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Exploring the response of a key 
Mediterranean gorgonian to heat 
stress across biological and spatial 
scales
D. Gómez‑Gras 1,2,3*, N. Bensoussan 1,4, J. B. Ledoux 5, P. López‑Sendino 1, C. Cerrano 6,7,8,9, 
E. Ferretti 9, S. Kipson 10,11, T. Bakran‑Petricioli 10, E. A. Serrao 12, D. Paulo 12, M. A. G. Coelho 12, 
G. A. Pearson 12, J. Boavida 4, I. Montero‑Serra 2, M. Pagès‑Escolà 2, A. Medrano 2, 
A. López‑Sanz 1, M. Milanese 13, C. Linares 2,3 & J. Garrabou 1,4

Understanding the factors and processes that shape intra-specific sensitivity to heat stress is 
fundamental to better predicting the vulnerability of benthic species to climate change. Here, 
we investigate the response of a habitat-forming Mediterranean octocoral, the red gorgonian 
Paramuricea clavata (Risso, 1826) to thermal stress at multiple biological and geographical scales. 
Samples from eleven P. clavata populations inhabiting four localities separated by hundreds to more 
than 1500 km of coast and with contrasting thermal histories were exposed to a critical temperature 
threshold (25 °C) in a common garden experiment in aquaria. Ten of the 11 populations lacked 
thermotolerance to the experimental conditions provided (25 days at 25 °C), with 100% or almost 
100% colony mortality by the end of the experiment. Furthermore, we found no significant association 
between local average thermal regimes nor recent thermal history (i.e., local water temperatures in 
the 3 months prior to the experiment) and population thermotolerance. Overall, our results suggest 
that local adaptation and/or acclimation to warmer conditions have a limited role in the response of P. 
clavata to thermal stress. The study also confirms the sensitivity of this species to warm temperatures 
across its distributional range and questions its adaptive capacity under ocean warming conditions. 
However, important inter-individual variation in thermotolerance was found within populations, 
particularly those exposed to the most severe prior marine heatwaves. These observations suggest 
that P. clavata could harbor adaptive potential to future warming acting on standing genetic variation 
(i.e., divergent selection) and/or environmentally-induced phenotypic variation (i.e., intra- and/or 
intergenerational plasticity).

Ocean warming is imposing increasing stress on marine ecosystems by exposing marine species to extreme 
temperatures that may exceed their thermal limits1. However, populations and individuals of the same species 
exhibit contrasting responses to warming across different spatio-temporal scales2–4. This intra-specific variability 
hinders our understanding of species vulnerability to climate change, and therefore, of any potential derived 
effect that may cascade up to the community or ecosystem level.

The capacity of sessile marine species to persist in the face of climate change is highly influenced by their 
thermal tolerances, which tend to reflect the environment in which they are found5. Accordingly, much research 
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has focused on deciphering how past and present local environmental conditions modulate responses to ocean 
warming in relation to biological processes. Thermal acclimation through adaptive phenotypic plasticity (i.e., 
the expression of distinct phenotypes from an individual genotype, thus increasing relative fitness in response to 
temperature variations), and local thermal adaptation via divergent selection (i.e., selection on locally adapted 
genomes exhibiting higher relative fitness in their local thermal environment than foreign individuals) have 
received particular attention6–9. In coral species, populations thriving in warmer environments have often been 
observed to exhibit higher thermal tolerances than those living under more moderate temperature conditions, 
and is commonly attributed to local thermal adaptation of the coral host and/or their photo-symbionts8,10–16. 
Similarly, recent thermal history (i.e., exposure to heat stress or marine heatwaves [MHWs]) in the weeks or 
months prior to subsequent exposure to heat stress has also been shown to potentially modify the thermal 
responses of coral populations, leading to acclimation, hardening weakening effects and/or the differential sur-
vival of resistant genotypes13,17–21. However, while the local thermal environment and the thermal and stress 
histories of populations seem to play important roles in the determination of thermotolerance in some coral 
species, the relationship between these factors remains controversial for others (e.g.,22–26).

In the Mediterranean Sea, MHWs are recurrently triggering severe mass mortality events (MMEs) affecting a 
wide array of benthic macro-invertebrates across multiple phyla2,27,28. However, the effects are not homogenous, 
and typically result in contrasting patterns of mortality between different organisms, species and populations. 
Among them, the habitat-forming red gorgonian Paramuricea clavata has been one of the most affected species, 
providing an excellent biological model to explore the factors and processes modulating intra-specific responses 
to heat stress. In recent years, some studies have provided evidence in support of various eco-physiological fac-
tors that could influence the responses to heat stress of different P. clavata populations. For instance, feeding 
constraints prior to a MHW (typically during summer-autumn) may exacerbate MMEs in affected populations 
by inducing a metabolic imbalance between the higher energetic cost of respiration at high temperatures and 
the energetic constraints of the locally weakened colonies29–31. Alternatively, the local abundance of thermo-
dependent and/or opportunistic pathogens may also contribute to the MHW-driven mortality of debilitated P. 
clavata populations32,33. A recent study indeed reported increases of both opportunistic and pathogenic bacteria 
in the microbiome of Mediterranean gorgonians during thermal anomalies34 (but see35). Demographic factors 
(e.g., sexual maturity, sexual condition) could also partially explain why individuals and populations from the 
same and different locations show contrasting responses to thermal stress36. Yet, despite the fundamental insights 
provided by these and other previous studies, little is yet known about the potential role that local thermal 
environments and thermal and stress histories could play in shaping intra-specific variation in P. clavata ther-
motolerance. This hinders our understanding of the overall thermal sensitivity of this species, as well as of its 
future capacity to adapt and/or acclimatize to warmer conditions via genetic and/or physiological mechanisms.

