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Resumo 

O mapeamento da vegetação, através da identificação do tipo e distribuição das comunidades e 

espécies vegetais, é crucial para analisar a cobertura vegetal e os padrões espaciais. A 

compreensão das variabilidades espaciais e temporais das plantas dunares em ligação com a 

morfodinâmica permite uma maior compreensão do dinamismo e evolução dos ambientes 

costeiros. Tal análise pode contribuir para o desenvolvimento de planos de gestão costeira que 

ajudam a implementar a biodiversidade costeira e estratégias de protecção. Esta dissertação 

apresenta uma abordagem para avaliar a utilização de imagens multiespectrais e explorar a 

variabilidade da vegetação dunar costeira com dados recolhidos à distância por um Veículo Aéreo 

Não Tripulado (UAV). Foram escolhidas quatro zonas de estudo diferentes na parte oriental da 

Península de Ancao, distribuídas alongshore, e cobrindo a backhore e a crista das dunas até à base 

do lee das dunas. Foram utilizados dados de campo e de UAV, em diferentes épocas, 

nomeadamente ao longo de um período de dois anos. Foi utilizada uma abordagem de 

classificação em duas etapas, baseada num índice de vegetação de diferença normalizada e num 

classificador de Floresta Aleatória. Os resultados mostram desempenhos de classificação de alta 

precisão ao condensar a cobertura do solo em menos classes e também em áreas menos 

densamente vegetativas. As classificações resultantes foram posteriormente processadas em 

termos de alterações transfronteiriças e alterações sazonais. Estas técnicas mostram um elevado 

potencial futuro para avaliar a vegetação das áreas de dunas costeiras e para apoiar a gestão 

costeira. 
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Abstract 

The mapping of vegetation, by identifying the type and distribution of plant communities and 

species, is crucial for analysing vegetation coverage and spatial patterns. Understanding dune 

plant spatial and temporal variabilities in connection with morphodynamics gives further insight 

in dynamism and evolution of coastal environments. Such analysis can contribute to the 

development of coastal management plans that helps to implement coastal biodiversity and 

protection strategies. This dissertation presents an approach to assess the use of multispectral 

imagery and explore the variability of coastal dune vegetation with remotely sensed data 

collected by an Unmanned Aerial Vehicle (UAV). Four different study zones were chosen at the 

eastern part of the Ancao Peninsula, distributed alongshore, and covering the backshore and the 

dune crest until the base of the dune lee. Field and UAV data were used, in different seasons 

namely over an extend of two years. A two-step classification approach, based on a normalized 

difference vegetation index and Random Forest classifier, was used. The Results show high 

accuracy classification performances when condensing the groundcover into fewer classes and 

also in less densely vegetated areas. Resulting classifications were further processed in terms of 

cross-shore changes and seasonal changes. These technics show a high future potential to assess 

the vegetation of coastal dune areas and to support coastal management. 
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Motivation 

The study of the coastal evolution has been always of great importance, considering that 25% of 

the world’s population live within 100km to the coast, below 100m elevation (Zarnetske et al., 

2015). Most coastal landscapes evolve through interaction between sediment and vegetation, 

building the first lines of defence against the oceanic forces (Costas et al., 2020). These coastal 

features, such as salt marshes and sandy dunes, provide a quantity of ecosystem services 

beneficial for humans and nature (Laporte-Fauret, 2020). Coastal dune systems act as natural 

buffers, protecting people and infrastructure from natural hazards. Depending on their 

morphology (height, width, shape, continuity) and ecological status (functional plant type 

distribution and abundance), dune systems can reduce the exposure of coastal areas to storm 

surges, wave action and coastal floods (Renaud et al., 2016). Furthermore, the establishment of 

pioneer species that lead to the construction of a foredune, reduce landward sand transport and 

promote the stabilization of the dune system through eco-geomorphic feedbacks (LaporteFauret 

et al., 2020). They also provide a rich ecosystem for a variety of species (Duran & Moore, 2014). 

Coastal dunes may form within a variety of environments, also building barrier islands, 

surrounding lagoon systems or salt marshes. Barrier islands, covering 10-15% of the coastal areas, 

are characterised by a high dynamism that allows to shift landwards or seawards, depending on 

internal and external forces (Zhang, 2016; Zinnert et al., 2017). 

Despite the fact that coastal sandy dunes have an important value in terms of coastal protection, 

they face great pressures through anthropogenic actions and climate change. Most importantly, 

sea-level rise and stronger and/or more frequent storms pose a significant threat, triggering 

coastal erosion and destruction (Duran & Moore, 2014). In order to mitigate such impacts, many 

management plans have been proposed, involving beach nourishment, vegetation planting and 

sand fencing. However, recent works on coastal protection have proposed a different approach, 

suggesting a beach stabilization by encouraging the dynamism of the environment in order to re-

establish dune diversity and mobility (Laporte-Fauret et al., 2020; Seabloom et al., 2013). These 

conflicting views on intervention measures, combined with the complex interactions controlling 

dune evolution, increase the uncertainties regarding dune adaptation to climate change. 

Therefore, it is crucial to monitor the evolution and adaptation of coastal features such as sandy 

dunes and their eco-geomorphological feedbacks. Thus, it is critical to understand the spatial and 

temporal distribution of vegetation coverage in relation to morphology changes of dunes. With 

further insights into the complexity of dune dynamism our understanding in coastal management 

strategies can improve (Laporte-Fauret et al., 2020). 
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1.Objectives 

The main goal of this work is to contribute to the understanding of the eco-geomorphic feedbacks 

between the two main components of coastal dunes: geomorphology (topography) and 

vegetation coverage (plant communities). Investigating how these feedbacks work and which 

external or internal factors may affect their mechanisms are key to understand adaptation of 

these coastal features, due to the importance of these feedbacks on the evolution of dune 

topography (Hesp, 1989; Stallins, 2005; Durán & Moore, 2014). The latter is key in turn to protect 

hinterland areas from coastal erosion and inundation. 

In order to further understand eco-geomorphic feedbacks and their results over time, it is 

necessary to understand how these two system components (ecology and geomorphology) 

behave. This work will focus on identifying vegetation coverage and distribution of plant 

functional types along and across a coastal dune system, aiming to pinpoint spatio-temporal 

patterns of vegetation distribution and characteristics and to understand the dynamics associated 

with them. 

For that, the distribution (over time and space) and state of the plants within several focus zones 

(plots), located along the eastern part of the dune of the Ancão Peninsula (western barrier in the 

Ria Formosa system; S. Portugal) and surveyed during different seasons and over 2 years, will be 

analysed using remote sensing data, namely multispectral images collected with an Unmanned 

Autonomous Vehicle (UAV). 

In order to reach this aim, the work addresses the following objectives: 

1. Identify the dune vegetation by analysing the vegetation coverage on a community and 

species level 

2. Investigate the spatial variability of the dune vegetation alongshore and across-shore in 

four different plots 

3. Determine the temporal variability of dune vegetation on a seasonal and annual basis 

over two years. 
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2. A review of the state of the art 

2.1 Coastal dune eco-geomorphology 

 
Coastal dunes are highly complex features that result from the interaction of different driving 

mechanisms. Their formation requires a supply of beach sediment, onshore winds, capable of 

transporting sand, and suitable topographic and climatic conditions maintained over a long pe-

riod, which allow accumulation of sand (Pye, 1983; Pye & Tsoar, 2009). Vegetation, when pre-

sent, has a significant role in dune development, fixation and dune evolution (Houser 2013). 

When established, dunes offer a rich ecosystem, which varies greatly in spatial and temporal 

extent. Barrier islands, in particular, host unique dune landscapes, characterized by a complex 

and dynamic biodiversity, dependent on local morphologies (Zinnert et al., 2017; Stallins, 2005; 

Durán & Moore, 2014). Dune vegetation and sediment transport are tightly linked, with the 

former promoting sand accumulation and vertical growth, and the later affecting plant abun-

dance and distribution. Coastal dune eco-geomorphology tries to quantify these biophysical 

feedbacks, the formation and modification of coastal landscape through sedimentation and 

vegetation. This feedback between vegetation coverage and sediment transport has a significant 

role in shaping and positioning dunes. For example, the spatial and temporal sand supply can 

determine the amount of vegetation coverage. Conversely the vegetation coverage and type 

influence the shape and amount of sand accumulation (Zarnetske et al., 2015), and thus dune 

topography. Overall, the evolution of dunes is controlled by a variety of extrinsic and intrinsic 

factors, such as frequency and magnitude of transporting winds, incident wind direction, beach 

fetch and sediment supply effects, dune scarping, vegetation types and density, and moisture 

content (Houser, 2013). 

