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Depression is a major neuropsychiatric disease that considerably impacts
individuals’ psychosocial function and life quality. Neurotrophic factors are now
connected to the pathogenesis of depression, while the definitive neurotrophic
basis remains elusive. Besides, phytotherapy is alternative to conventional
antidepressants that may minimize undesirable adverse reactions. Thus, further
research into the interaction between neurotrophic factors and depression and
phytochemicals that repair neurotrophic factors deficit is highly required. This
review highlighted the implication of neurotrophic factors in depression, with a
focus on the brain-derived neurotrophic factor (BDNF), glial cell line-derived
neurotrophic factor (GDNF), vascular endothelial growth factor (VEGF), and nerve
growth factor (NGF), and detailed the antidepressant activities of various
phytochemicals targeting neurotrophic factors. Additionally, we presented
future opportunities for novel diagnostic and therapeutic strategies for
depression and provided solutions to challenges in this area to accelerate the
clinical translation of neurotrophic factors for the treatment of depression.

KEYWORDS

depression, neurotrophic factors, pathogenesis, neurotrophic basis, phytotherapy,
phytochemicals, antidepressant

1 Introduction

Depression is one of the most common and serious neuropsychiatric disorders, affecting
people’s thoughts, behaviors, interests, and feelings. Clinical patients with depression are
characterized by several manifestations such as gloomy mood, loss of interest, sleep
disturbances, etc. (Malhi and Mann, 2018; Wang et al., 2021a). While the pathogenesis
of depression is multifactorial and poorly understood. Its diverse manifestations, erratic
course and prognosis, and inconsistent responsiveness to therapy pose a challenge to its
detection, diagnosis, and management (Leung et al., 2022). Therefore, it is necessary to
investigate theoretical underpinnings and novel targets for early prevention and accurate
diagnosis of depression. Additionally, conventional antidepressants display remarkable
limitations, such as the delayed onset of action, low response rates, and relapse
following medication discontinuation, impeding treatment compliance in patients with
depression (Sabella, 2018). Accordingly, identifying non-adverse and side-effect-free
alternatives to traditional antidepressants is vital to improving drug adherence in
depressed individuals.
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2 Neurotrophic basis of depression

Neuroplasticity is responsible for neurogenesis and the
modification of mature neuronal morphology (Allen and Lyons,
2018). Limiting neurogenesis prevents antidepressant action and has
been substantiated to depression-like syndromes, especially under
stressful situations (Castreń, 2013). Therefore, neurogenesis has
been proposed to facilitate stress resilience, which might be the
foundation of antidepressant therapeutic benefits. Neurotrophic

factors are essential mediators of neuroplasticity among several
candidates (Song et al., 2017), to boost neuroplasticity,
particularly synaptic plasticity, neurotransmission, and neuronal
survival, growth, and differentiation (Thoenen, 1995; Wang et al.,
2022). Furthermore, the increase in neuroplasticity is expected to
attract antidepressant benefits (Figure 1). The secretion of
neurotrophic production increased after antidepressant treatment,
promoting the survival of neurons and shielding them from stress-
related damage. As a result, the onset of depression is implicated in
the impairment of neurotrophic factor signaling (Table 1). Although
efforts have been made to understand the neurotrophic basis of the
pathogenesis of depression, many fundamental questions regarding
their mechanisms of action remain to be addressed systematically to
better understand the complicated neurotrophic basis in depression
treatment.

2.1 Brain-derived neurotrophic factor and
depression

Brain-derived neurotrophic factor (BDNF), an essential member
of the neurotrophic factor family, was initially discovered in the
brain of a pig by Barde in the 1980s (Leibrock et al., 1989). BDNF,
primarily synthesized in neurons, is ubiquitously distributed
throughout the central nervous system (CNS). It is involved in
the repair of synaptic plasticity, the transduction of 5-
hydroxytryptamine (5-HT) signaling, and the level of 5-HT in
the brain (Bhattarai et al., 2020; Costa et al., 2022). Consistent
reports have certified that BDNF is associated with the occurrence,
development, and management of depression, and it has received
the most attention in the neurobiology of depression among any
neurotrophic factors.

