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In this study, the effects of background error covariance (BE) using the stream
function ψ and unbalanced velocity potential χu as momentum control variables
(CV5 scheme) and BE using the velocity U and V as momentum control variables
(CV7 scheme) on assimilating radar radial velocity and reflectivity data for short-
term forecasts of dispersive convection in a weak environmental field are explored
based on the weather research and forecastingmodel (WRF) model and its 3DVAR
assimilation system. The 4 km resolution forecast samples are generated to
formulate the CV5 and CV7 BE by the National Meteorological Center (NMC)
method. The single-observation experiments reveal that the differences between
the two BE statistics are mainly reflected on themomentum control variables. The
increment of wind field from CV7 shows more small-scale local characteristics.
Comparing with control experiment, real radar observation assimilation tests of
CV5 and CV7 both improve the reflectivity and precipitation forecasts. But the
CV7 scheme improves the forecasting of strong convective systems in weak
environmental fields better than CV5. First, the CV7 scheme improves both
reflectivity and dispersive precipitation forecasts and significantly suppresses
the spurious precipitation forecasts when compared with the CV5 scheme. In
addition, CV7 also significantly reduces the forecast errors of surface variables and
the wind analysis from CV7 is more local. Further analysis shows that the
CV7 improves the water vapor convergence conditions compared to the
CV5 scheme, which may be the reason for its better performance in the
subsequent forecasts.
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1 Introduction

Hazardous weather induced by mesoscale convective systems such as thunderstorms,
gales and rainstorms causes a serious threat to life and property. One of the main reasons
why the numerical weather prediction (NWP) model performs the worst in forecasting such
intense weather is its sensitivity to initial conditions (Sun, 2005). The data assimilation
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technique uses available meteorological observations and NWP
products (background) to estimate the optimal state of the
atmosphere (Ide et al., 1997), which is the main strategy to
reduce the uncertainty of the initial field and improve NWP
results at present (Bouttier and Courtier, 2002). Numerous
studies have shown that the assimilation of conventional
observations, radar and satellite data has a positive impact on
initial conditions and forecasts (Sun, 2005; Johnson et al., 2015;
Gan et al., 2021; Lin et al., 2021; Eyre et al., 2022). Compared with
conventional observations, radar observation has higher temporal
resolution (5–10 min) and spatial resolution (250–1000 m), which
can better observe meso- and small-scale weather systems and
provide valuable information for convective scale data
assimilation (Xiao and Sun, 2007; Wang et al., 2013; Tong et al.,
2016, etc.).

Compared with the more advanced four-dimensional variational
method (4DVAR), ensemble method or hybrid method, the three-
dimensional variational method (3DVAR) is the most commonly used
method for data assimilation due to its practicality in terms of
computational efficiency. The 3DVAR approach seeks optimal
analysis by minimizing the cost function associated with the control
variables (Barker et al., 2004). The calculation of the background cost
function requires statistical information on the model prediction error
(Buehner, 2010; Brousseau et al., 2011). The background error
covariance (BE) matrix is critical to the success of data assimilation
systems because it controls the degree of influence of each observation
in the analysis and how this influence is propagated spatially and across
different analysis variables (Fisher, 2003). However, due to the rather
large dimension of the BE matrix (107×107), accurate determination of
the BE matrix is very difficult and usually requires simplification
through control variable preprocessing (Barker et al., 2012). The
selection of control variables changes the entire structure of the BE
matrix and thus the assimilation results (Descombes et al., 2015).
Therefore, the choice of control variables greatly affects the assimilation
effect of variational assimilation systems.

There are two different control variable schemes most commonly
used in the variational data assimilation system of the regional NWP
model: 1) the stream function (ψ) and velocity potential (χ) as
momentum control variables (Wu et al., 2002) and 2) the velocity
components (U, V) as momentum control variables (Gao et al., 1999).
Scholars have compared two control variable schemes. Xie and
MacDonald (2012) analyzed the differences between the two control
variable schemes from a mathematical perspective and concluded that
background fields and small-scale observations can be better combined
when UV is chosen as the momentum control variable, while using ψχ
as the momentum control variable is more suitable for analyzing large-
scale motion. Xu (2019) demonstrated that the choice of different
momentum control variables is theoretically equivalent in the case
that the error covariance function satisfies the derived
relationship. Dong et al. (2022) investigated the role of two control
variable schemes for assimilating conventional observation data with a
3 km resolution model. With UV control variables, 0~6-h ground
forecast was improved. Sun et al. (2016) compared the effects of two
sets of mome of the mesoscale horizontal wind component and reduced
the variance, while the use of UV control variables could be closer to the
radar wind observations, thus improving the 0–12 h precipitation
forecasts. Li et al. (2016) studied the effects of two momentum
control variable schemes on radar radial velocity data assimilation

using a squall line process as an example and concluded that the
UV control variable scheme significantly improves the quality of the
initial field and is better for squall line forecasting, while the ψχ control
variable scheme generates unrealistic convergence/divergence in the
analysis field, which leads to a degraded precipitation forecast. Shen et al.
(2019) investigated the impacts of different momentum control
variables assimilating radar radial velocity data on typhoon forecasts,
and the results showed that UV as the control variable could more
objectively reflect the observed wind itself. Compared with the vertical
structure predicted by the ψχ scheme, the vertical structure predicted by
the UV scheme is more accurate, and the predicted reflectivity, typhoon
track and intensity are improved.

