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RÉSUMÉ

La cartographie des chantiers miniers souterrains est souvent réalisée à l’aide d’un capteur
situé au bout d’une perche que l’opérateur introduit dans le chantier, depuis une zone
sécurisée. Le capteur émet des faisceaux laser qui fournissent la distance à un mur détecté,
créant ainsi une carte en 3D. Ceci produit des zones d’ombres et une faible densité de points
sur les parois éloignées. Pour relever ces défis, une équipe de recherche de l’Université
de Sherbrooke conçoit un drone filaire équipé d’un LiDAR rotatif pour cette mission,
bénéficiant ainsi de plusieurs points de vue. La transmission filaire permet un temps de vol
illimité, un partage de calcul et une communication en temps réel. Pour une compatibilité
avec le mouvement du drone lors des coincements du fil, la longueur excédante est intégrée
dans une bobine embarquée, qui contribue à la charge utile du drone. Lors d’un pilotage
manuel, le facteur humain entraîne des problèmes de perception et compréhension d’un
environnement 3D virtuel, et d’exécution d’une mission optimale.

Cette thèse se concentre sur la navigation autonome sous deux aspects : la planification
de trajectoire et l’exploration. Le système doit calculer une trajectoire qui cartographie
l’environnement complet, en minimisant le temps de mission et en respectant la longueur
maximale de fil embarquée. La planification de trajectoire à l’aide d’un Rapidly-exploring
Random Tree (RRT) trouve rapidement un chemin réalisable, mais l’optimisation est coû-
teuse en calcul et la performance est variable et imprévisible. L’exploration par la méthode
des frontières est représentative de l’espace à explorer et le chemin peut être optimisé en
résolvant un Traveling Salesman Problem (TSP), mais les techniques existantes pour un
drone filaire ne considèrent que le cas 2D et n’optimisent pas le chemin global.

Pour relever ces défis, cette thèse présente deux nouveaux algorithmes. Le premier, RRT-
Rope, produit un chemin égal ou plus court que les algorithmes existants en un temps de
calcul jusqu’à 70% plus court que le deuxième meilleur algorithme dans un environnement
représentatif. Une version modifiée de RRT-connect calcule un chemin réalisable, raccourci
avec une technique déterministe qui tire profit des noeuds intermédiaires préalablement
ajoutés. Le deuxième algorithme, TAPE, est la première méthode d’exploration de cavités
en 3D qui minimise le temps de mission et la longueur du fil déroulé. En moyenne, le trajet
global est 4% plus long que la méthode qui résout le TSP, mais le fil reste sous la longueur
autorisée dans 100% des cas simulés, contre 53% avec la méthode initiale. L’approche
utilise une architecture hiérarchique à 2 niveaux : la planification globale résout un TSP
après extraction des frontières, et la planification locale minimise le coût du chemin et la
longueur de fil via une fonction de décision.

L’intégration de ces deux outils dans le NetherDrone produit un système intelligent pour
l’exploration autonome, doté de fonctionnalités semi-autonomes pour une interaction avec
l’opérateur. Les travaux réalisés ouvrent la porte à de nouvelles approches de navigation
dans le domaine des missions d’inspection, de cartographie et de recherche et sauvetage.

Mots-clés : robots autonomes, cartographie, drones, planification de trajectoire, explo-
ration, systèmes intelligents, rapidly-exploring random trees, traveling salesman problem.





ABSTRACT

Underground mining stopes are often mapped using a sensor located at the end of a
pole that the operator introduces into the stope from a secure area. The sensor emits
laser beams that provide the distance to a detected wall, thus creating a 3D map. This
produces shadow zones and a low point density on the distant walls. To address these
challenges, a research team from the Université de Sherbrooke is designing a tethered drone
equipped with a rotating LiDAR for this mission, thus benefiting from several points of
view. The wired transmission allows for unlimited flight time, shared computing, and
real-time communication. For compatibility with the movement of the drone after tether
entanglements, the excess length is integrated into an onboard spool, contributing to
the drone payload. During manual piloting, the human factor causes problems in the
perception and comprehension of a virtual 3D environment, as well as the execution of an
optimal mission.

This thesis focuses on autonomous navigation in two aspects: path planning and ex-
ploration. The system must compute a trajectory that maps the entire environment,
minimizing the mission time and respecting the maximum onboard tether length. Path
planning using a Rapidly-exploring Random Tree (RRT) quickly finds a feasible path, but
the optimization is computationally expensive and the performance is variable and unpre-
dictable. Exploration by the frontier method is representative of the space to be explored
and the path can be optimized by solving a Traveling Salesman Problem (TSP) but ex-
isting techniques for a tethered drone only consider the 2D case and do not optimize the
global path.

To meet these challenges, this thesis presents two new algorithms. The first one, RRT-
Rope, produces an equal or shorter path than existing algorithms in a significantly shorter
computation time, up to 70% faster than the next best algorithm in a representative
environment. A modified version of RRT-connect computes a feasible path, shortened
with a deterministic technique that takes advantage of previously added intermediate
nodes. The second algorithm, TAPE, is the first 3D cavity exploration method that
focuses on minimizing mission time and unwound tether length. On average, the overall
path is 4% longer than the method that solves the TSP, but the tether remains under the
allowed length in 100% of the simulated cases, compared to 53% with the initial method.
The approach uses a 2-level hierarchical architecture: global planning solves a TSP after
frontier extraction, and local planning minimizes the path cost and tether length via a
decision function.

The integration of these two tools in the NetherDrone produces an intelligent system for
autonomous exploration, with semi-autonomous features for operator interaction. This
work opens the door to new navigation approaches in the field of inspection, mapping,
and Search and Rescue missions.

Keywords: autonomous robots, mapping, unmanned aerial vehicles, path planning, ex-
ploration, intelligent systems, rapidly-exploring random trees, traveling salesman problem.





"[This] is about connecting the dots."
Steve Jobs
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CHAPTER 1

INTRODUCTION

With the technological advances of recent years in the areas of mechanics, electronics,
automation control and computer science, drones have become more and more present
in our society. Today, they are mainly used for recreational or filmographic purposes. If
well designed, industries can leverage this tool for applications in express delivery [Dorling
et al., 2017], Search And Rescue (SAR) operations [Balta et al., 2016], agriculture services
[Tripicchio et al., 2015], structure inspection [Bircher et al., 2015], wildfire monitoring
[Saffre et al., 2022], surveillance [Grocholsky et al., 2006] and many others. In the context
of drone mapping, the Université de Sherbrooke has been mandated by a Québec survey
company to design a drone for mapping underground mining stopes. The generated 3D
map allows mining companies to calculate the volume of the stope. This chapter introduces
the configuration of a stope and why calculating its volume is important. The next section
justifies the use of a tethered drone for stopes mapping. Next, the navigation problem
and related research question are presented, along with examples of missions that justify
the need for autonomous navigation. Finally, the original contributions of this thesis are
presented.

1.1 Stope volume calculation
This work will focus on mapping operations of underground mining stopes. A stope is an
excavated space that contains the mined ore. It is created by drilling holes in an access
tunnel to place explosives and then blast them. A representation is provided in Fig. 1.1.

Figure 1.1 Underground mining stope layout [Atlas copco, 2022].

1
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If the blast is oversized, the mine may be weakened or the tunnel entrance may be blocked,
and human operators may be exposed to danger. The mining industry accounts for more
injuries and fatalities than any other industry, according to [TheWorldCounts, 2020]. More
than 15,000 people are killed each year worldwide, for reported cases only. On the other
hand, an undersized blast will lead to poor extraction and a new blast will be required.
In both cases, the financial losses reach several million dollars [Yuvka et al., 2020]. The
calculation of stopes volume is therefore an important factor for the mining industry to
optimize their excavation, extension and storage operations.

Figure 1.2 Cavity Monitoring System (CMS) [Teledyne optech, 2019].

The most common tool used by survey companies for this calculation is a Cavity Moni-
toring System (CMS) as displayed in Fig. 1.2. This system, placed on a 15 meters pole,
allows to measure the distance to the walls and to reconstruct the 3D map of the stope
by combining the data.

Figure 1.3 CMS scan of a mining stope [Emesent, 2019].



1.2. TETHERED MAPPING DRONE 3

The CMS offers sufficient accuracy near the sensor, but the reconstruction of walls located
at more than 30 meters from the sensor is unreliable, while the stopes can reach up to
300 meters deep and 100 meters wide. In addition, some areas are obstructed by rocky
outgrowths on the walls. This leads to a low point density in some areas of the scan. The
point cloud in Fig. 1.3 shows an example of a scan performed in a stope with this sensor.
Also, the scan operation is dangerous for the operator who has to be in an area where
there is a risk of falling rocks or ground collapse. Finally, the operation is time-consuming
since it is necessary to place oneself at several locations to take several views and the
process takes an average of 2 hours, according to [Emesent, 2019].

1.2 Tethered mapping drone

Our research project, with a team under the supervision of Professor Alexis Lussier Desbi-
ens, aims to provide an autonomous drone capable of performing this mapping operation
using a rotating Light Detection And Ranging (LiDAR) sensor. The rotating LiDAR pro-
vides a 360◦ spherical view after the assembly of successive scans. Since underground
mines are GPS-denied, the LiDAR is used for localization, as well as mapping. This prod-
uct allows to obtain a point density that is independent of the starting point of the drone
since it can circulate to visit the shadow zones. Drone mapping therefore offers better
coverage and point density. The operator of the drone can be located far from the stope,
to ensure his safety. The drone mapping mission is expected to be faster than a CMS scan,
with a flight time of 5 to 30 minutes. Moreover, the operator benefits from the possibility
to observe the walls in detail with a camera.

Large environments such as stopes pose challenges for autonomy (i.e., limited flight time),
communication with the pilot (e.g., for live inspection of the stope walls with a camera),
and computation time (e.g., for path planning). These challenges can be solved with
a tether intended for power and data transmission. A tethered drone benefits from an
unlimited flight time, a possibility of computation parallelization and a real-time com-
munication with the pilot. The tether must be stored in an onboard spool to allow the
drone to continue navigating if the tether gets stuck in an obstacle. Since the onboard
tether contributes directly to the drone’s payload, keeping this mass at a reasonable value
is important. The management of the tether will therefore result in constraints for the
algorithms developed later in this thesis. This concept of a tethered drone has led to the
design of the NetherDrone developed by our team, and illustrated in Fig. 1.4.
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(a) (b)

Figure 1.4 NetherDrone: (a) front view, (b) rear view.

1.3 Navigation problem
This work focuses on the navigation problem of the drone. Some factors that make it
difficult for a human operator to control the system are detailed in Section 1.4. The main
factors are the difficulty to perceive and interpret a 3D environment, as well as to pilot
in an optimal way to limit the mission time while respecting the constraints of tether
unwinding and map completeness. Regarding autonomous navigation,

"Navigation can be defined as the combination of the three fundamental com-
petences :
– Self-localization,
– Path planning,
– Map-building and map interpretation." [Nehmzow, 2003]

Seen from another perspective for the problem presented here, navigation answers the
following 3 questions: "Where am I?" with localization and mapping (i.e., map-building),
"Where am I going?" with exploration, and "How do I get there?" with path planning.

Regarding the first question, a Simultaneous Localization And Mapping (SLAM) approach
is used to locate the Unmanned Aerial Vehicle (UAV), in addition to reconstructing the
map. The Real-Time Appearance-Based Mapping (RTAB-Map) algorithm [Labbé and
Michaud, 2018] was developed by the Introlab group for this purpose and is employed
here. The map built by RTAB-map is used by the navigation system to interpret the
environment, e.g., to locate obstacles and unexplored areas. This thesis focuses on the
development of path planning and exploration algorithms for the navigation system. This
system sends the desired trajectory to the UAV autopilot, described in [Dozois, 2022].
The proper functioning of the navigation algorithms is based on the reliability of the map
built with RTAB-Map, whose error is assumed to be less than 30 cm at all times.
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To optimize the autonomous operations of the NetherDrone, the two main requirements
are the minimization of the mission time and the completeness of the map. These factors
are crucial in responding to the second question, "Where am I going?", and the third
question "How do I get there?". The resulting research question is:

"How to enable 3D autonomous exploration of unknown underground mining
stopes using a tethered drone to provide a complete map while keeping the
unwinding of the tether under the maximum allowed length and minimizing
mission time?"

Basically, the key elements of a successful exploration system are: a) an optimization of
the global path distance, in order not to lengthen the mission time, b) a local optimization
of the path to avoid tether entanglements, in order not to unroll tether unnecessarily and
risk not being able to finish the mission due to lack of tether length. The next para-
graphs elaborate on these specific objectives that result from the 2 primary requirements
(minimization of the mission time and the completeness of the map).

For a drone that moves at near-constant speed, the mission time depends directly on
the distance to be covered. Consequently, the trajectory must be as short as possible.
However, if the recalculation time is too long compared to the speed of movement and map
acquisition, the drone must hover for a while before continuing the mission. The mission
time is therefore dependent on a second factor, which is the computation time. Appendix
A provides an estimate of the mission time lost if the calculation is not performed in real
time. For a mission that should last 10 minutes by constantly moving, the computation
time using state-of-the-art path planning techniques leads to a mission time of 30 minutes.
A minimal requirement derived from this estimate is that the calculation must be done
in real time, i.e., one instance must be achieved in less time than the map update. The
NetherDrone updates its map with each full rotation of the LiDAR, every 4 seconds. The
number of path requests required per recalculation leads to a path request time that should
be around 0.03 seconds. The main challenge of path planning in stopes is the size of the
environment which greatly increases the computation time. Basically, a compromise must
be made between the calculation time and the length of the path to achieve this initial
requirement that will affect the duration of the mission.

The completeness of the map depends on the proper identification of the areas to be
explored. Several state-of-the-art exploration methods exist to address this challenge.
Nevertheless, the addition of a tether on the drone results in a requirement that involves
respecting a maximum length of tether on board. Although the drone is physically com-
patible with tether entanglements in obstacles, thanks to its onboard spool, too many
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entanglements can jeopardize the mission. As a result, the management of the tether
affects the possibility of completing the mission. Navigation becomes less trivial and the
existing state-of-the-art algorithms do not necessarily work anymore. For a good tether
management, the tether configuration must be identified, and the paths to be taken must
be evaluated based on a prediction of the tether that will be unwound.

1.4 Potential applications
The approach presented in this work can be broken down into 4 distinct mission objectives
that increasingly relieve the pilot of his mental load, leading to autonomous exploration:

1. Return To Home (RTH),

2. exploration assistance,

3. semi-autonomous navigation,

4. autonomous exploration.

These applications are based on real-life examples of missions where human teleoperation
is complicated or not optimal. They are detailed in the following pages.

Initial mission Prior to the integration of the autonomous navigation work presented in
this thesis, the NetherDrone was teleoperated by a human pilot. Since stopes are unsafe
places for humans, the drone navigates out of sight. The pilot therefore has a view of
a simulated 3D environment and an onboard camera, as shown in Fig. 1.5. He sends
commands to the drone via a remote control. The goal of an exploration mission is to
make the drone move forward in the stope, initially unknown, by discovering the walls as
the mission progresses. The operation ends when the drone reaches the end of the stope
and all the walls have been mapped. At the end of the mission, the pilot must bring the
drone back to the take-off point.

(a) (b)

Figure 1.5 Relayed view during teleoperation: (a) virtual, (b) onboard camera.
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1.4.1 Return To Home
Following a manual exploration, performed by teleoperation, the pilot may have difficulty
getting the drone back to the takeoff point since the drone is out of sight during the
entire mission. Fig. 1.6 shows that the tunnel entrance can be very hard to distinguish
without visual aids. Also, the human pilot is not the most efficient at finding the optimal
path. Finally, as much as the teleoperated exploration can be interesting to interpret the
geological data, the return operation requires piloting without collecting information for
almost 50% of the time. The automation of this operation is therefore beneficial. To
address the question "How to get back?", the first objective (see Fig. 1.7) is to implement
a Return To Home (RTH) during which the drone plans a collision-free path.

Figure 1.6 Third-person view of the drone inside the stope. The tunnel en-
trance is almost indistinguishable for the pilot and is located at the end of the
arrow (added in post-processing).

(a) (b)

Figure 1.7 Objective 1 - Return To Home (RTH). After a manual exploration
flight represented by the dashed line in (a), the operator wants to find the
shortest path to the home point, represented by the solid line in (b).
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1.4.2 Exploration assistance
During exploration, it was observed during some field tests that the map often contains
holes because the pilot perspective makes it difficult to distinguish unexplored spaces, as
represented in Fig. 1.8. To address the question "Where to go to discover an unexplored
space?", the second objective (see Fig. 1.9) is to implement an exploration assistance by
displaying relevant areas to the pilot.

(a) (b)

Figure 1.8 Visualization of the holes in the map: (a) the stope seen from the
pilot perspective, (b) the same scan at the same time from another perspective.

(a) (b)

Figure 1.9 Objective 2 - Exploration assistance. During the manual flight in
(a), the pilot wonders where to navigate, not knowing the unmapped areas,
identified by the dashed line in (b).
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1.4.3 Semi-autonomous navigation
Once the exploration areas have been identified, the drone must go there in 2 possible
scenarios: a) the area is out of range of the LiDAR, b) rocky outgrowths obstruct part of
the area to be explored. In both cases, the area to be explored is potentially a gateway to
another unmapped part of the environment. It is not always easy for a human to find the
shortest path, while ensuring good management of the tether. Fig. 1.10 illustrates the
resulting tether configuration after a naive exploration performed by looking at the third
person view only. The figure shows that the tether can easily become tangled if the pilot
does not take care of it. To address the question "How to go there?", the third objective
(see Fig. 1.11) is to plan a path to go autonomously to the identified area.

Figure 1.10 Tether configuration after a naive exploration. The tether is in
gray and the trajectory in brown. The tether is entangled in the obstacles
located in the middle of the map.

(a) (b)

Figure 1.11 Objective 3 - Semi-autonomous navigation. Once the area to be
explored is identified by the pilot, with the solid gray line in (a), the objective
is to find the shortest path to get there, represented by the solid black line in
(b).
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1.4.4 Autonomous exploration
Finally, regarding the entire mission, human beings do not have good intuition to optimize
a global route when the problem, similar to the Traveling Salesman Problem (TSP) [Wor-
boys, 1986], becomes large, especially in 3D. The problem is to find the optimal path to
go through different points of interest and finish at a specific point. Fig. 1.12 shows an
example for which a human performs well when the problem is small and similar to a
2D problem. Fig. 1.13 provides an example for which the human has more difficulty in
finding the optimal solution, as the problem is large and difficult to visualize [Macgregor
and Ormerod, 1996,Dry et al., 2006]. The fourth objective (see Fig. 1.14) addresses the
question "Where to go first?" and is to autonomously choose the order of visit of the areas
to explore.

(a) (b)

Figure 1.12 Visualization of the best solution to an easy instance of a TSP:
(a) problem instance with the drone on the right, 3 points to connect, and the
stope entrance on the left, (b) solution.

(a) (b) (c)

Figure 1.13 3D visualization of the best solution to a hard instance of a TSP:
(a) problem instance with the drone on the bottom, 27 points to connect, and
the stope entrance on the top, (b, c) optimal solution from different perspectives.
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(a) (b)

Figure 1.14 Objective 4 - Autonomous exploration. The final objective is to
relieve the operator of the mental load of selecting the areas to explore. The
path represented by the black line in (b) is the optimal sequence for visiting
these areas.

Put together, these 4 objectives lead to an autonomous exploration algorithm. Regarding
software only, the goal is to reach an autonomy level 5 according to the SAE standards 1

for autonomous vehicles [SAE, 2018].

Autonomy An effective mine mapping drone must rely on the power of autonomy for
several reasons. Generally speaking, the economics of manually piloted drones do not
scale well as they are difficult to fly, easy to crash, and almost all of the operating budget
goes to pilot training and wages [Emesent, 2019]. An autonomous mapping drone works in
three phases: 1) observe the environment, 2) understand it by interpreting the constructed
map, 3) act accordingly. A human pilot is not as efficient as a computer during these 3
phases. Regarding phase 1, the human is not able to perceive a 360° environment at a
given time whereas the machine can easily process a 3D point cloud. Regarding phase 2,
for the same reason, the human is not very efficient to understand the environment for a
drone that navigates out of sight. The operator only has a vision of a virtual environment,
which does not easily allow to perform the objectives 1 and 2 above. Without the visual
aids, which are developed in this work, the operator has little idea of his starting point
and of the unmapped areas when the environment becomes large. Regarding phase 3, the
constraints of the project make it not easy to fly a drone and meet objectives 3 and 4
above by choosing a short local path, while paying attention to the tether, and the length
of the anticipated global path.

1. "The vehicle is driven autonomously in all conditions." The complete system can reach, at best,
a level 3 autonomy according to EarthSense standards for field robots ("the robot is capable of dealing
with edge cases but the human still needs to be on the field to swap batteries, perform repairs, or rescue
a stranded robot") since an operator is still needed for the mechanical maintenance of the drone and for
the setup [EarthSense, 2022].
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One could argue that the tether loses its interest by moving towards a fully autonomous
solution as the main reason for a tether is teleoperation. Nevertheless, the sharing of
calculation and the unlimited flight time is still interesting. In addition to the possibility
of responding to a corner case error, the communication with the pilot remains essential
for an autonomous flight because the geologists need to see the images of the onboard
camera in real time, e.g., to identify the spatial configuration of the gold vein.

1.5 Original contributions
The first algorithm, RRT-Rope, is presented as a generalization of path planning for large-
scale uncluttered 3D environments [Petit and Lussier Desbiens, 2021]. It aims at dealing
with the size of the environments which increases the computation time of a path, and the
trade-off which must be made between computation time and path quality, to minimize
the mission time. The approach incorporates a deterministic method for shortening the
first path found by a modified Rapidly-exploring Random Tree (RRT). In uncluttered
environments, the paper shows that, due to the topology of the environment, this method
provides a near-optimal path. Our algorithm finds this path in a much shorter time
(between 30% and 70% faster) than the state-of-the-art next best algorithm, in large-scale
environments such as mining stopes. In addition to better accuracy, the results also show
a better precision on the path cost obtained (smaller variance in solution quality).

The second algorithm, TAPE, is presented as a generalization of an exploration algorithm
for unknown cavities with a tethered drone [Petit and Lussier Desbiens, 2022]. It aims
at minimizing the mission time during the exploration by minimizing the path length, as
well as ensuring the completeness of the map through the success of the mission which
is ensured by a good tether management. This method is based on a two-level hierarchi-
cal architecture: a) the global planning solves a Traveling Salesman Problem (TSP) to
minimize the exploration path length, and b) the local planning generates informed path
options and chooses one of them according to a decision function that weights the path
length and the tether unwinding. The paper shows that the overall exploration path has
little to no influence on tether entanglements. On average, our method generates a 4.1%
increase in distance traveled compared to the classic TSP solution, with which the length
of the tether remains below the maximum allowed value in 53% of the 32 simulated cases
against 100% with our method.

The two new algorithms developed are then used as technical tools to perform the tasks
that belong to the scope of this project. These methods are combined with some additional
techniques (e.g., filtering, path following, user interaction) to provide an intelligent and
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robust tool for autonomous and fast exploration of underground mining stopes with a
tethered drone. The system can also be used in interaction with a human operator to
perform a RTH, provide an exploration assistance or navigate semi-autonomously to user-
selected waypoints.

1.6 Document structure
First, Chapter 2 presents a literature review of existing methods for performing path
planning and autonomous exploration, and provides a critique related to the problem
stated here. It also presents the implementation of the state-of-the-art algorithms to solve
the TSP which is presented in the TAPE algorithm. Then, Chapter 3 contains the paper
that introduces the RRT-Rope algorithm—that allows to quickly compute a near-optimal
path in large-scale environments. Chapter 4 features the paper that presents the TAPE
algorithm—that leverages RRT-Rope and enables autonomous exploration of unknown
cavities while taking into account the tether length and the global path length. Chapter
5 presents the integration of the techniques presented in the 3 preceding chapters into
an intelligent system. Chapter 6 discusses the limitations of the presented methods and
introduces development perspectives. Finally, Chapter 8 (Chapter 7 in French) concludes
the thesis by highlighting the contributions made to the scientific community and to the
industrial project by the RRT-Rope and TAPE algorithms.
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CHAPTER 2

STATE OF THE ART

Advances in mobile robotics have led to a significant number of navigation algorithms
developed in the last 30 years. This work focuses on the cognitive level of a robot, i.e., as
defined in [Siegwart and Nourbakhsh, 2004], the purposeful decision-making and execution
that a system utilizes to achieve its highest-order goals. This chapter describes state-of-
the-art path planning techniques that can be used for the objectives described in Sections
1.4.1 and 1.4.3. Existing techniques for exploration are then described for the objectives
described in Sections 1.4.2 and 1.4.4. Finally, existing algorithms for solving the TSP are
compared in relation to the objective of Section 1.4.4.

2.1 Path planning
Path planning, one of the highest level aspects in robotics, concerns a set of algorithms
that generate trajectories while respecting collision avoidance. The main challenge of
the path planning problem is that it is difficult to compute the free space and occupied
space, and thus capture the connectivity of the free space. Several strategies have been
developed to try to represent the space through different types of approximations while
trying to quickly find an optimal path. The complexity of the 3D path planning problem
has led to many works [Yang et al., 2014].

As mentioned earlier, a mapping drone is likely to travel at low velocities. As detailed
in Section 3.2.1, the path planning problem for such a drone can then be considered as
a holonomic point-like problem for 3 reasons: 1) the approximation that the roll (ϕ) and
pitch (θ) angles are zero (horizontal attitude) is valid, 2) the control of the yaw angle (ψ)
can be decoupled from the control in position, 3) the drone can move in all directions.