Researchers are constantly investigating the relationship
between variations in activity and content of BDNF and the
occurrence or outcome of depression. BDNF deficiency in the
amygdala is visible in women with major depressive disorder

FIGURE 1
Neurotrophic factors increase neuroplasticity, especially
synaptic plasticity, neurotransmission, and neuronal survival, growth,
and differentiation. An increase in neuroplasticity is likely to induce
antidepressant effects. BDNF, brain-derived neurotrophic factor;
TrkB, tropomyosin-related kinase receptor B; GDNF, glial cell line-
derived neurotrophic factor; GFRα1, GDNF-family receptor-α1; VEGF,
vascular endothelial growth factor; VEGFR, vascular endothelial
growth factor receptor; NGF, nerve growth factor; TrkA,
tropomyosin-related kinase receptor A.

TABLE 1 Relationship between neurotrophins and the pathogenesis of depression.

Neurotrophins First
discovered

Changes in MDD References

BDNF 1980s ↓Amygdala Hofer and Barde, (1988), Leibrock et al., 1989, Guilloux et al., 2012, Wook Koo et al., 2016, Zhang,
(2011)

Barde ↓Plasma

↓Serum

↓DG

↑NAc

GDNF 1993 ↓Serum Lin et al., 1993, Zhang et al., 2009

Lin

VEGF 1989 ↓Plasma Leung et al., 1989, Isung et al., 2012, Castillo et al., 2020, Lee and Kim, (2012)

Ferrara ↑Plasma

NGF 1956 ↓Serum Levi-Montalcini and Angeletti, (1968), Wiener et al., 2015

Levi-Montalcini

MDD, major depressive disorder; BDNF, brain-derived neurotrophic factor; GDNF, glial cell-derived neurotrophic factor; VEGF, vascular endothelial growth factor; NGF, nerve growth factor;

↓, decrease; ↑, increase; DG, dentate gyrus; NAc, nucleus accumbens.
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(MDD) (Guilloux et al., 2012). Postmortem analysis revealed that
plasma BDNF levels are lower in depressed patients than that in
controls (Gadad et al., 2021). Moreover, a series of experiments have
confirmed that intracerebral administration of BDNF has
antidepressant efficacy in depressive animal models (Deltheil
et al., 2009). Antidepressant studies targeting BDNF have the
potential to be one of the most valid strategies for the
development of novel antidepressant medications. Subsequently,
Fukumoto et al. demonstrated that the antidepressant effect of
(2R, 6R)-Hydroxynorketamine [(2R, 6R)-HNK], a ketamine
metabolite that can produce rapid and sustained antidepressant
actions in animal models without side effects of ketamine, was
mediated through active-dependent release of BDNF in the medial
prefrontal cortex (mPFC), sufficiently demonstrating the
indispensable role of BDNF in antidepressant treatment
(Fukumoto et al., 2019).

However, the association between BDNF and depression has not
yielded conclusive results. Tropomyosin-related kinase B (TrkB), a
specific BDNF receptor, has been pointed to activate BDNF-TrkB
signaling to exert the antidepressant action (Rantamäki et al., 2007),
and ketamine improves postoperative depression symptoms by
upregulating BDNF-TrkB signaling as well. However, Wook Koo
et al. pointed out that chronic social defeat stress increased BDNF
expression level in the nucleus accumbens, and local knockout of the
BDNF gene in the ventral tegmental area reduced depression-like
phenotypes, demonstrating that BDNF signaling induces depression
susceptibility (Wook Koo et al., 2016). The role of BDNF acts
variably in diverse brain regions, warranting additional study of
individual mechanisms. Besides, a substantial reduction in BDNF
levels in rheumatoid arthritis patients with depression were detected
(Cheon et al., 2018; Nerurkar et al., 2019), and the severity of
depression is related to fatigue, poor BDNF expression, and serious
state of rheumatoid arthritis. Therefore, BDNF levels might be
potential biomarkers for the prediction or monitoring of depression.

