
Central Washington University Central Washington University

ScholarWorks@CWU ScholarWorks@CWU

All Master's Theses Master's Theses

Winter 2023

Crosshair Optimizer Crosshair Optimizer

Jason Torrence
Central Washington University, torrencej@cwu.edu

Follow this and additional works at: https://digitalcommons.cwu.edu/etd

 Part of the Other Computer Sciences Commons, and the Theory and Algorithms Commons

Recommended Citation Recommended Citation
Torrence, Jason, "Crosshair Optimizer" (2023). All Master's Theses. 1835.
https://digitalcommons.cwu.edu/etd/1835

This Thesis is brought to you for free and open access by the Master's Theses at ScholarWorks@CWU. It has been
accepted for inclusion in All Master's Theses by an authorized administrator of ScholarWorks@CWU. For more
information, please contact scholarworks@cwu.edu.

https://digitalcommons.cwu.edu/
https://digitalcommons.cwu.edu/etd
https://digitalcommons.cwu.edu/all_theses
https://digitalcommons.cwu.edu/etd?utm_source=digitalcommons.cwu.edu%2Fetd%2F1835&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/152?utm_source=digitalcommons.cwu.edu%2Fetd%2F1835&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=digitalcommons.cwu.edu%2Fetd%2F1835&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.cwu.edu/etd/1835?utm_source=digitalcommons.cwu.edu%2Fetd%2F1835&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@cwu.edu

CROSSHAIR OPTIMIZER

A Thesis

Presented to

The Graduate Faculty

Central Washington University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

Computational Science

by

Jason Torrence

February 2023

CENTRAL WASHINGTON UNIVERSITY

Graduate Studies

We hereby approve the thesis of

Jason Torrence

Candidate for the degree of Master of Science

APPROVED FOR THE GRADUATE FACULTY

Dr. Donald Davendra

Dr. Razvan Andonie

Dr. Szilard Vajda

Dean of Graduate Studies

ii

ABSTRACT

CROSSHAIR OPTIMIZER

by

Jason Torrence

February 2023

Metaheuristic optimization algorithms are heuristics that are capable of creating a

“good enough” solution to a computationally complex problem. Algorithms in this area

of study are focused on the process of exploration and exploitation: exploration of the

solution space and exploitation of the results that have been found during that exploration,

with most resources going toward the former half of the process. The novel Crosshair

optimizer developed in this thesis seeks to take advantage of the latter, exploiting the best

possible result as much as possible by directly searching the area around that best result

with a stochastic approach.

This research seeks to prove that the Crosshair Optimizer is comparable, if not

better in some aspects, to current established metaheuristics optimization algorithms,

not only in obtaining optimal results, but usability in high performance computing, and

versatility through the use of multiple randomizers and parameter tuning.

iii

ACKNOWLEDGEMENTS

I’d like to acknowledge the Central Washington University Computer Science

department’s faculty and staff for all the time and effort they provided and all the

department’s resources provided in aid of this research, my family and friends for the

support they provided me, and I’d like to acknowledge Dr. Donald Davendra for all his

time and effort committed to this research. Without Dr. Davendra’s help, these sentences

likely would have never been written.

iv

TABLE OF CONTENTS

Chapter Page

I INTRODUCTION . 1

II CROSSHAIR OPTIMIZER . 3

Initialization . 3
Particle Movement . 4
New Particle Generation . 4
Population Iteration . 5
Population Parameter Adjustment . 7
Termination Criteria . 8
Experimentation . 8
Results and Analysis . 11

III HIGH-PERFORMANCE COMPUTING USING POSIX THREADS . . . 16

Optimization and High-Performance Computing 16
Implementing High-Performance Computing 18
Experimentation . 20
Results and Analysis . 24

IV STOCHASTICITY USING ENSEMBLE CHAOS MAPS 25

Chaos Systems . 26
Experimentation . 34
Results and Analysis . 35

V CHO ADJUSTMENT PARAMETER TUNING 49

Experimentation . 49
Results and Analysis . 49

VI CONCLUSION . 57

REFERENCES CITED . 60

v

LIST OF TABLES

Table Page

1 CHO parameters . 9

2 Test Functions [1] . 10

3 CHO Results . 11

4 Comparison of Algorithms With Optimal CHO results [2] 15

5 High-Performance Computing Test Parameters 21

6 Experiment A Parameters . 35

7 Experiment B Parameters . 35

8 Map Name Abbreviations . 35

9 Experiment A Results By Randomizer . 37

10 Experiment A Results By Randomizer (cont.) 38

11 Experiment B Results By Randomizer . 39

12 Experiment B Results By Randomizer (cont.) 40

13 Experiment A: Average Result by Function 41

14 Experiment A: Best Result by Function 41

15 Experiment B: Average Result by Function 42

16 Experiment B: Best Result by Function 42

17 Experiment A: Time in MSec by Function 48

18 Experiment B: Time in MSec by Function 48

19 Tuning Parameters . 50

20 Average with Optimal Parameters by Function 51

21 Best Found with Optimal Parameters by Function 51

22 Comparison of Algorithms with Optimized Parameters 56

vi

LIST OF FIGURES

Figure Page

1 Crosshair Iteration Scatter Plots . 12

2 Crosshair Iteration Scatter Plots (cont.) 13

3 Crosshair 1000 Iterations for 30 Experiments for Different Functions . . . 14

4 Crosshair Iteration Scatter Plots for Function 1 - 8 22

5 Crosshair Iteration Scatter Plots for Function 9 - 13 (cont.) 23

6 Burgers Chaos Map . 29

7 Real and Integer Number Histograms by Burgers Chaos Map 29

8 x and y Values Iteration Plots for Burgers Chaos Map 29

9 Delayed Logistic Chaos Map . 30

10 Real and Integer Number Histograms by Delayed Logistic Chaos Map . . . 30

11 x and y Values Iteration Plots for Delayed Logistic Chaos Map 31

12 Lozi Chaos Map . 33

13 Real and Integer Number Histograms by Lozi Chaos Map 33

14 x and y Values Iteration Plots for Lozi Chaos Map 33

15 Experiment A Time Comparisons for Function 1 - 8 44

16 Experiment A Comparisons for Function 9 - 13 (cont.) 45

17 Experiment B Time Comparisons for Function 1 - 8 46

18 Experiment B Time Comparisons for Function 9 - 13 (cont.) 47

19 Randomizer Average Comparisons for Function 1 - 8 52

20 Randomizer Average Comparisons for Function 9 - 13 (cont.) 53

21 Randomizer Best Comparisons for Function 1 - 8 54

22 Randomizer Best Comparisons for Function 9 - 13 (cont.) 55

vii

CHAPTER I

INTRODUCTION

Optimization algorithms fall within three broad class of heuristics; stochastic

algorithms, which includes random-walk [3], Markov chain models [4], etc.,

mathematical formulations, which encompass integer programming [5], NEH heuristic

[6], gradient decent, etc. and metaheuristics, which are algorithms focused on some

naturally occurring phenomena such as genetics [7], swarm algorithms [8], etc. These

algorithms focus on two aspects, exploration and exploitation. Exploration is generally

a guided search in the search space, whereas exploitation is generally a fine grain search

around a local optima such as local search, 2-OPT, 3-OPT [9] being the most common.

Most of the computational resources are devoted to the latter approach, a fine

grain search around a fixed point in search space. The tradeoff has always been the

exploitation dimension, i.e. how far to map and evaluate. Whereas, random-walk based

heuristics, such as Tabu Search [10], went out of favor due to their simplicity, a new wave

of stochastic-based algorithms is proving useful, especially with different pseudo-random

generators being utilized such as long period oscillators, chaos maps [11], etc.

This research focuses of a novel directed randomized approach named the

Crosshair Optimizer (CHO) for solving unimodal and multimodal problems. This

approach uses multiple generation of random solutions, and only the best solution is used

to generate a sequence of new bounds, which are then used to generate new solutions.

Three distinct radial sizes are used to generate the new solutions, which aid in both

exploration and exploitation. As the population iterates, the average of the population

is used as a benched scaling factor in order to increase or decrease these radial sizes.

1

Three different approaches were developed for this algorithm, the canonical

approach using base metrics, which were then tested on standard benchmark functions

and compared with other published algorithms. The second approach was to use high

performance computing (pthreads) to parallelize the algorithm and speed up its execution

time. The final approach taken was to apply different chaos maps as pseudo-random

number generators to increase the algorithms effectiveness. All three approaches

produced significant improvements to the CHO algorithm.

The thesis is organized as follows: Chapter II introduces the Crosshair Optimizer

algorithm, outlines the experiment design, and runs initial experiments to analyze and

compare with other published algorithms. Chapter III shows the implementation of High-

Performance Computing, and experiments with the use of POSIX Threads and their effect

on the algorithm’s overall run time. Chapter IV explains different approaches of Chaos

Random Number Generation, experiments with the use of these different Randomizers

in CHO, and analyzes and compares the randomizers to one another. Chapter V shows

how tuning of the user-defined variables may lead to overall better results, and how the

tuning of those parameters affects the overall result of the algorithm. This thesis is then

concluded in Chapter VI.

2

CHAPTER II

CROSSHAIR OPTIMIZER

The Crosshair Optimizer (CHO) is an optimization algorithm largely based on

random values within changing bounds. The algorithm follows the following steps:

Initialization, then iterations of particle movement followed by parameter adjustment.

This is given mathematically and explained in further detail in this chapter.

Initialization

The algorithm population P is a matrix of size D (number of solution vectors) by

N (dimension of each solution vector), which is randomly initialized between the lower

(L) and upper (U) bounds (rand(L,U)). Once initialized, the population is evaluated for

its fitness PFit and the best solution bSol and its associated fitness bF it is obtained. This

process is shown in Algorithm 1.

Data: P = ∅, PF it = ∅, bSol = ∅, bF it = MaxV al
Population initialization;
for i from 0 to D do

for j from 0 to N do
Pi,j = rand(L,U);

end
PFiti = f(Pi)
if PFiti < bFit then

bSol ← PFiti
bF it = PFiti

end
end

Algorithm 1: Population initialization and best solution

3

Particle Movement

CHO has three unique control parameters for particle adjustment, termed far

(fadj), close (cadj) and near (nadj) adjustment. Once the best solution (bSol) and its

fitness (bF it) has been obtained, new adjusted upper and lower bounds are calculated

using the adjustment values. Three different bounded values are therefore computed as

Lf , Uf , Lc, Uc, Ln, Un, where the subscript represent far, close and near adjustments as

given in (2.1).

Lf = bSol − (r × fadj) , Uf = bSol + (r × fadj)

Lc = bSol − (r × cadj) , Uc = bSol + (r × cadj)

Ln = bSol − (r × nadj) , Un = bSol + (r × nadj)

(2.1)

where r represents the range of the original problems upper and lower bounds (r =

U − L).

In addition, another very important input variable is the problem domain variability

(varp), which is a selection parameter designated to every problem function F . The

range of this variable is from 0.5 − 1.0 and its implication is for new particle generation.

Once the new bounds are calculated using the best particle, a random number (rand)

is generated and checked against this variability index. If the random value is less than

the index, then the subsequent solution generation takes place within the new bounds,

otherwise the original bounds are used for next solution generation.

New Particle Generation

The new particles are generated using a split population approach. The population

is divided into three parts based on its size D. The first third of the population particle’s

4

are generated using the far (fadj) adjusted bounds Lf , Uf given as (2.2):

Pi = rand (Lf , Uf) (2.2)

The second third of the solutions are generated using the close (cadj) adjusted bounds

Lc, Uc given as (2.3):

Pi = rand (Lc, Uc) (2.3)

The remaining solutions are generated using the close (nadj) adjusted bounds Ln, Un

given as (2.4):

Pi = rand (Ln, Un) (2.4)

where i is the ith dimension index in the specific solution.

In the case where the generated random value is higher than the varp, the new

solution is generated using the original bounds. The new solution is then evaluated for

its fitness.

This process can be seen in Algorithm 2.

Population Iteration

Three additional user defined parameters are now introduced, the problem iteration

(iter), the total experiment run (tr) and the maximum experimentation runs (mer).

iter refers to the number of evaluations or new population generations the algorithm

undergoes, per each test run tr and the mer represents the total adjustments the algorithm

encounters over its iterations.

Once the new population has been generated, it is evaluated for its fitness function

and its best solution is obtained. This value is saved in the vector of best iterations results

5

Data: P, PFit, bSol, Uf , Lf , Uc, Lc, Un, Ln, r = U − L
for i from 0 to N do

Lf = bSoli − (r × fadj), Uf = bSoli + (r × fadj)
Lc = bSoli − (r × cadj), Uc = bSoli + (r × cadj)
Ln = bSoli − (r × nadj), Un = bSoli + (r × nadj)
for j from 0 to D do

if rand < adj then
if j < D/3 then

Pj = rand (Lf , Uf)
end
else if j < D/(1.5) then

Pj = rand (Lc, Uc)
end
else

Pj = rand (Ln, Un)
end

end
else

Pj = rand (L,U)
end

end
PFiti = f(Pi)

end
Algorithm 2: New solution vector generation

6

(bSoltr). Additionally, the new best solution is compared with the global best solution

bSol, and updated if it has improved on it.

At this point the population is cleared and a new population is generated as given in

Algorithm 1 and 2. These algorithms are used in conjunction in Algorithm 3.