The most popular families of techniques for a holonomic point-like path planning prob-
lem are gradient-based methods, node-based algorithms, and sampling-based algorithms. 1

These are detailed in the following sections.

1. Trajectory optimization methods (e.g., linear programming methods such as shooting or collocation)
are not considered because they require a convex envelope—which is costly in 3D and impossible in a
cavity—and the time to solve a non-collision with a distance equation is much more than a boolean
collision check performed by searching an octree. Moreover, these methods do not take advantage of the
triangular inequality, or the width of the reachable space, which give a good preliminary knowledge of the
shape of the solution.

15



16 CHAPTER 2. STATE OF THE ART

2.1.1 Gradient-based methods
One of the main ideas behind gradient-based methods is the use of Artificial Potential
Fields (APF) [Koren and Borenstein, 1991]. These techniques are inspired by natural po-
tential energy fields such as magnetic fields. The target represents a point of low potential,
attracting the robot, and the obstacles are characterized by a high potential, exerting a
repulsive force, as illustrated in Fig. 2.1.

Figure 2.1 Virtual potential
fields [Siegwart and Nourbakhsh,
2004].

Figure 2.2 Extended virtual po-
tential fields [Siegwart and Nour-
bakhsh, 2004].

These methods are quick to execute and can be performed in real time to give a dynamic
response to the system. The main disadvantages of these methods are the local minima
and the oscillations caused by the potential differences. To overcome these oscillations, it is
possible to use an extended potential field, linked to the angle of the robot and taking little
account of the obstacle if the trajectory is parallel to its wall, as presented in Fig. 2.2. It is
also possible to add a damping factor to the force experienced by the robot. Nevertheless,
since the walls of the stope can be very uneven, simulations confirmed that this method is
not viable for autonomous navigation and the drone gets stuck during the mission [Dozois,
2022]. As mentioned in [Siegwart and Nourbakhsh, 2004], gradient methods are more for
obstacle avoidance (i.e., reaction to the environment) than for planning, and this reacting
effort cannot guide the overall robot behavior to reach a distant goal. Regarding the
project covered in this study, the potential field is used as an obstacle avoidance system
for pilot assistance, as detailed in [Dozois, 2022]. With this system, the pilot is able to use
the joysticks of the remote control as an attractive field and the local obstacles are used to
compute a repulsive field, allowing to assist the pilot in his mission for a good avoidance
of the stope walls. Also, the human can easily get the robot out of the local minima.

2.1.2 Node-based algorithms
Node-based methods rely on the discretization of the reachable space, separating free cells
and cells occupied by obstacles. In 2D, nodes can be connected to 4 or 8 neighbors,
allowing diagonal movements, as seen in Fig. 2.3 and 2.4. For 3D spaces, by analogy, they
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can be connected by 6, by 18 for 2D diagonals or by 26 for 3D diagonals. The cost to
pass in a diagonal must still be penalized, being further away than a neighboring element
along a single axis. This penalty can be done using the Euclidean distance, illustrated in
Fig. 2.5. The Manhattan distance, also represented in Fig. 2.5, should be used when the
cells are connected by 4 in 2D, or by 6 in 3D. Variations of the node-based methods are
presented in this subsection.

Figure 2.3 Grid
by 4 [Lynch and
Park, 2017].

Figure 2.4 Grid
by 8 [Lynch and
Park, 2017].

Figure 2.5 Dis-
tance metrics in
a grid [Lynch and
Park, 2017].

Exact methods The exact methods are based on the geometry of the obstacles and
the space. This means that the cells are either completely free or completely occupied,
as illustrated in Fig. 2.6. In 3D, these methods are relatively complex to implement in
real-time. Also, the size of the cells depends on the complexity of the environment, so the
movement of the robot can be unpredictable, especially if the cell is large.

Figure 2.6 Exact method grid
[Siegwart and Nourbakhsh, 2004].

Figure 2.7 Multi-resolution grid
[Lynch and Park, 2017].

Approximate methods Approximate methods, which are much more popular, are
based on a fixed cell size (except in the case of multi-resolution grids as in Fig. 2.7). This
means that the cell size does not depend on the geometry of the environment, which
is a disadvantage in the case of complex obstacles, i.e., some narrow passages would
not be marked as free. Generally, the mesh size is fine enough to avoid this problem.
Among these techniques, the A* algorithm [Hart et al., 1968] is popular due to its low
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algorithmic complexity, compared to, e.g., Dijkstra [Dijkstra, 1959] which evaluates every
node regardless of the goal direction. The major advantage is that it is complete in
resolution, i.e., if a path exists and the grid resolution is fine enough, the path will be
found. Moreover, this path will be the shortest.

A* algorithm At each iteration, A* minimizes a function

f(n) = g(n) + h(n)

to choose the next node n (represented in Fig. 2.8). The function g(n) is the cost of the
path from the initial point (qI) to the node n while h(n) is the heuristic that estimates
the cost of the least expensive path from n to the target (qG). The algorithm analyzes
different paths in parallel and these paths are dropped if the value of f is higher than all
other paths considered. The algorithm terminates when one of the paths starts from the
initial point and reaches the target or when no more paths are admissible. This algorithm
is used for many practical applications but the number of cells increases exponentially
with the size of the problem 2. The complexity therefore increases rapidly in 3D due to
the number of node connections mentioned at the beginning of Section 2.1.2.

(a) (b)

Figure 2.8 A* algorithm: (a) after one iteration, (b) final path.

A* time complexity The complexity of A* is O(bd) where d is the solution depth,
which depends on the distance to travel between the starting and ending point, and on
the refinement of the grid. The term b represents the branching factor, i.e., the average
number of successor nodes of a same node. It depends on the heuristic and the dimension
of the graph. The optimal heuristic, i.e., the true distance to travel, gives b=1, regardless
of the number of dimensions. In 1D, the worst heuristic gives b = 2. In 2D, b = 4 and in
3D, b = 6, without diagonal displacements, and the algorithm thus becomes equivalent to
Dijkstra.

2. Here, the term refers to several metrics: the spatial size, the grid resolution and the size of the
parameter space.
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In practice, for a simple path in an open 2D space (e.g., 10 m solution in 2D, with a mesh
size of 0.5 m and b = 1.2), the grid contains 400 nodes for a square bounded space and
A* would perform around 40 operations to find a path. For a path planning problem in a
complex and large stope (e.g., 50 m solution in 3D, a mesh size of 0.2 m and b = 2), the
grid contains 15 ∗ 106 nodes that must be stored in memory for a cubic bounded space. In
this grid, A* would perform around 2 ∗ 1075 operations. To give an order of magnitude,
this is almost the number of atoms in the universe. As stated in [Hauser, 2022], techniques
such as A* are optimal and complete in resolution, but their performance depends heavily
on the grid resolution, and somewhat on the grid search heuristic. This type of planning
is time consuming in large-scale environments such as these considered in this work.

2.1.3 Sampling-based algorithms
For our application, potential field methods lead to local minima problems. On the other
hand, node-based techniques produce optimal paths but their algorithmic complexity for
large problems makes them difficult to implement in real time in large-scale 3D environ-
ments. Another class of methods, called the sampling methods, give satisfactory solutions
more quickly in large-scale environments. These methods aim at selecting a sample of
the reachable space. They are based on a first step that evaluates if a sample is lo-
cated in the obstacle-free space, then a second step determining the closest sample among
those reachable, and finally a local planner connecting them. These steps are then re-
peated. The samples, in smaller number than with a decomposition grid, form a roadmap
or search tree. This allows to find a solution in a statistically complete way 3. Among
these methods, search trees are the most used, especially the Rapidly-exploring Random
Trees (RRT) [LaValle and Kuffner, 2000,Véras et al., 2019]. The most useful variants are
described below.

Figure 2.9 Extension procedure of an RRT [Lindemann and LaValle, 2001].

3. The probability of finding a solution, if it exists, tends to 1 for a number of samples approaching
infinity.
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RRT These trees are created using the generation of random points called xsamp in the
C-space (configuration space). The points are generated according to an almost uniform
distribution with a bias towards the target. The node xnear of the tree closest to the
random point is the node minimizing the heuristic to get there, as represented in Fig. 2.9.
A new point xnew is thus created, at a predefined distance ϵ from xnear on a straight line
between it and xsamp. If the straight line between xnear and xnew is entirely contained
in Cfree, the point xnew is added to the tree. There are a large number of variants of
this algorithm, varying the way xsamp are generated [Gammell et al., 2014], varying the
heuristic for selecting xnear for a given xsamp [Shkolnik et al., 2009], or even varying the path
planning between xnear and xnew which can be more complicated than a straight line [Hu
et al., 2021]. The difference between the RRT briefly described here and a random tree
where each point would be randomly added around an already existing node is highlighted
in Fig 2.10. The classical random tree, displayed on the left side of Fig 2.10, is biased
towards the already explored locations while RRT, displayed on the right side of Fig 2.10,
has a Voronoi bias. This bias is shown in Fig. 2.11. In this figure, the Voronoi regions
related to the nodes of the tree (formed by the dark blue segments) are separated by the
red lines. The nodes at the end of the branches occupy the largest Voronoi regions since
the space beyond is unexplored. Thanks to the random generation of xsamp, the xnew tend
to occupy these large Voronoi regions and thus reduce their size. The diffusion of the
graph is therefore uniform within the C-space.

Figure 2.10 Classical
random tree vs. an
RRT [Lindemann and
LaValle, 2001].

Figure 2.11 Illustration of the Voronoi
bias for RRTs [Lindemann and LaValle,
2001].

For a path planning answering a holonomic point-like problem, it is more relevant to use
xnew = xsamp. Indeed, in a holonomic problem, the probability that a random node is
reachable is higher, thanks to the absence of dynamic constraints. This is even more true
in an uncluttered environment such as a stope. There will be no infinitesimal step ϵ to take
into account, which gives a different aspect to the tree [Lindemann and LaValle, 2001].
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RRT* RRT algorithms are popular because of their probabilistic completeness and quick
path computation in single-query problems, but they fail to converge to optimal solutions
because of existing graph bias 4. RRT* is an evolution of RRT that ensures asymptotic
optimality [Karaman and Frazzoli, 2011]. With this algorithm, each new node in the tree
is the center of an inspection in a given radius around it, as represented in Fig. 2.12. If,
within this radius, a node has a cost greater than the cost it would have if the new node
were its parent node, these nodes are reconnected by a new branch. This algorithm is
generally effective in converging faster to the optimal path in fewer iterations, but each
iteration becomes longer to compute, depending on the size of the chosen radius.

(a) (b)

Figure 2.12 RRT* algorithm: (a) after adding xnew to the tree, (b) after
rewiring.

Informed RRT* Once a first path has been found, a random point generated outside
a certain region will never lead to a shorter path than the one already found. In 2D, this
region is an ellipse, having for foci the start point and the goal point, and for major axis
the length of the found path. In the algorithm called Informed RRT* [Gammell et al.,
2014], random points are only generated inside this ellipse (or ellipsoid in 3D) in order
to quickly converge to a more optimal path. Fig. 2.13 illustrates this algorithm. Let
us consider a path with only 1 node between the start and the goal point. If the node
is located on the curve of the ellipse, the path will be of the same length as the major
axis of the ellipse. This is illustrated by the dotted path. This technique allows better
convergence rate and solution quality than RRT* but it requires that a first path is found
by RRT* or RRT. The computation of a first path is expensive if the goal position is
challenging to reach.

4. The final path is strongly biased towards the existing graph due to the connection step with the
closest node of the tree.
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(a) (b)

Figure 2.13 Informed RRT* algorithm: (a) first path found, (b) random point
generation ellipse (gray).

RRT-connect In order to find a first path between 2 points faster, RRT-connect [Kuffner
and LaValle, 2000] deploys 2 trees, one at the starting point and the other at the goal
point. These trees, shown in Fig. 2.14, are intended to join each other and the generation
of random nodes is biased towards the last node added to the other tree. This method is
very effective for fast path finding but is not optimal.

(a) (b)

Figure 2.14 RRT-connect algorithm: (a) before, (b) after finding a path.

Optimization techniques Some ideas have been developed for online path optimiza-
tion, including RRT# [Arslan and Tsiotras, 2013], C-FOREST [Otte and Correll, 2013],
searching around beacons [Kanehara et al., 2007], and graph pruning [Karaman et al.,
2011, Gammell et al., 2018]. To improve computation time through data management,
graph pruning techniques remove some vertices according to a chosen heuristic, e.g., the
sum of the node cost and the distance from node to goal [Karaman et al., 2011], or the
sum of the distance to start and distance to goal [Gammell et al., 2018]. The latter is
used in Informed RRT*-connect [Mashayekhi et al., 2020], an algorithm combining the
advantages of all the algorithms introduced so far, as presented in Fig. 2.15.

Although graph pruning improves computation time, it still needs considerable time to
compute an optimal path in large-scale 3D environments, due to the asymptotic nature of
RRT variants optimality. Fig. 2.16 shows how RRT, RRT* and Informed RRT* perform
in an average stope, with the same computer as described in Chapters 3 and 4. The curves
asymptotically approach the optimum and the convergence rate is very slow.
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Figure 2.15 Example of a path request with Informed RRT*-connect
[Mashayekhi et al., 2020]. The obstacles are represented by the yellow columns
which are cut in their center by a small opening. The path found by each method
is represented in blue.

Figure 2.16 Moving average of path cost over a 7-second window for RRT
variants in an underground mining stope. Several path queries were computed
between 2 points located at the ends of a representative stope. The path between
these 2 points typically corresponds to the case of an RTH after an exploration
mission. The shaded region corresponds to the moving average of the standard
deviation.
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Post-processing techniques Post-processing techniques have been introduced to over-
come the problem of asymptotic optimality. The performance of path optimization is
largely dependent on the environment topology and size. Path optimization generally
takes longer to calculate in large environments and is not very efficient if the environment
is very cluttered. Underground mining stopes have a high probability of being 3-ball homo-
topic 5 by the nature of their creation by explosion. The surface of a stope is a connected
space, as defined in Fig. 2.17, and the volume of the stope is simply connected 6 because
there are no suspended obstacles, as pictured in Fig. 2.18.

(a) (b)

Figure 2.17 Topological spaces proprieties: (a) not connected vs. (b) con-
nected.

(a) (b)

Figure 2.18 Topological representation of an underground mining stope: (a)
admissible stope, (b) not a stope.

Figure 2.19 Representation of homotopy classes [Bhattacharya et al., 2012].

Fig. 2.19 shows an example of homotopic paths. τ1 is homotopic to τ2 but τ3 belongs to
another homotopy class, i.e., it cannot be continuously deformed into any of the other two.
As [Luna et al., 2013] stated, shortcutting is unlikely to discover a new homotopy. However,

5. Two spaces that have the same "shape", from a topological point of view, are homotopic, i.e., they
can be continuously deformed into the other. The 3-ball homotopy group gathers the spaces that are
homotopic to the interior space of a 2-sphere (a sphere in 3 dimensions).

6. Any loop can be reduced to a point without encompassing any domain not included in the space.
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in a 3-ball homotopic environment, any path is, by definition, in the optimal homotopy
class. The idea of shortcutting is therefore very interesting in these environments.

Shortcutting an RRT is an old idea that has been proven to outperform optimal RRT
variants [Luo and Hauser, 2014]. As demonstrated later in Section 3.5, with an efficient
shortening method, the final path cost does not depend on initial path quality, and on-
line optimization is therefore obsolete in stopes. Different techniques use the triangular
inequality principle to prune some nodes of a graph or a path to shorten it, as illustrated
in Fig. 2.20. The principle of triangular inequality is based on the fact that any path
A ⇒ C that can be made of a straight line, without colliding with an obstacle, will be
shorter than A⇒ B ⇒ C.

(a) (b)

Figure 2.20 Path optimization algorithm by node pruning: (a) before, (b) after
pruning.

This node pruning technique is implemented in [Kanehara et al., 2007, Islam et al., 2012].
Fig. 2.21b shows that the resulting path is shorter than the raw path but not optimal
because the node resolution is reduced through node pruning.

Some iterative techniques have been developed to try to converge to an optimal path
[Berchtold and Glavina, 1994, Brock and Khatib, 2002]. Elastic strips, depicted in Fig.
2.21a, is a method that locally displaces a point according to a virtual attractive force
towards its two neighbors and a repulsive force coming from obstacles. Since the algorithm
is designed for online control purposes, the convergence is slow when used as a shortening
method, even with accelerated gradient descent techniques.

(a) (b) (c)

Figure 2.21 Examples of path post-processing techniques: (a) elastic strips
(from [Brock and Khatib, 2002]), (b) node pruning (from [Islam et al., 2012]),
(c) partial-shortcut (from [Geraerts and Overmars, 2004]).
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The most popular path shortening approach is partial-shortcut [Geraerts and Overmars,
2004]. It selects 2 arbitrary points in a path and moves the path segment between them
on a straight line (or linear interpolation for multiple DOF systems) if there is no collision.
Since points are moved instead of pruned, the path is closer to optimality, as illustrated
in Fig. 2.21c. However, computation time is not optimal due to some irrelevant shortcuts
performed because of the non-deterministic point selection. This can happen if the selected
portion of path is already a straight line segment, or if this portion is meant to be pruned
by another shortcut in a future instance.

2.1.4 Preliminary conclusions
A comparison study [Zammit and Van Kampen, 2021] concluded that A* can outperform
RRTs in complex and cluttered environments in terms of path finding time and path
quality. Nevertheless, as demonstrated in Section 3.5, RRTs perform well above A* in
large-scale uncluttered environments. As stated by [Hauser, 2022], sampling-based motion
planners can overcome some limitations of the curse of dimensionality compared to grid
search methods, but they pay a cost in the variance of solution quality and running time.
This running time depends on the visibility characteristics of the free space, which is fast
in spaces of good visibility, such as these described in this study.

Finding a feasible path is generally very efficient with RRT-like techniques such as RRT-
connect, but online optimization remains time-consuming in large-scale environments. In
such environments, most shortcutting methods require many iterations. In addition, the
algorithm usually stops when the computation time exceeds a value set by the user, or
when the measured convergence rate is sufficiently low. The performance is therefore
variable and unpredictable.

An efficient path planning algorithm must leverage the knowledge of the problem to provide
an accurate solution faster, and with good precision. As said earlier, the problem is
holonomic and point-like, and the environment is uncluttered and large-scale. For these
reasons, there is little chance of encountering collisions. With this in mind, it is possible to
modify RRT-connect to generate a first feasible path very quickly. Also, since any path is
homotopic to the optimal path, efficient shortcutting will quickly generate a near-optimal
path. To summarize, the objective is to decrease the computation time and the variance
of the path quality. The remaining question is how to find a mapping between the first
path τf , in yellow in Fig. 2.22, and the optimal path τ ∗ in blue. The main challenge is to
find a good approximation to capture the connectivity of the space. This idea is developed
in Chapter 3.
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Figure 2.22 Representation of the path shortening problem [Petit and
Lussier Desbiens, 2021].
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2.2 Exploration
The literature review in the previous section focused on the path planning problem, which
answers the question of how to move around obstacles. Attention now turns to to the
exploration problem, which addresses the question of where to go to increase map knowl-
edge. This problem arises in robotic mapping [Papachristos et al., 2019] and in Search
And Rescue operations [Balta et al., 2016,Hong et al., 2019]. A lot of work has been done
to tackle this problem in order to allow robots to navigate in dangerous environments or
inaccessible to humans, without prior knowledge of the map [Lluvia et al., 2021]. This
section presents different exploration methods, details the frontier detection and selection
methods, and then discusses techniques that consider the case of a tethered robot.

2.2.1 Exploration techniques
Exploration is defined as:

"[...] the act of moving through an unknown environment while building a map
that can be used for subsequent navigation." [Yamauchi, 1997]

This is most formally described by the Wake-up Robot Problem [Fox and Burgard, 1999],
in which an autonomous robot is put into operation at an unknown location without any
preliminary knowledge of the space. The most successful families of techniques for the
exploration problem are topological methods, information theory, random sampling-based
methods, and frontier-based methods 7. This classification is theoretical, and several recent
methods combine 2 or 3 of these techniques. The details are presented below.

Topological methods Topological exploration is based on the topological representa-
tion of the environment [Thrun, 1998,Kim et al., 2013, Silver et al., 2006b, Silver et al.,
2006a]. This can be done with a connectivity graph based on map segmentation, which is
represented in Fig. 2.23a. These methods are closely related to localization and mapping
through loop closure detection, but they can help in decision making for exploration. The
decision making method is based on the construction of a graph containing the detected
nodes or edges. The graph prevents from exploring the corridors already explored, during
an intersection. With edge and intersection detection, as shown in Fig. 2.23b, the method
is efficient in tunnel networks or offices by focusing on topological completeness. Fig. 2.24
shows an example in a subterranean tunnel network. The robot must choose between the
left and right corridors which are detected by the green dots. Topological methods are
not suitable for large cavities such as stopes, which often cannot be divided into separate

7. Machine learning techniques are not considered because the project does not provide the possibility
to capture enough data to train a model with only a dozen mapped environments. One approach that
could be considered would be data augmentation of maps but this avenue has not been explored.
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sections. A good stope exploration algorithm requires map completeness (e.g., for volume
calculation, as explained in Chapter 1), whereas these methods only guarantee topological
completeness, i.e., that each branch or room of the network is visited.

(a) (b)

Figure 2.23 Tools for topological exploration: (a) map segmentation for an
office-like environment (from [Holz et al., 2010]), (b) edge and intersection de-
tection (from [Thrun, 1998]).

Figure 2.24 Example of a decision making situation using topological explo-
ration methods [Silver et al., 2006a].

Information theory With approaches based on information theory, the objective of
the robot is to maximize the amount of new information to expect for the next sensors
readings. For this, the robot evaluates samples of hypothetical next positions in the near
future, as shown in Fig. 2.25b, and estimates the gain in map knowledge through metrics
depending on the methods used (e.g., maximizing the number of new cells discovered, or
minimizing uncertainty) [Bai et al., 2016,Tabib et al., 2016,Stachniss et al., 2005,Shade,
2011,Vanegas et al., 2019]. Fig. 2.25 shows an example where cells are characterized by
a Shannon entropy measure. Visited cells do not contribute to the entropy and unvisited
cells contribute the most. The best actions determined with these methods are often very



30 CHAPTER 2. STATE OF THE ART

local and do not consider the anticipated global path. Information theory is thus often
greedy and global optimality is affected by their myopia.

(a) (b)

Figure 2.25 Example of an exploration mission based on information gain as
described in [Bai et al., 2016]: (a) acquisition function with the maximum in
red, (b) selection of the next pose samples. The robot is in red, the evaluated
samples in blue, and the next best actions in pink.

Random sampling-based methods Random sampling-based methods can be seen as
an evolution of information theory in a more distant mission horizon. They are based on
growing an RRT [LaValle and Kuffner, 2000] or a similar planner [Karaman and Frazzoli,
2011]. Most of random sampling-based methods integrate information theory in order to
choose the most promising branch [Papachristos et al., 2019,Dang et al., 2018]. Among
these, Next-Best-View Planner (NBVP) [Bircher et al., 2016] and Graph-Based exploration
Planner (GBP) [Dang et al., 2019] are considered among the most efficient state-of-the-
art exploration algorithms. They are based on deploying a random graph (shown in Fig.
2.26a) and then evaluating the amount of space that can be mapped for the different poses
of this branch, as pictured in Fig. 2.26b. Then, the first branch step is performed and
the tree is recomputed with the new map knowledge, in a receding horizon fashion. They
are very effective in tunnel-like environments but often suffer from a) randomness and
therefore neglect of partially explored areas, or b) greedy behavior when a reward gain is
assigned, in the same manner as information theory.

(a) (b)

Figure 2.26 Example of an exploration mission based on GBP [Dang et al.,
2020]: (a) local graph building, (b) exploration gain evaluation.
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Frontier-based methods The last method is based on the notion of frontiers [Ya-
mauchi, 1997]. This is the most widely used method in the literature [Ravankar et al.,
2018, Bachrach et al., 2010, Shade, 2011, Dornhege and Kleiner, 2011, Gao et al., 2018].
Fig. 2.27 shows how they can be detected in a 2D map. The frontiers correspond to the
cells located between the free space and the unknown space. In the same figure, zones 0
and 1 correspond to open doorways, and zone 2 corresponds to the end of the unexplored
hallway. This technique is based on a process analogous to edge detection [Canny, 1986]
and region extraction [Ito et al., 1996] in computer vision, which is very fast to compute
from a 2D image.

Figure 2.27 Representation of frontiers: (a) evidence grid with the free space
in white, unknown space in gray and occupied space in black, (b) frontier edge
segments, (c) frontier regions [Yamauchi, 1997].

For the robot to explore the environment, the method selects the nearest frontier and the
map is expanded incrementally by moving the robot accordingly. Other frontier selection
methods have been proposed since then. Some methods combine frontier and information-
based methods [Shade, 2011, Shen et al., 2012]. Fig 2.28a shows the expected view from
a hypothetical point of view in the reachable space. The method considers the number
of frontiers that could be observed from this point and finds the point that maximizes
that number [Freda et al., 2008]. Fig. 2.28b shows an extension of this method that
minimizes a metric that weights the number of visible frontiers and the distance to the
viewpoint [González-Baños and Latombe, 2002].