These studies indicate that BE with UV as the momentum
control variable is more advantageous than BE with ψχ as the
momentum control variable when assimilating observations.
Nevertheless, among these studies, there are fewer radar data
assimilation tests for strong convective cases, and most of them
focus on organized convective systems (e.g., squall lines, typhoons).
To make better use of radar observation data, it is necessary to carry
out radar data assimilation tests for more types of convective cases
and compare the effects of different BEs on severe convection
forecasts to make the results more applicable. Based on the WRF
model and its 3DVAR assimilation system, taking a dispersed
convective process in a weak environmental field under the
control of a subtropical anticyclone in the Jianghuai region of
China on 26 July 2018 as an example, this study further
evaluates the impact of the assimilation of radar radial velocity
and reflectivity data by the two control variable schemes on the
short-term prediction of strong convection to provide a reference for
better radar data assimilation.

The remainder of this paper is organized as follows. Section
2 describes the WRF 3DVAR data assimilation method and the
specific scheme of control variables in the assimilation system. The
severe convective case, Doppler radar observations, model
configuration and experimental design are introduced in Section
3. In Section 4, the characteristics of the two BE statistics are
compared, and the impact of the two control variable schemes
on the short-term prediction of severe convection is assessed.
Finally, the summary and discussion are presented in Section 5.

2 Methodology

2.1 WRFDA 3DVAR assimilation method

The basic goal of the WRFDA 3DVAR system is to obtain the
optimal estimate of the true atmospheric state at the analysis time by
iteratively minimizing a prescribed non-linear cost function (Ide
et al., 1997):

J x( ) � Jb x( ) + Jo x( )
� 1
2
x − xb( )

T
B−1 x − xb( ) + 1

2
yo −H x( )( )TR−1 yo −H x( )( )

(1)
Where J(x), Jb(x) and Jo(x) represent the cost function, the

background term and the observation term, respectively. The
analysis states, background states and observation vector are
denoted x, xb and yo. B and R are error covariance matrices for
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background and observation, respectively. H is the observation
operator that provides a mapping from the model’s grid space to
the observation space. In the data assimilation system, it is quite
difficult to calculate the inverse of B directly due to the large
dimension of B (107×107). To reduce the computational cost, the
matrix is simplified by using the control variable transformation
method. Generally, the B matrix is decomposed as B=UUT, and the
transformation of the control variable x’ = x - xb = Uv is commonly
applied. x’ and v represent the analysis increment vector and control
variable vector, respectively. Therefore, Eq. 1 is transformed into
Eq. 2:

J v( ) � 1
2
vTv + 1

2
d −H’Uv( )TR−1 d −H’Uv( ) (2)

whereH’ is the linearization of non-linear observation operatorH in
Eq. 1, and d � yo −H(xb) is the innovation vector. The transformed
B matrix is given implicitly in the control variable operator and no
longer needs to be represented directly.

2.2 Control variable schemes in the WRFDA
3DVAR assimilation system

The following two control variable schemes based on domain
specificity are commonly used in the current WRFDA 3DVAR
assimilation system, each containing five control variables. One
of them uses the stream function (ψ) and unbalanced velocity
potential (χu) as momentum control variables (CV5 scheme), and
the other control variables include the unbalanced temperature (Tu),
the unbalanced surface pressure (Psu) and the pseudo relative
humidity (RHs). Another option uses the velocity U and V as
momentum control variables (CV7 scheme), and other control
variables include full temperature (T), full surface pressure (Ps),
and pseudo relative humidity (RHs).

The BE matrices for two control variable schemes were
generated using the gen_be utility from the WRFDA 3DVAR
system by the National Meteorological Center (NMC) method
(Parrish and Derber, 1992) in this study. A dataset containing
1 month in summer of cold-start 24-h forecasts over the
simulation domain was produced every day starting at 0,000 and
1200 UTC. The domain-averaged BE statistics may then be obtained
by averaging these differences between the 24- and 12-h forecasts
valid at the same times.

