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A B S T R A C T   

This work presents a new deep learning architecture, SpectraNet–53, for quantitative analysis of fruit spectra, 
optimized for predicting Soluble Solids Content (SSC, in ◦Brix). The novelty of this approach resides in being an 
architecture trainable on a very small dataset, while keeping a performance level on-par or above Partial Least 
Squares (PLS), a time-proven machine learning method in the field of spectroscopy. SpectraNet–53 performance 
is assessed by determining the SSC of 616 Citrus sinensi L. Osbeck ‘Newhall’ oranges, from two Algarve (Portugal) 
orchards, spanning two consecutive years, and under different edaphoclimatic conditions. This dataset consists of 
short-wave near-infrared spectroscopic (SW-NIRS) data, and was acquired with a portable spectrometer, in the 
visible to near infrared region, on-tree and without temperature equalization. SpectraNet–53 results are 
compared to a similar state-of-the-art architecture, DeepSpectra, as well as PLS, and thoroughly assessed on 15 
internal validation sets (where the training and test data were sampled from the same orchard or year) and on 28 
external validation sets (training/test data sampled from different orchards/years). SpectraNet–53 was able to 
achieve better performance than DeepSpectra and PLS in several metrics, and is especially robust to training 
overfit. For external validation results, on average, SpectraNet–53 was 3.1% better than PLS on RMSEP (1.16 vs. 
1.20 ◦Brix), 11.6% better in SDR (1.22 vs. 1.10), and 28.0% better in R2 (0.40 vs. 0.31).   

1. Introduction 

From a top-down perspective, it can be observed that contemporary 
agricultural practices have been progressing towards what is termed 
Agriculture 4.0, a term coined by the World Government Summit and 
Oliver Wyman in their 2018 report, “Agriculture 4.0 – The Future of 
Farming Technology” (Clercq et al., 2018). This report highlights four 
major development issues in agriculture: (i) a higher demand for food 
from increased demographics, (ii) the ever increasing scarcity of natural 
resources, (iii) the reduced productivity derived from climate change, 
and especially (iv) the environmental burden of food waste, as the food 
that never gets eaten globally represents a cultivating field with a 
landmass bigger than China, and will most likely end up in a landfill, 
decomposing into methane. Solving these issues requires thoughtful 
consideration on how to improve agricultural efficiency while miti-
gating any consequential and detrimental repercussions, from a meta- to 

a micro-scale, within the context of the limited resources available in the 
production and logistics chain. A key factor permeating most of these 
issues is achieving a very high degree of process efficiency and quality 
control, so that production and logistics-chain resources are adequately 
dimensioned and utilized, while preventing food waste as much as 
possible. 

A major breakthrough in this new agricultural paradigm shift was on 
moving towards non-destructive measurements for estimating fruit (or 
vegetable) internal quality attributes (IQAs), especially using visi-
ble–near diffuse reflectance infrared spectroscopy (Vis–NIRS, from 400 to 
2500nm) (Nicolaï et al., 2007; Cavaco et al., 2021). It is a well known 
fruit screening technique, that has shown very good results in the rapid 
acquisition of important fruit information; a detailed review on this 
subject can be read in Li et al. (2018). This type of spectroscopy irra-
diates light-permeable substances with a broad-spectrum light (e.g., 
tungsten-halogen, which has a spectrum ranging from 350 to 2500nm), 
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which then scatters in the interior of the substance and is absorbed by its 
chemical compounds, before being partially reflected outside and 
sampled by a spectrometer (Tuchin, 2015). Any light changes, when 
compared with the base spectra of the incident light, signal the presence 
of a particular chemical compound, as its molecules absorbed specific 
wavelengths. The interaction of light and matter is crucial for quanti-
fying several important organic compounds, like sugars in fruits, which 
are paramount for establishing fruit maturity and are highly correlated 
with consumer satisfaction (Magwaza and Opara, 2015) – sugars ac-
count for the majority of total soluble solids concentration (SSC), which is 
measured by a refractometer, alongside other soluble compounds. The 
interpretation of the spectra in terms of IQAs is, however, poised with 
several difficulties, since absorption peaks are usually very broad and 
may overlap each other. Furthermore, they are also largely unspecific, 
being caused by the vibrations of the O–H and C–H bonds, which are 
common to all organic molecules (Gauglitz and Vo-Dinh, 2003; Golic 
et al., 2003). 

Despite being a topic with proliferous published literature, the most 
common spectra inference methods usually rely on classical machine 
learning approaches, most notably (and the field time-proven standard) 
based around the Partial Least Squares (PLS) regression. Unfortunately, 
PLS performance is hugely dependent on the choice of data pre- 
processing techniques for each dataset, so it is common to see many 
different approaches in the literature, making this a trial-and-error 
process – what works on one dataset may very well be detrimental 
even on another of the same substance, or have unexpectedly worse 
results. With these drawbacks in mind, the aim of this research was to 
explore the possibility of using a Deep Learning approach to create a 
more robust architecture for quantitative analysis, that could minimize 
the use of specific and custom-tailored pre-processing techniques for 
each dataset, while simultaneously being competitive with PLS even on 
small datasets. 

Deep Learning is a field of Machine Learning that uses multiple 
computation layers, grounded on Artificial Neural Networks, to itera-
tively learn advanced data representations, usually with the aim of 
predicting or classifying dependent variables (Yann LeCun and Bengio, 
2015). While there exists a sizable body of research on the use of deep 
learning for fruit detection and counting in trees, external defects 
assessment, or type categorization, the same is not true for generalized 
regression architectures built for spectroscopy-based IQA prediction, 
especially capable of being trained on small sample counts. A notable 
model in this field is DeepSpectra by Zhang et al. (2019) which is based 
on the Inception architecture developed for GoogLeNet (Szegedy et al., 
2015). The authors validated this model on one-dimensional spectral 
information on four different Vis–NIRS small datasets: for corn (80 
samples), pharmaceutical tablets (228 samples), wheat (882 samples) 
and soil patches (3792 samples), outperforming three simpler con-
volutional neural network (CNN) models and obtaining similar or better 
than PLS results, without requiring data preprocessing (Zhang et al., 
2019). Two variations of DeepSpectra were used as comparison to the 
proposed architecture. 

Mishra and Passos (2021) have explored deep multiblock CNN 
analysis for determining dry matter in mango fruit, by separating the 
visible (Vis) and near-infrared (NIR) regions into different convolutional 
blocks. It is an interesting approach, as it allows both blocks to use 
different hyperparamenters (e.g., filter sizes), and thus be able to learn 
specific features for their inputs. This is especially helpful in architec-
tures with a single or few convolutional layers (the authors used only 
one for each block), as deeper networks are expected to compensate this 
effect by starting on small convolutional windows and later increase 
their “field of view” by doing convolutions of convolutions, which 
combine simpler features into more complex ones. Still, both approaches 
could be combined to reduce the number of necessary convolutional 
layers required to process spectra which are reasonably different be-
tween NIR and Vis. In a different work, Passos and Mishra (2021) 
explored Neural Architecture (NA) and hyperparameter optimization on 

wheat classification (147,096 samples of 30 varieties), using as a rough 
baseline the CNN architecture of Zhou et al. (2020), although with only 
a single convolutional layer, and then optimized the number of fully 
connected and dropout layers necessary for obtaining the best possible 
results on the hyperparameter ranges searched. They were able to in-
crease accuracy from 93% to 94.9% with an overall simpler network 
structure. 

Other recent works are focusing their efforts on hyperspectral im-
aging Yu et al. (2018), which usually requires a more complex acquisi-
tion process than using a portable spectrometer, nonetheless there is 
already some research on field-acquired hyperspectral images of fruit 
peel data (Benelli et al., 2020). Related spectroscopy research fields have 
also shown promising results when using deep learning methods, most 
notably on inferring soil data properties using 2D fast Fourier transform 
(FFT) spectrograms (Padarian et al., 2019a; Xu et al., 2019), or on the 
detection of chlorophyll content in potato leaves, using a continuous 
wavelet transform (CWT)-based 2D spectrogram feeding a CNN (Zhao 
et al., 2022). 

Spectrometer calibration transfer is also a topic of interest for deep 
learning applied to chemometrics. Yang et al. (2022) developed an 
interpretable deep learning model for this task, denoted Deep-
TranSpectra (DTS). This model showed very good calibration transfer 
results, when using five different spectrometers, for predicting moisture 
and crude protein contents on a soybean meal and a wheat dataset. 

Kiranyaz et al. (2019) have done a recent review on the theory and 
usage of 1D CNNs. They highlight that most published research focuses 
on architectures developed for classification tasks, constrained to 
limited labeled data but allowing for input signals with high variance. 
These are architectures generally with only one or two hidden CNN 
layers and less than 10 K total learnable parameters, designed for solving 
very specific problems. Overall, the literature on 1D Deep CNNs with >
1 M parameters is still scarce, especially on those using more advanced 
methods, like Residual Networks (He et al., 2016a), and on regression 
tasks. 

This article proposes a new Deep Learning approach based on 1D 
Convolutional Neural Networks (CNNs) that is able to process input fruit 
spectra and infer desired IQAs, currently focusing on SSC. Its main 
contributions are:  

1. Developing a new and robust Deep Residual Learning Architecture 
for spectroscopic data that relies on minimal preprocessing, is robust 
to outlier input data and works on small datasets;  

2. Evaluating the performance of this deep-learning architecture on a 
previously published dataset;  

3. Achieving state-of-the-art performance results for SSC prediction on 
an external validation dataset;  

4. Demonstrating that Deep 1D CNN architectures can be trained 
without significantly overfitting (to the point of compromising 
generalization capability), with careful choices in design philosophy. 