Much work on BDNF has recently been reported in this field,
while the following issues should be highlighted: there are
differences in the stability of BDNF levels measured by different
laboratories in whole blood, serum, and plasma (Karege et al., 2005;
Suwalska et al., 2010; Arosio et al., 2021), which may be attributed to
differences in enzyme-linked immunosorbent assay methods or
sampling tubes; the discrepant level and mechanism of BDNF in
various brain regions are different, which deserves further study; the
more stable and accurate BDNF measurements should be
determined and find out which source of BDNF is the most
reliable biomarker of MDD, as concentrations of BDNF markers
in the circulation do not always reflect the CNS concentrations.

2.2 Glial cell line-derived neurotrophic
factor and depression

Glial cell line-derived neurotrophic factor (GDNF) is a
neurotrophic factor of the β family that is widely distributed
throughout the brain and regulates the noradrenergic and
GABAergic systems. It was first purified and named in 1993 by Lin
et al. (Lin et al., 1993). GDNF is one of themost efficient neurotrophins,
influencing the growth, survival, and activity of midbrain dopaminergic
neurons, protecting neurons from oxidative stress, and constituting

major players in the development and function of hippocampal neurons
(Yang et al., 2001; Bonafina et al., 2019).

A postmortem study on characters with MDD found that the
level of GDNF decreased in PFC and the concentration of GDNF in
the amygdala reduced as well (Michel et al., 2008; Järvelä et al., 2011;
Tang et al., 2023), implying that lower serum GDNF may be
involved in the pathophysiology of MDD. Zhang et al.
investigated whether the serum GDNF of patients with MDD
differed from that of the healthy control group before
antidepressant treatment and whether it could affect serum
GDNF expression in patients with MDD after antidepressant
treatment (Zhang et al., 2010). The results revealed that serum
GDNF levels were conspicuously lower in MDD patients before
treatment than that in healthy volunteers. Antidepressants could
increase GDNF mRNA and protein levels, suggesting the increased
GDNF might contribute to the improvement of depression (Maheu
et al., 2015). Furthermore, central GDNF signaling may also be a
potential antidepressant target. High plasma GDNF levels may be
implicated in the pathophysiology of late-onset depression and
cognitive impairment in late-onset depression patients (Wang
et al., 2011). Consequently, a reduction in GDNF levels might be
a biomarker of depressed status.

Based on the above studies on the interaction between GDNF
and depression, researchers can recognize that: whether the
influence of peripheral and central GDNF on the pathogenesis of
depression is not completely clear; supplementation of exogenous
GDNF has an antidepressant effect. When it comes to exogenous
GDNF supplied to serum, plasma, and whole blood, the optimal
strategy must be determined.

2.3 Vascular endothelial growth factor and
depression

Vascular endothelial growth factor (VEGF) is an effective mitogen
and survival factor for endothelial cells and neurons, as well as a
modulator of synaptic transmission (Vargish et al., 2017). In 1989,
Ferrara et al. isolated and cloned this substance and named it (Leung
et al., 1989). In addition to angiogenic action (Apte et al., 2019), current
research has revealed the neurotrophic and neuroprotective potentiality
of VEGF in the CNS (Jin et al., 2002; Sene et al., 2015). For example,
VEGF influences the pathophysiology of hippocampal neurogenesis
and depression, contributes to the occurrence of hippocampal neurons,
and shields stress-related neurons from damage (Cao et al., 2004; Kirby
et al., 2015), which is essential for antidepressant therapy. Inhibiting the
expression of VEGF receptor 2 in nerve cells impairs hippocampal-
dependent synaptic plasticity and emotionalmemory consolidation (De
Rossi et al., 2016).

Current clinical research on the correlation between VEGF and the
onset of depression has not yielded consistent results. When compared
to that in healthy volunteers, the expression of VEGF in patients with
depression tends to increase in serum and plasma (Castillo et al., 2020),
while quite a few studies have detected an average decrease in VEGF
levels in patients with depression (Du Preez et al., 2021), which may be
due to inadequate assessment of environmental factors such as gender,
age, and body mass index. VEGF can predict the response of
antidepressant treatment, suggesting that it is a possible biomarker
and mediator engaged in neuroplastic processes (Castillo et al., 2020).
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TABLE 2 Antidepressant effects induced by phytochemicals based on neurotrophic factors.