Nevertheless, some efforts have already been made in this direction. In a previous study of thermotolerance 
among different NW Mediterranean P. clavata populations25, tolerance was correlated with genetic drift which, 
by restricting the capacity for local adaptation, was suggested as a driver of the variation observed in response 
to MHWs. A central role for genetic drift in the response to thermal stress of P. clavata was also suggested by 
population genetic data37. Beyond this previous study, the effects of thermal stress in P. clavata have only been 
examined to date in closely related individuals and/or populations, either from the same location but at different 
depths, or from a few relatively nearby locations within the same sub-basin in the Mediterranean Sea (maximum 
distance approximately 500 km). Moreover, the potential influence of prior thermal exposure on the overall 
outcomes remains an open question.

In this study, we performed a common garden experiment in aquaria encompassing a spatial scale not previ-
ously addressed (> 1500 km of coast) for P. clavata. A total of 11 populations from 4 different localities situated 
across the North and West Mediterranean were submitted to thermal stress in controlled conditions. Our aims 
were threefold: (1) to test the null hypothesis that warmer thermal regimes do not result in better thermotoler-
ance (marginal role for local adaptation in thermal stress response); (2) to test whether the sea water tempera-
ture conditions in the months prior to the experiment (i.e., a proxy for recent thermal history) influenced the 
response, which could indicate the capacity for rapid acclimation and/or weakening effects; and (3) to explore 
the potential effect of previous MHW-induced MMEs (i.e., proxy for longer-term thermal stress history) on 
thermotolerance, which could provide further insights into the role that extreme warm events may have on 
the response of P. clavata to recurrent MHWs. Taken together, this information will contribute to increase our 
knowledge on the adaptive potential of P. clavata to climate change, considered here as the capacity to tolerate 
or adapt to future conditions via adaptive phenotypic (intra or trans-generational acclimation processes) and/or 
genetic changes (adaptation via natural selection). The results obtained will contribute to the conservation of this 
emblematic Mediterranean species, including the potential identification of thermoresistant donor populations 
and/or colonies for future restoration actions.

Materials and methods
Model species.  The red gorgonian Paramuricea clavata is a habitat-forming octocoral with a key role in the 
structure and functioning of temperate hard-bottom habitats such as the coralligenous assemblages38–40. Distrib-
uted in dim light conditions along the Mediterranean coasts41, P. clavata is characterized by its arborescent mor-
phology, great longevity (up to 100 years) and notable size (up to 2 m)42. Thus, P. clavata presents a unique set of 
traits that increases habitat complexity and provides ideal environmental conditions favoring the settlement and 
development of many other species of the coralligenous38. However, this species also has traits that make it espe-
cially sensitive to disturbances. With slow growth, low recruitment rates and restricted dispersal37,43–46, P. clavata 
is increasingly threatened by anthropogenic impacts that cause mortality in adults. These include physical dam-
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age and mortality from fishing activities47, invasive species48, habitat degradation49 and climate change27,28,40,50. 
Accordingly, P. clavata was included in the IUCN red list of vulnerable Mediterranean Anthozoans in 201651.

Study locations.  Samples were taken from 11 P. clavata populations located within four different localities 
situated across the North and West Mediterranean basin and the Adriatic Sea (Fig. 1 and Table 1) based on the 
following criteria: (1) large spatial scale (hundreds to thousands of kilometres), encompassing large longitudinal 
(from 3 to 15° E) and latitudinal ranges (from 42 to 44° N), which is representative of the species geographic 
distribution, (2) contrasting average in-situ thermal regimes at the depths sampled (the upper limit of the bathy-
metric range of P. clavata in each locality) (see Fig. 2a–c in  “Results” section), (3) local temperature variation in 
the three months prior to the experiment, with some localities exhibiting abnormally high temperatures, which 
may have pre-conditioned P. clavata colonies for the thermal experiment (i.e. contrasting recent thermal history; 
see Fig. 2d-g in “Results” section); and (4) encompassing a range of previous local MHW-induced MMEs (i.e., 
contrasting thermal stress history; Table S1).

In addition to the 11 Mediterranean populations, a population from Sagres, southern Portugal (NE Atlantic) 
was initially included in the thermal experiment (see Supplementary Appendix S1). However, a recent phylog-
enomic analysis has confirmed that the specimens from this population are a different species of Paramuricea 
[Coelho et al. in prep]. Therefore, the response of this population to heat stress has been withdrawn from the 
analyses and discussion of the present work but is provided as Supplement (see Supplementary Appendix S2).