For performance assessments, the method was applied on an orange 
(Citrus sinensi L. Osbeck ‘Newhall’) spectra dataset, previously explored 
with PLS (Cavaco et al., 2018), which allows for direct performance 
comparisons. This orange variety is a Protected Geographical Indication 
(PGI) fruit in the region of Algarve, Portugal, and is strategically 
important for both the portuguese national and export markets. To best 
preserve its organoleptic qualities and as a non-climateric fruit, its 
harvesting has to be done at optimal edible ripening stage. Specific PGI 
legislation controls its optimal harvest date (OHD), and is based on the 
SSC value, juice volume and Maturity Index (which is the ratio of SSC to 
Titratable Acidity) (Cavaco et al., 2018). 

The remainder of this article is organized as follows: Section 2 de-
scribes the materials and methods used, namely for spectra collection 
and processing, as well as for fruit internal quality attributes assessment; 
section 3 describes the DeepSpectra network training parameters used 
for performance comparisons, and explains the different parts of the 
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SpectraNet–53 architecture, detailing their design considerations; sec-
tion 4 presents all performance assessments and comparisons with other 
methods. Finally, section 5 highlights the main achievements and con-
tributions of this method. 

2. Materials and methods 

2.1. Spectra collection and processing 

As described in Cavaco et al. (2018), fruits were sampled from two 
orchards (Paderne and Quarteira in Algarve, Portugal) during two 
consecutive harvest seasons. The oranges (Citrus sinensi L. Osbeck 
‘Newhall’) used in these tests were picked randomly at the eye level 
(circa 1.60m height) of the canopy of each of the 25 geo-referenced 
trees, chosen across two commercial orchards of local cooperative 
CACIAL, under different edaphoclimatic conditions. Sampling was per-
formed through time, starting from early ripening stage up to late har-
vest, in both orchards, in the following periods: October 2015–February 
2016 (harvest season 1) and November 2016–February 2017 (harvest 
season 2). 

Spectra were obtained with a JAZ spectrometer (Ocean Optics, USA) 
in the Vis–NIR range of 680–1100nm, using a tungsten light source and 

a customized fiber optic probe, made from a bifurcated fiber with an 
interactance probe in one extreme, with the other two legs connected to 
the spectrometer and light source, respectively, as shown in Fig. 1. The 
interactance probe is made of a receiving fiber in the middle connected 
to the spectrometer, and six emission fibers connected to the light 
source, arranged in a 5 mm circle around the middle fiber. For the ab-
solute reference material, a disk of white Spectralon was used (WS-1, 
Ocean Optics, USA), held at an adequate constant height below the 
interactance probe. A custom closed-lid cup was designed and produced 
for measuring fruits in the tree while blocking as much sunlight as 
possible. After a fruit was introduced in the cup, the lid was closed and 
the interactance probe was slid through a small hole until it makes 
contact with the fruit. This process minimizes any harm to the fruit stem. 
For additional details, please refer to Cavaco et al. (2018). 

In total, 616 orange spectra were acquired, with 1421 wavelengths 
each, between 659 and 1135.6nm. Fig. 2(a) shows the reflectance (R) 

Fig. 1. Spectrometer setup.  

Fig. 2. The reflectance and absorbance-like spectra of the 616 oranges. Median 
wavelengths in black. The vertical dashed lines mark the Chlorophyll a ab-
sorption peak at 680nm (in green) and the end of the Chlorophyll absorption 
influence, estimated from the data to be around 730nm (in orange). 

Fig. 3. The absorbance spectra of the 616 oranges, divided into orchard–year 
pairs. Median wavelengths in black. The vertical dashed lines mark the Chlo-
rophyll a absorption peak at 680nm (in green) and the end of the Chlorophylls 
absorption influence at 730nm (in orange). 
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data captured by the spectrometer. As the collection geometries for fruit 
and reference were not the same, it is possible to have R > 1 for some 
fruits and wavelengths. Fig. 2(b) shows the same spectra converted by 
an absorbance-like transform (A), which was done by truncating nega-
tive values to zero, i.e., R ∈ [0,∞), and computing A = − log10(R + 0.1), 
so that A ∈ ( − ∞,1]. This differs from the usual absorbance formula by 
the addition of a 0.1 constant, resulting in max(A) = − log10(0.1) = 1. 
Also, at R = 1, A = − log10(1.1) = − 0.0414. The motivation for this 
transformation is to limit the exponential scaling of low reflectance 
values into infinite absorbance, promoting a more linear relation be-
tween neighbor and low reflectance values (especially below 0.2). This 
will help to stabilize neural network weights at the first convolutional 
layer, during training. 

This dataset spans two orchards for two consecutive years (seasons), 
with the first orchard Paderne having 174 spectra for Y1 and 125 for Y2, 
while the second orchard Quarteira has 192 spectra for Y1 and 125 for 
Y2. These will further be referenced either by the orchard–year pair, or 
the letters A to D (A: Paderne–Y1, B: Paderne–Y2, C: Quarteira–Y1, D: 
Quarteira–Y2). The spectra of these four major dataset partitions are 
respectively shown in Fig. 3. From visual inspection alone, the figures 
already show some differences between orchards, and even for consec-
utive years of the same orchard. This is highlighted when looking at the 
differences between the median spectra of each figure. 

As for spectra preprocessing, no wavelenghts were discarded (Cav-
aco et al. (2018) eliminated all wavelengths below 750nm and above 
1100nm), and used neither signal derivatives nor smoothing. Also, no 
malformed spectra were rejected, so all were included, even those 
contaminated by sunlight (signalled by a dip in the 760–765nm range: 
4% in orchard–year A, 18% in B and C, and 22% in D, for a total of 86 
samples) or with unusual high or low absorbance values (with a norm 
outside the 3σ band of the mean norm; around 2–3% of the total 
remaining samples). In addition, no outliers were rejected during 
training or testing, so all samples of the dataset were used. These choices 

reflect one of the major goals of this work in creating and assessing an 
architecture resilient to several spectra-related errors. 

2.2. Internal quality attributes assessment 

Destructive analysis was done at a lab facility (Cavaco et al., 2018), 
with fruits at room temperature (i.e., around 20◦C), as depicted in Fig. 4. 
Each fruit was weighted and measured at the maximum equatorial 
diameter, with a caliper tool. Next, each fruit was individually squeezed 
in an orange automatic squeezer. After filtration, the total juice per-
centage (w/w), SSC, total titratable acidity (TA) and juice pH were 
assessed using standard procedures: juice was sampled into a digital 

Fig. 4. Internal Quality Attributes assessment procedure.  

Fig. 5. SSC (◦Brix) for the 616 orange samples in the dataset. Each orchard–year pair is separated by vertical dotted lines. Samples are shown ordered by increasing 
SSC value, for each orange tree. The variation is expected, as they were picked from early ripening stage up to late harvest. 

Fig. 6. Overall SSC (◦Brix) histogram for the 616 orange samples in the dataset, 
with corresponding Probability Density Function. The dashed line represents 
the mean value and the dotted lines the standard variation around the mean. 
The bins are set at 0.1◦Brix. 

Fig. 7. SSC (◦Brix) for orchard–year pairs, with shaded 95% confidence in-
tervals. Statistical significance of the differences was assessed with a one-way 
ANOVA [F(3, 612) = 12.45, p < 10− 7]. A Tukey post hoc test reveals signifi-
cant pairwise differences between D and the rest (p < 0.01), but not between A, 
B and C. 
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refractometer (Atago Model PAL-1, Atago Co. Ltd., Tokyo, Japan) for 
SSC determination; pH was measured with a digital pH meter (TitroLine 
6000, SI Analytics GmbH, Germany); TA, which represents the mass 
percentage of citric acid per 100mL of juice (%), was assessed by 
diluting 5mL of orange juice with 5mL of distilled water and subjecting 
the solution to volumetric alkaline titration with sodium hydroxide (0.1 
NNaOH), until reaching a pH of 8.2, using an automatic potentiometric 
titrator (TitroLine 6000, SI Analytics GmbH Germany). The Maturation 
Index (MI) is simply the ratio SSC

TA . 
Of all the attributes measured, the goal of this research is to achieve 

the best possible predictions for SSC, represented in Fig. 5, as it is a 
crucial attribute for both harvest date prediction and sweetness 
perception. The overall SSC distribution is represented in Fig. 6. How-
ever, the other IQAs are important for increasing SSC performance 
prediction, which will be discussed below, in Sections 3.2.4 and 3.2.5. 

Fig. 7 shows the statistical differences between orchard–year pairs, 
which fall within the expected variations of orchards as a result of 
edaphoclimatic variability, due to many factors: e.g., the soil types are 
different between locations, as well as the local and general climatic 
conditions (e.g., colder vs. warmer years). A major takeaway from this is 
that prediction models should always span multiple locations and sea-
sons, to account for the influence of edaphoclimatic variables. 

2.3. Dataset partition 

To allow for results comparison with Cavaco et al. (2018), an iden-
tical dataset division was performed, as shown in Table 1. This 
arrangement consists of 15 Internal Validation (IV) and 28 External 
Validation (EV) sets:  

a) for the IV condition, the samples of each set were further divided into 
a training set (80%) and a test set (20%), using interleaved indices (i. 
e., for each sequential 5 samples, the first 4 are for training and the 
5th is for testing);  

b) for EV, the test set was always a different orchard–year pair (i.e., a 
holdout dataset) than the one(s) used for training. 