 

Plant zonations 

Coastal dune landscape in temperate zones is characterized by a variety of distinct plant habi-

tats(fig. 1): upper beach, foredune, back dune and stabilized dune (hind dunes). Occupants of 

these habitats are naturally selected through their special characteristics. Therefore, upper 

beach and foredunes accommodate plants tolerant to salt spray, strong winds, and sand burial. 

These communities are mostly permanent due to the unique requirements in these areas. Fur-

ther innland, at the lee side of the foredune, sand burial tolerant grasses and forbes gradually 

cover the sand surface with a dense layer of vegetation. Even shrub and tree species can de-

velop over time in these areas (fig.1) (Wiedemann & Pickart, 2008). 
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Figure  1: Dune zonation (Carley & Cox, 2017) 

 

 

Foredunes are defined as shore-parallel dune ridges formed on the top of the backshore by 

aeolian sand deposition within vegetation (Hesp, 2002). They can be classified into two main 

types, incipient foredune (embryo dune/incipient dune, new foredune) and established fore-

dune (frontal dune), and represent the first line of vegetation coverage towards the sea (Hesp, 

2002). The foredunes and the beach are usually the most critical features on a barrier island. 

They represent the most essential zones of the coastal barrier system in terms of dynamism 

and resilience and, due to their dynamic nature, they vary greatly in spatial and temporal ex-

tent. Temporal and alongshore variability in dune-beach system adaptation and morphology 

are mainly controlled by wind regime, wave climate, temperature, precipitation, littoral sedi-

ment supply sediment size and mineralogy, and vegetation cover (Houser, 2013). 

 

Plant functional types (PFTs) 

From an ecological perspective, especially vegetation type and density are important for the 

formation and evolution of incipient and established foredunes. Coastal dune plant species can 

be grouped into nonphylogenetic categories or plant functional types (PFT), depending on their 

similar responses to environmental conditions and similar effects on the dominant ecosystem 

processes (Ciccarelli et al., 2009). García-Mora, et al. (1999) distinguish three PFTs in foredunes 

in the Gulf of Cadiz, categorized in relation to environmental stress and disturbances: Type I, 

representing mainly winter annuals of moderate size with soft leaves without indication of ad-

aptations to the dune environment. Plants of Type II are mostly perennials with a below 

ground spreading root network and leaves with presumed adaptations to coastal environmental 

stress. Type III includes plants mostly capable of being dispersed by seawater and of withstand-

ing sand burial. Type II and type III were found more abundant in unstable soils (incipient fore-
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dunes) whereas type I occurs more often in stable soil environment (established foredune). 

The ratios in occurrence of the three types can be used as an indicator of foredune dynam-

ics (Costas et al. under review). 

 

Vegetation and dune morphology 

As mentioned above, the dominant plant type depends on the colonising environment, with 

growth mainly limited by abiotic factors such as salinity, water stress, substrate instability, sand 

burial, wind abrasion, high temperature, and low nutrient supply. However, at the same time, 

plants also contribute to shape their environment (Hesp, 1989; Ciccarelli et al., 2021). In fact, 

Duran & Moore (2013) argue that vegetation then rather sediment supply is responsible for the 

maximum dune size. Depending on the plant species, morphology and size, certain foredune 

morphology is developed (e.g., Zarnetske et al., 2015). For example, in newly formed incipient 

foredunes, species such as the tall, dense Ammophila arenaria, tends to produce higher, more 

hummocky peaked dune forms than lower, more spreading, rhizomatous plants such as Spini-

fex or Ipomoea, which produce lower, less hummocky dune forms (Davies, 1980; Hesp, 1983, 

1984a). This is mainly due to different plant traits and interference with wind flow and sand 

transport, overall acting as a friction element that slows down the wind, disabling saltation and 

encouraging sedimentation around the plant (Hesp, 2002). Hesp (1989) distinguishes between 

four different incipient dune types evolving through these processes: 1, those initiated by 

shadow dune formation within zones of discrete individual pioneer annuals (e.g. Cakile spp.), 

and perennials (e.g. Spinifex spp. and Ammophila spp.); type 2, those initiated by hummock 

formation within discrete colonies of perennial grasses and herbs; type 3, those initiated by 

sand deposition within laterally extensive colonies of pioneer seedlings; and type 4, those initi-

ated by sand deposition within a laterally extensive plant rhizome cover. 

 

 
Figure  2: Compartments of the dune ridge barrier island (modified from Costas et al., 2022) 
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2.2 Remotely sensed dune vegetation characteristics 

 
Dune vegetation mapping and monitoring is crucial to contribute to the understanding of natural 

and man-made environments, especially in temperate regions, as dune plants are critical for the 

evolution of the associated landform and it, in turn, adapts to their evolution. Quantifying veg-

etation cover at different scales and with various techniques gives us further insights in the dy-

namism and interactions between living organisms and their environment (Xie, Sha, Yu, 2008). 

Traditional surveys, such as ground-based techniques for measuring and sampling environ-

mental features, have been proven to be successful in studying eco-geomorphology (Maun, 

2009; García-Mora, et al., 1999; Acosta et al., 2007). However, these surveys are time consum-

ing, expensive and cover usually small areas. In recent years a rather new approach has been 

established, using satellite and airborne remote sensing data (Qi, Wang & Zhang, 2013). Re-

mote sensing (RS), the science of obtaining information via noncontact recording, refers to the 

detection of electromagnetic energy from aircrafts or satellites (Turner et al., 2003). It provides 

consistent, long-term, Earth observation data at scales from local to global domain. The primary 

purposes of remote sensing in ecology are to gather land cover and land use information and 

quantify biophysical variables that connect ecological processes and biodiversity. Next to the 

traditional field-based surveys, remote sensing has repeatedly proven to be the more efficient 

method of obtaining ecological data (Lawley et al., 2016; Verbesselt et al., 2010), allowing to 

cover large areas, consistently monitor changes and survey inaccessible areas (Singh & Frazier, 

2018). 

Every object can be characterized because of its unique interaction with electromagnetic 

radiation, which depends on its biophysical properties. For instance, plant size, density and 

structural composition of branches and leaves define the spectral absorption and reflectance of 

light for these features. Furthermore, spectral characteristics can be derived from biochemical 

components, such as chlorophyll, water, proteins, starches, waxes and carbohydrates, giving 

conclusions about the ecological conditions of vegetation species (Underwood, Ustin, & 

Ramirez, 2006). Remote sensing utilizes the reflectance spectra of landcover features captured 

in an image pixel, such as vegetation, soil, and other landcover elements (Turner et al., 2003). 

The satellite data is limited in spatial resolution (1000-1m), thus can only record on a bigger scale 

(Kozhoridze et al., 2016). Airborne based applications can get permits to fly on a much lower al-

titudes, and therefore can provide much higher spatial resolution (<1cm). This is why these
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applications are a more reliable approach to identify vegetation communities and complex 

mosaic landscapes in fine scale and discriminate vegetation at the species level (Adam, Mu-

tanga & Rugege, 2010). In order to reduce costs and time efforts, recent developments mainly 

focus on multispectral approaches, although, hyperspectral and lidar applications can also be 

deployed on airborne monitoring systems (Marzialetti et al., 2019). 

 

Unmanned aerial systems (UAS) 

Unmanned aerial vehicle, UAV, or the more commonly used term UAS (unmanned aerial sys-

tem), refers to all kind of ‘aerial robots’ controlled from the ground. These systems include a 

variety of drones, which are remotely piloted (Turner, Harley & Drummond, 2016). In recent 

years, there have been substantial developments in exploring the capabilities of small UASs in 

relation to ecological research (Anderson et al., 2013; Kaneko et al. 2014; Parjares et al., 2015; 

McGovern & Gilmer, 2019; Laporte-Fauret, 2020). Their advantages compared to other remote 

sensing platforms such as satellites, are lower operating heights, which enable the collection of 

higher spatial resolution images, and the fact that these systems can be deployed quickly, re-

petitively and independently (Venturi et al., 2016) 

An average UAS usually consists of a sensor module for data acquisition, an autopilot for control 

of the entire aircraft, a GPS (Global Positioning System) for navigation, an IMU (Inertial Meas-

urement Unit) for altitude measurement, and a ground station for controlling and mission 

planning. The on-board sensors are dependent on the flight mission and purposes. Their range 

varies from a standard digital camera, multispectral camera, hyperspectral imager and Light 

Detection and Ranging equipment or LiDAR (Feng, Liu & Gong, 2015). Every sensor has its 

unique spectral resolution, which determines the boundaries of every monitoring. Navulur 

(2006) defines five categories of spatial resolution: (i) low or coarse resolution are pixels with 

ground sampling distance (GSD) of 30m or greater, (ii) medium resolution with GSD in the 

range of 2.0–30m, (iii) high resolution are pixels with GSD 0.5–2.0m, and (iv) very high resolu-

tion refers to pixels sizes <0.5m. 