Thermal environments.  The subsurface thermal environment of the four Mediterranean localities was 
monitored as part of the T-MEDNet initiative52. The local temperature conditions were documented based on 
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Figure 1.   (a) Location of the four sampling localities across the Mediterranean. * Another population from 
Sagres (Portugal) was initially included in the thermal experiment, but was withdrawn from the analyses after 
recently confirmed to be a different species of Paramuricea. (b) Photo of the study species Paramuricea clavata 
(photo by Medrecover). The map shown in panel (a) was generated using R software version v3.5.0 (https, 
//www.R-​proje​ct.​org/) and combined with the photo in panel (b) using Adobe Illustrator CC 2018 (https://​
adobe.​com/​produ​cts/​illus​trator).

Table 1.   Detailed information on the sampled populations; country, location, ID, coordinates and sampling 
depths.

Country Localities Population ID Longitude Latitude Depth (m)

Spain Medes (Catalonia)

La vaca 3° 13′ 34.76’’ E 42° 2′ 52.97’’ N 18—20

Pota del Llop 3° 13 ′31.44’ ’E 42° 2′ 58.92’’ N 15 -17

Tascons 3° 13′ 36.84ʺ E 42° 2′ 31.88ʺ N 15 – 17

France Scandola (Corsica)

Gargallu 8° 32′ 3.82ʺ E 42° 22′ 18.62ʺ N 24 – 27

Palazzinu 8° 33′ 0ʺ E 42° 22′ 47.47ʺ N 23—26

Palazzu 8° 32′ 46.19ʺ E 42° 22′ 47.54ʺ N 23–26

Italy Portofino (Liguria)

Altare 9° 10′ 43.12ʺ E 44° 18′ 32.10ʺ N 35—37

Indiano 9° 10′ 0.80ʺ E 44° 18′ 44.91ʺ N 35 -37

Lighthouse 9° 13′ 8.45ʺ E 44° 17′ 55.14ʺ N 35–37

Croatia Kornati (Dalmatia)
Balun 15° 15′18’’ E 43° 48′ 14’’ N 33—36

Mana 15° 15′ 59’’ E 43° 48′01’’ N 35

http://www.R-project.org/
https://adobe.com/products/illustrator
https://adobe.com/products/illustrator
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a standard protocol for the acquisition of multi-year time series with temperature records collected every hour 
at 5 m intervals between the surface and 40 m depth. To analyse the thermal environment experienced by P. 
clavata populations at the sampling depths, all corresponding in-situ temperature data available up to 2019 were 
retrieved from T-MEDNet database (from 4 to 18 years, see Fig. S1). Our comparative analysis considered the 
timing and magnitude of the annual daily temperature cycle and the exposure to warm conditions. Three metrics 
of average local thermal regime (calculated over the entire time-series), and one metric of recent thermal regime 
(calculated over a 3-month period prior to the experiment) were calculated to contrast with the thermotolerance 
responses (see Table 2 for a description of the thermal metrics).

Previous exposure to MHW‑induced MMEs.  Data on previous MHW-induced MMEs experienced by 
the 11 studied populations from 1983 to 2017 were retrieved from the T-MEDNet mass mortality database53. 
Following the same classification used in the database, we considered populations exhibiting less than 30%, 
between 30 and 60% or more than 60% of affected colonies as experiencing low, intermediate and severe impacts, 
respectively. The resulting information regarding years, locations, depths, and severity of impacts (i.e., % of 
affected colonies) can be found in Table S1.
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Figure 2.   (a) Inter-annual average of daily mean temperatures during the annual cycle at each locality at the 
depths on which the populations were sampled. (b) Intensity-duration plot indicating the mean number of 
days (± SE) at warm temperatures during the 10% warmest period of the year at each locality. (c) Mean locality 
temperature (± SE) during the warmest day, 10-days, 30-days and 90-days of each year. (d–g) Daily temperature 
values observed in-situ at each locality during the three months prior to the experiment (from 15th June until 
15th September, 2017) with respect to the inter-annual mean (iMean) and the inter-annual percentile 90th 
(iT90). Days over the iT90 threshold were considered as “extreme heat days”. Days over the iMean but below the 
iT90 were considered as “warm days”. Days below the iMean were considered as cool days. Finally, the risk zone 
for P. clavata (days over 23 °C) is represented in yellow.
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Thermotolerance experiment.  Field sampling was carried out by collecting apical colony branches of at 
least 10 cm in length from 30 healthy adult colonies (> 50 cm in height) per population (330 fragments in total) 
(Fig. S2). The sampling was conducted simultaneously in all localities by scuba-diving for two days (18th and 
19th of September 2017). The samples were randomly selected among the colonies occurring near the upper 
limit of the bathymetric range of P. clavata at each location (ranging from 15 to 37 m depth; see Table 1). After 
collection, live samples were maintained overnight in a small aquarium system  with recirculating seawater, 
packed in 2 L bags of seawater (10 fragments per plastic bag) and sent in polystyrene boxes (3 bags per box) on 
the 19th of September to Barcelona. In the case of Medes and Scandola, samples were directly transported in 
coolers immediately after sampling without overnight stabilization. Overall, the minimum and maximum trans-
portation times between the sampling and the arrival facility was several hours for the Medes populations and 
36 h in the case of populations from Portofino.