3. Neural networks 

3.1. Revisiting DeepSpectra 

DeepSpectra (Zhang et al., 2019) was implemented as a baseline for 
comparison, which is a state-of-the-art deep learning architecture 
created for quantitative spectral analysis, based on the Inception model 
(Szegedy et al., 2015). For the training hyperparameters, the same ones 
that the authors proposed for their “Wheat” dataset assessment were 
used, which estimated protein content. The authors trained DeepSpectra 
on 775 wheat samples, from 7 crop years, and tested on 107 samples, 
from a single crop year. Spectra ranged from 400 to 2498nm, on a 2nm 
resolution, with a total of 1050 wavelengths. This was the dataset that 
had the closest number of features and samples to the one presented 
above (it has 1421 wavelengths of 616 oranges). In detail, the network 
hyperparamenters were: kernel size 1: 7-pts, kernel size 2: 3-pts, 
kernel size 3: 5-pts, stride 1: 3-pts, stride 2: 2-pts, hidden number: 
32 neurons, mini-batch size: 128, dropout rate: 10%, regularization 
coefficient: λ = 0.01, learning rate: 10− 2, with a decay of 10− 3 

( − 0.1%) at each epoch, and epochs: 10 (the training epochs were not 
reported on Zhang et al. (2019), so a similar value to the network ar-
chitecture presented in this paper was used, which will be addressed in 
Section 3.2.5). 

It is important, however, to keep in mind the following cautionary 
note: the spectral range used in the original DeepSpectra paper 
(400–2498nm) is much broader than the range of the spectra studied 
here (659–1135.6nm), which means that the hyperparameters used for 
DeepSpectra may not deliver optimal performance when applied to 
narrower and possibly less informative spectra, as is the present case. 

3.2. SpectraNet–53: A deep learning architecture for fruit spectra 

One of the first issues to contend in creating a deep learning archi-
tecture suitable for processing small datasets is the low amount of fruit 
samples available for training, as a sizable portion of samples need to be 
holdout for testing. It is well known that one of the common constraints 
of deep learning is that it requires a sizeable amount of training data to 
achieve performant models, otherwise the quality of inference will 
suffer. Working around this limitation is not trivial, and requires care-
fully designing an architecture to be as much as possible impervious to 
this issue. 

After empirically evaluating many different architectures, the best 
one was based on a Deep Residual Network with 53 layers (detailed at 
the end of the article, in Table 4 and Fig. 15), stacking six Residual Unit 
blocks, and a careful choice of several key components and methods to 
allow it to generalize as best as possible. These will be described in the 
following subsections. 

The software used for implementing this architecture (as well as 
DeepSpectra) was MathWorks MATLAB R2021a, with partial use of its 
Deep Learning Toolbox. 

3.2.1. Residual units 
A high layer count in a deep neural network is usually advantageous 

for achieving a higher capacity of representing increasingly complex 
information, however, classical CNN architectures suffer from several 
problems that restrict training on architectures with many layers (He 
et al., 2016a): 

Table 1 
Combinations of train/test pairs for internal and external validation.  

Number 
of 

orchard- 
year pairs 

in the 
training 

set 

Internal validation (IV)  External validation (EV) 

Example 
of a 
training/ 
test pair 

Possible 
combinations  

Example 
of a 
training/ 
test pair 

Possible 
combinations 

1 80% of A/ 
20% of A 

C4
1 =

4 
A, B, 
C, D  

A/B C4
1 ×

3 =

12 

A/B, A/ 
C, A/D, 
B/A, B/ 
C, B/D,◦

C/A, C/ 
B, C/D, 
D/A, D/ 
B, D/C 

2 80% of 
AB/ 20% 
of AB 

C4
2 =

6 
AB, 
AC, 
AD, 
BC, 
BD, 
CD  

AB/C C4
2 ×

2 =

12 

AB/C, 
AB/D, 
AC/B, 
AC/D, 
AD/B, 
AD/C, 
BC/A, 
BC/D, 
BD/A, 
BD/C, 
CD/A, 
CD/B 

3 80% of 
ABC/ 
20% of 
ABC 

C4
3 =

4 
ABC, 
ABD, 
ACD, 
BCD  

ABC/D C4
3 ×

1 =

4 

ABC/D, 
ABD/C, 
ACD/B, 
BCD/A 

4 80% of 
ABCD/ 
20% of 
ABCD 

C4
4 =

1 
ABCD     

Notes. A is Paderne-Y1, B is Paderne-Y2, C is Quarteira-Y1, and D is Quarteira- 
Y2. 
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a) Gradients tend to vanish or explode, reducing the capability of the 
network to achieve a lower training error and consequently increase 
the prediction errors on test data;  

b) Current solvers are typically inefficient in optimizing very deep 
CNNs, as they try to optimize all layers simultaneously, even when 
doing so is detrimental. 

Deep Residual Networks (ResNets), specifically, were first intro-
duced by He et al. (2016a) and are arguably one of the most important 
deep learning architectural innovations of the last decade. They work 
around these issues by using Residual Unit (RU) blocks, which are 
stacked into modularized architectures. An RU can be expressed as: 

yl = R(xl,Wl)+ h(xl), (1)  

xl+1 = A(yl), (2)  

where yl and xl+1 correspond to the output and input of the l-th unit, 
Wl = {Wl,k

⃒
⃒[0]1⩽k⩽K} is the set of weights and biases of the l-th RU with K 

layers, R(xl,Wl) is the residual function to be learned by the network 
during training, h(xl) is the chosen identity mapping type for the skip 
connection, and A is a non-linear activation function (He et al., 2016b) 
(Gaussian Error Linear Units were used for SpectraNet, as described 
below in Section 3.2.1). The optimization goal of the network during 
training is for each RU to learn its residual function R(xl, Wl). Block 
diagrams of the two SpectraNet RU configurations are shown in Figs. 8 
(a) and (b), and their inner layers discussed in the next subsections. 

Shortcut connections are a key advantage of residual architectures, 
as they allow for RU stacking without explicitly hindering training 
performance, which can be crucial for allowing a more rich feature 
space, capable of achieving meaningful performance metrics when using 
spectroscopic data. Also, the fact that a small dataset was used, requires 
the network to be able to differentiate spectra from each other as best as 
possible with only a few training samples, so the higher feature space is 
most certainly an advantage. 

Table 4 and Fig. 15 show the complete 1D ResNet–53 architecture 
used in this work, composed of six stacked Residual Units. Each table 
row is a consecutive layer that is connected to the one above and below, 
unless stated otherwise. Additon layers 10, 17, 26, 33, 42 and 49 are 
responsible for adding skip connections with the main path (i.e., they 
output yl, the sum of both terms of Eq. (1)), and are followed by a non- 
linear activation layer which will output xl+1, as defined in Eq. (2). 

Convolutional layers. These layers replicate the concept of a neuron’s 
receptive field (RF), implemented as a filter window that convolves and 
moves spatially along the input data axis. It is able to detect important 
features in the correlated data, similarly to how the human vision system 
relies on different types of on-off cell RFs. Filter windows can have 
arbitrary sizes, and each of its points has a learnable weight, with a 

global bias for the whole window. For example, looking at Table 4, the 
convolution layer at L2 has 32 filters of size 17, along with the 32 
respective bias. When these 32 filters are applied to each of the 1421 
points of the input tensor, the result is 1 × 1421 × 32 activations. 
These filters are all stacked together in the channel dimension, with their 
windows overlapping each other and applied point-by-point into a 
convolutional layer, allowing the detection and extraction of different 
types of important features in the underlying data, with various degrees 
of complexity/abstraction depending on the layer position in the overall 
network architecture (i.e., deeper layers operate on more abstract 
feature representations). Due to the sliding window effect of these 
convolutional windows, these layers are also very efficient in retrieving 
characteristic representations from the spacial structure of data, which 
has historically increased their popularity in image recognition and 
categorization systems for computer vision (Vinet and Zhedanov, 2011). 

Gaussian Error Linear Units (GELUs). SpectraNet heavily relies on 
Gaussian Error Linear Units (GELUs) (Hendrycks and Gimpel, 2016), 
which is a state-of-the-art non-linear activation function, with several 
desirable features: 

a) not only it prevents the vanishing gradients problem, it weights in-
puts by their magnitude for both positive and negative values, 
instead of gating them by their sign. This accelerates training and 
protects neurons from “dying” to a badly conditioned learning rate, 
which can happen when using the common Rectified Linear Unit 
(ReLU) activation function; consequently, GELU also allows for 
much faster training by using a higher initial learning rate; and 

b) most importantly, the transfer function itself is the expected trans-
formation of a stochastic regularizer, which reduces the need for 
other regularization measures (e.g., adding noise to intermediate 
network layers or requiring Dropout (Srivastava et al., 2014)). 

Formally, as described in Hendrycks and Gimpel (2016), the neuron 
input x is multipled by m ∼ Bernoulli[p = Φ(x)], with Φ(x) = P(X⩽x) and 
X ∼ N (0, 1). As E[Bernoulli(p) = p], the expected value of the trans-
formation is: 

E[mx] = x E[m] = Ix × Φ(x)+ 0x × [1 − Φ(x)] = x Φ(x). (3)  

Φ(x) is the CDF of a gaussian distribution, which is adequate for neuron 
inputs following a Batch Normalization (BN) layer (Ioffe and Szegedy, 
2015). As inputs have a higher probability of being dropped as x de-
creases, the transformation is stochastic while still depending on the 
input. The standardized GELU function, with μ = 0 and σ = 1, can be 
approximated (Hendrycks and Gimpel, 2016) as: 

GELU(x) = xΦ(x) = xP(X⩽x) ≈ xσ(1.702x), ∀x ∈ R. (4)  

However, having μ and σ as learnable hyperparameters was chosen 
instead, aiming for the best possible performance; GELU can thus be 
rewritten as: 

GELU(x |μ, σ) = x CDF(x |μ, σ) = 1
σ

̅̅̅̅̅
2π

√

∫ x

− ∞
exp

− (x− μ)2

2σ2 dx, ∀x ∈ R. (5) 

Identity Mappings. He et al. (2016b) have shown that different types 
of RU identity mappings can be used for the shortcut connections, with 
varying degrees of performance. This work used both the original 
configuration (He et al., 2016a), as shown in Fig. 8(a), and another with 
1 × 1 convolutions (Fig. 8(b)). However, both used exclusively GELU 
activations, as this solves an important problem the original configura-
tion had with ReLU: only positive inputs for subsequent RUs after each 
addition layer are possible, which is undesirable, as this shapes the 
forward propagated signal to increase monotonically, and most likely 
hurts the representational ability of each RU. On the other hand, a GELU 
activation is able to output a ( − ∞,∞) signal by varying its learned mean 
and standard deviation. 

