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ABSTRACT 

 

 

Mixed reality (MR) systems integrate diverse sensors, allowing users to better 

visualize and quantify surrounding environmental processes. Some existing mixed reality 

headsets include synchronized front-facing cameras that, among other things, can be used 

to track naturally occurring tracer particles (such as dust or snowflakes) to estimate particle 

velocity field in real time. The current work presents a 3D particle tracking velocimetry 

(PTV) method for use with MR systems, which combines various monocular cues to match 

particles between corresponding stereo images. Binocular disparity is used to estimate 

particle distance from an observer. Individual particles are tracked through time and used 

to construct the vector field of a scene. A digital display of velocity vectors can be 

broadcasted into a user’s surrounding environment with the MR headset to be used as a 

flow visualization tool. The mixed reality particle tracking velocimetry (MR-PTV) 

approach was optimized to perform in natural conditions where particle size, particle color, 

and lighting are non-uniform. The approach was first tested using synthetic particle image 

data obtained by discrete element method simulations then experimentally validated for 

particles transported by a flume flow using the Microsoft HoloLens 2 MR headset. Uniform 

flow and flow around a body were considered experimentally. Experimental velocity 

measurements are compared to computational fluid dynamics results. The resulting MR-

PTV system can be used for a variety of industry, scientific and recreational purposes for 

field-based measurement of particle velocities in real time.         
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CHAPTER 1: MOTIVATION & OBJECTIVE 

1.1. Motivation 

Knowledge of local flow fields is used in a variety of applications including targeting, 

obscurant dispersal, positioning for chemical release, and tracking river flows. Particle 

tracking velocimetry (PTV) is a method used to measure velocity at high spatial resolution 

by tracking tracer particles through time to compute individual velocity vectors (Maas et 

al., 1993). Typically, PTV is used together with a laser to generate a sheet of light which 

illuminates the tracer particles at a set distance from the camera.  The standard set-up for 

using PTV in a laboratory setting requires precise multi-camera configurations (Doh et al., 

2012), a coherent light source (e.g., a laser) (Bryanston-Cross et al., 1992), a synchronizer, 

and calibration image stacks (Barnkob et al., 2015). These requirements make standard 

planar PTV difficult to use in field settings.  Dedicated large-scale PTV methods have been 

used in field research to measure flow around city building models (Zhao et al., 2020) and 

snowflakes have been used as tracer particles to resolve large vortex structures that form 

at the tips of wind turbine blades (Hong et al., 2014, and Hong and Abraham, 2020). Such 

systems are not easily moved from location to location. 

Much of the difficulty in taking accurate PTV measurements lies in having to 

illuminate the flow field with a high-power laser, which serves to identify particles at a 

fixed distance from the camera. This difficulty can be removed by use of a three-

dimensional PTV system, which uses particles in a three-dimensional volume in which the 

measurement requires an estimate of the distance between each particle and the PTV 

camera(s). This method described in the current work integrates a novel three-dimensional 
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particle tracking velocimetry (PTV) algorithm with a mixed reality (MR) headset and is 

termed MR-PTV. The system is designed to be capable of measuring both particulate flows 

in a laboratory, as well as naturally occurring tracer particles in field studies. For instance, 

natural particles such as snowflakes, rain drops, falling leaves, or river floaters can be 

tracked through time, and individual velocity vectors for each particle are computed. 

Individual velocity vector data can then be displayed as holograms using the capabilities 

of an MR headset. The output yields local flow measurements over a three-dimensional 

spatial region with minimum specialized instrumentation, aside from the MR headset and 

a source of tracer particles.  

1.1.1. Development of Augmented Reality Technology 

Advancing augmented reality (AR) systems are a key technology focus.  Many 

companies, including Microsoft, Lenovo, and Google, have released wearable “Mixed 

Reality” (MR) headsets that merge computer generated holograms with the real-world 

environment where virtual and physical objects are seen and interacted with in real-time. 

In 2023, Apple plans to unveil their own MR headset, complete with its own operating 

system. MR headsets provide immersive experiences which can be used for recreational 

purposes such as gaming and entertainment, but primary applications include academia, 

industry, and scientific use. In academia, modeling and simulations using MR headsets 

provide memorable learning experiences for students and ways for researchers to visualize 

and interact with their models. For instance, medical students can view and interact with 

3D anatomical structures, as if they were performing surgery, aspiring musical conductors 

can practice their skills with a virtual orchestra, and history students can witness 
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simulations of historical battles. In industry, companies can build training routines for new 

hires to become acquainted with their work environment. Mechanics can follow tutorials 

on how to fix vehicle components, and remote employees can work with their coworkers 

in an immersive environment.  

 While small in size, MR headsets integrate significant hardware and software 

components. Hardware components generally consist of multiple synchronized cameras 

used for hand tracking and spatial awareness. For instance, the MR-PTV algorithm 

developed in the current work uses the synchronized front-facing stereo cameras on the 

Microsoft HoloLens 2 MR headset, shown in Figure 1, to track naturally occurring tracer 

particles through time to compute velocity vectors for individual particles. Future evolution 

of this project aims to develop software for the MR headset with the capability of 

displaying velocity vectors as holograms anchored in the real-world environment.   
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Figure 1: Author wearing Microsoft HoloLens 2. Labels point to the location of front facing stereo 

cameras. 

1.1.2. Target Applications 

Real-time local velocity measurements can be used in a variety of applications in 

other industries, such as wind farm planning and water surveying. Wind energy is a 

growing industry with significant promise as a sustainable energy source. Developers 

position wind farms in high wind areas to maximize power output. A real-time flow 

visualization tool is a beneficial aid in positioning individual wind towers. The MR-PTV 

system can also be used to track the velocity of objects on and in water. For example, water 

flows are commonly surveyed to estimate areas of sedimentation deposit and erosion as 

shown in Figure 2. 
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Figure 2: River currents determine areas of sedimentation deposit and erosion (St Mary's Fluvial 

Studies). 

The MR-PTV system can measure floating objects, such as released floating tracer particles 

on the surface of moving water. By identifying areas of erosion and deposition scientists 

can predict areas vulnerable to erosion.  

 

1.2. Objective 

The objective of this study is to present the framework for a particle tracking 

velocimetry (PTV) system that is compatible for use with mixed reality (MR) headsets. 

The system is termed Mixed Reality Particle Tracking Velocimetry (MR-PTV) and uses 

two stereo cameras to track objects through space and time to compute the velocity field 

of a scene. After its development, the MR-PTV algorithm is validated in this work with 

velocity measurements from computational and experimental stereo image pairs. A 
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synthetic stereo camera code was developed that produces synchronized stereo image pairs 

of particles flowing through a three-dimensional volume. MR-PTV is used to compute 

three components of velocity in the computational volume containing particles flowing in 

both uniform and turbulent flow fields. Then, the Microsoft HoloLens 2 MR headset was 

used to experimentally capture stereo image pairs of particles flowing inside a flume. The 

MR-PTV system was used to compute velocity vectors of particles in the flume both for 

uniform flow and for flow under a submerged sluice gate.   

 The remaining sections of the thesis are summarized as follows. Chapter 2 

contains a literature review covering existing PTV methods and sources of error, as well 

as depth estimation approaches used in the computer vision literature. The MR-PTV system 

methodology and algorithms are described in Chapter 3. Performance results for the MR-

PTV system flow measurements for uniform flow for both computational and experimental 

data is presented in Chapter 4. Chapter 5 includes performance results for the MR-PTV 

system in synthetic data for isotropic turbulent flow. Experimental results from particles 

flowing under a sluice gate body in a flume are presented in Chapter 6. Conclusions are 

presented in Chapter 7. 
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CHAPTER 2: LITERATURE REVIEW 

2.1. Particle Tracking Velocimetry (PTV) Method and Sources of Error 

Particle tracking velocimetry (PTV) is a flow measurement technique used to 

measure velocity vectors of individual tracer particles seeded in a flow. PTV uses the same 

experimental setup as particle image velocimetry (PIV), a flow measurement technique 

which preceded PTV (Adrian 1986). Instead of tracking individual particles through time, 

PIV uses a double-pulsed laser to capture image pairs separated by a short interval of time. 

Image pairs are then processed using a spatial cross-correlation method to compute a single 

velocity vector for each interrogation window in an image. Section 2.1.1 describes the 

setup for general PIV/PTV systems. Sources of error in PTV measurements are described 

in Section 2.1.2. 

2.1.1. PTV Method 

PIV and PTV systems use images of particles to estimate flow field velocity 

components. Both methods use identical experimental setups for tracking two-dimensional 

velocity components. The setup, shown in Figure 3, consists of a camera oriented 

perpendicular to a thin laser sheet running through the test section of the flow, where the 

camera imaging and laser pulses are synchronized.  
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Figure 3: 2D PIV/PTV system including a laser to illuminate tracer particles seeded in a flow. A 

camera captures images of tracer particles (https://www.kanomax.co.jp/img_data/file_731_1454635706.pdf ). 

Tracer particles seeded in the flow are illuminated by the laser and appear as bright dots in 

images. The laser light sheet is an essential part of the system because it is impossible to 

calculate velocity of particle images without knowing the distance of the particles from the 

camera. Determining particle depth from a single image is extremely challenging. The laser 

light sheet illuminates particles at a known distance from the camera allowing for velocity 

calculations to be made.  

 While PIV and PTV methods share the same experimental setup, the post–

processing approach and results of the two methods differ. The PIV approach segments an 

image into gridded “interrogation windows” and a spatial cross-correlation is used between 

image pairs from a double-pulsed laser, in which images are separated by a small time 

difference. The resulting output yields a single average velocity vector calculation for each 

https://www.kanomax.co.jp/img_data/file_731_1454635706.pdf
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interrogation window. The theory behind the PIV algorithm makes two basic assumptions. 

First, the velocity field is assumed to be constant between two frames, and second, the 

velocity distribution within an interrogation window is assumed to remain constant. When 

measuring real flow, neither of these two conditions are easy to completely achieve. This 

leads to spatial resolution errors in sharp flow gradient measurements such as boundary 

layers (Scarano 2003).   

