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The optimal management of type 2 diabetes (T2DM) is complex and involves an
appropriate combination of diet, exercise, and different pharmacological
treatments. Artificial intelligence-based tools have been shown to be very
useful for the diagnosis and treatment of diverse pathologies, including
diabetes. In the present study, we present a proof of concept of the potential
of an evolutionary algorithm to optimize the meal size, timing and insulin dose for
the control of glycemia. We found that an appropriate distribution of food intake
throughout the day permits a reduction in the insulin dose required to maintain
glycemia within the range recommended by the American Diabetes Association
for patients with T2DM of a range of severities. Furthermore, the effects of
restrictions to both the timing and amount of food ingested were assessed,
and we found that an increase in the amount of insulin was required to
control glycemia as dietary intake became more restricted. In the near future,
the use of these computational tools should permit patients with T2DM to
optimize their personal meal schedule and insulin dose, according to the
severity of their diabetes.
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1 Introduction

Type 2 diabetes mellitus (T2DM) is a metabolic disorder characterized by hyperglycemia
secondary to insulin resistance and relative insulin deficiency (Gardner, 2011). An
impairment in the ability of cells to respond appropriately to insulin exists in muscle,
liver, and adipose tissue (Cantley and Ashcroft, 2015) (Clark et al., 2001) (Jeong et al., 2010).
The most common consequences of this defect, if left untreated, are i) blindness, ii) renal
failure, iii) myocardial infarction, iv) stroke, and v) abnormal blood flow in the extremities,
which can necessitate amputation and is associated with premature death (Fonseca, 2009)
(Papatheodorou et al., 2018).

T2DM is a disorder that typically manifests in adults; is the most common form of
diabetes, accounting for 80%–90% of all cases; and is increasing in prevalence worldwide.
Indeed, the global prevalence of T2DM is projected to increase to 7.079 individuals per
100.000 by 2030. In addition, there is a concerning rise in prevalence in lower income
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countries. Thus, urgent public health and clinical preventive
measures are required (Safiri et al., 2022) (Wareham and
Herman, 2016).

The principal causes of T2DM are obesity, a sedentary lifestyle,
and genetic factors. In particular, obesity is considered to be the
principal cause of T2DM in genetically predisposed individuals
(Ismail et al., 2021) (Wu et al., 2014). In the early stages of the
disease, it can be controlled through an increase in exercise and
changes to the diet (Colberg et al., 2010) (Kirwan et al., 2017)
(Nelson et al., 2002). However, during the later stages, medications
such as metformin (Rojas and Gomes, 2013) and ultimately insulin
(Swinnen et al., 2009) are required. Insulin administration is
recommended for patients with glycated hemoglobin levels >9%
and those whose diabetes cannot be controlled using oral glycemic
therapy (Marín-Peñalver et al., 2016) (Thrasher, 2017).

Good glycemic control is defined by the American Diabetes
Association (ADA) using blood glucose concentrations between
80 and 130 mg/dL before meals and <180 mg/dL 2 h following
meals (Care and Suppl, 2022). The optimal type of insulin
therapy varies according to the characteristics of each patient: to
achieve the recommended glucose concentrations, basal insulin
alone, prandial insulin alone, or a combination of the two may
be required.

Specifically, in this study the use of insulin pumps for insulin
supply is considered. Despite only around0.5%–1.0% of Type
2 patients use insulin pumps, continuous pump administration
has been found to result in improved glycemic control, making
this a good option for improving life expectancy overall (Freckmann
et al., 2021). For this reason, the study of new approaches to optimize
the use of this type of device in type 2 patients is of interest.

Although insulin is a highly effective therapy for diabetes, the
use of exogenous insulin is been associated with a number of side
effects, including weight gain, a worsening of diabetic retinopathy,
changes in the refractive properties of the lens, dizziness, and
difficulty breathing (Lebovitz, 2011) (Holman et al., 2009). The
most common side effect is hypoglycemia, owing to a mismatch
between food intake and the insulin dose being administered. Thus,
to appropriately control diabetes, it is necessary to optimize the diet
of each patient in terms of the quantity and type of food, the pattern
of food consumption during the day, and exogenous insulin
administration. Many methods can be used to determine the
amount of food that should be consumed and the amount of
insulin required for glycemic control, but these must be adapted
to the specific characteristics of the patient using a trial and error
method.