Phytochemicals Behavioral effects Neurotrophic mechanisms References

Auraptene ↓Immobility time in FST and TST ↑GDNF mRNA Amini-Khoei et al., 2022, Furukawa et al., 2020

Baicalein ↓Immobility time in FST and TST ↑BDNF/TrkB/CREB pathway Zhao et al., 2021, Liu et al., 2022

↑Sucrose preference in SPT ↓Inflammatory cytokines

↑OFT ↑BDNF

Catalpol ↓Immobility time in FST ↓NLRP3 inflammasome and
neuroinflammation

Wang et al., 2021d, Wang et al., 2015, Xu et al.,
2010

↑OFT ↑BDNF expression and TrkB, ↓COX-2
expression and PGE2

↑GDNF

Chrysin ↓Immobility time in FST ↑BDNF Filho et al., 2016, Ma et al., 2020

↓Cytokines and 5-HT

↑OFT ↓Ca2+ availability

↑cAMP/PKA and NO/cGMP signaling
pathways

Curcumin ↓Immobility time in FST ↑Hippocampal synaptic plasticity Fan et al. (2021)

↑Sucrose preference in SPT ↑Hippocampal BDNF

Dimethyl fumarate ↓Immobility time in FST ↑Hippocampal BDNF and β-catenin Abd El-Fattah et al. (2018)

↑Sucrose preference in SPT

↑Sucrose preference in SPT

Emodin ↓Immobility time in FST and TST ↑BDNF Ahn et al., 2016, Zhang et al., 2021b

↑Sucrose intake in SPT ↓Inflammatory responses

Eugenol ↓Immobility time in FST ↑BDNF Irie et al. (2004), Norte et al., 2005

Genipin ↓Immobility time in FST and TST ↑Hippocampal BDNF Ye et al. (2018)

Ginsenosides Rb1 ↑social interaction ↑BDNF Jiang et al., 2022, Zhang et al., 2021a, Liang et al.,
2010

↓Immobility time in FST and TST ↑NGF

Ginsenoside Rg1 ↓Immobility time in FST and TST ↑Hippocampal BDNF Wang et al., 2021c, Jiang et al., 2012, Liang et al.,
2010, Wang et al., 2021b

↑Sucrose preference in SPT ↑NGF

↑OFT ↑Cx43-based gap junction

Hesperidin ↑Sucrose preference in SPT ↑BDNF Sharma et al., 2021, Li et al., 2016, Zhu et al., 2020

↓Immobility time in FST and TST ↑GDNF

Hyperforin ↓Immobility time in TST ↑BDNF Pochwat et al. (2018)

Hypericin ↑Sucrose preference in SPT ↓PI3K/Akt pathway Zhai et al., 2015, Zhang et al., 2015, Thong et al.,
2006, Lavie et al., 2005

↑Body weight ↑VEGF

↓Immobility time in TST ↓Phosphorylation of ERK1/2

Macranthol ↑Sucrose preference in SPT ↑BDNF Luo et al., 2015, Weng et al., 2019

Magnolol ↑Sucrose preference in SPT ↓M1 polarization Tao et al. (2021)

Naringenin ↑Sucrose preference in SPT ↑BDNF Bansal et al., 2018, Eraky et al., 2023

↓Inflammatory cytokines

Naringin ↓Immobility time in FST and TST ↑BDNF/TrkB/CREB pathway Gao et al., 2022, Rong et al., 2012, Viswanatha et al.,
2022

↑VEGF

(Continued on following page)
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The findings make an important contribution to this
expanding field of VEGF research, which can be emphasized
as follows: even though BDNF is currently the most studied
neurotrophic factor in neurobiology in MDD, the effects of VEGF
on the pathogenesis of depression should not be underestimated,
which means that the relationship between VEGF and depression
should be investigated thoroughly; the correlation between VEGF
and depression remains inconsistent, so the effect of VEGF on
depression should be designed to combine with environmental
variables.