PTV generally uses a single pulsed laser to track the displacement of individual 

particles through frames and compute a velocity measurement for each tracer particle. By 

tracking individual particles, PTV methods can, therefore, resolve flow fields at higher 

spatial resolution. Kähler et al., 2012 compared the spatial resolution limits of PIV and 

PTV methods for a localized step function flow gradient. Dynamic spatial range (DSR) is 

used to characterize the spatial resolutions for evaluating both PIV and PTV methods. The 

study found that PTV had a DSR nearly two and a half orders of magnitude greater than 

PIV measurements using 8x8 pixel interrogation windows and three orders of magnitude 

greater than PIV measurements that used 16x16 pixel interrogation windows. Due to the 

improved spatial resolution results using the PTV method, more effort has been made to 

enhance the development of PTV systems in recent years (Bao and Li, 2011, Doh et al., 

2012, Kin et al., 2016, Latychevskaia and Fink, 2014). 

 Raw data is acquired, for a PTV system, using a calibrated camera and 

synchronized laser, where the intrinsic and extrinsic camera parameters are known. 

Unprocessed data takes the form of an image stack where each image is separated by a 

known increment of time and the images contain illuminated particles. Post-processing is 
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a multi-step process that includes a particle centroid finding algorithm to determine the 

location of particles in each image, and a particle linking algorithm which links particles 

between consecutive frames. The velocity of an individual particle is then calculated by 

dividing the displacement of the centroid between frames by the known time increment 

between frames. 

2.1.2. PTV Sources of Error 

PTV algorithms use images to measure particle velocity. A PTV image is a bitmap 

of pixels where each pixel has an assigned intensity. For grayscale images, pixel intensity 

ranges from 0 (black) to 255 (white). When using particle centroid locations in an image 

plane, it is necessary to use a physical length scale to calculate velocity components. The 

following paragraphs discuss three main sources of PTV system errors - camera error, 

position uncertainty error, and particle overlap error. 

 Digital cameras are manufactured with a variety of different properties, including 

frame rate, focal length, sensor size, pixel resolution, and magnification. A camera 

calibration process is required to measure intrinsic parameters of a camera so that accurate 

measurements can be made from pixel positions. Typically, a camera calibration process 

selects points on a calibration plate or checkered board with known physical distances 

between points to calculate the intrinsic camera properties. If an image with low resolution 

is used, or the calibration selection points aren’t precisely selected, the intrinsic camera 

properties will be incorrect, leading to calculation errors of physical centroid positions for 

particles in an image.  
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 Many different types of cameras are used in PTV setups for different purposes. 

Frame rate is a critical property that must be selected to allow enough temporal resolution 

to resolve desired flow structures in the image flow field. If the frame rate is too low for a 

given flow velocity, particles will move large distances across the image between frames, 

making it difficult to link particles. In other cases, particles may only appear in a single 

frame making them impossible to link between consecutive frames. A frame rate that is too 

high compared to the required temporal resolution may increase computational cost by 

creating massive amounts of data storage and processing.  

Hain et al. (2007) performed a detailed comparison of charged-coupled device 

(CCD) and active-pixel sensor (CMOS) camera sensors. CCD camera pixel sizes are nearly 

four times smaller than the pixels on the CMOS image sensor; however, the frame rate of 

the CCD is 8 Hz compared to the frame rate of the CMOS at 1024 Hz. The study showed 

that CCD cameras had the highest precision for spatial measurements while the CMOS is 

optimal for time-resolved data acquisition.  

 Images are bitmaps of pixels with assigned intensities. Precision for centroid 

finding is key to computing the particle location. Each particle appears in an image as a 

cluster of bright pixels. Depending on physical particle size and distance from the camera, 

a particle may only appear as a relatively small group of pixels requiring sub-pixel centroid 

finding precision. Figure 4 shows how a single particle may appear in a small image 

section. 
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Figure 4: Determination of particle centroid method for subpixel accuracy. (a) shows pixel intensities 

in the x-direction, (b) shows pixel intensities in the y-direction (Gollin et al., 2017). 

Feng et al., (2011) studied the effect of centroid uncertainty on PTV velocity results and 

found that velocity measurement errors are dominated by centroid uncertainty when the 

particle displacement between frames is small. They concluded that fast frame rates may 

not always be optimal in cases where particle displacement is negligible because velocity 

uncertainty is increased by centroid uncertainty with small particle displacements.  

 Two classes of ghost particles contribute to errors in PTV systems. The first class 

is reconstruction ghost particles which occur in 3D PTV methods. Reconstruction ghost 

particles occur when particle intensities intersect from multiple camera images: they are 

further discussed in Section 2.2.1. Clustered ghost particles occur when multiple particles 
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in an image appear as one cluster. In 2D PTV, a thin laser sheet is used. When particles 

pass by each other, they become indistinguishable within an image. PTV systems often 

identify the cluster as a single particle even though it is likely multiple overlapping 

particles. Centroid-finding algorithms cannot find the correct particle centroid if multiple 

particles are clustered together in an image. Not only do ghost particles have faulty 

centroids but may disrupt linking algorithms for the individual particle tracks of the 

clustered particles. The negative effect of ghost particles is minimized by seeding tracer 

particles at a lower density in the image. In some cases, the particle seeding density is not 

controllable; for these cases attempts have been made to identify overlapping particles. 

Methods to overcome this problem include anisotropic thresholding to find discontinuities 

within blobs (Maas et al., 1993), finding the inflection point between intensities within 

blobs to identify multiple particles (Mikheev and Zubtsov, 2008), neural networks for 

identifying overlapped particle images (Carosone et al., 1995), and particle mask 

correlation which correlates intensity to the expected shape of individual particles 

(Takehara and Etoh, 1999). 

 Sources of error in PTV systems vary depending on the algorithms used to identify 

and link particles. Optimal conditions for PTV exist when the image signal-to-noise ratio 

is high. Signal-to-noise ratio can be improved by reducing background noise and lowering 

the tracer particle seeding density. 

2.2. Volumetric PTV Methods 

The ability to track particles in three-dimensional space is critical for scientists to 

understand 3D flow structures. In a simple image containing particles spread throughout a 
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volume, there is insufficient information to measure particle spatial location because the 

distance from each particle to the camera is unknown. Various techniques have been 

developed to track the spatial location of a particle in three-dimensional space, and many 

instances exist where 3D-PTV methods have been used to study flow characteristics (e.g., 

Kim et al., 2016; Romano et al., 2021). 3D-PTV methods commonly use multi-camera 

configurations, image splitters, or structured light to calculate the depth of each particle in 

an image. A review of 3D-PTV methods follows in the remainder of Section 2.2. 

2.2.1. Tomographic PTV 

Tomographic PTV (Tomo-PTV) systems consist of 3 or 4 CCD cameras positioned 

at different angles of view around a laser illuminated test section. Instead of identifying 

particles in a 2D image plane, Tomo-PTV uses numerical pixel intensity data from the 

images of multiple cameras to construct a 3D voxel space using a tomographic approach 

(Doh et al., 2012). A simple illustration of the approach is shown in Figure 5, where two 

image planes are shown whose pixel projections in zc intersect to form a 3D voxel space. 

Assembling a 3D voxel space requires an extensive calibration process. 
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Figure 5: Pixel projections orthogonal to image planes form a 3D voxel (Kitzhofer and Brücker, 

2010). 

An image is a 2D bitmap of pixels where each pixel has a numerical intensity 

value. A particle intersected by a pixel row appears as a 1D Gaussian distribution of pixel 

intensities. The 3D position of a particle is identified at the intersection of particle 

projections from multiple cameras as a cluster of high intensity voxels. Solving for the 

centroid of a particle in voxel space requires at least three 1D Gaussian intensity profiles. 

The Multiplicative Algebraic Reconstruction Technique (MART) is the primary algorithm 

used to construct the 3D space (Elsinga et al., 2006). The MART method is an iterative 

method that uses a weighting matrix to relate pixel intensities from each camera to voxel 

intensities. Those intensities are projected onto a synthetic camera sensor, which is then 

compared to original images, and the process reiterates until the back-projected images 

match the original images. The method works well for a high particle seed density, but is 

computationally expensive; however, some improvements have been made to reduce the 
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computational cost (Atkinson and Soria, 2009). Once particles are constructed in 3D space, 

they are then tracked from frame-to-frame creating a velocity vector field. 

 Tomographic reconstruction is a challenging process, often leading to the 

appearance of ghost particles in voxel space. Ghost particles occur when particles are 

reconstructed in voxel space when there is no particle actually at that position. Ghost 

particles occur when the intensities of two different particles intersect in voxel space as 

shown by Figure 6. 

 

Figure 6: Ghost particles occur at positions where intensities of two different particles overlap 

(Elsinga et al., 2011). 

Although a PTV algorithm identifies a particle as existing at the location of a ghost particle, 

there is no particle there in physical space. Ghost problems may interfere with linking and 

matching algorithms and are often hard to distinguish from real particles by the PTV 

system. Adding more cameras to the setup or decreasing particle seed density can help to 

control this problem. The main source of error for Tomo-PTV are ghost particles and 
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calibration errors. A two-camera Tomo-PTV configuration is insufficient, so generally 3-

5 cameras, rotated at angles near 20-30 degrees, are used. 

2.2.2. Defocus PTV 

Defocusing PTV is a single camera particle tracking technique utilizing radial blur 

or image shift of particle in the image plan to determine particle depth. A traditional camera 

uses a single aperture opening to allow light to pass through a lens and land on an image 

sensor, as shown in Figure 7a. Defocusing PTV uses depth from a defocusing process, 

shown in Figure 7b, using a camera containing multiple aperture openings so that each 

particle in 3D space appears more than once on the image plane. Depth is then computed 

using the image shift, b, between the particle images of the same particle on the image 

plane.  

 

Figure 7: a. Standard imaging system; b. defocusing arrangement (Pereira et al., 2000). 
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Wilbert and Gharib (1992) used an aperture mask with three pin holes to decode three-

dimensional positions of illuminated particles tracked throughout time to obtain particle 

trajectories in a flow field of a vortex ring impinging on a wall. Pereira et al. (2000) 

computed depth from defocusing with a PIV algorithm to map the velocity field around a 

propellor in a volume of one cubic foot using bubbles as tracer particles. 

 Other methods of defocusing PTV using cameras with traditional single-aperture 

openings are suited primarily for microscopic PTV (Park and Kihm 2006, Guo et al., 2019). 

These methods compare the radial blur or shape of a particle in the image plane to shapes 

or radial blur of particles at known distances. For instance, Particle A in Figure 7a lies on 

the reference plane and appears as a point source of light on the image plane; however, 

particle B in Figure 7a lies outside the reference frame, causing the radial projection on the 

image plane to appear larger and lower intensity. Barnkob et al. (2015) developed the 

General Defocus Particle Tracking (GDPT) method which compares the shape of a target 

particle in the image plane to a stack of calibration particle images at known depths, as 

shown by Figure 8.  
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Figure 8: A target particle image in the image plane is compared to a set of calibration images with 

known out of plane depth, z (Barnkob et al., 2015). 

