  Sample size calculation is an important issue in the 
design of clinical and epidemiological studies. However, 
limited studies have been done on this topic. This issue is 
not as relevant for the O’Brien method as it is used for 
exploratory purposes. The issue that warrants thinking 
is that what value of sample size makes this method work 
so that the optimal number of cutpoints found and the 
trend remain stable. We may think in terms of competing 
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methods such as the ones based on quantiles or regres-
sion tree. Sample size issues in the context of both of these 
methods also are not clearly specified. The O’Brien meth-
od is found to be more efficient than the competing meth-
ods and hence we would need a similar (or smaller) sam-
ple size than that needed for them. Sample size determi-
nation for segmented regression is justified but requires 
substantive thoughts with respect to ‘hypothesis’ to be 
tested and ‘effect size’ to be detected, which can lead sev-
eral different scenarios even in the one-changepoint sce-
nario  [35, 44] . In general, the location of the changepoint 
is the parameter of interest in segmented regression so 
the main interest lies in the estimation itself and we tend 
to not have a quantitative hypothesis about it being with-
in some specific interval that reflects the desired preci-
sion and thereby required power.

  Nowadays, novel changepoint models have been de-
veloped in more advanced statistical frameworks such as 

longitudinal data analysis. Naumova et al.  [45]  suggested 
a piecewise mixed effects model to address the subject-
specific ‘critical period’ (e.g., the impact of menarche in 
obesity), while Wu et al.  [46]  proposed a changepoint 
mixed model for the analysis of a nonrandomized time-
varying treatment. These advanced approaches are im-
plemented easily in standard statistical software with mi-
nor programming. Therefore, we encourage adopting 
these valuable methods in application if needed instead 
of persisting with old (but not necessarily wise) meth-
ods.
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 Appendix: Suggested Procedure and Statistical Programming 

 A. Suggested Procedure for Optimal Categorization and Changepoints Model 
 Step 1: Apply O’Brien’s cutpoints method to raw X and Y data (in addition to standard 

quantile-based method).
  Step 2: Check if any changepoints are detected in the plot generated from step 1 (in 

addition to the raw scatter plot). 
  Step 3: If changepoints are clearly visible in step 2, then you may go to step 4. If 

changepoints seem to be present but the number (and locations) is not clear, determine 
that by model selection criteria (e.g., AIC/BIC). If there is no abrupt change, use standard 
regression. Delete outliers in this step.

  Step 4: Fit a segmented regression model using the selected number of changepoints 
in step 3 (in simple or multiple regression). Use your guess for initial values of the pa-
rameters. Repeat the model run with different starting values and make sure that con-
sistent results are achieved.

  Step 5: Perform formal statistical estimation and inference.

  B. Optimal Categorization for y = tHcy and x = B 12  

   
  Remark: An S-plus function ‘cutpoints’ can be obtained by contacting Dr. O’Brien. 

The program is only available in S-Plus currently. 

data1<-read.table("C:/Research/OBrien/nhanesdata.txt") 
#assuming that nhanesdata.txt consists of two columns with the 1st column 

for (non-missing) tHcy and the 2nd column for (non-missing) b12; 

b12.unsorted<-data1[,2]  
thcy<-data1[order(b12.unsorted),1]  
b12<- sort(b12.unsorted)  

b12.rank<-rank(b12) 
#for continuous normal outcome; 
smooth.fit<-gam(thcy~s(b12.rank),family=gaussian) 
fitted.vals<-fitted(smooth.fit) 
dispersion<-summary(smooth.fit)$dispersion 
result<-cutpoints(fitted.vals,y=thcy,x=b12,sig2=dispersion,exact=T) 
print(result) 



 Optimal Cutpoints and Segmented 
Regression 

Neuroepidemiology 2006;27:188–200 199

  C. Linear Segmented Regression with y = tHcy and x = B 12  
 a. SAS [model with one changepoint (upper) and two changepoints (lower)]

    b. S-Plus/R [model with one changepoint (upper) and two changepoints (lower)]

    Remark: Some data may need to specify some options, for example, for convergence 
criteria, iteration and tuning methods. The examples above use default specifications. 
Check SAS and R/S-plus documents for more details.

 

        model y=b0+b1*x+b2*(x-tau); 
        der.b0=1; 
        der.b1=x; 
        der.b2=x-tau; 
        der.tau=-b2; 
        end;        
output out=segout predicted=segpred u95m=u95mseg l95m=l95mseg; 
run;  

proc nlin; 
  parameters b0=11.2 b1=-0.01 b2=0.009 tau=200 b3=0.001 tau2=700; 
  if x<=tau then do;                 *left linear segment; 
        model y=b0+b1*x; 
        der.b0=1; 
        der.b1=x; 
        der.b2=0; 
        der.tau=0;  
        der.b3=0; 
        der.tau2=0;  
        end; 
  else if tau<x<=tau2 then do;       *mid linear segment; 
        model y=b0+b1*x+b2*(x-tau); 
        der.b0=1; 
        der.b1=x; 
        der.b2=x-tau; 
        der.tau=-b2; 
        der.b3=0; 
        der.tau2=0;  
        end;      
  else do;                           *right linear segment; 
        model y=b0+b1*x+b2*(x-tau)+b3*(x-tau2); 
        der.b0=1; 
        der.b1=x; 
        der.b2=x-tau; 
        der.tau=-b2; 
        der.b3=x-tau2; 
        der.tau2=-b3;  
        end;        
 run;

proc nlin; 
  parameters b0=13 b1=0.01 b2=0.01 tau=400; 
  if x<=tau then do;                 *left linear segment; 
        model y=b0+b1*x; 
        der.b0=1; 
        der.b1=x; 
        der.b2=0; 
        der.tau=0;  
        end; 
  else do;                           *right linear segment; 

summary(nls(y~b0+b1*x+b2*(x-tau)*(x>tau),   
          start=list(b0=13,b1=0.1,b2=0.1,tau=400), trace=T)) 

   summary(nls(y~b0+b1*x+b2*(x-tau)*(x>tau)+b3*(x-tau2)*(x>tau2),     
          start=list(b0=13,b1=0.1,b2=0.1,b3=0.01,tau=200,tau2=550),  
          trace=T)) 
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