The experiment was conducted in the Aquarium Experimental Zone of the Institut de Ciències del Mar in 
Barcelona (ICM-CSIC) starting on the 21th of September 2017. Upon arrival, each of the 30 colony branches 
sampled per population were divided into two fragments (8–10 cm length; one for control, one for treatment), 
that were mechanically fixed to experimental rectangular PVC plates (5 × 30 cm) and two rubber layers follow-
ing the methodology applied by25. The samples were acclimated for one week in an open aquarium system with 
50 μm sand-filtered running seawater at a natural temperature (17–18 °C). Colony health was checked during 
the week-long acclimation period before the experiment by assessing their overall appearance (i.e., presence of 
tissue necrosis) and polyp aperture during feeding events. All colonies presented open polyps during feeding 
events and showed no signs of tissue necrosis over this period. Since populations from different regions also 
exhibited equivalent levels of polyp aperture during feeding events (Fig. S3), we concluded that transportation 
did not have any relevant effect on the health status of the colonies before the experiment (as observed in previ-
ous studies on the same species and with similar transportation times, e.g.,25).

The common garden experiment involved two aquaria sets: control and Treatment, each of which com-
prised three replicate tanks (70 L each) per population with 10 different individuals in each (30 individuals per 
population and experimental condition). In the Control set, seawater temperature was maintained at 16–18 °C 
during the whole experiment. In the Treatment set, the heat stress consisted of a stepwise temperature increase 
from 18 to 25 °C over 3 days (Fig. S4). Upon reaching 25 °C, thermal conditions were kept constant for 25 days. 
This temperature was chosen for our experiment because it was identified as a lethal threshold for P. clavata 
populations25. In addition, a buffer tank (also 70 L) was used to control seawater temperature in both Treatments 
and Control tanks. The buffer tank was supplied with 50 μm sand-filtered Mediterranean seawater pumped from 
15 m depth directly into the experimental tanks, functioning as an open system (Fig. S4). To monitor water 
temperature in each tank throughout the experiment and to facilitate circulation, each tank was provided with 
individual heaters, temperature controllers, HOBO temperature data loggers (accuracy 0.2 °C, resolution 0.02 
°C, registering temperatures every 5 min) and submersible water pumps. Finally, feeding was carried out three 
times per week by combining 3 ml of a liquid mixture of particles between 10 and 450 μM in size (Bentos Nutri-
tion Marine Active Supplement, Maim, Vic, Spain) in each tank on days 2 and 6 and a tablet of frozen cyclops 
(Ocean nutrition, Antwerp, Belgium) on day 425,54.

Response variables.  The response variable measured as a proxy for colony thermotolerance was the per-
centage of tissue necrosis, which was visually monitored daily throughout the duration of the experiment25. 
From this variable, we calculated four descriptors that were used to statistically compare differences in thermo-
tolerance among colonies, populations and localities: (1) the survival probability of each colony through time 
(i.e., its probability of having less than 100% of injured surface), (2) the mean (± SD) daily % of extent of injury, 
estimated as the daily average (or SD) injured tissue per colony in each population, (3) the daily percentage of 
affected colonies (those with > 10% necrotic tissue), and (4) the daily percentage of dead colonies. These descrip-
tors are good estimators of the magnitude, timing and variability of the partial and/or total mortality suffered by 
P. clavata and other coralligenous species exposed to thermal stress (e.g.,2,24,25,27,54).

Statistical analysis.  To test for significant relationships between local thermal regime, recent thermal his-
tory, thermal stress history and thermal tolerance, we used a series of different mixed effects COX models55. 
These models allowed us to compare time to colony death (dependent variable) as a function of thermal descrip-
tors (independent variables) while accounting for any potential confounding factors related to the populations 
or localities involved. In this sense, our different computed models varied in their fixed terms (thermal descrip-
tors) depending on our research question, but maintained the dependent (i.e., survival exhibited by each colony 
throughout the 25 days of exposure to thermal stress) and random (populations nested within localities) vari-

Table 2.   Description of the thermal metrics used to compare thermal environments.

Thermal regime Thermal metric Thermal metric description

Average local thermal regime

Mean annual temperature Inter-annual average of mean daily temperatures during a year

Mean Tmax during warm periods Inter-annual average of Maximum temperature during the warmest periods of the 
year (measured at 1day, 10 days, 30 days and 90 days periods)

N of days with high temperatures Inter-annual average of number of days at temperatures higher than 23 °C

Recent thermal regime (3 months prior to the experiment) N of extreme heat days N of extreme heat days (days with T over the inter-annual percentile 90th based 
on the local climatology) and with a daily average temperature of at least 23 °C



6

Vol:.(1234567890)

Scientific Reports |        (2022) 12:21064  | https://doi.org/10.1038/s41598-022-25565-9

www.nature.com/scientificreports/

ables constant. Specifically, we first tested whether the average local thermal regime of the colonies influenced 
their thermal response by including the Mean Annual T of the different localities as fixed effect. In this model, we 
excluded all other available descriptors of average local thermal regime (i.e., Mean Tmax during warm periods or 
N of days at T > 23 °C) because they were highly correlated with Mean Annual T, and thus their inclusion would 
have obscured the interpretation of the results. Secondly, we tested whether the recent thermal history of the 
colonies influenced their thermal response by selecting as fixed effect the number of extreme heat days (those 
with T over the 90th interannual percentile) reaching at least 23 °C over the 3 months prior to the experiment. 
Since 23 °C is both a sublethal temperature for P. clavata and close to the 25 °C used in the thermal experiment25, 
this metric allowed us to test the effects of anomalous extreme temperatures before the experiment (potential 
pre-conditioning) on population responses under experimental conditions. Finally, we tested whether prior 
occurrence of MHW-induced MMEs at the studied locations (a proxy for thermal stress history) influenced the 
thermal response of populations by including the degree of impact (from low to severe; see Table S1) exhibited 
during prior events as a fixed effect.