In the present study, we present a proof of concept of how an
optimization process based on an evolutionary algorithm (EA)
allows to determine the optimal pattern of dietary intake and the
optimal insulin doses for patients with T2DM administering insulin
therapy treatment. We optimized these parameters according to the
characteristics of each patient, with three specific objectives: i) to
prevent episodes of hypoglycemia, ii) to minimize the severity of
hyperglycemia, and iii) to minimize the insulin requirement. It is
worth noting that despite the extensive study of the use of AI
techniques in diabetes (Li et al., 2021) (Sapna et al., 2012) (Alharbi
and Alghahtani, 2019), only a few previous studies have explored the
use of EAs to optimize the diet of patients with diabetes (Kane et al.,
2016).

To evaluate the use of EAs for the optimization of the control of
T2DM, amathematical model was used to describe the physiology of
a virtual patient with T2DM. The use of mathematical models in
preclinical trials is becoming increasingly widespread because they
accelerate the development of new therapies. For example, the US
Food and Drug Administration accepts a DM1 simulator as a
substitute for preclinical trials for certain insulin therapies,
including a closed-loop algorithm for use with an artificial
pancreas (Dalla Man et al., 2014).

The model used in the present study was an adaptation of the
model developed by Visentin et al (2020), involving a basal insulin
infusion and a prandial insulin bolus. The parameters included
permit individuals with differing severities of T2DM to be modeled.

We developed the EA with the objective of determining the
optimal daily food intake pattern and optimal insulin therapy (such
as prandial insulin in combination with basal insulin
administration), and minimizing the total insulin dose required.

2 Materials and methods

2.1 Mathematical model describing the
physiology of the participants

To evaluate the effects of differing intake patterns on glycemic
control in silico, we implemented a mathematical model that
described the physiology of patients with T2DM, based on the
model developed by Visentin et al (2020). The model described
glucose transit through the gastrointestinal tract, the effects of
insulin on glucose utilization and production, and the control of
insulin secretion by glucose.

The model constructed was a combination of submodels that
describe various processes (Supplementary Figure S1). Specifically,
the submodels included within the model constructed were as
follows: 1) the glucose subsystem, 2) intestinal glucose
absorption, 3) renal glucose excretion, 4) endogenous glucose
production, 5) glucose use, and 6) the insulin subsystem. For
simplicity, the C-peptide secretion system was not considered
because does not have backward regulations affecting the other
systems involved (see Figure 2 in Visentin et al 2020). The
Supplementary material contains a detailed description of all the
subsystems considered and the parameters used in the simulations.

In the present study, a subcutaneous insulin subsystem was
added to this model to simulate subcutaneous insulin infusion and
prandial administration, according to the model developed by
Schiavon et al. (2020) and as described inSupplementary
Equation S9.

It should be noted that this model provides a description of
patients with T2DM and a range of levels of insulin production and
insulin resistance, which depend on their i) levels of peripheral and
hepatic insulin sensitivity, ii) level of β-cell responsivity, and iii)
basal circulating insulin and glucose concentrations.

Three individuals with differing severity of T2DM were studied:
T2DMA, corresponding to a person with prediabetes, and T2DMB
and T2DMC, corresponding to patients with intermediate and
advanced stages of diabetes, respectively. The parameters used to
describe these individuals were as follows: i) basal insulin (Ib), ii)
basal glucose (Gb), iii) insulin-dependent glucose utilization
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(Vmax), iv) pancreatic responsivity to the glucose rate of change K),
v) pancreatic insulin secretion β), and vi) the response of the liver to
insulin with respect to endogenous glucose production (kp3).
Table 1 shows the parameters of each of these individuals. The
rest of parameters are shown in Supplementary Table S1.

2.2 Evolutionary algorithm

To achieve the objective of identifying a dietary intake pattern
that optimizes glucose control and minimizes the insulin dose, we
implemented an EA that includes the following:

a. The total dietary intake throughout the day, resulting in the
liberation of 195 g of glucose by digestion.

b. A set of N different intake patterns P1, P2, . . .PN{ }, with N =
10.000.

c. A maximum of five meals for each pattern. Each Pj pattern was
defined as a set of values (Qj

i , T
j
i , D

j
i ),

i.e., Pj � (Qj
1, T

j
1, D

j
1), (Qj

2, T
j
2, D

j
2), . . . , (Qj

5, T
j
5, D

j
5){ } (j≤N),

where Qj
i is the amount of glucose ingested, and Tj

i is the time of
meal consumption. Finally, each meal was combined with one
dose of prandial insulin, Dj

i , i≤ 5, and ∑5

i�1Q
j
i � 195 g. Finally,

the meal pattern Pj was combined with a basal infusion of insulin
IBj from a pump.