The GDPT method successfully measures positions of 2 μm particles with uncertainty of 

0.1 μm in the in-plane direction and 2 μm in the depth direction in a measurement volume 

of 1510 × 1270 × 160 μm3. This method requires uniform seed particles; however, it is 

capable of distinguishing overlapped particles due to the difference in appearance of 

particle image shapes in the image plane. 

2.2.3. Photogrammetric PTV 

Photogrammetry is the process of extracting 3D information from at least two 

overlapping images. Photogrammetric 3D-PTV employs multiple camera configurations 

to image particles inside a volume typically illuminated by a laser. Instead of building a 

voxel space, as with tomographic methods, photogrammetric PTV uses particle detection 

methods to find particle centroid locations in images, and then uses a matching algorithm 

to match like particles in each image to find instantaneous 3D particle positions. Particles 
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are then linked through time to calculate individual velocity vectors for each particle in the 

test volume. 

Papantoniou and Dracos (1990) were the first to use photogrammetric analysis for 

PTV to compute flow characteristics of turbulent open channel flow using three 

synchronized cameras mounted in a stereoscopic arrangement with axes intersecting at 50 

degrees. Many applications of photogrammetric PTV methods have since been developed 

using different numbers and types of cameras depending on the application. Two camera 

systems can calculate 3D spatial dimensions at low tracer particle density. At high tracer 

particle densities, particle images overlap to form clumped ghost particles, challenging to 

distinguish with only two cameras. Generally, for laboratory PTV experiments more than 

two cameras are preferable to improve 3D spatial resolution. Graff and Gharib (2008) 

studied error in the constructed scene and ghost particle generations for multiple 

configurations of three and four camera PTV systems and found a lower error factor for a 

four-camera system than a three-camera system.  

Stereo PTV uses two cameras separated by a baseline distance with overlapping 

fields of view. The process involves a calibration procedure to determine 3D particle 

positions. Each camera is calibrated to extract intrinsic and extrinsic (rotation and 

translation) parameters used to form a 3x3 fundamental matrix relating a point in the left 

image, x, to an epipolar line in the right image on which a corresponding particle, x’, lies. 

In Figure 9, point X in 3D space, appears in the image plane of the left camera, C1, as x and 

appears in the image plane of the right camera, C2, as x’. The intersection of the right image 
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plane and the plane created by points C1, C2, and X in Figure 9 creates an epipolar line l’ 

on which x’ must lie. 

 

Figure 9: Epipolar geometry of a stereo camera configuration (Lopez-Martinez and Cuevas, 2020). 

Epipolar lines can be used to determine particle matches between left and right 

frames (Lindken et al., 2008). It is possible that more than one particle may lie on the same 

epipolar line in a stereo configuration. Bao and Li (2011) proposed to use the radial blur of 

a particle image as an additional constraint if multiple particles passed the epipolar 

constraint. Their method used the radial blur from defocusing to estimate a range of depth 

for particle x in the left image so that the epipolar line can be snipped to a short segment in 

the right image. The corresponding particle match in the right image, x’, is only selected if 

it is within the depth tolerance calculated using radial blur from particle x. This method 

increased the correct pairing rate from 56.1% to 74.3% for a simulation using 2200 
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particles at a density of 0.0011 particles per pixel when compared to the epipolar nearest-

neighbor method. Peterson et al. (2012) advanced the epipolar matching constraint by 

adding a constraint on image similarity defined by seven criteria: 1) peak intensity 2) 

summed intensity 3) total number of pixels 4) width, as measured in pixels 5) height, as 

measured in pixels 6) maximum value of a cross-correlation between zero-padded raw 

particle images 7) maximum value of a normalized cross-correlation between zero-padded 

binarized particle images. If multiple particles passed the epipolar constraint, then the 

particle pair with highest image similarity is considered a match.   

2.2.4. Holographic PTV 

 A hologram is an apparent light structure formed by the interference between light 

diffracted from an object illuminated by a coherent light and a known reference beam. 

Holography is an imaging technique that uses light wave interference to reconstruct 3D 

positions of small objects, such as particles. Holograms form from a diffraction between a 

coherent light source, known as the object beam, and a known reference beam. Hologram 

images contain information on the phase and amplitude of diffracted waves making 3D 

position reconstruction possible using optical or computational techniques. There are 

generally two types of holographic reconstruction, off-axis and inline. With off-axis 

holography, the object beam and reference beams are at different angles, as seen in Figure 

10a and in the corresponding 3D reconstruction of the virtual image is shown in Figure 

10b. In-line holography, shown in Figure 10c, exists when the object and reference beams 

are parallel. In in-line reconstruction, real and virtual particle images are symmetrical, as 

shown in Figure 10d. 
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Figure 10: a) Off-axis light configuration and (b) off-axis virtual and real image reconstruction. (c) 

Lighting configuration for in-line holography and (d) the real and virtual image reconstruction (Katz 

and Sheng 2010). 

In-line holography is typically used with PTV methods because the configuration is simple 

and requires only 0.1% of the light than an off-axis configuration (Toloui et al., 2017). 

However, off-axis configurations provide better depth resolution and have fewer 

overlapped holograms compared to in-line holography.  

 Figure 11 illustrates the experimental configuration for a holographic PTV 

system. In this case a coherent laser light source travels through a volume of flowing 

particles. Particle holograms, that are in focus, appear as points in an image, while 

holograms of particles that are not in focus appear to have large radius fringe patterns. 
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Figure 11: Schematic drawing of in-line holographic PTV system (Coletti et al., 2016). 

Particles that are in focus exist at a known distance from the camera. Reconstruction 

methods then use the diffraction patterns of holograms to compute particle depth in voxel 

space. Holographic PTV methods have low spatial resolution in the depth direction because 

reconstruction methods elongate particles in voxel space (Adrian and Westerweel, 2011). 

Methods to reduce the elongation effect include digital deconvolution (Sarder and Nehorai, 

2006; Latychevskaia et al., 2010; Latychevskaia and Fink, 2014) and inverse iterative 

prediction (Sun et al., 2020). Once particle positions are computed using hologram images, 

the same linking methods can be used as with other 3D PTV methods to track particles 

through time and compute velocity. 

 Satake et al. (2008) studied micro-channel flow using an in-line holographic PTV 

technique. To accomplish this, nylon particles were placed on a glass slide that traversed 

parallel to the camera image plane and depth from the camera was adjusted. The study 
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found that in-plane velocity components had an uncertainty average of roughly 1.6% while 

out of plane velocity uncertainty was 11.03%. Due to poor spatial resolution in the depth 

direction, stereo PTV methods are generally preferred over holographic PTV methods. 

2.3. Depth Estimation in Computer Visualization 

 Image depth reconstruction is an important challenge for many different 

applications, including autonomous driving, robotics, and 3D reconstruction in augmented 

reality systems. The process by which a camera produces an image, when light travels 

through a small opening and hits an image sensor, is strikingly similar to the biological 

process of sight, when light passing through the cornea of an eye forms an image as the 

light hits the retina. This leads to the question; how do humans perceive depth from images 

formed by their eyes? The answer is through a combination of two different types of 

processing techniques -- monocular depth cues, such as texture, gradient, motion parallax 

and occlusion, and binocular depth cues, such as stereopsis. Monocular depth cues are 

object features the brain uses to determine object depth order from a single image. 

Binocular depth cues are formed from a combination of muliple images combined to 

perceive depth. Humans see with two eyes, and the brain combines the two distinct images 

to form a single image. Subtle differences in object positions between the two images are 

caused by the slight translation of the right eye to the left eye. The human brain uses these 

differences to calculate depth using a process called convergence (Kooi and Toet, 2004). 

The field of computer depth estimation seeks to mimic these biological processes related 

to sight to estimate depth within two-dimensional images. Section 2.3.1 discusses computer 

visualization techniques using monocular vision methods to map image depth. Section 



 

26 

 

2.3.2 reviews computer visualization methods developed to map depth using multiple 

cameras. 

2.3.1. Single Camera Depth Estimation 

 Monocular depth perception cues involve the use of a single eye, or in the case of 

computer vision, a single camera. Monocular cues include size, interposition, lighting, 

texture, blur, and motion parallax. Interposition occurs when an object that is closer 

partially obstructs the view of an object at a greater depth. Motion parallax is a phenomenon 

that occurs when objects at different depths move different distances within an image. For 

example, a viewer standing in the middle of a snowstorm perceives nearer snowflakes to 

fall faster than snowflakes that are farther away, which appear to be falling relatively 

slower. The brain uses a combination of monocular cues to perceive depth (Landy et al., 

1995; Mather and Smith, 2004; Ono and Wade, 2006). The following subsection provides 

a review of methods utilizing monocular cameras to measure depth from within an image. 

 It is important to note that monocular cues provide depth information relative to 

objects in a scene. Therefore, it is necessary to have a known physical length scale in a 

single image to compute real-world depth. Salih and Malik (2012) presented a method to 

compute object size and depth using simple geometric relationships between the points in 

an image compared to known camera position and angle. The method is intended for use 

where a camera is oriented at a given angle and height above the ground. The depth of an 

object on the ground can then be measured using the cameras’ field of view in a pinhole 

camera model. Other models use lighting as a monocular cue to compute object depth by 

relating pixel intensities through a time series of images (Maki et al., 1998) or by using a 
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Hidden Markov Model (Nagai et al., 2002). Saxena et al. (2005) uses a combination of 

texture variations, texture gradients, and haze to compute an absolute depth for an image 

patch, which is then compared to other image patches resulting in a relative depth map for 

a single image. Often monocular cues, such as blur and motion parallax, do not provide 

enough information to compute depth maps on their own but are used as complimentary 

information to enhance the resolution of multi-camera depth maps (Kellnhofer et al., 2016, 

Kowdle et al., 2012). 

 Progress in machine learning in recent years has led to successful neural network 

algorithms for computing depth from a single camera. Fu et al. (2018) introduced a 

spacing-increasing discretization strategy to train a convolutional neural network (CNN) 

using an ordinary regression loss function as opposed to a conventional mean squared error 

loss function. This training method allows for fewer pooling operations resulting in a 

higher resolution depth map. Alhashim and Wonka (2019) utilized a transfer learning 

technique which used deep features from convolutional neural networks (CNN) previously 

trained on large datasets. They proposed that with transfer learning, their CNN can produce 

highly resolved depth maps. Figure 12 provides an example of depth maps from the image 

in the first column, with ground truth 3D laser scan in the second column, and Alhashim 

and Wonka (2019) transfer learning method in the fourth column. 