To further characterize differences in thermotolerance among the studied populations and localities regardless 
of their thermal environment or history, we used the Kaplan–Meier product limit method56 and the log-rank 
test57. We ran a first analysis to explore differences among localities. Then, we repeated the analyses considering 
each locality separately to explore differences among populations with the same regional origin. We then tested 
for differences among populations by considering all populations of the study pooled together. This analysis 
allowed a post-hoc pairwise Log-rank comparison to investigate differences between pairs of populations regard-
less of their origin. Finally, to investigate the variability of response among individuals across populations, we 
estimated population mean daily SD of extent of injury across the 25 days of the experiment, and grouped popula-
tions into three arbitrary categories; low variability (mean daily SD < 10%), intermediate variability (10% > mean 
daily SD < 15%) and high variability (mean daily SD > 15%). All statistical analyses were computed using the R 
functions from the ‘survival’ and ‘coxme’, R packages (R version v3.5.0; R Core Developer Team, 2018).

Results
Local thermal regimes at the study localities.  The analysis of the inter-annual average in-situ temper-
ature revealed contrasting patterns in both the timing and magnitude of the seasonal cycle for the four different 
localities (Fig. 2a). On average, the warmest conditions occurred at the end of summer in Medes and Scandola 
(i.e., August–September), and October at Kornati and Portofino. All localities experienced their minimum tem-
peratures in February. Scandola was the locality exhibiting the highest mean temperature during the year (17.11 
°C ± 2.9), whereas Portofino was the one with the lowest mean temperature (16.33 °C ± 2.1 SD). However, the 
warm tail of the temperature distribution (10% warmest percentile; 37 days), revealed the highest level of expo-
sure to warm temperature (percentiles expressed in days) at Medes and Scandola (Fig. 2b), where up to 30 days 
per year were above 22 °C on average, while these temperatures were only rarely reached at Kornati or Portofino. 
Similarly, the average seawater temperatures in warm periods calculated over a range of temporal scales (from 
1 day to the 90 warmest days) showed 1–2 °C difference between these two groups of localities (Fig. 2c).

Recent thermal history at the study localities.  The analysis of the recent thermal conditions (three 
months prior to the experiment) also revealed contrasting patterns between the different localities. The average 
in-situ mean daily temperature ranged between 16.85 °C ± 0.99 SD at Portofino to 21.8 °C ± 1.26 SD at Scan-
dola (Fig. 2d–g). During this period, exposure to abnormally extreme temperatures occurred on 9 and 5 days 
at Medes and Scandola, respectively (Fig. 2d,e). By contrast, populations at Portofino and Kornati were never 
exposed to such extreme conditions during the three-month period prior to the experiment (Fig. 2f,g). Similarly, 
the maximum daily temperature reached in this period was highest at Medes (24.56 °C). A difference of almost 4 
°C was evident between the warmest day at Medes and that at Portofino (20.55 °C), revealing the disparity of in 
in-situ thermal exposure experienced by the populations in the 3 month period prior to the experiment.

Past thermal stress history (i.e., previous exposure to MHW‑induced MMEs over the 1983–
2017 period).  All eleven populations studied here were affected to some extent during previous MHW-
induced MMEs reported to have occurred over the last three decades in the Mediterranean. Yet, the degree of 
impact that they exhibited varied greatly among them (Table S1). Specifically, Lighthouse (Portofino) was the 
only population that experienced a severe MME over the 1983–2017 period (in 1999), followed by the Palazzu 
and Palazzinu populations (Scandola), which experienced moderate mass mortalities in 2003. Conversely, low 
impacts were reported for Altare and Indiano (Portofino) in 1999, Gargallu (Scandola) in 2003, as well as all 
three populations from Medes in 2003 and both Kornati populations in 2009.

Thermotolerance patterns in P. clavata populations in relation to their local thermal his‑
tory.  The first signs of necrosis were evident for all populations in at least some colonies after one week 
exposed to 25 °C (Fig. 3a). At the end of the experiment (25 days), 94.5% of the colonies (312 out of 330) showed 
100% tissue necrosis (dead colonies) while only 1.2% (4 out of 330) remained totally healthy (all from Light-
house population) (Fig. 3b).