SpectraNet also used 1 × 1 convolutional shortcuts (He et al., 

Fig. 8. Residual Units (He et al., 2016a). Diagram (a) shows a RU with an 
identity skip connection, while (b) shows a RU with an 1x1 convolutional 
shortcut with a stride of 2, used to downscale the identity connection before 
addition. BN are Batch Normalization (Ioffe and Szegedy, 2015) layers. 
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2016b) (Fig. 8(b)) on RUs three and five, at L24 and L40 of Table 4, 
which allow for the layer activations in the convolutional units to be 
halved in the feature space and upsampled in the channel dimension. 
These convolutional shortcuts should allow for a better representational 
ability than just identity shortcuts, as their solution space is a superset of 
the latter. Historically, 1 × 1 convolutions usually display a larger 
training error than of identity shortcuts, which is commonly due to 
optimization issues (He et al., 2016b); however this was not the case for 
the current architecture. Batch Normalization (BN) (Ioffe and Szegedy, 
2015) was also applied after every 1 × 1 convolution, before addition 
and subsequent GELU activation. 

3.2.2. Quantile normal variate transform 
Neural network inputs should be standardized or constrained (e.g., 

[ − 1,1]) to accelerate training, stabilize the weights of the first layers and 
have increased resiliency to signal outliers. Both methods have their 

strengths and drawbacks, with the most common method for non-image 
data being signal standardization (i.e., subtracting the mean and 
dividing by the standard deviation), also referred as Standard Normal 
Variate (SNV). SNV is somewhat robust to outliers, if they are not too 
frequent as to have a significant effect on the signal’s mean and standard 
deviation – otherwise the mean range becomes too compressed after 
standardization, which is not ideal. 

This work proposes a new method (as far as the authors can ascer-
tain), entitled Quantile Normal Variate (QNV) with the aim of delivering 
a more robust signal standardization to the input layer of the network. 
QNV is thus defined as: 

QNV(x, n) =
x − μQ(x,n)

σQ(x,n)
, (6)  

where Q(x, n) are the quantiles of n evenly spaced cumulative proba-
bilities (i.e., 1

(n+1),
2

(n+1), …, n
(n+1)) for an integer n > 1 (for non-existent 

Fig. 9. Signal standardization comparison between absorbance spectra, from QNV–2 to QNV–1000 and with SNV. In parenthesis are the mean and standard de-
viation when considering all signals shown. QNV–5 was a good compromise, which was used throughout this work. 
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quantiles in the data, linear interpolation is used), μ is the mean of the 
resulting quantiles and σ is the standard deviation of the quantile values. 

QNV tries to simultaneously reduce the skew effect of low-percentile 
and high-percentile outliers, by using quantiles as representative sam-
ples of the underlying signal. By increasing n, QNV approaches SNV (as 
n→∞), due to the increasingly number of quantiles, until they effectively 
sample all data points. Fig. 9 shows QNV examples at various n–spaced 
quantiles for the 616 orange spectra, and the corresponding SNV 
transform at Fig. 9(h). For this dataset, QNV at 1000 quantiles is already 
very similar to SNV, as shown in Fig. 9(g). 

3.2.3. Batch normalization after the input layer 
The seminal paper of Ioffe and Szegedy (2015) on Batch 

Normalization (BN) has been one of the most innovative contributions to 
deep learning of the last decade, allowing a new degree of training 
stabilization, acceleration and performance for many deep neural ar-
chitectures, resulting in the use of BN layers as standard in most state-of- 
the-art methods. For a recent discussion on the merits of BN (i.e., in-
ternal covariate shift reduction, objective function smoothing and 
especially length-direction decoupling), please refer to Kohler et al. 
(2020). 

Similarly to Simon et al. (2016), a Batch Normalization (BN) layer 
was used directly after the input layer, which is still quite uncommon in 
the literature. This had two main benefits: 

Fig. 10. Absorbance spectra differences after BN at Layer 2, for QNV–5 and SNV input transforms, for one network of the EV–3 ACD/B set; μ is the mini-batch mean, 
σ the standard deviation, γ the scaling factor and β the bias (Ioffe and Szegedy, 2015). 

Fig. 11. Histograms and correlation plots for the different IQAs used in training. MI is not used, but is shown for completeness: as MI = SSC
TA , the uncorrelated TA− 1 is 

used instead. For each pair, the Pearson’s correlation coefficients are shown in black or in red when significant (α = 0.05) in a two-tailed correlation test. The units 
are, from left to right: %, ◦C, g, mm, pH, %⋅100 mL/g of citric acid, and 100 mL/g of citric acid. 
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a) the inputs are scaled and shifted automatically during training, as 
learnable hyperparameters, which can result in a dataset-specific 
standardization that is more fine-tuned and beneficial to the over-
all architecture; and  

b it is a form of data augmentation, as the same input will slightly 
change across mini-batches, due to the per-batch normalization 
statistics. 

Fig. 10(a) shows the effect of this step after the QNV–5 transform 
used in all trained networks, and Fig. 10(b) exemplifies what would 
happen if SNV was used instead – a trained network for this case only 
slightly adjusted the zero mean and unity standard deviation of its in-
puts, while the QNV–5 transform after BN shown in Fig. 10(a) is visibly 
different than Fig. 9(d). 

Fig. 12. Root-mean-squared error of prediction (rmsep) of the 30 neural networks trained in each of the 15 internal and 28 external validation sets, times the 4 
architectures, with notched and shaded 95% confidence intervals. From left to right, at each set: DeepSpectra (blue), DeepSpectra6 (red), SpectraNet–53 (yellow) and 
SpectraNet6–53 (purple). 

Table 2 
Summary of the SSC performance results obtained in IV and EV.    

N rmsec rmsep SDR PG R2 CV(%) Bias Slope 

SSC (%), SEL = 0.1% IV 1 1.08 ± 0.15 1.12 ± 0.12 1.29 ± 0.22 1.26 ± 0.24 0.41 ± 0.16 9.40 ± 1.06 0.15 ± 0.34 0.44 ± 0.15 
DeepSpectra  2 1.14 ± 0.15 1.16 ± 0.11 1.26 ± 0.09 1.24 ± 0.13 0.39 ± 0.06 9.77 ± 0.82 0.13 ± 0.21 0.40 ± 0.05 

(baseline)  3 1.11 ± 0.11 1.19 ± 0.12 1.25 ± 0.04 1.21 ± 0.08 0.36 ± 0.04 10.13 ± 0.86 0.04 ± 0.15 0.33 ± 0.04   
4 1.10 1.22 1.23 1.18 0.34 10.47 0.09 0.35  

EV 1 1.08 ± 0.14 1.34 ± 0.26 1.07 ± 0.18 1.08 ± 0.20 0.33 ± 0.11 11.23 ± 2.04 0.22 ± 0.65 0.38 ± 0.14   
2 1.12 ± 0.15 1.25 ± 0.27 1.14 ± 0.11 1.21 ± 0.29 0.38 ± 0.11 10.44 ± 1.93 0.05 ± 0.58 0.36 ± 0.10   
3 1.12 ± 0.10 1.19 ± 0.33 1.20 ± 0.07 1.30 ± 0.37 0.41 ± 0.09 9.92 ± 2.37 − 0.10 ± 0.56 0.39 ± 0.09 

SSC (%), SEL = 0.1% IV 1 1.10 ± 0.15 1.15 ± 0.11 1.25 ± 0.18 1.22 ± 0.20 0.36 ± 0.16 9.67 ± 0.92 0.14 ± 0.28 0.35 ± 0.18 
DeepSpectra6  2 1.16 ± 0.19 1.20 ± 0.14 1.22 ± 0.07 1.20 ± 0.09 0.36 ± 0.05 10.11 ± 1.08 0.17 ± 0.22 0.32 ± 0.04 

(6 outputs)  3 1.10 ± 0.10 1.19 ± 0.11 1.25 ± 0.04 1.22 ± 0.08 0.37 ± 0.04 10.06 ± 0.76 0.04 ± 0.16 0.38 ± 0.04   
4 1.10 1.22 1.23 1.19 0.35 10.42 0.12 0.37  

EV 1 1.11 ± 0.14 1.34 ± 0.26 1.07 ± 0.14 1.09 ± 0.23 0.31 ± 0.10 11.18 ± 1.87 0.22 ± 0.57 0.29 ± 0.11   
2 1.12 ± 0.14 1.23 ± 0.27 1.16 ± 0.08 1.23 ± 0.30 0.39 ± 0.10 10.24 ± 1.91 − 0.03 ± 0.56 0.37 ± 0.07   
3 1.12 ± 0.09 1.19 ± 0.28 1.20 ± 0.05 1.28 ± 0.33 0.41 ± 0.09 9.91 ± 1.94 0.02 ± 0.53 0.39 ± 0.06 