Data: P, bSol, bSoliter, iter
for i from 0 to tr do

for j from 0 to iter do
Algorithm 1
Algorithm 2

end
bSoli ← min(PFit)
if bSoli < bFit then

bF it = bSoli
bSol ← min(Pi)

end
end

Algorithm 3: Population iteration

Population Parameter Adjustment

Once the total problem iterations (tr) for a specific experimentation run (mer) has

completed, the average (avg) and standard deviation (std) of the saved fitness values in

bSoliter is computed. The newly calculated avg is compared and updated with the global

best average gAvg if it has improved.

If the current avg value is the same as the gAvg, then an increase test bound

procedure is done to increase the bounds of the generated solutions. If it is not the same,

then a reduction procedure is applied to decrease the bounds. Another two user defined

scaling parameters, reduction (red) and enlargement (enl) are required for this adjustment

7

as given in the following equations:

xadj = xadj × red

xadj = xadj × enl
(2.5)

where x designates the far (fadj), near (nadj) and close (cadj) adjustment parameters.

These updated parameters are then used in the next experiment run as an adaptive

measure for the new population generation.

Termination Criteria

The algorithm termination is based on a number of criteria. The first one is if the

maximum experimentation runs (mer) has been reached. Secondly, a comparison is done

with the averages split into two components. If the current avg is the gAvg or a user

defined minimum bound parameter (minB) multiplied with the current avg is less than

the the gAvg value, the code continues to be run. Once these criteria have been met, the

program terminates, such as is shown in Algorithm 4.

The output of the algorithm is the best obtained solution bSol and its associated

fitness bF it.

Experimentation

Table 1 gives the operating parameters of the CHO algorithm and Table 2 outlines

the functions used in this research. The experimentation was conducted on thirteen

functions, of which the first seven are unimodal and the other six are multimodal

functions [1]. The last column give the problem domain variability (varp) of each

problem.

8

Data: P, bSol, bSoliter, avg, gAvg,mer, red, enl, j = 0
Result: gSol, bF it
do

Algorithm 3
for i from 0 to D do

avg = avg + bSoli
end
avg = avg/D
if avg < gAvg then

gAvg = avg
end
if avg == gAvg then

xadj = xadj × red
end
else

xadj = xadj × enl
end
j = j + 1

while ((avg == gAvg ∨ avg ×minB < gAvg) ∧ (j < mer));
Algorithm 4: Overall CHO algorithm

TABLE 1: CHO parameters

Para Value Para Value Para Value

D 100 fadj 0.5 red 0.5
N 30 cadj 0.25 enl 2.0
iter 100 nadj 0.125 minB 0.8
tr 100 mer 1000

9

TABLE 2: Test Functions [1]

Functions Dim Range Fmin varp

F 1(x) =
∑n

i=1 xi
2 30 [-100,100] 0 0.95

F 2(x) =
∑n

i=1 |xi|+
∏n

i=1 |xi| 30 [-10,10] 0 0.98
F 3(x) =

∑n
i=1(

∑i
j−1 xj)

2 30 [-100,100] 0 0.97
F 4(x) = maxi(|xi|, 1 <= i <= n) 30 [-100,100] 0 0.99
F 5(x) =

∑n−1
i=1 100(xi+1 − xi

2)2 + (xi − 1)2 30 [-30,30] 0 0.92
F 6(x) =

∑n
i=1(xi + 0.5)2 30 [-100,100] 0 0.99

F 7(x) =
∑n

i=1 ixi
4 + random[0, 1) 30 [-1.28,1.28] 0 0.99

F 8(x) =
∑n

i=1−xisin(
√
|xi|) 30 [-500,500] -418.9829 x 5 0.99

F 9(x) =
∑n

i=1[xi
2 − 10cos(2πxi) + 10] 30 [-5.12,5.12] 0 0.98

F 10(x) = −20exp(−0.2
√

1/n
∑n

i=1 xi
2)− exp(1/n

∑n
i=1 cos(2πxi)) 30 [-32,32] 0 0.98

+20 + e

F 11(x) = 1/4000
∑n

i=1 xi
2 −

∏n
i=1 cos(xi/

√
i) + 1 30 [-600,600] 0 0.99

F 12(x) = π/n(10sin(πy1) +
∑n−1

i=1 (yi − 1)2[1 + 10sin2(πyi+1)] 30 [-50,50] 0 0.98
+(yn − 1)2) +

∑n
i=1 u(xi, 5, 100, 4)

Y i = 1 + (xi + 1)/4

u (xi, a, k,m) =

k(xi − a)m xi > a
0 − a < xi < a
k(−xi − a)m xi < a

F 13(x) = 0.1(sin2(3πx1) +
∑n

i=1(xi − 1)2[1 + sin2(3πxi + 1)] 30 [-50,50] 0 0.98
+(xn − 1)2[1 + sin2(2πxn)]) + (

∑n
i=1 u(xi, 5, 100, 4))

10

Results and Analysis

The results for the CHO algorithm is given in Table 3 with the average, standard

deviation, best obtained result and the total execution time. The crosshair iteration scatter

plots is given in Figures 1 and 2 for the different population iteration points. While the

initial graph is a true random scatter plot, it is visible that during iteration, the solution

converge towards the optima with only two sideways branches extending off the best

solution. These values are of the solutions, which are generated further from the minima,

and allows for a level of exploration.

Figure 3 shows the different evolution plots for the algorithm in different functions.

One of the core attributes is that the CHO algorithm is able to find a good solution within

a small iteration period, with less exploration and more exploitation utilized.

TABLE 3: CHO Results

F Avg Std Best time (s)

1 0 0 0 750.834
2 0 0 0 483.289
3 0 0 0 1381.206
4 0 0 0 442.537
5 19.9064 11.219 0.0873 583.037
6 0 0 0 434.678
7 11.869 0.8339 6.6184 622.303
8 -5706.537 2.2278E-12 -5706.537 850.763
9 0 0 0 717.529
10 7.11E-15 0 3.55E-15 818.621
11 5.42E-20 0 0 893.524
12 0.04976 3.0954E-17 0.0497 1248.399
13 0.00261 1.0324E-18 0.0026 1162.112

11

(a) Initial (b) Iteration 1

(c) Iteration 2 (d) Iteration 3

FIGURE 1: Crosshair Iteration Scatter Plots

In order to validate the CHO algorithm, it was compared with the Grey Wolf

Optimizer (GWO) algorithm [1], Particle Swarm Optimizer (PSO) algorithm [8],

Differential Evolution (DE) algorithm [12], Fast Evolutionary Programming (FEP)

algorithm [13] and the Gravitational Search Algorithm (GSA) [14] from literature [1].

The comparison of the algorithms can be seen in Table 4.

From the obtained results, the CHO algorithm obtains the best results in seven

of the thirteen problem instances and for the remainder of the instances, and is usually

placed with the top three performing algorithms. If the best results obtained over the 30

runs is taken into account, then the CHO algorithm is best performing in eight of the

12

(a) Iteration 4 (b) Iteration 5

(c) Iteration 6 (d) Final iteration

FIGURE 2: Crosshair Iteration Scatter Plots (cont.)

thirteen problem instances. In total, the CHO algorithm is able to find the global best

solution on seven of the functions.

Based on these results, it can be concluded that the developed algorithm using a

directed random search is able to compete with established metaheuristics. These results

have been published in [2].

13

0 200 400 600 800 1000
Iteration

0

10000

20000

30000

40000

50000

60000

Be
st

 R
es

ul
t

CHS: Funtion 1 1000 iterations, 30 calls

(a) F1 evaluation

0 200 400 600 800 1000
Iteration

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Be
st

 R
es

ul
t

1e11 CHS: Funtion 2 1000 iterations, 30 calls

(b) F2 evaluation

0 200 400 600 800 1000
Iteration

0

20

40

60

80

Be
st

 R
es

ul
t

CHS: Funtion 4 1000 iterations, 30 calls

(c) F4 evaluation

0 200 400 600 800 1000
Iteration

0

10000

20000

30000

40000

50000

60000

Be
st

 R
es

ul
t

CHS: Funtion 6 1000 iterations, 30 calls

(d) F6 evaluation

0 200 400 600 800 1000
Iteration

5000

4000

3000

2000

1000

Be
st

 R
es

ul
t

CHS: Funtion 8 1000 iterations, 30 calls

(e) F8 evaluation
0 200 400 600 800 1000

Iteration

0

5

10

15

20

Be
st

 R
es

ul
t

CHS: Funtion 10 1000 iterations, 30 calls

(f) F10 evaluation

FIGURE 3: Crosshair 1000 Iterations for 30 Experiments for Different Functions

14

TABLE 4: Comparison of Algorithms With Optimal CHO results [2]

F CHO GWO PSO GSA DE FEP

Avg Std Avg Std Avg Std Avg Std Avg Std Avg Std

F1 0 0 6.59E-28 6.34E-05 0.00013 0.0002 2.53E-16 9.67E-17 8.20E-14 5.90E-14 0.00057 0.00013
F2 0 0 7.18E-17 0.029 0.04214 0.04542 0.05565 0.19407 1.50E-09 9.90E-10 0.0081 0.00077
F3 0 0 3.29E-06 79.1495 70.1256 22.1192 896.534 318.955 6.80E-11 7.4E-11 0.016 0.014
F4 0 0 5.61E-07 1.315 1.08648 0.31703 7.35487 1.174145 0 0 0.3 0.5
F5 19.9064 11.219 26.8125 69.9049 96.7183 60.1155 67.543 62.2253 0 0 5.06 5.87
F6 0 0 0.8165 0.0001 0.0001 8.28E-05 2.50E-16 1.74E-16 0 0 0 0
F7 11.869 0.8339 0.0022 0.1002 0.12285 0.04495 0.08944 0.04339 0.00463 0.0012 0.1415 0.3522
F8 -5706.537 2.227E-12 -6123.1 -4087.44 -4841.29 1152.81 -2821.07 493.0375 -11080.1 574.7 -12554.5 52.6
F9 0 0 0.3105 47.356 46.7042 11.62938 25.9684 7.47006 69.2 383.8 0.046 0.012
F10 7.11E-15 0 1.06E-13 0.0778 0.27601 0.50901 0.06208 0.23628 9.70E-08 9.70E-08 0.018 0.0021
F11 5.42E-20 0 0.0044 0.0066 0.00921 0.00772 27.7015 5.04034 0 0 0.016 0.022
F12 0.04976 3.095E-17 0.0534 0.0207 0.00691 0.026301 1.79961 0.95114 7.90E-15 8.00E-15 9.20E-06 3.60E-06
F13 0.00261 1.032E-18 0.6544 0.0044 0.00667 0.008907 8.89908 7.12624 5.10E-14 4.80E-14 0.00016 0.000073

15

CHAPTER III

HIGH-PERFORMANCE COMPUTING USING POSIX THREADS

In any type of computing, where the amount of time or resources an algorithm or

even a single function uses can be scaled up to a significant level, integrating an approach

that allows for the use of high-performance computing is an important determining factor

in how useful and versatile that particular algorithm or function is. This usually boils

down to how well a problem can be split into evenly-sized tasks, how often tasks need to

communicate with other tasks, and memory alignment to reduce the amount of unrelated

processing time.

Optimization and High-Performance Computing

Optimization problems are no stranger to this same issue. For example, with

Particle Swarm Optimization(PSO), the unique part of this function compared to other

optimization algorithms is in how it determines each particle’s position using a velocity.

Every particle has to use a mathematical formula to determine its next position after

each iteration based on its current position and a velocity associated with each of its

dimensions. This velocity is determined by other particles, but the velocities of one

particle do not affect the velocities of other members, and the velocity of one dimension

in a particle doesn’t affect the velocity of other dimensions within that same particle.

Thus, the problem can be split into very small, easily managed tasks, allowing high

performance computing approaches to have a significantly better chance at showing a

large increase in a high-performance computer’s processor utilization, and thus, less time

spent processing this part of the algorithm. This is due to a lack of slow-down caused by

16

unevenly sized tasks, which causes larger, more processing-intensive tasks to force other

tasks to be delayed until those larger tasks are completed.

As for the communication that needs to occur between the tasks, no communication

is necessary, at least during the parts that are unique to PSO. Unfortunately, fitness

functions require an entire particle to determine that particle’s fitness, meaning

these problems are not as easy to split into sub tasks without requiring those tasks to

communicate with one another, which can cause a significant amount of wait time

between each task’s completion. However, this is something that has an effect on all

optimization algorithms, and thus what determines whether PSO has an approach that

is very capable of using high-performance computing or not is purely based on the parts

that are unique to it alone.

As for memory alignment, PSO’s velocities rely on each dimension’s value, thus,

if a high-performance computing approach was also taken with each fitness function, the

memory associated with particle’s positions (and thus, each dimension value) would be

a cause for concern. In this case, the memory alignment required by the fitness function

is different from the memory structure required by the velocities, but both are used in

determining velocities, thus the number of interrupts when determining a new set of

velocities is determined by whichever has more misaligned memory. Due to the fitness

functions being less capable of splitting into smaller tasks, the memory structure is likely

to have more rigid requirements, and would likely be the cause of more interrupts.

Overall, PSO has an approach that only has very minor issues when it comes to

its requirements in high-performance computing, and this makes it very viable as an

algorithm that takes full advantage of high-performance computing as well, due to how

easily the problem is split into smaller tasks, the lack of communication between tasks,

and how variable the memory structure for those tasks can be.