There were no differences in the survival probability across time of P. clavata colonies depending on their local 
thermal regime according to the results of the COX models (p > 0.05; Table S2). Specifically, the mean annual T 
of the sampled localities did not significantly affect the thermal response. Similarly, the results of the COX mixed 
models focusing on the effects of recent thermal history were similar, with no significant relationship between 
the thermal response of populations and the thermal conditions in the three months prior to the experiment 
(p > 0.05; Table S3). However, the results of the COX mixed models focusing on the effects of thermal stress 
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history (defined as damage suffered during previous MHW-induced MMEs) showed a significant positive rela-
tionship between the thermotolerance of populations and degree of impact experienced in past MHW-induced 
MMEs (p < 0.01; Table S4).

Thermotolerance across localities.  Significant differences in the survival probability were found between the 
localities (p < 0.001) (Fig.  4a). The colonies from Portofino were significantly more resistant than any of the 
remaining three localities: Medes, Kornati or Scandola (Fig. 4b). Among the latter three less resistant localities, 
the survival probability of colonies from Scandola and Medes did not differ significantly but both were higher 
than that found at the most sensitive locality of Kornati (Fig. 4b).
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Thermotolerance across populations (within localities).  Within localities, significant differences in the survival 
probability among populations were found only in two cases: between the populations at Palazzinu and Gar-
gallu from Scandola (Fig. 4c), and between the three populations at Portofino (Fig. 4f). By contrast, the survival 
probability was the same among the populations at Medes (Fig. 4d) and Kornati (Fig. 4e). When looking at the 
overall pool of populations studied, the post-hoc pairwise comparison tests showed that 55% of the populations 
pairs (32 out of 58 possible combinations) did not differ significantly in their responses to thermal stress despite 
belonging in many cases to different localities (Table S5). For instance, the response of the Balun population 
(Kornati) was not only equivalent to that of Mana from the same locality, but also to that of other populations 
from different localities such as Palazzu and Gargallu (Scandola) or La vaca (Medes). Statistically significant 
differences in the responses to thermal stress were especially evident between the most resistant and sensitive 
populations (45% of the pairs). For example, for the most sensitive populations such as Balun (Kornati), Mana 
(Kornati) or Palazzu (Scandola), half of the colonies were affected by thermal stress only after 11–12 days of 
exposure to 25 °C, with 100% of the colonies dying in less than 21 days (Fig. 3). By contrast, the colonies from 
Lighthouse (Portofino), which was the most resistant population, took at least 18 days to show the same 50% 
effect, while exhibiting an average colony necrosis of only 55% ± 40 (mean ± SE) after 21 days.

Intra‑population variability in the responses to thermal stress.  Important differences in intra-pop-
ulation variability were observed among populations. Three populations (Palazzinu and Gargallu from Scandola 
and Balun from Kornati) showed low variability and a similar response in all the colonies (Fig. 5e,f,j). For these 
“low variability” populations, the mean daily SD of the % extent of injury among colonies across the 25 days of 
experiment was lower than 10%. By contrast, the individual response of colonies from other populations such 
as Pota del Llop (Medes) or Lighthouse (Portofino) was highly variable (Fig. 5b,i), with greater temporal differ-
ences in the onset of necrosis and mortality between sensitive and resistant colonies (with the latter occasionally 
unaffected). For these “highly variable” populations, the mean daily SD of the % extent of injury among colonies 
across the 25 days of experiment was higher than 15%. Finally, a third group including the majority of popula-
tions displayed intermediate intra-population variability. These “intermediate” populations (mean daily SD of 
10–15% injury among colonies across the 25  days of experiment) were La Vaca (Medes), Tascons (Medes), 
Palazzu (Scandola), Altare (Portofino), Indiano (Portofino) and Mana (Kornati) (Fig. 5a,c,d,g,h,k).

Discussion
In this study we carried out a comprehensive characterization of thermal stress sensitivity in Paramuricea clavata 
across several spatial and biological scales. In a common garden experiment including 11 populations from four 
localities with contrasting thermal regimes and separated by more than 1500 km of coast, a broader scale than 
previously addressed for this species, we demonstrate that local thermal regimes and recent thermal histories 
have limited influence in shaping the responses of populations to thermal stress. Together with the high sen-
sitivity shown by most populations in the experiment, our results question the adaptive potential of P. clavata 
to the ocean warming that is predicted to occur over the next decades across most of its distribution range58,59. 
Nevertheless, the increased thermotolerance of extant colonies that had been previously exposed to MHW-
induced MMEs, together with the significant inter-individual differences observed in the responses to thermal 
stress in some populations, suggests some potential capacity of P. clavata to tolerate or adapt to future conditions 
via adaptive phenotypic (intra or trans-generational acclimation processes) and/or genetic changes (adaptation 
via natural selection).

Local thermal environment and thermal history vs. thermotolerance in P. clavata: exploring 
the role of local adaptation and acclimation.  Like a previous study conducted at a smaller spatial 
scale in the NW Mediterranean (three localities separated by 500 km)25, our results did not reveal a relation-
ship between thermal tolerance and the average local thermal environment of the source P. clavata populations. 
Moreover, the recent thermal history of the populations was not linked with increased resistance to thermal 
stress. Given the larger geographic and biological scope of the present study, our results further suggest that the 
response of P. clavata to thermal stress is not shaped by local adaptation to thermal regimes nor by rapid acclima-
tion processes to warm conditions. Interestingly, these results contrast with the majority of the studies conducted 
to date for corals (e.g.,10–13,16–19,60,61) and other marine species (e.g.,62–64), which have typically found that living in 
warmer habitats or experiencing thermal pre-conditioning increases thermotolerance (but see22–24,26).