SSC (%), SEL = 0.1% IV 1 0.91 ± 0.12 1.04 ± 0.11 1.37 ± 0.16 1.34 ± 0.18 0.47 ± 0.10 8.76 ± 0.81 − 0.08 ± 0.21 0.44 ± 0.13 
SpectraNet-53  2 0.92 ± 0.10 1.11 ± 0.12 1.32 ± 0.07 1.29 ± 0.12 0.43 ± 0.06 9.39 ± 0.88 0.02 ± 0.20 0.43 ± 0.05   

3 0.90 ± 0.06 1.15 ± 0.09 1.29 ± 0.06 1.25 ± 0.08 0.40 ± 0.05 9.78 ± 0.60 0.05 ± 0.17 0.41 ± 0.05   
4 0.89 1.15 1.31 1.25 0.42 9.85 0.13 0.42  

EV 1 0.92 ± 0.12 1.22 ± 0.23 1.17 ± 0.15 1.19 ± 0.26 0.38 ± 0.09 10.18 ± 1.65 0.09 ± 0.46 0.39 ± 0.12   
2 0.92 ± 0.08 1.17 ± 0.22 1.22 ± 0.12 1.29 ± 0.32 0.40 ± 0.08 9.75 ± 1.55 0.04 ± 0.39 0.42 ± 0.11   
3 0.91 ± 0.04 1.15 ± 0.24 1.23 ± 0.12 1.31 ± 0.33 0.41 ± 0.09 9.63 ± 1.67 0.00 ± 0.42 0.42 ± 0.12 

SSC (%), SEL = 0.1% IV 1 1.02 ± 0.18 1.06 ± 0.09 1.36 ± 0.21 1.32 ± 0.20 0.48 ± 0.12 8.87 ± 0.55 − 0.20 ± 0.24 0.41 ± 0.10 
SpectraNet6-53  2 1.02 ± 0.12 1.11 ± 0.14 1.32 ± 0.10 1.29 ± 0.15 0.43 ± 0.08 9.37 ± 1.02 − 0.09 ± 0.20 0.41 ± 0.06   

3 1.00 ± 0.08 1.15 ± 0.11 1.29 ± 0.08 1.26 ± 0.11 0.40 ± 0.07 9.76 ± 0.79 − 0.02 ± 0.19 0.39 ± 0.05   
4 1.01 1.16 1.30 1.24 0.40 9.92 0.05 0.37  

EV 1 1.02 ± 0.16 1.18 ± 0.24 1.20 ± 0.09 1.25 ± 0.37 0.38 ± 0.08 9.87 ± 1.64 − 0.05 ± 0.37 0.37 ± 0.10   
2 1.02 ± 0.10 1.15 ± 0.24 1.24 ± 0.09 1.31 ± 0.34 0.40 ± 0.08 9.58 ± 1.63 − 0.06 ± 0.35 0.39 ± 0.08   
3 1.02 ± 0.06 1.15 ± 0.27 1.23 ± 0.11 1.32 ± 0.35 0.41 ± 0.08 9.64 ± 1.87 − 0.05 ± 0.42 0.40 ± 0.09 

Notes. N is the number of orchard–year pairs used for training, SEL the standard error of laboratory. The other abbreviations are explained in Section 4. All values 
correspond to a mean ± standard deviation. 
In bold: values attaining a minimum standard of model performance, consisting of SDR > 1, PG > 1 or R2 > 0.16 (meaning that |R| > 0.4).  
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3.2.4. Multi-objective learning 
CNN-based deep neural networks have previously shown improved 

results on simultaneously predicting multiple outputs instead of only a 
single one. They are able to create shared representations of informa-
tion, using internal correlations between targets as cues during predic-
tion (Padarian et al., 2019b; Ramsundar et al., 2015), as well as 
increasing prediction accuracy by reducing overfitting (Ruder, 2017). 
The performance of SpectraNet–53 when trained with only one output 
(SSC) will be compared to the improvement effect on SSC when trained 
with five additional outputs, as described below. 

3.2.5. Network hyperparameters 
The next paragraphs briefly describe the network hyperparameters 

chosen for training.  

Output variables: Two architectures were trained, SpectraNet–53 
with only SSC as output, and SpectraNet6–53 
with five additional outputs: Fruit Tempera-
ture, Mass, Equatorial Diameter, pH and the 
inverse of the Titratable Acidity (TA− 1) – as MI 
= SSC

TA , the uncorrelated TA− 1 is used instead. 
These are depicted in Fig. 11, with SSC having 
significant correlations with the first five IQAs, 
respectively, and indirectly with TA− 1.  

Output scaling: All the outputs were standard-scaled (SNV). 
Absorvance: As previously stated (Section 2.1), all reflec-

tance spectra were converted into absorbance- 
like values, such that xA = log10(

1
xR

+ 0.1).  
Input scaling: The input data was normalized using a Quantile 

Normal Variate transform (Section 3.2.2) with 
5 quantiles (QNV–5). As seen in Fig. 9(d), this 
yielded an average signal 24% higher than SNV, 
with a 52% higher standard deviation. QNV–5 

Fig. 13. Regression scatter plots, using representative networks – for each of the 
43 sets (15 IV and 28 EV), a representative neural network was selected out of 
the 30 in each set, which was the one with an rmsep value closest to the median 
of the set. Statistics are computed across all representative networks. Each 
marker color corresponds to a different set. 

Table 3 
SSC results comparison with Cavaco et al. (2018).     

PLS SpectraNet6-53 % Improvement   

N Mean Std Mean Std Mean Std 

rmsec IV 1 0.76 0.12 1.02 0.18 – –   
2 0.80 0.09 1.02 0.12 – –   
3 0.84 0.05 1.00 0.08 – –   
4 0.86 – 1.01 – – –  

EV 1 0.82 0.17 1.02 0.16 – –   
2 0.82 0.09 1.02 0.10 – –   
3 0.85 0.08 1.02 0.06 – – 

rmsep IV 1 1.06 0.21 1.06 0.09 0% 133%   
2 1.02 0.12 1.11 0.14 − 8% − 14%   
3 1.01 0.07 1.15 0.11 − 12% − 36%   
4 1.00 – 1.16 – − 14% –  

EV 1 1.27 0.20 1.18 0.24 8% − 17%   
2 1.17 0.15 1.15 0.24 2% − 38%   
3 1.15 0.17 1.15 0.27 0% − 37% 

SDR IV 1 1.27 0.20 1.36 0.21 7% − 5%   
2 1.36 0.13 1.32 0.10 − 3% 30%   
3 1.39 0.09 1.29 0.08 − 7% 13%   
4 1.40 – 1.30 – − 7% –  

EV 1 1.05 0.17 1.20 0.09 14%* 89%   
2 1.11 0.14 1.24 0.09 12%* 56%   
3 1.13 0.14 1.23 0.11 9% 27% 

R2 IV 1 0.39 0.20 0.48 0.12 23% 67%   
2 0.47 0.09 0.43 0.08 − 9% 13%   
3 0.48 0.06 0.40 0.07 − 17% − 14%   
4 0.49 – 0.40 – − 18% –  

EV 1 0.26 0.14 0.38 0.08 46%* 75%   
2 0.33 0.14 0.40 0.08 21% 75%   
3 0.34 0.13 0.41 0.08 21% 63% 

Bias IV 1 0.02 0.03 − 0.20 0.24 – –   
2 0.00 0.02 − 0.09 0.20 – –   
3 − 0.01 0.01 − 0.02 0.19 – –   
4 0.00 – 0.05 – – –  

EV 1 0.11 0.50 − 0.05 0.37 – –   
2 − 0.05 0.48 − 0.06 0.35 – –   
3 − 0.03 0.50 − 0.05 0.42 – – 

Notes. The improvement percentage is calculated by dividing the respective 
columns and subtracting 1. The numerator and denominator are chosen based 
on the direction of improvement: for rmsec and rmsep means, and std columns, 
lower values are better; for sdr and R2 means, higher values are better. 
For EV: green and red values represent positive or negative double-digit (and 
yellow values represent single-digit) percentage differences. The values marked 
by * have significantly different means at p < 0.05, when compared by a Welch’s 
t-test Delacre et al., 2017.  
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Table 4 
SpectraNet–53 Architecture.  

Layer Type Activations Learnable Parameters Total 
Param.  