3 Case description and experimental
setup

3.1 Overview of the severe convection case

From afternoon to night on 26 July 2018, severe convective
weather occurred over the Jianghuai region of China. Sudden strong
weather was a dispersed convective process in a weak environmental
field under the control of a subtropical anticyclone, mainly caused by
the joint action of weak cold air infiltrating from the rear of the
Mongolian cold vortex and the stable maintained subtropical
anticyclone circulation. The process was of great intensity and
serious disaster, with precipitation of more than 100 mm at
many stations, thunderstorms and gales more than Grade 8, hail
in many districts, severe flooding, traffic jams and damage to people
and goods in many cities. Figure 1A shows the temperature,
geopotential height, convective available potential energy (CAPE)
and wind vector fields at 500 hPa, and Figure 1B shows the relative
humidity, wind vector and geopotential height fields at 850 hPa
from the National Centers for Environmental Prediction (NCEP)
Global Forecast System (GFS) analysis at 1200 UTC on 26 July 2018.
The Jianghuai region is controlled by a subtropical anticyclone. At
the upper level, there is anticyclonic circulation along its eastern

FIGURE 1
(A) Temperature (red contour; units: K), geopotential height (blue contour; units: gpm), CAPE (shaded; units: J kg-1) and wind vector (arrows; units:
m s-1) fields at 500 hPa and (B) relative humidity (shaded; units: %), wind vectors (arrows; units: m s-1) and geopotential height (blue contour; units: gpm)
fields at 850 hPa from the Global Forecast System (GFS) analysis at 1200 UTC on 26 July 2018. The purple rectangle indicates the area of focus for severe
convection case. The solid dark line represents a through line and the dashed dark line represents a convergence line. The bolded blue line in the left
panel represents the extent of subtropical anticyclone.
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coast. The cold and dry air from the northeast at the bottom of the
northeast trough meets the warm and wet air from the southwest of
the subtropical anticyclone in Henan and Anhui provinces. The low-
level humidity is very high, with relative humidity exceeding 70%,
the southerly winds and easterly southeasterly winds continue to
transport water vapor, and wind shear exists in the Jianghuai region.
The CAPE value in most parts of the Jianghuai region exceeds
1500 J/kg, and the atmospheric energy is sufficient. Such high- and
low-altitude configurations are conducive to the formation and
development of convective weather systems and the occurrence
of severe convection and even hailstorms.

The radar composite reflectivity observations on 26 July 2018 are
shown in Figure 2. At 0600 UTC (Figure 2A), there was dispersed
convection over the Jianghuai region and strong convective cores
over southeastern Jiangsu Province and southwestern Shandong
Province. Then, the severe convective systems in southwestern
Shandong Province gradually moved to the southeast, and those
in southeastern and eastern Jiangsu Province gradually moved to the
west. By 1400 UTC (Figure 2E), the severe convective systems were

basically concentrated in Jiangsu and Anhui provinces, causing
heavy precipitation and hail. Subsequently, the center of strong
convection gradually weakened and largely dissipated by 2000 UTC.
Due to the limited coverage of radar observations (8 of the 9 radars
used in this study are located in Jiangsu Province, see Figure 3 for the
distribution of radar sites), the complete convective weather process
cannot be well presented.

3.2 Doppler radar and precipitation
observations

The Doppler radar data used in this study are all obtained
from nine S-band CINRAD WSR-98D radars in Jiangsu and
Zhejiang provinces, the locations of which are shown in
Figure 3. All radars use the VCP21 mode during operation,
with one volume scan completed in approximately 6 min,
consisting of nine scan elevations (0.5°, 1.5°, 2.4°, 3.3°, 4.3°, 6.0°,
9.9°, 14.6° and 19.5°). The azimuth resolution is 1°, and the gate

FIGURE 2
Observed radar composite reflectivity (units: dBZ) at (A) 0600 UTC, (B) 0900 UTC (C) 1200 UTC, (D) 1300 UTC (E) 1400 UTC, and (F) 1500 UTC on
26 July 2018.
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spacings of radial velocity and reflectivity factor are 250 m and
1,000 m, respectively. Before the radar observations are
assimilated, they need to be preprocessed and quality
controlled, including velocity dealiasing, removal of isolated
points and removal of clutter and noise (Steiner and Smith,
2002; Kessinger et al., 2003; Zhang and Wang, 2006). Figure 4
illustrates the validity of radar data quality control. After the

quality control of reflectivity data, non-meteorological echoes
such as ground clutter, anomalous propagation signals are greatly
suppressed. In addition, the quality controlled data need to be
thinned and are spatially mapped from spherical coordinates
(distance, azimuth and elevation) onto the model regular grids
using a local least square fitting method (Brewster et al., 2005)
prior to assimilation. The observation errors of reflectivity and
radial velocity are set to 2 dBZ and 1 m s-1 in all the radar data
assimilation experiments of this study, respectively. The
precipitation observation data are obtained from the hourly
precipitation grid dataset created by merging data from
automatic weather stations in China and CMORPH satellite
data with a spatial resolution of 0.1°×0.1°, provided by the
Chinese National Meteorological Information Center (NMIC)
for the evaluation of precipitation forecasting skills.