Conversely, our results suggest that processes other than local adaptation and acclimation to thermal regimes 
mainly drive the intra-specific variation in thermal stress response in P. clavata. These may include neutral 
evolutionary forces (i.e., genetic drift hampering local adaptation)25,36, food availability30,31 demographic factors 
(female vs. males or adult vs. juveniles)36, or the presence of temperature-dependent pathogens32,33. Nevertheless, 
a role for local thermal adaptation and/or thermal acclimation in shaping thermal stress responses in P. clavata 
should not be rejected entirely. Firstly, some studies suggest that local adaptation to high-frequency thermal 
variation (e.g., daily temperature range), which was not tested in our study, could be a more important driver of 
thermal tolerance than the average thermal regime (e.g.,65). Secondly, prior exposure to MHW-induced MMEs 
(considered here as a proxy for thermal stress history) could also modify the way in which populations respond 
to thermal stress by selecting genotypes with thermal resistance and/or the ability to rapidly acclimatize.

Our results showed a significant positive relationship between previous exposure to severe MHW-induced 
MMEs and greater thermotolerance. The Lighthouse population at Portofino was the most severely affected by 
a MHW-induced MME in 1999 (Table S1), and was the most resistant population in our experiment. Studies on 
scleractinian corals have shown that sites that experience extreme bleaching may experience reduced bleaching 
during subsequent events in comparison to unaffected sites (e.g.,21,66). However, in scleractinian corals, these 
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patterns may be related to adaptation, acclimation, or re-assortments of their photosymbionts. However, P. clavata 
is an azooxanthellate species. Therefore, other hypotheses need be considered when attempting to explain the 
higher thermotolerance of the Lighthouse population. The first involves phenotypic plasticity and long-term 
acclimation; colonies impacted in 1999 may have been able to acclimate to the extreme warm conditions via phe-
notypic plasticity (e.g., via downregulating stress response genes such those associated with apoptotic signaling 
or through upregulation of heat shock proteins18,67), and have maintained this “more thermotolerant” pheno-
type over the years. In gorgonians, such long-term acclimation could also involve shifts of baseline expression 
of multiple colony genes that assist in coping with oxidative stress8,35. The long-term persistence of acclimation 
could contribute to population persistence by gaining time for genetic adaptation to occur68. Acclimated traits 
could have direct adaptive value if transmission via epigenetic mechanisms occurs69–71. However, while we cannot 
discard long-term acclimation having occurred at Lighthouse, the sensitive response to thermal stress in other 
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P. clavata populations that had experienced exceptionally high temperatures in the three months prior to our 
experiment (e.g., Scandola), suggests a limited capacity for rapid acclimation in this species.

A second, non-mutually exclusive hypothesis to explain the higher thermotolerance of the Lighthouse popu-
lation may lie in a higher proportion of thermotolerant genotypes. The 1999-MME could have caused a genetic 
bottleneck in which the less thermotolerant genotypes may have been lost. If so, the colonies remaining today in 
Lighthouse would be among the best suited to cope with experimental thermal stress applied. The existence of 
naturally occurring thermotolerant genotypes is consistent with the high inter-individual differences in thermo-
tolerance observed in some populations in this study. Moreover, it would imply the existence of standing genetic 
variation among individuals in thermotolerance-related genes (e.g., single-nucleotide polymorphisms72), which 
would confer some adaptive potential to climate change for P. clavata via natural selection. However, the loss of 
sensitive genotypes and the potentially strong selection in favor of thermoresistant colonies that follows could 
lead to further reductions in population size, which may come at a cost such as an increase of demo-genetic 
stochasticity73. Indeed, reduced population size can lead to loss of genetic diversity via increased inbreeding 
and genetic drift74–76. Moreover, although strong adaptability to heat stress may be beneficial during MHWs, 
the surviving genotypes may be maladapted to the average local conditions77, which may also have physiological 
costs such as lower investment in reproductive effort36. Consequently, MHW-driven reductions in population 
size could increase extinction risk and hinder adaptive potential78,79. Finally, a third explanation of the higher 
resistance shown by the Lighthouse population could be related to environmental and physiological factors 
unrelated to the thermal stress history. For instance, a higher food availability during the summer months prior 
to the sampling and/or a lower investment in reproduction in comparison to the other populations could have 
led to a greater nutritional status of Lighthouse population during the experiment, lower energetic constraints 
and thus higher thermotolerance29,30,80. Unfortunately, the nutritional status of the populations was not estimated 
in our study. Therefore, whether energy reserves influenced the higher thermotolerance of Lighthouse popula-
tion remains an open question. Nevertheless, the fact that other populations from the same area and depth (i.e., 
Altare and Indiano) did not exhibit a higher thermotolerance despite having likely been subjected to similar 
food conditions during summer, suggests that the nutritional status of populations was not the most decisive 
factor involved. In addition, previous experiments conducted with P. clavata populations sampled before and 
after the summer (therefore with different nutritional status29), showed that the nutritional status of colonies 
does not significantly affect thermotolerance when colonies are fed during the experiment31, as was the case in 
our experimental setup. Moreover, the energy reserves of colonies seem to play a very limited role in their ther-
motolerance when compared with other factors such as their antioxidant capacity35. Overall, these data support 
the higher thermotolerance observed in Lighthouse population as more likely being related to the thermal stress 
history than to other environmental or physiological factors influencing its energetic reserves.