As a whole, the notion of frontiers is interesting to best represent the space that remains
to be discovered. Nevertheless, the frontier selection techniques mentioned here are not
appropriate to the stope mapping problem. The original paper states that the main
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(a) (b)

Figure 2.28 Information-based frontier selection algorithms: (a) classic, (b)
weighted. The viewpoint selected is shown in gray, and the frontiers visible
within the sensor range are represented by a bold line of dashes.

question in robotics exploration should be "Given what you know about the world, where
should you move to gain as much new information as possible?". As explained in [Juliá
et al., 2012], the appropriate algorithm depends on the problem concerned. The main
objective of stope mapping is to cover the environment completely, in the most efficient
way possible. A proper algorithm should focus on map completeness and path efficiency
instead of the speed of discovering most of the map greedily, as many algorithms do.

2.2.2 3D frontiers detection
Since frontier-based exploration seems to be the most promising technique, frontier de-
tection is further developed in this section, and frontier selection tools are proposed in
the next section to optimize the global path. The original frontier detection algorithm
is based on image computation but this approach is not applicable in 3D [Canny, 1986].
Some preliminary notions must be introduced to understand how to apply this principle
in 3D. The first important notion is a voxel. Just as the word pixel comes from the prefix
"-pix" (or pics) for "picture" and the suffix "-el" for "element", a voxel is an element of
volume. A map can be built on the basis of these voxels which are each a cube of fixed side
length and have an occupancy state. In the framework of an occupancy grid [Moravec and
Elfes, 1985], the elements are linked to an occupancy probability p, initialized at p0. Based
on this value, the 3 possible occupancy states are free if no obstacle is present (p < p0),
occupied if it is an obstacle (p > p0), or unknown if it has not yet been observed by the
sensors (p = p0). To accumulate and retrieve this data in large spaces, tree data structures
have proven to be very effective.

An octree [Meagher, 1980] is a tree in which each parent voxel is divided into 8 child voxels,
called octants. This structure helps to easily add data when a map is initially unknown
and therefore unbounded. It also allows to quickly insert or find the value of a voxel at a
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desired definition using classical tree search methods (such as Depth-First Search (DFS)
or, better yet, methods that use the geometric properties of the octree [Castro et al.,
2008]). An octree populated with an occupancy map is called an OctoMap [Hornung
et al., 2013]. A major advantage of an octree, represented in Fig. 2.29 is that the resolution
(i.e., tree depth) is not uniform depending on the mapped object or environment. This
translates into more efficient memory management, using many points only where accuracy
is required.

Figure 2.29 Octree representation [Castro et al., 2008].

Returning now to the exploration mission, the objective is to map the environment com-
pletely, i.e., to fill the space with free and occupied voxels, as in Fig. 2.30a. At a given
time, the robot must observe the unknown voxels but not all of them are reachable. The
frontiers are unknown voxels that are neighboring free cells, and thus visible from a point
in the free space 8. These are the unknown voxels that are either shadowed by obstacles
or outside the range of the sensors.

(a) (b)

Figure 2.30 Illustration of frontiers between free and unknown space.

The naive method to detect frontiers is by searching the octree for neighboring unknown
voxels for each free voxel [Hornung et al., 2013]. More effective approaches have been

8. The free space mentioned here is defined in the occupancy grid, and is not necessarily equivalent to
the free space of the robot. The point is potentially reachable if it is in the free configuration space, e.g.,
if the width of the environment allows it.
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proposed to enable real-time computing for an expanding map. The work in [Keidar
and Kaminka, 2014] and [Quin et al., 2014] uses a process analog to a Breadth-First
Search (BFS) in free voxels. Visited voxels are marked to focus on updated voxels only
to avoid unnecessary calculation of the already identified voxels. Another technique has
been designed to optimize the BFS by starting at ray endpoints in the sensor radius of
the new scan [Quin et al., 2021]. The results are very effective and the time complexity
of an iteration is in O(n) considering n frontiers.

2.2.3 Global path optimization
Now that the implementation techniques for 3D frontier detection have been detailed,
this section focuses on frontier selection that leads to an optimal exploration path. An
efficient method for the optimization of the exploration path is called Technologies for
Autonomous Robot Exploration (TARE). It computes viewpoints similarly to the frontier-
based methods and solves a TSP [Cao et al., 2021b, Cao et al., 2021a]. This method
explores in a more complete and fast way than NBVP [Bircher et al., 2016] and GBP [Dang
et al., 2019]. The effectiveness of TARE is partly due to the hierarchical architecture. GBP
has also made an effort towards a hierarchical architecture. Concerning TARE, the local
level stores data densely and computes a detailed path in a local planning horizon, while
the global level maintains data sparsely and computes a sparse path at the global scale,
as shown in Fig. 2.31. This makes real-time computing much easier.

Figure 2.31 TARE exploration framework [Cao et al., 2021b].

The other factor that makes TARE effective is the TSP formulation. Some frontier-based
approaches have also considered the selection problem as a variant of the TSP [Kulich et al.,
2011, Kulich et al., 2019]. The Traveling Salesman (or Salesperson) Problem [Worboys,
1986] consists of finding the shortest route for a traveler who has to visit all of the cities
in a list, where the distance between the cities are known.

Indeed, the frontier selection problem seems very similar to the TSP formulation. Let
us consider an exploration where the drone has several frontiers to visit, as pictured in
Fig. 2.32. A frontier leads either to a dead-end or to a new part of space containing
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one or more frontiers. In the second case where the drone would continue to explore, as
the volume of a stope is a simply connected space, any path between C ′ and the base
station 0 automatically passes through C again. Thus, the distance d(C,C ′) is added to
the total path length, regardless of the order of visit chosen at time t = 1 between A,
B and C. The optimal global solution based on the knowledge of the map at a given
time is therefore very close to the real optimal global solution. By repeating the TSP
computation incrementally with the latest map data, the drone decision thus approaches
the desired optimal behavior. Basically, the frontier selection problem comes down to a
TSP.

(a) t = 0. (b) t = 0 (with path). (c) t = 1 (with path). (d) t = 1 (simplified).

Figure 2.32 Similarities between the TSP and the frontier selection problem.

A minor disadvantage of TARE is that they do not consider the Return To Home in the
optimization of the exploration path once the map is fully explored. In tunnel-like or office
environments, this is of little importance since the entire path is composed of very similar
round trips in narrow corridors. In large cavities, it is a significant factor to consider
since the paths are less likely to overlap due to the width of the environment 9. A proper
definition of the TSP should therefore include the base station as a node in the graph.

State-of-the-art algorithms to solve the TSP are detailed in Section 2.3.

2.2.4 Tether consideration
The methods mentioned so far do not consider the case of a tethered drone. The next
two sections mention exploration methods that address this case and existing techniques
for modeling a tether. It is desirable to have a rewindable tether to help with the proper
modeling and to avoid getting caught on the ground with a dangling tether. The tether is
assumed to be always in taut condition. As said in Section 1, the extra tether should be
stored in an onboard spool, allowing the drone to continue its mission even if the tether
gets caught in obstacles. This setup is represented in Fig. 2.33 with the NetherDrone that

9. More info in Fig. 2.44.
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fulfills these characteristics except for the rewind which is to be integrated in the future
of the project.

Figure 2.33 Schematic representation of a tangle-compatible tethered drone.

Since it directly affects the drone payload at takeoff, the maximum tether length should be
kept small. It is assumed that the user chooses beforehand to embark a length of tether
that allows to go to the end of the stope by the shortest possible path, i.e., a perfect
unwinding of tether would make it possible to explore the whole stope. Studies have
been conducted to try to control this tether and avoid entanglements. A technique has
been developed in [Martínez-Rozas et al., 2021, Martínez-Rozas et al., 2022] for motion
planning of a UAV, connected by a non-tensioned tether to an Unmanned Ground Vehicle
(UGV). The technique is based on a multi-objective optimization with, among others, the
trajectory and the tether length (which is dynamically controlled) as parameters. It allows
to avoid collisions of the tether with obstacles, as displayed in Fig, 2.34. The disadvantage
of this technique is that it considers a collision-free tether. In the case of stope exploration,
the drone sometimes has to explore spaces lower in altitude than the takeoff point. This
results in tether contact points being necessary to explore the environment. The catenary
model of a 3D tether with contact points becomes almost impossible to compute and no
work has succeeded, to our knowledge, to model this in real time.

Research has also been done to solve a 2D TSP for given waypoints in a known space with
the constraint of a non-entangling path. It has been integrated into an underwater drone
as shown in Fig 2.35a. The path between the given waypoints is optimized to avoid tether
entanglements with buoys whose positions are known. The objective function is

C(T ) = k(ET + 1) ∗ LT ,

in which C is the cost, ET is the number of entanglements and LT is the length of the
tether. It is based on the observation of path homotopy classes (defined earlier in Fig.
2.19) thanks to their identification by the H-signature [McCammon and Hollinger, 2017].
The concept of H-signature is defined in [Bhattacharya et al., 2012]. Fig 2.35b displays a
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Figure 2.34 Example of the method from [Martínez-Rozas et al., 2022] applied
to a marsupial robotic system. The tether is in red.

path that would have "O2, O
−1
2 , O2, O1, O3" = "O2, O1, O3" as H-signature. This indicates

that the path crosses the vertical above o2 to the right, then the same vertical to the left,
etc. After simplification, the path crosses the vertical above o2 to the right, then o1 and
finally o3. The value of ET is therefore equal to 3, i.e., the number of vertical crossings of
the obstacles after simplification.

(a) (b)

Figure 2.35 Non-entangling 2D path between waypoints: (a) resulting path
with an underwater drone, (b) concept of H-signature [McCammon and
Hollinger, 2017].

This same identification was used in 2D tangle-free exploration with the nearest frontier
method in [Shapovalov and Pereira, 2020a, Shapovalov and Pereira, 2020b]. Fig. 2.36
shows how this technique is implemented. The path τr,s computed from the robot position
pr to the goal pg is homotopic to a path resulting from the concatenation of the tether
path τ and the path τs from the base station pb to the goal pg.

This promising method has two major disadvantages when applied to the problem studied
here. First, as said before, the nearest frontier selection approach is too greedy and the
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Figure 2.36 Tangle-free exploration to the nearest frontier [Shapovalov and
Pereira, 2020b].

global path is therefore not optimal. Second, in 3D, an entanglement may or may not be
present for the same homotopy class, and H-signature is therefore irrelevant [Bhattacharya
et al., 2010]. Fig. 2.37 provides an example with a solid cube that does not induce
homotopy classes. However, one can see that the tether entanglements are not equivalent
for the two paths around the cube. Then, it comes down to replacing the 2D homotopy
classes information with a proper 3D model of a tether.

Figure 2.37 Homotopy classes in 3D [Bhattacharya et al., 2010].

2.2.5 3D tether model
Work has been done to model a tether taut in 3D around an obstacle as pictured in Fig.
2.38a [Xiao et al., 2018]. The model is based on the ray casting information with the
known obstacle illustrated in Fig. 2.38b. The path of the drone is traced and the contact
points of the tether are recorded in case of collision. Then, if the triangle defined by the
last contact point, the current contact point and the drone position is obstacle-free, the
tether is relaxed and the current contact point is deleted.

As the method has only been tested with sparse convex obstacles, it has some shortcomings
when the drone navigates in a cavity. Fig. 2.39 shows an example of the model in critical
cases. If the robot were to follow the path τA in Fig. 2.39a, the contact points CP2→5

should be removed almost instantly from one waypoint to the next, but the relaxation
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(a)

(b)

Figure 2.38 3D tether model from [Xiao et al., 2018]: (a) experimental setup,
(b) model procedure.

procedure from [Xiao et al., 2018] is implemented for a single point. An improvement to
the model for the integration of multi-relaxation is explored in Section 4.4.1.

Also, in 3D, it may happen that the contact points should be adapted when the triangle
containing (current contact, last contact, path waypoint) is not collision-free. This is
illustrated by the ray casting segment RCB in Fig. 2.39b which is cut by the wall before
reaching CP0. In reality, the contact point CP1 should move to the bottom of the central
tunnel and then to the right of it, once the robot has reached the position ξcurrent. One
approach to solving this problem is to follow the ray casting line RCA as if they were
waypoints in the path history, in order to find the new contact point. This idea is explored
in more detail in Section 4.4.1.

2.2.6 Preliminary conclusions
A good exploration algorithm for the problem addressed in this work must minimize the
global path length, while remaining under the maximum embedded tether length and
running in real time.

Among the exploration techniques, the notion of frontiers is the most interesting to repre-
sent the configuration of the space to be explored. On the other hand, a selection technique
based on the TSP should be used to optimize the global path.
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ℒ

2→51

τA

ξcurrent

CP0

RCA

(a)

ℒ

CB
RCA

CP1 current

CP0

(b)

Figure 2.39 Illustration of the limits of the model in [Xiao et al., 2018]: (a) top
view, (b) front view. The past trajectory L is in brown and the tether model in
gray.

Few exploration techniques consider a tether and those that do are limited to the 2D case
and do not focus on optimizing the global path. In 3D, the straight or kinked tether model
can be improved for a better representation of reality.

State-of-the-art exploration methods based on a hierarchical architecture are shown to
be efficient in decreasing the unhelpful computation time, while keeping a good local
navigation accuracy. Moreover, the tether entanglements are strongly influenced by the
local behavior but little by the global behavior in the mining stopes.

The exploration problem could thus be broken down into the design of a 2-level algorithm
whose a) the global level solves a TSP to optimize the global path through the frontiers
and back to the base station, and whose b) the local level minimizes the local path and
avoids tether entanglements. This idea is developed in Chapter 4.
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2.3 Traveling Salesman Problem
As presented in Section 2.2.3, the frontier selection problem for exploration can be reduced
to a TSP. By repeating the TSP computation incrementally with the latest map data, the
drone decision approaches the optimal exploration path.

The basic TSP is defined as follows: Given a set of cities and the distance between every
pair of cities, the problem is to find the shortest possible route that visits every city exactly
once and returns to the starting point [Montiel Ross and Delgadillo, 2015]. This problem,
although simply defined, is one of the most studied problems in computational mathemat-
ics, and the biggest open problem in complexity theory [Cook, 2011]. It was historically
based on the study of Hamiltonian cycles 10 in polyhedra [Biggs, 1981]. The Clay Math-
ematics Institute considers the solving of the TSP, which would settle the P versus NP
problem, as one of the 7 Millennium Problems. The TSP is therefore a platform of choice
for studying general methods that can be applied to a wide range of discrete optimization
problems.

The applications of the TSP and its variants are numerous around us in everyday life
including transportation (e.g., truck dispatching for delivery [Dantzig and Ramser, 1959]),
logistics (e.g., production line optimization [Delorme et al., 2019]), biology (e.g., DNA
sequencing [Caserta and Voß, 2014]), electronics (e.g., PCB manufacturing [Kumar and
Luo, 2003]), communication (e.g., fiber optic network installation [Cosares et al., 1995])
and space research (e.g., imaging sequence of celestial objects [Bailey et al., 2000]). A
good algorithm depends on the problem concerned by the TSP or one of its variants, the
desired accuracy and the allocated computing time.

This section first focuses on the properties of the problem and presents which instance of
the TSP best approximates our problem. Then, the most popular exact and approximate
techniques to solve it are presented in Section 2.3.1 and Section 2.3.2. A comparative study
is provided in Section 2.3.3 for the described methods applied to the problem studied in
this work. Finally, the tether unwinding is considered in the global planning in Section
2.3.4.

Graph properties In the context of the frontier selection problem, the graph is com-
plete 11 and undirected 12. Considering only the distance to be covered (and not the tether
length), the TSP considered here is metric. The triangular inequality principle is there-

10. A cycle that visits each vertex of a graph exactly once.
11. Each pair of graph vertices is connected by an edge.
12. The relations between pairs of vertices are symmetric, so that branch costs are equal regardless of

the direction of traversal.
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Figure 2.40 Graphical representation of a TSP solution for frontier-based ex-
ploration.

fore satisfied, which implies that the solving algorithms do not have to consider paths
that pass several times through a node. Finally, the classic TSP considers a path that
traverses all cities and returns to the starting point. In this work, the path must have a
specific end point, the home point, which is different from the starting point, as shown in
Fig. 2.40. This leads to minor variations that have little influence in classical TSP solving
algorithms. These are presented below.

Frontier clusters representation One might think that a variant that resembles the
problem is the Generalized TSP (GTSP), which consists of finding the shortest path to
visit a point for each cluster of points [Hu and Raidl, 2008]. However, this adds a lot of
complexity due to the high number of nodes in the problem. Also, a given point in a cluster
of frontiers is not necessarily relevant in terms of visibility. An approach of selecting a
representative point for each cluster, as detailed in Section 4.4.2, is more appropriate and
allows to decrease the complexity of the problem.

Dynamic graph effect The considered problem has similarities with the Canadian
Traveler Problem (CTP) in the sense that the graph evolves dynamically during the mis-
sion. In the CTP, the graph is partially observable [Bar-Noy and Schieber, 1991]. It is
therefore revealed during the exploration but the path traveled is accounted for. It is
inspired by the Canadian drivers who may have difficulty navigating a city network with
snowfalls that randomly block the roads. However, the graph in this study is even more
dynamic since nodes (and thus, branches) are added or removed when frontiers appear
or are visited. As mentioned in Section 2.2.3, in the case of frontier-based exploration,
the dynamic effect of the graph can be attenuated, since the optimal solution at time t is
very close to the optimal solution at time t+ 1. Thus, an effective strategy is to solve the
TSP iteratively, with the latest map data. The results of this approach are provided in
Section 4.5. Fig. 2.41 shows the graph at a given time during the mission, with branches
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in white and frontiers in blue. Each cluster is represented as a single node in the graph.
This example illustrates that the map data at time t is very informative of the global path
to follow.

Figure 2.41 Frontier graph at a given time during the exploration.

Solving algorithms The techniques for solving the TSP can be divided into two main
categories: exact and approximate algorithms. The problem being NP-hard 13, no exact
algorithm in polynomial time is known to date. Exact algorithms often work well for
small problems. Approximate algorithms solve the problem in a more reasonable time by
providing an approached solution.

2.3.1 Exact solutions
Exact algorithms guarantee the optimality of the solution but can be computationally
expensive depending on the problem size. The most common approaches are described in
this section.

Brute-force search The naive solution is to try all permutations without repetitions.
The time complexity is O(n!) considering n cities. The solution is quickly too expensive
even for a small problem of 10 cities.

Dynamic programming (Held-Karp) A dynamic programming approach was de-
signed independently by [Bellman, 1962] and by [Held and Karp, 1962]. By applying
the divide-and-conquer principle, the solution can be computed quickly for a small prob-
lem. The idea behind this algorithm is that every subpath in a path of minimum dis-
tance is a path of minimum distance between the endpoints of the subpath. In Fig.
2.42, the Hamiltonian path of minimum distance starting from 1 and ending at 6 is

13. A problem is NP-hard (Non-deterministic Polynomial-time Hard) if an algorithm to solve it can
be translated into one for solving any other NP problem (Non-deterministic Polynomial-Time), i.e., a
problem solvable in polynomial time by a non-deterministic Turing machine. It is therefore "at least as
hard as any NP problem".
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1 ⇒ 2 ⇒ 3 ⇒ 4 ⇒ 5 ⇒ 6. If 1 and 6 are removed, the optimal path starting at 2
and ending at 5 in the set S = {2, 3, 4, 5} is 2 ⇒ 3 ⇒ 4 ⇒ 5, which is a subpath of the
original optimal path.

Figure 2.42 Illustration of an optimal subpath in a path.

Repeating the procedure if 5 is removed, the optimal subpath between 2 and 4 in the set
S = {2, 3, 4} has only one solution. The problem thus becomes trivial by dividing the
initial problem into sub-problems. Fig. 2.43 illustrates how the set of size N=5 (first row)
is divided into 5 sets of size N=4 (second row). The gray point represents the removed
vertex.

Figure 2.43 Set subdivision tree in Held-Karp.

Held-Karp (HK) is formally presented in Algorithm 1. With the starting city 14 (k = 1)
previously defined, the first two lines computes the cost g of the subset S = {k} of size
1, for a path ending at k. This is equal to the branch cost, previously computed in an
adjacency matrix. This matrix is filled with either the Euclidean distance, or the path
cost computed with a path planner, hence the importance of quickly computing the path
requests, as mentioned earlier. Lines 3 and 4 iterate over all subsets S of increasing size.

14. The starting city is excluded in the size computation.
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Line 5 considers each city k in S to be the last city visited in the path. Line 6 finds the
city m in the set S, excluding k, that produces the minimum distance path when visited
before k. Finally, line 7 finds the best city k to be last visited in the subset of size n− 1,
before returning to the starting city.

Algorithm 1: Held-Karp
1 for k ← 2 to n do
2 g({k}, k)← d(1, k);

3 for s← 2 to n− 1 do
4 for all S ⊆ {2, ..., n}, |S| = s do
5 for all k ∈ S do
6 g(S, k)← minm ̸=k,m∈S [g(S\{k},m) + d(m, k)];

7 opt← argmink ̸=1[g({2, 3, ..., n}, k) + d(k, 1)];
8 return opt;

This considers a Hamiltonian cycle, but a slight modification must be made for the prob-
lem considered in this work. As mentioned earlier, the starting and ending city are not
equivalent since the problem is recomputed during the exploration mission. The problem
then becomes to find a minimum distance Hamiltonian path, and the optimal solution is
different from the Hamiltonian cycle for the same problem, as shown in Fig. 2.44. HK
can be easily adapted to this problem by removing the term d(k, 1) from line 7.

(a) (b)

Figure 2.44 Adaptation of HK to robotic exploration: (a) optimal tour, (b)
optimal exploration path.

For lines 3 and 4, the trick for enumerating all subsets is to represent them by a bitmask
of length n. Thus, there are 2n subsets, among which the procedure iterates over k and
over m. The time complexity of HK is thus O(n22n).

Branch-and-Bound Also based on the divide-and-conquer principle, the Branch-and-
Bound method (BnB) allows to avoid the evaluation of all possible solutions. First, an
initial guess is computed with another technique (e.g., greedy heuristic). Then, the solu-
tions are enumerated in the form of a tree, as illustrated in Fig. 2.45.

The technique alternates between branching, i.e., enumerating the remaining solutions in
the visiting order, and bounding, i.e., computing an expected lower bound for a given
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Figure 2.45 Branch-and-bound procedure.

branch. Then, if the bound is greater than the current solution, the branch is dropped.
BnB is similar to a BFS in the first instance, and only go deeper into the tree for promising
solutions, unlike a DFS. Estimating a lower bound is crucial in BnB to eliminate as many
solutions as possible. The lower bound must be as exact (large) as possible. The cost of a
tour A ⇒ B ⇒ C ⇒ D is equal to half the sum of the 2 adjacent tour branches (in bold
for A in Fig. 2.46) for each node. In mathematical form,

c(T ) =
1

2
[(DA + AB) + (AB + BC) + (BC + CD) + (CD + DA)].

The lower bound computation is based on this unconventional way of computing a tour
cost.

Figure 2.46 Unconventional way of computing a tour cost.

In the graph displayed in Fig. 2.47, a tour will never be shorter than half the sum of
the minimum 2 branches adjacent to each city. For example, the 2 minimum branches
adjacent to B, in bold, have a cost of 3 and 6. The least expensive way to get to and from
B is to traverse these branches.

The time complexity of BnB is lower than O(n!) as the worst case (i.e., no branch pruning)
is equivalent to the brute-force method. The performance of this method depends on the
first solution and the evaluation order of the cities.
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Figure 2.47 Lower bound computation.

Branch-and-cut The branch-and-cut method is a combination of BnB and the cutting-
plane method [Gilmore and Gomory, 1961]. This latter, used in Linear Programming (LP),
allows to relax the problem by temporarily violating the TSP cycle constraint. This is the
method used in the Concorde TSP Solver [Applegate et al., 2006] that holds the current
record for the largest solved problem (85,900 cities in 136+ CPU years) with an exact
algorithm. More details about the algorithm and the proof of optimality are provided in
appendix B.

Time complexity When applied to the problem of this study, Fig. 2.48 shows the
running time of BnB and HK depending on the number of frontier clusters (or cities).
As expected, BnB has a more variable performance depending on the initial solution and
the evaluation order. Both solutions are not viable for running in real-time for a problem
larger than 15 cities. To date, no one has determined whether an exact algorithm that
runs in O(1.9999n) exists [Woeginger, 2001].

Figure 2.48 Exact algorithms performance for the exploration TSP.

2.3.2 Approximate solutions
For large problems, different approximation and heuristic techniques have been designed
to provide a solution more quickly by trading optimality for speed. The most popular
ones are described below.
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Greedy heuristic The naive (and fastest) approach is the Nearest Neighbor (NN) al-
gorithm. The traveler always chooses the nearest non-visited city and the time complexity
is O(n2). For a given problem, the solution depends on the starting point. On average, it
produces a path 25% longer than optimum [Johnson and McGeoch, 2018]. In some special
arrangements, it generates the worst tour [Gutin et al., 2002]. This problem often occurs
for the last branches of the tour that were not anticipated.

Christofides algorithm Approximation algorithms, unlike heuristics, promise a worst-
case performance and are part of a more formal framework. The most popular approxima-
tion algorithm promises an approximation factor of 1.5 [Christofides, 1976]. The general
outline of the algorithm and the proof of the approximation ratio are given in appendix
C. This literature review does not detail further how this algorithm works since some
heuristics do not guarantee an approximation ratio but have much better performance
than Christofides [Genova and Williamson, 2017].