 

Remotely sensed image classification 

As aforementioned, each object features its unique spectral characteristics when penetrated by 

light. According to their spectral properties, pixels of remotely sensed imagery can be grouped 

into similar reflectance values and related to a specific landcover. This process is broadly de-

scribed as image classification and is usually carried out by digital image processing using a va-

riety of different algorithms (Arar et al. 1984; Galio et al. 1985; Suo, McGovern & Gilmer, 

2019). When classifying remote sensing imagery many different factors must be considered. The
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main steps of image classification include: determination of a suitable classification system, 

selection of training samples, image pre-processing, feature extraction, selection of suitable 

classification approaches, post-classification processing, and accuracy assessment (Lu & 

Weng, 2007). 

There are a variety of different strategies for image classification in remote sensing. Most 

commonly used classification approaches are unsupervised image classification, supervised 

image classification and object-based image classification. Unsupervised classification is the 

more traditional and most basic technique since no sampling is needed. It just requires the 

creation of a cluster and the assignment of classes. It is widely used for mapping thematic 

vegetation cover from remotely sensed image data (Xie et al., 2008). The main advantages of 

this strategy, when compared to more advanced techniques (machine learning), come from 

its relative ease application, as well as its availability in a range of statistical analysis and im-

age processing programs and applications (Langley et al., 2001). Supervised image classifica-

tion requires the selection of training samples, areas which are key to the accuracy of the 

method, since they will determine which class each pixel inherits in the image (Ford et al., 

2008b). The supervised classification approach is often used for vegetation detection on re-

mote imagery (Suo, McGovern, Gilmer, 2019). Object-based classification groups pixels with 

relatively homogeneous properties into representative vector shapes with size and geometry. 

This approach has gained more popularity in recent years because it is useful for high-

resolution data (De Giglio et al., 2019). 

 

Using different visible or multispectral data combinations, data processing can help distin-

guishing vegetation cover. These combinations are known as spectral indices or vegetation indi-

ces (VIs), which are often used as a processing step prior to the classification. They are simple but 

effective algorithms to derive vegetation characteristics, such as growth, vigour, structure and 

cover (Xue & Su, 2017). For example, the Normalized Differential Vegetation Index (NDVI), 

which relates the reflectance of land features at near-infrared and red wavebands, is commonly 

used to distinguish green vegetation areas from other land features, such as water and soil (Gini 

et al. 2012). A variety of remote sensing studies focused on coastal vegetated properties have 

successfully incorporated spectral indices (Laporte-Fauret 2020; Marzialetti et al. 2019; Jackson 

et al. 2019; Proença et al., 2019; Timm & McGarigal, 2012; Corell et al., 2018; Juel et al., 2015; 

Suo, McGovern, Gilmer, 2019). Suo, McGovern & Gilmer, (2019) proposed 6 different spectral 

indices in connection with multispectral imagery of coastal vegetation cover (Table 1). 
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Table 1: Spectral Indeces 

Spectral Indices Formula Explanation 

 

Relative Green 
Green 

 
(𝑅𝑒𝑑 + 𝐺𝑟𝑒𝑒𝑛 + 𝐵𝑙𝑢𝑒) 

 
The relative component of green, 
red and blue bands over the total 
sum of all camera bands. Less af-
fected from scene illumination 
conditions than the original band 
value. 

 

Relative Red 
𝑅𝑒𝑑 

 
(𝑅𝑒𝑑 + 𝐺𝑟𝑒𝑒𝑛 + 𝐵𝑙𝑢𝑒) 

 

Relative Blue 
𝐵𝑙𝑢𝑒 

 
(𝑅𝑒𝑑 + 𝐺𝑟𝑒𝑒𝑛 + 𝐵𝑙𝑢𝑒) 

 
 

Normalized Dif-
ferential Vegeta-
tion Index (NDVI) 

 
 
 

(𝑁𝐼𝑅 − 𝑅𝑒𝑑) 

(𝑁𝐼𝑅 + 𝑅𝑒𝑑) 

Relationship between the near- 
infrared (NIR) and red bands in-
dicates vegetation condition due 
to chlorophyll absorption within 
the red spectral range and high 
reflectance within the NIR range. 

 
gNDVI 

(𝑁𝐼𝑅 + 𝐺𝑟𝑒𝑒𝑛) 

(𝑁𝐼𝑅 + 𝐺𝑟𝑒𝑒𝑛) 

Improvement of NDVI, accurate 
in assessing chlorophyll content. 

Green-Red Vege-
tation Index 
(GRVI) 

 

(𝐺𝑟𝑒𝑒𝑛 − 𝑅𝑒𝑑) 

(𝐺𝑟𝑒𝑒𝑛 + 𝑅𝑒𝑑) 

Relationship between the green 
and red bands is an effective in-
dex for detecting phenophases. 

 

3. Methods 

3.1 Site description 

The study zones are located at the eastern part of the Ancão Peninsula consisting of 4 

separated plots with individual extends of 200 x 200m, in average (Fig. 3). Being part of the Ria 

Formosa barrier island system, the peninsula provides around 9 kilometers of coastal stretch. 

The peninsula is urbanised in the center, natural in the western and with small number of 

houses in the eastern part. The peninsula is limited by the Ancão Inlet on the eastern side 

(Costas et al., 2020). 

The shoreline of the peninsula facing the southwest is primarily shaped by waves coming from 

W-SW (71%) and E-SE (23%) (Costa et al., 2001), with dominant winds also approaching from 

WSW (Fig. 3). The mesotidal regime has a mean tidal range of 2.2m with a maximum of 3.5m 

during spring tides. Net longshore sediment transport in the system is directed eastwards, with 
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estimates ranging from 6 × 103 up to 3 × 105 m/year (Ferreira et al., 2006). The beach is 

described as a low tide terrace beach, being reflective during high- and intermediate low tide. 

Cross-shore the dune morphology and sediment patterns vary significantly. The sediments of 

the dune beach system consist of medium to coarse quartz sand with mean grain sizes varying 

from 0.35-0.80mm at the beach and 0.50mm at the dune (Costas et al., 2020). 

The oldest aerial pictures of the area, from 1947, show a poorly vegetated dune ridge. Today, 

herbaceous and shrubby dune species represent the vegetation cover occupying different 

habitats. Costas et al. (under review) refer to three habitat types on the peninsula included in 

Annex I of the European Habitat Directive 92/43/EEC (2013): (1) Embryo dune, characterized 

by Cakile maritima and Polygonum maritimum (habitat type 1210 and 2010), (2) foredune, 

characterized by the dominance of Ammophila arenaria, Elymus farctus and Otanthus 

maritimus (habitat type 2120), (3) Fixed coastal dunes with herbaceous vegetation dominated 

by Artemisia crithmifolia and Lotus creticus (habitat type 2130). The spatial distribution of 

vegetation density shows higher values around the crest of the dune ridge with great 

alongshore variability, with densest vegetation cover found at the very eastern side of the 

peninsula. 
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Figure  3: Location of the study area in the Ria Formosa barrier system (upper panel; red rectangle; after Costas et al. 
(2021)) and the 4 surveyed plots in the study area (bottom) 

 

3.2 Data collection 

Airborne multispectral data 

Image acquisition was performed using 2 drones, a Phantom 4, equipped with a multispectral 

camera and a Mavic Pro. Fieldtrips were done in end of January and mid of may, 2022, marked 

in green (table 2) for all four zones. The data set also includes images that have already been 

collected in the past two years, marked in blue (table 2). Multispectral images have been 

taken, using the Phantom 4 Multispectral drone and RGB images have been taken using the 

Mavic Pro.  

Table 2: dates of data collection (fieldtrips) 

date Zone 1 Zone 2 Zone 3  Zone 4 

21.05.2020     

26.11.2020     

07.05.2021     

13.10.2021     

31.01/03.02.2022     

18.05.2022     

 

The acquisition of new images was done in January and May 2022, capturing multispectral 

data. The image collection with an UAS required the establishment of Ground control points 

(GCPs) for future improvement of the georeferencing of the collected images. Coordinates of 

the GCPs were determined using a Trimble Global Navigation Satellite System (GNSS) receiver, 

connected to the Trimble Virtual Reference Station (VRS). This system can reach 2 cm spatial 

and 5 cm vertical accuracy for point measurements. The GCPs were later used for 

georeferencing purposes (Suo, McGovern & Gilmer, 2019).  
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One of the used drones (Phantom 4 Multispectral from DJI), comprises a 6-band sensor system 

to record RGB and NIR data with a 4 cm ground resolution. In order to have a better ground 

resolution and allow plant identification/validation visually, a second drone (Mavic 2 Pro with a 

three-band (RGB) composition) was used to acquire images with higher resolution (2 cm). The 

flight height (~30 m) was determined by two factors, firstly the flight permissions due to the 

proximity to the airport, and secondly by the UAS sensor recording useful imagery to 

discriminate vegetation on a species level. The flight speed and camera positioning were 

variable due to weather factors such as wind speed. The error or accuracy of the spatial 

correction was assessed comparing the product (mosaic or DSM) with check points 

(independent from the GCPs used for georeferencing) collected during the surveys. 