Nevertheless, not all populations that were impacted by MHWs in the past exhibited high thermotolerance 
in our study. For instance, Palazzu and Palazzinu populations from Scandola, which experienced moderate 
MHW-driven mortalities in the past, were among the most sensitive populations in aquaria. This suggests that 
the effect of previous MHWs on P. clavata thermal response may be highly context-specific. Hence, further 
research should investigate whether previous exposure to MHW conditions could improve population responses 
to climate change in this species.

Thermotolerance in P. clavata: searching for resistant colonies and populations.  In this study 
we have confirmed that the 25 °C lethal threshold proposed for P. clavata by25 is a lethal temperature for this 
species across most part of its distributional range. Concerningly, this temperature is becoming common during 
warm summers in a large part of the Mediterranean81. Hence, with more frequent and severe MHWs projected 
for the next decades, the exposure of P. clavata populations to detrimental environmental conditions will become 
more common, especially in the shallower part (0–50 m depth) of its bathymetric distribution range58,59. Con-
sequently, many P. clavata populations could face collapse trajectories, with likely detrimental consequences for 
the functioning of the associated coralligenous assemblages40. Whether deep P. clavata populations will provide 
a viable reproductive source for its shallow counterparts following disturbance (the deep refugia hypothesis;82) 
remains unknown. Some evidence indicates that deep P. clavata populations could safeguard genetic diversity 
in the context of climate change83. However, a growing body of evidence suggests that the deep refugia hypoth-
esis may not hold for P. clavata and other gorgonian species in most situations because: (1) thermal anomalies 
may impact deep populations as well (e.g., down to 50–100 m in some cases27,84), (2) there needs to be high 
connectivity between shallow and deep populations, which may be difficult due to physical (e.g., currents) and 
biological (e.g., low dispersal capacity) constraints37,45,46,85; and (3) “foreign” recruits could be better adapted to 
the deep conditions so that their fitness is reduced in shallow environments, as observed in the Mediterranean 
precious coral C. rubrum24. Consequently, it is likely that deep populations of P. clavata will not act as a source 
of recolonization for shallow habitats. Active restoration to aid the regeneration of impacted populations and 
thereby accelerate ecosystem recovery could be desirable. In the context of climate change, successful restora-
tion actions should aim to identify colonies that are tolerant to current and future environmental conditions, 
particularly with regard to seawater temperature86.

Within this framework, we have screened the thermal tolerance of 11 populations from four regions and 
different thermal regimes, and found that only a small proportion of colonies (5.5%) and populations (9%) 
were able to survive a 25 days exposure to 25 °C. These results showcase the high sensitivity of P. clavata to this 
temperature across its distributional range, which challenges the feasibility of successful restoration actions 
in the face of climate change. It seems that contrarily to what may have been thought, selecting colonies from 
populations dwelling in warmer environments to restore potentially damaged habitats will not likely provide any 
benefit in comparison with selecting populations from other cooler thermal environments. Nevertheless, high 
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levels of intra-population variability were found amongst colonies throughout the experiment in some popula-
tions (i.e., Pota del Llop or Lighthouse). In these highly variable populations, at least some colonies were able to 
withstand acute heat stress (i.e., 25 °C) during relatively long periods of time (some even during the 25 days of 
experiment). This is a strong-enough resistance to withstand the heat stress conditions observed during previ-
ous MHW-induced MMEs in the Mediterranean87, and at least some of the MHW conditions expected at their 
living depths during the next decades58. Consequently, such high inter-colony variability, could be key for an 
effective adaptation of P. clavata populations to climate change and should receive further attention from both 
conservation and restoration perspectives.

Future and ongoing research combining the thermotolerance data gathered in this study with analyses of dif-
ferential gene expression will shed light on whether the inter- and intra-population variability in thermotolerance 
observed here is the result of acclimation due to transcriptional frontloading or differential capacity for gene 
expression plasticity88. In addition, the ongoing analyses of whole genome re-sequencing data using the recently 
assembled reference genome of P. clavata89, and the comparison of “resistant” vs. “vulnerable” individuals identi-
fied in this experiment, will allow the exploration of eco-evolutionary processes and potential genetic factors 
involved in the differential responses of colonies and populations to thermal stress. Finally, the combination of 
the thermotolerance data gathered in this study with ongoing analyses of P. clavata microbiome will allow to 
determine if microorganisms may have played an active role in the observed thermal stress susceptibility of P. 
clavata [Bonacolta et al. in prep]. Gathering this information at the transcriptomic, genomic and microbiome 
scales is essential to complement the results of the present study and to guide conservation and restoration efforts 
for P. clavata in the Mediterranean Sea.

Data availability
The datasets used and/or analyzed during the current study available from the corresponding author on reason-
able request.
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