 Although depth estimation from single images has been improved by the 

enhanced capabilities of machine learning, single image methods are still significantly less 

accurate than multi camera systems. Many depth estimation methods using monocular cues 

also suffer from being image-dependent, in that what might work well for a recognizable 
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image, such as a road or train tracks extending into the distance or an image with shadows 

and light gradients,  would not be expected to work well for an image consisting of a set of 

white dots (as is the case for PTV). The following section details how multi-camera depth 

perception can be used to provide additional information on image depth. 

 

 

Figure 12: Input image, ground truth laser scan depth map, transfer learning depth map, and 

regression loss CNN (Alshahim and Wonka, 2018). 

2.3.2. Multiple Camera Depth Estimation 

The human brain perceives depth by forming a single image from the images of 

two individual eyes, a process known as stereopsis. Two eyes converge at different angles 

when focusing on objects at different distances. Cameras can be used in the same way to 

construct a 3D scene from similar points in images from cameras with known positions, a 
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technique which is known as disparity mapping. Disparity mapping is commonly used to 

compute the depth of field in applications including self-driving cars and robotics (Caesar 

et al., 2020; Geiger et al., 2013). 

Disparity mapping involves stereo cameras with overlapping fields of view. 

Disparity is the distance between two corresponding points in a pair of stereo images, and 

is inversely proportional to depth. Disparity maps are created by iterating through each 

pixel in the first stereo image to locate the corresponding pixel, of the same real-world 

point, in the second image. Algorithms that match corresponding particles between stereo 

images generally use an epipolar geometry constraint. Epipolar geometry constraints limit 

the search area for a pixel in the first image to a single line of pixels in the second image. 

Epipolar geometry is based on the orientation of the stereo cameras and explained in more 

detail in Section 2.2.3. The epipolar geometry of co-directional stereo cameras is a 

horizontal line. For example, a particle image located at (XR,YR) in the right image plane 

must lie on the same row of pixels as the corresponding image of the same particle in the 

left image, located at (XL,YL); thus YR = YL, which significantly reduces the search area for 

corresponding particle images. Matching algorithms search epipolar geometry lines and 

use a cost computation function to match corresponding pixels between left and right 

images (Scharstein and Szeliski, 2002). The cost computation commonly uses mean-

squared intensity error (Anandan, 1989) and mean absolute intensity differences (Kanade, 

1994) of pixel intensities in a small window of pixels surrounding a pixel on the epipolar 

line to locate corresponding matches. After corresponding pixels are matched, the disparity 

d at that pixel is calculated by d = XL - XR, from which depth can be computed. Initial 
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disparity maps often have granulated appearances and require refinement for higher 

resolution maps. Gu et al. (2008) implemented adaptive disparity refinement that adjusts 

disparity values based on neighboring disparity values in a “support-window” that passes 

over the image in a refinement step. The support acts like a convolutional pass, where 

general regions are smoothed, but remain are blurred. Jung et al. (2015) implemented a 

single pixel adaptive disparity refinement by applying an adaptive support-weight to each 

pixel. The support-weight is generated from a combination of color-similarity, spatial 

distance, and color dissimilarity information from the original disparity map. Figure 13 

shows the results, where (a) is the left image of a stereo input image pair, (b) is the ground 

truth disparity map, (c) are results from Gu et al. (2008) support-window refinement 

algorithm, and (d) are results from Jung et al. (2015) single pixel support-weight algorithm. 
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Figure 13: Adaptive disparity mapping results. (a) The original input image, (b) is the ground truth 

disparity map, (c) results from Gu et al. (2008), (d) results from Jung et al. (2015). 

 Disparity mapping from stereo cameras is a well-known method for computing 

depth of a scene. It is important to note that stereo cameras must be synchronized to resolve 

3D positions for objects moving in time. The frame rate of stereo cameras must be high 

enough to resolve the characteristics of desired motion, yet low enough so that massive 

amounts of excess data is not generated. The resolution of a disparity map can be enhanced 

using monocular features such as color and spatial similarities (Jung et al., 2015) or motion 

parallax (Kellnhofer et al., 2016). Stereo correspondence is particularly effective for 

finding matches of objects that appear as clusters of pixels in an image, such as particles. 

The process can be simplified by finding corresponding matches for each cluster rather 

than each pixel.  
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CHAPTER 3: METHODOLOGY 

This section presents a methodology for combining monocular and binocular cues 

for performing volumetric 3D PTV with a two-camera MR device. It is assumed that both 

cameras of the MR device are co-directional (front facing), take synchronized grayscale 

images at a fixed frame rate, are separated by a baseline distance h in the x-direction of a 

global Cartesian coordinate system, and have focal length f. The field of view of each 

camera substantially overlaps that of the other camera, with equal focal lengths for both 

cameras. The origin of the global Cartesian coordinates is located at the point half-way 

between the cameras, and the z-direction is taken as the distance away from the cameras in 

the direction of sight (Figure 14).  

 

Figure 14: Left (L) and right (R) cameras and the associated global coordinate system (x, y, z). The 

image plane is indicated by a red line, with left camera image plane coordinates ( XL,YL) and right 

camera image plane coordinates ( XR,YR). 

Image plane coordinates (
LL YX , ) and (

RR YX , ) are assigned to the left and right camera, 

respectively. The origin of each image plane coordinate system is the center of the 

respective image plane. To help avoid confusion, we use upper-case letters to denote 
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variables in the image plane and lower-case letters to denote variables in the global 

coordinate system throughout the paper. 

Figure 15 provides a block diagram showing the series of steps required to track 

particles in 3D space using the two-camera MR device. 

 

Figure 15: Block diagram of MR-PTV velocity calculation algorithm. 

 

 The first step, on the far left of Figure 15, is image acquisition by the two cameras. MR 

devices typically do not offer adjustable image acquisition rates (as is typical for cross-

correlation cameras used for PIV and PTV), limiting the velocity of particle motion that 

can be acquired with the system. The output of the image acquisition step is two 

synchronized video feeds, one from each stereo camera. Each video frame is a pixel map 

taken at a constant time step, which are then processed using the MR-PTV software. The 

first step of the MR-PTV software involves particle detection in images by using a local 

adaptive binarization method. The output from the particle detection step includes 

measurement of image plane variables such as, centroid position (
LL YX , ), diameter 

LD , 

and brightness 
LB  for each particle seen in the image plane of the left camera, with these 
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measurements repeated for the right camera. The particle linking step employs a dynamic 

linking algorithm, enhanced by monocular features, to link particles between successive 

frames. The particle matching step matches particles between left and right camera images. 

The matching algorithm, again, makes use of monocular cues, along with epipolar 

geometry constraints to match a particle between left and right stereo images. Binocular 

disparity is then used to estimate the distance of each particle from the origin. The previous 

steps result in a series of global position estimates for each particle over a series of frames. 

To reduce noise in 3D velocity estimates, we utilize the moving least-squares method to fit 

a polynomial to multiple points which can be differentiated resulting in smoother velocity 

measurements throughout time.             

3.1. Particle Detection 

 The particle detection method involves an image segmentation technique where 

particles are distinguished from the background. When a grayscale image is input to the 

segmentation algorithm a binary image is returned with particles appearing as white and 

background appearing as black. Global segmentation techniques generally involve a pixel 

intensity threshold, lT, that can be set manually or automatically (Sankur 2004) to determine 

whether each pixel in the image, with pixel intensity lp, is part of a particle or background.  

 To reduce high spatial frequency noise, we first pre-process each image using an 

image convolution with a 5x5 pixel Gaussian kernel. The presented algorithm is intended 

for use with variable light conditions, therefore, we use an adaptive threshold binarization 

technique (Sauvola 2000). To determine the threshold, lT(X,Y), for a pixel, P(X,Y),  in an 

image, we position a square box, with 15 pixel sides, centered on pixel P(X,Y). Next, the 
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mean pixel value inside the box is calculated. We then subtract a contrasting constant, C, 

from the mean pixel intensity inside the box, which results in the intsnsity threshold, 

lT(X,Y), for pixel, P(X,Y) with intensity lp(X,Y), such that 

 Tp    then p = black 

              Tp    then p = white.                                                                                  (1) 

The adaptive binarization method accounts for lighting conditions that may be nonuniform 

throughout the image by detecting particles that contrast the background in smaller 

subregions of the image. The method requires contrasting pixel intensities between 

particles and background, though the contrasting constant can can be modifies to 

compensate for small or large contrasts between particles and the background. 

 The segmented binary image is processed using an edge detection contouring 

method described in Suzuki and Abe (1985), where the output is the set of border points 

between the binary interface for each individual contour associated with a single particle. 

We find particle centroids, X  and Y , from these lists by computing spatial moments ijM  

for each contour as 

 ),(
,

YXIYXM ji

YX

ij =                                                                        (2) 

where X  and Y  denote pixel location in the image plane, ),( YXI  is the pixel intensity 

for all pixels within a contour, and the sum is over the pixels within a given contour. We 

calculate particle locations in the image as the centroids of the moments  

 000110 /},{},{ MMMYX = .                                                                     (3) 
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The image-plane brightness nB  of particle n is set equal to the pixel intensity at the contour 

centroid. The image-plane particle diameter nD  is set equal to the equivalent contour 

diameter, defined as the diameter of the circle whose area is equal to the contour area. 

3.2. Particle Linking 

 Since the PTV method estimates velocity based on particle displacement in time, it 

is necessary to track particles between consecutive video frames, a technique we refer to 

as "particle linking". Traditional planar 2D PTV systems link tracer particles undergoing 

Brownian diffusion between frames by a nearest neighbor search method (Crocker and 

Grier 1996), where a search radius is specified that should be larger than the largest 

displacement of a particle between frames but smaller than the separation between two 

neighboring particles in an image. When particles move at a larger displacement between 

frames than the scale of separation, it can be very difficult to link particles between frames. 

Two ways to handle this problem are by increasing the framerate of the camera so that 

particles are displaced a smaller amount between frames and by decreasing the tracer 

particle density so particles are more dispersed throughout the image. The MR-PTV system 

is designed to work with stereo cameras at a fixed framerate using seed particles whose 

density cannot be controlled. To meet these specifications, we take advantage of the fact 

that in 3D PTV systems, the particles in the image plane appear to have differences in their 

size and brightness, even when the physical particle size and field illumination are constant.  