17

Implementing High-Performance Computing

CHO is similar to PSO when it comes to its requirements for a memory structure.

The part that is unique to how CHO determines its particle’s dimensions is based on a

random number within a set of bounds determined by a part of the best given particle in a

population. This means that the dimensions are not dependent on one another, and don’t

need to communicate with one another. Unfortunately, it also means that it has the same

problem as PSO. The only memory structure it uses is the population itself, meaning the

memory alignment requirements are based solely on the fitness function’s requirements.

Thus, a set of tests was performed, where the problems were split into tasks using

POSIX Threads (PThreads) in C. PThreads were used in place of other methods such

as OpenMP and CUDA due to its ease of implementation based on the fact that the

original program was written in C, and how much manual control a user has over how

many threads are created and when they are destroyed and recreated. In particular, this

means that the threads are manually assigned an even distribution of work, and a thread

pool is being used that can be created and destroyed at will, allowing for testing of

multiple different-sized thread pools in a single run of the executable. GPU type High-

Performance Computing methods, such as CUDA, were also considered, but due to this

algorithm’s heavy reliance on the memory structure of the population, and that population

needing to have row-wise memory alignment, CUDA was less likely to see as much speed

up as a high-end processor.

ThreadPool Creation

At the time of creation, a thread pool simply needs to allocate space for the number

of threads it’s going to use (PT), an atomic integer for the task count (tc), an atomic

integer for the number of currently running tasks (rt), a task queue (TQ), a mutex lock

18

(M) and a queue condition (C). Once the memory has been allocated, threads can be

created and start running the thread pool’s queue function.

Tasks are defined in Algorithm 5.

Struct task contains
int low;
int high;
Function f;

end
Algorithm 5: Task

Once the pool has been created, the thread pool’s queue function is shown in

Algorithm 6

Data: TQ, tc, rt,M,C
while true do

task = none
MutexLock(M)
while tc is 0 do

CondWait(C)
end
task = TQ0

for i from 1 to tc do
TQi−1 = TQi

end
tc = tc− 1
rt = rt+ 1
MutexUnlock(M)
task → f()
rt = rt− 1

end
Algorithm 6: Thread Pool Queue Function

In Algorithm ??, the function uses a while(true) loop to continue running

constantly, a combination of both a mutex lock and mutex condition to avoid using

unnecessary processor time, and tc and rt are used to tell the main thread when the thread

pool has completed all tasks. Through this uses a while(true) loop, a simple way to

break a function out of this when using pthreads is to simply send it a task that tells the
19

thread to exit, then use the join() function once all the threads have been passed an exit

task.

Task Creation

In order to add the tasks to the pool, another relatively simple function is required to

add the tasks to the pool and signal the condition, this can be seen in Algorithm 7.

Data: TQ, tc,M,C, task
MutexLock(M)
TQtc = task
tc = tc+ 1
MutexUnlock(M)
CondSignal(C)

Algorithm 7: Add Tasks To Thread Pool Queue

Tasks need to be created in such a way that each task is given nearly the same

amount of data, thus the size of the thread pool (PSize) is used to evenly split up the

data. In order to align the memory in such a way to avoid interrupts as often as possible,

the memory is aligned using rows of the population, that is, each function is given an even

number of particles. This process is can be seen in Algorithm 8.

Any function already defined simply needs to be slightly edited to use the low and

high of a task, rather than iterating from 0 to D.

Experimentation

During experimentation, it was found that incorporating random number generation

into a threaded function while using Mersenne-Twister led to increased completion time

over single threaded versions of the same code. Thus, these tests were run allowing

CHO’s random movement of particles to be single threaded while the fitness functions

were passed to the thread pool. However, the amount of time taken by CHO’s movement

20

Data: task
low = 0
rem = DmodPSize
for i from 0 to PSize do

high = low + (D/PSize)− 1
if i < rem then

high = high+ 1
end
task → f = task
task → low = low
task → high = high
Add task to pool
low = high+ 1

end
while tc > 0 and rt > 0 do

Wait
end

Algorithm 8: Split Up Tasks

of particles is insignificant enough that the experiments that took the longest were

experiments run on complex fitness functions.

The tests in Figures 4 and 5 were run using an Intel i9 10900k at base clock speeds,

and 32GB of DDR4 RAM @ 2133 MHz and the following parameters (Table 5):

TABLE 5: High-Performance Computing Test Parameters

Parameter Value

D 300
iter 100
tr 30
mer 10

A larger population is used to allow for a larger number of threads, but as this test is

looking at run time over results, less iterations are used. These tests used an increasing

N value in the range (10-1000) as this causes the algorithm to require increasing

computation resources but keeps individual tests from having differences in memory

alignment.
21

0 200 400 600 800 1000
Particle Size

0

2000

4000

6000

8000

10000

Ti
m

e
in

 M
S

Function 1 multi-threaded runtime
with increasing particle size

0
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30

(a) Function 1

0 200 400 600 800 1000
Particle Size

0

2000

4000

6000

8000

10000

Ti
m

e
in

 M
S

Function 2 multi-threaded runtime
with increasing particle size

0
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30

(b) Function 2

0 200 400 600 800 1000
Particle Size

0

100000

200000

300000

400000

Ti
m

e
in

 M
S

Function 3 multi-threaded runtime
with increasing particle size

0
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30

(c) Function 3

0 200 400 600 800 1000
Particle Size

0

2000

4000

6000

8000

10000
Ti

m
e

in
 M

S

Function 4 multi-threaded runtime
with increasing particle size

0
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30

(d) Function 4

0 200 400 600 800 1000
Particle Size

0

2000

4000

6000

8000

10000

12000

Ti
m

e
in

 M
S

Function 5 multi-threaded runtime
with increasing particle size

0
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30

(e) Function 5

0 200 400 600 800 1000
Particle Size

0

2000

4000

6000

8000

10000

Ti
m

e
in

 M
S

Function 6 multi-threaded runtime
with increasing particle size

0
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30

(f) Function 6

0 200 400 600 800 1000
Particle Size

0

5000

10000

15000

20000

Ti
m

e
in

 M
S

Function 7 multi-threaded runtime
with increasing particle size

0
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30

(g) Function 7

0 200 400 600 800 1000
Particle Size

0

5000

10000

15000

20000

25000

30000

Ti
m

e
in

 M
S

Function 8 multi-threaded runtime
with increasing particle size

0
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30

(h) Function 8

FIGURE 4: Crosshair Iteration Scatter Plots for Function 1 - 8

22

0 200 400 600 800 1000
Particle Size

0

5000

10000

15000

20000

25000

Ti
m

e
in

 M
S

Function 9 multi-threaded runtime
with increasing particle size

0
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30

(a) Function 9

0 200 400 600 800 1000
Particle Size

0

5000

10000

15000

20000

25000

Ti
m

e
in

 M
S

Function 10 multi-threaded runtime
with increasing particle size

0
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30

(b) Function 10

0 200 400 600 800 1000
Particle Size

0

5000

10000

15000

20000

25000

30000

35000

Ti
m

e
in

 M
S

Function 11 multi-threaded runtime
with increasing particle size

0
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30

(c) Function 11

0 200 400 600 800 1000
Particle Size

0

10000

20000

30000

40000

Ti
m

e
in

 M
S

Function 12 multi-threaded runtime
with increasing particle size

0
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30

(d) Function 12

0 200 400 600 800 1000
Particle Size

0

10000

20000

30000

40000

Ti
m

e
in

 M
S

Function 13 multi-threaded runtime
with increasing particle size

0
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30

(e) Function 13

FIGURE 5: Crosshair Iteration Scatter Plots for Function 9 - 13 (cont.)

23

Results and Analysis

Based on comparing the run times of these functions to one another, the results

show that the amount of time taken and speedup achieved is directly correlated with the

fitness function. With a simple fitness function, such as F1, F2, or F6, very little speedup

is seen as the amount of time that particle movement takes is fairly linear. However, with

fitness functions that require more computing power such as trigonometric operations,

such as F3 and F12, there is significant speedup when using threads.

Despite the threading functions being limited to the fitness function, the algorithm

sees a significant speedup when using threads on complex fitness functions. The

pseudo-random number generation and small amount of mathematical operations that

is associated with the generation of bounds for each dimension appear to take very little

time. However, with a different random number generator perhaps different results will be

seen in either the run time or fitness of each function.

24

CHAPTER IV

STOCHASTICITY USING ENSEMBLE CHAOS MAPS

The Crosshair optimizer is heavily reliant on pseudo-random number generators,

due to its extensive use of random walks for exploitation. Random number generators

(RNG’s) have a widespread usage in many different scientific fields to provide basic

stochasticity to an underlying system such as cryptography, economic models, statistical

simulations, etc. RNG’s should address the following key attributes: 1) The generated

sequence should not exhibit any statistical weakness. 2) Sub-sequence information should

not allow prediction or estimation of predecessors or successor numbers. 3) Knowledge

of internal state value (equation), should allow successor sequences to be generated.

Based on these, there are two general classes of RNG’s, namely True Random

Number Generators (TRNG’s) and Pseudo-Random Number Generators (PRNG’s). True

number generators are generally based on real-world occurring phenomena of physical

processes including radioactive decay, various thermal and atmospheric noise etc. TRNG

suffer from slowness of implementation, high cost and dependency on hardware [15].

Pseudo-Random Number Generators on the other hand produce sequences which

are deterministic, generally based on mathematical formation with long cycle times and

initialized via a random initial (seed) value. In theory, these deterministic sequences

are predictable with a certain time complexity, but by increasing this complexity, the

oscillating sequence period can be extended.

Recently a new class of RNG’s has appeared based on Chaos theory. Chaos

theory was first introduced by Edward Lorenz in 1963 [16] and has gained a number

of applications over the past 50 years especially in dynamical systems [17]. Chaos

maps exhibit three important facets; ergodicity, sensitivity to initial conditions and

25

random behavior. These features make them an interesting system for generating random

sequences.

This section discusses the application of different chaos maps as Chaos Random

Number Generators (CRNG’s) embedded in the Crosshair optimizer to generate

stochasticity.

Chaos Systems

The term chaos is used to describe the complex behavior of simple dynamical

systems. When observed overall, this behavior appears to be erratic and somewhat

random, however, these systems are inherently deterministic with the precise behavior

carefully mapped. The aperiodic non-repeating behavior of chaotic systems makes

chaotic sequences a prime candidate for generating pseudo-random sequences. Overall,

four general branches of chaotic systems exist; 1) dissipative systems, 2) fractals, 3)

dissipative and high-dimensional systems, 4) conservative systems [15]. The systems

utilized in this thesis are the discrete dissipative systems.

Chaos as Pseudo-Random Number Generators

The development of a CRNG system is based on the application of the dual nature

of chaos, deterministic in microscopic space formulated through its mathematical

equations, and random in macroscopic space. A mathematical foundation exists which

shows how such chaos system overcome the significant issues with traditional random

number systems, such as its reliance on the assumed randomness of a physical process,

inability to analyze and optimize the random number generator, inability to compute

probabilities and entropy of the random number generator, and inconclusiveness of

statistical tests. Subsequently, comprehensive research has been done on applying chaos

26

maps as random number generators. The connection between chaotic systems and random

number generators has been given by [18]. A strong linkage has been shown between the

Lehmer generator [19] and the simple chaos dynamical system of Bernoulli shift [20].

Furthermore, [21] showed the hidden periodicity of chaos system and its dependence on

numerical systems.

A family of enhanced CPRNG’s has been developed by [22], where a very long

series of pseudo-random numbers have been generated, accomplished through the ultra

weak coupling of chaotic systems, such as the Tent Map, which is enhanced in order to

conceal the chaotic genuine function [23]. Recently, the very notion of using CPRNG’s

in EA’s has been explored by [24]. Some other recent examples of chaos used as random

number generators include [17], [25], [26], [27], [28], [29], [30], [31] and [32] amongst

others.

Discrete Dissipative Chaos Maps

Discrete dissipative chaotic maps are considered the most interesting chaotic

systems, which are based on a linear set of equations. By encompassing a fine grain

approach over the solution space, these set of equations can be easily formulated. All

these attributes allows a unique parsing period of chaotic oscillation. A total of eight

unique chaotic systems were utilized in this research. The equations and operating

parameters can be obtained from [33].

Arnold’s Cat Chaos Map

The Arnold’s Cat Map is a two dimensional torus discrete chaotic map, whose

equations are given in (4.1). The parameter of k = 2.0.

27

Xn+1 = Xn + Yn · (mod1)

Yn+1 = Xn + k · Yn · (mod1)
(4.1)

Burgers Chaos Map

The Burgers Mapping (Figure 6) is a discretization of a pair of coupled differential

equations, used by Burgers [34] to illustrate the relevance of the concept of bifurcation to

the study of hydrodynamic flows. Equations (4.2) and (4.3) give the system equations.

Xn+1 = aXn − Y 2
n (4.2)

Yn+1 = bYn +XnYn (4.3)

Where, a = 0.75 and b = 1.75 and the initial conditions being X0 = -0.1 and Y0

= 0.1. The different plots including frequency of integer and real values can be seen in

Figure 7, whereas Figure 8 gives the plots of x and y values.