Ground truth data 

In order to increase accuracy and define spectral characteristics on a species level, ground 

measurement data and UAS data are often used in a complementary sense. Coupling both 

techniques generate more information (Walters & Scholes, 2017). For calibrating and ground-

truthing purposes, dune plant species were mapped and identified at different points. The 

vegetation survey was carried out during the image acquisition of the four zones. For that, a 

central profile was defined in each site for sampling plant species identification.  

 

3.3 Data processing 

The main objective of the processing is to determine the plant communities and species by 

executing a GIS data analysis of the collected images. This includes the application of a spectral 

Index, namely the Normalized Different vegetation Index (NDVI) and the choice of the most 

suitable classification as described below. The analysis was carried out in ArcGIS from Esri 

software. In order to improve functionality and workflow reproduction of used geoprocessing 

and image processing tools, the defined workflows have been built on ModelBuilder tool. 

Pre-processing 

The implementation of a pre-processing step solves the problem of platform sway, sensor 

displacement, different altitudes, and lightning variations (Feng, Liu, Gong, 2015; Bemis et al., 

2014). Pre-processing in this case involved the elaboration of the orthophoto mosaics (both 

multispectral and RGB) 
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The images were pre-processed with Agisoft Metashape, a photogrammetric software to 

produce the orthographic imagery and the associated DSM (digital surface model) out of a 

point cloud. The GCPs were used to improve georeferencing of the original raw images.  The 

single tiles need to be set together in spatial continuous raster sets to produce the mosaics. 

The raster creation will be executed by applying a mosaicking process to enhance processing 

speed and improve image spectral variations.  

Spectral  signature of the plants  

Considering the great amount of different plant species identified within the surveyed plots in 

the coastal dunes, it was difficult to separate all species with very similar reflectance values in 

a classification. Therefore, extracting reflectance values in order to assemble a pre-grouping 

can be helpful. For this, the images were resampled from 0.04m to 0.15m and the raster files 

were converted to vector files (namely, point shapefiles). In addition, new shapefiles were 

elaborated that included the mapping of different plant species through visual identification 

using the RGB images and the ground truth data. The latter included point and polygon 

shapefiles that included the plant species for each point or polygon. 

The shapefiles were intersected for the case of polygon shapefiles in order to obtain the 

spectral signature (i.e. the digital number of each band) of a specific plant species. In the case 

of point shapefiles with plant species, the spectral signature was extracted from the raster 

images. Output tables with the digital number per extracted point and species over the 5 

bands were generated for all four zones. Similar species in terms of reflectance were visualized 

and grouped when possible (see appendix).  

 

Extraction of vegetation cover 

Prior to a classification, the vegetation cover was separated from other groundcover features, 

in order to minimize misclassifications between sand and plants. The Normalized Difference 

Vegetation Index (NDVI) is a dimensionless index, it varies between -1 and +1, describing the 

differences between visible and near infrared reflectance. This index is commonly used to 

measure the amount of photosynthetic biomass and it is mostly applied to separate healthy 

vegetation from other groundcover features in fine scale environments, such as coastal dunes. 

(Laporte-Fauret et al., 2020; Verbesselt et al., 2010). It is computed as:  

𝑁𝐷𝑉𝐼 =
(𝑁𝑒𝑎𝑟 − 𝑖𝑛𝑓𝑟𝑎𝑟𝑒𝑑 − 𝑅𝑒𝑑)

(𝑁𝑒𝑎𝑟 − 𝑖𝑛𝑓𝑟𝑎𝑟𝑒𝑑 + 𝑅𝑒𝑑)
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Where Near-infrared and Red refer to the bands withing the spectral range: 700 to 2,500 nm. 

To discriminate sand from vegetation, a threshold value needs to be established. The most 

relevant value was chosen by testing different values based on current literature (Laporte-

Fauret et al., 2020) and validation tests. The best threshold value was 0.11, which states 

anything below as non-vegetation cover and anything higher as vegetation cover. The resulting 

raster just included vegetation cover and were used as classification basis for the classification. 

Classification of the vegetation cover 

Although the Maximum Likelihood Classification (MLC) is one of the most commonly applied 

classification techniques for aerial imagery when using pixel or statistical-based distributions 

(Xie et al., 2008) and has also been used successfully in connection with different coastal 

studies (De Giglio et al., 2019; Suo, McGovern, Gilmer, 2019), the Random Forest Classifier 

(RFC) was giving lower errors in the classifications when running the quality test, therefore it 

has been the preferential choice in this study. RFC has been proven to be a successful tool in 

detection of coastal vegetation features because of its stability and ability to discriminate fine 

ground cover differences (Marzialetti et al., 2019; Timm & McGarigal, 2012; Corell et al., 2018; 

Juel et al. 2015; Laporte-Fauret et al.,2020). This technique is composed of a set of different 

individual base classifiers (decision trees), each tree giving a decision, and the final decision 

corresponding to the majority vote (Proença et al., 2019). 

The RFC classifier was trained with training classes specific of each zone in order to 

determinate the spectral signature of each species and/or group (table 3) which were chosen 

to be classified. After excluding the non-vegetated ground cover with the NDVI index, the 

resulting raster was used to distinguish the classes by drawing polygons around cells which 

could be defined as a certain class. Using the GPS location points of the ground truth samples 

of plant species as reference for the qualitative determination of species. Additionally, the 

Orthophoto of the Mavic Pro, with a higher resolution were used to define the classes. 

The table below (table 3) shows the different species Artemesia, Eryngium, Otanthus, 

Calystegia, Paronychia) and ‘Other Plants’ which is representative for all other plants used in 

the classification. Three different classifications in terms of training classes have been tested 

with two classes, three classes and five classes.  
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Table 3:plant species or plant groups which were chosen to be classified 

 

classes 

 

Artemesia campestris 

Other plants 

 

Eryngium maritimum 

Othanus 

Other plants 

Eryngium maritimum 

Calystegia soldanella 

Artemesia campestris 

Paronychia argentea 

Other plants 

Zone 1    

Zone 2    

Zone 3    

Zone 4    

 

 

Evaluation of classification performance  

Evaluation of classification results is an important step in the classification procedure. Different 

criteria must be considered, such as classification accuracy, computational resources, stability 

of the algorithm, and robustness to noise in the training data. However, the accuracy 

assessment is the most common approach to evaluate the classification performance. After 

generation of an error matrix, other important accuracy assessment elements, such as overall 

accuracy, omission error, commission error, and kappa coefficient, can be derived (Lu & Weng, 

2007; Jackson et al., 2019). 

Table 4: Classification accuracy assessment metrics (Fake, 2019) 

Accuracy 

measure 

Equation Result 

Kappa 
(𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡 − 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡

1 − 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡
 

Difference between 

the actual agreement 

and the agreement 

expected by chance. 

Overall 

Accuracy 

Number of correct cells

total number of cells
 

The average accuracy 

of the classification 

across all cover types. 

Does not account for 

error distribution 

across classes. 
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Comission Number of incorrect cells in class X

Total number of cells classified as class X
 

Measurement of how 

much the class has 

been over-classified 

Omission Number of cells in class X that were classified as Y

Total number of cells meant to be in Class X
 

Measurement of how 

much the class has 

been under-classified 

Users Accuracy Number of correct cells in class X

Number of cells classified as class X
 

For each class, the 

probability that a 

randomly chosen 

point on the map has 

the same class value in 

the field. 

Producer 

Accuracy 

Number of correct cells in class X

 Total number of cells meant to be in class X
 

For each class, the 

probability that a 

randomly chosen 

point in the field has 

the same value on the 

map. 

 

To retrieve these Accuracy assessment metrics pointed out above, a reference data need to be 

used in order to compare with the value after the classification. The assessment was used 

based on visual determination. The reference data retrieved from the orthophoto mosaic build 

from the Mavic Pro drone (RGB images with higher spatial resolution). The ground truth 

pictures and GPS locations have been also used to define ground cover types for the accuracy 

test. 30 points per class have been created for the accuracy assessment. 