2-opt move Once a first tour is found with NN or Christofides, a heuristic can be used
to produce a better tour. Fig. 2.49 illustrates the 2-opt move which is a local search that
consists in exchanging edges that are part of the tour with edges that are not part of it, in
order to create a new legal tour. First, t1 is selected and a neighbor t2 is deduced. Then
t3 is selected and a t4 neighbor is deduced. Finally, t1 is reconnected to the vertex among
t3 and t4 which closes the tour (t4 in the figure), and the same goes for t2. The traversal
order of the half tour is also reversed. This operation is repeated for all edges as long as
the new tour is improved.

Figure 2.49 2-opt move [Helsgaun, 2000].

3-opt move Fig. 2.50 illustrates the 3-opt move which is a little slower than 2-opt move
but produces a better quality solution. The process is similar but a more generic way than
choosing the vertices denoted ti is to note the edges xi that are removed and the edges yi
that are added.
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Figure 2.50 3-opt move [Helsgaun, 2000].

Local minima The last two heuristics encounter local optimum problems. For example,
a 2-opt move will produce a tour that is only 2-optimal. Fig. 2.51 shows a double
bridge move (or non-sequential 4-opt move) that is impossible to achieve with a sequential
selection of 2-opt moves or 3-opt moves.

Figure 2.51 Double bridge move [Helsgaun, 2000].

Fig. 2.52 depicts a sequential 4-opt moves performed with back-to-back 2-opt moves.

Figure 2.52 Sequential 4-opt move [Helsgaun, 2000].

Graph partitioning The Lin-Kernighan (LK), or k-opt move heuristic is one of the
best heuristics for solving the TSP [Lin and Kernighan, 1973]. The first idea of the
heuristic was to solve the graph partitioning problem, i.e., in the graph V , drawn in Fig.
2.53, find a partition V1 and a partition V2 that have the same number of vertices but
are minimally connected by edges. Lin-Kernighan implemented a local search that swaps
the subsets X1 and X2, leaving only one edge crossing the partition instead of 4 in this
example [Kernighan and Lin, 1970].

Lin-Kernighan (LK) The main idea behind LK, applied to TSP is an adaptive k-opt
move, in which k is variable depending on the calculated distance gain. Appendix D
provides a basic pseudo-code of the procedure because its implementation is relatively
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Figure 2.53 Graph partitioning.

extensive. In fact, the optimal implementation in modern code languages uses recursive
functions. More info can be found in [Helsgaun, 2000].

Basically, the algorithm starts in the same way as a 2-opt move, i.e., t1 is chosen randomly,
a neighbor t2 is considered and t3 is chosen randomly, as shown in Fig. 2.54a. Then, an
expected gain is defined by

G0 = 0,

Gi = Gi−1 + xi − yi.

The lengths xi represent the edges that belong to the tour T and will be removed while the
lengths yi represent the edges that will be added to T . If the gain is negative, the algorithm
evaluates an untried alternative for y1 and x1. If the gain is positive, the operation
continues by choosing a t4 (i.e., t2i) neighboring t3 (i.e., t2i−1) and checks if these choices
lead to a legal tour T ′, as illustrated in Fig. 2.54b. If T ′ is shorter than T , the new tour
is kept and the algorithm starts again with a new choice of t1. Otherwise, the procedure
continues for yi and xi with an increasing i as illustrated in Fig. 2.54c. Finally, the untried
alternatives for x1, y1, x2, y2 and t1 are evaluated. Certain conditions, detailed in [Lin
and Kernighan, 1973], are necessary to ensure that this sequential procedure produces a
tour. A counterexample is provided in Fig. 2.54d.

(a) (b) (c) (d)

Figure 2.54 k-opt move [Lin and Kernighan, 1973].

This heuristic can fall into a local minimum because it only allows to perform sequential
exchanges and a path produced by a double-bridge move, as shown in Fig. 2.51, can never
be obtained for example.
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Chained Lin-Kernighan In the continuity of LK, the Chained Lin-Kernighan (CLK)
algorithm has been implemented to overcome the local minimum problem that can occur
with LK for large problems [Applegate et al., 2003]. The idea behind CLK is to perform
a double-bridge kick, as displayed in Fig. 2.51, when LK does not improve the solution
anymore, and to restart LK afterwards.

Randomized improvement The heuristics presented above have been shown to be
very effective but they sometimes fall into local minima. To get out of these, various
metaheuristics can be used. Since the TSP is a benchmark for optimization algorithms,
many combinatorial optimization techniques have been applied to the problem including
genetic algorithms [Freisleben and Merz, 1996], ant colony optimization [Dorigo and Gam-
bardella, 1997], tabu search [Khan and Asadujjaman, 2016], and simulated annealing [Pep-
per et al., 2002]. In this literature review, the choice is made to develop the simulated
annealing method because it is relatively efficient compared to other metaheuristics [Bi
et al., 2021,Vaishnav and Patil, 2018,Alhamdy et al., 2012].

Simulated annealing A metaheuristic often used in global optimization is Simulated
Annealing (SA) [Kirkpatrick et al., 1983]. This technique takes its name from a metal-
lurgical process that involves controlled heating and cooling of a material to increase its
crystal size and reduce its defects. Starting from an initial solution, a heuristic (e.g., the
2-opt move) is used to generate an alternative tour. Less good solutions are temporarily
accepted to escape local minima. The acceptance depends on a probability

p = e
∆
T ,

where ∆ is the cost difference between the two tours, and T is the temperature. A random
number r is given between 0 and 1, and the new solution is accepted if it is better, or if
it is worse but p > r. The temperature T is initialized (e.g., T0 = 5000) and a cooling
schedule is provided, following a geometric law

Ti = αTi−1,

where α is the cooling rate (e.g., α = 0.95) 15.

15. A better convergence was observed with a cooling schedule that follows a Lundy decrease law [Lundy
and Mees, 1986], i.e.,

Ti = Ti−1/(1 + β Ti−1),

where β is a small constant related to the cooling rate.
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The algorithm finishes when the solution has converged or when the temperature reaches
a final value, e.g., Tf = 0.001. The lower the cooling rate, the better the convergence, at
the cost of computing time. Fig. 2.55a illustrates the acceptance probability depending
on the iteration and path cost difference ∆. Fig. 2.55b shows the resulting convergence for
a TSP of 15 frontier clusters. One can observe that the algorithm selects poorer solutions
at the beginning, and ends up selecting only the best among the final random solutions.
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Figure 2.55 Convergence of SA.

2.3.3 Comparative study
Fig. 2.56 presents the results of the most promising algorithms for exploration TSP. These
methods were tested several times during various simulated exploration missions, with the
number of frontier clusters ranging from 4 to 20. The raw points are approximated by
representative curves 16. HK is used as a ground truth to determine the optimal tour cost.
Fig. 2.56a shows the distance to this optimal tour, and Fig. 2.56b shows the computation
time. SA was implemented with a 2-opt move heuristic. The results indicate that LK and
CLK provide the most promising results, with a maximum approximation factor of 2%,
which is negligible for the problem considered. For a number of cities lower than 13, HK
is nevertheless faster in computation time. The final solution chosen to solve the TSP is
therefore HK when n < 13 and LK otherwise.

Fig. 2.57 provides examples of solutions with this method during a simulated exploration
mission. The highlighted frontier cluster designates the next cluster to be visited by the
drone.

16. The raw points are fitted using the "fit" function in Matlab. The cost is approximated with an
"exp2" curve defined by Y = a eb x+c ed x. The computation time is approximated with a "power2" curve
defined by Y = a xb + c
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Figure 2.56 Comparison of popular algorithms for the exploration TSP. HK is
used as a ground truth to determine the optimal tour cost in (a).

Figure 2.57 Example of TSP solutions for the exploration problem. The op-
timal visit order evolves in real time as the mission progresses. It provides a
global exploration path that is increasingly informed with new map data.

The global path in blue shows the order of visiting the frontiers with straight line segments
but as mentioned in Section 2.3.1, the branch costs can be defined by the path cost,
calculated with a path planner. In this case, the danger is if some path requests are not
successful. This implies that some branch costs are undefined and therefore, the graph is
incomplete. If this happens for a lot of branches—i.e., the graph is sparse—one has to
make sure that a tour exists. The problem of proving the existence of a Hamiltonian cycle
in a sparse graph is NP-hard itself [Garey and Johnson, 1979]. A pragmatic solution is to
filter the frontier clusters that cause a lot of failed path requests, since they are probably
non-accessible clusters.

2.3.4 Tether consideration
By taking into account the tether in the global path optimization, the definition of the
TSP changes from the classical problem. Since the tether configuration at a given position
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depends on the path and changes for each solution, the only viable solution among those
presented is randomized improvement (e.g., SA). Most of the other methods take advantage
of problem specific tricks that are not applicable with the tether. Moreover, for a 2-opt
move for example, the tether configuration must be recalculated for all positions following
the position of t1, and this can be computationally heavy. This technique is tested in
Chapter 4 but fortunately, the results show that the global path does not influence the
tether entanglements and the classical TSP is therefore representative of the problem.
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RRT-Rope

Preamble
Title: RRT-Rope: A deterministic shortening approach for fast near-optimal path plan-
ning in large-scale uncluttered 3D environments.
French title: RRT-Rope : une approche déterministe de raccourcissement pour la plani-
fication rapide de chemins quasi-optimaux dans des environnements 3D non encombrés à
grande échelle.
Authors and affiliation:
L. Petit: Ph.D. candidate, Université de Sherbrooke, Faculty of Engineering, Department
of Mechanical Engineering. Createk Design Lab.
A. Lussier Desbiens: Professor, Université de Sherbrooke, Faculty of Engineering, Depart-
ment of Mechanical Engineering, Createk Design Lab.
Date of acceptance: 24 July 2021
Acceptance status: Final published version
Journal: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC)
Awards: Best student paper and top 5 best paper
Reference: [Petit and Lussier Desbiens, 2021]
Contribution to the document: This paper contributes to the thesis by developing
a path planning algorithm capable of executing quickly and finding a quasi-optimal path
in large-scale uncluttered 3D environments by leveraging the knowledge of the problem.
This solution is better positioned than the state of the art techniques in terms of execution
speed, results accuracy and results precision. This algorithm makes it possible to mini-
mally meet the mission objectives 1 (RTH) and 3 (navigation to a waypoint chosen by the
pilot) defined in Section 1.4. In addition, the algorithm will be used for path queries per-
formed in the global and local planner of the exploration algorithm presented in Chapter
4.
Note 1: Concerning the initial requirement of real-time computing introduced in section
1.3, the maximum path request time should be about 0.03 seconds. The reader may no-
tice that this requirement is not respected in the results presented in Fig. 3.7. Following
the publication of this paper, internal software optimizations were made to speed up the
process. With these changes, the time for a path request is about 0.01 seconds. This is
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mainly due to the data logging that was performed for the comparison of the algorithms
and imposed a low frequency execution. Moreover, the tree that was kept in memory
turns out to be useless since the path always converges to a quasi-optimal path in mining
stopes. The shortcut is therefore calculated directly on the output path instead of the tree.
These improvements do not influence the orders of magnitude of the comparative results
of the algorithms presented in Fig. 3.7. Therefore, the article has not been modified in its
present form compared to the published version.
Note 2: Following corrections requested by the members of the jury, the content of this
article differs slightly from the one that was accepted.
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Abstract: Many path planning algorithms have been introduced so far, but most are
costly, in path cost and in processing time, in large-scale uncluttered 3D environments such
as underground mining stopes explored by an unmanned aerial vehicle (UAV). Rapidly-
exploring Random Tree (RRT) algorithms are popular because of their probabilistic com-
pleteness and rapidity in finding a feasible path in single-query problems. Many of the
algorithms (e.g. Informed RRT*, RRT#) developed to improve RRT need considerable
time to converge in large environments. Shortcutting an RRT is an old idea that has
been proven to outperform RRT variants. This paper introduces a new method, RRT-
Rope, that aims at finding a near-optimal solution in a drastically shorter amount of time.
The proposed approach benefits from fast computation of a feasible path with an altered
version of RRT-connect, and post-processes it quickly with a deterministic shortcutting
technique, taking advantage of intermediate nodes added to each branch of the tree. This
paper presents simulations and statistics carried out to show the efficiency of RRT-Rope,
which gives better results in terms of path cost and computation time than other popular
RRT variations and shortening techniques in all our simulation environments, and is up
to 70% faster than the next best algorithm in a representative stope.

Résumé français: De nombreux algorithmes de planification de trajectoire ont été in-
troduits jusqu’à présent, mais la plupart sont coûteux, en longueur de chemin et en temps
de calcul, dans des environnements 3D non encombrés à grande échelle tels que les chantiers
miniers souterrains explorés par un drone. Les algorithmes d’arbres aléatoires à explo-
ration rapide (RRT) sont populaires en raison de leur complétude probabiliste et de leur
rapidité à trouver un chemin réalisable dans les problèmes à requête unique. De nombreux
algorithmes (par exemple, Informed RRT*, RRT#) développés pour améliorer les RRT
ont besoin d’un temps considérable pour converger dans des environnements de grande
taille. Raccourcir un RRT est une vieille idée qui a prouvé qu’elle était plus performante
que les variantes de RRT. Cet article présente une nouvelle méthode, RRT-Rope, qui vise
à trouver une solution quasi-optimale en un temps radicalement plus court. L’approche
proposée bénéficie du calcul rapide d’un chemin réalisable avec une version modifiée de
RRT-connect, et le post-traite rapidement avec une technique déterministe de raccour-
cissement, en tirant parti des nœuds intermédiaires ajoutés à chaque branche de l’arbre.
Cet article présente des simulations et des statistiques réalisées pour montrer l’efficacité de
RRT-Rope, qui donne de meilleurs résultats en termes de coût du chemin et de temps de
calcul que d’autres variations populaires de RRT et techniques de raccourcissement dans
tous nos environnements de simulation, et est jusqu’à 70% plus rapide que le deuxième
meilleur algorithme dans un chantier minier représentatif.



58 CHAPTER 3. RRT-ROPE

3.1 INTRODUCTION
The challenges of 3D path planning have been addressed by many [Yang et al., 2014],
with Rapidly-exploring Random Tree (RRT) algorithms being commonly used. However,
although RRTs require low computation time to find a first collision-free trajectory, the
time required to find an optimal (Euclidean shortest) path can be very large, especially in
large-scale uncluttered 3D environments such as underground mining stopes. The problem
of navigating through stopes can be considered holonomic for a mapping unmanned aerial
vehicle (UAV), as described in section 3.2.1. Node based algorithms like A* [Hart et al.,
1968] are frequently used for 3D holonomic path planning but the computational com-
plexity makes them slow in large environments for small discretization of the 3D space, as
shown in section 3.5.1, while large discretization makes them incomplete or non-optimal.

Traditional RRTs [LaValle and Kuffner, 2000] are based on generating random points in
the reachable space. A connection is then established from the nearest node in the tree
xnear to a point xnew, which is located on the line between xnear and a point of randomly
generated coordinates xrand, at an infinitesimal step ϵ from xnear. One of the main reasons
why RRTs are so widely used is that they are biased towards search into the largest Voronoi
regions in a graph of the configuration space. In holonomic problems, the infinitesimal
step size (ϵ) can be omitted, and xrand used as xnew, due to the high probability that
the generated random point is reachable from the nearest node [Lindemann and LaValle,
2001]. RRT algorithms are popular because of their probabilistic completeness and quick
path computation in single-query problems, but they fail to converge to optimal solutions
because of existing graph bias.

RRT* is an evolution of RRT that ensures asymptotic optimality [Karaman and Frazzoli,
2011]. It adds recursive rewiring to RRT by connecting new nodes as parent nodes of a
neighbour node if the latter’s cost is improved. Informed RRT* [Gammell et al., 2014]
improves the convergence rate and solution quality by generating new random points
in an ellipsoidal subset of the space. Other ideas for online path optimization, including
RRT# [Arslan and Tsiotras, 2013], C-FOREST [Otte and Correll, 2013], searching around
beacons [Kanehara et al., 2007], and graph pruning [Karaman et al., 2011,Gammell et al.,
2018] have been presented. First, it is shown in section 3.5.1 that the final path cost of
RRT-Rope does not depend on initial path quality and online optimization is therefore
obsolete. Second, if the goal position is challenging to reach, all these algorithms need large
computation time to find a first path. To that end, RRT-connect [Kuffner and LaValle,
2000] was developed to improve path-finding time by growing two trees simultaneously
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toward each other: TA, a tree from xstart; and TB, a tree from xgoal. This algorithm is
efficient for fast single-query path finding, but not optimal.

Post-processing techniques have been introduced to overcome this problem. Shortcutting
an RRT is an old idea that has been proven to outperform optimal RRT variants [Luo
and Hauser, 2014]. Node pruning, based on triangular inequality, has been used on A*
trajectories [Kanehara et al., 2007], but A* inherent computational complexity is an ap-
parent disadvantage in high dimensions. Node pruning is also used with RRT* [Islam
et al., 2012]. However, the resulting path is not optimal because the node resolution is
reduced through node pruning.

Partial-shortcut [Geraerts and Overmars, 2004] is one of the most popular shortening
methods. It selects 2 arbitrary points in a path and moves the path segment between
them on a straight line (or linear interpolation for multiple DOF systems) if there is
no collision. Since points are moved instead of pruned, the path is closer to optimality.
However, computation time is not optimal due to some irrelevant shortcuts performed
because of the non-deterministic point selection (e.g. for an already straight line path or
for a to-be pruned portion of path).

An iterative technique based on bisection was developed in [Berchtold and Glavina, 1994]
but it could not find a better solution located far away and will only return convex solu-
tions.

Elastic strips [Brock and Khatib, 2002] is another iterative technique that operates by
locally displacing a point according to a virtual attractive force towards its two neighbours
and a repulsive force coming from obstacles. Since the algorithm is designed for online
control, the convergence is slow when used as a shortening method, even with inertial
gradient descent.

Finding a feasible path is thus generally very efficient with RRT-like techniques like RRT-
connect, but optimization remains lengthy in high-dimensional problems. In large configu-
ration spaces, most shortening methods require many iterations. Moreover, the algorithm
typically ends when the computation time exceeds a value fixed by the user, or when the
measured convergence rate is small enough. This makes for variable and unpredictable
performance.

A new method, RRT-Rope, is introduced in this paper to rapidly optimize the first path
found with an RRT-connect variant and a deterministic node selection.
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This paper is structured as follows. Section 2 establishes the notation and formal definition
of the problem. Section 3 details the operation of the RRT-Rope algorithm. In section 4,
the algorithm’s complexity and optimality are analyzed. Section 5 presents the results of
our simulations with a mapping UAV in large stopes. A comparison with other methods
is also presented—with a focus on convergence, performance relative to the other short-
ening methods cited in this section, and step-size sensitivity—to highlight the RRT-Rope
algorithm’s efficiency in stopes. Finally, this paper concludes with potential extensions to
the RRT-Rope algorithm.

3.2 PRELIMINARY MATERIAL
3.2.1 Assumptions
Since the UAV is used for mine mapping, the problem of path planning in mine stopes relies
on the following assumptions. For a UAV, the Euclidean space is SE(3) = R3 × SO(3)
for a 6-parameter configuration: three positions (x, y, z) and three angles (ϕ, θ, ψ). Since
a mapping drone would likely travel at low velocities, the roll (ϕ) and pitch (θ) angles
are close to zero. Furthermore, at slow speeds, the yaw angle (ψ) can be controlled
independently to, e.g., always let the sensors point forward. Finally, the obstacles in the
environment are enlarged offline by the drone radius and a safety factor. This allows us to
consider the drone as a single point. For these reasons, the search space can be reduced
to R3 for a point-like problem and dynamic constraints can be ignored. Therefore, RRT
can be used without infinitesimal step size (ϵ) as mentioned in [Lindemann and LaValle,
2001].

3.2.2 Notation
Following the notation introduced in [LaValle, 2006], we can define the world W , a semi-
algebraic obstacle region O ∈ W , a semi-algebraic UAV A defined in W as a point, and q
the configuration of A. In the case of a drone exploring stopes, W = R3 and q = (x, y, z).
The configuration space C can be decomposed into the free space Cfree and the obstacle
region Cobs. Practically, Cfree and Cobs are obtained with the voxel occupancy probability
in an OctoMap [Hornung et al., 2013] generated from LiDAR measurements enlarged by
the drone radius. The obstacle region Cobs ⊆ C is defined as Cobs = {q ∈ C | A(q)∩O ̸= ∅}.
The resulting set of permissible sets is Cfree = C \Cobs. Since Cfree is an open set and
Cobs is closed, if A touches O only by a boundary intersection,

int(A(q)) ∩ int(O) = ∅ and A(q) ∩ O ̸= ∅, (3.1)

where int(S) denotes the interior of S.
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The query pair (qI , qG) includes the initial configuration qI ∈ Cfree and the final configu-
ration qG ∈ Cfree.

3.2.3 Problem formulation
For feasible path planning, a complete algorithm must compute a continuous path, τ :

[0, 1] → Cfree, such that τ(0) = qI and τ(1) = qG or correctly report that such a path does
not exist. In our case, a path always exists thanks to the stope geometry pictured in Fig.
3.1.

Figure 3.1 Path-planning problem in a mine stope.

The topological space Cfree is bounded, connected (i.e., it cannot be represented as the
union of two or more disjoint non-empty open sets) and path-connected, since for all
qI , qG ∈ Cfree, there exists a path τ such that τ(0) = qI and τ(1) = qG. In stopes, there
is no column running from one end to the other. Then, Cfree is simply connected (i.e.,
any loop can be reduced to a point without encompassing any domain not included in the
space). For the definition to ban rocks in suspension, it will be said that the stope surface
is connected, and the stope volume is simply connected. Finally, the stope geometry can
be considered as mainly wide, from 3 to 30 m wide and 30 to 200 m deep. As [Luna et al.,
2013] stated, shortcutting is unlikely to discover a new homotopy. Considering that mine
stopes are 3-ball homotopic environments, all paths are homotopic and thereby any path
is in the optimal homotopy class.

3.3 RRT ROPE
For problems where τ can be a straight line (trivial paths), optimality is met, and the path
cost is the Euclidean distance in R3. In any other case, if τ is optimal, there is at least
one τ(i) = qi with i ∈ [0, 1], such that (3.1) is verified. The path must then be defined on
the closure of Cfree.

In a simple environment, an RRT without infinitesimal step size (ε) could find the yellow
path in Fig. 3.2a. Meanwhile, the blue path would be the optimal path for the point-like
problem without dynamic constraints. This path is composed of straight lines and parts
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of the closure of Cfree. Since RRT-connect has been found to be fast for single-query path
planning, one could optimize the first feasible path found by finding the mapping τf → τ ∗.
RRT-Rope achieves this in a way that is similar to applying tension to a rope.

3.3.1 Path finding
The first step of RRT-Rope is similar to RRT-connect [Kuffner and LaValle, 2000] with
the exception that it omits ε and inserts intermediate nodes to each branch, during the
path search, with a step size δ between them as shown in Fig. 3.2b. Since a non-collision
ray casting check has first been performed to wire a branch, it is obvious that all points
of a tree branch are in Cfree. For holonomic path planning in large environments, this
is faster than RRT with ε (assumed similar to δ) that would require more iterations of
random node generation.

(a) (b)

Figure 3.2 Path planning in a simple environment. Fig. (a) shows the first
path found by RRT (yellow) and the optimal path (blue) from qI (red) to qG
(green). Fig. (b) shows the same feasible path with intermediate nodes (blue).

3.3.2 Path optimization
The idea of the rewiring algorithm (depicted in Fig. 3.3) benefits from intermediate nodes
to try to get as close as possible to the closure of Cfree. This is achieved through a method
reminiscent of the tightening of a rope. Since the problem is holonomic, the optimal path
will be the special case of a Dubins path that does not impose any minimum radius for
the robot. In these conditions, the minimal radius of the rope turns is imposed by the
obstacles if they are smooth, or is zero otherwise.

For each path node i, taken one by one from qI to qG, a collision check is performed with
each node j starting from qG to i. It takes advantage of the width of the environment by
checking the farthest nodes first, such as a rope whose curvature would be constrained by
obstacles, which ensures to only perform relevant shortcuts, unlike random selection. If
the shortcut is collision-free, intermediate nodes will be inserted and the (i, j) pair will
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Figure 3.3 Sequence of shortening algorithm, from left to right.

be connected by a straight line. Thus, node resolution is ensured to be constant along
the path unlike some other algorithms. For the sake of efficient computation, when the
path is already a straight-line between i and j, this will be bypassed to enhance memory
management. In both cases, the next collision check will start at i+ 1. This is performed
by Algorithm 2.

Algorithm 2: betterPathCost(qi, qj)
1 if (qi, qj) ∈ TA or (qi, qj) ∈ TB then
2 return dist(qi, qj) + qi.cost< qj .cost;
3 else if qi ∈ TA and qj ∈ TB then
4 return dist(qi, qj) + qi.costA + qj .costB < τraw.cost;

Algorithm 3: RRT-Rope(δ)
1 (TA, TB)← RRT-connect(δ, ϵ = false);
2 τraw.init(treeToPath(qI , TA));
3 τraw.add(treeToPath(qconnect, TB));
4 for i← 0 to length(τraw) do
5 τopti.add(τraw[j]);
6 for j ←length(τraw) to i+ 1 do
7 if collisionFree(qi, qj) then
8 if betterPathCost(qi, qj) then
9 if τraw[i] ∈ TA and τraw[j] ∈ TA then

10 TA.insertIntermediateNodes(δ, qi, qj);
11 τraw.init(treeToPath(qi, TA);
12 τraw.add(treeToPath(qconnect, TB));
13 else
14 TB .insertIntermediateNodes(δ, qi, qj);
15 τraw.init(treeToPath(qi, TB);

16 i← −1;
17 break;

18 return τopti;

Algorithm 3 shows the full RRT-Rope procedure. It operates directly on the trees instead
of the path, since the nodes could be used for subsequent RRT rewiring (such as Informed



64 CHAPTER 3. RRT-ROPE

RRT*), as discussed later in section 3.6, but one could use a simplified version on a given
path. For the sake of memory management, τraw only stores indexes of nodes and whether
it belongs to TA or TB.