d. Combinations of diet, prandial insulin, and basal insulin,
i.e., Ψj � (Pj, IBj), each associated with a fitness function fj

that quantified the adequacy of glycemic regulation. This fitness
function was defined as follows:

fj � μ1 · fL + μ2 · fH + μ3 · IBj + 1 − μ1 − μ2 − μ3( ) ·∑5
i�1
Dj

i (1)

where

fL � 0 if G min ∈ 80, 100( )
Gmin − Gt

0

∣∣∣∣ ∣∣∣∣ otherwise{
and

fH � 0 ifG max <Gt
1

Gmin − Gt
0

∣∣∣∣ ∣∣∣∣ otherwise{
Here, Gmin and Gmax are the minimum and maximum plasma

glucose concentrations during the day, Gt
0 is the target minimum

value for plasma glucose, and Gt
1 is the target 2 h postprandial

plasma glucose concentration. Simulations were performed with
Gt
0 � 90 mg/dL and Gt

0 � 170 mg/dL.
The first term fL represents the difference between the real

minimum plasma glucose concentration and the optimum
concentration Gt, the second term is the maximum change in
plasma glucose induced by each meal, the third term is the basal
insulin dose, and the final term is the total prandial insulin dose
administered during a day. The parameters μ1, μ2, and μ3
correspond to the weightings of the contribution of each of these
terms to the fj function. In the simulations performed, μ1 � 0.35,
μ2 � 0.35, and μ3 = 0.15 were used, to prioritize the avoidance of
hypoglycemic episodes over insulin dose.

The objective of the EA was to minimize this fitness function. To
this end, it included the following steps:
Step 1: The N elements Ψj were initially randomly determined (the
size of each meal Qj

i , the time of meal ingestion Tj
i , the dose of

prandial insulin Dj
i , and the level of the basal infusion IBj).

Step 2: For each of the individuals described in Table 1, all the
combinations of Ψj were applied, and the physiological responses
were computationally simulated.
Step 3: The fitness function fj was calculated for each Ψj.
Step 4: The Ψj combinations were sorted from the lowest to highest
values of fj. If two or more combinations had the same values of fj,
they were sorted from the lowest to highest dose of total insulin
administered, i.e., the sum of the prandial and basal insulin doses.
Step 5: 25% of theΨj with the lowestfj values were selected, and the
rest were discarded.
Step 6: A new set of Ψj was generated. For this purpose, the 25%
selected in the previous step were retained, and new combinations
were created until N elements were achieved. These new
combinations were the result of the duplication Ψj randomly
chosen with probability ηj from those selected in step 5, along
with random mutations. The probability of selection was calculated
as follows:

ηj �
1
fj

∑N
k�1

1
fk

(2)

Once a combination Ψj was selected, an element of the set {Qs
i ,

Ts
i , Ds

i , IBs} was randomly selected to be mutated with equal
probability. The mutation consisted of a random variation
ε ∈ [−ρ,+ρ] of the selected element, where ρ is the maximum
amplitude of mutation. In all the simulations performed, ρ � 0.1
was used. Where the element to be mutated was the size of the meal,

TABLE 1 Characteristics of the individuals analyzed.

Parameter T2DMA T2DMB T2DMC

Ib 57.9 59.3 60.3

Gb 120.8 146.1 161.8

Vmax 0.042 0.039 0.032

K 397 270.1 150.2

β 27.3 20 12.1

Kp3 0.007 0.006 0.005

Body mass (kg) 74 74 74

TABLE 2 Rules for mutation.

Element Value before
mutation

Value after
mutation

Size of meal Qs
i Qs

i · (1 + ε)

Qs
k Qs

k · (1 − ε)

Time of meal Ts
i Ts

i · (1 + ε)

Prandial insulin dose Ds
i Ds

i · (1 + ε)

Basal insulin
infusion

IBs IBs · (1 + ε)
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i.e.,Qs
i , the change in this parameter was transferred to another meal

size Qs
k that was randomly chosen, to maintain the same total food

intake during a day. Table 2 summarizes the rules for the mutation.
Step 6 was repeated until a group of N combinations was compiled,
which was used to configure the next-generation of the evolutionary
process. Subsequently, the algorithm returned to step 2 and was
repeated until the maximum number of generations was reached.