 

Spatial cross-shore variability 

To evaluate the cross-shore variability of the vegetation coverage at each plot, from the 

seaside towards inland of the plot, the plots were divided into up to 11 polygons or sections 

(depending on the zone). Each section has a width of 10m and a length corresponding to the 

width of each plot. For each section the plant coverage per plant group/species was calculated 

in square meters and the density calculated (%). These estimates were only applied to 

classifications with acceptable accuracy results. Acceptable accuracy results were defined in 

this work classification results with a Kappa higher than 0.75. The estimate of the changes in 

the type of vegetation cover was therefore analysed across the dune and over time and 

compared. 
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4.Results 

Drone imagery 

  

  

 

Figure  4: zone 1 in may 2022 

Figure  5: zone 2 in may 2022 

Figure  6: zone 3 in may 2022 Figure  7: zone 4 in may 2022 
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The first results in terms of data collection are the pre-processed drone imagery. Zone 2, 3, 4 

(fig. 5, 6, 7 ) seem to have a very similar ground coverage in terms of vegetation cover. The 

backshore is dominated by bare sand and patchy vegetation cover by very small plants. 

Moving away from the water, small empty dune formation can be noted with increasing but 

still scattered vegetation coverage. Whereas the dune ridge can be characterized by isolated, 

but partly bigger plant patches. Behind the dune ridge, further inland, a significant increase in 

vegetation coverage can be seen, accompanied by bigger plant patches. Zone 1 (fig. 4) is 

overall very sparsely vegetated with randomly distributed bigger plan patches, with bare sand 

being the dominant landcover type. 

Plant species 

The ground truth sampling resulted in 21 different species detected over all 4 zones. 

Depending on their location during the fieldtrip the species could be assigned to their coastal 

habitat Following the Annex I of the European Habitat Directive 92/43/EEC (2013) (table 5). In 

terms of plant functional types most of the plans could be assigned to the three different types 

defined by García Mora et al. (1999) (table 6). 

 

Table 5: Plants identified in the study plots in the 3 main dune habitats present 

Embryo dune Fordune Established dune 

Eryngium maritinum Ammophilia arenaria Artemisia campestris 

Calystegia soldenella Pancratium maritinum Paronychia argentea 

Cakile maritima Lotus creticus Lotus creticus 

Otanthus maritimus Crucianella maritima Anthemis maritima 

Polygonum maritinum Otanthus maritimus Aeonium arboreum 

Elymus farctus Elymus farcus Carpobrotus acinaciformis 

Pancratium maritinum Silene nicaeensis Pelargonium capitatum 

Medicago marina Medicagos marina Silene nicaeensis 

Pancratium maritimum Linaria pedunculata Malcolmia littorea 

Crucianella maritima Euphorbia paralias Ammophila arenaria 

 Malcolmia littorea  

 Artemisia campestris  
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Table 6: Dune plants and respective functional types 

 species Functional Type 
(FT) 

Burial Tolerant (BT) 

Ammophila arenaria 3 TAA 

Anthemis maritima 2 NT 

Artemisia  2 TBA 

Calystegia soldanella 3 TBA 

Carpobrotus acinaciformis 
(invasive) 

2 TBA 

Crucianella maritima 2 TBA 

Elymus farctus 3 TAA 

Eryngium maritimum 3 TBA 

Linaria pedunculata 2 NT 

Lotus criticus 2 TBA 

Malcolmia littorea 2 NT 

Medicago marina 2 TBA 

Otanthus maritimus 3 TAA 

Pancratium maritimum 3 TBA 

Paronychia argentea 1 NT 

Polygonum maritimum 3 TBA 

Silene nicaeensis 2 NT 

Functional types (FT) according to García Mora et al. (1999), and species burial 
tolerance (BT): TAA=high burial rates tolerant, TBA=low burial rates tolerant, NT=not 
tolerant to sand burial. 

 

Spectral signature of plant species 

The extraction of multi-values (spectral signature over the 5 bands) averaged over all 4 plots 

resulted in an output of values for each species for every band (fig. 8) The digital number 

values are ranging from a minimum of 8441 in band 1 to maximum of 55442 in band 5. Most of 

the signatures for the species in band 1, 2 and 3 vary in a spectrum of 10.000-30.000, whereas 

band 4 and band 5 are located in a spectrum between 25.000 and 55.000. There is a strong 
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mixing between plant species in the dataset, hence the multispectral signal alone cannot be 

used to separate at the species level the entire vegetation cover. 

 

 

Figure  8: Averages of the extracted multi-values (x axis: average wavelength of band 1 to 5; y-axis: digital number) 
of all four zones combined 

 

Image Classification 

Three vegetation classes were used by the RF classifier for zone 1 after the sand class was 

extracted through the application NDVI threshold. Two classes were distinguished because of 

the significant differences in spectral signature of Eryngium and Othantus. All other species 

have rather similar signature observing the histogram. The class ‘Other’ is therefore a 
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combination of all other species, which were grouped due to similar signature. The results of 

the RF classification of May 2022 are given in (fig. 9), as an indicative example, showing that 

landcover is dominated by sand. The dominant vegetation cover is Otanthus and Other 

vegetation. Lowest cover is represented by Eryngium. Higher vegetation density is noted 

towards the lagoon side (north), represented mostly by Other vegetation and Otanthus, 

whereas Eryngium is more common in the middle and western side. The accuracy test 

indicates a very good overall accuracy (0.95) and Kappa (0.93) values. The class accuracy of 

Otanthus and Sand have a 100% agreement, whereas Eryngium has 93% and other species 

have 87%, showing very good results as well. Accuracies for all other surveys (table 7; survey 

date table 2) and all other accuracy values as Comission, Omission, Users accuracy and 

Producer accuracy see Appendix A. 

 

Figure  9: RF Classification results of zone 1 with 4 classes 
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Table 7: Confusion matrix of the RF classifier with the four Landcover classes (may 2022) 

Class 
 Sand Otanthus Eryngium Other 

Class Accuracy 
(%) 

Sand 30 0 0 1 100 

Otanthus 0 30 0 1 100 

Eryngium 0 0 28 2 93 

Other 0 0 2 26 87 

Overall accuracy:  0.95 
Kappa:  0.93 

 

Five vegetation classes were used to classify zone 2 after extraction of the sand class. The 

results of the RF classification of May 2022 are given in figure 10, as an indicative example, 

showing dominance of sand class on the backshore beach and embryo dune. Most common 

plants in the seaward incipient foredune seem to be Eryngium and Calystegia. Over the 

landward incipient foredune, vegetation is becoming denser and more dominated by Other 

species and Artemisia. The established dune ridge behind the foredune is mainly covered by 

Artemisia, Paronychia and sand. The accuracy test shows low overall agreement with an 

overall accuracy of 0.51 and a Kappa of 0.41. More specifically, class accuracies of sand (80%) 

and Artemisia (86%) show rather good results, but Eryngium (43%), Calystegia (33%), Other 

(23%) and Paronychia (36%) lower the overall accuracy of the classification. Accuracies for all 

other campaigns and all other accuracy values as Commission, Omission, Users accuracy and 

Producer accuracy see Appendix A. 

 

 

  



 

23 
 

 

Figure  10: RF Classification results of zone 2 with 6 classes 

 

Table 8:Confusion matrix of the RF classifier with the 6 Landcover classes 

Class Sand Eryngium Calystegia Artemisia Other Paronychia 
Class Accu-

racy (%) 

Sand 24 5 6 2 4 13 80.00 

Eryngium 0 13 2 2 6 0 43.33 

Calystegia 2 2 10 0 2 0 33.33 

Artemisia 0 0 4 26 5 3 86.67 

Other 0 9 7 0 7 3 23.33 

Paronychia 4 1 1 0 6 11 36.67 

Overall Accuracy: 0.51 
Kappa: 0.41 

        
 

Two vegetation classes were used to classify zone 3 (after extraction of the sand class). The 

results of the RF classification of May 2022 are given in figure 11, as an indicative example, 

showing dominance of sand class on the backshore beach. The incipient foredune is mainly 

covered by Other species and sand, whereas Artemisia is dominant over the established dune 

ridge behind the foredune. The accuracy of the classification is high, with an overall accuracy 
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of 0.87 and a Kappa of 0.80. Class accuracies for are 93%, 77% and 90% for sand, Other and 

Artemisia, respectively. Accuracies for all other campaigns and all other accuracy values as 

Commission, Omission, Users accuracy and Producer accuracy see Appendix A. 