3.3 Model configuration and experimental
design

The WRF model and its 3DVAR assimilation system WRFDA
(version 3.9.1) are adopted in this study, and a single domain (shown in
Figure 3) is applied for all simulations. The model domain has
horizontal dimensions of 400×400 and grid spacings of 4 km. The
integration time step of the simulation is 20 s, and the domain has
50 terrain-following eta layers from the surface to 50 hPa. The initial
and boundary conditions are provided by NCEP GFS 0.25°×0.25°

analysis and forecast fields at 3-h intervals. The main
parameterizations used in WRF simulations include the WRF single-
moment 6-class (WSM6) microphysics scheme (Hong and Lim, 2006),
the Goddard shortwave radiation scheme (Chou and Suarez, 1999), the
Rapid Radiative Transfer Model (RRTM) longwave radiation scheme
(Mlawer et al., 1997), the Yonsei University (YSU) planetary boundary
layer scheme (Hong et al., 2006) and the Noah land surface model (Ek
et al., 2003). The cumulus parameterization scheme is not used due to
the fine grid resolution. The two BE matrices (CV5 scheme and
CV7 scheme) are calculated by the NMC method using a sample of
forecasts of approximately 1 month in summer.

FIGURE 3
Simulation domain superposed with the terrain height (units: m)
and the locations of nine radar stations (black dots). The maximum
range of every radar is represented by the corresponding circle. The
inverted white triangles represent the locations of sounding
stations. The abbreviations for Henan, Shandong, Hubei, Anhui,
Jiangsu and Zhejiang Provinces are HN, SD, HB, AH, JS and ZJ,
respectively.

FIGURE 4
(A)Original reflectivity and (B) reflectivity after being quality controlled for 0.5° elevation angle at 0600 UTC on 26 July 2018 from the Nanjing radar.
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To investigate the effects of two BE matrices on radar data
assimilation analysis and severe convection forecasting, single
observation and real radar observation assimilation experiments are
designed in this study. The detailed configuration of the single
observation tests is described in the next section. A control
experiment and two assimilation experiments are designed for real

radar observation experiments (shown in Figure 5). The control
experiment EXP_CTL is run 24 h from 1800 UTC 25 July 2018 to
1800 UTC on 26 July, and the initial 12 h represents the “spin-up”
period of model integration. EXP_CTL does not assimilate any
observations and is used to examine the effect of the assimilation
experiments. Both assimilation experiments take the 12-h prediction

FIGURE 5
Schematic diagram of the experimental design.

FIGURE 6
Variation of length scale with vertical mode for each variable in the CV5 and CV7 schemes: (A) ψ and U (B) χu and V, (C) Tu and T (D) RHs-CV5 and
RHs-CV7. The blue line represents the control variable of CV5 scheme, and the red line represents the control variable of CV7 scheme. The solid black line
represents the ratio of the variable length scales in the two schemes.
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field of the control experiment as the background field of the first
assimilation. EXP_CV5 and EXP_CV7 assimilate radar observations
(both reflectivity and radial velocity) every 3 h from 0600 UTC to
1200 UTC, taking the analysis field assimilated at 1200 UTC as the
initial field and integrating forward for 6 h. The difference is that the
former uses the BEmatrix of the CV5 scheme for assimilation, while the
latter uses the BE matrix of the CV7 scheme for assimilation. Current
studies generally agree that the BEmatrix obtained statistically using the
NMC method overestimates the characteristic length scale (Liu et al.,
2005; Li et al., 2012; Sun et al., 2016; Stanesic et al., 2019;
Thiruvengadam et al., 2020). Therefore, in the two assimilation
experiments, the length scales are reduced to half of the default
value, which are set to 0.5. The radial velocity observations are
assimilated directly using the assimilation scheme described by Xiao
et al. (2005). For the reflectivity data, the indirect assimilation scheme
introduced by Wang et al. (2013) is used to assimilate retrieved

rainwater and water vapor within the cloud estimated from
reflectivity. In addition, the snow and graupel mixing ratios retrieved
from reflectivity data are assimilated using the relationships presented
by Gao and Stensrud (2012).

4 Results

4.1 Comparison of the BE statistics

The characteristic length scale represents the range of influence
of background error, and the characteristic length scales of BE in the
two control variable schemes are first compared below. Since the
control variables are derived based on the assumption of uniformity
and isotropy, their length scales vary only with height (Barker et al.,
2004). Figure 6 shows the variation of characteristic length scales of