Delayed Logistic Chaos Map

The Delayed Logistic Map (Figure 9) is a dissipative map with a smooth invariant

circle having a strange attractor due to interspersed parameter intervals [35]. Its equations

are given in Equations (4.4) and (4.5).

Xn+1 = AXn (1− Yn) (4.4)

Yn+1 = Xn (4.5)

28

-2.5 -2.0 -1.5 -1.0 -0.5 0.0

-1.0

-0.5

0.0

0.5

1.0

x

y

FIGURE 6: Burgers Chaos Map

0.2 0.4 0.6 0.8 1.0
Value

500

1000

1500

Frequency

5 10 15 20 25
Value

500

1000

1500

2000

2500

Frequency

FIGURE 7: Real and Integer Number Histograms by Burgers Chaos Map

0 20 40 60 80 100
-2.5

-2.0

-1.5

-1.0

-0.5

0.0

Iteration

x

0 20 40 60 80 100
-0.4

-0.2

0.0

0.2

0.4

Iteration

y

FIGURE 8: x and y Values Iteration Plots for Burgers Chaos Map

29

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x

y

FIGURE 9: Delayed Logistic Chaos Map

Where A = 2.27 with initial conditions being X0 = 0.001 and Y0 = 0.001. The

different plots including frequency of integer and real values can be seen in Figure 10,

whereas Figure 11 gives the plots of x and y values.

0.2 0.4 0.6 0.8 1.0
Value

200

400

600

800

1000

1200

1400

Frequency

5 10 15 20 25
Value

500

1000

1500

Frequency

FIGURE 10: Real and Integer Number Histograms by Delayed Logistic Chaos Map

30

0 20 40 60 80 100 120 140

0.0

0.2

0.4

0.6

0.8

1.0

Iteration

x

0 20 40 60 80 100 120 140

0.0

0.2

0.4

0.6

0.8

1.0

Iteration

y

FIGURE 11: x and y Values Iteration Plots for Delayed Logistic Chaos Map

Dissipative Standard Chaos Map

The Dissipative Standard Map is a two-dimensional chaotic system, with its

equations given in (4.6).

Xn+1 = Xn + Yn−1 · (mod2π)

Yn+1 = (β · Yn) + (k · sinXn (mod2π))
(4.6)

Where β = 0.1 and k = 8.8.

Henon Chaos Map

The Henon Map is a discrete-time simplified Poincare Map dynamical system. The

equation is given in (4.7).

Xn+1 = α−X2
n + (β · Yn)

Yn+1 = Xn

(4.7)

Where α = 1.4 and β = 0.3.

31

Ikeda Chaos Map

The Ikeda map is a discrete-time dynamical system formulated on a light model

going around across a nonlinear optical resonator. The 2D equation is given in Equation

(4.8).

Xn+1 = γ + µ · ((Xn · cosϕ)− (Yn · sinϕ))

Yn+1 = µ · ((Xn · sinϕ) + (Yn · cosϕ))

ϕ = β − α
(1+X2

n+Y 2
n)

(4.8)

Where α = 0.75, β = 1.75, γ = 1 and µ = 0.9.

Lozi Chaos Map

The Lozi Map (Figure 12) is a two-dimensional piece-wise linear map closely

related to the Henon Map.

The equations of this map are given in Equations (4.9) and (4.10).

Xn+1 = 1− a |Xn|+ bYn (4.9)

Yn+1 = Xn (4.10)

Where a = 1.7 and b = 0.5 [33] with X0 = -0.1 and Y0 = 0.1 as the initial

conditions.

The different plots including frequency of integer and real values can be seen in

Figure 13, whereas Figure 14 gives the plots of x and y values. The presented figures of

each chaotic map are referenced from [36].

32

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

x

y

FIGURE 12: Lozi Chaos Map

0.2 0.4 0.6 0.8 1.0
Value

100

200

300

400

Frequency

5 10 15 20 25
Value

100

200

300

400

500

Frequency

FIGURE 13: Real and Integer Number Histograms by Lozi Chaos Map

0 20 40 60 80 100

-1.0

-0.5

0.0

0.5

1.0

Iteration

x

0 20 40 60 80 100

-1.0

-0.5

0.0

0.5

1.0

Iteration

y

FIGURE 14: x and y Values Iteration Plots for Lozi Chaos Map

33

Sinai Chaos Map

The Sinai Map is similar to the Arnold’s Cat Map in having a simple two-

dimensional discrete system. The equation of the map is given in (4.11).

Xn+1 = Xn + Yn + (δ · cos 2π · Yn · (mod1))

Yn+1 = Xn + 2 · Yn · (mod1)
(4.11)

Where δ = 0.1.

Experimentation

Using chaos maps, tests were run to find an average result, standard deviation, best

result, and time in milliseconds (msec) for each of the 13 objective functions. The goal

of these tests is to see if using a different form of pseudo-random number generation will

lead to either better results or similar results being found in less time. To test for each

randomizer’s effectiveness on both factors, two tests were run: Experiment A with a

smaller population size and less overall iterations (Parameters shown in Table 6), and

Experiment B with a larger population size and more iterations (Parameters shown in

Table 7). The short test would prioritize randomizers that are capable of finding optimal

results quicker than others, while the larger test allows for the possibility of a randomizer

that may produce better results that others given additional usage.

These tests were run using the following changes to the population and iteration

parameters:

34

TABLE 6: Experiment A Parameters

Parameter Value

D 100
iter 30
tr 30
N 30
mer 100

TABLE 7: Experiment B Parameters

Parameter Value

D 100
iter 100
tr 30
N 30
mer 500

Table 8 shows the map name abbreviations.

TABLE 8: Map Name Abbreviations

ARN BUR DEL DIS HEN IKE LOZ MER SIN
Arnold’s Cat Burger Delayed Logistic Dissapative Henon Ikeda Lozi Mersenee Twister Sinai

Results and Analysis

In analyzing the results, the most impactful differences between the randomizers

came in two different forms: how optimal results were, and how the amount of time each

randomizer added to the overall runtime of the algorithm. Thus, the results will be broken

into two sections: Comparison of Results, and Comparison of Time.

Comparison of Results

Tables 9 and 10 show all results found by Experiment A, while Table 11 and 12

shows all results found by Experiment B. Additionally, Tables 13 and 14 show a direct

comparison of each randomizer’s Experiment A results, and Tables 15 and 16 show a

direct comparison of the randomizer’s Experiment B results.

The experiments appear to show some of the same results, where Arnold’s Cat

Map, Henon Map, Mersenne Twister, and Sinai Map are capable of finding the best

results the fastest, but Dissapative Map manages to generate significantly better results

35

in Experiment B than it did in Experiment A. However, given the additional resources,

Mersenne Twister has a greater number of fitness functions with the best found averages,

and Arnold’s Cat Map finds more Best values.

However, overall, it appears that each map is capable of finding optimal results

with different fitness functions, such as Delayed Logistic Map, which finds the most

optimal averages out of the randomizers for Function 7. This suggests that if a different

fitness function were given to this algorithm, an approach that uses more than one random

number generator would likely lead to the most optimal outcome.

Overall, Arnold’s Cat Map, Henon Map, Mersenne Twister, Sinai Map, and

Dissipative Map are the most capable randomizers between the tests, but other

randomizers should be considered when using CHO.

36

TABLE 9: Experiment A Results By Randomizer

F Avg Std Best

F1 0 0 0
F2 3.5333E-29 3.34E-30 3.00E-29
F3 0 0 0
F4 3.72163E-29 4.65551E-30 2.8321E-29
F5 16.28589017 0.002346576 15.82159547
F6 2.77334E-32 0 2.77334E-32
F7 11.62489593 0.591599922 7.013377106
F8 -5706.53701 1.81899E-12 -5706.53701
F9 0 0 0
F10 7.10543E-15 0 7.10543E-15
F11 0 0 0
F12 0.049765827 0 0.049765827
F13 0.002614683 8.67362E-19 0.002614683

(a) Experiment A: ARN Results

F Avg Std Best

F1 0.043661512 0.000557799 0.043296347
F2 13.90106659 0.015181459 13.88247318
F3 255488.505 1.1642E-10 255488.505
F4 7.504859433 4.44089E-15 6.58653868
F5 26.46321272 1.06581E-14 26.46321272
F6 1213.198361 3.709341626 1208.008648
F7 369.9892887 0.850859571 366.8989633
F8 -2043.53336 9.09495E-13 -2043.53336
F9 30.80030413 0.013363865 30.78861776
F10 6.79569402 2.66454E-15 6.79569402
F11 12.47480977 3.55271E-15 12.47480977
F12 0.930433512 0.002342741 0.928776944
F13 6.424783374 1.77636E-15 6.424783374

(b) Experiment A: BUR Results

F Avg Std Best

F1 0.00754897 0.002470168 0.004085801
F2 0.00160229 0 0.00160229
F3 0.013275417 6.93889E-18 0.013275417
F4 0.00962206 3.46945E-18 0.00962206
F5 1199.901017 947.4738992 226.8987997
F6 6.79345E-06 5.0822E-21 6.79345E-06
F7 8.289090212 0.610570948 6.953521788
F8 -2676.05903 4.54747E-13 -2771.17783
F9 1.57469E-05 1.01634E-06 1.39053E-05
F10 0.001195601 2.87535E-05 0.001178262
F11 1.32215E-05 0 1.32215E-05
F12 0.049765864 2.08167E-17 0.049765864
F13 0.002616446 1.03397E-07 0.002615889

(c) Experiment A: DEL Results

F Avg Std Best

F1 0 0 0
F2 3.75627E-29 2.938E-30 3.16248E-29
F3 7.41071E-10 0 7.41071E-10
F4 4.24864E-29 5.98721E-30 3.09068E-29
F5 20.33336368 7.10543E-15 20.33336368
F6 3.08149E-32 0 3.08149E-32
F7 12.66311041 1.008185086 8.998286264
F8 -5706.53701 2.72848E-12 -5706.53701
F9 0 0 0
F10 7.10543E-15 0 7.10543E-15
F11 0.00739604 0 0.00739604
F12 0.049765827 1.38778E-17 0.049765827
F13 0.002614683 0 0.002614683

(d) Experiment A: DIS Results

F Avg Std Best

F1 0 0 0
F2 3.26377E-29 3.19786E-30 2.87307E-29
F3 5.56406E-27 2.5E-39 5.56406E-27
F4 3.10762E-29 4.21918E-30 2.27044E-29
F5 10.61670083 0.002862199 10.61593587
F6 2.15704E-32 0 2.15704E-32
F7 16.86029191 0.327342002 12.38971283
F8 -5706.53701 1.81899E-12 -5706.53701
F9 13.9294268 8.88178E-15 13.9294268
F10 7.10543E-15 0 7.10543E-15
F11 0.029552184 0 0.029552184
F12 0.049765827 1.38778E-17 0.049765827
F13 0.002614683 0 0.002614683

(e) Experiment A: HEN Results

F Avg Std Best

F1 0 0 0
F2 1.87269E-28 4.44732E-29 1.42147E-28
F3 1.50968E-06 1.00008E-07 1.35691E-06
F4 0.040345991 5.80888E-05 0.040216101
F5 27.25384659 1.06581E-14 27.25384659
F6 6.47112E-32 0 6.47112E-32
F7 9.727677739 0.521279142 7.538286859
F8 -5706.53701 9.09495E-13 -5706.53701
F9 2.4567E-12 0 6.75016E-14
F10 3.2685E-13 0 5.32907E-14
F11 0.012316073 0 0.012316073
F12 0.049765827 2.77556E-17 0.049765827
F13 0.002614683 0 0.002614683

(f) Experiment A: IKE Results

37

TABLE 10: Experiment A Results By Randomizer (cont.)