It should be noted that this EA did not include crossover
between Ψj combinations because it is necessary to ensure that
the total food intake remained constant.

Supplementary Figure S2 summarizes the different steps
involved in this evolutionary process.

3 Results

3.1 Characteristics of the individuals studied

To study the utility of EAs for the optimization of dietary intake
and insulin dose necessary to facilitate glycemic control, three
individuals with differing severities of T2DM were considered:
T2DMA, T2DMB, and T2DMC, plus a healthy individual as a
reference. The parameters defining the characteristics of each
individual are presented in Table 1. The remaining model
parameters were identical for T2DMA, T2DMB, and T2DMC

(Supplementary Table S1). Figure 1A shows the glucose curves
obtained for individuals following the consumption of 115 g of
glucose in the absence of exogenous insulin administration. This
figure shows in gray the zone considered to represent
normoglycemia, according to the ADA criteria, and prior to the
glucose load, the plasma glucose levels of the participants should
have been within this zone. According to the same criteria, 2 h
following a meal, the glucose curves should have been in the yellow
zone, which corresponded to plasma glucose
concentrations <180 mg/dL. The simulation results presented in
Figure 1A show differing degrees of deviation from the ADA criteria,
corresponding to differing severities of diabetes. It can be seen how
the individual T2DMA showed poor glucoregulation following food
intake but acceptable basal plasma glucose concentrations (within
the gray area), corresponding to prediabetes. The individuals
T2DMB and T2DMC showed poorer regulation of both basal
and postprandial glucose concentrations.

Figure 1B shows the plasma insulin concentrations of these
individuals. Their plasma insulin concentrations were found to be
higher than in healthy individuals as a result of insulin resistance.
However, these concentrations decreased as glucose regulation
worsened, which implies that in addition to insulin resistance,
there was a reduction in the ability of the individuals to secrete
insulin, corresponding to a worsening of diabetes.

3.2 Optimization of food consumption and
insulin administration patterns

The EA described in theMaterials andmethods section was used
to determine the food intake pattern that would minimize the dose
of insulin, both basal and prandial, necessary to achieve good
glucoregulation, according to the ADA criteria.

In the first set of simulations, the EA was permitted to
introduce random mutations with respect to both the insulin
dose and the timing and size of each meal. Specifically, in each
simulation, the consumption of a meal was regarded as taking
20 min (Supplementary Equation S4), basal insulin was assumed
to be supplied using an insulin pump at a constant infusion rate
during the day, and prandial insulin was assumed to be injected
15 min before food intake (Supplementary Equation S9). In all
the simulations performed, the total amount of glucose
consumed during each day was 195 g, distributed across up to
five meals. These meals were stipulated to be consumed within a
maximum of a 14 h period. The simulations were conducted
over 600 generations, after which the results had clearly
stabilized.

Figure 2 shows the results of the first set of simulations. Figures
2A–C show the evolution of the fitness function over successive
generations for the three individuals. As shown in the figures, after
600 generations, the fitness function was stable. All the simulations
were performed using the parameters μ1 � 0.35, μ2 � 0.35, and
μ1 � 0.15. These parameters were determined in multiple
preliminary simulations to be those that permit the EA to find
the best solution. The inset figures represent the minimum (blue
line) and maximum (red line) plasma glucose concentrations 2 h
after a meal, and the gray area represents the optimal basal glucose
concentrations for patients with diabetes. The maximum plasma

FIGURE 1
(A). Plasma glucose concentration curve following the ingestion
of 115 g glucose. (B). Plasma insulin concentration curve following the
ingestion of 115 g glucose. T2DMA (orange line), T2DMB (yellow line),
and T2DMC (blue line): individuals with increasing severity of type
2 diabetes. Green solid line is the limit of 180 mg/dL. Grey area
represents the interval between 80 and 130 mg/dL.
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glucose concentrations 2 h after a meal should have been <180 mg/
dL, according to the ADA criteria, and we found that the EA was
able to find an optimal solution for each individual, tailored to their
particular characteristics.