Input 1 × 1421 
× 1 

— 0 

1 Batch 
Normalization 

1 × 1421 
× 1 

Offset: 1 ×
1 

Scale: 1 
× 1 

2 

2 Convolution 1 × 1421 
× 32 

Weights: 1 
× 17 × 1 

× 32 

Bias: 1 
× 1 ×

32 

576 

3 Batch 
Normalization 

1 × 1421 
× 32 

Offset: 1 ×
1 × 32 

Scale: 1 
× 1 ×

32 

64 

4 GELU 1 × 1421 
× 32 

Mean: 1 ×
1 × 32 

Std: 1 ×
1 × 32 

64 

5 S1U1 Convolution 1 × 1421 
× 32 

Weights: 1 
× 17 × 32 

× 32 

Bias: 1 
× 1 ×

32 

17.440 

6 S1U1 Batch 
Normalization 

1 × 1421 
× 32 

Offset: 1 ×
1 × 32 

Scale: 1 
× 1 ×

32 

64 

7 S1U1 GELU 1 × 1421 
× 32 

Mean: 1 ×
1 × 32 

Std: 1 ×
1 × 32 

64 

8 S1U1 Convolution 1 × 1421 
× 32 

Weights: 1 
× 17 × 32 

× 32 

Bias: 1 
× 1 ×

32 

17.440 

9 S1U1 Batch 
Normalization 

1 × 1421 
× 32 

Offset: 1 ×
1 × 32 

Scale: 1 
× 1 ×

32 

64 

10 Addition (L9 +
L4) 

1 × 1421 
× 32 

— 0 

11 GELU 1 × 1421 
× 32 

Mean: 1 ×
1 × 32 

Std: 1 ×
1 × 32 

64 

12 S1U2 Convolution 1 × 1421 
× 32 

Weights: 1 
× 17 × 32 

× 32 

Bias: 1 
× 1 ×

32 

17.440 

13 S1U2 Batch 
Normalization 

1 × 1421 
× 32 

Offset: 1 ×
1 × 32 

Scale: 1 
× 1 ×

32 

64 

14 S1U2 GELU 1 × 1421 
× 32 

Mean: 1 ×
1 × 32 

Std: 1 ×
1 × 32 

64 

15 S1U2 Convolution 1 × 1421 
× 32 

Weights: 1 
× 17 × 32 

× 32 

Bias: 1 
× 1 ×

32 

17.440 

16 S1U2 Batch 
Normalization 

1 × 1421 
× 32 

Offset: 1 ×
1 × 32 

Scale: 1 
× 1 ×

32 

64 

17 Addition (L16 +
L11) 

1 × 1421 
× 32 

— 0 

18 GELU 1 × 1421 
× 32 

Mean: 1 ×
1 × 32 

Std: 1 ×
1 × 32 

64 

19 S2U1 Convolution 
(stride 2) 

1 × 711 ×
64 

Weights: 1 
× 17 × 32 

× 64 

Bias: 1 
× 1 ×

64 

34.880 

20 S2U1 Batch 
Normalization 

1 × 711 ×
64 

Offset: 1 ×
1 × 64 

Scale: 1 
× 1 ×

64 

128 

21 S2U1 GELU 1 × 711 ×
64 

Mean: 1 ×
1 × 64 

Std: 1 ×
1 × 64 

128 

22 S2U1 Convolution 1 × 711 ×
64 

Weights: 1 
× 17 × 64 

× 64 

Bias: 1 
× 1 ×

64 

69.696 

23 S2U1 Batch 
Normalization 

1 × 711 ×
64 

Offset: 1 ×
1 × 64 

Scale: 1 
× 1 ×

64 

128 

24 Skip Conn. — 
Convolution 
(input L18, stride 
2) 

1 × 711 ×
64 

Weights: 1 
× 1 × 32 

× 64 

Bias: 1 
× 1 ×

64 

2.112 

25 Skip Conn. — 
Batch 
Normalization 

1 × 711 ×
64 

Offset: 1 ×
1 × 64 

Scale: 1 
× 1 ×

64 

128 

26 Addition (L23 +
L25) 

1 × 711 ×
64 

— 0 

27 GELU 1 × 711 ×
64 

Mean: 1 ×
1 × 64 

Std: 1 ×
1 × 64 

128  

Table 4 (continued ) 

Layer Type Activations Learnable Parameters Total 
Param. 

28 S2U2 Convolution 1 × 711 ×
64 

Weights: 1 
× 17 × 64 

× 64 

Bias: 1 
× 1 ×

64 

69.696 

29 S2U2 Batch 
Normalization 

1 × 711 ×
64 

Offset: 1 ×
1 × 64 

Scale: 1 
× 1 ×

64 

128 

30 S2U2 GELU 1 × 711 ×
64 

Mean: 1 ×
1 × 64 

Std: 1 ×
1 × 64 

128 

31 S2U2 Convolution 1 × 711 ×
64 

Weights: 1 
× 17 × 64 

× 64 

Bias: 1 
× 1 ×

64 

69.696 

32 S2U2 Batch 
Normalization 

1 × 711  ×
64 

Offset: 1 ×
1 × 64 

Scale: 1 
× 1 ×

64 

128 

33 Addition (L32 +
L27) 

1 × 711 ×
64 

— 0 

34 GELU 1 × 711 ×
64 

Mean: 1 ×
1 × 64 

Std: 1 ×
1 × 64 

128 

35 S3U1 Convolution 
(stride 2) 

1 × 356 ×
128 

Weights: 1 
× 17 × 64 

× 128 

Bias: 1 
× 1 ×

128 

139.392 

36 S3U1 Batch 
Normalization 

1 × 356 ×
128 

Offset: 1 ×
1 × 128 

Scale: 1 
× 1 ×

128 

256 

37 S3U1 GELU 1 × 356 ×
128 

Mean: 1 ×
1 × 128 

Std: 1 ×
1 ×
128 

256 

38 S3U1 Convolution 1 × 356 ×
128 

Weights: 1 
× 17 ×

128 × 128 

Bias: 1 
× 1 ×

128 

278.656 

39 S3U1 Batch 
Normalization 

1 × 356 ×
128 

Offset: 1 ×
1 × 128 

Scale: 1 
× 1 ×

128 

256 

40 Skip Conn. — 
Convolution 
(input L34, stride 
2) 

1 × 356 ×
128 

Weights: 1 
× 1 × 64 

× 128 

Bias: 1 
× 1 ×

128 

8.320 

41 Skip Conn. — 
Batch 
Normalization 

1 × 356 ×
128 

Offset: 1 ×
1 × 128 

Scale: 1 
× 1 ×

128 

256 

42 Addition (L39 +
L41) 

1 × 356 ×
128 

— 0 

43 GELU 1 × 356 ×
128 

Mean: 1 ×
1 × 128 

Std: 1 ×
1 ×
128 

256 

44 S3U2 Convolution 1 × 356 ×
128 

Weights: 1 
× 17 ×

128 × 128 

Bias: 1 
× 1 ×

128 

278.656 

45 S3U2 Batch 
Normalization 

1 × 356 ×
128 

Offset: 1 ×
1 × 128 

Scale: 1 
× 1 ×

128 

256 

46 S3U2 GELU 1 × 356 ×
128 

Mean: 1 ×
1 × 128 

Std: 1 ×
1 ×
128 

256 

47 S3U2 Convolution 1 × 356 ×
128 

Weights: 1 
× 17 ×

128 × 128 

Bias: 1 
× 1 ×

128 

278.656 

48 S3U2 Batch 
Normalization 

1 × 356 ×
128 

Offset: 1 ×
1 × 128 

Scale: 1 
× 1 ×

128 

256 

49 Addition (L48 +
L43) 

1 × 356 ×
128 

— 0 

50 GELU 1 × 356 ×
128 

Mean: 1 ×
1 × 128 

Std: 1 ×
1 ×
128 

256 

51 Global Average 
Pooling 

1 × 1 ×
128 

— 0 

52 Dropout (20%) 1 × 1 ×
128 

— 0 

53 Fully Connected 1 × 1 × 6 Weights: 6 
× 128 

Bias: 6 
× 1 

774  

MSE evaluation — — 0  

J.A. Martins et al.                                                                                                                                                                                                                              



Computers and Electronics in Agriculture 197 (2022) 106945

12

is a conservative parameter choice that still 
achieves a good separation of the spectra at 
wavelengths 960–984nm, which chemically 
correspond to the 2nd overtone of OH 
stretching.  

Solver: Standard ADAM was used, with default 
parameters.  

Learning Rate: 10− 4, with a drop multiplier of 0.7 ( − 30%) at 
each epoch. 

Epochs: All the results presented in the following sec-
tion are from networks trained with 10 epochs, 
which was generally the minimum value where 
the training error starts to stabilize for most 
networks. This is a good early stop point, as 
network hyperparameters are higher than the 
size of the dataset, so keeping a low number of 
epochs helps to prevent overfit. Still, in Ap-
pendix A this topic is developed further, with 
networks trained for many more epochs, until 
the training loss stabilizes (i.e., stops decreasing 
for 10 epochs). This is helpful in determining if 
the architecture has an innate tendency to 
overfit to the training data, or the architectural 
choices were enough to prevent that effect.  

Mini-batch size: The training mini-batch size was set at 32. 
Higher values would most likely reduce the 
benefit of using BN after input for data 
augmentation, due to the low amount of 

training samples for each set, as inter-batch 
statistics would tend to be very similar. Thus, 
a low mini-batch size increases the number of 
different input mini-batches for each epoch, 
taking advantage of the benefits described in 
Section 3.2.3. 

Convolutional layers: a 17-pt filter window was used in all convolu-
tional layers. For the first layer, each filter 
window captures 5.7nm of spectral data. The 
optimal value for this parameter is expected to 
depend on the wavelength-separation of each 
dataset, the number of stacked RUs, or even on 
the IQA being assessed (i.e., it is feature 
specific).  

Dropout layer: L52 had a drop probability value of 20%. 
L2 Regularization: Yes, with a coefficient λ = 0.05. L2 Regulari-

zation (also commonly referred as weight decay) 
adds a regularizing term to the weights of the 
loss function, reducing the overfit possibility 
from a large gradient descent update. If L(x) is 
the expected loss function, then LR(x) = L(x) +
λΩ(W), with Ω(W) = 1

2W
TW.  

Gradient Clipping: Yes, as another overfitting prevention measure. 
For each learnable parameter, any L2–norm of 
gradients higher than 0.5 were truncated, so 
that any L2–norm ⩽0.5. This avoids gradient 
explosion by stabilizing and allowing training 

Table 5 
Summary of the SSC performance results obtained in IV and EV.    