F Avg Std Best

F1 0 0 0
F2 1.72416E-28 3.17706E-29 1.24773E-28
F3 2.992123707 1.33227E-15 2.992123707
F4 15.24070809 5.32907E-15 12.4239081
F5 26.46207232 0.00178413 26.45954918
F6 9.86076E-32 0 9.86076E-32
F7 1164.186661 0.255294442 29.14785382
F8 -5706.53701 1.81899E-12 -5706.53701
F9 29.84877171 1.42109E-14 29.84877171
F10 6.903162044 3.55271E-15 6.903162044
F11 1.47993E-13 0 6.32827E-15
F12 0.049765827 1.38778E-17 0.049765827
F13 0.002614683 1.30104E-18 0.002614683

(a) Experiment A: LOZ Results

F Avg Std Best

F1 0 0 0
F2 3.60209E-29 3.36074E-30 2.80967E-29
F3 9.76369E-35 0 9.76369E-35
F4 3.72061E-29 4.42044E-30 2.95805E-29
F5 18.14559995 7.10543E-15 15.94578266
F6 5.23853E-32 0 5.23853E-32
F7 12.45609533 0.61919679 8.984489629
F8 -5706.53701 1.81899E-12 -5706.53701
F9 0 0 0
F10 7.10543E-15 0 7.10543E-15
F11 0 0 0
F12 0.049765827 3.46945E-17 0.049765827
F13 0.002614683 4.33681E-19 0.002614683

(b) Experiment A: MER Results

F Avg Std Best

F1 0 0 0
F2 3.73065E-29 3.10779E-30 3.00926E-29
F3 5.68042E-25 3.88E-38 5.68042E-25
F4 3.54613E-29 3.82918E-30 2.59017E-29
F5 82.98181026 2.242710657 77.67640634
F6 4.31408E-32 0 4.31408E-32
F7 13.41413424 0.634312442 9.121128541
F8 -5706.53701 1.81899E-12 -5706.53701
F9 0 0 0
F10 7.10543E-15 0 7.10543E-15
F11 0 0 0
F12 0.049765827 3.46945E-17 0.049765827
F13 0.002614683 1.30104E-18 0.002614683

(c) Experiment A: SIN Results

38

TABLE 11: Experiment B Results By Randomizer

F Avg Std Best

F1 0 0 0
F2 0 0 0
F3 0 0 0
F4 0 0 0
F5 16.31245035 12.76711193 0.418957607
F6 3.69779E-32 0 3.69779E-32
F7 11.51422017 1.484698159 5.931027461
F8 -5706.53701 1.81899E-12 -5706.53701
F9 0 0 0
F10 7.10543E-15 0 3.55271E-15
F11 0.014779777 0 0.014779777
F12 0.049765827 0 0.049765827
F13 0.002614683 2.1684E-18 0.002614683

(a) Experiment B: ARN Results

F Avg Std Best

F1 8.59125E-05 1.35525E-20 8.59125E-05
F2 14.62790667 1.77636E-15 14.62790667
F3 230561.0101 5.82077E-11 219818.4793
F4 7.406678261 4.44089E-15 7.406678261
F5 17.44935919 0.007563008 17.44080652
F6 1166.449969 0 1166.449969
F7 295.4342747 0.66144008 292.7307356
F8 -2043.53934 1.13687E-12 -2043.53934
F9 29.97729816 3.55271E-15 29.97729816
F10 6.5319389 8.88178E-16 6.5319389
F11 12.25398247 5.32907E-15 12.25398247
F12 0.700034548 5.55112E-16 0.700034548
F13 4.32815148 2.66454E-15 4.32815148

(b) Experiment B: BUR Results

F Avg Std Best

F1 0.071465612 0.057843158 0.00033918
F2 9.35796E-05 1.35525E-20 9.35796E-05
F3 0.000360451 0 0.000360451
F4 0.000514712 0 0.000514712
F5 1264.636792 1105.377562 156.6247558
F6 1.97921E-07 5.29396E-23 1.97921E-07
F7 8.07844198 0.520894088 6.601984015
F8 -2447.50761 1.36424E-12 -3010.64868
F9 6.63492E-08 0 6.63492E-08
F10 5.98282E-05 0 5.98282E-05
F11 0.009857767 0 0.009857767
F12 0.049765827 3.46945E-17 0.049765827
F13 0.002614711 1.30104E-18 0.002614711

(c) Experiment B: DEL Results

F Avg Std Best

F1 0 0 0
F2 0 0 0
F3 0 0 0
F4 0 0 0
F5 7.385283085 0.001176125 6.853206371
F6 2.15704E-32 0 2.15704E-32
F7 11.74431875 0.726820682 7.672571816
F8 -5706.53701 1.81899E-12 -5706.53701
F9 0 0 0
F10 7.10543E-15 0 7.10543E-15
F11 0.009857285 0 0.009857285
F12 0.049765827 2.77556E-17 0.049765827
F13 0.002614683 4.33681E-19 0.002614683

(d) Experiment B: DIS Results

F Avg Std Best

F1 0 0 0
F2 0 0 0
F3 0 0 0
F4 0 0 0
F5 6.478994561 4.44089E-15 6.478994561
F6 4.31408E-32 0 4.31408E-32
F7 23.79414554 0.318756631 11.97234063
F8 -5706.53701 1.81899E-12 -5706.53701
F9 9.949590571 5.32907E-15 9.949590571
F10 7.10543E-15 0 7.10543E-15
F11 0 0 0
F12 0.049765827 6.93889E-18 0.049765827
F13 0.002614683 4.33681E-19 0.002614683

(e) Experiment B: HEN Results

F Avg Std Best

F1 0 0 0
F2 0 0 0
F3 1.82749E-09 8.27181E-25 1.82749E-09
F4 0.002552123 0 0.002552123
F5 23.63073341 1.06581E-14 23.63073341
F6 8.62817E-32 0 8.62817E-32
F7 9.003789636 0.462546708 6.963820757
F8 -5706.53701 2.72848E-12 -5706.53701
F9 7.73603E-12 0 6.03961E-14
F10 7.81597E-13 0 3.90799E-14
F11 0.00739604 0 0.00739604
F12 0.049765827 2.08167E-17 0.049765827
F13 0.002614683 8.67362E-19 0.002614683

(f) Experiment B: IKE Results

39

TABLE 12: Experiment B Results By Randomizer (cont.)

F Avg Std Best

F1 0 0 0
F2 0 0 0
F3 1.82749E-09 8.27181E-25 1.82749E-09
F4 0.002552123 0 0.002552123
F5 23.63073341 1.06581E-14 23.63073341
F6 8.62817E-32 0 8.62817E-32
F7 9.003789636 0.462546708 6.963820757
F8 -5706.53701 2.72848E-12 -5706.53701
F9 7.73603E-12 0 6.03961E-14
F10 7.81597E-13 0 3.90799E-14
F11 0.00739604 0 0.00739604
F12 0.049765827 2.08167E-17 0.049765827
F13 0.002614683 8.67362E-19 0.002614683

(a) Experiment B: LOZ Results

F Avg Std Best

F1 0 0 0
F2 0 0 0
F3 0 0 0
F4 0 0 0
F5 3.499472469 1.801783042 1.700578903
F6 2.77334E-32 0 2.77334E-32
F7 11.62003778 0.618996041 7.665922397
F8 -5706.53701 1.81899E-12 -5706.53701
F9 0 0 0
F10 7.10543E-15 0 7.10543E-15
F11 0 0 0
F12 0.049765827 0 0.049765827
F13 0.002614683 2.1684E-18 0.002614683

(b) Experiment B: MER Results

F Avg Std Best

F1 0 0 0
F2 0 0 0
F3 0 0 0
F4 0 0 0
F5 8.996824819 0.544740063 0.28386915
F6 4.00593E-32 0 4.00593E-32
F7 11.40174776 0.699454391 8.316231718
F8 -5706.53701 1.81899E-12 -5706.53701
F9 0 0 0
F10 7.10543E-15 0 7.10543E-15
F11 0.00739604 0 0.00739604
F12 0.049765827 2.08167E-17 0.049765827
F13 0.002614683 8.67362E-19 0.002614683

(c) Experiment B: SIN Results

40

TABLE 13: Experiment A: Average Result by Function

F ARN BUR DEL DIS HEN IKE LOZ MER SIN

F1 0 0.043661512 0.007548975 0 0 0 0 0 0
F2 3.5333E-29 13.90106659 0.001602293 3.75627E-29 3.26377E-29 1.87269E-28 1.72416E-28 3.60209E-29 3.73065E-29
F3 0 255488.5050 0.013275417 7.41071E-10 5.56406E-27 1.50968E-06 2.992123707 9.76369E-35 5.68042E-25
F4 3.72163E-29 7.504859433 0.009622062 4.24864E-29 3.10762E-29 0.040345991 15.24070809 3.72061E-29 3.54613E-29
F5 16.28589017 26.46321272 1199.901017 20.33336368 10.61670083 27.25384659 26.46207232 18.14559995 82.98181026
F6 2.77334E-32 1213.198361 6.79345E-06 3.08149E-32 2.15704E-32 6.47112E-32 9.86076E-32 5.23853E-32 4.31408E-32
F7 11.62489593 369.9892887 8.289090212 12.66311041 16.86029191 9.727677739 1164.186661 12.45609533 13.41413424
F8 -5706.53701 -2043.53336 -2676.05903 -5706.53701 -5706.53701 -5706.53701 -5706.53701 -5706.53701 -5706.53701
F9 0 30.80030413 1.57469E-05 0 13.92942683 2.4567E-12 29.84877171 0 0
F10 7.10543E-15 6.79569402 0.001195601 7.10543E-15 7.10543E-15 3.2685E-13 6.903162044 7.10543E-15 7.10543E-15
F11 0 12.47480977 1.32215E-05 0.00739604 0.029552184 0.012316073 1.47993E-13 0 0
F12 0.049765827 0.930433512 0.049765864 0.049765827 0.049765827 0.049765827 0.049765827 0.049765827 0.049765827
F13 0.002614683 6.424783374 0.002616446 0.002614683 0.002614683 0.002614683 0.002614683 0.002614683 0.002614683

Total 8 0 3 5 9 4 4 7 7

Unique 0 0 1 0 4 0 0 0 0

TABLE 14: Experiment A: Best Result by Function

F ARN BUR DEL DIS HEN IKE LOZ MER SIN

F1 0 0.043296347 0.004085801 0 0 0 0 0 0
F2 3.00E-29 13.88247318 0.00160229 3.16248E-29 2.87307E-29 1.42147E-28 1.24773E-28 2.80967E-29 3.00926E-29
F3 0 255488.505 0.013275417 7.41071E-10 5.56406E-27 1.35691E-06 2.992123707 9.76369E-35 5.68042E-25
F4 2.8321E-29 6.58653868 0.00962206 3.09068E-29 2.27044E-29 0.040216101 12.4239081 2.95805E-29 2.59017E-29
F5 15.82159547 26.46321272 226.8987997 20.33336368 10.61593587 27.25384659 26.45954918 15.94578266 77.67640634
F6 2.77334E-32 1208.008648 6.79345E-06 3.08149E-32 2.15704E-32 6.47112E-32 9.86076E-32 5.23853E-32 4.31408E-32
F7 7.013377106 366.8989633 6.953521788 8.998286264 12.38971283 7.538286859 29.14785382 8.984489629 9.121128541
F8 -5706.53701 -2043.53336 -2771.17783 -5706.53701 -5706.53701 -5706.53701 -5706.53701 -5706.53701 -5706.53701
F9 0 30.78861776 1.39053E-05 0 13.9294268 6.75016E-14 29.84877171 0 0
F10 7.10543E-15 6.79569402 0.001178262 7.10543E-15 7.10543E-15 5.32907E-14 6.903162044 7.10543E-15 7.10543E-15
F11 0 12.47480977 1.32215E-05 0.00739604 0.029552184 0.012316073 6.32827E-15 0 0
F12 0.049765827 0.928776944 0.049765864 0.049765827 0.049765827 0.049765827 0.049765827 0.049765827 0.049765827
F13 0.002614683 6.424783374 0.002615889 0.002614683 0.002614683 0.002614683 0.002614683 0.002614683 0.002614683

Total 8 0 1 6 8 4 4 8 7

Unique 1 0 1 0 3 0 0 1 0

41

TABLE 15: Experiment B: Average Result by Function

F ARN BUR DEL DIS HEN IKE LOZ MER SIN

F1 0 8.59125E-05 0.071465612 0 0 0 0 0 0
F2 0 14.62790667 9.35796E-05 0 0 0 0 0 0
F3 0 230561.0101 0.000360451 0 0 1.82749E-09 0.069003187 0 0
F4 0 7.406678261 0.000514712 0 0 0.002552123 10.33869006 0 0
F5 16.31245035 17.44935919 1264.636792 7.385283085 6.478994561 23.63073341 17.5514933 3.499472469 8.996824819
F6 3.69779E-32 1166.449969 1.97921E-07 2.15704E-32 4.31408E-32 8.62817E-32 6.16298E-32 2.77334E-32 4.00593E-32
F7 11.51422017 295.4342747 8.07844198 11.74431875 23.79414554 9.003789636 3063.698934 11.62003778 11.40174776
F8 -5706.53701 -2043.53934 -2447.50761 -5706.53701 -5706.53701 -5706.53701 -5706.53701 -5706.53701 -5706.53701
F9 0 29.97729816 6.63492E-08 0 9.949590571 7.73603E-12 29.84877171 0 0
F10 7.10543E-15 6.5319389 5.98282E-05 7.10543E-15 7.10543E-15 7.81597E-13 9.790103839 7.10543E-15 7.10543E-15
F11 0.014779777 12.25398247 0.009857767 0.009857285 0 0.00739604 0.00739604 0 0.00739604
F12 0.049765827 0.700034548 0.049765827 0.049765827 0.049765827 0.049765827 0.049765827 0.049765827 0.049765827
F13 0.002614683 4.32815148 0.002614711 0.002614683 0.002614683 0.002614683 0.002614683 0.002614683 0.002614683

Total 9 0 3 10 9 5 5 11 9

Unique 0 0 1 1 0 0 0 1 0

TABLE 16: Experiment B: Best Result by Function

F ARN BUR DEL DIS HEN IKE LOZ MER SIN

F1 0 8.59125E-05 0.00033918 0 0 0 0 0 0
F2 0 14.62790667 9.35796E-05 0 0 0 0 0 0
F3 0 219818.4793 0.000360451 0 0 1.82749E-09 0.069003187 0 0
F4 0 7.406678261 0.000514712 0 0 0.002552123 0.953430675 0 0
F5 0.418957607 17.44080652 156.6247558 6.853206371 6.478994561 23.63073341 17.54900026 1.700578903 0.28386915
F6 3.69779E-32 1166.449969 1.97921E-07 2.15704E-32 4.31408E-32 8.62817E-32 6.16298E-32 2.77334E-32 4.00593E-32
F7 5.931027461 292.7307356 6.601984015 7.672571816 11.97234063 6.963820757 24.0715619 7.665922397 8.316231718
F8 -5706.537013 -2043.53934 -3010.64868 -5706.53701 -5706.53701 -5706.53701 -5706.53701 -5706.53701 -5706.53701
F9 0 29.97729816 6.63492E-08 0 9.949590571 6.03961E-14 29.84877171 0 0
F10 3.55271E-15 6.531938986 5.98282E-05 7.10543E-15 7.10543E-15 3.90799E-14 7.269229834 7.10543E-15 7.10543E-15
F11 0.014779777 12.25398247 0.009857767 0.009857285 0 0.00739604 0.00739604 0 0.00739604
F12 0.049765827 0.700034548 0.049765827 0.049765827 0.049765827 0.049765827 0.049765827 0.049765827 0.049765827
F13 0.002614683 4.328151485 0.002614711 0.002614683 0.002614683 0.002614683 0.002614683 0.002614683 0.002614683

Total 10 0 2 9 8 5 5 9 9

Unique 2 0 0 1 0 0 0 0 1

42

Comparison of Time

Figures 15 and 16 graphically show the time difference between the randomizers

by function for Experiment A, while Figures 17 and 18 show the same for Experiment B.