These differences are examples of “monocular cues” for particle depth, which are used to 

distinguish particles between frames.  
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 The monocular cues used for particle linking include the apparent particle diameter 

nD  and particle brightness nB  measured in the image plane. In general, velocity cannot 

be used as a monocular cue for the linking step because velocity cannot be calculated until 

after a particle has been linked between consecutive frames. We implement a predictive 

linking algorithm to account for effects of particle motion by developing an estimate {

)(
~

1+ntX , )(
~

1+ntY } for the particle position in the image plane at time 1+nt  based on the 

positions at the previous two time-steps as  

 )()(2)(
~

11 −+ −= nnn tXtXtX , )()(2)(
~

11 −+ −= nnn tYtYtY               (4) 

where )}(),({ nn tYtX  denotes the particle position in the image plane at the current time 

nt . Rather than simply linking to the particle that lies nearest to the estimated position, we 

evaluate the group of particles near to the estimated position using a set of monocular cues. 

The process used for linking is illustrated in Figure 16 for a sample particle denoted by 'c'.  
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Figure 16: A sequence of images illustrating the particle linking algorithm. (a) A field of particles in 

the image plane of either the left or right camera at time tn. The hard-filter region surrounding a 

particle c is indicated by a red box. (b) A close-up of the particles in the hard-filter region 

surrounding particle c at tn. (c) Four particles in the hard-filter box surrounding the estimated 

position ( 𝑿𝒄,̃ 𝒀𝒄 ,̃) of particle c at time tn+1, which together constitute a set Qb. Particle c is found to 

link to particle 4 from this set, which minimizes the particle linking function Gbc. 

 

We desire to link particle c, in the current frame at time nt , to a particle in the succesive 

frame at time 1nt + . The first step after determining the estimated particle position from (4) 

is to identify a set of candidate target particles for linking using a hard-pass filter based on 

the location of particles in the image. The hard-pass filter is shown in Figure 16 by a box 

of side length 2H, shown placed around the current position of particle c at time nt  in 

Figure 16a and then moved to be around the estimated position of particle c in Figure 16c. 
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A subset Qb of particles in the successive frame at time  1nt +  are considered as possible 

matches if the particles pass the spatial hard-filter condition, given by 

 xn
L-K < xm

R < xn
L , HtYtY nbn − ++ )()(

~
11 .                            (5) 

It is ideal to set H large enough so that all particle links can be captured, but small enough 

so that relatively small subsets Qb are considered in order to decrease computational time. 

A linked particle is selected as the particle from subset Qb that minimizes the linking 

function Gbc, defined by 
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The particle linking procedure is performed for each camera, although the linking function 

is shown in (6) for the left camera. The linking function Gbc incorporates the monocular 

cues of apparent diameter and brightness in the image plane, and it is defined for a given 

camera (denoted by the left camera L in (6)) as a function of the estimated position ( L

c

L

c YX
~

,
~

) of particle c from (4) and the measured position ( L

b

L

b YX , ) of a particle b from the set Qb 

at time 1+nt . The coefficients 1 , 2 , and 3  are prescribed weights whose values are 

selected to try to make each term in (6) of approximately equal magnitude. The normalizing 

factors aveD  and aveB  are defined as the mean diameter and brightness in the image plane 

for all particles in the image. The normalizing factors 
imageX  and 

imageY  are defined as half 

the image width and height as measured in the image plane, respectively. The optimal link 

for particle c is selected as the particle in the set 𝑄𝑏 that minimizes Gbc.  
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3.3. Stereo Matching Algorithm 

 Matching particles between two stereo cameras, at each time step, is necessary to 

triangulate the depth of each particle, which is a procedure that we refer to as 'stereo 

matching'. The proposed stereo matching algorithm describes how particles are matched 

between stereo image pairs at each time step. For a particle n at location ( L

n

L

n YX , ) in the 

image plane of the left camera, we seek to obtain the optimal matching particle m at 

position ( R

m

R

m YX , ) from the image plane of the right camera. A two-pronged approach is 

rapidly identifies the matching particle. First, we employ a hard filter to limit consideration 

of the candidate particle set for matching of particle n from the left camera to only those 

particles m from the right camera for which   

         L

n

R

m

L

n XXKX − xn
L-K < xm

R < xn
L ,                     SYY R

m

L

n − ,                        (7) 

where S denotes the half-height in the y-direction. The first of these equations requires the 

particle position along the X-axis of the image plane of the left camera to be greater than 

the image in the right camera of a candidate particle match, but less than some width K, as 

shown in Figure 17.  
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Figure 17: Illustration of the stereo matching algorithm, showing a pair of stereo images from the left 

and right cameras. In the left image, we identify a particle n and a hard filter search region, 

indicated by a red box. Particles am, bm, and cm in the lower right-hand image that fall in the hard 

filter region constitute a subset 𝑸̂𝒏, from which the stereo match of n is identified as particle cm, 

which minimizes the function Fmn defined in Eq. (8). 

 

For current computations, we set K equal to 0.25 times the image width. The second 

equation in (7) results from the requirement that a matching particle pair should have the 

same Y-coordinate value based on the epipolar geometry of a co-directional camera 

configuration, within some range of uncertainty resulting from centroid-finding or time 

synchronization imperfections. In the current computations, we set S equal to 0.01 times 

the image height to accommodate a small margin of error. We denote by 
nQ̂  the set of 

particles from the right camera that satisfy the hard filter (7) for a given particle n in the 
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left camera image plane. If no particle is found satisfying the hard filter (7), the particle n 

is identified as having no match and eliminated from further consideration.   

 In much the same way that monocular cues were used in Section 3.2 to improve 

the particle linking algorithm, we employ various monocular cues as well as particle 

vertical position to determine the optimal selection from the set 
nQ̂  of right camera 

particles satisfying the hard filter (7). The monocular cues make use of the fact that particles 

closer to the cameras appear to move faster and to be both larger and brighter than particles 

that are farther away from the cameras, even if in reality the particles have the same 

velocities, diameters and brightness. The diameter, brightness and velocity differences 

introduced by this distance effect can be used to distinguish between potential particle 

matches, since these distance-related effects should appear approximately the same when 

viewed by either camera. Specifically, we define a matching function nmF  for a particle n 

in the left camera image plane and a candidate particle m in the right particle image plane 

by  
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The velocity U is the apparent velocity magnitude of a particle, measured as the distance a 

particle moves in the image frame between consecutive frames, divided by the time interval 

between frames. The X-position is not considered when performing particle stereo 

matching because a difference in X-position in the image planes of the two cameras is 

expected to occur as a function of the particle distance from the cameras. Here, 1c , 2c  and 

3c  are prescribed weighting coefficients, which are set so that each term in (8) has equal 
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order of magnitude. The normalizing factors aveB , aveD , and aveU  are the mean values of 

particle brightness, diameter and velocity magnitude in the image plane for all particles in 

a set of stereo images. The optimal particle match m from the right camera image plane is 

selected as the particle from the set 
nQ̂  that minimizes nmF .  

3.4. Depth Estimations with Binocular disparity 

 A point P has a position ( nnn zyx ,, ) in the global coordinate system, ( L

n

L

n YX , ) in 

the image plane of the left camera, and ( R

m

R

m YX , ) in the image plane of the right camera, 

where m is the index of the matching particle from the right camera to the particle with 

index n from the left camera. The depth nz  of the particle is the same for both cameras. We 

seek to back out the particle's global coordinates based only on the coordinates measured 

in the two image planes. As illustrated in Figure 18, a triangle APa, is formed from center 

A of the left camera lens, the center a of the right camera lens, and the point P.  

 

Figure 18: Definition of three sets of similar triangles -- APa and CPc, ABC and ADP, and acb and 

aPd -- used in distance estimation based on binocular disparity. 
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A second triangle, CPc, is formed from the particle apparent position a in the left camera 

image plane, the particle apparent position c in the right camera image plane, and the point 

P. Since these two triangles are similar, the ratio of base to height is equal, or    

 
fz

XXh
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h

n
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n
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m

n −

−+
= .                                                                                   (9) 

Solving this equation for nz  gives the particle distance from the origin in the global 

coordinate system as  

 R

m

L

n

n
XX

hf
z

−
= .                                                                                       (10) 

 To calculate the global coordinates, xn and yn, for particle n, we note two similar 

triangles from the left camera denoted in Figure 18 by ABC and ADP, as well as two similar 

triangles from the right camera denoted in Figure 18 by acb and aPd. These similar triangles 

can be used to solve for the global particle positions in the x- and y-directions as  

               fXzhfXzhx R

mn

L

nnn /2//2/ +=+−= ,      fYzfYzy R

mn

L

nnn // == .    (11) 

Because we have measurements from each camera for the global coordinates xn and yn of 

each particle, we average the two measurements to reduce uncertainty, giving the global 

particle positions as 
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 A test of the effectiveness of the stereo matching and binocular disparity methods 

for estimating particle depth was performed using 100 particles randomly distributed in a 

cubic computational domain with side length L. All length scales in the global coordinate 

system are non-dimensionalized by L in the remainder of the paper. The test was performed 



 

45 

 

with particles of physical diameter d = 0.015 and baseline distance h = 0.02, using 480×640 

pixel resolution. Figure 19 shows a plot of the estimated particle depth from the origin 

obtained using the MR-PTV algorithm versus the known computational depth, 

 

Figure 19: Plot of the predicted particle depth z obtained using the MR-PTV algorithm versus the 

known particle depth. Each particle is represented by a black circle, and an exact match is indicated 

by the red line. The MR-PTV predictions were obtained with coefficient values (c1,c2,c3) = 

(0.100,0.036, 0.018), set so that each term in the matching function in Eq. (8) has approximately equal 

weight.  

 

where each scatter point indicates the depth of a particle in the overlapped field of view. 

We observe that the MR-PTV estimates are grouped around the exact value, indicated by 

a dashed red line, and scatter points spread further from the known depth as depth increases. 