The minimization of the fitness function was associated with
that of the amount of insulin required to control glycemia, as shown
in Figure 3. Figures 3A–C show the evolution of the basal insulin
doses provided to ensure optimal glucose concentrations prior to a
meal for the three individuals analyzed. In addition, Figures 3D–F
show the evolution of the prandial insulin doses administered.
Initially, the doses of prandial insulin were high in the three
individuals analyzed. However, as the dietary intake patterns
were modified by the EA (see Supplementary Figures S3, S4, and
Supplementary Figures S5), superior regulation could be achieved
alongside a reduction in the amount of insulin required. It is
important to note that in the case of the individual T2DMA, the
solution provided by the algorithm did not require the
administration of exogenous insulin. The optimal distribution of
food intake throughout the day was sufficient to achieve a good level
of regulation of glycemia in this individual, whereas the individuals
T2DMB and T2DMC required increasing doses of both basal and

prandial insulin, according to the severity of T2DM exhibited by
each individual.

Providing the EA with total freedom regarding the
determination of intake patterns, with respect to both the timing
and size of meals, permitted it to identify solutions that would not be
easily implemented by a real patient. Therefore, to explore how the
imposition of restrictions on the dietary intake patterns would affect
the solutions identified by the EA, two new sets of simulations were
performed.

Initially, a time-restricted scenario was analyzed, in which a
uniform temporal distribution of meals, at 06:00, 10:00, 13:00, 17:00,
and 20:00, was imposed. As in the previous round, we found that
after 600 generations, the fitness function was stable (Supplementary
Figure S6) and associated with good glycemic control, in terms of
both the basal and postprandial glucose concentrations (insets in
Supplementary Figure S6). Figure 4 shows the total doses of insulin
required for glycemic control in the time-restricted scenario. In this
set of simulations, the restrictions affecting the temporal distribution
of meals did not increase the insulin doses required, indicating that a
uniform temporal distribution of meals assists with glycemic
control.

Subsequently, a more restrictive scenario was analyzed, in which
both the timing and size of meals were fixed. Specifically, the timing
of the five meals was fixed at 06:00, 9:00, 12:00, 16:00, and 19:00, as
previously, and the amounts of glucose ingested were fixed at 35 g,
15 g, 70 g, 20 g, and 55 g, respectively. Despite the EA only being able
to optimize the insulin dose under these conditions, the fitness
function was again successfully minimized (Supplementary Figure
S7) and remained stable after 600 generations, implying good
glycemic control, with respect to both the basal and postprandial
glucose concentrations (insets in Supplementary Figure S7).
However, the solutions obtained by the EA involved increases in
both the prandial and basal insulin doses required in the three
individuals analyzed (Figure 4). Supplementary Figure S8, 9 shows
the time evolution of glucose with optimized distribution of meals in
the time restricted scenario and time and quantity restricted
scenario respectively. Furthermore, Supplementary Figures S10,
S11 show the evolution of the basal insulin doses (blue lines) and
prandial insulin doses (red lines) corresponding to the time
restricted scenario and the time and quantity restricted scenario
respectively. It should be noted that the individual T2DMA required
insulin administration to achieve optimal glucoregulation, whereas
in the previous unrestricted scenario, the same level of regulation
could be achieved without insulin.

In general, the results shown in Figure 4 indicate that the
imposition of restrictions had a negative effect on glycemic
control in all the individuals analyzed. This negative effect
necessitated increases in the prandial and basal insulin doses.

Figure 5 provides a summary of the effects of EA optimization.
This represents the % of daily time at different glucose intervals for
the test subjects, namely, i) below 80 mg/dL, ii) 80–130 mg/dL, iii)
130–180 mg/dL and iv) above 180 mg/dL. The results show that
most of the time, individuals take between 80 and 130 mg/dL and
between 130 and 180 mg/dL. However, it should be mentioned that
time intervals with glucose below 80 mg/dL, glucose levels are very
close to 80 mg/dL and no episodes of hypoglycemia are observed.
Similarly, when glucose exceeds 180 mg/dL, it remains very near this
value and no episodes of hyperglycemia are observed.

FIGURE 2
Evolution of the fitness function over 600 generations for the
three individuals studied (gray line). (A) T2DMA, (B) T2DMB, and (C)
T2DMC. All the simulations were performed using the parameters
μ1 � 0.35; μ2 � 0.35,; μ1 � 0.15 for the calculation of the fitness
function. Inset figures represent the minimum (blue line) and
maximum (red line) plasma glucose concentrations 2 h followingmeal
consumption. The gray area represents the optimal basal glucose
concentrations for patients with diabetes, according to the American
Diabetes Association criteria.
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4 Discussion

Recent advances in AI, in combination with more precise
mathematical models of physiological systems, represent
significant advances toward a personalized medicine that are
applicable to many diseases. In this context, in the present study,
we have evaluated the utility of EA for the optimization of glycemic
control in patients with T2DM. This was achieved by combining an
appropriate temporal distribution of meals with appropriate
exogenous insulin doses. The objective of the EA was to
minimize the insulin doses required to achieve appropriate
glycemic control, and this reduction could be achieved by
appropriately distributing meals throughout the day. Three types
of individuals were analyzed, with various severities of diabetes.