Additionally, Table 17 shows a time comparison of Experiment A numerically and Table

18 shows a time comparison of Experiment B numerically.

As can be seen in these figures and tables, the difference in fitness function accounts

for very little difference in the placing of which randomizer completes these tests the

fastest. In fact, at first glance, the tests appear so similar to one another that it’s as if each

randomizer has a flat time cost. However, when comparing Experiment A’s results to one

another, or experiment B’s results to one another, they’re extremely similar in shape, and

thus time. But, when comparing the shape of the Experiment A’s results to Experiment

B’s results, we see similar, yet slightly different shapes.

However, there’s only two actions these randomizers have that could be associated

with a time cost: initialization and generation of values. Simply put, the difference in time

between Experiment A and Experiment B means that the randomizer’s cost to generate

values is different than its initialization cost, and thus the time growth is different between

the randomizers. This may elevate other randomizers over the Henon Map, as Henon

map’s use cost may outweigh its potential to have optimum output.

43

ARN BUR DEL DIS HEN IKE LOZ MER SIN
Randomizer

0

5000

10000

15000

20000

25000

30000

Ti
m

e
in

 M
S

Experiment A: Function 1 Time in MS

(a) Exp A: Function 1

ARN BUR DEL DIS HEN IKE LOZ MER SIN
Randomizer

0

5000

10000

15000

20000

25000

30000

Ti
m

e
in

 M
S

Experiment A: Function 2 Time in MS

(b) Exp A: Function 2

ARN BUR DEL DIS HEN IKE LOZ MER SIN
Randomizer

0

5000

10000

15000

20000

25000

30000

Ti
m

e
in

 M
S

Experiment A: Function 3 Time in MS

(c) Exp A: Function 3

ARN BUR DEL DIS HEN IKE LOZ MER SIN
Randomizer

0

5000

10000

15000

20000

25000

30000

Ti
m

e
in

 M
S

Experiment A: Function 4 Time in MS

(d) Exp A: Function 4

ARN BUR DEL DIS HEN IKE LOZ MER SIN
Randomizer

0

5000

10000

15000

20000

25000

30000

Ti
m

e
in

 M
S

Experiment A: Function 5 Time in MS

(e) Exp A: Function 5

ARN BUR DEL DIS HEN IKE LOZ MER SIN
Randomizer

0

5000

10000

15000

20000

25000

30000

Ti
m

e
in

 M
S

Experiment A: Function 6 Time in MS

(f) Exp A: Function 6

ARN BUR DEL DIS HEN IKE LOZ MER SIN
Randomizer

0

10000

20000

30000

40000

Ti
m

e
in

 M
S

Experiment A: Function 7 Time in MS

(g) Exp A: Function 7

ARN BUR DEL DIS HEN IKE LOZ MER SIN
Randomizer

0

5000

10000

15000

20000

25000

30000

35000

Ti
m

e
in

 M
S

Experiment A: Function 8 Time in MS

(h) Exp A: Function 8

FIGURE 15: Experiment A Time Comparisons for Function 1 - 8

44

ARN BUR DEL DIS HEN IKE LOZ MER SIN
Randomizer

0

5000

10000

15000

20000

25000

30000

35000

Ti
m

e
in

 M
S

Experiment A: Function 9 Time in MS

(a) Exp A: Function 9 Time

ARN BUR DEL DIS HEN IKE LOZ MER SIN
Randomizer

0

5000

10000

15000

20000

25000

30000

35000

Ti
m

e
in

 M
S

Experiment A: Function 10 Time in MS

(b) Exp A: Function 10 Time

ARN BUR DEL DIS HEN IKE LOZ MER SIN
Randomizer

0

5000

10000

15000

20000

25000

30000

35000

Ti
m

e
in

 M
S

Experiment A: Function 11 Time in MS

(c) Exp A: Function 11 Time

ARN BUR DEL DIS HEN IKE LOZ MER SIN
Randomizer

0

5000

10000

15000

20000

25000

30000

35000

Ti
m

e
in

 M
S

Experiment A: Function 12 Time in MS

(d) Exp A: Function 12 Time

ARN BUR DEL DIS HEN IKE LOZ MER SIN
Randomizer

0

5000

10000

15000

20000

25000

30000

35000

Ti
m

e
in

 M
S

Experiment A: Function 13 Time in MS

(e) Exp A: Function 13 Time

FIGURE 16: Experiment A Comparisons for Function 9 - 13 (cont.)

45

ARN BUR DEL DIS HEN IKE LOZ MER SIN
Randomizer

0

100000

200000

300000

400000

500000
Ti

m
e

in
 M

S
Experiment B: Function 1 Time in MS

(a) Exp B: Function 1

ARN BUR DEL DIS HEN IKE LOZ MER SIN
Randomizer

0

100000

200000

300000

400000

500000

Ti
m

e
in

 M
S

Experiment B: Function 2 Time in MS

(b) Exp B: Function 2

ARN BUR DEL DIS HEN IKE LOZ MER SIN
Randomizer

0

100000

200000

300000

400000

500000

Ti
m

e
in

 M
S

Experiment B: Function 3 Time in MS

(c) Exp B: Function 3

ARN BUR DEL DIS HEN IKE LOZ MER SIN
Randomizer

0

100000

200000

300000

400000

500000

Ti
m

e
in

 M
S

Experiment B: Function 4 Time in MS

(d) Exp B: Function 4

ARN BUR DEL DIS HEN IKE LOZ MER SIN
Randomizer

0

100000

200000

300000

400000

500000

Ti
m

e
in

 M
S

Experiment B: Function 5 Time in MS

(e) Exp B: Function 5

ARN BUR DEL DIS HEN IKE LOZ MER SIN
Randomizer

0

100000

200000

300000

400000

500000

Ti
m

e
in

 M
S

Experiment B: Function 6 Time in MS

(f) Exp B: Function 6

ARN BUR DEL DIS HEN IKE LOZ MER SIN
Randomizer

0

100000

200000

300000

400000

500000

600000

700000

Ti
m

e
in

 M
S

Experiment B: Function 7 Time in MS

(g) Exp B: Function 7

ARN BUR DEL DIS HEN IKE LOZ MER SIN
Randomizer

0

100000

200000

300000

400000

500000

Ti
m

e
in

 M
S

Experiment B: Function 8 Time in MS

(h) Exp B: Function 8

FIGURE 17: Experiment B Time Comparisons for Function 1 - 8

46

ARN BUR DEL DIS HEN IKE LOZ MER SIN
Randomizer

0

100000

200000

300000

400000

500000

Ti
m

e
in

 M
S

Experiment B: Function 9 Time in MS

(a) Exp B: Function 9 Time

ARN BUR DEL DIS HEN IKE LOZ MER SIN
Randomizer

0

100000

200000

300000

400000

500000

Ti
m

e
in

 M
S

Experiment B: Function 10 Time in MS

(b) Exp B: Function 10 Time

ARN BUR DEL DIS HEN IKE LOZ MER SIN
Randomizer

0

100000

200000

300000

400000

500000

Ti
m

e
in

 M
S

Experiment B: Function 11 Time in MS

(c) Exp B: Function 11 Time

ARN BUR DEL DIS HEN IKE LOZ MER SIN
Randomizer

0

100000

200000

300000

400000

500000

Ti
m

e
in

 M
S

Experiment B: Function 12 Time in MS

(d) Exp B: Function 12 Time

ARN BUR DEL DIS HEN IKE LOZ MER SIN
Randomizer

0

100000

200000

300000

400000

500000

Ti
m

e
in

 M
S

Experiment B: Function 13 Time in MS

(e) Exp B: Function 13 Time

FIGURE 18: Experiment B Time Comparisons for Function 9 - 13 (cont.)

47

TABLE 17: Experiment A: Time in MSec by Function

F ARN BUR DEL DIS HEN IKE LOZ MER SIN

F1 12157 25163 4872 31027 27261 30132 5685 4097 21683
F2 11998 24729 4304 30855 27133 29986 5503 3891 21508
F3 13190 26230 5834 32059 28359 31146 6674 5076 22682
F4 13688 26548 6092 32506 28842 31466 7003 5537 23178
F5 12967 25923 5683 31824 27985 30933 6456 4940 22527
F6 12085 25126 4692 30938 27218 30055 5582 3979 21543
F7 17563 36987 6512 45514 40223 44311 7900 5590 31878
F8 17458 30352 9890 36664 32431 35277 10794 9180 27019
F9 17855 31132 10473 37369 33003 35841 11374 9741 27355
F10 17384 30966 9982 36889 32522 35357 10876 9232 26921
F11 16772 30076 9335 36345 31900 34748 10236 8597 26264
F12 17309 30561 10026 36988 32304 35488 10903 9138 26895
F13 17878 30910 10779 37358 32758 36042 11534 9576 27359

TABLE 18: Experiment B: Time in MSec by Function

F ARN BUR DEL DIS HEN IKE LOZ MER SIN

F1 177988 367357 69093 386403 483007 464149 85351 60006 289937
F2 175858 365218 64414 385974 482957 463132 84565 58263 283278
F3 192211 385592 84558 401688 499928 480096 101654 75074 302097
F4 197419 384572 83406 403790 505294 485946 99744 76440 305190
F5 187993 377932 79473 395203 492478 474933 96028 71430 290086
F6 174942 366622 66728 381533 483452 464378 85724 58491 284569
F7 261932 546150 96462 563816 718977 688162 127174 85228 421477
F8 188708 378590 79085 397310 497953 479643 97632 70523 299291
F9 190338 399670 83890 398661 509343 480446 117443 71998 299956
F10 195284 408764 89390 401723 503626 485440 123442 77035 302844
F11 198923 424712 93520 404305 505591 488558 106924 76458 309174
F12 210476 399227 98362 414979 513118 493066 115520 90104 315042
F13 211915 400860 108843 422427 518417 502551 119014 93563 316116

48

CHAPTER V

CHO ADJUSTMENT PARAMETER TUNING

In experimenting with different versions of pseudo-random number generation,

what those numbers are being used for and what variables impact their usage also need to

be adjusted in order to optimize the algorithm. The variable that has the largest impact

on how random numbers interact with the results would be the adj value. This value

determines whether or not a value is within the bounds set by fadj , cadj , and nadj , and

is what gives CHO its name. Therefore, this value needs to be evaluated in order to

find what adj value best fits for each pseudo-random number generator for each fitness

function.

Experimentation

In order to find an optimal value using Mersenne Twister, a number of experiments

were run using different adj values, and almost all fitness functions require a value

greater than 0.9. This is due to how this value interacts with the algorithm, the closer

the value gets to 1.0 the more exploitation is happening between iterations, however, other

randomizers may not need as much focus on exploitation to generate optimal results.

Thus, every randomizer was experimented against an adj value in the range (0.81-0.99)

using the following parameters as given in Table 19.

Results and Analysis

The condensed results are given in Table 20, which shows each randomizer’s best

average out of every experiment, and Table 21 which shows each randomizer’s best found

value out of all experiments. Additionally, Figures 19 and 20 show how every algorithm’s

49

TABLE 19: Tuning Parameters

Parameter Value

D 100
iter 100
tr 30
N 30
mer 500

average value responded to different adj values, and Figures 21 and 22 show how every

algorithm’s best value responded to different adj values.

As anticipated, each randomizer required a different adj value in order to obtain

its most optimal result. An interesting thing to note, as well, is that not only did each

randomizer have different points where the average fitness became increasingly more

optimal, but each randomizer also had a different point where the adj value became too

high, such as during the experimentation on Function 4. Each randomizer also converged

on a adj value that was similar to others, meaning that the fitness function itself has the

strongest effect on what that adj value should be, but the order in which each randomizer

converged was also almost always the same, where Burger’s Map tended to find it’s most

optimal results at lower adj values, while the Delayed Logisitic Map tended to require the

highest values.

Interestingly, Mersenne Twister still manages to obtain the most optimal average

result of all other randomizers, but other randomizer’s are not far behind. Dissapative,

Henon, and Sinai Maps are also very capable of finding optimal results, and Burger’s Map

was even capable of finding a best value better than what was found by Mersenne Twister

on Function 7.