N rmsec rmsep SDR PG R2 CV(%) Bias Slope 

Temperature IV 1 2.87 ± 0.55 3.15 ± 1.14 1.11 ± 0.02 1.15 ± 0.23 0.21 ± 0.05 16.60 ± 5.92 − 0.33 ± 0.77 0.20 ± 0.06 
(◦C)  2 3.06 ± 0.34 3.35 ± 0.46 1.13 ± 0.05 1.12 ± 0.17 0.21 ± 0.07 17.71 ± 2.37 − 0.20 ± 0.48 0.20 ± 0.07   

3 3.11 ± 0.27 3.30 ± 0.21 1.15 ± 0.05 1.15 ± 0.14 0.23 ± 0.06 17.49 ± 1.02 0.00 ± 0.33 0.22 ± 0.06   
4 3.16 3.23 1.16 1.18 0.25 17.19 0.17 0.22  

EV 1 2.91 ± 0.48 3.82 ± 0.45 0.91 0.94 0.19 ± 0.11 20.19 ± 2.48 − 0.29 ± 2.02 0.19 ± 0.11   
2 3.09 ± 0.22 3.61 ± 0.30 0.96 1.04 ± 0.16 0.21 ± 0.11 19.08 ± 1.75 − 0.29 ± 1.72 0.21 ± 0.08   
3 3.09 ± 0.14 3.52 ± 0.31 0.98 1.08 ± 0.12 0.24 ± 0.14 18.63 ± 1.86 − 0.26 ± 1.82 0.23 ± 0.07 

Mass IV 1 79.95 ± 16.32 83.34 ± 10.58 1.06 ± 0.07 1.10 ± 0.14 0.12 27.42 ± 4.24 − 9.92 ± 8.44 0.10 ± 0.06 
(g)  2 81.51 ± 7.40 87.24 ± 8.17 1.06 ± 0.04 1.09 ± 0.10 0.13 28.24 ± 3.35 − 7.68 ± 15.67 0.13 ± 0.07   

3 81.98 ± 4.80 88.73 ± 1.80 1.07 ± 0.02 1.08 ± 0.06 0.14 28.57 ± 1.96 − 8.16 ± 15.76 0.14 ± 0.05   
4 83.23 86.89 1.08 1.11 0.13 28.08 − 3.91 0.13  

EV 1 79.92 ± 13.91 95.15 ± 20.14 0.97 1.01 ± 0.34 0.14 31.06 ± 5.62 − 21.86 ± 34.36 0.14 ± 0.10   
2 81.31 ± 6.54 93.82 ± 18.37 0.98 1.06 ± 0.30 0.14 30.66 ± 5.19 − 11.62 ± 38.46 0.15 ± 0.09   
3 82.23 ± 4.14 91.98 ± 20.31 1.00 ± 0.08 1.10 ± 0.35 0.14 30.01 ± 5.49 − 7.75 ± 40.01 0.13 ± 0.07 

Equatorial Diameter IV 1 7.43 ± 1.30 7.40 ± 1.47 1.07 ± 0.08 1.17 ± 0.14 0.12 8.88 ± 1.97 0.43 ± 0.80 0.12 ± 0.05 
(mm)  2 7.59 ± 0.54 7.83 ± 1.18 1.05 ± 0.03 1.12 ± 0.14 0.11 9.35 ± 1.65 0.22 ± 1.66 0.12 ± 0.05   

3 7.61 ± 0.32 8.03 ± 0.84 1.05 ± 0.02 1.09 ± 0.13 0.11 9.56 ± 1.23 − 0.12 ± 1.60 0.11 ± 0.05   
4 7.69 7.96 1.06 1.10 0.10 9.47 − 0.16 0.09  

EV 1 7.37 ± 1.18 9.07 ± 1.52 0.94 0.96 0.12 10.85 ± 1.90 − 0.66 ± 4.45 0.15 ± 0.08   
2 7.52 ± 0.55 8.80 ± 1.55 0.97 1.01 ± 0.25 0.11 10.53 ± 1.94 − 0.28 ± 3.98 0.12 ± 0.08   
3 7.58 ± 0.34 8.55 ± 1.66 0.99 1.05 ± 0.28 0.10 10.23 ± 2.08 − 0.21 ± 3.69 0.10 ± 0.06 

Juice pH IV 1 0.26 ± 0.05 0.23 ± 0.04 1.22 ± 0.13 1.39 ± 0.32 0.35 ± 0.14 7.00 ± 1.18 0.02 ± 0.04 0.29 ± 0.08 
(pH)  2 0.26 ± 0.02 0.27 ± 0.04 1.16 ± 0.08 1.20 ± 0.22 0.27 ± 0.11 8.16 ± 1.09 0.02 ± 0.05 0.25 ± 0.11 

SEL = 0.07  3 0.26 ± 0.01 0.29 ± 0.01 1.15 ± 0.03 1.13 ± 0.09 0.26 ± 0.06 8.51 ± 0.40 0.00 ± 0.04 0.23 ± 0.06   
4 0.27 0.28 1.17 1.17 0.28 8.27 − 0.02 0.22  

EV 1 0.25 ± 0.03 0.34 ± 0.05 0.92 0.92 0.18 ± 0.08 10.22 ± 1.29 0.02 ± 0.21 0.16 ± 0.05   
2 0.26 ± 0.02 0.33 ± 0.04 0.95 0.98 0.20 ± 0.10 9.87 ± 1.21 0.02 ± 0.19 0.18 ± 0.06   
3 0.26 ± 0.01 0.33 ± 0.04 0.95 0.99 0.21 ± 0.11 9.83 ± 1.24 0.01 ± 0.21 0.19 ± 0.07 

TA− 1 IV 1 0.28 ± 0.03 0.30 ± 0.05 1.12 ± 0.13 1.14 ± 0.21 0.22 ± 0.13 28.58 ± 3.58 0.04 ± 0.09 0.24 ± 0.13 
(100 mL/g citric acid)  2 0.29 ± 0.03 0.32 ± 0.04 1.15 ± 0.04 1.14 ± 0.13 0.26 ± 0.09 29.69 ± 1.24 0.04 ± 0.07 0.24 ± 0.09 
SEL = 100 mL/0.03 g  3 0.30 ± 0.03 0.33 ± 0.02 1.17 ± 0.05 1.17 ± 0.07 0.29 ± 0.08 29.79 ± 0.65 0.03 ± 0.05 0.24 ± 0.09   

4 0.32 0.33 1.16 1.19 0.26 29.58 0.01 0.22  
EV 1 0.28 ± 0.03 0.43 ± 0.11 0.83 0.83 40.78 ± 11.64 40.78 ± 11.64 0.17 ± 0.06 0.17 ± 0.06   

2 0.29 ± 0.03 0.42 ± 0.08 0.84 0.91 39.45 ± 6.82 39.45 ± 6.82 0.17 ± 0.08 0.17 ± 0.08   
3 0.30 ± 0.03 0.42 ± 0.09 0.84 0.94 39.52 ± 6.45 39.52 ± 6.45 0.16 ± 0.03 0.16 ± 0.03 

Notes. N is the number of orchard–year pairs used for training, SEL the standard error of laboratory. The other abbreviations are explained in Section 4. All values 
correspond to a mean ± standard deviation. 
In bold: values attaining a minimum standard of model performance, consisting of SDR > 1, PG > 1 or R2 > 0.16 (meaning that |R| > 0.4).  
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at initial higher learning rates, while reducing 
the vulnerability to outlier gradients.  

Layer initialization: Convolutional layers are initialized with He 
weights (He et al., 2015), and the final fully 
connected layer (L53) is initialized with Glorot 
weights (Glorot and Bengio, 2010). 

4. Results and discussion 

Two variations of the DeepSpectra network were trained: one with a 
single output variable (SSC), further referred as DeepSpectra, and 
another with the same 6 outputs of SpectraNet6–53, named as Deep-
Spectra6. This allows for a direct comparison between all four archi-
tecture types, as the later case has effectively the same inputs and 
outputs as SpectraNet6–53. 

A total of 5160 networks were trained, with 30 networks for each of 
the 15 IV and 28 EV sets, times the 4 architectures. Fig. 12 shows the 
distribution of SSC results for the root-mean-squared error of prediction 
(rmsep), for both IV (a) and EV (b). DeepSpectra and DeepSpectra6 had 
generally worse results than both SpectraNets, especially for sets trained 
on A or D spectra. The benefit of 6 outputs in DeepSpectra6 was mostly 
evident on difficult EV cases, especially in sets trained on D and tested on 
A spectra. However, it had mixed results for IV sets, where DeepSpectra 
performance was generally better. Overall, SpectraNet–53 and 
SpectraNet6–53 SSC rmsep values were the lowest and most consistent 
across sets, and the networks of both architectures only very slightly 
diverge from one another in this performance parameter. However, 

SpectraNet6–53 is notably better on EV sets trained on D spectra. 
Table 2 shows the key performance metrics on the following pa-

rameters: N – number of orchard–year pairs in the training set; rmsec – 
root mean squared (rms) error in the training (calibration) set; rmsep 
(iv/eV) – rms error of prediction in the test (validation) set; sdr – 
standard deviation ratio = std(y)

rmsep, where y represents the reference test 

data; pg – prediction gain = std(y′)
rmsep , where y′ represents the reference 

training data; R2 – squared correlation coefficient, i.e., coefficient of 
determination; cv – coefficient of variation (%), defined as rmsep

mean(y) × 100; 
bias – the mean(ŷ) − mean(y), where ŷ represents the predicted test data; 
slope – the slope of the linear regression in y vs. ̂y. Each value represents 
a mean of means ± the standard deviation of the means, i.e., for each set, 
the results of all 30 networks are averaged and then those averages are 
used to determine the mean and standard deviation inside each of the 
orchard–year {1,2,3,4}–pairs used for IV and {1,2,3}–pairs used for EV, 
as detailed in Section 2.3 and Table 1. A minimum standard of model 
performance was set as SDR > 1 (i.e., predictions are better than a 
random guess around the test population mean), PG > 1 (i.e., predictions 
are better than a random guess around the training population mean) 
and R2 > 0.16 (i.e., |R| > 0.4 meaning there is some moderate correla-
tion between predicted and true values). Only SSC results are shown for 
DeepSpectra6 and SpectraNet6–53, as the predictions for the remaining 
IQAs are mostly of average quality (the remaining SpectraNet6–53 re-
sults are included in Table 5, at the end of the article). This is not un-
expected, as the network architecture and training parameters were 
focused on finding good SSC-related descriptors in spectra, and it was 

Fig. 14. Wavelength contribution for SSC prediction, explained using LIME (Ribeiro et al., 2016).  
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not guaranteed that those descriptors would be appropriate predictors 
for other IQAs. 