2.4 Nerve growth factor and depression

Nerve growth factor (NGF), an essential member of the
neurotrophic factor family, was first isolated in 1956 by Levi-
Montalcini (Levi-Montalcini and Angeletti, 1968). It is primarily
generated in the cortex, hippocampus, and hypothalamus, but it is
also found in the peripheral nervous system and the immune system
(Meng et al., 2022). NGF has a strong affinity for TrkA (Riccio et al.,
1997; Deppmann et al., 2008). Owing to its participation in
neuroplasticity, learning, and memory, NGF is essential for the
response to stress and the regulation of the neuro-endocrine-
immunity system (Mohammadi et al., 2018).

NGF plays an important role in the pathogenesis of
depressive symptoms and the response to antidepressant
treatment, which can be seen from that exogenous NGF could
induce antidepressant-like effects in rodent depression models
(Mezhlumyan et al., 2022). In a study examining the effects of
NGF on depression, NGF improved depression-like behaviors
like fluoxetine and amitriptyline (McGeary et al., 2011),
suggesting NGF is involved in the pathogenesis of depressive
symptoms and the response to antidepressant treatment. To test
whether NGF is associated with the etiology of depression or
suicide risk, Wiener et al. examined changes in serum NGF levels
in MDD patients with or without suicidal risk (Wiener et al.,
2015). The results showed that the serum levels of NGF in the
MDD group and MDD along with suicide risk group were
significantly reduced, however, there was no difference
between the MDD group and MDD along with suicide risk
group, from where we could point out that NGF was a
biomarker of MDD. It may be associated with the diagnosis of
MDD but not with the severity of symptoms. Early adverse
experiences in humans, for instance, maternal deprivation, are
linked to an increased risk of mental illnesses such as anxiety and
MDD, and data from Cirulli et al. showed that NGF was a
potential candidate for adverse events in brain dysfunction
and a neuroendocrine marker for the different responses of

TABLE 2 (Continued) Antidepressant effects induced by phytochemicals based on neurotrophic factors.

Phytochemicals Behavioral effects Neurotrophic mechanisms References

Oleanolic acid ↓Immobility time in FST and TST ↑Hippocampal BDNF Fajemiroye et al. (2014)

Olive polyphenol _ ↑GDNF and NGF in the hippocampus and
olfactory bulbs

De Nicoló et al. (2013)

Orcinol glucoside ↓Immobility time in FST and TST ↑BDNF/TrkB/CREB pathway Li et al. (2021)

↑Sucrose preference in SPT

↑OFT

Paeoniflorin ↑Sucrose preference in SPT ↑ERK1/2 pathway Tang et al., 2021, Tian et al., 2021

↑function of balance control and motor
coordination in the BBT

↓Pyroptosis CASP-11/GSDMD pathway

Piperine ↑Sucrose preference in SPT ↑BDNF Ren and Zuo, (2019), Mao et al., 2014,
Wattanathorn et al., 2008

↑Spontaneous locomotor behavior

↓Immobility time in FST

Quercetin ↑Bodyweight gain ↑BDNF in both the hippocampus and PFC Ke et al. (2020)

↑Saccharin preference index

↓Immobility time in FST

Resveratrol ↑Sucrose preference in SPT ↑Peroxisome proliferator–activated receptor-γ
coactivator

Abd El-Fattah et al., 2018, Smeding et al., 2012

1α abundance and function

BDNF in both the hippocampus and PFC

Tetrandrine ↓Immobility time in TST and FST ↑BDNF Gao et al. (2013)

FST, forced swimming test; TST, tail suspension test; SPT, sucrose preference test; OFT, open field test; BBT, beam balance test; GDNF, glial cell-derived neurotrophic factor; BDNF, brain-

derived neurotrophic factor; VEGF, vascular endothelial growth factor; NGF, nerve growth factor; TrkB, tyrosine kinase receptor B; cAMP, cyclic adenosine monophosphate; CREB, cAMP-

response element binding protein; NLRP3, NOD-like receptor thermal protein domain associated protein 3; COX-2, cyclooxygenase-2; PGE2, prostaglandin E2; GDNF, PKA, protein kinase A;

CASP-11, caspase-11; GSDMD, pore-forming protein gasdermin D; PFC, prefrontal cortex.
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male and female rhesus monkeys suffering from maternal
deprivation (Cirulli et al., 2009).