FIGURE 7
The increments of temperature (shaded; units: K) and wind field (vector; units: m s-1) with a single temperature observation at the 11th model level:
(A) CV5 scheme (B) CV7 scheme. The increments of U-wind (shaded; units: m s-1) and wind field (vector; units: m s-1) with a single westward wind
observation at the 11th model level: (C) CV5 scheme (D) CV7 scheme.
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two groups of control variables with vertical modes. As seen from
Figures 6A,B, the length scales of U and V are significantly smaller
than those of ψ and χu. The length scales of the first modes of U and
V are approximately 60 km, while the corresponding length scales of
ψ and χu are over 180 km. The solid black line in the figure indicates
the ratio of the length scales of the two variables. These two ratios
increase gradually with increasing wavenumber, indicating that ψ
and χu lead to larger length scales for small-scale features of the
atmosphere compared to U and V. The characteristic length scale
difference of temperature is mainly reflected in the first 25 modes.
The length scale of the temperature in the CV7 scheme is slightly
larger than that of the unbalanced temperature in the CV5 scheme
(Figure 6C). The characteristic length scales of relative humidity are
identical in both schemes, with a maximum value of approximately
32 km (Figure 6D). The above comparison shows that the difference
in characteristic length scales between the two groups of control
variables is mainly reflected in the differences between the variables
U and ψ, V and χu. The BE generated using the CV7 scheme has a
smaller length scale for its momentum control variables, which is
consistent with the findings of Sun et al. (2016).

4.2 Single observation tests

To verify the rationality of statistical BEs and more intuitively
compare the differences between the two control variable schemes,
assimilation tests of single observations are conducted before the
assimilation experiments of real radar observations. Using the
forecast field of experiment EXP_CTL at 0600 UTC on 26 July
2018 as the background field, a single temperature and westward
wind observation are added at the center of the model domain
(33°N, 117°E) at the 11th level of the model (approximately
850 hPa). The innovations of the perturbation point (observation-
background) are set to 1 K and 1 m/s, and the observation errors
are set to 1 K and 1 m/s, respectively.

Figures 7A,B show the analysis increments of temperature and
horizontal wind at the 11th model level after assimilating single
temperature observations using the CV5 and CV7 schemes,
respectively. The temperature increments produced by the two
experiments are basically the same, uniform and isotropic. The
increment is the largest near the observation location and gradually
decreases from the inside out, indicating that there is little difference
in the assimilation of temperature between the two BEs. Note that
the CV5 scheme generates circular anticyclonic wind field
increments near the observation location because the correlation
between the variables ψ and temperature is considered in the
CV5 scheme, so wind field increments are generated, but the
incremental values are very small. The CV7 scheme does not
consider the correlation between control variables, so the
temperature perturbation will not produce the wind increment.

Figures 7C,D display the analysis increments of U-wind and
horizontal wind at the 11th model level after assimilating single
westward wind observations using the CV5 and CV7 schemes,
respectively. It is easy to find that wind field increments vary
greatly between different control variable schemes. The
propagation of the positive increment region of the U-wind
generated by the CV5 scheme is much larger than that of the
CV7 scheme on the horizontal scale because the two have
different characteristic length scales. The CV5 scheme generates
anticyclonic and cyclonic wind field increments on the north and
south sides of the large value area of westerly wind increments,
respectively, and produces negative incremental regions of U-wind
on both the north and south sides, which has non-physical
significance. These negative increments will lead to unrealistic
local divergence and convergence if the radial velocity
observations are assimilated with the CV5 scheme. In contrast,
the CV7 scheme is able to more objectively reflect the observed
winds themselves. Since the CV5 scheme considers the correlation of
the control variables, the perturbation westward wind variable
produces increments of V-wind in the analyzed field, but the

FIGURE 8
Vertical profile of U-wind analysis increments (units: m s-1) along 33°N in the singlewestwardwind observation test: (A)CV5 scheme (B)CV7 scheme.
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increment value of V-wind is much smaller compared to U-wind. In
contrast, U and V are independent control variables that are not
correlated with each other, so only westerly wind increments are

generated in the CV7 scheme. It is worth noting that humidity is an
independent control variable in both schemes, so the assimilation of
single observations will not produce humidity increments.

FIGURE 9
Analysis increments of (A), (B) wind speed and wind vector (units: m s-1) (C) (D) temperature (units: °C); and (E), (F) water vapor mixing ratio (units:
g kg-1) at 850 hPa at 1200 UTC on 26 July 2018 from the real radar observation experiments EXP_CV5 (left column) and EXP_CV7 (right column).
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Figures 8A,B show the vertical profile of the increment of
U-wind along 33°N in Figures 7C,D, respectively. The increments
generated by the CV5 scheme have a much larger propagation in the
horizontal direction than those generated by the CV7 scheme. The
incremental horizontal propagation range produced by the
CV7 scheme is small, and the influence range is relatively
concentrated. The single observation tests show that compared
with the CV5 scheme, the CV7 scheme contains smaller scale
features and is more local.