Analyzing Table 2, all architectures are able to surpass the minimum 
standards of model performance, shown in bold. SpectraNet6–53 
showed the best overall performance, with the lowest rmsep values for 
EV. SDR and PG values are well above 1 for both IV and EV, with SDR 
and R2 variation being especially stable at IV 2–4 and EV. R2 values were 
around 40% in IV and EV. Bias was mostly negative, suggesting that the 
network has a tendency to underestimate SSC predictions. 

Fig. 13 displays SpectraNet6–53 scatter plots for all 15 IV and 28 EV 
predictions, made with the representative neural network of each set: for 
each of the 43 sets, out of the 30 possible networks, the network with an 
rmsep value closest to the median the set was selected. Aggregated 
statistics across all networks are also shown. Additional performance 
metrics are shown for the following parameters: res – resolution, defined 
as rmsep

max(y)− min(y) × 100, which is a measure of how the prediction error 
resolves the range of y–variation; N – the total number of IV or EV points 
in each figure; %OK – the percentage of test samples which are correctly 
assigned below or above the population mean (shown as y); this value is 
further detailed in % TN and %TP, representing the percentages of 
correct assignments below (True Negative) or above (True Positive) the 
population mean. 

Both IV and EV conditions display comparable metrics across all sets, 
with slightly better performance on the IV case, as expected. 

4.1. Comparison with previous works 

Table 3 shows a direct comparison with Cavaco et al. (2018). The 
training rmsec values are not very meaningful (i.e., they might signify 
overfit) and are only shown for completeness. The IV results are also not 
very interesting to compare to, as PLS is very good for prediction when 
built upon few, but representative samples of a population (especially 
after filtering outliers) – a neural network would need more samples to 
beat its performance. However, EV results require each method to create 
some kind of an internal representation of knowledge, applicable to 
samples that may come from different populations other than the ones 
previously trained upon, which can be quite hard on classical models. 
Thus, analysing SpectraNet6–53 EV performance:  

a) For rmsep, both methods had similar means, with a slight 
SpectraNet6–53 advantage; however it had worse standard de-
viations. This is expected, due to the outlier spectra present in the 
SpectraNet–53 trials.  

b) SDR had an increase between 9 and 14% on the mean values 
(significantly higher on EV–1 and 2), and between 27 to 89% on the 
standard deviation, which is a solid improvement over PLS – espe-
cially considering that no outlier spectra (and corresponding SSC 
values) were discarded. This results in a higher std(y), as the rmsep 
values are very close for both methods, particularly for the EV–2 and 
3 sets.  

c) R2 was higher than PLS, with mean values between 21 to 46% higher 
(a very significant increase on EV–1), and a reduction of 63 to 75% 
on the standard deviation. 

In summary, when considering average external validation results, 
SpectraNet6–53 was 3.1% better than PLS on RMSEp (1.16 vs. 1.20), 
11.6% better in SDR (1.22 vs. 1.10), and 28.0% better in R2 (0.40 vs. 
0.31). 

Fig. 15. Architecture.  
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4.2. Wavelength contribution for SSC prediction 

From a physical and chemical standpoint, good prediction models 
are also important in allowing some understanding of the specific 
wavelengths that contribute for predicting SSC. To this end, a local 
interpretable model-agnostic explanations (LIME) (Ribeiro et al., 2016) 
method was used. LIME can generate a synthetic dataset from a query 
vector, with a chosen number of important predictors. To this end, a 
SpectraNet–53 representative network of the EV–3 ABD/C set (network 
#27) was used, which had 424 training spectra. This was the network 
with the lowest error in EV–3, as shown in Fig. 12(b). For obtaining a 
comprehensive representation of the wavelength contribution, 424 
LIME models were fitted, one for each ABD spectra (i.e., each is a query 
vector). The models used 1421 predictors (wavelengths), and LIME 
generated 5000 synthetic spectra per query vector. Next, the beta co-
efficients of the resulting in 424 LIME models were multiplied by their 
respective query vector, represented by the blue line in Fig. 14(a). Per- 
wavelength 95% C.I. were also determined, shown as yellow and orange, 
for the lower and upper values, respectively. The most important 
wavelengths for SSC will have higher absolute values and tighter C.I. 
ranges. Marked on the image are the Chlorophyll bands, and the most 
important bands for sugars, which account for the majority of SSC. These 
are related to OH and CH vibrations (Golic et al., 2003), namely: band 1 
– composed of the 3rd overtone of OH stretching, from 740nm (less 
H–bonded) to 770nm (more H–bonded), represented at 755nm, and the 
4th overtones of stretching vibrations of CH (772nm) and CH2 
(730–740nm), represented at 735nm; band 2 – 2nd overtone of the OH 
combination band (stretching and bending) at 840nm; band 3 – 3rd 
overtone of CH stretching at 910nm; band 4 – 3rd overtone of CH2 
stretching at 930nm; band 5 – 2nd overtone of OH stretching repre-
sented at 972nm, ranging from 960nm (less H–bonded) to 984nm 
(more H–bonded); band 6 – CH and CH2 combination band at 1040nm; 
band 7 – 1st overtone of the OH combination band (stretching and 
bending) at 1100nm. 

Of notice are the wavelenghts below 709nm (zero crossing), espe-
cially the Chlorophyll-a peak at 680nm, which tends to correlate 
inversely with SSC, while the most positive contributions are those be-
tween 930nm (CH2 st.) and 1050nm, which include OH st. circa 972nm, 
and the CH/CH2 cb. at 1040nm. 

5. Conclusion and final remarks 

This article presents a novel 1D residual deep learning neural 
network architecture for fruit spectra IQA prediction, namely SSC. Its 
performance was evaluated on a small ‘Newhall’ orange dataset, and 
assessed under various validation conditions, as well as compared to 
state-of-the-art methods in the field. The SpectraNet architecture was 
able to achieve two very uncommon results: (a) achieving state-of-the- 
art results on a very small dataset, with as low as 125 training samples 
on a network with 1.3 M parameters; and (b) extensive training of the 
architecture (shown in Appendix A) demonstrated its ability to consis-
tently achieve good performance results, without overfitting to training 
data. 

This research is also an interesting contribution to the state-of-the-art 
in 1D Convolutional Neural Network design, which usually relies on 
very restrict architectures to prevent overfitting, typically with only one 
or two hidden layers and less than 10 K parameters. The presented ar-
chitecture had 53 layers with 1.304.968 parameters, and was still able to 
generalize properly. 
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Appendix A. Training on many epochs 

For evaluating the overfit tendency of the networks discussed in this article, a new batch of 5160 networks was trained, again with 30 for each of 
the 15 IV and 28 EV sets. This time, the networks were trained until either: (I) a maximum of 1000 epochs was reached, or (II) the training loss stopped 
decreasing, which was determined by a moving window (of 10 consecutive epochs) where the minimum training error of the window did not decrease. 
The last network trained was used for prediction. 

Fig. A.16 shows the training loss rmse for the four architectures, with a dashed vertical line on the 10 epochs, which was the stopping criteria used 
previously. There is a clear difference between DeepSpectra and SpectraNet training loss: (a) DeepSpectra has a tendency to require many more epochs 
to stabilize, and (b) the training loss is sometimes prone to oscillations, most especially for DeepSpectra6. On the other hand, SpectraNet quickly 
stabilizes its training error, suggesting it is not prone to overfit on the training data, even after many epochs. 

Fig. A.17 compares the networks trained on 10 epochs vs. on “max epochs”. DeepSpectra networks display mixed results: some sets have a lower 
SSC prediction error, while others increase. For SpectraNets, the results are extremely similar between conditions, once again suggesting that the 
architecture appears to be resilient to overfit. Table A.6 displays the “max epochs” numerical results for these architectures, with three color highlights 
to help compare these results to Table 2: green values represent metrics with greater than 0.01 better performance, yellow signals metrics within a 0.01 
absolute difference, and red represent cases with a greater than 0.01 worse performance. Some things of note: (a) DeepSpectra rmsec results are lower, 
especially for DeepSpectra6, which has more than halved its training error; however, while some of the EV results are better for DeepSpectra, they 
were similar or worse than before for DeepSpectra6, due to overfit; (b) SpectraNet results are very similar to previous ones, with most within a 0.01 
difference; this is an impressive result, considering that SpectraNet–53 trained around 2–6 times longer, and SpectraNet6–53 trained around 8–27 
times longer, without any of them showing tendency to overfit. 
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Fig. A.16. Training Loss RMSE results for the representative networks of each IV and EV set, selected as in Fig. 13 (the network closest to the mode of each set’s 
rmsep). Blue lines represent IV sets 1–15 and orange lines represent EV sets 1–28. The dashed vertical line represents the 10 epochs threshold. 

Fig. A.17. SSC root-mean-squared error of prediction (rmsep) of the 30 neural networks, for each of the 15 internal and 28 external validation sets, and the 4 
architectures, with shaded 95% confidence intervals. From left to right, at each set: one output with 10 epochs (blue, previously shown in Fig. 12(b)), one output with 
max epochs (red), six outputs with 10 epochs (yellow, also previously shown) and six outputs with max epochs (purple). 
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