50

TABLE 20: Average with Optimal Parameters by Function

F ARN BUR DEL DIS HEN IKE LOZ MER SIN

F1 0 3.84806E-08 4.30856E-08 0 0 0 0 0 0
F2 0 8.69481E-05 7.26257E-05 0 0 0 0 0 0
F3 0 2.05337E-05 2.4816E-05 0 0 1.21496E-10 1.56565E-07 0 0
F4 0 0.000815111 0.000600738 0 0 0.001426417 0.001022348 0 0
F5 1.5995E-08 18.59933908 12.02149283 0.000327398 0.000487669 14.4470888 17.97270476 9.01585E-10 9.01585E-10
F6 2.46519E-32 6.1238E-08 3.2904E-08 1.54074E-32 3.38964E-32 3.08149E-33 4.00593E-32 0 1.84889E-32
F7 10.96035422 5.325513151 8.139588979 10.37451319 13.05853361 9.016382655 9.662135583 5.325513151 11.7254749
F8 -5706.53701 -5706.53286 -5109.04922 -5706.53701 -5706.53701 -5706.53701 -5706.53701 -5706.53701 -5706.53701
F9 0 2.88073E-08 2.44344E-08 0 0 7.89768E-12 1.46176E-11 0 0
F10 7.10543E-15 4.91076E-05 4.08633E-05 7.10543E-15 7.10543E-15 9.27258E-13 6.10001E-12 7.10543E-15 7.10543E-15
F11 0.012316073 1.96423E-07 5.27804E-08 0 0 6.40821E-13 5.29354E-13 0 0
F12 0.049765827 0.049765827 0.049765827 0.049765827 0.049765827 0.049765827 0.049765827 0.049765827 0.049765827
F13 0.002614683 0.002614685 0.002614684 0.002614683 0.002614683 0.002614683 0.002614683 0.002614683 0.002614683

Total 9 3 2 10 10 5 5 13 11

Unique 0 0 0 0 0 0 0 1 0

TABLE 21: Best Found with Optimal Parameters by Function

F ARN BUR DEL DIS HEN IKE LOZ MER SIN
F1 0 3.84806E-08 4.30856E-08 0 0 0 0 0 0
F2 0 8.69481E-05 7.26257E-05 0 0 0 0 0 0
F3 0 2.05337E-05 2.4816E-05 0 0 1.21496E-10 1.56565E-07 0 0
F4 0 0.000815111 0.000600738 0 0 0.001426417 0.000978551 0 0
F5 1.5995E-08 18.59208552 9.068203711 0.000327398 0.000487669 14.44701179 17.97270476 9.01585E-10 9.01585E-10
F6 2.46519E-32 6.1238E-08 3.2904E-08 1.54074E-32 3.38964E-32 0 4.00593E-32 0 1.84889E-32
F7 6.098760117 0.732129944 6.540945463 8.096372464 10.80091633 6.825751383 7.001641856 5.325513151 8.080487363
F8 -5706.53701 -5706.53286 -5363.41386 -5706.53701 -5706.53701 -5706.53701 -5706.53701 -5706.53701 -5706.53701
F9 0 2.88073E-08 2.44344E-08 0 0 4.44089E-14 3.19744E-13 0 0
F10 7.10543E-15 4.91076E-05 4.08633E-05 7.10543E-15 7.10543E-15 3.55271E-14 2.45137E-13 7.10543E-15 7.10543E-15
F11 0.00739604 1.96423E-07 5.27804E-08 0 0 1.27676E-14 6.88338E-15 0 0
F12 0.049765827 0.049765827 0.049765827 0.049765827 0.049765827 0.049765827 0.049765827 0.049765827 0.049765827
F13 0.002614683 0.002614685 0.002614684 0.002614683 0.002614683 0.002614683 0.002614683 0.002614683 0.002614683

Total 8 4 2 10 10 6 5 12 11

Unique 0 1 0 0 0 0 0 0 0

51

0.81 0.83 0.85 0.87 0.89 0.91 0.93 0.95 0.97 0.99
P Value

0

1000

2000

3000

4000

5000

6000

7000

Av
er

ag
e

Fit
ne

ss

Function 1 Average Fitness with increasing P value

ARN
BUR
DEL
DIS
HEN
IKE
LOZ
SIN

(a) Function 1

0.81 0.83 0.85 0.87 0.89 0.91 0.93 0.95 0.97 0.99
P Value

0

5

10

15

20

25

30

Av
er

ag
e

Fit
ne

ss

Function 2 Average Fitness with increasing P value

ARN
BUR
DEL
DIS
HEN
IKE
LOZ
SIN

(b) Function 2

0.81 0.83 0.85 0.87 0.89 0.91 0.93 0.95 0.97 0.99
P Value

0

100000

200000

300000

400000

500000

600000

Av
er

ag
e

Fit
ne

ss

Function 3 Average Fitness with increasing P value

ARN
BUR
DEL
DIS
HEN
IKE
LOZ
SIN

(c) Function 3

0.81 0.83 0.85 0.87 0.89 0.91 0.93 0.95 0.97 0.99
P Value

0

10

20

30

40

Av
er

ag
e

Fit
ne

ss

Function 4 Average Fitness with increasing P value

ARN
BUR
DEL
DIS
HEN
IKE
LOZ
SIN

(d) Function 4

0.81 0.83 0.85 0.87 0.89 0.91 0.93 0.95 0.97 0.99
P Value

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Av
er

ag
e

Fit
ne

ss

1e6 Function 5 Average Fitness with increasing P value

ARN
BUR
DEL
DIS
HEN
IKE
LOZ
SIN

(e) Function 5

0.81 0.83 0.85 0.87 0.89 0.91 0.93 0.95 0.97 0.99
P Value

0

1000

2000

3000

4000

5000

6000

7000

Av
er

ag
e

Fit
ne

ss

Function 6 Average Fitness with increasing P value

ARN
BUR
DEL
DIS
HEN
IKE
LOZ
SIN

(f) Function 6

0.81 0.83 0.85 0.87 0.89 0.91 0.93 0.95 0.97 0.99
P Value

0

500

1000

1500

2000

2500

3000

Av
er

ag
e

Fit
ne

ss

Function 7 Average Fitness with increasing P value

ARN
BUR
DEL
DIS
HEN
IKE
LOZ
SIN

(g) Function 7

0.81 0.83 0.85 0.87 0.89 0.91 0.93 0.95 0.97 0.99
P Value

5500

5000

4500

4000

3500

3000

2500

2000

Av
er

ag
e

Fit
ne

ss

Function 8 Average Fitness with increasing P value

ARN
BUR
DEL
DIS
HEN
IKE
LOZ
SIN

(h) Function 8

FIGURE 19: Randomizer Average Comparisons for Function 1 - 8

52

0.81 0.83 0.85 0.87 0.89 0.91 0.93 0.95 0.97 0.99
P Value

0

20

40

60

80

100

120

Av
er

ag
e

Fit
ne

ss

Function 9 Average Fitness with increasing P value

ARN
BUR
DEL
DIS
HEN
IKE
LOZ
SIN

(a) Function 9

0.81 0.83 0.85 0.87 0.89 0.91 0.93 0.95 0.97 0.99
P Value

0

2

4

6

8

10

12

14

Av
er

ag
e

Fit
ne

ss

Function 10 Average Fitness with increasing P value

ARN
BUR
DEL
DIS
HEN
IKE
LOZ
SIN

(b) Function 10

0.81 0.83 0.85 0.87 0.89 0.91 0.93 0.95 0.97 0.99
P Value

0

10

20

30

40

50

60

Av
er

ag
e

Fit
ne

ss

Function 11 Average Fitness with increasing P value

ARN
BUR
DEL
DIS
HEN
IKE
LOZ
SIN

(c) Function 11

0.81 0.83 0.85 0.87 0.89 0.91 0.93 0.95 0.97 0.99
P Value

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Fit
ne

ss
1e6 Function 12 Average Fitness with increasing P value

ARN
BUR
DEL
DIS
HEN
IKE
LOZ
SIN

(d) Function 12

0.81 0.83 0.85 0.87 0.89 0.91 0.93 0.95 0.97 0.99
P Value

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Fit
ne

ss

1e7 Function 13 Average Fitness with increasing P value

ARN
BUR
DEL
DIS
HEN
IKE
LOZ
SIN

(e) Function 13

FIGURE 20: Randomizer Average Comparisons for Function 9 - 13 (cont.)

53

0.81 0.83 0.85 0.87 0.89 0.91 0.93 0.95 0.97 0.99
P Value

0

500

1000

1500

2000

Be
st

 Fi
tn

es
s

Function 1 Best Fitness with increasing P value

ARN
BUR
DEL
DIS
HEN
IKE
LOZ
SIN

(a) Function 1

0.81 0.83 0.85 0.87 0.89 0.91 0.93 0.95 0.97 0.99
P Value

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Be
st

 Fi
tn

es
s

Function 2 Best Fitness with increasing P value

ARN
BUR
DEL
DIS
HEN
IKE
LOZ
SIN

(b) Function 2

0.81 0.83 0.85 0.87 0.89 0.91 0.93 0.95 0.97 0.99
P Value

0

50000

100000

150000

200000

250000

300000

350000

400000

Be
st

 Fi
tn

es
s

Function 3 Best Fitness with increasing P value

ARN
BUR
DEL
DIS
HEN
IKE
LOZ
SIN

(c) Function 3

0.81 0.83 0.85 0.87 0.89 0.91 0.93 0.95 0.97 0.99
P Value

0

5

10

15

20

25

30

Be
st

 Fi
tn

es
s

Function 4 Best Fitness with increasing P value

ARN
BUR
DEL
DIS
HEN
IKE
LOZ
SIN

(d) Function 4

0.81 0.83 0.85 0.87 0.89 0.91 0.93 0.95 0.97 0.99
P Value

0

50000

100000

150000

200000

250000

300000

Be
st

 Fi
tn

es
s

Function 5 Best Fitness with increasing P value

ARN
BUR
DEL
DIS
HEN
IKE
LOZ
SIN

(e) Function 5

0.81 0.83 0.85 0.87 0.89 0.91 0.93 0.95 0.97 0.99
P Value

0

500

1000

1500

2000

2500

Be
st

 Fi
tn

es
s

Function 6 Best Fitness with increasing P value

ARN
BUR
DEL
DIS
HEN
IKE
LOZ
SIN

(f) Function 6

0.81 0.83 0.85 0.87 0.89 0.91 0.93 0.95 0.97 0.99
P Value

0

50

100

150

200

250

Be
st

 Fi
tn

es
s

Function 7 Best Fitness with increasing P value

ARN
BUR
DEL
DIS
HEN
IKE
LOZ
SIN

(g) Function 7

0.81 0.83 0.85 0.87 0.89 0.91 0.93 0.95 0.97 0.99
P Value

5500

5000

4500

4000

3500

3000

2500

2000

Be
st

 Fi
tn

es
s

Function 8 Best Fitness with increasing P value

ARN
BUR
DEL
DIS
HEN
IKE
LOZ
SIN

(h) Function 8

FIGURE 21: Randomizer Best Comparisons for Function 1 - 8

54

0.81 0.83 0.85 0.87 0.89 0.91 0.93 0.95 0.97 0.99
P Value

0

10

20

30

40

50

60

70

80

Be
st

 Fi
tn

es
s

Function 9 Best Fitness with increasing P value

ARN
BUR
DEL
DIS
HEN
IKE
LOZ
SIN

(a) Function 9

0.81 0.83 0.85 0.87 0.89 0.91 0.93 0.95 0.97 0.99
P Value

0

2

4

6

8

10

Be
st

 Fi
tn

es
s

Function 10 Best Fitness with increasing P value

ARN
BUR
DEL
DIS
HEN
IKE
LOZ
SIN

(b) Function 10

0.81 0.83 0.85 0.87 0.89 0.91 0.93 0.95 0.97 0.99
P Value

0

5

10

15

20

Be
st

 Fi
tn

es
s

Function 11 Best Fitness with increasing P value

ARN
BUR
DEL
DIS
HEN
IKE
LOZ
SIN

(c) Function 11

0.81 0.83 0.85 0.87 0.89 0.91 0.93 0.95 0.97 0.99
P Value

0

20

40

60

80

100

120

Be
st

 Fi
tn

es
s

Function 12 Best Fitness with increasing P value

ARN
BUR
DEL
DIS
HEN
IKE
LOZ
SIN

(d) Function 12

0.81 0.83 0.85 0.87 0.89 0.91 0.93 0.95 0.97 0.99
P Value

0

20000

40000

60000

80000

100000

Be
st

 Fi
tn

es
s

Function 13 Best Fitness with increasing P value

ARN
BUR
DEL
DIS
HEN
IKE
LOZ
SIN

(e) Function 13

FIGURE 22: Randomizer Best Comparisons for Function 9 - 13 (cont.)

55

These experiments also lead to Mersenne Twister having more optimal parameters

than during initial testing, leading it to finding the most optimal result on Function 6,

which it had not done before. A table showing the new best values CHO has found

compared to other Algorithms is shown on Table 22. CHO is now capable of finding

the optimal result in eight of the thirteen functions, where early testing (Table 4) showed

optimal results being found in only seven.