To understand the contribution of each of the terms in the equation (8) for the stereo 

matching function to the depth estimate, refer to Figure 20; 
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Figure 20: Effectiveness of each term in the stereo matching function given in Eq. (8). After 

application of the hard filter given in Eq. (7), the images in the figure compare the particle depth 

predicted by the MR-PTV algorithm with the known depth for cases using (a) only the particle 

brightness term, (b) only the particle diameter term, (c) only the particle velocity term, and (d) only 

the particle height Y term. The red dashed line represents an exact match between the predicted and 

known depth. 

in which the depth estimate was repeated using only one term in the matching function for 

each image. All the test cases that use only one term in (8) result in some points, in the 

corresponding prediction comparison image in Figure 20, that are far from the exact values, 

which reinforces the need to include a variety of distance measures for stereo matching.   
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A second series of tests was conducted to examine how the overall root-mean-

square error in prediction of the particle position in the global coordinate system varies 

with different variables in the computation. In general, the position prediction error is a 

function of variables characterizing the particles, such that particle diameter d, domain size 

L, and particle concentration c, as well as variables describing the camera system, such as 

baseline distance h, pixel width 
pixelX , focal length f and field of view FOV. In Figure 

21, the dimensionless root-mean-square error in the predicted x, y and z particle positions 

is plotted against key combinations of these variables in order to characterize three specific 

sources of uncertainty in the MR-PTV predictions.  
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Figure 21: Root-mean-square error divided by the computational domain size L for the estimated 

positions in the x-direction (red circles), y-direction (green deltas), and z-direction (blue squares). 

Plots are shown comparing root-mean-square error with (a) number of pixels across the particle 

standard image-diameter Dimage, (b) ratio of camera baseline distance h to the domain size L, and (c) 

particle area concentration in the image plane cimage. 

In all these results, the uncertainty associated with predicting the x- and y-positions is very 

similar, and significantly smaller, than the uncertainty associated with the z-position 

prediction. One key source of error in the MR-PTV algorithm results from resolution 

limitations of the particle diameter by the pixel image. This error can be characterized by 

plotting the root-mean-square position error as a function of the ratio 
pixelimage XD / , where 
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the image diameter 
imageD  is defined as the apparent diameter in the image plane of a 

particle placed at the centroid of the computational domain. The ratio 
pixelimage XD /  is a 

measure of the number of pixels spanning the characteristic particle diameter in the image 

plane. The plot, shown in Figure 21a, was generated using 10 different frames each holding 

100 particles with diameter d = 0.015. The data was generated by gradually increasing the 

pixel resolution from 180×240 to 1080×1440 in a series of 12 steps while keeping the other 

variables fixed. A second resolution limitation is associated with the ratio of camera 

baseline distance h to the overall domain size L. In Figure 21b we show results from a 

series of tests with progressively increasing baseline distance, showing that the root-mean-

square error decreases as the baseline distance to domain size ratio increases. A third source 

of error occurs when the particle concentration becomes so large that a significant amount 

of overlap occurs between the particles in the image plane. Overlap error can be expressed 

as a function of the image plane concentration cimage, defined as the ratio of the area covered 

by particles on the image plane to the total image plane area. A plot of the root-mean-

square position error as a function of the image plane concentration is given in Figure 21c. 

Here, image concentration was varied by gradually increasing the number of particles in 

the computation. We observe, in Figure 21, a gradual increase in the root-mean-square 

position error with a corresponding increase in the image plane concentration. 

3.5. Moving Least-squares Differentiation 

The moving least-square method (Levin 1998) is used to obtain accurate derivatives of 

noisy measured data, denoted by mC , Nm ,1= . The basic idea of this method is to use a 

set of points in the vicinity of point nt  where the derivative is desired to obtain a low-order 
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polynomial fit )(tqn of the measured values mC  on a set of points surrounding nt . We then 

estimate the function derivative at nt  by differentiating )(tqn . For instance, by selecting a 

quadratic polynomial as a low-order fitting function, we can write  

 2)()()( nnnnnn ttcttbatq −+−+= ,                                                          (13) 

where nnn cba ,,  are undetermined coefficients. This quadratic function is fit to a set of M

data points on each side of the point n at which the derivative is desired by minimizing a 

least-square error of the form 

 
2)]([ ini
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n tqCE −= 
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,                                                                          (14) 

which yields a 33 matrix equation for the coefficients nnn cba ,, . After solution of the 

matrix equation, the time derivative can be estimated at nt  using 

 
nn bt

dt

dC
=)( .                                                                                           (15) 

If 1=M , the moving least-square procedure is equivalent to the centered difference 

scheme for numerical differentiation. Setting 1M  serves to smooth out data fluctuations. 

Figure 22 demonstrates the effect of selection of M on accuracy of the derivative for the x-

component of velocity predicted using the MR-PTV algorithm.  
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Figure 22: Plot of the x-component of velocity versus time for a uniform flow with velocity 

components (1,0,0). The effect of the number of points M used in the moving-least-square 

differentiation procedure on the smoothness and accuracy of the differentiation is demonstrated, 

using computations with M = 1 point (red squares), 2 points (blue circles), and 5 points (green 

gradients) on each side of the target point. 

Figure 22 compares the predicted velocity of a single neutrally-buoyant particle in a 

uniform flow for cases with M = 1, 2 and 5 particles on each side of the target particle in 

the moving-least-square procedure. Use of moving-least-square differentiation is shown to 

considerably smooth out fluctuations in the velocity calculation, yielding results close to 

the exact velocity value. 
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CHAPTER 4: UNIFORM FLOW VALIDATION 

 Section 4 presents findings from both computational and experimental tests of the 

MR-PTV algorithm for particles advected in a uniform flow field. In Section 4.1, synthetic 

computational data with a prescribed particle velocity is used to evaluate error in the MR-

PTV velocity prediction algorithm. Section 4.2 describes an experimental test in which the 

MR-PTV algorithms are used in combination with the Microsoft HoloLens 2 mixed reality 

headset are to measure the velocity of particles advected by a uniform flow in a flume. 

Similarly, Section 4.3 uses polystyrene foam particles advected in a wind tunnel to evaluate 

MR-PTV performance. 

4.1. Uniform Flow Computational Validation 

A synthetic camera code was developed to map 3D particle positions to a 2D image 

plane. Images of the 3D particle transport are produced as image pairs from a set of stereo 

“synthetic cameras”.  Each camera has a prescribed focal length f, diagonal field of view 

FOV, and X and Y pixel resolutions 
XpixN ,

 and 
YpixN ,

. The baseline distance between the 

stereo synthetic cameras is denoted by h. 

4.1.1. Synthetic Image Generation 

 A cube of unit dimensionless side length was selected as the computational 

domain, consistent with our decision to non-dimensionalize distances by the computational 

domain depth L.  The computational domain was randomly seeded with N particles with 

uniform diameter d. A particle with global position ( nnn zyx ,, ) was mapped to a two-

dimensional bitmap with center at position ( L

n

L

n YX , ) in the left camera and ( R

n

R

n YX , ) in 

the right camera. Mapping each camera is performed by defining a 3D "camera" coordinate 
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system ( CCC zyx ,, ) and translating the global coordinate system such that the origin 

coincides with the camera lens center and rotating the global coordinate system such that 

the z-axis aligns with the camera lens axis. We use particle position in the camera 

coordinate system is used to determine the corresponding particle center position in the 

image plane using the mapping 

  
nC

nC

n
z

fx
X
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,
= ,      

nC
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z
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Y

,

,
= ,                                                                         (16) 

where f is the camera focal length. The apparent diameter Dn and brightness Bn of particle 

n in the image plane are given by 

  
n

n
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D = ,   24 n

n
R

B



= ,                                                                          (17) 

where nR  denotes the distance between the centroid of particle n and the origin of the 

camera coordinate system (i.e., the center of the camera lens) and   is a prescribed particle 

illumination coefficient. Particles closer to the camera appear both larger and brighter in 

the images than more distant particles, as shown in Figures 3 and 4.   

 Pixels in the synthetic camera bitmap that are completely covered by the image 

of a particle n have intensity set to the particle image brightness nB , while pixels that are 

not covered by the particle images have pixel intensity 0. For pixels partially covered by a 

particle image, the pixel intensity is approximated using a two-dimensional version of the 

edge-length method proposed by Galindo-Torres (2013). In this algorithm, the fraction   

of the pixel cell area covered by a particle image, is estimated using the sum of the pixel 
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cell edge lengths 
ip,  covered by the particle image divided by the total pixel edge length, 

or 

                
=


4

1

, 4/
i

pixelip X .                                                                                         (18)  

The pixel intensity for partially-covered images is then set equal to nB . 

4.1.2. Synthetic Data results 

 We performed computations using 100=N  particles of dimensionless diameter 

015.0=d  in a uniform flow with prescribed particle velocity components ( wvu ,, ) = (1,0,-

1).  Synthethetic cameras with dimensionless baseline separation 1.0=h  and focal length 

01.0=f  output stereo image pairs with a frame rate 01.0=t  and 720 x 960 pixel 

resolution. For any given frame, the velocity vector of a particle is only calculated if the 

particle appears in the image of both cameras for M = 5 frames on each side of the current 

frame, where M is the number of frames used on each side of the given frame in the moving 

least-squares differentiation method described in Section 5.5.  

Particle velocity predictions from the MR-PTV algorithm are plotted in Figure 

23a for a series of 10 frames as a function of particle depth z.  
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Figure 23: In (a), the computed particle velocity components in the u (red circles), v (green deltas), 

and w (blue squares) directions are plotted as functions of the particle depth from the camera. The 

dashed lines are the exact values of known particle velocities. In (b), the root-mean square velocity 

error is plotted for each component as functions of particle depth. 

Resulting computational predictions compare well with the exact velocities, indicated 

in Figure 23, by dashed lines for each velocity component. Figure 23b shows the root-

mean-square error in the velocity prediction as a function of particle depth z using a series 

of 20 bins on the z-axis. The data shows error for each velocity component increases with 

increase in the particle depth z. The root-mean-square error of the out-of-plane velocity 

component w is roughly 2-3 times greater than that of the in-plane velocity components u 

and v. 

4.2. Flume Experiment 

4.2.1. Flume Method 

 Experimental validation was performed by imaging particles advected by flow in 

an open channel hydraulic flume, with an outer rectangular footprint measuring 3.9  2.0 

m and a motor-controlled water wheel to generate flow. A 50 cm wide flume is filled with 
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water to a height of 40 cm. The side and bottom flume walls are constructed with clear 

acrylic sheets for flow visualization. Rigid guide vanes were fixed in each corner of the 

flume to maintain flow uniformity. A honeycomb steel mesh, inserted upstream of the test 

section, served as a flow conditioner. The flume has a retractable sluice gate, with thickness 

1.0 cm, extends to a depth of 26 cm below the water surface. In the uniform flow 

experiments discussed in the current section, the sluice gate was removed. Particles were 

introduced into the flume flow using a perforated aluminum hopper which spanned 33.7 

cm across the width of the flume and 22.3 cm in the direction of flow. The hopper was 

positioned 2 mm above the water surface and the hopper midpoint was 63 cm upstream of 

the camera center. A schematic of the experimental configuration and coordinate system is 

shown in Figure 24. 