4.3 Comparison of the increment fields of
assimilated radar observations

The effects of the two schemes on the assimilation of real radar
observations are investigated next. Figure 9 demonstrates the

analysis increments at 850 hPa resulting from the assimilation
of the radar observations at 0600 UTC for experiments EXP_CV5
(left column) and EXP_CV7 (right column). EXP_CV5
(Figure 9A) produces a much larger range of wind field
increments than EXP_CV7 (Figure 9B). EXP_CV5 produces
multiple large value regions of wind speed increments and
cyclonic wind field increments in the northern part of Henan
Province and the southeastern coastal area of Jiangsu Province.
The wind field increments generated by EXP_CV7 contain more
small-scale characteristics. EXP_CV7 produces almost no
temperature increment (Figure 9D), while EXP_CV5
(Figure 9C) produces a temperature increment of some
magnitude (0.1 K), which is due to the correlation between the
control variables in the CV5 scheme. There is no significant
difference in humidity increment between the two groups of
experiments, and both have large humidity increments in the

FIGURE 10
Composite reflectivity fields (units: dBZ) at 1500 UTC on 26 July 2018: (A) for the observations, the third hour forecast of experiments (B) EXP_CTL,
(C) EXP_CV5, and (D) EXP_CV7.
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area with a large value of radar composite reflectivity (see
Figure 2A).

4.4 Reflectivity forecasts

To better compare the effects of the two control variable schemes
on convective forecasts, the observed composite reflectivity field and
the predicted third hour (1500 UTC) composite reflectivity fields
calculated from three experiments are presented in Figure 10. At this
time, the observed echo areas with large values were mainly located
in Anhui Province. The echoes in the high value area are hardly
forecasted in EXP_CTL (especially in the area inside the black circle)
but instead generate false strong convection in eastern Henan
Province and southern Anhui Province. The predicted echoes of
EXP_CV5 and EXP_CV7, after cyclic assimilation of radar data, are

much improved compared with EXP_CTL. Both assimilation
experiments successfully predict strong echoes in north-central
Anhui Province, but the predicted echoes from EXP_CV7 are
closer to the observations. Although both assimilation
experiments produce spurious convection within Henan
Province, the false convection predicted by EXP_CV5 is
significantly more, which may be due to unrealistic convergence
after assimilating radar observations using the CV5 scheme.

In this study, the equitable threat score (ETS), false alarm rate
(FAR), BIAS and missing alarm rate (MAR) scores are used to
evaluate reflectivity and quantitative precipitation forecasts, and the
range of the validation area is shown in Figure 10A. ETS considers
the hit number achieved by chance and has the fairness property,
which is measured in the range of −1/3 to 1. Larger values indicate
better forecasting skill. The measurement range of BIAS is 0 ~ ∞,
and the ideal BIAS score is 1. A BIAS higher than 1 indicates

FIGURE 11
ETS (A1-A3), FAR (B1-B3) and BIAS (C1-C3) scores for the maximum reflectivity predicted by the three experiments. The first, second and third
columns are the results of thresholds of 10, 20 and 30 dBZ, respectively.
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overestimation and less than 1 indicates underestimation (Goines
and Kennedy, 2018). The values of MAR and FAR range from 0 to 1,
with lower values indicating better forecasting skill.

The ETS, FAR and BIAS scores of the maximum reflectivity
predicted by the three experiments against the observations are
given in Figure 11 for three thresholds of 10, 20 and 30 dBZ. It
can be seen that the two assimilation experiments significantly
improve the ETS scores compared to the control experiment. It is
obvious that EXP_CV7 has higher ETSs and lower FARs than
EXP_CV5, except for the sixth-hour forecast at the 20 dBZ
threshold and the fourth- and fifth-hour forecasts at the
30 dBZ threshold. The BIASs of EXP_CTL are below 1 at all
thresholds throughout the forecast period, indicating that it
underestimates the echoes. In contrast, both assimilation tests
overestimate the echoes, and the BIAS values of EXP_CV7 are

generally smaller than those of EXP_CV5. Overall, EXP_
CV7 performs better in forecasting the echoes.

4.5 Precipitation forecasts

To verify the spatial pattern of precipitation, the simulated
precipitation results of the three experiments are compared with
the observed precipitation in Figure 12. The first and second rows
are the 3-h accumulated precipitation for 1,200–1500 UTC and
1,500–1800 UTC, respectively, and the third row is the 6-h
accumulated precipitation for 1,200–1800 UTC. The first column
shows the observed precipitation, and the second, third, and fourth
columns successively represent the precipitation forecasted by EXP_
CTL, EXP_CV5, and EXP_CV7. The observed precipitation is