TABLE 22: Comparison of Algorithms with Optimized Parameters

F CHO GWO PSO GSA DE FEP

Avg Std Avg Std Avg Std Avg Std Avg Std Avg Std

F1 0 0 6.59E-28 6.34E-05 0.00013 0.0002 2.53E-16 9.67E-17 8.20E-14 5.90E-14 0.00057 0.00013
F2 0 0 7.18E-17 0.029 0.04214 0.04542 0.05565 0.19407 1.50E-09 9.90E-10 0.0081 0.00077
F3 0 0 3.29E-06 79.1495 70.1256 22.1192 896.534 318.955 6.80E-11 7.4E-11 0.016 0.014
F4 0 0 5.61E-07 1.315 1.08648 0.31703 7.35487 1.174145 0 0 0.3 0.5
F5 9.015-10 11.219 26.8125 69.9049 96.7183 60.1155 67.543 62.2253 0 0 5.06 5.87
F6 0 0 0.8165 0.0001 0.0001 8.28E-05 2.50E-16 1.74E-16 0 0 0 0
F7 0.7321 0.7612 0.0022 0.1002 0.12285 0.04495 0.08944 0.04339 0.00463 0.0012 0.1415 0.3522
F8 -5706.537 2.227E-12 -6123.1 -4087.44 -4841.29 1152.81 -2821.07 493.0375 -11080.1 574.7 -12554.5 52.6
F9 0 0 0.3105 47.356 46.7042 11.62938 25.9684 7.47006 69.2 383.8 0.046 0.012
F10 7.11E-15 0 1.06E-13 0.0778 0.27601 0.50901 0.06208 0.23628 9.70E-08 9.70E-08 0.018 0.0021
F11 0 0 0.0044 0.0066 0.00921 0.00772 27.7015 5.04034 0 0 0.016 0.022
F12 0.04976 3.095E-17 0.0534 0.0207 0.00691 0.026301 1.79961 0.95114 7.90E-15 8.00E-15 9.20E-06 3.60E-06
F13 0.00261 1.032E-18 0.6544 0.0044 0.00667 0.008907 8.89908 7.12624 5.10E-14 4.80E-14 0.00016 0.000073

56

CHAPTER VI

CONCLUSION

Optimization Algorithms have many facets, one of which is metaheuristic

optimization algorithms. These algorithms focus largely on exploration and exploitation

of a solution space, with most of the computational resources being devoted to the

exploration of that space. Crosshair Optimizer takes a stochastic approach that primarily

focuses on exploitation of a solution space, having particles randomly place each of their

dimensions into bounds that are changed after every iteration. Values are occasionally

also allowed, at random for each of their dimensions individually, to be placed outside of

these bounds. These bounds are centered on the best member of the population.

Viewing the same two dimensions of the entire population in a scatterplot shows

something similar to a crosshair, where the middle of the crosshair is the best value found

thus far, which is where the algorithm gets its name. The area that the crosshair covers

in the solution space will be explored the most. This algorithm continues to run until

either the average fitness of the population hasn’t exceed a user defined minimum bound,

or a maximum number of experimentations have been completed. Initial testing of this

algorithm showed promising results, finding the global best value of seven of the thirteen

fitness functions.

When the idea of using High-Performance Computing came up to see if the

algorithm could take full advantage of a machine with a large amount of computational

resources, initial analysis of the algorithm gave evidence that the algorithm is very

capable of effectively using those resources. This is due to CHO being able to calculate

what each dimension of each particle separately without any reliance on other parts of the

particle, or the rest of the population. The bounds for each dimension can be calculated

57

once, and then each dimension needs to be randomly placed within those bounds. Thus

this algorithm is easily split into many tasks without any need to communicate between

those tasks, and no required memory structure to put those tasks into.

When experimenting using POSIX Threads (PThreads), this proved to be true,

though the speed up of the algorithm was largely based on the overall complexity of the

fitness function it was being tested on, the more complex, the more speedup was achieved.

During initial testing, Mersenne Twister was used to generate random values.

Since this algorithm relies heavily on randomness, experiments were run using different

Chaos maps to test their effect on the results produced by the canonical algorithm.

Two experiments were run, one with a smaller population and less iterations, and

another which had a larger population and more iterations. The reason behind these two

experiments was to test how effective a randomizer is initially, versus how effective a

randomizer is if given more time.

In results, the same randomizers tended to stand out as the most effective, those

being Arnold’s Cat map, Henon Map, Mersenne Twister, Sinai map, and Dissapative map.

However, other randomizers were capable of finding optimal results with unique fitness

functions. Thus, if using CHO for a different fitness function, multiple randomizers

should be considered as an ensemble system.

When using other randomizers, the other user defined variable associated with that

randomizers use also needs to be tuned. Thus, an experiment that ran every randomizer

with a different adj value was run as well, the adj value being what determines if

dimensions may land outside of its given bounds or not. Results showed that every value

had a different adj that was needed for it to produce it’s most optimal result, but evidence

showed that what each randomizer needed was largely based on the fitness function,

rather than the randomizer itself.

58

After all these experiments, CHO was capable of finding one additional global best

value compared to its initial testing, now finding the global best in eight of the thirteen

benchmark functions.

In conclusion, evidence shows that CHO is a very capable and versatile algorithm

that not only generates optimal results, but also capable of use in a high-performance

computing environment, and though it requires tuning to use other randomizer, using

those other randomizers allows for CHO to be capable of finding optimal values with

other fitness functions, making it more versatile.

59

REFERENCES CITED

[1] S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey Wolf Optimizer,” Advances in
Engineering Software, vol. 69, pp. 46–61, 2014.

[2] D. Davendra and J. Torrence, “Crosshair Optimizer,” in 2022 IEEE Workshop on
Complexity in Engineering (COMPENG), pp. 1–5, 2022.

[3] T. Odagaki, “Variable range Random Walk,” Physica A: Statistical Mechanics and its
Applications, vol. 603, p. 127781, 2022.

[4] W. L. Dunn and J. K. Shultis, “Markov Chain Monte Carlo,” in Exploring Monte Carlo
Methods (Second Edition) (W. L. Dunn and J. K. Shultis, eds.), pp. 189–254,
Elsevier, second edition ed., 2023.

[5] F. Busetto, G. Codognato, and S. Tonin, “Simple majority rule and integer
programming,” Mathematical Social Sciences, vol. 113, pp. 160–163, 2021.

[6] M. Metlicka, D. Davendra, F. Hermann, M. Meier, and M. Amann, “GPU accelerated
NEH algorithm,” in 2014 IEEE Symposium on Computational Intelligence in
Production and Logistics Systems (CIPLS), pp. 114–119, 2014.

[7] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning.
USA: Addison-Wesley Longman Publishing Co., Inc., 1st ed., 1989.

[8] J. Kennedy and R. Eberhart, “Particle Swarm Optimization,” in Proceedings of
ICNN’95 - International Conference on Neural Networks, vol. 4, pp. 1942–1948
vol.4, 1995.

[9] G. Lancia, F. Rinaldi, and P. Serafini, “Local Search inequalities,” Discrete
Optimization, vol. 16, pp. 76–89, 2015.

[10] A. Banerjee, D. Singh, S. Sahana, and I. Nath, “Impacts of Metaheuristic and Swarm
Intelligence approach in Optimization,” in Cognitive Big Data Intelligence with a
Metaheuristic Approach (S. Mishra, H. K. Tripathy, P. K. Mallick, A. K. Sangaiah,
and G.-S. Chae, eds.), Cognitive Data Science in Sustainable Computing,
pp. 71–99, Academic Press, 2022.

[11] T. Stojanovski and L. Kocarev, “Chaos-Based random number generators — Part I:
Analysis,” IEEE Transactions on Circuits and Systems - I: Fundamental Theory and
Applications, vol. 48, no. 3, pp. 281–288, 2001.

[12] R. Storn and K. Price, “Differential Evolution –A simple and efficient heuristic for
global optimization over continuous spaces,” Journal of Global Optimization,
vol. 11, no. 4, pp. 341–359, 1997.

60

[13] X. Yao, Y. Liu, and G. Lin, “Evolutionary Programming made faster,” IEEE
Transactions on Evolutionary Computation, vol. 3, no. 2, pp. 82–102, 1999.

[14] E. Rashedi, H. Nezamabadi-pour, and S. Saryazdi, “GSA: A Gravitational Search
Algorithm,” Information Sciences, vol. 179, no. 13, pp. 2232–2248, 2009. Special
Section on High Order Fuzzy Sets.

[15] M. Jafari Barani, P. Ayubi, M. Yousefi Valandar, and B. Y. Irani, “A new pseudo
random number generator based on generalized Newton complex map with
dynamic key,” Journal of Information Security and Applications, vol. 53, p. 102509,
2020.

[16] E. N. Lorenz, “Deterministic nonperiodic flow,” Journal of atmospheric sciences,
vol. 20, no. 2, pp. 130–141, 1963.

[17] M. J. Barani, M. Y. Valandar, and P. Ayubi, “A new digital image tamper detection
algorithm based on integer wavelet transform and secured by encrypted
authentication sequence with 3D Quantum map,” Optik, vol. 187, pp. 205–222,
2019.

[18] C. Herring and P. Julian, “Random number generators are Chaotic,” ACM Sigplan,
vol. 11, pp. 1–4, 1989.

[19] D. Lehmer, “Mathematical methods in large-scale computing units,” Ann. Computing
Lab, Harvard University, vol. 26, pp. 141–146, 1951.

[20] J. Palmore and J. McCauley, “Shadowing by computable Chaotic Orbits,” Physics
Letters A, vol. 121, p. 399, 1987.

[21] I. Zelinka, M. Chadli, D. Davendra, R. Senkerik, M. Pluhacek, and J. Lampinen,
“Hidden Periodicity - Chaos dependance on numerical precision,” Advances in
Intelligent Systems and Computing, vol. 210, pp. 47–59, 2013.

[22] R. Lozi, “New enhanced Chaotic number generators,” Indian Journal of Industrial
and Applied Mathematics, vol. 1, no. 1, pp. 1–23, 2008.

[23] R. Lozi, “Chaotic pseudo random number generators via ultra weak coupling of
Chaotic Maps and double threshold sampling sequences,” in ICCSA 2009 The 3rd
International Conference on Complex Systems and Applications, (University of Le
Havre, France), pp. 1–5, June 2009.

[24] I. Zelinka, M. Chadli, D. Davendra, R. Senkerik, M. Pluhacek, and J. Lampinen, “Do
Evolutionary Algorithms indeed require random numbers? Extended study,”
Advances in Intelligent Systems and Computing, vol. 210, pp. 61–75, 2013.

[25] X.-Y. Wang and X. Qin, “A new pseudo-random number generator based on CML
and Chaotic iteration,” Nonlinear Dynamics, vol. 70, pp. 1589–1592, Oct 2012.

61

[26] D. Lambić and M. Nikolić, “Pseudo-random number generator based on
discrete-space Chaotic map,” Nonlinear Dynamics, vol. 90, pp. 223–232, Oct 2017.

[27] D. Lambić, “Security analysis and improvement of the pseudo-random number
generator based on Quantum Chaotic map,” Nonlinear Dynamics, vol. 94,
pp. 1117–1126, Oct 2018.

[28] A. Akhshani, A. Akhavan, A. Mobaraki, S.-C. Lim, and Z. Hassan, “Pseudo random
number generator based on Quantum Chaotic map,” Communications in Nonlinear
Science and Numerical Simulation, vol. 19, no. 1, pp. 101–111, 2014.

[29] K. Wang, W. Pei, H. Xia, and Y. ming Cheung, “Pseudo random number generator
based on asymptotic deterministic randomness,” Physics Letters A, vol. 372, no. 24,
pp. 4388–4394, 2008.

[30] H. Zhu, C. Zhao, X. Zhang, and L. Yang, “A novel Iris and Chaos-based random
number generator,” Computers & Security, vol. 36, pp. 40–48, 2013.

[31] M. François, T. Grosges, D. Barchiesi, and R. Erra, “Pseudo-random number
generator based on mixing of three Chaotic maps,” Communications in Nonlinear
Science and Numerical Simulation, vol. 19, no. 4, pp. 887–895, 2014.

[32] M. A. Dastgheib and M. Farhang, “A digital pseudo-random number generator based
on Sawtooth Chaotic map with a guaranteed enhanced period,” Nonlinear
Dynamics, vol. 89, pp. 2957–2966, Sep 2017.

[33] J. Sprott, Chaos and Time-Series Analysis. UK: Oxford University Press, 2003.

[34] J. Burgers, “Mathematical examples illustrating relations occurring in the theory of
turbulent fluid motion,” in Selected Papers of J. M. Burgers (F. Nieuwstadt and
J. Steketee, eds.), pp. 281–334, Springer Netherlands, 1995.

[35] D. Aronson, M. Chory, G. Hall, and R. McGehee, “A discrete dynamical system with
subtly wild behavior,” in New Approaches to Nonlinear Problems in Dynamics,
pp. 339–359, Philadelphia, Pennsylvania: SIAM Publications, 1980.

[36] R. Senkerik, I. Zelinka, M. Pluhacek, D. Davendra, and Z. O. Kominkova, “Chaos
Enhanced Differential Evolution in the task of Evolutionary Control of selected set
of discrete Chaotic systems,” The Scientific World Journal, vol. 2014, 2014.

62

	Crosshair Optimizer
	Recommended Citation

	tmp.1679090509.pdf.LZpql