  

Figure 24: (Right) Laboratory testing set-up for flume experiment. (Left) Schematic diagram 

showing experimental set-up used for flume validation experiments. 

 

 We seeded the flow with multi-colored spherical water gel particles (Spin 

Master). Using digital calipers to measure particle diameter for a set of 50 particles, the 

average particle diameter was found to be =d 10.6±1.3 mm. The water wheel rotation rate 
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controlled the free-stream fluid velocity. The comparison particle velocity in the horizontal 

x-direction in the test section was determined by tracking the time required for a particle to 

traverse a fixed horizontal distance (0.9 m), yielding a horizontal particle velocity estimate 

of u = 0.0983 ± 0.005 m/s. The particle sedimentation velocity in the y-direction was 

measured using a cylindrical tank with a height of 1.0 m. We tracked the time required for 

the particle to fall a fixed distance (0.7 m) at terminal velocity, yielding a particle vertical 

velocity of v = 0.0372 ± 0.003 m/s. For both velocity components, the reported uncertainty 

values were based on the root-mean-square of 25 repeated tests. By comparing the 

measured particle sedimentation velocity to the theoretical terminal velocity of the 

particles, obtained using the Schiller-Naumann drag formula for a sphere (Schiller and 

Naumann, 1933), we estimated the effective density of the particles to be =p 1.006 g/ml.    

Images were captured using the two front-facing visible light cameras onboard 

the Microsoft HoloLens 2 mixed reality headset (Figure 1). The headset was fixed to a 

mannequin head aligned perpendicularly to the direction of flow with 49 cm between the 

camera lens and the flume mid-section. The stereo cameras are co-directional, 

synchronized, and separated by a baseline distance h = 9.9 cm. Each camera has video 

resolution of 480  640 pixels and a framerate of 30 Hz. A checkered calibration board was 

used to verify the camera configuration. The MATLAB stereo camera calibrator app was 

used to validate that intrinsic and extrinsic camera parameters matched the manufacturing 

details. Next, we extracted particle images from the HoloLens 2 and processed externally 

using the MR-PTV algorithm presented in Section 3. Corrections to particle positions 
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accounted for refraction at the flume wall using the refraction correction algorithm of Bao 

and Li (2011).  

4.2.2. Flume Results 

 Measured MR-PTV velocity components in uniform flow are presented in Figure 

25, where each scatter point represents either the x or y particle velocity components of a 

particle for velocity readings taken from a set of three frames. 

 

Figure 25: Particle velocity measurements for uniform flow in a flume from MR-PTV with three data 

frames. Red circles and green triangles represent particle x and y velocity components, respectively. 

The black dashed lines in Figure 25 indicate the measured particle settling velocity and the 

flow velocity in the flume for the y and x velocity components, respectively. Particle depth 

is defined as the distance from the cameras along the camera principal axis. It is expected 

that particles are flowing at a particle depth between 32.2 -65.8 cm. The average and root-

mean square values of both the MR-PTV measured particle velocities and the comparison 
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values are given in Table 1. We found the MR-PTV measurements to be within the 

measurement uncertainty of the comparison values. 

 

Table 1: Average and root-mean square values from MR-PTV measurements for the uniform flow 

flume validation test. Comparison values are the measured particle velocities based on time required 

to travel a prescribed distance. 

Velocity 

Component 

Comparison 

(m/s) 

MR-PTV Measurements Percent 

Difference 

(%) Average  

(m/s) 

Root-mean 

square 

(m/s) 

Average  

(m/s) 

Root-mean 

square 

(m/s) 

u 0.0983 0.005 0.0965 0.012 3.3 

v -0.0372 0.003 -0.0390 0.007 6.7 

 

4.3. Wind Tunnel Experiment 

4.3.1. Wind Tunnel Method 

 A second experimental validation procedure was conducted to measure the 

velocity of expanded polystyrene foam particles flowing in an open return wind tunnel. 

The general process was similar to the experiment conducted in the flume, where the 

HoloLens 2 MR headset, oriented perpendicular to the direction of flow, was used to image 

particles advected in flow as shown in Figure 26. 
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Figure 26: Wind tunnel experimental setup. HoloLens 2 positioned perpendicular to flow direction in 

wind tunnel. Particle hopper pictured in upper left corner. 

 

Particles were seeded in the flow using a particle hopper, which spanned the cross-section 

of the wind tunnel, pictured in the upper left corner of Figure 26. The hopper rested on top 

of the wind tunnel and the particle feed rate was controlled manually by sliding a cover 

plate that allowed particles to fall into the wind tunnel. Expanded polystyrene foam 

particles with diameter, d = 4.18±0.38 mm, were used in the experiment. Diameter 

measurements were obtained by measuring the diameter of 50 particles using digital 

calipers. The particle settling velocity, v = -1.37±0.09 m/s was calculated from a series of 

50 foam particles falling 2.0 m at terminal velocity.  Flow speed inside the wind tunnel was 

controlled by adjusting the fan speed at the end of open return wind tunnel. The fluid 

velocity component x-direction, uf = 1.52±0.10 m/s, was measured using a hot wire 

anemometer positioned at the midline of the wind tunnel. Horizontal wind velocity 
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measurements were consistent throughout all areas of the observed test section. A black 

background curtain was placed at a depth of 110 cm from the camera.  

 

4.3.2. Wind Tunnel Results 

Particles in the wind tunnel were transported at a considerably higher velocity 

magnitude compared to particles in the water flume. A limitation of the current version of 

the Microsoft HoloLens 2 is a fixed framerate of 30 Hz. The fixed camera framerate makes 

it more difficult to track and link particles because a single particle appears in fewer frames 

and travels a greater distance between frames. Given this limitation, the wind tunnel results 

were performed using only M = 2 nearest points in the moving least-squares gradient filter 

described in Section 3.5. 

 Results from the wind tunnel experiment are shown in Figure 27, where u (x-

component velocity) is indicated by red circles, v (y-component velocity) is indicated by 

green triangles, and w (z-component velocity) is indicated by blue squares. Velocity 

components are plotted against depth from camera on the horizontal axis in Figure 27. 
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Figure 27: Particle velocity measurements for uniform wind tunnel flow from MR-PTV with three 

data frames. Red circles, green triangles, and blue squares represent particle x, y, and z velocity 

components, respectively. 

Black dashed lines represent the expected velocity readings (u, v, w) = (1.52,-1.37, 0) m/s, 

given by the fluid velocity, the particle sedimentation velocity and zero, respectively. The 

root-mean-square values of the velocity measurements, shown in Table 2, are significantly 

greater for the wind tunnel results than the hydraulic flume results shown in Table 1. This 

is results from a greater particle velocity-to-framerate ratio in the wind tunnel experiments, 

resulting in fewer images containing a given particle. When in-plane velocity 

measurements are compared, the vertical velocity component v was observed to have a 

larger RMS than the horizontal velocity component u. Our data shows the RMS error for 

the out-of-plane velocity, w, is nearly double the RMS of the in-plane velocity, u, consistent 

with our results for the flume experiments and synthetic data. Table 2 shows agreement 
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between the average MR-PTV velocity component measurements and experimentally 

measured comparison values of velocity. 

Table 2: Average and root-mean square values from MR-PTV measurements for the uniform flow 

wind tunnel validation test. Comparison values are the measured particle velocity based on time 

required to travel a prescribed distance for v and the measured fluid velocity for u. 

Velocity 

Component 

Comparison 

(m/s) 

MR-PTV Measurements 

Average  

(m/s) 

Root-mean 

square 

(m/s) 

Average  

(m/s) 

Root-mean 

square 

(m/s) 

u 1.52 0.10 1.53 0.095 

v -1.37 0.09 -1.38 0.149 

w 0.0   N/A -0.14 0.184 
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CHAPTER 5: ISOTROPIC TURBULENCE VALIDATION 

 Validation tests for synthetic data using neutrally buoyant particles in an isotropic 

turbulent flow were conducted to examine a flow field in which nearby particles observed 

on the image plane have very different velocities.  

5.1. Turbulence Computational Method 

Direct numerical simulations of isotropic, homogeneous turbulence were obtained 

using a triply-periodic pseudo-spectral method with second-order Adams-Bashforth time 

stepping and exact integration of the viscous term (Vincent and Meneguzzi, 1991). In this 

approach, the spectral Navier-Stokes equations evolve in time after having been projected 

onto a divergence-free space using the operator 
ijjiij kkkP −= 2/  according to the 

expression 

             








−−−+−= −+ )2exp(

2

1
)exp(

2

3
)exp( 21221 tktkttk nnnn  FFPuu ,           (19)  

where an overbar denotes Fourier transform in three space dimensions, a superscript 

indicates the time step,   is the kinematic viscosity, and k is the wavenumber vector with 

magnitude k. The force vector F on the right-hand side has Fourier transform given by 

 

 
F=  +F u ω f ,                                                                                         (20) 

where Ff  is a small wavenumber forcing term required to maintain the turbulence with 

approximately constant kinetic energy. The velocity field was made divergence-free at 

each time step by taking its Fourier transform and using the spectral form of the continuity 

equation,  
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 0= uk .                                                                                               (21) 

 The forcing vector was assumed to be proportional to the fluid velocity (Lundgren, 

2003; Rosales and Meneveau, 2005), such that 

 
crit

crit

F
kk

kkC




=

for       0

for  u
f ,                                                                       (22) 

where the coefficient C was set equal to lowEC /0045.0=  and uu = 
 critkk

lowE
2

1
 is the 

kinetic energy in all modes with wavenumber amplitude critkk  . The current 

computations were performed with 5=critk , so that the forcing acts only on the large-

scale eddies. 

 The turbulence kinetic energy q and dissipation rate diss  were obtained from the 

power spectrum )(ke  as 

 =
max

0
)(

k

dkkeq ,   =
max

0

2 )(2
k

diss dkkekv .                               (23) 

Various dimensionless measures describing the turbulence in the validation computations 

are listed in Table 3, including the root-mean-square velocity magnitude 0u , the average 

turbulence kinetic energy q, the integral length scale dissu /5.0
3

00 = , the Taylor 

microscale 0

2/1)/15( udiss = , and the Kolmogorov length scale 
4/13 )/( diss = . The 

corresponding microscale Reynolds number is 99/Re 0 ==  u .  
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Table 3: Dimensionless simulation parameters and physical parameters of the fluid turbulence. 