 

 

Figure  11: RF Classification results of zone 3 with 3 classes 

 

Table 9: Confusion matrix of the RF classifier with the 3 Landcover classes 

Class Sand Artemisia Other Class accuracy (%) 

Sand 28 4 0 93 

artemesia 1 23 3 77 

other 1 3 27 90 

Overall Accuracy: 0.87 
Kappa: 0.80 
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Spatial and temporal variability of dune landcover 

The cross-shore variability in landcover classes over the dune is presented in Figure 12, Figure 

13. Figure 14. and Figure 15 for zones 1 to 4, respectively. The vertical axis gives the density of 

each class, summed over cross-shore sections spaced every 10m (x axis in meters, increasing 

landwards). Considering the good overall accuracy values from zone 1 with four classes and 

zone 2 zone 3 and zone 4 with three landcover classes, were the reason to choose these 

classification for further transect-crosshore evaluation. Zone 2 with 6 classes were excluded 

because of insufficient accuracy values. 

Zone 1 shows a significant opposite cross-shore gradients between sand and vegetation cover, 

mainly regarding Otanthus and Other species. Eryngium doesn’t show a clear pattern, with 

presence throughout the plot. Over time there an increase of plant species coverage in all 3 

classes. The last dataset from May 2022 shows a slight decrease in plant coverage, however 

this could be within the classification error. 

 

 

 

 

 

Figure  12: Across-shore variability of landcover class abundance in zone 1 for all campaigns; x axis is in meters. 
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Zone 2 also shows opposite cross-shore gradients between sand and vegetation cover, for 

both vegetation classes (Others and Artemisia, increasing landwards). In the last two sections, 

a decrease in Artemisia and an increase in sand coverage can be observed. Over time, the 

highest overall sand cover can be observed in May 2020 and the lowest overall sand cover in 

May 2021. Other species show high variability, with overall increase with time, whereas 

Artemisia shows low interannual variability mainly varying seasonally. 

 

Figure  13: zone 2, corsshore variation over 11 transects and over different seasons and years 

 

 

Cross-shore gradients in Zone 3 shows the same variability as the other zones, with decreasing 

trends for sand and increasing ones for Artemisia. With and high sand coverage (100%) on the 

seaside a steady decline over the first 70 meters to under 50% can be observed. Conversely 

Artemisia start with 0% at the seaside and shows a rapid growth in coverage starting from 30m 

meters land inwards 
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Figure  14: zone 3, cross-shore variation over 10 transects over different seasons and years 

 

 

Figure  15: zone 4 cross-shore variation over 7 transects over different seasons and years 
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5. Discussion 

The main challenges in the use of multispectral drone imagery for remote sensing of coastal 

dune plant species in environments like Ria Formosa, are related with the small size and 

density of plants and the complexity and heterogeneity of the existing species. Even though 

the spatial resolution of such imagery can be very high, the spectral resolution offered is low 

compared with hyperspectral counterparts. This hinders the separation of the spectral 

signature of distinct plant species and in some cases grouping of species in image classification 

cannot be avoided.  

In order to distinguish dune vegetation in a similar environment in France, Laporte et al. (2020) 

used an approach to collect ground reference reflectance spectra of each plant species and 

sand types. Plant species and sand with the lowest mixing percentage where distinguished and 

used as basis for further RF classification. Ground measurements were performed by deploying 

a TriOS-RAMSES radiance sensor on a tripod above a 1 x 1 m2 representative field sites, 

dominated by one ground cover type.  

Prior to any classification attempt or application of any Vegetation Index, the spectral 

signature of all 21 identified species were evaluated (Appendix A), calculating average values 

over all plots for every species and every band, which clearly show the high spectral mixing 

between species in the datasets. In order to simplify the variability in spectral signature, the 

spatial resolution was decreased (Pu, Landry, & Yu, 2011). For species with distinct signature 

values were classified separately, and the rest were grouped based on signature similarities 

over the bands, despite pertaining to different functional types (FTs).  On the basis of these 

results 5 classes, 3 classes and 2 classes were chosen to be tested for the RF classification. 

Seasonal variability is reflected in a shift towards higher values in spring compared to the 

autumn/winter values (fig. 16: Histogram). Perennial species, like Calystegia or Eryngium, 

which are mainly consisting out of dead organic material during the winter period seem to 

disappear almost completely. The NDVI most likely excluded most of the dead material in the 

winter time. Qi & Wallace (2002) stating that the detection of non-photosynthetic components 

within multispectral imagery is a challenge due to the fact that the reflectance of such material 

is similar to that of bare soil. Therefore, a winter disappearance of Calystegia or Eryngium can 

be explained by a species transformation into organic dead material. Considering that 

Eryngium and Calystegia are mainly distributed in the embryo dune, the species could be also 

disappeared due to winterly overwash.  
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Figure  16: Histogram of January and may in zone 3 for five classes 

 

Accuracies 

The overall accuracy of the classification has a significant influence on the reliability of the 

results and of any deriving ecological conclusions. For the sake of simplicity, the Kappa 

coefficient will be used for comparisons between study plots whereas the users- and producer 

accuracy will be used to discuss the implications of different accuracies of the classes that exist 

within this study. The Kappa coefficient is a widely used metric that describes the overall 

relationship between the classification and the associated reference data. The use of the 

Kappa coefficient allows for the direct comparison between different classifications (Congalton 

& Green, 2008). If Kappa coefficient is below 0.40, the strength of agreement is poor, if the 

values are between 0.40 and 0.75, it represents an intermediate to good extent of agreement 

while all values above 0.75 indicate an excellent extent of agreement (Jackson et al., 2019). 

The Kappa coefficient was lowest using six classes (zone 2) with a Kappa coefficient of 0.34 in 

November 2020 and its highest value (0.93) in May 2022 (zone 1), with four classes. Overall, 

the results are showing higher accuracy values with less classes (see appendix accuracy for 

zone 2 and zone 3). However, the accuracy results in zone 1 with four classes seem to be 

better then in zone 3 with just 3 groundcover classes. Considering zone 1 as a very young dune 

environment which has been just formed in recent years, with less dense vegetation and also 

less variety of different species, therefore less mixing of different species, resulting in 

significantly better classification results. The Users accuracy indicates how much of the 

classified map is actually correctly classified in each class, whereas the Producer accuracy 

states the correctly classified percentage within each class. The accuracy results of zone 3 is 

showing low differences between the Users and Producer accuracy, resulting in a very good 

overall result. The differences between Producer and Users accuracy seem to be higher in zone 
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2 when classified with six classes, due to mixing between Other species, Eryngium, Calystegia 

and Paronychia. The zone 1, classified in four classes, has good Kappa values (ca. 0.75) and low 

differences between Producer- and User accuracy in recent campaigns. The campaigns carried 

out in 2020 show a significantly lower Kappa coefficients (0.60 and 0.63), however with very 

low success in the classification of Eryngium and Other species. 

The size of the training data set is a major determinant of classification accuracy. Whereas a a 

large amount of training data sets is serving a better accuracy, it can be time consuming and 

therefore challenging. Sample sizes can vary between large training set (n=10.000) and a very 

small training set (n=40) for a supervised classification (Ramezan et al., 2021). In this study a 

sample selection of n=15 have been chosen per specie/group in order to be time efficient. 

However, these rather low sampling size can support a bias in classification, as the training 

samples may not represent all the species spectral values. Considering the collection of 

sampling points for the accuracy tests Foody (2009) states that the right amount of sampling 

point is difficult to define due to extent purpose of the classified plot and also resource and 

time management. However, the amount of sampling points of n=30 chosen in this study 

represents a rather small amount comparing to other studies (Laporte et al.,2020; Talavera et 

al.,2022). 

 

Vegetation cover and community 

An overall growth in vegetation coverage can be observed from 2020 to 2021, with a following 

decline in 2022 in most of the zones and transects. Considering that zones 2, 3 and 4 have very 

similar dune morphologies and similar zonation, they are comparable in terms of evolution and 

groundcover changes. In all the three zones (2, 3, 4) there is an increase in vegetation coverage 

over the analysis period and in the first two sections this could be interpretated as overall 

seaward progradation of the dune and vegetation. Costas et al. (2021) observed similar cross-

shore long-term trends (last decades). An increase in vegetation over the first section can also 

be interpretated as the fixation and growth of an embryo dune to incipient foredune.  

Moving landwards from 30m/40m the more established dune field seem to vary over the years 

in terms of plant coverage growth with an increase in Plant coverage from 2020 -2021 

(Artemisia in zone 2, 4; Other species in zone 1, 2, 3; Eryngium zone 1). Considering extrinsic 

factors, such as rainfall and air moisture and soil moisture content, which has been low in 

winter 2019/2020 and also low in 2021/2022 in south Portugal (fig.17), could explain such 



 

31 
 

developments. However, these trends don’t seem to be confirmed in all zones (e.g. Other 

species zone 4 and Artemisia zone 3.  