There are three possible shortcuts with RRT-connect: inside TA, inside TB, or between TA

and TB. Lines 10-12 handle the first case, whereas lines 14-15 handle the two other cases.
If τraw[i] ∈ TA and τraw[j] ∈ TB, the intermediate nodes of the new branch will be added
to TB and the connection node will change accordingly to become qi.

Fig. 3.4 shows a simulation performed in a 3D stope. One can see that only three branches
(two green in tree A, and one pink in tree B) were needed to find a first path. The light
green branches come from RRT-Rope’s back-to-back shortcuts.

Figure 3.4 Resulting path (white) of the RRT-Rope algorithm in a stope, after
optimizing tree A (green) and tree B (pink).

3.4 ANALYSIS
This section presents an analysis of the algorithm. The complexity of adding intermediate
nodes and the optimization step are evaluated in the first sub-section, then completeness
and optimality are discussed.

3.4.1 Complexity
The algorithm’s complexity is composed of two parts: search and optimization.

Path finding

As stated in [Karaman and Frazzoli, 2011] for RRT and RRT*, the space complexity is
O(n) and the time complexity is O(n log(n)), expressed as a number of samples n.

Here, n is considerably smaller than usual, since ε (i.e., the infinitesimal step between
xnear and xnew in classic RRT) can be ignored for holonomic problems. However, by
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adding intermediate nodes, the complexity should rise. In this case, space complexity can
be expressed as O(n′) with n′, the number of nodes defined in (3.2) as

n′ =
n∑
i

ceil(
dist(qp,i, qc,i)

δ
) ≃ n

dist(qp, qc)
δ

, (3.2)

where qp,i and qc,i are the parent and child nodes of branch i, respectively, and δ is the step
size. If we were to choose δ = ϵ with a branch distance equal to ϵ as in classic RRT, n′ = n

and the space complexity would be the same as RRT. Since the operation of intermediate
nodes insertion is bypassed when δ = ϵ, the time complexity is also unchanged. We can
assume that a tree with intermediate nodes on straight line branches is roughly the same as
a classic tree with the same infinitesimal step size. The main difference is that it requires
fewer random sample generations (none for intermediate nodes) so that n is considerably
smaller, as anticipated. However, a bigger number of failed iterations could lead to a rise in
n, especially in complex problems, leading to a value of n closer to the usual one. Finally,
with RRT-Rope starting with the first path found by RRT instead of an optimized path,
n is once again considerably reduced.

Path optimization

Several cases will be used to assess complexity with upper and lower bounds: (a) no
shortcut is found; (b) only significantly small shortcuts are found between nodes that
are one waypoint apart, resulting in a constant number of waypoints before and after
optimization; and (c) a straight-line shortcut exists between qI and qG.

The time complexity upper bound is O(m (m+1)
2

) ≃ O(m2), expressed as a number of path
waypoints m:

m = ceil(
c(τf )

δ
). (3.3)

This upper bound considers case (a) and (b). These cases are equivalent, since collision
checks must be performed by ray casting at a step size that is similar to δ. The operations
of node adding and collision checking are very similar in terms of computation time. So,
for either case, 1 + 2 + 3 + ... + m operations need to be performed to check each pair
(qi, qj) and the intermediate nodes between them. The lower bound for time complexity
is Ω(mrope) for case (c), with mrope defined as follows:

mrope = ceil(
c(τrope)

δ
) ≤ m. (3.4)
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The upper bound for space complexity is O(m (m+1)
2

) ≃ O(m2) for case (b), and the lower
bound is Ω(0) for case (a).

Since the ranges between lower and upper bounds are wide and the value of m depends
on δ, the processing time will be analyzed based on simulation results in section 3.5.3.

3.4.2 Completeness and optimality
Since probabilistic completeness is inherited from the algorithm used for the search op-
eration, it is ensured with RRT-like algorithms. Thus, one can be sure to find a path if
it exists. Also, monotonous convergence is ensured with line 8 of Algorithm 3 and with
triangular inequality.

Optimality is an extension of the feasible path planning problem that was defined in
section 3.2.3. Let Σ be the set of all nontrivial paths. Optimal path planning can be
defined similarly to [Karaman and Frazzoli, 2011] and [Gammell et al., 2014], as the
search for a path τ ∗ that minimizes the cost function c : ΣCfree

→ R≥0, which assigns a
non-negative cost to all nontrivial paths in which each point is on the closure of Cfree.
Optimality is ensured when a feasible path with minimal cost is found. Given C, Cobs,
qI and qG, an optimal algorithm must find a path τ ∗ : [0, 1] → cl(Cfree) such that (a)
τ ∗(0) = qI and τ ∗(1) = qG and (b) c(τ ∗) = minτ∈Σcl(Cfree)

c(τ), and report failure if no such
path exists.

Asymptotic optimality is not guaranteed by RRT-Rope if used as it is, because of the
local minimum that can occur in some specific situation. However, the main goal of the
algorithm is to speed up the search for a better path. Also, the extension discussed in
section 3.6 could ensure asymptotic optimality at the cost of extra computing time.

3.5 SIMULATION
The approach was integrated in ROS (Robot Operating System) and tested on simulated
environments in Gazebo that were reconstructed from real LiDAR scans. The simulated
UAV is equipped with a rotating Ouster LiDAR. A simultaneous localization and mapping
(SLAM) approach called RTAB-Map [Labbé and Michaud, 2018] is used to provide the Oc-
toMap and localization inputs for the RRT-Rope algorithm. Simulations were performed
with an HP Z440 Workstation with 12 Intel Xeon processors running at 3.5 GHz, 24 GB
of RAM, with a loop frequency of 1 MHz for path planning iterations. The simulated
environments and associated query pairs (qI , qG) are pictured in Fig. 3.5.

The goal was to reproduce a classic return-to-home operation after UAV exploration.
These three environments have been chosen to best represent the spatial characteristics of
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some typical missions. Env. 2 represents a classic stope environment, with a cylindrical
shape and tunnels at the top. The path should be between 20 and 30 m long. Env. 1
is a bit different, since the take-off point is farther from the stope and the UAV has to
move through a long tunnel first. The stope is also different in that it is more like a long
inclined flat space and the full path length is between 30 and 40 m. Finally, Env. 3 is
used to establish how well the algorithm works even in an environment that does not meet
all the assumptions stated in section 3.2.1, since it is an indoor environment with columns
and doors, with path lengths between 40 and 50 m.

Figure 3.5 External (top row) and cross-section (bottom row) views of the
three testing environments: 1 (left), 2 (center), and 3 (right). Note that the
points qI and qG used in the next simulations are respectively in red and yellow.

3.5.1 Convergence
First, Fig. 3.6 shows the results from a simulation used to demonstrate the algorithm’s
fast convergence. These are the results obtained from running RRT and A* algorithms
compared to RRT-Rope optimization applied on a path obtained with Informed RRT*
with intermediate nodes and initialized at a different time between the moment a path
was found and 5 s. This test had two goals: (a) to confirm the performance of using
RRT-Rope optimization on the first feasible path instead of waiting for a better path,
and (b) to get a first idea of how a shortened path compares with some path planning
algorithms for the same processing time.

The first conclusion can be easily deducted from Figs. 3.6a, 3.6b, and 3.6c, with the
RRT-Rope path cost being almost constant with respect to processing time and with a
low standard deviation. Since the path cost does not depend on the initial path quality,
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(a) Env. 1.

(b) Env. 2.

(c) Env. 3.

Figure 3.6 Moving average of 200 samples of RRT-Rope with δ = 0.6m (cyan),
RRT [LaValle and Kuffner, 2000] (blue), RRT* [Karaman and Frazzoli, 2011]
(orange), RRT-connect [Kuffner and LaValle, 2000] (yellow), Informed RRT*
[Gammell et al., 2014] (purple), Informed RRT* without ϵ (green), and A* [Hart
et al., 1968] (burgundy). The moving average of the standard deviation is shown
in shade.
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partially due to the homotopy of paths in our environments, online optimization is obsolete.
It shows good confidence in the fact that shortening should be performed after the first
feasible path is found, to improve computation time without deteriorating final path cost.

Note that RRT-connect denotes the classic implementation here, while its implementation
in RRT-Rope is slightly different. The effect of this variation is noteworthy between the
first path finding time of the two Informed RRT* curves.

The path lengths confirm that RRT-Rope outperforms the other planning algorithms for
a comparable processing time (i.e., the second objective). A* does not lead to the optimal
path because of node resolution that was chosen as low as possible to quickly find the
solution. More detailed surveys need to be performed to better understand when RRT-
Rope outperforms path shortening algorithms.

3.5.2 Performance comparison
Fig. 3.7 shows the simulations carried out for 100 samples of each shortening algorithm
considered. Unless explicitly stated in the legend, the shortening algorithms were per-
formed on classic RRT-connect paths to find a first path in a fair amount of time.

The partial shortcut with RRT-connect without ϵ finds a first path more quickly but
reaches a plateau far from the optimum because of the low node resolution. Random node
pruning also reaches a plateau because of the node resolution which has become low after
some nodes were pruned. As expected, elastic strips take much time to converge. Partial
shortcut takes more time than RRT-Rope to converge because of irrelevant shortcuts and
unnecessarily large node resolution as stated in section 3.1.

In Env. 2—that represent the classic stope environment— RRT-Rope error ellipse presents
a big gap with other algorithms, and is 70% faster than the next best algorithm for the
same path cost. This gap is reduced in Env. 1 that is narrower. In Env. 3—that was
used to challenge the algorithm—the time spread is bigger because of the path finding
that is less straightforward. In the end, RRT-Rope shows the best performance in each
environment, with a path cost around 1.8% of optimum on average. It also offers the
advantage of being a single point, giving the user the information of when the process is
finished. In contrast, partial shortcut, i.e. the best second option, reaches its convergence
after 150 iterations and 0.25 s in Env. 1, 500 iterations and 0.55 s in Env. 2, and 800
iterations and 0.45 s in Env. 3. It can be a downside to set the maximum number of
iterations or processing time considering that convergence is difficult to evaluate online
for an a priori unknown path.
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(a) Env. 1.

(b) Env. 2.

(c) Env. 3.

Figure 3.7 Standard error ellipse plot for 100 samples of path shortening al-
gorithms of RRT-Rope (burgundy), Random node pruning [Islam et al., 2012]
(blue), Elastic strips [Brock and Khatib, 2002] (green), Partial shortcut without
ϵ (yellow), Partial shortcut [Geraerts and Overmars, 2004] (purple), and Partial
shortcut on RRT (red). The number of iterations is indicated next to the cor-
responding points.
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3.5.3 Step-size sensitivity analysis
Parameter δ can be adjusted in RRT-Rope. This section evaluates the algorithm’s sensi-
tivity to this parameter by reporting results of path cost and processing time, in the same
three environments, for values of δ between 0.05 and 2.05 m. Intuitively, an infinitesimally
small value should give the path a perfect rope-like appearance, whereas a larger δ will
transform the trajectory into a chain of longer links.

As shown in (3.2), the number of nodes in the tree follows approximately the ratio of the
sum of the branch lengths over δ. The number of final tree nodes nrope after RRT-Rope
can be expressed as

n′ ≤ nrope ≤ n′ +
m (m+ 1)

2
, (3.5)

where n′ is the number of tree nodes before optimization, and m (m+1)
2

is the upper bound
of the path waypoints added during optimization, with m being the number of waypoints
of τf previously defined in (3.3). c(τf ), n, and the branch lengths can be regarded as
independent of the path optimization step, since they only depend on the search algorithm.
By substituting (3.2) and (3.3) into (3.5) and considering that δ is the only variable, (3.6)
is obtained as follows:

K1

δ
≤ nrope ≤

K2

δ
+
K3

δ2
. (3.6)

(a) Env. 1. (b) Env. 2. (c) Env. 3.

Figure 3.8 Number of path waypoints (blue) and tree nodes (red) for different
δ values.

Fig. 3.8 shows nrope in red, and the number of final path waypoints mrope (defined in (3.4))
in blue. The red shaded area represents the standard deviation of nrope, which is caused
by (a) randomness of c(τf ), n, and the branch lengths, and (b) variations inside the limit
bounds of (3.6). The nearly nonexistent blue shaded area is due to variations of c(τrope),
which are shown to be quite low in Fig. 3.6 for a given δ.
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(a) Env. 1.

(b) Env. 2.

(c) Env. 3.

Figure 3.9 Processing time (left), path cost (center), and total (right) for dif-
ferent δ values. The colored curve represents the moving average.
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Also, variations in Fig. 3.9 show that for ∆δ < 1.94 δ, the path cost variation ∆c < 0.08 c.
Therefore, the curve of path waypoints can be considered as following an inverse function
of δ if ∆c is neglected.

One can imagine that increasing the number of tree nodes by reducing δ would lead
to a longer processing time. Fig. 3.9 shows the experimental processing time for path
optimization in yellow, the total time in red, and the path finding time in blue. The
path cost is represented in the center column of the figures. As expected, processing time
decreases as a function of δ, whereas path cost grows with it.

The figure on the right side of Fig. 3.9 shows the same results on a cost-time axis. By
looking at the moving average curve, we can see that δ generally enables us to make a
trade-off between processing time and path cost.

To find an optimal δ minimizing the total time to move from qI to qG, a cost function of
total flight time (including processing and travel) is introduced as

gt =
c(τ)

v
+ t, (3.7)

where v is the UAV velocity, t is the processing time, and c(τ) is the path cost.

(a) Env. 1. (b) Env. 2. (c) Env. 3.

Figure 3.10 Standardized cost g as a function of δ for different UAV velocities.

Fig. 3.10 shows the standardized value g of the cost function gt for the sake of readability.
Indeed, the flight duration is longer for slower UAVs, but one cares only about finding the
value of δ minimizing the cost function. The minimum points of each curve show that a
smaller value of δ is better for slow UAVs, whereas for faster UAVs it is preferable to have
a lower computation time at the expense of a higher path cost. It is intuitively clear that a
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fast vehicle has an interest in starting its movement quickly even if it has a slightly longer
path to cover, whereas a slow vehicle has an interest in spending more time optimizing its
route.

Figure 3.11 Value of δ∗ optimizing standardized cost as a function of UAV
velocities for different environments.

The minimum points δ∗ are reported in Fig. 3.11. It can be observed that one should
adopt a larger value of δ when the distance between qI and qG is higher. We also observed
qualitatively that one should increase δ for a larger average cross-sectional area of the
environment. However, this metric is more difficult to compute. Also, g has a relatively
flat curve for each figure in the area where δ is between 0.5 and 1.5 m. This may motivate
the user to set a constant value around 0.8 m for good performance in many environments.

3.6 DISCUSSION
Interestingly, pillar-like structures would not present a problem for RRT-Rope even if they
would for a physical rope, as illustrated in Fig. 11 (right). In the same way, the algorithm
could find a new homotopy in an uncluttered environment with wide passages. However,
RRT-Rope could face local minima problems in complex environments, as illustrated in
Fig. 3.12 (left). In mine stopes, this problem does not arise because the walls are smooth
from the macro point of view.

The main challenge in resolving this hypothetical issue is detecting the local minima. A
potential strategy for doing so is to use Informed-RRT* to escape local minima and to
estimate (a) if the configuration has escaped a local minimum by monitoring the path cost
decrease, and (b) if the algorithm has not yet converged thanks to the path cost decrease
rate.
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Figure 3.12 Representation of local minima situations (left) and non-
problematic situations (right) with RRT-Rope.

The other approach to improving RRT-Rope is to include dynamic constraints in the
problem definition. This could be done by detecting turns and imposing angle restriction
constraints similarly to [Tian et al., 2019], or by using a local planner coupled with RRT-
Rope.

3.7 CONCLUSION
The presented RRT-Rope algorithm can solve near-optimal path planning problems in a
short amount of time for large environments. The algorithm’s speed is inherited from
an altered RRT-connect algorithm’s fast time to compute a feasible path, coupled to a
fast rope-inspired optimization algorithm for a random trajectory. Path finding time is
improved by deleting infinitesimal step size which reduces random node generations needed
in large uncluttered environments. The first path is sufficient for rope shortening algorithm
which performance has been shown to be almost independent from the input path quality in
3-ball homotopic environments. Irrelevant shortcuts are avoided by checking farthest nodes
first and detecting straight lines. Intermediate nodes insertion ensures near-optimality and
uniform resolution. RRT-Rope produces an equal or shorter path than the other presented
algorithms in a shorter computation time, and consistent behaviors without the need for
a varying number of iterations thanks to deterministic selection.

The results are loosely sensitive to the environment and to the step size δ. This latter
parameter can be optimized for a given path cost and robot velocity. Future works include
introducing dynamic constraints and handling more complex environments.
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Title: TAPE: Tether-Aware Path Planning for Autonomous Exploration of Unknown 3D
Cavities using a Tangle-compatible Tethered Aerial Robot.
French title: TAPE: Planification de trajectoire tenant compte du tether pour l’exploration
autonome de cavités 3D inconnues à l’aide d’un drone filaire compatible avec les coince-
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Contribution to the document: The method leverages RRT-Rope results for quick
path queries. This paper contributes to the thesis by elaborating an exploration algo-
rithm that minimizes the path length while keeping the tether under a maximum length.
This algorithm is able to run in real time due to its hierarchical architecture and it achieves
the autonomy objective introduced in Section 1.4.4. The results show a better accuracy
and precision on the maximum length of unwound tether than the other techniques com-
pared. TAPE allows to improve the solution that meets the mission objectives 1 (RTH)
and 3 (navigation to a waypoint chosen by the pilot) defined in Section 1.4, by taking
into account the tether. In addition, the algorithm meets objectives 2 (display of relevant
frontiers) and 4 (autonomous exploration).
Note: Following corrections requested by the members of the jury, the content of this
article differs slightly from the one that was accepted.
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Abstract: This paper presents the first method for autonomous exploration of unknown
cavities in three dimensions (3D) that focuses on minimizing the distance traveled and the
length of tether unwound. Considering that the tether entanglements are little influenced
by the global path, our approach employs a 2-level hierarchical architecture. The global
frontier-based planning solves a Traveling Salesman Problem (TSP) to minimize the dis-
tance. The local planning attempts to minimize the path cost and the tether length using
an adjustable decision function whose parameters play on the trade-off between these two
values. The proposed method, TAPE, is evaluated through detailed simulation studies as
well as field tests. On average, our method generates a 4.1% increase in distance traveled
compared to the TSP solution without our local planner, with which the length of the
tether remains below the maximum allowed value in 53% of the simulated cases against
100% with our method.

Résumé français: Cet article présente la première méthode d’exploration autonome
de cavités inconnues en trois dimensions (3D) qui se concentre sur la minimisation de la
distance parcourue et de la longueur du fil déroulé. Considérant que les coincements du
fil sont peu influencés par la trajectoire globale, notre approche utilise une architecture
hiérarchique à deux niveaux. La planification globale basée sur les frontières résout un
problème de voyageur de commerce (TSP) pour minimiser la distance. La planification
locale tente de minimiser le coût du chemin et la longueur du fil en utilisant une fonction
de décision ajustable dont les paramètres jouent sur le compromis entre ces deux valeurs.
La méthode proposée, TAPE, est évaluée par des études de simulation détaillées ainsi que
par des tests sur le terrain. En moyenne, notre méthode génère une augmentation de 4,1%
de la distance parcourue par rapport à la solution TSP sans notre planificateur local, avec
laquelle la longueur de l’attache reste inférieure à la valeur maximale autorisée dans 53%
des cas simulés contre 100% avec notre méthode.



4.1. INTRODUCTION 79

4.1 INTRODUCTION
Autonomous robotic exploration is a major field of research and has led to many uses
in areas such as search and rescue [Balta et al., 2016], inspection [Bircher et al., 2015]
and surveillance [Grocholsky et al., 2006]. The main objective of the exploration of a
priori unknown cavities is to cover the environment completely, in the most efficient way
possible. To do so, a robot is equipped with sensors, such as cameras or LiDARs. Indoor
environments are often GPS-denied. The data obtained from the sensors is therefore used
to build a map of the environment and perform the localization task with a Simultaneous
Localization And Mapping (SLAM) approach.

In this work, we consider the problem of exploring three-dimensional (3D) cavities with
a tethered aerial robot. Such spaces are often accessed by a narrow entrance tunnel and
can be large-scale, posing challenges for autonomy, computation and communication. The
latter is important to allow an operator to interact with the robot in real time, e.g. to
inspect the wall of an underground mining stope. Tethered Unmanned Aerial Vehicles
(UAVs) offer the advantage of unlimited flight time and no loss of communication.

It is desirable to have a rewindable tether to allow for proper 3D modeling and to avoid
getting caught on the ground with a dangling wire. The tether is assumed to be always in
taut condition. The extra wire should be stored in an on-board spool, allowing the UAV
to continue its mission even if the tether gets caught in obstacles. However, its maximum
length should be kept small since it directly affects the drone’s payload at takeoff. Our
testing platform is the NetherDrone (see Fig. 4.8a) which fulfills these characteristics
except for the rewind which will be integrated in the future.

The approach presented in this paper aims at exploring 3D cavities by minimizing the
global path cost and respecting a maximum length of available tether, thanks to a new
hierarchical framework composed of a global level of exploration path planning that solves
a Traveling Salesman Problem (TSP) and a local level of path planning whose parameters
make it possible to adjust the trade-off between the tether unwinding and the path cost.
On average, our method of tether-aware path planning for exploration (TAPE) generates
a 4.1% increase in distance traveled compared to the TSP solution, with which the length
of the tether remains below the maximum allowed value in 53% of the simulated cases
against 100% with TAPE.

This paper is organized as follows. Section 4.2 defines the problem addressed. In section4.3,
related work regarding autonomous exploration and navigation is described and the main
differences are discussed. In section4.4, the proposed approach is presented and detailed.
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Section 4.5 provides results from simulations in various environments, along with a real-
world flight with a mapping UAV. A comparative study of the methods is also presented.
Finally, this paper concludes with a discussion and potential perspectives.

4.2 PRELIMINARY MATERIAL

4.2.1 Assumptions
Any rigid 3D object pose can be defined by a 6-parameter configuration: (x, y, z, ϕ, θ, ψ)

and the group of motions is SE(3) = R3 × SO(3). An aerial robot used for environment
mapping (e.g. a quadcopter) is likely to move at low speed, thus keeping the roll and
pitch parameters (ϕ, θ) close to zero. Also, the yaw parameter (ψ) can be controlled
independently. A 3D mapping robot should be equipped with an omnidirectional sensor
(i.e. spherical field of view). If not, ψ should be controlled to let the mapping sensors
point towards the next exploration goal at all times. The problem can thus be considered
holonomic with negligible dynamic constraints. Therefore, for a fixed speed, the mission
time is proportional to the distance traveled. Furthermore, after applying a relevant off-
line expansion to the occupied space to produce the collision-free space, the problem can
be solved as a point-like problem.

Sensor footprints, including LiDARs, typically stop at surfaces unlike e.g. medical ultra-
sound. Narrow pockets, whose exploration would result in a collision, can therefore not be
covered. This results in a residual volume that is not connected to the simply connected
set of collision free configurations.

We focus on exploration of cavities, such as mining stopes—whose volume calculation is
crucial to optimize stockpile, excavation, and extension operations. They are likely to be
3-ball homotopic by the nature of their creation (i.e. by explosion). The entrance tunnel
can be artificially closed to give a bounded volume (see Fig. 4.2). Environments that are
not 3-ball homotopic will also be considered since we cannot guarantee the form of any
unknown environment. Environments such as underground tunnel networks are outside
the scope of this study and should be explored with more appropriate approaches such
as [Dang et al., 2019,Cao et al., 2021b,Cao et al., 2021a].

In our case, the tether is anchored to a fixed base station located at takeoff position and
is assumed to be taut at any time, as it is retractable. In some cases, entanglements
(i.e. tether contact with an obstacle) are unavoidable to allow the exploration of an
environment. Since the extra wire is stored on-board and does not restrict the movement
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of the robot in case of a contact with an obstacle, entanglements are authorized, unlike
the approach developed in [Shapovalov and Pereira, 2020b].

4.2.2 Notation
We define the world W = R3 and consider a tethered aerial robot A, defined in W as a
point, and ξt the configuration of A at time t, with ξt = (xt, yt, zt).

Let V ⊂ R3 be a bounded volume to be explored. M is an occupancy map representation of
all the observable space in V , discretized with cubical voxels m ∈M, and is incrementally
built from observations of the omnidirectional sensor S with a maximum effective range
dmax.

The search space V can be decomposed into the free space Vfree and the occupied space
Vocc. The simply connected set of collision free configurations is denoted by Ξ ⊆ Vfree.

Let V̄m ⊆ Ξ be the set of configurations from which a voxel m can be perceived from S,
and Vξ ⊆ V the volume perceived by S at ξ.

The residual mapMres ⊆Munknown has a volume Vres =
⋃

m∈M(m | V̄m = ∅). Considering
L ⊂ R3, the set of configurations along the robot past trajectory, the tether length will be
denoted as L(L) and the perceived volume at time t is Vt =

⋃
ξ∈Lt

Vξ.