In all the cases studied, the EA successfully established patterns
of food intake and insulin doses, both basal and prandial, that
optimized glycemic control according to the characteristics of the
individuals considered.

Three scenarios were considered. In the first scenario, the EA
was free to modify the timing and size of meals, as well as the
insulin doses, to achieve glycemic control according to the ADA
criteria. Subsequently, a more restrictive scenario was
considered, in which the timing of meals was predetermined,
such that the EA could modify only the size of each meal and the
doses of insulin administered. Finally, we analyzed the most
restrictive scenario, in which both the timing and size of
meals were fixed, and the EA was only able to determine the
insulin doses used.

FIGURE 3
Evolution of the total insulin dose required for the three individuals analyzed. (A). Evolution of the basal insulin dose for T2DMA (blue line). (B).
Evolution of the basal insulin dose for T2DMB (blue line). (C). Evolution of the basal insulin dose for T2DMC (blue line). (D). Evolution of the prandial insulin
dose for T2DMA (red line). (E). Evolution of the prandial insulin dose for T2DMB (red line). (F). Evolution of the prandial insulin dose for T2DMC (red line).
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We found that the prandial insulin dose required depended not
only on the total amount of glucose ingested during the day but also
on the temporal distribution of meals. However, it should be noted
that the basal insulin requirement was not affected by meal
distribution. Furthermore, for the individual T2DMA, it was
possible to control glycemia by optimizing meal distribution
alone, without the necessity for exogenous insulin administration,
consistent with this individual being prediabetic. However, as the
freedom to determine meal intake pattern was reduced, the
requirement for prandial insulin increased.

The present findings highlight two important aspects of the
control of T2DM: i) the importance of dietary management and ii)

the great potential for the use of mathematical models of metabolic
systems and EA in the treatment of diseases such as diabetes.

The applicability of results obtained in the optimization of glycaemia
through an evolutionary strategy can be limited by the limitations
inherent in the physiological model used, in our case the model
based on the work of (Visentin et al. (2020). For example, the model
used in this study did not consider the specific characteristics of the
various types of insulin in use. In addition, it will be necessary to develop
more refinedmodels that consider other aspects such as the influences of
types of carbohydrates other than glucose and other sources of energy,
such as fatty acids or the effects of physical exercise. Finally, the roles of
counter-regulatory hormones, such as glucagon, epinephrine, and
growth hormone, have not been considered in the present model.

It should be noted that the fact of having carried out a first study
only on three average subjects represents a limitation of the
generality of the results obtained. Consequently, these results can
only be considered as a preliminary proof of concept of the potential
use of the evolutionary strategies for glycemic regulation.

However despite the limitations of the present study, the results
suggest that the use of an evolutionary strategy can be useful in
optimizing the regulation of glucose in type 2 patients through an
optimization of the daily meal distribution and the doses of insulin

FIGURE 4
Minimum basal (blue bars) and prandial (red lines) insulin doses
required for optimal glycemic control under scenarios with differing
levels of restrictions for all the individuals analyzed. (A) T2DMA, (B)
T2DMB, and (C) T2DMC.

FIGURE 5
% of time at different glucose intervals for the subjects T2DMA,
T2DMB and T2DMC: i) below 80 mg/dL, ii) 80–130 mg/dL, iii)
130–180 mg/dL and iv) above 180 mg/dL upon different restrictive
scenarios.
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applied. Future work should focus on the validation of the proposed
evolutionary strategy, extending this study to other insulin models or
other types of treatments, such as oral drugs. Moreover, these studies
should analyze the performance of the evolutionary strategy considering
a wide range of different patients, in order to perform a statistical
analysis that support the preliminary findings presented in this work.

In summary, the combination of a mathematical model of
metabolic systems that considers the characteristics of specific
diabetic patients and EA may represent a significant advance
toward personalized medicine for patients with diabetes.
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