 

Figure  17: Winter anomalies in  Precipitation, humidity and soil moisture in Portugal (Copernicus, 2022) 

 

Ecogeomorphic feedbacks 

Previous studies supporting the theory of two topographic states fundamentally governed by 

the vegetation cover and extrinsic factors. As a biophysical process plant growth is seen as 

driver in dune recovery and therefore promote dune growth in terms of elevation, while 

extrinsic factors e.g. storm and sea-level rise tent to control this biological feedback (Stallins, 

2005; zinnert et al., 2017; Duran & Moore 2014). Considering this theory and observing rather 

declining plant vegetation cover in most of the four monitored plots and species towards 

spring 2022, we could assume a dune decline in elevation as well. However, Costas et al. 

(2021) explains a decline a limit in vertical growth through low precipitation and low sediment 

transport preventing the growth of various dune builder plants (e.g Artemisia) 

6. Conclusion 

The Identification of dune species during several fieldtrips via ground truth sampling have 

been successfully completed. 21 dune vegetation species could be distinguished and related to 

their dune habitat and grouped into plant functional types. The NDVI could be successfully 

applied to discriminate sand and dead organic or inorganic matter from live plants. The 

identification of species via a classification from multispectral drone imagery was rather 

challenging, because of the similar spectral signature of the species and their high spatial 

variability. In a preliminary step, individual species and potential species groups were 

identified, based on the recorded spectral signature. The classification results showed a higher 

accuracy with less classes, therefore less species/groups could be identified more accurately 

(and vice versa).  
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The cross-shore plant zonation over the 4 plots was identified from the classification results. A 

very low plant coverage over the backshore and embryo dune, with increasing plant coverage 

landwards, to the dune ridge crest, with related differences in the distribution of plant classes. 

Due to the challenges in remote sensing at the level of plant species, the spatial variability of 

zonation was limited to the classes selected (spectrally distinct plant species and groups of 

mixed dune species).  

The acquisition of data through six different fieldtrips over three years in different seasons was 

used as basis for evaluating the changing dune landcover over time and in all four plots. The 

tendencies of an advancing vegetation seaward and denser vegetation coverage over 

seasons/years were identified. Again, due to challenges in classification only certain 

species/groups could be successfully evaluated in terms of temporal variability. 

The UAS data were not able to detect fine-scale community compositional changes and 

features with any acceptable accuracy. This complexity however, makes the detection and 

modelling of these plant habitats challenging via UAS imagery based on the methods used in 

this study.  
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Appendix A 

 

 

Figure  18: differences in signals 
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Aeonium arboreum 0 9368.08 8151.09 8374.07 4264.12 5511.46 6863.05 7369.81 7945.63 4575.45 4521.85 7468.7 8283.97 7033.86 6209.38 8301.01 5129.9 6914.57 4338.08 8030.03 4201.17

Ammophila arenaria 9368.08 0 1926.47 2066.89 7749.59 4795.04 3894.25 2959.47 2781.94 6360.78 6800.5 2594 1507.11 3988.57 3793.03 3461.1 4735.05 4190.69 7083.83 1693.94 5844.72

Anthemis maritima 8151.09 1926.47 0 445.682 7288.53 4428.98 2128.39 3281.72 3494.53 5827.86 6390.4 2720.12 1034.38 4219.42 3298.67 4164.94 3764.01 4401.87 5340.08 2035.78 4443.47

Artemisia campestris 8374.07 2066.89 445.682 0 7634.08 4804.53 2134.85 3666.01 3860.29 6172.2 6725.92 3134.47 1328.35 4605.8 3672.79 4548.54 4082.49 4783.54 5414.92 2402.18 4656.55

Cakile maritima 4264.12 7749.59 7288.53 7634.08 0 2984.25 6995.79 4937.29 5385.24 1625.45 1113.48 5355.24 6904.71 4115.02 4180.67 5401.42 3778.72 3905.02 6273.04 6141.61 4327.31

Calystegia soldanella 5511.46 4795.04 4428.98 4804.53 2984.25 0 4621.43 2067.65 2631 1653.05 2160.76 2396.33 3968.43 1538.62 1310.08 2853.89 1623.64 1437.65 5325.78 3168.87 3121.05

Carpobrotus acinaciformis 6863.05 3894.25 2128.39 2134.85 6995.79 4621.43 0 4358.8 4763.48 5717.66 6156.26 3911.96 2944.27 5073.16 3797.59 5510.11 3566.26 5161.14 3491.95 3608.33 3361.06

Crucianella maritima 7369.81 2959.47 3281.72 3666.01 4937.29 2067.65 4358.8 0 663.018 3632.8 4053.31 810.854 2554.93 1058.32 1522.88 1373.86 2765.39 1263.62 6328.01 1420.6 4364.33

elymus farctus 7945.63 2781.94 3494.53 3860.29 5385.24 2631 4763.48 663.018 0 4165.19 4501.18 1178.9 2722.22 1399.24 2182.49 1191.34 3426.78 1584.9 6926.14 1523.03 5009.12

Eryngium maritimum 4575.45 6360.78 5827.86 6172.2 1625.45 1653.05 5717.66 3632.8 4165.19 0 1245.63 3961.45 5404.5 2891.22 2665.94 4180.99 2290.43 2748.84 5443.02 4716.57 3229.71

Euphorbia paralias 4521.85 6800.5 6390.4 6725.92 1113.48 2160.76 6156.26 4053.31 4501.18 1245.63 0 4520.71 6007.75 3310.22 3371.55 4678.64 3074.72 3073.51 5834.88 5240.67 3777.17

Linaria pedunculata 7468.7 2594 2720.12 3134.47 5355.24 2396.33 3911.96 810.854 1178.9 3961.45 4520.71 0 2015.74 1658.93 1511.47 1615.25 2701.16 1901.86 6062.62 972.823 4234.71

Lotus creticus 8283.97 1507.11 1034.38 1328.35 6904.71 3968.43 2944.27 2554.93 2722.22 5404.5 6007.75 2015.74 0 3484.64 2770.75 3284.56 3515.47 3694.75 5855.41 1209.38 4545.62

Malcolmia littorea 7033.86 3988.57 4219.42 4605.8 4115.02 1538.62 5073.16 1058.32 1399.24 2891.22 3310.22 1658.93 3484.64 0 1563.16 1411.67 2677.17 321.949 6533.69 2415.35 4356.25

Medicago marina 6209.38 3793.03 3298.67 3672.79 4180.67 1310.08 3797.59 1522.88 2182.49 2665.94 3371.55 1511.47 2770.75 1563.16 0 2446.67 1288.03 1670.97 5098.17 2138.43 2973.72

Otanthus maritimus 8301.01 3461.1 4164.94 4548.54 5401.42 2853.89 5510.11 1373.86 1191.34 4180.99 4678.64 1615.25 3284.56 1411.67 2446.67 0 3705.21 1664.04 7463.81 2170.16 5403.36

Pancratium maritimum 5129.9 4735.05 3764.01 4082.49 3778.72 1623.64 3566.26 2765.39 3426.78 2290.43 3074.72 2701.16 3515.47 2677.17 1288.03 3705.21 0 2690.87 3997.1 3208.82 1742.88

Paronychia argentea 6914.57 4190.69 4401.87 4783.54 3905.02 1437.65 5161.14 1263.62 1584.9 2748.84 3073.51 1901.86 3694.75 321.949 1670.97 1664.04 2690.87 0 6526.21 2635.82 4326.82

Pelargonium capitatum 4338.08 7083.83 5340.08 5414.92 6273.04 5325.78 3491.95 6328.01 6926.14 5443.02 5834.88 6062.62 5855.41 6533.69 5098.17 7463.81 3997.1 6526.21 0 6207.03 2409.04

Polygonum maritimum 8030.03 1693.94 2035.78 2402.18 6141.61 3168.87 3608.33 1420.6 1523.03 4716.57 5240.67 972.823 1209.38 2415.35 2138.43 2170.16 3208.82 2635.82 6207.03 0 4568.61

Silene nicaeensis 4201.17 5844.72 4443.47 4656.55 4327.31 3121.05 3361.06 4364.33 5009.12 3229.71 3777.17 4234.71 4545.62 4356.25 2973.72 5403.36 1742.88 4326.82 2409.04 4568.61 0
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Figure  19: similarities in signals 

grouping threshold 1200
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Aeonium arboreum yes no no no no no no no no no no no no no no no no no no no no