The goal of the exploration is to identify the free and occupied parts of V . The explored
volume can then be expressed as V E = V E

free

⋃
V E
occ =

⋃
ξ∈L Vξ.

4.2.3 Problem statement
Given an initially unknown bounded volume V , incrementally identified in a mapping
representation M, find a collision free path T : [0, 1] → Ξ that passes through ξ1, ξ2, ...,
such that

a) the boundary conditions are respected:

T (0) = ξcurrent,

T (1) = ξhome,
(4.1)

b) the tether remains below a maximal length LMAX :

max(L(L → L+ T ))) < LMAX , (4.2)
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c) the observable volume is fully explored:⋃
ξ∈(T

⋃
L)

Vξ = V \Vres, (4.3)

d) the path cost function c : ΣΞ → R≥0, which assigns a non-negative cost to the set Σ of
all paths in Ξ that respect (4.1)(4.2)(4.3), is minimized:

c(T ∗) = min
T ∈ΣΞ

c(T ). (4.4)

When the environment is considered fully explored as in (4.3) or if the tether is insufficient
for exploring the whole volume, find a collision-free path T : [0, 1] → Ξ that respect
(4.1)(4.2)(4.4) to return the robot to its takeoff location.

Due to the a priori unknown nature of the environment, the problem must be solved
incrementally as the robot explores and the path must be computed on-line, with the
latest sensor readings.

4.3 RELATED WORK
According to [Yamauchi, 1997], exploration can be defined as the act of moving through an
unknown environment while building a map that can be used for subsequent navigation.
This problem has been addressed by several approaches, the most effective of which can be
grouped into 4 categories: topological exploration, information theory, random sampling-
based methods, and frontier-based methods.

Topological exploration is based on the topological representation of the environment (e.g.
with a connectivity graph based on map segmentation) [Thrun, 1998,Kim et al., 2013,Silver
et al., 2006b]. With edge and intersection detection, it can be efficient in subterranean
tunnel networks or offices by focusing on topological completeness. However, it is not
suitable for large cavities, which often cannot be divided into separate sections, and which
require map completeness (e.g. for volume calculation).

In information theory, the goal is to move the robot to maximize the amount of new
information to expect for the next sensors readings [Bai et al., 2016, Tabib et al., 2016,
Stachniss et al., 2005]. These methods are often greedy and global optimality is affected
by their myopia.

Random sampling-based methods are based on growing a Rapidly-exploring Random Tree
(RRT) [LaValle and Kuffner, 2000] or use a similar planner [Karaman and Frazzoli, 2011].
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These methods include Next-Best-View Planner (NBVP) [Bircher et al., 2016] and Graph-
Based exploration Planner (GBP) [Dang et al., 2019]. They are very effective in tunnel-
like environments but often suffer from a) randomness and therefore neglect of partially
explored areas, or b) greedy behavior when a reward gain is assigned, in the same manner
as information theory.

Frontier-based methods rely on the idea to move to a boundary between V E
free and Vunknown

[Yamauchi, 1997]. These popular exploration methods have been applied to many prob-
lems [Dornhege and Kleiner, 2011,Gao et al., 2018]. [Yamauchi, 1997] states that the main
question in robotics exploration should be “Given what you know about the world, where
should you move to gain as much new information as possible?”. This method selects the
nearest frontier to allow the robot to incrementally expand its map M. Then, other ways
of selecting the appropriate frontier were evaluated (e.g. the largest one, a viewpoint that
maximizes the number of observable frontiers) [Juliá et al., 2012]. This approach however
only partially apply to this work since we focus on an optimal exploration mission where
we want all the information at the end but the intermediate information is not essential,
except perhaps to optimize the rest of the mission. With these frontier selection meth-
ods, the problem is not solved in a globally optimal way in the sense of (4.4). As stated
in [Juliá et al., 2012], the appropriate exploration algorithm depends very much on the
problem. In this case, one should focus on the completeness of the map and not the speed
of discovering the largest part of the map in a greedy way, as many algorithms do.

To optimize the overall path, some frontier-based approaches have considered the selection
problem as a variant of the TSP [Kulich et al., 2011,Kulich et al., 2019]. Other methods
such as Technologies for Autonomous Robot Exploration (TARE) also solve this problem
for viewpoints [Cao et al., 2021b,Cao et al., 2021a]. TARE explores in a more complete
and rapid way than the methods considered as state of the art such as NBVP [Bircher
et al., 2016] and GBP [Dang et al., 2019]. However, they do not consider the return to
home in the optimization of the exploration path once the map is fully explored, in order
to satisfy (4.1). In tunnel-like or office environments, this is of little importance since the
entire path is composed of round trips, but in the context of large cavity exploration, it is
an important factor to consider.

All methods mentioned so far do not consider the case of a tethered robot, which must
respect (4.2). Research has been done to solve a 2D TSP for given waypoints in a known
space with the constraint of a non-entangling path. It is based on the observation of
path homotopy classes thanks to their identification by the h-signature [McCammon and
Hollinger, 2017]. This same identification was used in 2D tangle-free exploration with
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the nearest frontier method [Shapovalov and Pereira, 2020b]. In 3D, an entanglement
may or may not be present for the same homotopy class, so h-signatures are not relevant
information [Bhattacharya et al., 2010]. Work has been done to model a tether taut in
3D around an obstacle [Xiao et al., 2018]. This model can be refined by incorporating
multi-relaxation, and intermediate relaxation, as discussed in section 4.4.1.

Most successful exploration models do not consider the case of a tethered aerial robot.
Those that do [Shapovalov and Pereira, 2020b] are not optimized in terms of exploration
path length and only consider the two-dimensional case. Moreover, the 3D modeling of a
tether is close to reality but not reliable in some cases. The goal of this work is to provide
a new 3D exploration framework minimizing the mission time in cavities, while respecting
a maximum tether length.

4.4 PROPOSED APPROACH
This section starts by giving a method to compute a 3D tether. Then, the steps for
processing the frontiers are stated. Finally, the global and local planning strategy are
explained.

4.4.1 Tether model

Algorithm 4: Tether model
Input: Map M, trajectory L, contact points CP , max tether length Lmax

Output: Final tether length L, max tether length Lmax, contact points CP
1 for every WP in L do
2 current_contact ← CP (n);
3 relax_flag ← false;
4 if CP .size() > 1 then
5 last_contact ← CP (n-1);
6 relax_flag ← not ObstacleConfined(current_contact, last_contact, WP);

7 if relax_flag then
8 do
9 CP .pop();

10 repeat lines 2-6;
11 while relax_flag;
12 else
13 if CheckCollision(current_contact, WP) then
14 CP .push(collision_point);
15 else if CP .size() > 1 then
16 RC ← RayCasting(current_contact, WP);
17 if not ObstacleConfined(current_contact, last_contact, RC(1)) then
18 CP ← PredictTether(RC, CP );

19 L← CP (n).cost() + dist(CP (n), WP);
20 Lmax ← max(L,Lmax);

21 return L, Lmax, CP ;
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As said in section 4.3, the model defined in [Xiao et al., 2018] and explained in section 2.2.5
can be made more accurate by incorporating multi-relaxation, and intermediate relaxation.
Algorithm 4 presents the model after these 2 modifications. The contact points CP must
be initialized with the position of the base station. Multi-relaxation is implemented in lines
8 to 11 to deal with the case where several contact points are visible simultaneously for a
given waypoint. Also, in 3D, it may happen that the triangle containing (current_contact,
last_contact, WP) is not collision free, but the contact point should move in the direction
where the robot pulls the tether. Lines 15-18 implement intermediate relaxation via a
recursive call to ensure that the line (current_contact, WP) is followed as if it were
waypoints, to find the new contact point.

4.4.2 Frontier processing

Similar to the 2D approach in [Yamauchi, 1997], frontiers can be extracted from a 3D
occupancy map (OctoMap) [Hornung et al., 2013]. In this map, the voxels are classified
in 3 categories: free, occupied and unknown. Frontiers are the voxels in Mfree that have
at least one neighboring voxel in Munknown.

Filtering

The voxels are filtered to satisfy the closed cavity assumption. It can be achieved with a
box filter corresponding to the search space V . However, to ensure that only the entrance
is artificially filtered and for the sake of generality (e.g. for concave environments), a
best practice is to use a viewing frustum, as in the FrustumCulling filter of the PCL
library [Rusu and Cousins, 2011]. The filter camera is oriented parallel to the ground, and
looking backwards with respect to the home pose. The camera position (xcam, ycam, zcam)
and field of view can be determined at time t = 0. For a North-East-Down axis system,
the dimensions provided by a vertical slice in Mocc at x = x0 (shown by the red voxels in
Fig. 4.1) allow to fix a) ycam and zcam at the center of this slice, and b) the dimensions
of the near plane. Then, the constraint to cover, in the frustum, all the voxels of Mocc

located in x < x0, allows to fix xcam as well as the field of view.

Clustering

In order to work with a reasonable number of potential views to evaluate, the frontiers are
clustered using a Euclidean clustering algorithm in a Kd-tree structure [Rusu, 2010]. If
the search space is likely to have too many clusters compared to the computational power
available for the goal selection procedure detailed in section 4.4.3, it is preferable to use a
k-means clustering algorithm.
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Representation

Finally, a candidate viewpoint ξgoal,i is generated for the observation of each frontier cluster
Ci. For the sake of computation time and without loss of performance for large spaces,
ξgoal,i is generated as the closest point in Ξ to mc,i, which is itself the closest point in
Ci to the centroid of Ci. Note that the point mc,i is not necessarily equivalent to the
centroid of the cluster. For the case of a concave cluster, the true centroid could belong
to Vocc and/or not allow to observe Ci because of occlusions. The point ξgoal,i, as defined
above, allows to observe at least partially Ci. This is even more true when the clustering
is done by euclidean clustering where the voxels are very likely to be neighbors, contrary
to a k-mean algorithm where a cluster can be more scattered. In the case where Ci is not
entirely visible from ξgoal,i, the exploration completeness (4.3) is ensured by the fact that
the voxels not visible in Ci will be taken into account for the next exploration step [Kulich
et al., 2019]. For a user whose computation time is not a limitation, a visibility-based
approach as in [Dornhege and Kleiner, 2011] can be used instead, but it is difficult to
implement in real time.

4.4.3 Global path planning
With a large enough sensor range, it is possible to have a relatively good a priori infor-
mation of the space to explore. Moreover, since cavities are simply connected topological
spaces, exploring a tunnel or pocket that has not yet been perceived requires crossing
one of the known frontiers to access it, and probably ultimately returning to it when the
exploration of that area is complete. The distance traveled in that area is therefore often
added to the travel distance, regardless of the order in which the frontiers are visited.

Under these assumptions, the solution that optimizes the path length of visiting the fron-
tiers—given what you know at time t—is substantially close to the global solution and the
problem can be viewed as a TSP. The only difference with a TSP is that the departure
city (i.e. the drone’s position) is not equivalent to the arrival city (i.e. the home position).

Other than that, the problem can be solved using state of the art algorithms. For a
high number of clusters, computing an exact solution (≈ O(n2)) can be demanding but
approximate algorithms give very close results in a reasonable time. The Lin-Kernighan
heuristic is used to solve the TSP as it is one of the most powerful algorithms [Lin and
Kernighan, 1973]. To increase the fidelity of the solution, the adjacency matrix used to
solve the problem is based on the path cost between the different ξgoal,i positions. The
cost can be computed with any path planner but RRT-Rope is preferred since it rapidly
computes a near-optimal path in large uncluttered spaces [Petit and Lussier Desbiens,
2021].
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Algorithm 5: Exploration path planner
Input: map M, collision free space ΞE , positions ξhome, ξcurrent, ξgoal
Output: exploration path T

1 F ← ExtractFrontiers(M);
2 F .Filter();
3 if F .size() == 0 then
4 T ← LocalPlanner(ξcurrent, ξhome, rth=true);
5 else
6 C1,...,n ← Cluster(F );
7 ξgoal, 1,...,n ← Represent(C1,...,n);
8 ξgoal ← SolveTSP(ξgoal, 1,...,n, ξcurrent, ξhome);
9 T ← LocalPlanner(ξcurrent, ξgoal);

10 return T ;

The efficiency of the approaches presented in [Dang et al., 2019] and [Cao et al., 2021b]
comes largely from their hierarchical framework. In 3D, as shown later in the section
4.5.1 by trying an approach to solving the TSP to minimize entanglements similar to
[McCammon and Hollinger, 2017], the visiting order of the candidates in the TSP has
little influence on the entanglements or the length of the tether, while the local behavior
of the robot has a strong influence on these parameters. The approach presented here is
therefore based on a global and a local level. The global planning takes into account the
boundary conditions (4.1), the observation of all frontiers (4.3) and the minimization of
the path (4.4) as a goal for solving the TSP, while the local planning takes into account
the length of the tether (4.2) and the minimization of the path (4.4). This allows the
method to run easily in real time as the tether is only considered locally. Replanning is
performed at each map update to ensure path quality. Algorithm 5 presents the global
exploration process. The function LocalPlanner is detailed below.

4.4.4 Local path planning
Once the TSP is solved, a goal candidate i is chosen and a path query is sent to the local
planner to go to ξgoal,i. The local path is based on the generation of 5 possible trajectories
(TG, THG, TCPG, T t

HG, T t
CPG) whose choice is determined by a decision function. These

trajectories result from 2 steps: a) searching for path portions, and b) assembling and
shortcutting. The path portions queries between 2 points can be done with any path
planner but RRT-Rope [Petit and Lussier Desbiens, 2021] is preferred here. The procedure
is detailed below.

Path options

TG is the result of the path request from the drone’s position ξcurrent to the next goal
candidate ξgoal. THG is obtained by searching 2 portions of path τ1(ξcurrent, ξhome), and
τ2(ξhome, ξgoal). These portions are assembled and a deterministic shortcut as in [Petit and
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Lussier Desbiens, 2021] is applied on the resulting path. T t
HG is obtained in the same way

but the shortcut applied is different. It is the same algorithm as for the calculation of the
tether for given waypoints. Thus, the path obtained remains stuck in the local minima
where the tether may get stuck. TCPG and T t

CPG are similar to THG and T t
HG but take

as input portions of path that pass through the contact points in the reverse order, i.e.
τ0(ξcurrent, CPn), τ1(CPn, CPn−1), ..., τn(CP1, ξhome), τn+1(ξhome, ξgoal).

Figure 4.1 An example of exploration in Env. 1. The path options are in
blue, red, green, yellow and purple. The past trajectory is in brown, the contact
points and tether model in grey. The global exploration path and the frontiers
clusters are in dark blue with the viewpoints and the next cluster in cyan.

For all paths, shortcuts are applied after assembly, and the assembly points (i.e. home
or contact points) are not retained in the final path. The 5 possible paths are shown
in Fig. 4.1. These paths lead to an informed range of options from the shortest (TG)
to the one that allows the total untangling of the tether (T t

CPG), through options that
allow to partially untangle the tether while remaining relatively short. If there is only one
contact point in the current tether model (i.e. CP = {ξhome}), TCPG and T t

CPG will not
be evaluated. It is also trivial that for the case of a return to home, ξgoal = ξhome. Then,
THG and T t

HG will not be calculated.
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Decision function

The decision function for a past trajectory L and a planned path T is defined as

f(L, T ) = k1 × c(T )

+ k2 ×max(L(L → L+ T ))

+ k3 × L(L+ T )

+ k4 × CP (L+ T ),

(4.5)

whose terms are respectively the path cost c(T ) (i.e. distance to cover), the maximum
tether length between ξcurrent and ξgoal, the tether length at ξgoal and the number of contact
points at ξgoal. In practice, the computation of the function L and the associated CP is
only performed for T since the CP associated to L are kept in memory. These parameters
allow us to make an informed decision that takes into account the distance (k1) and the
maximum tether length (k2), and also to locally relax the problem (k3, k4) to stay far
away from LMAX for future path queries. A sensitivity analysis for these parameters is
performed in section 4.5.1.

Algorithm 6: Local path planner
Input: map M, collision free space ΞE , positions ξhome, ξcurrent, ξgoal, contact points CP , RTH

flag rth
Parameters: k1, k2, k3, k4
Output: local path T

1 TG ← RRT-Rope(ξcurrent, ξgoal);
2 if CP .size() = 1 and rth then
3 return TG;

4 τ2 ← RRT-Rope(ξhome, ξgoal);
5 if not rth then
6 τ1 ← RRT-Rope(ξcurrent, ξhome);
7 THG ← RopeShortcut(τ1 + τ2);
8 T t

HG ← TetherShortcut(τ1 + τ2);

9 if CP .size() > 1 then
10 τ1 ← RRT-Rope(ξcurrent, CPn);
11 for i← 0 to CP .size() do
12 τ1.add(RRT-Rope(CPn−i, CPn−i−1));

13 TCPG ← RopeShortcut(τ1 + τ2);
14 T t

CPG ← TetherShortcut(τ1 + τ2);

15 Toptions ← (TG, THG, T t
HG, TCPG, T t

CPG);
16 return Toptions(MinElement(CostFunction(Toptions)));

Algorithm 6 presents the approach used to compute a local path. Note that the function
RopeShortcut uses only the shortcut described in [Petit and Lussier Desbiens, 2021] with
a custom path to replace lines 1 through 3 of the RRT-Rope algorithm. Also, the function
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CostFunction is based on (4.5) after evaluating the tether-related variables as in section
4.4.1. The function TetherShortcut uses the same tether model but for a planned path
instead of a past trajectory, and the collision tests are performed in the collision free space
ΞE instead ofMfree in order to generate a valid trajectory.

4.5 RESULTS
4.5.1 Simulation studies
The approach presented in this paper was deployed on ROS (Robot Operating System)
and tested on 4 different simulated environments that were reconstructed from real LiDAR
scans. The simulated UAV shown in Fig. 4.8a is equipped with a rotating Ouster LiDAR
and has a quasi-omnidirectional field of view after a full rotation. A SLAM approach
called RTAB-Map [Labbé and Michaud, 2018] is used to provide localization data and the
OctoMap from which the frontiers can be extracted. Simulations were performed with an
HP Z440 Workstation with 12 Intel Xeon processors running at 3.5 GHz, 24 GB of RAM,
with a node frequency of 10 Hz for the global planner and 15 Hz for local path planning.

Figure 4.2 Cross-section view of the simulation environments.

The 4 environments pictured in Fig. 4.2 have been chosen to best represent the spatial
characteristics of some typical exploration missions. Env. 1 and Env. 2 represent classic
underground mining stopes with an access tunnel and narrow passages to navigate in order
to map certain pockets. Env. 2 is a bit narrower while Env. 1 extends on an inclined
plane at the end of the tunnel. Env. 3 is also an underground mining stope with an access
tunnel but is much larger, with some pockets in the walls. Env. 4 is a cluttered indoor
environment with shelves, pipes and other obstacles, to challenge the performance of the
algorithm in environments with high risk of tether entanglements.
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Performance comparison

Fig. 4.3 shows the results of the comparison of different algorithms: the selection of the
biggest frontier in blue, the nearest frontier in red, the nearest frontier with our local
planner in yellow, the resolution of a TSP in purple, our algorithm in green, and the
resolution of a TSP taking into account the tether similar to [McCammon and Hollinger,
2017] without our local planner in cyan and with our local planner in burgundy. Table 4.1
gives an overview of the three different concepts studied in the compared algorithms. The
first two algorithms are mainly used as an order of magnitude since it has already been
proven that the TSP produces a shorter path [Kulich et al., 2011]. The other state of the
art algorithms are not compared since such studies already exist [Juliá et al., 2012], and
there is none to our knowledge that takes into account the tether for a 3D path.

Table 4.1 Exploration algorithms characteristics.

Global planner
(TSP)

Global planner
(TSP with tether prediction)

Our local
planner

Biggest
Nearest
Nearest* X
TSP X
TAPE X X
gTAPE X
gTAPE* X X

In all environments, the algorithms that use our local planner do not exceed LMAX in
100% of the cases on 32 samples and the objective (4.2) is therefore achieved.

As announced in section 4.4.3, gTAPE results in tether lengths similar to the other meth-
ods because the global path has little influence on entanglements. Also, it often gives a
longer path because a) it sometimes leads to local hesitations between several successive
iterations and b) it only takes into account the use of one planner to move between the
frontiers because it would be too computationally demanding to consider the 5 path op-
tions for the N × (N − 1)/2 branches of the graph. With our local planner, gTAPE* also
suffers from this global distance increase.

In Env. 1 and Env. 3, the 2 algorithms using the TSP (i.e. TSP and TAPE ) are the
shortest. In Env. 2, the path lengths are very similar between the TSP algorithms and
the greedy algorithms, since the environment is quite narrow and the paths are likely to
be similar. In Env. 3 and Env. 4, we notice that our local planner leads to a slight
increase in distance traveled when comparing nearest and TSP with nearest* and TAPE
respectively.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.3 Comparison of covered distance and maximum tether length for
different algorithms in a-b) Env. 1, c-d) Env. 2, e-f) Env. 3, g-h) Env. 4.
The dotted line shows the maximum tether length LMAX needed to travel the
longest distance diagonally to the end of the cavity from the base station, taking
the shortest path. The data are presented as a boxplot for 8 samples in each
category, with the cross representing the average, and the black dots representing
the outliers. The parameters ki used in (4.5) are (1, 7, 1, 10).
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Fig. 4.4 shows 3 paths taken at random from the same dataset, for the greedy algorithm,
the TSP and our algorithm. In Fig. 4.3g, we notice that the increase in distance avoids
entanglements in the shelves located in the middle of the environment, as can be seen in
Fig. 4.4b by observing the obstacle bypassing by our algorithm compared to the TSP. This
behavior is also observed in Fig. 4.4a where our planner allows to go around the rocky
outgrowth located on the top right. On average, our method generates a 4.1% increase in
distance traveled compared to the globally optimal method (TSP), which entangles the
tether in 46.9% of cases. In Fig. 4.3g, we observe the limits of the TSP for global path
optimization, as the possibility of discovering a frontier from behind after bypassing a
column is not well treated. It is in the limit of the case of a 3-ball homotopic environment,
as explained earlier in the section 4.2.1. In Env. 1, Env. 2 and Env. 3, a comparison of
the distance traveled show the usefulness of using the TSP over the greedy algorithm to
optimize the global path.

(a) Env. 1. (b) Env. 4.

Figure 4.4 Exploration path display.

Finally, a feature that was not stated in the initial objectives is the possibility to recover
the tether after the mission. In the case of an unsafe or inaccessible environment for
humans, a stuck tether results in a loss of material. Fig. 4.5 shows the final length of
the tether at the end of the exploration mission for the same samples as in Fig. 4.3. Our
method recovers the tether completely in 96.9% of the cases and results in a loss of only
10m in the only outlier case among the 32 trials.
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(a) Env. 1. (b) Env. 2.

(c) Env. 3. (d) Env. 4.

Figure 4.5 Tether length L at the end of the exploration mission.

Parameters sensitivity

Fig. 4.6 and Fig. 4.7 presents the results of simulations performed with different sets of
parameters k1→4 in (4.5), with the aim of confirming their importance and giving the user
a preliminary idea of how to choose them. The tests are performed in Env. 2 as it is the
smallest, with 20 samples per parameter set. This is where we will see a greater sensitivity
in the parameters because the distances to be traveled and the tether lengths are shorter
and one term of (4.5) can more quickly become important compared to another.

(a) Percentage of selection of a path option dur-
ing the mission. (b) Covered distance.

(c) Final tether length. (d) Maximum tether length.

Figure 4.6 Results of the parametric analysis in Env. 2, for different values of
k1.
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Fig. 4.6 shows the effects of variations of k1. Fig. 4.6a shows that for a large k1, TG
is chosen more often and the paths with a tether-shortcut less and less. The effect is a
decrease of the path cost (Fig. 4.6b), and an increase of the final and maximum tether
length (Fig. 4.6c and Fig. 4.6d). In our case, k1 = 1 allows to decrease the path cost
without a consequent increase of the tether length.

(a) (b) (c)

Figure 4.7 Results of the parametric analysis in Env. 2, for different values of
k2, k3, k4: a) covered distance, b) final tether length, c) maximum tether length.

Applying the same approach, we see that k2→4 each increase the path cost (Fig. 4.7a). k2
significantly affects c only for k2 ≤ 10, decreases L and Lmax by preventing entanglements
when k2 ≥ 1. k3 affects c a lot, decreases Lmax, and L ≃ 0 for k3 ≥ 10. k4 affects
significantly c, decreases Lmax, and L ≃ 0 when k4 ≥ 100. A set around k = (1, 10, 1, 10)

is thus a good choice for our case. A high precision is not necessary since a small variation
of the parameters does not influence the results very much.

4.5.2 Experimental evaluation
Finally, our method is used by the NetherDrone (see Fig. 4.8a) to explore an unknown
indoor environment. Fig. 4.8b shows the result of this flight. The UAV explores a volume
of 6000 m3 in 164 s, covering a distance of 74 m with a maximum tether length of 39 m.
For operation safety reasons, a part of the environment on the left was marked as a no-go
zone with a box filter. The results show that the drone follows a path that avoids the
tether getting stuck between obstacles, while keeping this path fairly short.
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(a) NetherDrone 3D render. (b) Exploration path display.

Figure 4.8 Real-world flight experiment.

4.6 DISCUSSION
A remaining limitation of the tether model is that collisions are only considered with
obstacles detected by the sensor and not with the prediction of the tether itself, but
this rare case did not occur among all our observations, thanks in part to the fact that
entanglements are minimal with our approach.