FIGURE 12
Observed and forecasted 3-h and 6-h accumulated precipitation (units: mm). From left to right: observations (A1, A2, A3), EXP_CTL (B1, B2, B3),
EXP_CV5 (C1, C2, C3) and EXP_CV7 (D1, D2, D3); from top to bottom: 1,200–1500 UTC, 1,500–1800 UTC and 1,200–1800 UTC.
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mainly located in Anhui Province and western Jiangsu Province, and
the area with 6-h accumulated precipitation exceeding 50 mm is
mainly located in central Anhui Province. 1,200–1500 UTC, EXP_
CTL (Figure 12B1) barely predicts the heavy rainfall band and
generates false strong precipitation forecasts in eastern Henan
Province and Jiangsu Province. After assimilating the radar data,
the intense precipitation forecasts in EXP_CV5 (Figure 12C1) and
EXP_CV7 (Figure 12D1) are well improved. Compared with EXP_
CV5, EXP_CV7 has better precipitation forecasts in northern Anhui
Province, which is closer to the observation, and reduces the false
precipitation of EXP_CV5 in Henan Province to some extent.
1,500–1800 UTC, the observed precipitation area shrinks toward
central Anhui Province, and EXP_CTL (Figure 12B2) completely
misses precipitation and produces false heavy precipitation forecasts
in eastern Henan Province and southern Anhui Province. Both
experiments EXP_CV5 (Figure 12C2) and EXP_CV7 (Figure 12D2)
predicted precipitation in central Anhui Province, but EXP_
CV7 forecasted precipitation that was more consistent with
observations, and the unrealistic heavy precipitation of EXP_
CV5 was significantly reduced in Henan Province.
1,200–1800 UTC, the precipitation in Anhui Province is not
predicted by EXP_CTL, while the location of precipitation in
EXP_CV5 and EXP_CV7 remains largely consistent with the

observation, but the intensity of precipitation is obviously
overestimated. EXP_CV7 is better than EXP_CV5 in predicting
precipitation in central and southern Anhui Province and Henan
Province.

Statistical validation scores are calculated to quantitatively
assess the impact of the two control variable schemes on
convective precipitation forecasts. The ETS, FAR, MAR, and
BIAS scores of the 6-h accumulated precipitation against
observed precipitation with different thresholds of 1, 2, 5, 10,
20, 30, 40, and 50 mm are given in Figure 13. The ETSs for both
assimilation experiments are consistently higher than EXP_CTL at
all thresholds, and the FARs and MARs are consistently lower than
EXP_CTL at all thresholds. The FAR andMAR scores of EXP_CTL
at the threshold of 50 mm are 1, indicating that heavy precipitation
above 50 mm is completely missed, and there are many false heavy
precipitations. The ETSs of EXP_CV7 at all thresholds are
consistently higher than those of EXP_CV5, and the FARs,
MARs and BIASs of EXP_CV7 at all thresholds are consistently
lower than those of EXP_CV5. The results show that both
assimilation experiments improve precipitation forecasts after
assimilating radar observations, but using the CV7 scheme to
assimilate radar data has better performance in precipitation
forecasting.

FIGURE 13
(A) ETS, (B) FAR (C)MAR and (D) BIAS scores for forecasted 6-h accumulated precipitation with thresholds of 1, 2, 5, 10, 20, 30, 40 and 50 mm for the
three experiments.
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4.6 Verification against conventional
observations

Conventional observations are used to verify the impact of both
schemes on analysis and forecasting. Figure 14 shows the vertical
profiles of root-mean-square errors (RMSEs) for horizontal wind
speed (U and V), temperature T), and water vapor mixing ratio Q)
in the initial field (1200 UTC) for each experiment. The RMSEs are
calculated against the observations from eight sounding stations in
Figure 3. EXP_CV7 greatly improves the wind field compared with
EXP_CV5. For the U wind component, the RMSEs of EXP_
CV7 are smaller than those of EXP_CTL except for
250–150 hPa and are significantly lower than those of EXP_
CV5 except for 400 hPa and 150 hPa. For the V wind
component, the RMSEs of EXP_CV7 are significantly smaller
than those of EXP_CTL except for 200 hPa and 100 hPa and
are significantly lower than those of EXP_CV5 except for
850 hPa. With smaller length-scale, EXP_CV7 could capture
more local characteristic and make the analysis increment more

consistent with high-density radar observation. For temperature T,
the RMSEs of EXP_CV7 are smaller than those of EXP_CV5 except
for 400–300 hPa, and its RMSEs are larger than those of EXP_CTL
at heights above 500 hPa. For the water vapor mixing ratio Q,
EXP_CV7 has lower RMSEs than EXP_CV5 at altitudes above
700 hPa. EXP_CV5 has larger RMSEs than EXP_CTL for multiple
height levels for all variables, which may be caused by excessive
propagation of variable increments and overestimation of variable
subsequent predictions after assimilation of radar observations.
Figure 14 shows that the assimilation effect of the CV7 scheme on
radar data is better than that of the CV5 scheme, especially for the
improvement of the wind field.

Figure 15 describes the time series RMSEs of the 10 m wind
speed (WP10 M), 2 m temperature (T2 M), 2 m relative humidity
(RH2 M) and surface pressure (Ps) from the forecasts of EXP_CTL,
EXP_CV5 and EXP_CV7. The RMSEs are calculated against the
SYNOP observations from 319 surface stations. Compared with
EXP_CV5, EXP_CV7 seems to have a smaller RMSE for all surface
variables, especially for the wind field where the reduction in RMSE

FIGURE 14
Vertical profiles of root-mean-square errors (RMSEs) of analyses against sounding observations at 1200 UTC on 26 July 2018 for (A) the U wind
component (m s-1), (B) the V wind component (m s-1), (C) temperature T (°C), and (D) water vapor mixing ratio Q (g kg-1).
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is most pronounced. Overall, the assimilation of radar data using the
CV7 scheme produces analysis fields fitting observations well and
can significantly reduce forecast errors for model surface variables.