  Simulation Parameters   Turbulence Parameters  

 Time step   0.002  Turbulent kinetic energy, q   0.122 

 Cycles   15000   Mean dissipation rate, diss    0.015  

 Grid   
3128    Kinematic viscosity,     0.001  

   Integral length, 0   0.771 

   Taylor microscale,   0.285 

   Kolmogorov length,    0.016 

   Integral velocity, 0u   0.285 

   Integral time, T  2.71 

 

5.2. Turbulent Results 

 Performance of the MR-PTV system in turbulent flow was evaluated 

computationally using the same parameter values used in Section 3.1, with N = 100 

computational particles, dimensionless camera baseline distance h = 0.1, image resolution 

720  960 pixels, and time step 01.0=t  between frames. Particles are neutrally bouyant 

tracers advected by the flow field, with diameter d = 0.015. The velocity field was 

evaluated using the MR-PTV system for a series of 40 frames.  

 A visualization of the turbulent flow is shown by Figure 28, showing contours of 

the x-component of velocity.  
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Figure 28: Contour plot of the x-component of velocity in the isotropic turbulent flow. 

A comparison of the MR-PTV predictions for the three particle velocity components and 

the known particle velocities is given in Figure 29a-c, where each scatter point represents 

particle velocity at a given time. 
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Figure 29: (a-c) Scatter plots comparing the x-, y- and z-velocity components of particles in an isotropic 

turbulent flow computed using the MR-PTV algorithm versus the known particle velocity. (d) Root-

mean-square error in predicted velocity as a function of particle depth z. 

 The root-mean square error for each velocity component is plotted in Figure 29d as a 

function of particle depth z, where the root-mean square of the particle velocities was 

evaluated within each of a series of 20 bins on the z-axis. Similar to the uniform flow 

computational results in Section 4.1, we observe increased root-mean square error for the 

out-of-plane z-component of velocity compared to the in-plane x- and y-components, with 

the velocity error generally increasing with an increase in particle depth z.  
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CHAPTER 6: SLUICE GATE VALIDATION 

In Section 6, performance of the MR-PTV algorithm is evaluated for flow past a 

sluice gate. A numerical solution of the fluid and particle velocity fields is compared to the 

MR-PTV measured particle velocities around a sluice gate submerged in flume flow. The 

computational method is described in Section 6.1 and the comparison with experimental 

results is given in Section 6.2. 

6.1. Sluice Gate Method 

 In this section we describe the method used to obtain a numerical solution for 

velocity around a partially submerged sluice gate that matches the physical domain of the 

flume. The same general experimental procedure was followed as described in Section 

4.2.1., where the HoloLens 2 is positioned perpendicular to the flow inside the flume. 

Particles, with diameter =d 10.6±1.3 mm and density =p 1.006 g/ml, are seeded into the 

flow using a perforated aluminum hopper fixed 2mm above water surface level. In this 

section we observe the velocity field around a submerged sluice gate body inside the flume 

as pictured in Figure 30. 
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Figure 30: Experimental configuration of sluice gate flume flow. 

Particles released from the hopper upstream flow under the submerged sluice gate body 

while imaged by the HoloLens 2. MR-PTV experimental results were compared to 

computational velocity results from a computational domain modeled to match the 

physical experiment.  

 We used ANSYS Fluent finite-volume computational fluid dynamics (CFD) code 

to model incompressible fluid flow in the physical flume domain and extract the steady-

state fluid velocity field for a simulation of water flowing past a submerged sluice gate. 

The CFD simulation used a 2D domain, modeled to match the flow inside the flume. The 

origin of the computational domain is set to the real perpendicular position of the HoloLens 

origin during the experiment. The boundary conditions used are shown in Figure 31.  
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Figure 31: Domain boundary conditions used in CFD simulation, where the origin is where the 

Microsoft HoloLens 2 was positioned perpendicular to the domain. 

The right wall of the domain is a flow velocity inlet with uniform velocity set to the free-

stream flow velocity inside the flume (u = 0.0983 m/s), and the left wall is a pressure outlet. 

The bottom surface and the sluice gate are no-slip wall boundaries. The top wall of the 

domain is fixed, free-shear surface. Our experiments showed that at the low fluid flow rates 

used in the validation tests, the fluid height difference between the upstream and 

downstream sides of the side gate were negligible. A uniform Cartesian mesh contained 

2020 elements in the x direction and 800 elements in y direction. Convergence with relative 

error of less than 10-6 was reached for both velocity components. Grid independence was 

demonstrated using both coarser and finer grids and comparing the velocity field.  

 Theoretical particle motion was computed by solving the particle momentum 

equation 

 IA fd
dt

d
mm )(3)( uv

v
−−=+  ,                                                           (24) 
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where Vm fA 5.0= is the particle added mass, m, V and d are the particle mass, volume 

and diameter,   and f  are the fluid viscosity and density, v and u are the particle and 

fluid velocity vectors, and  

 


 uv −


df

pRe                                                                                    (25) 

is the particle Reynolds number. The factor  

 687.0Re15.01 pIf +=                                                                                 (26) 

is an inertial correction factor (Schiller and Naumann, 1933), which is valid for 800Re p

. All values used in the particle momentum equations were set to match experimental 

conditions. Here we included the particle inertia and the added mass and drag forces. Other 

forces on the particles, such as lift, pressure gradient, and history forces, are negligible 

under the conditions used in the flow computations (Marshall and Li, 2014).  

 For the current sluice gate validation, computational particles were initialized in a 

horizontal rake on the right-hand side of the computational domain, matching the physical 

location where particles were released from the aluminum hopper during the experiment. 

Theoretical particle pathlines were determined by tracking the particle positions across the 

computational domain.  

6.2. Sluice Gate Results 

 Velocity measurements results from the MR-PTV system and computed particle 

velocity fields are shown in Figure 32. 
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Figure 32: MR-PTV measured velocity vectors for flow past a sluice gate. (a) Scatter plot showing 

experimental particles (yellow) with MR-PTV velocity direction (black arrows) superimposed onto 

CFD contour plot of velocity field for flow past a sluice gate, with computed particle pathlines 

indicated by black lines. (b) Comparison of velocity magnitude at particle locations as measured 

experimentally using the MR-PTV algorithm (y-axis) and as simulated by solving the particle 

momentum equation with the computed velocity field (x-axis). 

 In Figure 32a, the direction of the experimental MR-PTV velocities at each measured 

particle position are compared to the particle pathlines computed from solution of (24). 

Particle experimental velocity direction vectors, and particle pathlines are plotted overlying 

a color plot of the computed fluid velocity field. The sluice gate is shown as a vertical white 

bar protruding into the flow. In Figure 32b, the velocity magnitude of the experimental 

MR-PTV velocities are compared to magnitudes of the computed particle velocities at the 

same locations. 

 The overall comparison of experimental MR-PTV data and computational data in 

Figure 29 show good agreement. Most of the experimental MR-PTV velocity vectors are 

oriented along the computed particle pathlines in Figure 29a. In few cases particle vectors 

are not perfectly tangent to computed pathlines but are agreeable knowing there are a 

distribution of particle diameters seeded in flume flow, while only the average particle 



 

74 

 

diameter is used to compute particle pathlines. The experimental particle velocity 

magnitudes in Figure 32b appear to be within about 10% of the predicted values, a 

promising agreement given the experimental uncertainties and various simplifications 

involved in both the CFD and particle tracking computations.  
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 CHAPTER 7: CONCLUSION  

 We present a particle tracking velocimetry system compatible for use with a mixed-

reality headset, such as the Microsoft HoloLens 2. The system uses video feed from two 

co-directional, synchronized, stereo cameras to detect and track particles through time to 

estimate the three-dimensional particle velocity vectors. Adaptive thresholding is used to 

detect particles in individual images. A stereo matching algorithm is optimized for three-

dimensional flow fields using monocular cues, such as brightness, depth, and apparent 

velocity, to match particles between stereo images. A moving least-squares gradient filter 

uses a time series of particle images to reduce noise in performing time differentiation of 

the particle position in estimating particle velocity.  

 The approach was validated computationally using both synthetic data, generated 

by a discrete-element method, and using experimental data from flume and wind tunnel 

experiments. Synthetic data was used to perform a detailed error analysis for determination 

of particle depth from the camera. Three major sources of error were identified, including 

pixel resolution of the particle image, baseline distance between the cameras relative to the 

overall flow dimension, and particle concentration in the image. Synthetic data was then 

used to examine accuracy of MR-PTV velocity estimates for particles in both uniform flow 

and isotropic turbulence, and for both in-plane and out-of-plane particle velocity 

components.  

 The MR-PTV approach was experimentally validated using the Microsoft 

HoloLens 2 mixed reality headset to image particles flowing in a flume and a wind tunnel. 

Flume experiments tested the MR-PTV system for both uniform flow and flow around a 
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submerged sluice gate. Uniform flow in-plane velocity components exhibited an average 

error of 3.3% as compared to comparison values, which was within the measurement 

uncertainty of the comparison data. The direction of MR-PTV computed velocity vectors 

agrees with computed particle pathlines for particles flowing around a sluice gate body, 

although with some directional scatter, likely resulting from a distribution in tracer particle 

diameters. The magnitude of the experimental MR-PTV velocity vector measurements 

were within 10% of computed particle velocities, which was within estimated uncertainty 

of the numerical computations. Wind tunnel MR-PTV velocity measurements showed 

agreement within 1% of measured comparison values for in-plane velocity components. 

The out-of-plane velocity component had nearly double the RMS when compared to the 

in-plane velocity component, a result consistent with the findings from sluice gate 

experiments. 

 The MR-PTV algorithm presented in the paper is optimized to perform with the 

camera configuration limitations of a typical mixed reality headset. While many existing 

PTV systems are designed for precision measurements in controlled laboratory settings and 

require expensive specialized equipment (lasers, multiple cameras, synchronizers, etc), the 

MR-PTV algorithm requires only a mixed-reality headset and appropriate seeding medium. 

The algorithm uses monocular artifacts of non-uniformity, which may be present in a 

natural environment, to match particles between stereo images, which when combined with 

binocular disparity can generate reasonably accurate velocity estimates without requiring 

additional specialized equipment. The MR-PTV approach has significant promise for use 
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as a particle velocity visualization tool in a variety of industrial, entertainment, and 

strategic applications. 
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