A UAV that does not respect the taut tether assumption can do well with our algorithm
if the voxel resolution is adapted to the environment complexity. In our test with the
NetherDrone, we observed on the ground that the unrolled tether on the return path was
always located within at most 1m of the unrolled tether on the outbound path, and it can
then be easily rewound. This may reach its limits in complicated environments where the
computation will become too expensive, or the mapping inaccuracies too noticeable.

Also, our method performs very well in cavities but might reach its limits for a large maze
environment, where another algorithm than RRT-Rope [Petit and Lussier Desbiens, 2021]
can be used for path generation but the integration in real time becomes challenging.

Regarding adaptability, it has been shown that the global path has little influence on
the tether entanglements but is important to minimize the path distance, and the local
planner can thus be integrated with other approaches such as GBP or TARE, instead of
the frontier-TSP.

4.7 CONCLUSION
In this work, a hierarchical framework for path planning for 3D cavity exploration by a
tethered aerial robot is proposed. The global planning focuses on minimizing the distance
traveled by solving the Traveling Salesman Problem for clusters of frontiers. The local
planning aims at minimizing the distance while avoiding tether entanglements, according
to a decision function whose parameters allow to adjust the tether length and path cost
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trade-off. Our method is evaluated in simulation and in a physical environment against
other exploration methods, using the NetherDrone equipped with a rotating LiDAR. Our
two-stage architecture is the first to our knowledge to focus on 3D exploration with a
tether. The results confirm that it performs better in satisfying path minimization while
respecting an acceptable deployed tether length. On average, our method generates a
4.1% increase in distance traveled compared to the method without our local planner,
with which the length of the tether remains below the maximum allowed value in 53%
of the simulated cases against 100% with our method. Future work plans to deploy this
algorithm in more real-world environments.



98 CHAPTER 4. TAPE



CHAPTER 5

INTEGRATION

The previous chapters have set up the technical tools to perform the tasks that belong
to the scope of this project. This chapter presents the integration of these tools into a
complete system and returns to the mission objectives mentioned in Section 1.4. Some
specific adjustments to the project are also presented since the methods (RRT-Rope and
TAPE) were presented in a generic way to benefit the largest number of people in the
robotic community. Finally, the performance of the system is evaluated during simulation
missions and in real flight.

5.1 System configuration
This section presents the system configuration that incorporates the navigation tools pre-
sented in this work. Fig. 5.1 shows the system architecture.

Figure 5.1 System architecture. The software blocks of the base station com-
puter are in the grey box at the top. It communicates with the visual interface
and with the onboard computer of the drone, through the tether. The light
grey box at the bottom shows the hardware blocks on the drone, and the dark
grey box shows the software blocks of the onboard computer. The pilot commu-
nicates with the drone through the joysticks of the remote control for manual
teleoperation, and through the interface.

99
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The pilot communicates with the system through a user interface, accessible via a laptop,
and a remote control. He can therefore remotely operate the drone during an explo-
ration mission. The drone is equipped with an onboard computer (PICO-WHU4: Intel
i7-8665UE, 1.7GHz, Ubuntu 18) computer that communicates with the Pixhawk PX4 au-
topilot through a state machine that is the main code for executing physical tasks (e.g.,
arming, taking off, sending engine commands in flight). The onboard computer runs
ROS [Quigley et al., 2009], with a SLAM node that receives data from the Ouster LiDAR.
During teleoperation, commands are sent to the obstacle avoidance system (APF), as de-
scribed in [Dozois, 2022]. During autonomous operations, the autonomous navigation is
generated on the laptop and the data is exchanged with the SLAM and APF nodes via the
tether. The navigation node is responsible for long term planning while obstacle avoidance
is responsible for modulating the trajectory according to real-time sensor readings.

Figure 5.2 User interface. The interactive part is on the left. Information is
displayed such as the temperature of the LiDAR, the length of the unwound
tether, and the percentage of exploration completed. At the top middle, the
camera view is relayed. RViz simulates a third person view (at the bottom) and
a global view (at the top right), with indications such as the next frontier to
visit, the global and local path, the past path and the tether model.

Fig. 5.2 shows a screenshot of the interface during the mission. The interactive part is
located on the left. The pilot can, for example, arm the drone, take off, and turn off the
onboard computer. Information is displayed such as the temperature of the LiDAR, the
length of the unwound tether, and the percentage of exploration completed (the distance
completed compared to the total distance calculated with TAPE). For the inspection of
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the walls, the drone has an onboard camera whose images are displayed in the top middle.
The RViz viewer [Kam et al., 2015] simulates a third person view (at the bottom) and a
global view (at the top right), with indications such as the next frontier to visit, the global
and local path, the past path and the tether model. The visual interface is a key element
for the predictability of the system, so that the operator is informed of the intentions of
the robot, via the display of the short term path and the next waypoints to reach. In
addition, global information such as the exploration path, frontier clusters and the tether
model improve the interpretability of the system for the operator who better understands
the reasoning behind the algorithm decisions.

Fig. 5.3 shows the deployed system in a mining stope. To enable testing of algorithms
without risking large operating costs, software-in-the-loop simulations can also be per-
formed via the Gazebo simulation software [Koenig and Howard, 2004].

Figure 5.3 Operation of the NetherDrone in an underground mine.
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5.2 Features
The TAPE and RRT-Rope algorithms create useful features for autonomous exploration
and are suitable for different applications. Some project-specific challenges remain after
the integration of these tools. This section presents the tweaks that are needed to fulfill
the project tasks defined in Section 1.4 with the NetherDrone. As a reminder, the tasks
are:

1. Return To Home (RTH),

2. exploration assistance,

3. semi-autonomous navigation,

4. autonomous exploration.

5.2.1 Return To Home
The RTH is calculated with TAPE and the path is sent to the navigation node in Fig.
5.1. Even without performing autonomous exploration, the RTH path computed with
TAPE allows to minimize the tether length unlike RRT-Rope. If only the shortest path
is preferred, RRT-Rope can be used instead. For an efficient RTH, a path follower and a
path smoothing systems have been integrated. With these building blocks, the RTH can
be triggered and performed at any time during the mission. These blocks are detailed
below.

Path follower The navigation node integrates a path follower system that transfers
waypoints one by one to the APF to achieve the given path. This path follower runs
through a list of waypoints, the first of which is the goal and the last is the starting point.
While the path follower is running, if one of the points is within a given distance from
the drone (e.g., 1 meter), all subsequent points in the list are deleted. The last point in
the dynamic list is then sent to the APF and the operation is repeated. To ensure good
visibility of the points on the drone path with the LiDAR, the yaw is adjusted to point to
the next waypoint at all times 1. It ensures to covers the shadow areas located behind the
drone due to its own body.

Path smoothing To avoid power spikes that are problematic for the power converter of
the tethered drone, and reduce the accelerations that can be rough on the mechanisms, the
drone must avoid aggressive maneuvers. Since RRT-Rope computes a path for a holonomic
problem, the final trajectory must be smoothed. The overly aggressive maneuvers are

1. Except when the waypoint is too close to the drone in the horizontal plane (e.g., less than 40 cm)
to avoid aggressive rotations when the drone is flying a near vertical path.
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mainly due to yaw variations. Therefore, an Infinite Impulse Response (IIR) low-pass
filter is incorporated into the yaw waypoint tracking in the APF. The yaw angle (ψ)
depends on the angle pointing to the next waypoint (ψref ) via the following relation:

ψi = (1− α) ∗ ψref + α ∗ ψi−1,

where α is a coefficient that depends on the sampling frequency and the desired cutoff
frequency.

5.2.2 Exploration assistance
The second feature is an exploration assistance. This is performed using the frontier
method which is integrated in TAPE. The frontiers are identified in blue in the global
view in Fig. 5.2. They are also visible at the end of the tunnel in the third person
view. This indicates to the pilot the remaining areas to explore. In TAPE, the frontiers
are filtered and grouped, and the most relevant cluster to visit first, for the optimization
of the global path, is highlighted to the user. In the tunnel, there is only one cluster
after filtering and it is therefore highlighted but further on, Fig. 5.7 shows more clearly
the highlighting compared to the other clusters. The gray voxels represent the filtered
frontiers, according to Section 4.4.2. This filtering process eliminates the frontiers located
in the tunnel axis behind the takeoff point, via a frustum culling. The frontiers that are
detected in RTAB-Map but not connected to the free configuration space (i.e., incorrect
data) are also filtered using a flood fill algorithm.

Figure 5.4 Manual point selection in RViz. The mouse of the user is in the
upper right corner and the pink sphere is the corresponding goal (p2). The
planned path is in white.
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5.2.3 Semi-autonomous navigation
Using the same strategy as for the first task, a path can be requested to any reachable
point with TAPE, or RRT-Rope if the tether is not considered. A feature has been
implemented in the project to navigate to a point p1 that the pilot can select by clicking
at the desired location in RViz (global or third person view). Fig. 5.4 shows this feature.
The point p1 is found by ray casting among the visible voxels. As it is either a frontier or
an obstacle, a point p2 is generated by a Kd-tree 2 search as the closest point to p1 in the
free configuration space. This new point p2 is then used as the goal of the desired path.

5.2.4 Autonomous exploration
The TAPE algorithm allows for intelligent exploration of cavities. Nevertheless, full au-
tonomy is often complicated to deploy. Several adjustments specific to the project were
implemented to make this system completely autonomous, including desirable features,
computational time optimizations, and robustness adjustments (e.g., to exit from corner
cases encountered in test missions carried out during the project, or to protect against
external perturbations such as localization errors). These tweaks are listed below.

Bounded space In the case where the operator only wants to explore a portion of
the space, for safety or relevance reasons, a dynamic bounding box is integrated into the
viewer. As shown in Fig. 5.5, the pilot can change the size of the box in all three axes
using the colored arrows. The frontiers are then filtered in accordance with this box.

(a) (b)

Figure 5.5 Exploration bounding box. The frontiers are shown in blue, and
the filtered frontiers in gray.

Residual volume As mentioned in Section 4.2.1, unreachable frontiers are filtered since
they belong to the residual volume that cannot be mapped. The detection of these un-
reachable frontiers is triggered by a voting result for a large number of failed path requests,

2. A Kd-tree is a binary search tree (BST) of dimension k, with k=3 here.
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as stated in Section 2.3.3, or when they remain in the frontier state after a full rotation
of the LiDAR when the drone has reached the desired viewpoint.

Frontier clusters limit To limit the number of path requests necessary to build the
adjacency matrix, and the number of cities in the TSP, the number of clusters is limited
to a maximum number (20 in our case). The smallest clusters are merged with the closest
cluster. The inaccuracies created by this method are erased by the sequential effect of
the exploration and the representation of the clusters presented in Section 4.4.2, since the
unvisited frontiers will be taken into account at the next iteration with the new sensor
readings.

Multi-resolution empty space To limit the time to search for points in the free con-
figuration space (e.g., nearest points for cluster representation, or random point generation
for RRT), the point cloud is represented as a multi-resolution space. When traversing the
OctoMap, empty points are represented by the largest empty voxel, with a maximum size
limit. Thus, points close to the walls are represented with a high point density where
accuracy is important while points in the middle of large spaces are represented in a more
sparse way where accuracy is not important. This allows to manage the memory more
efficiently, similarly to the octree structure, and thus improving speed, at the cost of a
small loss of precision.

Adaptive octree depth The resolution of the octree is also dynamically adapted with
the environment. In the case of large environments where the computation of an explo-
ration instance is expensive, the tree depth is decreased by one level to always respect
the real-time computing condition. This results in a small reduction of precision, often
insignificant in the large environments in question.

Local search tree for narrow spaces In the case of large stopes (e.g., 150 m deep
and 70 m wide), some tight passages (e.g., 40 cm wide in the space of free configurations)
slow down the search for a path with RRT without infinitesimal step size ϵ. To improve
robustness of the path planning system, this situation is detected if the size of one of the
two trees is less than a given number (e.g., 30 nodes) after a chosen number of iterations
(e.g., 200). This occurs when the tree fails to find a collision-free branch that passes
through the narrow passage due to the large number of irrelevant sampling points. When
this is detected, the new node sampling operation is performed among the points located
within a distance (e.g., 5 m) from the last node of the RRT.
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Unknown space navigation Another approach for speeding up path planning time,
that also sometimes reduce the path length, is to allow segments that cross the unknown
space. As stated in [Quin et al., 2021] and [Wettach and Berns, 2010], sensor measurements
are taken while the robot is moving so that the unknown space becomes a known space
before the robot passes through it. The robot therefore remains in free space at all times.

Path tracking for tether modeling Since the map provided by the SLAM is dynamic
and may contain errors, and the tether configuration depends on the past path, this path
is retraced to verify that the points belong to the free space. If not, the points are moved
to the nearest free space with a ray casting constraint between them, in order to allow for
tether relaxation and increase robustness to external SLAM errors.

5.3 Performance overview
With all the adjustments mentioned above, the drone is equipped with a fully autonomous
exploration system. This section presents data related to the efficiency of the system in
order to highlight the calculation time, the robustness of the system, the quality and
completeness of the map. Other key metrics are also given, such as mission time, length
of tether unwound and distance traveled.

Table 5.1 Navigation system parameters.

Parameters Values

RRT-Rope intermediate nodes distance (δ) [m] 0.6
Obstacle ray tracing increment [m] 0.2
Obtacle radius offset [m] 1.2
Octree leaf voxel size [m] 0.3
Initial octree depth 16
Max. octree depth 14
Path shortcut distance [m] 1.3
Waypoint reached distance [m] 0.9
Goal reached distance [m] 1.2
Home reached distance [m] 0.5
Home land offset [m] 1.5
Path smoothing coefficient (α) 0.75
Min. waypoint horizontal distance for yaw tracking [m] 0.4

Table 5.1 gives the values used for the navigation parameters mentioned in this thesis.
These parameters were chosen empirically. For example, the obstacle radius offset is large
enough to avoid colliding with walls depending on the radius of the drone, but small
enough to avoid virtually clogging the free configuration space in a narrow tunnel. Also,
the home land offset must be greater than this value to allow a successful RTH request.
Other parameters depend on the values of the flight controller such as the saturation



5.3. PERFORMANCE OVERVIEW 107

speed which set the waypoint reached distance to ensure a constant cruising speed. Finally,
parameters such as δ and the octree depth were chosen as a good balance between accuracy
and computation time.

The initial research question of this project is: How to enable 3D autonomous exploration
of unknown underground mining stopes using a tethered drone to provide a complete map
while keeping the unwinding of the tether under the maximum allowed length and mini-
mizing mission time?

Chapters 3 and 4 have established that the system is able to minimize the distance trav-
eled—which directly influences the mission time—and respect the unwinding condition of
the tether, which allows to finish the mission and ensure the completeness of the map.
The last aspect to consider concerns the real-time computing ability, i.e., the second factor
that influences the mission time. Simulations of the global system have been performed
in 6 environments whose scans are provided in Fig. 5.6 and Fig. 5.7.

(a) Env. A. (b) Env. B. (c) Env. C. (d) Env. D.

(e) Env. E. (f) Env. F.

Figure 5.6 Exploration tests with the exploration system in 6 different envi-
ronments.

Env. A is a small stope of 40 m depth, with 3 tunnels above and a diagonal cavity, and a
width that varies between 2 m and 8 m. Env. B is a large stope of 50 m width and 130
m depth. Env. C is a large stope of 120 m of side. Env. D is a warehouse of 30 m side
and 8 m height with several obstacles. Env. E is a narrow diagonal stope of 40 m length
with a 3 m wide tunnel at the entrance. Env. F is similar with 2 m width in some places.
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(a) t = 0. (b) t = 1.

(c) t = 2. (d) t = 3.

(e) t = 4. (f) t = 5.

(g) t = 6. (h) t = 7.

Figure 5.7 Exploration sequence in Env. E. The path options are in blue, red,
green, yellow and purple. The past trajectory is in brown, the contact points
and tether model in grey. The global exploration path and the frontiers clusters
are in dark blue with the viewpoints and the next cluster chosen in cyan. The
third-person view is in the top left corner.
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Table 5.2 presents the results of an exploration mission in these 6 environments, with the
same computer as described previously in Chapters 3 and 4. The mission time is less
than 10 minutes in all the environments. The largest environments (Env. B and C) are
challenging for computation time but even the maximum instance of TAPE ran in less
than the targeted 4 seconds, i.e., the map update time. The average time of a TAPE
instance is between 0.03 and 0.6 seconds, which fully meets the required criteria.

Table 5.2 Exploration metrics in 6 different environments.

A B C D E F

Covered distance [m] 114.1 292.4 363 126.9 111.2 180.8
Mission duration [min] 3.6 8.3 9.8 4.0 3.8 5.3
Max. tether length [m] 32.1 85.4 89.4 31.3 43.6 65.1
Avg. RRT-Rope computation time 3[s] 0.003 0.007 0.041 0.003 0.008 0.017
Max. RRT-Rope computation time [s] 0.016 0.170 0.368 0.027 0.030 0.080
Avg. local planning computation time [s] 0.034 0.077 0.237 0.028 0.046 0.041
Max. local planning computation time [s] 0.085 0.235 0.804 0.043 0.096 0.111
Avg. adjacency matrix computation time [s] 0.057 0.196 0.614 0.085 0.119 0.196
Max. adjacency matrix computation time [s] 0.139 2.582 3.675 0.284 0.670 0.455
Avg. TSP computation time [s] 0.001 0.006 0.006 0.05 0.001 0.002
Max. TSP computation time [s] 0.004 0.099 0.070 0.035 0.007 0.012
Avg. TAPE computation time [s] 0.029 0.203 0.621 0.084 0.119 0.131
Max. TAPE computation time [s] 0.140 2.589 3.775 0.309 0.676 0.468

The results highlight that the limiting factor for the total time is the adjacency matrix
computation time, i.e. the computation of a path between all the cities of the TSP, and the
local planning time, which is also influenced by the tether model computation. If the path
planning time were 3 times longer—i.e., the performance of the next best algorithm of the
state of the art, after RRT-Rope (in Fig. 3.7b)—the real-time computing condition would
not be respected and the mission time would go from below 10 to about 20 minutes in
the largest environments considered. Improvements for the adjacency matrix computation
time and local planning time are discussed in the next chapter.

Regarding the robustness of the system, more than 1,000 autonomous explorations were
performed, in simulation, in these 6 environments without any corner case error, leading
to all missions being successfully completed.

As shown in Chapter 4, the system has been integrated into real-world test flights. Follow-
ing these flights, the drone pilot and SLAM developer emphasized that the scan was much
more detailed and complete than in the remotely operated flights. In these flights, sev-
eral shadow areas were apparent, even for areas within sight of the takeoff point, despite

3. As mentioned in the opening note in Chapter 3, the run time of RRT-Rope has been improved, with
respect to the comparative results presented in the paper, as a result of internal system changes.
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the pilot’s commitment to producing a complete scan. Fig. 5.8 provides a comparison
of scans after a real-world flight in Env. D. Some shadow areas from the manual flight
are identified by A, B and C. Other comments included the advantage of not having to
pilot and therefore monitor operations in a more relaxed manner. Also, the mechanical
designer was comfortable with the constraints imposed on the system during autonomous
maneuvers, thanks to the addition of path smoothing.
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(a) Autonomous flight with onboard pictures.

(b) Manual flight. (c) Autonomous flight.

(d) Manual flight. (e) Autonomous flight.

Figure 5.8 Comparison of scans after an autonomous and a manual exploration
flight in a warehouse.



112 CHAPTER 5. INTEGRATION



CHAPTER 6

DISCUSSION AND PERSPECTIVES

This chapter takes a step back from the work performed by analyzing the weaknesses of
the system and discusses potential improvements. The algorithms presented in this thesis
have been optimized to occupy the sweet spot between computation time and accuracy
for the given problem. This chapter discusses ways to improve one factor, i.e., accuracy or
computation time, at the cost of the other factor. The next sections deal with the aspects
of path planning, exploration and tether modeling and management.

6.1 Path planning
The two main possibilities of extension of RRT-Rope concern the real-time calculation
for a maze-like environment, and the possibility to include kinodynamic constraints for a
more aggressive drone.

6.1.1 Online optimization
As mentioned in Section 3.6, RRT-Rope can be used online to quickly converge before con-
tinuing the search with Informed RRT*—with a smaller upper bound thanks to the path
found with the shortcut—in order to escape local minima, and then start the procedure
again. This idea was partly incorporated into an algorithm called F-RRT* [Liao et al.,
2021]. However, this method differs from our suggested approach because it generates a
parent node near obstacles, similarly to [Islam et al., 2012]. This algorithm shows good
results for online optimization but an RRT-Rope shortcut—with the use of intermediate
nodes while omitting ϵ—should give better results, as demonstrated in Chapter 3.

6.1.2 Kinodynamic constraints
The efficiency of RRT-Rope comes mainly from the knowledge of the shape of the solution
for a holonomic problem in an uncluttered environment. The algorithm is therefore not
applicable to problems with kinodynamic constraints, i.e., kinematic and/or dynamic. To
take into account the kinematic constraints, a possible modification consists in integrating
a steering function (e.g., Dubins path or Reeds-Shepp curves [Reeds and Shepp, 1990])
in the function "extend" of RRT and in the function "collisionFree" of RRT-Rope. The
major disadvantage with this technique is that the RRT can no longer be constructed
as quickly by omitting the infinitesimal distance ϵ because of the steering function. The
advantage of RRT-Rope is thus weakened. Furthermore, for a drone whose dynamics is
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important, this solution is not realistic since it assumes an instantaneous inclination to
enter a turn. Techniques for kinodynamically constrained shortcutting exist, and they
incorporate a control law [Hu et al., 2021]. Considering the dynamics, the heuristic based
on the triangular inequality provides the shortest path but this path is not necessarily
the most optimal, e.g., in terms of travel time. This makes the shortcutting problem
complicated. However, for real-time integration, it is interesting to separate path planning
and control into a hierarchical architecture. It allows better real-time execution, with a)
one module responsible for finding a large-scale roughly feasible path without collisions,
and b) the other module responsible for reacting to perturbations and following the desired
trajectory as best as possible, within the constraints of the system.

6.2 Exploration
The avenues of improvement for exploration mainly concern the representation of frontier
clusters and the extension of the algorithm for large maze-like environments. Other areas
of improvement concern the tether model and management, which is discussed in Section
6.3.

6.2.1 Frontiers visibility
The approached presented in Section 4.4.2 for viewpoint generation is illustrated in Fig.
6.1. As discussed in the same section, a visibility-based approach can be integrated if
computation time is not a limitation.

Figure 6.1 Frontier viewpoint generation.

Art Gallery Problem The naive way is to solve the Art Gallery Problem (AGP) for
each frontier cluster. This visibility problem consists in finding a minimum number of
fixed points (cameras) that allow to fully observe a defined space (an art gallery). Fig. 6.2
gives an overview of the problem with 2 cameras. This problem is not trivial in 3D, even
for a polyhedron. More details are presented in [O’Rourke, 1987]. The first additional
challenge for the present problem is that the solving must be performed by ray tracing
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and cannot use geometric properties of a polyhedron. Also, in the classical problem, an
infinite sensor range is assumed but the LiDAR finite range must be taken into account.
Another problem-specific challenge is that some frontier voxels are not visible from the
reachable space and these must be filtered accordingly. In order to group some clusters by
the same point of view, [Kulich et al., 2019] solves the AGP before the frontier clustering,
in 2D. This allows to reduce the size of the TSP to be solved afterwards.

Figure 6.2 AGP representation for 2 cameras, represented by the white circles.
The areas covered by one camera are in light gray and the overlap of the 2
cameras in dark gray.

Watchman Route Problem The Watchman Route Problem (WRP) is a derivative
of the AGP that consists in finding the shortest path that a mobile watchman must
take to guard an area whose map is known. The WRP thus unifies the AGP (which
combines clustering and frontier representation) with the TSP. The problem is represented
in Fig. 6.3. The ultimate approach for the problem studied in this work is to create a
derivative of the WRP that also takes into account the tether unwinding process. The
existing literature on the subject is very limited to date and focuses mainly on the case of
known 2D polygons, whereas the problem studied here concerns an initially unknown 3D
map [Mitchell, 2013,Mikula and Kulich, 2022]. This approach is therefore not conceivable
for real-time computing with the current techniques and computing power.

Figure 6.3 WRP solution in red, with an infinite sensor range (left) and finite
sensor range (right) [Mikula and Kulich, 2022].
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6.2.2 Large maze environments
While the previous subsection deals with the search for an optimal super-algorithm at
the cost of computation time, this subsection focuses on the opposite, i.e., whether real-
time integration is still feasible for a complicated environment significantly larger than the
stopes, as targeted in Search And Rescue missions (e.g., an abandoned nuclear power plant,
a stricken city, or a collapsed mine). As mentioned in Section 5.3, the limiting processes
in terms of computation time for a growing problem are the path search for the adjacency
matrix construction, and the tether model computation for a growing path history. Fig.
6.4 provides an example of a mission where the real-time computing condition (4 seconds)
was not met, after 17 minutes of exploration.

(a) (b)

(c)

Figure 6.4 Exploration test in a simulated underground mining network: scan
(a) after 7 minutes, (b) after 15 minutes, (c) after 17 minutes (with a Z-axis
color scale). The tether model is in gray, the past trajectory in brown, and the
computed exploration path in blue.