Ammophila arenaria no yes no no no no no no no no no no no no no no no no no no no

Anthemis maritima no no yes yes no no no no no no no no yes no no no no no no no no

Artemisia campestris no no yes yes no no no no no no no no no no no no no no no no no

Cakile maritima no no no no yes no no no no no yes no no no no no no no no no no

Calystegia soldanella no no no no no yes no no no no no no no no no no no no no no no

Carpobrotus acinaciformis no no no no no no yes no no no no no no no no no no no no no no

Crucianella maritima no no no no no no no yes yes no no yes no yes no no no no no no no

elymus farctus no no no no no no no yes yes no no yes no no no yes no no no no no

Eryngium maritimum no no no no no no no no no yes no no no no no no no no no no no

Euphorbia paralias no no no no yes no no no no no yes no no no no no no no no no no

Linaria pedunculata no no no no no no no yes yes no no yes no no no no no no no yes no

Lotus creticus no no yes no no no no no no no no no yes no no no no no no no no

Malcolmia littorea no no no no no no no yes no no no no no yes no no no yes no no no

Medicago marina no no no no no no no no no no no no no no yes no no no no no no

Otanthus maritimus no no no no no no no no yes no no no no no no yes no no no no no

Pancratium maritimum no no no no no no no no no no no no no no no no yes no no no no

Paronychia argentea no no no no no no no no no no no no no yes no no no yes no no no

Pelargonium capitatum no no no no no no no no no no no no no no no no no no yes no no

Polygonum maritimum no no no no no no no no no no no yes no no no no no no no yes no

Silene nicaeensis no no no no no no no no no no no no no no no no no no no no yes
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Figure  20: grouping of signals 

 

Table 10:accuracy of plots one for the different dates 

date Kappa 
overall 
Acuracy Comission Omission 

Users 
Acuracy 

Producer 
Acuracy landcover 

21.05.2020 0.60 0.70 11.76 0.00 88.24 100.00 Sand 

    3.45 6.67 96.55 93.33 Otanthus 

    100.00 100.00 0.00 0.00 Eryngium 

    52.73 13.33 47.27 86.67 Other 

        

26.11.2020 0.63 0.73 9.09 0.00 90.91 100.00 Sand 

    19.44 3.33 80.56 96.67 Otanthus 

    33.33 86.67 66.67 13.33 Eryngium 

    46.67 20.00 53.33 80.00 Other 

        

G
R

O
U

P
S

4
5

0

5
6

0

6
5

0

7
3

0

8
4

0

A Aeonium arboreum 17061 32815 19148 52242 55442

B Ammophila arenaria 13238.25 14421.5 12987.25 21505.5 26143.5

C Anthemis maritima Artemisia campestris Lotus creticus 12614.58333 13631.75 9473.167 25372 33123.42

D Cakile maritima Euphorbia paralias 27362.5 29248.17 28153.17 40895.17 43340.83

E Calystegia soldanella 23920.33333 24390.33 21008 34483.67 37482

F Carpobrotus acinaciformis 8441 12812 8394 34961 38447

G Crucianella maritima 21609.8 21274.2 19370.2 27715.8 30898.4

H Eryngium maritimum 27254.75 27577.25 23071 36896.25 43561.75

I Medicago marina 22680.5 20897.17 17012.33 30853.5 37323.83

J elymus farctus Otanthus maritimus 24169.08333 21776.88 19694.29 25426.96 28057.38

K Pancratium maritimum 21888.25 20806.75 15997 34654.25 42360

L Malcolmia littorea Paronychia argentea 25460.06667 23001.1 22425.8 29411.73 32712.93

M Pelargonium capitatum 10749 16935 8320 45427 51599

N Linaria pedunculata Polygonum maritimum 16066.75 18590.75 11892.75 36672 41145

O Silene nicaeensis 18577.75 18520.25 14324 39861.5 47822.5
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07.05.2021 0.90 0.93 3.23 0.00 96.77 100.00 Sand 

    3.45 6.67 96.55 93.33 Otanthus 

    10.00 10.00 90.00 90.00 Eryngium 

    13.33 13.33 86.67 86.67 Other 

        

13.10.2021 0.91 0.93 3.23 0.00 96.77 100.00 Sand 

    9.09 0.00 90.91 100.00 Otanthus 

    6.90 10.00 93.10 90.00 Eryngium 

    7.41 16.67 92.59 83.33 Other 

        

03.02.2022 0.92 0.94 3.23 0.00 96.77 100.00 Sand 

    3.33 3.33 96.67 96.67 Otanthus 

    6.90 10.00 93.10 90.00 Eryngium 

    10.00 10.00 90.00 90.00 Other 

        

18.05.2022 0.93 0.95 3.23 0.00 96.77 100.00 Sand 

   3.23 0.00 96.77 100.00 Otanthus 

   6.67 6.67 93.33 93.33 Eryngium 

   7.14 13.33 92.86 86.67 Other 
 

Table 1: plot2 accuracy 

Table 11: Accuracy for plot 2 for the different dates 

date Kappa 
overall 
Acuracy Comission Omission Users Acuracy 

Producer 
Acuracy landcover 

21.05.2020 0.37 0.48 55.56 20.00 44.44 80.00 sand 
    51.85 56.67 48.15 43.33 eryngium 
    54.55 83.33 45.45 16.67 calystegia 
    31.58 13.33 68.42 86.67 artemesia 
    74.07 76.67 25.93 23.33 Other 
    52.17 63.33 47.83 36.67 paronychia 
26.11.2020 0.34 0.44 52.73 13.33 47.27 86.67 sand 
    58.82 74.07 41.18 23.33 eryngium 
    0.00 100.00 0.00 0.00 calystegia 
    32.43 16.67 67.57 83.33 artemesia 
    75.86 75.00 24.14 23.33 Other 
    51.85 56.67 48.15 43.33 paronychia 
07.05.2021 0.40 0.50 41.30 10.00 58.70 90.00 sand 
    57.58 53.33 42.42 46.67 eryngium 
    25.00 90.00 75.00 10.00 calystegia 
    26.47 16.67 73.53 83.33 artemesia 
    74.42 63.33 25.58 36.67 Other 
    50.00 66.67 50.00 33.33 paronychia 
13.10.2021 0.42 0.52 48.28 0.00 51.72 100.00 sand 
    65.52 66.67 34.48 33.33 eryngium 
    0.00 96.67 100.00 3.33 calystegia 
    27.03 10.00 72.97 90.00 artemesia 
    60.53 50.00 39.47 50.00 Other 
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    41.18 66.67 58.82 33.33 paronychia 
03.02.2022 0.43 0.53 57.14 0.00 42.86 100.00 sand 
    91.67 93.33 8.33 6.67 eryngium 
    0.00 100.00 0.00 0.00 calystegia 
    26.83 0.00 73.17 100.00 artemesia 
    25.93 33.33 74.07 66.67 Other 
    27.78 56.67 72.22 43.33 paronychia 
18.05.2022 0.41 0.51 55.56 20.00 44.44 80.00 sand 
   43.48 56.67 56.52 43.33 eryngium 
   37.50 66.67 62.50 33.33 calystegia 
   31.58 13.33 68.42 86.67 artemesia 
   73.08 76.67 26.92 23.33 Other 
   52.17 63.33 47.83 36.67 paronychia 
 

 

Table 12: Accuracy for plot 3 for the different dates 

date Kappa overall  Comission Omission User  Producers  landcover 

        

21.05.2020 0.80 0.87 12.12 3.33 87.88 96.67 Sand 

    11.11 20.00 88.89 80.00 Artemísia 

    16.67 16.67 83.33 83.33 other 

        

26.11.2020 0.82 0.88 11.76 0.00 88.24 100.00 Sand 

    13.79 16.67 86.21 83.33 Artemísia 

    11.11 20.00 88.89 80.00 other 

        

07.05.2021 0.78 0.86 15.63 10.00 84.38 90.00 Sand 

    17.65 6.67 82.35 93.33 Artemísia 

    8.33 26.67 91.67 73.33 other 

        

13.10.2021 0.83 0.89 12.12 3.33 87.88 96.67 Sand 

    15.63 10.00 84.38 90.00 Artemísia 

    4.00 20.00 96.00 80.00 other 

        

03.02.2022 0.78 0.86 19.44 3.33 80.56 96.67 Sand 

    13.04 33.33 86.96 66.67 Artemísia 

    9.68 6.67 90.32 93.33 other 

        

18.05.2022 0.80 0.87 12.50 6.67 87.50 93.33 Sand 
    14.81 23.33 85.19 76.67 Artemísia 

    12.90 10.00 87.10 90.00 other 
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