Based on the above NGF and depression studies, researchers can
find that the presence of suicide risk does not affect the serum levels
of NGF, suggesting NGF may be associated with the diagnosis of
MDD but not with the severity of symptoms.

3 Phytotherapy on depression targeting
neurotrophic factors

Despite the fact that conventional antidepressant therapy can
help relieve symptoms of depression, concerns have been raised
regarding complementary therapies due to the drawbacks of the
current medications. Phytochemical constituents, a ubiquitous
class of plant secondary metabolites, have revealed their
therapeutic benefits in many indications, including mental
disorders (Raimundo et al., 2022). The use of phytochemicals
is a complementary method to conventional antidepressants to
provide therapeutic advantages and avoid unwanted adverse
reactions. To date, subsequent evidence indicates that
impairment in neurotrophic basis is associated with
depression, and phytochemicals targeting neurotrophic factors
exert antidepressant properties. It is thus not surprising that the
focus of the pharmacological study on phytochemicals for the
treatment of depression has been targeting neurotrophic factors,
among which BDNF, GDNF, VEGF, and NGF are the most
relevant neurotrophins. For example, curcumin, one of the few
phytochemicals that have found its way into human studies,
exerts antidepressant effects by improving the levels of
hippocampal BDNF (Sanmukhani et al., 2014; Fusar-Poli
et al., 2020). Besides, resveratrol is a natural polyphenol that
could improve the reduction in sucrose preference in rats by
promoting BDNF and GDNF levels (Liu et al., 2014; Couteur
et al., 2021). GDNF and NGF could be inducted by olive
polyphenol administration in the hippocampus and olfactory
bulbs of mice (De Nicoló et al., 2013). Naringin increased the
expression of BDNF and VEGF in rat models (Rong et al., 2012;
Viswanatha et al., 2022). Table 2 manifested other
phytochemicals targeting neurotrophic factors for depression
treatment.

In conclusion, it suggests that antidepressant-like effects of
phytochemicals may be mediated, at least in part, by enhanced
neurotrophic factors produced in the brain. Phytochemicals
targeting neurotrophic factors are the potential to be profoundly
developed and used in the future. Research into the biochemical and
pharmacological effects of these bioactive constituents may uncover
novel treatments for psychiatric illness or yield fresh insights into
basic disease mechanisms.

4 Conclusion and perspectives

Depression is one of the most serious health challenges that
affect the quality and duration of life substantially and disastrously.
In terms of the therapeutic efficacy of depression, the limitations of
traditional antidepressants remain notable. For example, a
significant portion of patients with depression is prone to

recurrence or unresponsive to various antidepressants (Daly
et al., 2019). Additionally, it delays several weeks for 5-HT
reuptake inhibitors, the mainstream antidepressants, to take
action. Nevertheless, innovative therapeutics are still rare, owing
in part to the difficulty of uncovering the underlying biological
mechanisms of depression. As a result, the development of
identifying novel therapeutic targets for depression is urgently
required.

The expression and levels of BDNF, GDNF, VEGF, and NGF
appear to be differentially altered in MDD patients compared to
healthy persons, indicating that these molecules may constitute
crucial roles in the pathophysiology of depression and
antidepressant activity of treatment interventions. Coupled with
new insights into the underlying mechanisms of depression, the rich
abundance of chemical entities derived from herbs is proving to be
an enticing resource in the search for effective therapy. Phytotherapy
with a long history of useful applications is gaining popularity in
pharmaceutical research. The active ingredients operating on
multiple neurotrophic factors have been identified and
extensively evaluated for therapeutic efficacies. Phytochemical
components are more broadly available, tolerable, and
presumably possess fewer negative effects in comparison to
synthetic pharmaceutical medications, making them especially
appealing for further exploitation and characterization for
potential application in depression. Although animal research has
yielded a plethora of candidates for phytotherapy, only a limited
number of these compounds have made it into clinical trials. It is
necessary to perform clinical trials to establish the therapeutic
potential and validate the efficacy and safety of natural
antidepressants.
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