Table 6.1 gives exploration and computation time metrics at the end of this mission. The
computation times are given for the last instance, which did not respect the real-time
computing condition. Indeed, the computation time of TAPE is 7.5 s, above the specified
limit of 4 s. Regarding the extra mission time, a trivial calculation for the distance traveled,
at a speed of 0.5 m/s without hovering, gives a hypothetical mission time of 14.5 minutes.
The overload of the computation therefore added about 2 minutes to the mission time.
Regarding tether management, the final tether is less than the RTH cost, which indicates
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that it was well managed. Fig. 6.4a confirms that the trajectory of the drone prevented
the tether from getting stuck around the central pillar.

Table 6.1 Exploration metrics in an underground mining network.

Covered distance [m] 434.8
Mission duration [min] 17
Max. tether length [m] 136.6
Final tether length [m] 55.1
RTH cost [m] 56.3
Final TAPE computation time [s] 7.5
Final RRT-Rope computation time [s] 0.048
Final local planning computation time [s] 1.9

As mentioned in Section 5.3, the limiting factors are the adjacency matrix construction
and the tether model computation in the local planner. For a real-time deployment in this
kind of environment, the first part of the solution is to use Euclidean distances instead
of path costs computed between all viewpoints. This will reduce the adjacency matrix
construction time which contributes greatly to the total TAPE computation time. Then,
to reduce the local planning time, the second part of the solution is to use a simpler model
of the tether. This is developed in Section 6.3.

6.2.3 Insufficient tether length
The research was based on the assumption that the length of embedded tether is sufficient
to get to the end of the stope by the shortest possible route. An interesting perspective of
future work is to consider the case where the length of the embedded tether is insufficient
to explore the whole stope. In this case, the algorithm must maximize the mapped surface
or volume while respecting the tether constraint. One idea to develop is to integrate the
tether computation in the TSP with a randomized improvement approach like SA, and to
allow a number of visited cities lower than n. The limiting factor in this approach is the
computation time with the current tether model and the complexity of the TSP, which
would be increased by considering a variable number of visited cities.

6.3 Tether management
As said above, the tether calculation is computationally expensive and is an important
area for improvement. A first approach of a simplified model is proposed to limit the
computation time at the cost of accuracy. Then, the shortcomings of the current model
are assessed, compared to reality.
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6.3.1 Multi-resolution model
When the path history is growing, as presented in Fig. 6.4b, tracing the tether to find a
possible relaxation of the problem with the first attachment points becomes demanding.
A large part of the complexity of the model is finding the collision points in the OctoMap,
which will determine the contact points. An improvement of this part consists in using
the structure of the octree to compute a collision at low resolution (i.e., at low depth in
the tree) and to refine the computation locally by going deeper in the tree in the case of
a collision.

6.3.2 Multi-hypothesis belief
A limiting aspect of the tether model is its poor conditioning, i.e., a small change in the
first points leads to a large change in the last points. Thus, if the first point of contact is
a false positive (contact in simulation but not in reality), a false negative (the opposite),
or poorly located due to localization or mapping errors, the model is likely to be far
from reality at the end of the mission. The approach to address this problem is a multi-
hypothesis belief system that model the uncertainties of the tether and keep track of the
different probable configurations with an associated probability. Then, the approach takes
into account the probability distribution in terms of tether length in the calculation of the
cost function in TAPE. However, this strategy is costly in terms of computation time and
memory allocation.

Figure 6.5 Highlight of the tether configuration during a flight.

6.3.3 NetherDrone design
As stated in Section 4.6, a shortcoming of the system is the lack of a rewind mechanism in
the current design of the NetherDrone. Thanks to the global planning that solves the TSP,
the average exploration path has few round trips and tests have shown that the tether often
remains fairly taut for at least half the mission. Fig. 6.5 highlights the configuration of the
tether during a flight. If the drone design were to remain unchanged, there are approaches
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to bring the model closer to reality, up to a limit. However, a non-tensioned tether model
with dynamic contact points does not currently exist to our knowledge, as mentioned in
Section 2.2.4. Moreover, other variables such as the influence of the weight of the unwound
tether complicate the problem, which then falls into the category of soft-body dynamics
problems, whose solutions are known to be either inaccurate or not executable in real time.
Some possible approaches include tracking the tether with a thermal camera or modeling
a z-projection of the tether onto the ground. The envisaged limitations of the thermal
camera are the visual obstruction of the tether by obstacles. The challenges of the ground
projection model are the high number of contact points to calculate. Given the difficulty
of a faithful real-time model, the most promising approach remains the integration of a
rewind mechanism into the NetherDrone.
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CHAPTER 7

CONCLUSION FRANÇAISE

Par rapport aux techniques actuelles de cartographie des chantiers miniers, l’utilisation
d’un drone pallie les problèmes de zones d’ombres et de faible densité de points. Un
drone filaire permet de partager la puissance de calcul avec une station de base, ainsi que
garder la communication en temps réel avec un opérateur, et permettre une autonomie
de vol illimitée. Lorsque le drone est téléopéré, plusieurs facteurs humains rendent la
mission difficile. Plus particulièrement, le pilote éprouve des difficultés à percevoir un
environnement en 3D à 360◦ ainsi qu’à comprendre cet environnement quand le drone
navigue hors du champ de vision et que seule une représentation virtuelle est fournie. De
plus, sans les aides visuelles, le pilote a une mauvaise idée de son point de décollage dans
un environnement inconnu, ainsi que des zones qui n’ont pas été cartographiées quand
l’environnement est large. Enfin, il est très difficile pour un pilote d’explorer différentes
frontières tout en a) choisissant le chemin le plus court, b) en restant conscient du processus
de déroulement du fil, et c) en minimisant la longueur du chemin global anticipé.

L’automatisation de la mission comble les lacunes liées à la téléopération humaine. Les
travaux présentés dans cette thèse se concentrent sur le problème de navigation autonome
d’un drone filaire destiné à la cartographie de chantiers miniers souterrains. Plus partic-
ulièrement, la recherche présentée développe des outils pour la planification de trajectoire
et l’exploration autonome dans ces environnements. Les facteurs à prendre en compte
sont la garantie de l’exhaustivité de la carte et la minimisation du temps de mission.
Le temps de mission est étroitement lié à la distance à parcourir, et à la contrainte de
calcul en temps réel, ce qui n’est pas trivial dans les environnements à grande échelle.
L’exhaustivité de la carte (et donc de la mission d’exploration) nécessite une bonne ges-
tion du fil. De plus, la longueur de fil embarqué contribue à la charge utile du drone et
doit rester faible. Les techniques actuelles de planification et d’exploration des chemins
ne sont pas suffisantes pour atteindre ces objectifs. Concernant la planification de tra-
jectoire, le chapitre 2 montre que les arbres aléatoires sont très efficaces pour trouver un
premier chemin, mais l’optimisation en ligne est coûteuse en temps de calcul et les tech-
niques de raccourcissement nécessitent beaucoup d’itérations pour converger. De plus, ce
nombre d’itérations est typiquement fixé par l’utilisateur de façon empirique, ce qui en-
traîne une performance variable et imprévisible. Concernant l’exploration, la techniques
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des frontières est la plus représentative de l’espace à explorer et les techniques de sélection
qui résolvent un Traveling Salesman Problem (TSP) permettent d’optimiser le chemin
global. Enfin, les techniques d’exploration existantes qui considèrent un robot filaire ne
s’attaquent qu’au cas 2D et n’optimisent pas le chemin global.

Pour relever les défis de la planification rapide de trajectoire dans des environnements à
grande échelle, le chapitre 3 présente un nouvel algorithme, RRT-Rope, qui produit un
chemin plus court ou égal aux algorithmes existants pour un problème holonome en un
temps de calcul significativement plus court, jusqu’à 70% plus rapide que le deuxième
meilleur algorithme dans un chantier minier représentatif. De plus, le comportement est
plus régulier sans nécessiter un nombre d’itérations choisi par l’utilisateur. Les résultats
montrent que la recherche d’un chemin est accélérée en supprimant le pas infinitésimal
des arbres dans RRT-connect, ce qui réduit considérablement le nombre de générations
de points nécessaires dans les grands environnements non encombrés. De plus, dans ces
environnements, il est efficace de générer un premier chemin grossier mais faisable le plus
rapidement possible, et de le raccourcir rapidement, menant ainsi à un chemin quasi-
optimal grâce à la topologie de l’environnement. En effet, les résultats montrent que le
chemin produit avec RRT-Rope est indépendant de la qualité du premier chemin dans
ces environnements. De plus, les raccourcis inutiles sont évités grâce à une approche
déterministe qui considère les points les plus éloignés en premier et détecte les lignes
droites. Enfin, l’insertion de noeuds intermédiaires permet la quasi-optimalité et une
résolution uniforme.

Pour relever les défis d’exploration avec un drone filaire, le chapitre 4 présente TAPE,
la première méthode d’exploration de cavités en 3D qui se focalise sur la minimisation
du temps de mission et la longueur du fil déroulé. La méthode emploie une architecture
hiérarchique dont la planification globale résout un TSP pour des clusters de frontières
donnés, et la planification locale minimise la distance parcourue tout en évitant les coince-
ments du fil grâce à une fonction de décision dont les paramètres permettent de jouer sur
le compromis entre ces deux métriques. En moyenne, TAPE entraine une augmentation
de 4% de longueur de trajet global en plus que la méthode globale qui optimise le TSP,
mais permet de garder le fil sous la longueur maximale autorisée dans 100% des cas, contre
53% avec la méthode initiale. En comparaison, le meilleur algorithme suivant en termes
de longueur de chemin produit une augmentation de 25% de la distance par rapport à la
méthode initiale. Les résultats montrent que les coincements du fil ne sont pas influencés
par le chemin global mais fortement influencés par le chemin local, ce qui confirme la per-
formance de l’approche hiérarchique. Grâce à cette approche, le planificateur local peut



123

être intégré avec n’importe quel autre planificateur global d’exploration. De plus, elle per-
met un calcul en temps réel plus facilement réalisable. Les résultats montrent également
que la résolution du TSP de façon itérative, avec les dernières données de carte au cours de
la mission, produit un chemin global quasi-optimal, malgré que la carte soit initialement
inconnue.

Le chapitre 5 montre l’intégration de ces deux techniques en un outil d’exploration au-
tonome pour drone filaire, qui produit une carte 3D complète des chantiers miniers en
minimisant le temps de mission et en respectant le déroulement autorisé du fil. Les al-
gorithmes de navigation autonome sont exécutés sur l’ordinateur de la station de base,
et les commandes sont envoyées au contrôleur et à l’évitement d’obstacles embarqués qui
réagissent à l’environnement en temps réel. Des fonctionnalités sont ajoutées au système
pour mettre en œuvre les caractéristiques souhaitées par l’utilisateur. La trajectoire est
ainsi exécutée et lissée pour répondre au problème réel qui est non-holonome. Une aide
visuelle est fournie au pilote à travers l’affichage de zones à explorer dans une interface. Le
pilote peut également sélectionner un point désiré dans l’espace reconstitué dans l’interface
pour déclencher la navigation autonome vers ce point. Enfin, l’exploration autonome peut
être déclenchée dans l’interface, avec des fonctionnalités qui permettent de limiter l’espace
physique à explorer avec une boite de délimitation. Le temps de calcul est limité grâce
à des astuces telles qu’une limitation du nombre de clusters, et une représentation multi-
résolution et adaptative de l’espace. La mission autonome est assurée par des techniques
de filtrages des frontières inatteignables et de modification de points en accord avec la
carte dynamique. Le système a été largement testé dans le cadre de plus de 1000 missions
d’exploration en simulation, et lors de plusieurs essais en vol dans le monde réel.

Suite aux limitations identifiées lors de ces tests, le chapitre 6 énonce les opportunités
de travaux futurs incluant l’extension de la planification de trajectoire à un milieu en-
combré et l’ajout de contraintes cinématiques et dynamiques. Quant à l’exploration, une
approche de visibilité des frontières intégrée dans un Watchman Route Problem (WRP)
est considérée, et des pistes sont énoncées pour l’extension de l’algorithme à des grands
environnements encombrés, ainsi que pour une longueur de fil insuffisante pour explorer
entièrement l’espace. Enfin, des améliorations du modèle du fil sont proposées au travers
d’un modèle multi-résolution pour accélérer le calcul, et d’un modèle qui considère les
incertitudes pour une meilleure représentativité de la réalité. À long terme, toutes ces
améliorations permettraient une navigation autonome plus générique dans tous les types
d’environnements, y compris les zones industrielles, les villes, les réseaux miniers et les
forêts.
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CHAPTER 8

ENGLISH CONCLUSION

Compared to the current techniques for stope mapping, the use of a UAV overcomes the
problems of shadow zones and low point density. A tethered drone enables computing
power sharing with a base station, as well as communication in real time with an opera-
tor, and an unlimited flight time. When the drone is remotely operated, several human
factors make the mission difficult. In particular, the pilot has difficulties to perceive a 3D
environment at 360◦ as well as to understand this environment when the drone navigates
out of the field of vision and only a virtual representation is provided. Moreover, without
visual aids, the pilot has a poor idea of his take-off point in an unknown environment, as
well as of the areas that have not been mapped when the environment is large. Finally,
it is very difficult for a pilot to explore different frontiers while a) choosing the shortest
path, b) maintaining awareness of the tether unwinding process, and c) minimizing the
length of the anticipated global path.

The automation of the mission fills the gaps related to human teleoperation. The work
presented in this thesis focuses on the autonomous navigation problem of a tethered drone
intended for the mapping of underground mining stopes. More specifically, it develops
tools for path planning and autonomous exploration in these environments. Factors to
consider are ensuring the completeness of the map and minimizing the mission time.
The mission time is closely related to the distance to be covered, and to the real-time
computing constraint, which is not trivial in large-scale environments. The completeness
of the map (and thus of the exploration mission) requires a good tether management.
Also, the length of the onboard tether contributes to the drone payload and should be
kept small. Current path planning and exploration techniques are not sufficient to meet
these objectives. Regarding path planning, Chapter 2 shows that random trees are very
effective for finding a first path, but online optimization is computationally expensive,
and shortening techniques require many iterations to converge. Moreover, this number of
iterations is typically set empirically by the user, resulting in variable and unpredictable
performance. Regarding exploration, the frontier techniques are the most representative of
the space to be explored and selection techniques that solve a Traveling Salesman Problem
(TSP) ensure the optimization of the global path. Finally, existing exploration techniques
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that consider a tethered robot only address the 2D case and do not optimize the global
path.

To address the challenges of fast path planning in large-scale environments, Chapter 3
presents a new algorithm, RRT-Rope, which produces a path shorter than or equal to
existing algorithms for a holonomic problem in a significantly shorter computation time,
up to 70% faster than the second best algorithm in a representative stope. In addition, the
behavior is more consistent—in solution quality and computation time—without requir-
ing a user-selected number of iterations. The results show that path finding is accelerated
by removing the infinitesimal tree step in RRT-connect, which significantly reduces the
number of point generations required in large-scale uncluttered environments. Moreover,
in these environments, it is efficient to generate a first rough but feasible path as quickly
as possible, and to shorten it quickly. This technique leads to a near-optimal path by
leveraging the topology of the environment. Indeed, the results indicate that the path
produced with RRT-Rope is independent of the quality of the first path in these environ-
ments. Moreover, unnecessary shortcuts are avoided thanks to a deterministic approach
that considers the farthest points first and detects straight lines. Finally, the insertion of
intermediate nodes results in quasi-optimality and uniform resolution.

To meet the challenges of exploration with a tethered drone, Chapter 4 presents TAPE, the
first 3D cavity exploration method that focuses on minimizing mission time and unwound
tether length. The method employs a hierarchical architecture in which the global planner
solves a TSP for given frontier clusters, and the local planner minimizes the distance trav-
eled while avoiding tether entanglements thanks to a decision function whose parameters
enable to play on the trade-off between these two metrics. On average, TAPE leads to a
4% increase in global path length compared to the global method that optimizes the TSP,
but keeps the tether below the maximum allowed length in 100% of the cases, compared
to 53% with the initial method. In comparison, the next best algorithm in terms of path
length produces a 25% increase in distance compared to the initial method. The results
revealed that the tether entanglements are not influenced by the global path but strongly
influenced by the local path, which confirms the performance of the hierarchical approach.
With this approach, the local planner can be integrated with any other global exploration
planner. In addition, it leads to a more easily achievable real-time computation. The
results also indicate that solving the TSP iteratively, with the latest map data during the
mission, produces a near-optimal global path, despite the map being initially unknown.

Chapter 5 presents the integration of these two new algorithms into an autonomous teth-
ered drone exploration tool, which produces a complete 3D map of the stopes while min-
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imizing mission time and respecting the authorized tether unwinding. Autonomous nav-
igation algorithms are executed on the base station computer, and commands are sent
to the onboard local obstacle avoidance system that reacts to the environment in real
time. Functionalities are added to the system to implement the features desired by the
user. The trajectory is thus executed and smoothed to satisfy the real problem which
is non-holonomic. A visual aid is provided to the pilot through the display of areas to
explore in an interface. The pilot can also select a desired point in the reconstructed space
in the interface to trigger autonomous navigation to that point. Finally, the autonomous
exploration can be triggered in the interface, with features that let the user to limit the
physical space to explore with a bounding box. The computation time is limited thanks to
tricks such as a limitation of the number of clusters, and a multi-resolution and adaptive
representation of the space. Autonomous mission is ensured by techniques for filtering
out unreachable frontiers and modifying points in accordance with the dynamic map. The
system has been extensively tested in more than 1,000 exploration missions in simulation,
and several real-world flight tests.

Following the limitations identified during these tests, Chapter 6 outlines opportunities
for future work including extending path planning to a cluttered environment and adding
kinematic and dynamic constraints. As for the exploration, a frontier visibility approach
integrated into a Watchman Route Problem (WRP) is considered, and avenues are stated
for extending the algorithm to large maze environments, as well as to a tether length
insufficient to fully explore the environment. Finally, improvements of the tether model
are proposed through a multi-resolution model to speed up the computation, and a model
that considers uncertainties for a better representation of reality. In the long run, all
these improvements would allow a more generic autonomous navigation in all types of
environments, including industrial areas, cities, mining networks and forests.
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APPENDIX A

Real-time requirement

For localization, mapping, and control purposes, the NetherDrone moves at a near-constant
speed of 0.5 meters per second. This allows to generate a preliminary estimate of the mis-
sion time, in order to set the objectives in terms of calculation time. For a narrow stope
of 150 meters in height, it corresponds, at best, to a travel time of 10 minutes to observe
the shadow zones at the bottom of the stope.

During this time, the path must be regenerated several times according to the map updates,
provided at each full rotation of the LiDAR every 4 seconds. This corresponds to more
than 150 instances. These instances are composed of several path requests for 2 reasons:
a) an optimization of the global path distance, in order not to lengthen the mission time,
b) a local optimization of the path to avoid tether entanglements, in order not to unroll
tether unnecessarily and risk not being able to finish the mission due to lack of tether
length.

A reasonable maximum number of waypoints for the optimization of the global path is 15,
to avoid overloading the calculation but to keep a good representation of the remaining
space to map. Knowing that the number of edges in a complete undirected graph is
n (n − 1)/2, about 105 path requests are necessary just to know the costs of the paths
between the waypoints, and 20 path requests are required, on average, for local path
optimization.

In total, 125 path requests are necessary at each instance, i.e., 19,000 during the mission.
This number does not include additional calculations consisting of, among others, re-
planning if the control of the drone failed to execute the desired trajectory in a sufficiently
precise way, optimization of the global path among the possible paths (see Section 2.3),
and data pre and post-processing (see Chapters 3 and 4). Taking into account only the
time of path requests, a naive solution with an arbitrary time of 0.1 second per path
request would lead to a total computation time of more than 30 minutes for the whole
mission, which represents 3 times the expected mission time. This quick estimate gives an
idea of the total mission delay if the system is not able to run in real time.
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APPENDIX B

Concorde TSP Solver

The Concorde TSP Solver [Applegate et al., 2006] holds the current record for the largest
solved problem (85,900 cities in 136+ CPU years) with an exact algorithm. It uses a
branch-and-cut method, which is a combination of BnB and the cutting-plane method
[Gilmore and Gomory, 1961]. This latter, used in Linear Programming (LP), allows to
relax the problem by temporarily violating the TSP cycle constraint.

B.1 Algorithm
The temporarily produced cycle is called a fractional cycle. By defining a variable xij,
which determines whether the branch between i and j is part of the tour, the traveler can
use non-binary fractions of branches so that 0 ≤ xij ≤ 1. For example, to get to and from
vertex 2, a suitable value set is {x12 = 0.5, x23 = 0.5, x24 = 1}, with the constraint that
the sum of the variables adjacent to each vertex must be 2, i.e.,

Σjx2j = 2.

If the branch cost is noted as cij, the TSP becomes an optimization problem which aims
to minimize the function

f = Σi,jcijxij.

The solution is then refined by correcting the flaws produced (i.e., subtours) through
adding corresponding constraints. An example of a constraint is, for a subtour of 2 points
containing a round trip, to impose that the edge variables leaving and arriving at the
union of these 2 points must be equal to 2. The xij eventually converge to integers and
optimality is met through the dual LP problem.

B.2 Optimality
The dual problem of a LP is a linear problem that is derived from the primal LP. Each
variable in the primal LP is expressed as a constraint in the dual LP and each constraint
in the primal LP is expressed as a variable in the dual LP. In the Concorde TSP Solver,
the variables from the primal LP (xij) lead to inequalities (constraints) to remove some
subtours. The dual problem is performed through a zone packing problem of control zones,
represented as disks of radius ri centered on each vertex. In the dual problem, these zones
cannot overlap, i.e.,

ri + rj ≤ cij.

Since a proper tour must cross the control areas at least twice, any tour will be larger
than 2Σiri. The zone packing problem maximizes the function

f = Σiri,
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which gives a lower bound to the solution of the primal problem, according to the weak
duality theorem. If the control areas geometrically cover all the edges, and the fractional
tour is optimal, then the strong duality theorem states that the length of the minimal
tour is equal to the bound given by the dual LP. For the TSP, any legal tour will be equal
or larger than this value. So, if the fractional tour is legal, it means that the optimum is
reached. More details are presented in [Applegate et al., 2006].



APPENDIX C

Christofides algorithm

Approximation algorithms, unlike heuristics, promise a worst-case performance and are
part of a more formal framework. The most popular approximation algorithm promises
an approximation factor of 1.5 [Christofides, 1976].

C.1 Algorithm
Christofides first creates a Minimum Spanning Tree (MST) 1 from the graph. Then, a
minimum-weight perfect matching 2 M is found between the odd degree vertices. By
combining MST and M in a graph, a Eulerian cycle 3 is searched. Finally, the cities
that appear several times in the Eulerian cycle are skipped by shortcutting to produce a
Hamiltonian cycle. The proof of the approximation ratio is presented below. More details
are given in [Christofides, 1976].

C.2 Approximation ratio
Considering a tour TMST constructed with a DFS in the MST, each edge must be visited
exactly 2 times, so that

c(TMST ) = 2 c(MST ).

By removing a random edge e in the optimal tour of the TSP, denoted T ∗, the tree {T ∗−e}
is obtained. The cost c(MST ) is, by definition, less than the cost of this tree. Therefore,
the approximation factor of TMST is 2. Considering now the cost of the Christofides tour,

c(TChristofides) = c(MST ) + c(M).

As mentioned above,
c(MST ) ≤ c(T ∗).

If the tour T ∗ is divided into 2 complementary perfect matchings M1 and M2, it is obvi-
ous that the cost of the minimum-weight perfect matching c(M) is less than c(M1) and
c(M2). Since shortcutting does not increase the cost in a metric TSP thanks to triangular
inequality, this translates into

c(TChristofides) ≤ c(T ∗) +
1

2
c(T ∗),

1. A spanning tree is a tree that include all vertices in a graph. A MST is a spanning tree whose sum
of edge costs is minimal.

2. A matching is a set of edges without common vertices. A perfect matching is a matching that covers
every vertex.

3. A cycle that visits every edge exactly one, allowing for revisiting vertices.

133



134 APPENDIX C. CHRISTOFIDES ALGORITHM

i.e., the approximation factor of 1.5. As mentioned earlier, this upper bound is not guar-
anteed by heuristics but some give much better performances than the approximation
algorithms.



APPENDIX D

Lin-Kernighan heuristic pseudo-code

Algorithm 7: Lin-Kernighan pseudo-code
1 Generate a random initial tour T.
2 i← 1;
3 Choose a random city t1.
4 Choose x1 ← (t1, t2) ∈ T ;
5 Choose y1 ← (t2, t3) /∈ T : G1 > 0;
6 if such y1 does not exist then
7 Go to step 31.

8 i← i+ 1;
9 Choose xi ← (t2i−1, t2i) ∈ T : xi ̸= ys, ∀s < i;

10 T ′ ← resulting configuration if t2i is joined to ti.
11 if not isTour(T ′) then
12 Go to step 22.

13 if c(T ′) < c(T ) then
14 T ← T ′;
15 Go to Step 2.

16 Choose yi ← (t2i, t2i+1) /∈ T : Gi > 0 and yi ̸= xs, ∀s ≤ i and xi+1 exists.
17 if such yi exists then
18 Go to step 8.

19 if there is an untried alternative for y2 then
20 i← 2;
21 Go to step 16.

22 if there is an untried alternative for x2 then
23 i← 2;
24 Go to step 9.

25 if there is an untried alternative for y1 then
26 i← 1;
27 Go to step 5.

28 if there is an untried alternative for x1 then
29 i← 1;
30 Go to step 4.

31 if there is an untried alternative for t1 then
32 Go to step 2.

33 return T ;
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