4.7 Diagnosis of wind and moisture fields

The wind and moisture fields at 700 hPa provide information on
the source and transport mechanism of water vapor. To analyze the
reasons for the differences in the forecasts of each experiment, the
horizontal wind vector and water vapor flux divergence fields at
700 hPa for the initial fields of the three experiments are presented in
Figure 16. The wind speeds in the initial fields of experiments EXP_
CV5 and EXP_CV7 are larger than those in EXP_CTL due to the
assimilation of high-resolution radar observations, and the
enhanced southeasterly wind continuously transports the water
vapor from the East China Sea to Jiangsu and Anhui Provinces.
The negative large value of water vapor flux divergence in all three
experiments is mainly located at the border of Anhui Province and
Jiangsu Province. Compared with EXP_CV7, EXP_CV5 has obvious
cyclonic wind shear in region A, and there are many scattered water
vapor convergence zones, which is also the reason for its spurious
heavy precipitation forecast in this region in the subsequent forecast.

EXP_CTL has a small range of negative large values of water vapor
flux divergence in region B, and water vapor convergence is very
weak. EXP_CV5 and EXP_CV7 both significantly enhance the
convergence of water vapor in region B. The airflow from all
directions gathers in this region, and the range of water vapor
convergence increases significantly. However, the latter has a larger
range of water vapor convergence than the former (especially in
northern Anhui Province) and suppresses the unrealistic
convergence of EXP_CV5 in region A, which better matches the
observed radar echo region with a large value (Figure 2C), resulting
in the improved forecast.

5 Summary and discussion

The choice of control variables is crucial for the assimilation
efficiency of variational assimilation systems. In this study, based on
the WRF model and its 3DVAR assimilation system, the BE matrix
with ψχu as the momentum control variable (CV5 scheme) and the
BE matrix with UV as the momentum control variable
(CV7 scheme) are calculated by the NMC method. The
characteristic length scales of two BE statistics are compared, and
the characteristics of BE of two control variable schemes are

FIGURE 15
Time series of the RMSE of the predicted surface variables against the SYNOP observations for (A) wind speed at 10 m, (B) temperature at 2 m (C)
relative humidity at 2 m and (D) surface pressure.
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analyzed by single temperature and westward wind observation
tests. The impact of assimilating radial velocity and reflectivity on
short-term forecasts of reflectivity and precipitation using the two
control variable schemes is also evaluated by taking a dispersive
convective process in a weak environmental field under the control
of a subtropical anticyclone in the Jianghuai region of China on
26 July 2018 as an example.

The comparison of the characteristic length scales reveals that
the differences between the two BE statistics are mainly reflected in
the differences between the momentum control variables. The single
observation tests show that the analysis increments of the wind field
generated by the two BEs is significantly different. The analysis
increments generated by the BE of the CV5 scheme have a larger
range of influence, and the negative increments non-physically
will lead to unrealistic local divergence and convergence. In
contrast, the analysis increments produced by the BE of the
CV7 scheme tend to capture small-scale features and are more
localized.

The real radar observation assimilation experiments show that the
range of the wind field analysis increment generated by EXP_CV5 is
much larger than that generated by EXP_CV7, and there is little
difference in the temperature analysis increment and almost no
difference in the water vapor mixing ratio analysis increment.
Compared with EXP_CTL, both assimilation tests improve the
reflectivity and precipitation forecasts. However, the distribution of
the predicted reflectivity and accumulated precipitation and objective
statistical scores show valuable improvements in EXP_CV7 compared
with EXP_CV5. EXP_CV7 improves the convective precipitation
forecasts and distinctly reduces the spurious precipitation
forecasted by EXP_CV5. This is consistent with the results of
previous studies for assimilating both radar and other observations
(Li et al., 2016; Sun et al., 2016; Thiruvengadam et al., 2019; Wang
et al., 2020; Dong et al., 2022). In addition, it also significantly reduces
the prediction error of surface variables. Further analysis shows that

compared to EXP_CV5, EXP_CV7 improves the wind, temperature
and water vapor fields in the initial field and improves the water vapor
convergence conditions, which may be the reason for its better
performance in the subsequent forecasts.

The results provide strong evidence that the assimilation of
radar reflectivity and radial velocity using the CV7 scheme can
improve the forecasting of strong convective systems in weak
environmental fields. However, in this study, only one dispersed
convection process is studied, and more case studies and more long-
term experiments are needed to make the results more applicable to
make better use of the radar observations.
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